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Abstract (150 words maximum) 

Resistance to androgen deprivation therapies leads to metastatic castration-resistant prostate cancer (mCRPC) 

of adenocarcinoma (AdCa) origin that can transform to emergent aggressive variant prostate cancer (AVPC) 

which has neuroendocrine (NE)-like features. To this end, we used LuCaP patient-derived xenograft (PDX) 

tumors, clinically relevant models that reflects and retains key features of the tumor from advanced prostate 
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cancer patients. Here we performed proteome and phosphoproteome characterization of 48 LuCaP PDX tumors 

and identified over 94,000 peptides and 9,700 phosphopeptides corresponding to 7,738 proteins. When we 

compared 15 NE versus 33 AdCa PDX samples, we identified 309 unique proteins and 476 unique 

phosphopeptides that were significantly altered and corresponded to proteins that are known to distinguish 

these two phenotypes. Assessment of protein and RNA concordance from these tumors revealed increased 

dissonance in transcriptionally regulated proteins in NE and metabolite interconversion enzymes in AdCa.  

 

Introduction: 

Prostate cancer (PCa) is the most diagnosed cancer in men in the United States. Early detection via regular 

screening of serum prostate-specific antigen (PSA) levels have facilitated PCa diagnosis in organ confined tumors 

before cancer spread 1. If a patient presents with aggressive PCa, a classic upfront therapy involves radiation or 

surgery with androgen-deprivation therapy (ADT) 2,3. While ADT response is effective initially, tumors progress 

to a more aggressive disease known as metastatic castration-resistance prostate cancer (mCRPC) 3,4. Treatment 

of mCRPC with adenocarcinoma (AdCa) features consists of hormonal therapies such as enzalutamide, 

abiraterone acetate, darolutamide, and apalutamide; however, these therapies can often induce novel 

phenotypes such as aggressive variant prostate cancer (AVPC). AVPC has genetic aberrations, including PTEN 

and RB1 loss, TP53 mutations, and diminished AR signaling activity. Several definitions of AVPC have been 

described including treatment-emergent small cell carcinoma, double-negative prostate cancer, amphicrine, or 

neuroendocrine prostate cancer (NEPC) 5,6. Emergence of these drug-resistant phenotypes creates a large 

unmet medical need to identify new protein or phosphoprotein drug targets for potential biomarker and 

therapeutic development for this subset of CRPC patients. 

 

Analysis of the genomic aberrations has contributed to the understanding of drug resistance mechanisms in 

PCa. These include mutations and focal amplifications in the androgen receptor (AR), PIK3CA/B, fusions in 
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BRAF/RAF1, mutations in APC, mutations and amplifications in CTNNB1, focal homozygous deletions in 

ZBTB16/PLZF,  biallelic loss, inactivation and somatic point mutations in BRCA1 and BRCA2 and biallelic loss and 

point mutations in ATM 7. Additional alteration among other biologically relevant genes includes point 

mutations of SPOP, FOXA1, and TP53; MYC, RB1, PTEN, and CHD1 copy number alterations; and E26 

transformation-specific (ETS) fusions, 8-15. The identification of such alterations has paved the way to define 

pathological categorizations of mCRPC between AR+ (AdCa) and AR- (NE) disease states. These two types of 

metastatic phenotypes show distinct pathological features, which are in most cases consequences of 

implementation of different treatment modalities with no curative therapies available. In solid tumors, prostate 

cancer nonsynchronous mutational rate is in the lower 25% quartile compared to esophageal and colorectal 

tumors which are in the higher 75% quartile 7,16-22. Furthermore, somatic alterations, such as in the PI3K 

pathway, is present in only 49% (73/150) of the mCRPC afflicted patients, and still nearly half of this population 

will fail to respond if treated with PI3K inhibitors, 7,9,23. Overall, this information indicates that the genomic 

feature of prostate cancer explains some of the tumor progression and therapy responses but dismiss key 

phenotypic expression from proteins that may be driving the biology and drug resistance.  

  

Several patient-derived xenograft tumor (PDX) models have been developed in prostate cancer reflecting 

different clinical subtypes including the typical prostate AdCa and the atypical patterns of progression known as 

AVPC that includes NE tumors. These models have shown to closely reflect the characteristics of the 

heterogeneity of the patient tumor population, maintaining histopathologic architecture and the genomic 

footprint of the tumors from which they were derived 24-28.  The LuCaP series have been extensively 

characterized, including analyses of genomic alterations, transcriptomic profiles, and single tandem repeats 29. 

However, little is known about the proteomic profiles of these tumors and specifically post-translational 

modification of these proteins such as phosphorylation.  
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Recent technological advancements in mass spectrometry (MS) based proteomics have allowed the increase in 

protein detection, coverage, and quantification 30,31. Here, we used Field Asymmetric Ion Mobility Spectrometry 

(FAIMS) [31] technology and performed a global proteome and phosphoproteome analysis of the LuCaP PDX 

models to elucidate proteome-wide signatures and unique activated pathways between AdCa and AVPC (with 

an emphasis on NEPC). We have developed the largest proteome and phosphoproteome database of prostate 

cancer PDX models which provides an extensive list of protein targets for drug development, predicted kinase 

enriched domains, found in blood (plasma), secreted, surface proteins, and biological pathways. Most 

importantly, we integrated RNA sequencing data from the same PDX models with our proteomic data and 

evaluated the concordance between protein and mRNA. The results revealed dissonance between protein and 

mRNA expression of some important biological targets that would have been dismissed if only RNA was analyzed 

from these tumors. Overall, this large proteomic and phosphoproteomics resource will aid to a further 

understanding of the underlying cell signaling mechanisms, identification and functional validation of novel drug 

targets, and future biomarker development in prostate cancer. 

 

Results: 

Proteomics and phosphoproteomics platform analysis 

We developed a global systematic approach to evaluate the proteome and phosphoproteome of 48 PDX tumor 

samples, which includes 6 different AdCa tumors grown in intact mice (AdCa NCR, n=15), 6 AdCa grown in 

castrated mice (AdCa CR, n=18) and 6 neuroendocrine (NE, n=15) tumors (Fig 1A-sample collection). These 

samples were all processed in parallel on the same day and bottom-up proteomics was performed (Fig 1A-

sample processing). To evaluate the phosphoproteome, we performed a tyrosine (Y), Serine (S) and Threonine 

(T) enrichment analysis using a sequential metal oxide affinity chromatography (SMOAC) assay (Fig 1A-sample 

processing-II). In parallel, from the pool of peptides prior to phospho-STY enrichment, we used this fraction and 

evaluated the overall peptide mix, which we defined as the proteome (Fig 1A sample processing-I). The enriched 
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phosphopeptides and total peptides were analyzed using a state-of-art instruments to date, containing a high-

field asymmetric waveform ion mobility spectrometry (FAIMS), which is an atmospheric pressure ion mobility 

technique that separates gas-phase ions by their behavior in strong and weak electric fields. This approach 

allows better separation and detection of stable peptides (> +2 charge state ions) for confident quantification 31 

compared to no FAIMS application where the instrument collects +1 charge state ions, which are very unstable 

and not quantifiable among other advantageous features (Fig 1A). We used an in-house proteome and 

phosphoproteome analysis pipeline 32 that includes Maxquant 33 for peptide/phosphopeptides searches and 

data processing (Supplemental Fig 1.A). Using a 1% FDR, we identified a total of 94,517 peptides that mapped 

to 7,738 master proteins at the proteome level and a total of 9,722 phosphopeptides that mapped to 3,759 

phosphoproteins (Fig 1B and 1C) with a phosphosite probability > 0.75. In combination, we identified 8,612 

unique master proteins from these samples, where 32.6% of these proteins overlapped between the proteome 

and phosphoproteome datasets. After identifying the overall number of master proteins measured between 

the phosphoproteome and proteome, 9.9 % of the phosphorylated peptides were unique to the 

phosphoproteome and 57.5% were unique to proteome (Fig 1D).  This indicates that not all proteins have a 

phosphorylated peptides and not all the phosphopeptides had a non-phosphorylated protein measured in the 

proteome.  

To infer protein abundances, we used intensity-based absolute quantification (iBAQ) 34. To identify the 

significantly altered proteins, we performed a variance stabilization normalization (VSN) 35 making the sample 

variances nondependent from their mean intensities using p-value adjusted > 0.05 and a log 2-fold change. 

Using this approach, we identified 147 proteins that were hyper-abundant in the NE group and 162 proteins in 

the AdCa group (Fig 1E). Using similar statistical analyses, we identified 259 unique hyperphosphorylated 

peptides in the NE samples and 217 unique hyperphosphorylated peptides in the AdCa group (Fig 1F). We 

performed several comparisons between AdCa grown in castrated mice (CR) versus AdCa grown in intact mice 

(NCR), AdCa-CR versus NE, and then AdCa-NCR and AdCa-CR versus NE (supplemental Table 1). Since we 
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observed most of the differences between AdCa all (NCR + CR) versus NE, we proceeded with the rest of the 

analyses comparing NE vs AdCa all.  

 

The LuCaP PDX tumor proteome is consistent with established NE and AdCa gene signatures 

To evaluate differences in the overall proteome landscape between NE (AR-) and AdCa (AR+) PDX samples, we 

performed an unsupervised clustering of all the proteins measured. We observed and confirmed the previous 

remarks that there is a distinct intra- and inter- tumor variability across all PDX samples (Fig 2A). More 

specifically, there is more variability across intact mice (NCR) and castrated (CR) AdCa PDX pairs than all of the 

NE samples, which indicates that the relative protein abundance in NE PDX samples are more similar than we 

might have expected. We then evaluated if this variability is consistent with the top 50 most highly upregulated 

proteins across all samples and at this level, the data showed that AdCa PDX tumors clustered uniquely and 

distinctly from the NE tumors (Fig 2B).  

Unsupervised data driven clustering and UMAP analysis showed that the PDX tumors clustered within their sub-

groups despite the intra- and inter- PDX tumor variability (Fig 2C). Most importantly, individually analyzed 

proteins that have been shown to differentiate NEPC (ASCL1, RET, CEACAM5, CHGA, DLL3, SYP, KIT) vs CRPC 

AdCa (AR, FOXA1, HOXB13, NKX3-1, STEAP1, STEAP4, TACSTD2) showed that the proteins measured that are 

different in expression between NE vs AdCa are respectively hyper-abundant in their corresponding group 

comparisons (Fig D-F). Pathway analysis showed that there are 34 pathways enriched in NE and 267 in AdCa. 

Among others, pathways enriched in the AdCa PDX tumors consisted of sulfide oxidation to sulfate, β-oxidation 

of very long chain fatty acids (VLC-FA), (Fig 2G). In the NE PDX tumor samples, we identified an enrichment of 

proteins involved in the processing and activation of SUMO, ALK2 pathway, polymerase switching, and 

attachment of GPI anchor to u-PAR (urokinase-type plasminogen activator) (Fig 2G). Between both groups, 

these pathways are involved in commonly known hallmark gene signatures  regulating proliferation, E2F targets, 

metastasis, adhesion, oxidative phosphorylation and angiogenesis through cell signaling (Fig 2H)and plays an 
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important role in the tumor microenvironment 36,37.These results provide evidence that the PDX tumor protein 

profiles maintain the proteome architecture and footprint similar to the clinical phenotypes previously 

observed. 

 

The LuCaP PDX tumor phosphoproteome reveals increased inter-patient homogeneity with established NE 

and AdCa gene signatures 

To evaluate the overall phosphoproteome in the LuCaP PDX samples, we performed a sequential metal oxide 

phospho-enrichment targeting Serine (S), Threonine (T), and Tyrosine (Y) residues (Fig 1A. II). Unsupervised 

hierarchical clustering showed that the AdCa PDX samples LuCaP 96CR (replicate 10C), LuCaP 105, LuCaP 105CR, 

LuCaP 167 and LuCaP 167CR clustered more closely with 49 (replicate 3A), 145.2, 173.1 and 208.1 of NE origin 

and NE PDXs 49 and 145.1 clustered more closely to AdCa LuCaP 35, 35CR, 70, 70CR, 96, 96CR, 77, and 77CR 

(Fig 3A). This indicates that the phosphoproteome has more cross variability between NE and AdCa PDX tumors 

than the proteome, although the clustering patterns seems to reflect less interpatient heterogeneity when 

compared to the proteome. These data provide a new insight into the canonical understanding of these two 

mCRPC subgroups where the phosphorylation signatures might have more signaling overlap, allowing for the 

testing of novel drug targets that may treat both AdCa and NE tumors. When clustering the top 50 proteins that 

mapped to hyper-phosphorylated peptides from each of the AdCa and NE PDX tumors there was distinct 

segregation between those sub-groups (Fig 3B). Similar to the proteome, we assessed the known NE and AdCa 

proteins and mapped them to their corresponding phosphorylated peptides. Data driven analysis, strikingly 

showed that these phosphopeptides clustered similarly to the NE and AdCa proteins (Fig 2D) even though most 

of these phosphoresidues have never been analyzed in this context (Fig 3C). Since the unsupervised clustering 

showed that the NE and AdCa PDX tumor samples were not grouped based on pathological phenotype (Fig 3A), 

we evaluated their overall dimensionality using UMAPs that showed that these samples segregated within their 

corresponding sub-groups (Fig 3D). Using the proteins from the volcano plot (Fig 1F), we mapped several 
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functional phosphoproteins that have drugable phosphosites (i.e. phosphopeptides that map to 

phosphoresidues on proteins with known functional activity) that were unique in AdCa (AR_pS651, pS310, 

pS120; MYC_pT58; RB1_pT373 and SIRT1_pS47) and NE (STMN1_pS38; ADD2_pS697 and pS701; RET_pS696; 

CDK1_pT161; ARHGEF2_pS956, pS960; MCM2_pS108; EZH2_pT345; USP16_pS552; and E2A_pS379) PDX 

tumors (Fig 3E). Kinase Substrate Enrichment Analysis (KSEA) was performed to evaluate a proxy of kinase 

activity based on the phosphorylated substrates of the phospho-peptides measured. The results show that there 

are distinct kinases expressed at differential levels between NE versus AdCa PDX samples (Fig 3F).  Furthermore, 

the phosphoproteome analysis showed that the hyperphosphorylated peptides enriched for pathways involved 

in metabolism of RNA, RNA processing, and PID-HIF TF pathway in AdCa; and chromatin modifying enzymes, 

neurexins and neuroligins, and transcription regulation by RUNX1 in NE PDX tumors (Fig 3G). This confirms that 

NE PDX tumors are more closely related to a neuronal phenotype, while AdCa is more metabolically defined. As 

expected, gene set enrichment analysis (GSEA) indicated that androgen response, hypoxia and MYC targets 

were enriched in AdCa, while G2M checkpoint and E2F targets were enriched in the NE PDX tumors (Fig 3H). 

Therefore, despite the global phosphoproteome clustering differences, there is a fundamental fidelity between 

AdCa and NE including drugable targets.  

 

LuCaP PDX tumor proteomic and transcriptomic integration reveals dissonance between mRNA and protein 

targets 

It has been established that mRNA expression has low to moderate correlation to protein expression with a 40-

50% concordance 38-40, which might misguide potential nomination of novel targets if evaluated at the mRNA 

level only. Therefore, we conducted a concordance analysis between mRNA and protein abundance from the 

LuCaP PDX samples to evaluate potential discrepancy and nominate targets confidently for a clinical assay or 

biomarker development. The LuCaP PDX mRNA data 41 from a publicly available source was analyzed against the 

LuCaP PDX proteomic data collected in this manuscript. We analyzed and compared the proteins that were 
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statistically significant and hyper-abundant (> 1.5-fold change) in the NE and AdCa PDX tumors, 336 and 360 

proteins, respectively, with the corresponding matching gene transcripts that were statistically significant 

(matching proteins and gene transcripts). When plotted each proteins’ relative intensity based average 

quantification (iBAQ) log2 fold change against the correspondent transcript FPKM log2 fold change, the overall 

linear regression correlation was low with a statistical significance r2=0.2359 as expected (Supplemental Fig 2A). 

Next, we performed concordance analysis where we focused only on the hyper-abundant proteins and their 

matching mRNA expression level counterparts. While all the proteins analyzed here were statistically significant 

and hyper-abundant, we observed that only 54% (NE) and 59% (AdCa) of the matching proteins/gene transcripts 

were concordant (C; mRNA and protein are upregulated and hyper-abundant, respectively) while more than 

40% in NE and  35% in AdCa proteins were non-concordant either discordant level I (DC.I; mRNA is not 

altered/changed significantly and protein is hyper-abundant) or discordant level II (DC.II; mRNA is significantly 

downregulated while the protein is hyper-abundant) (Fig 4A). These data strongly indicate that we are missing 

important drug targets and tumor biology within these two PDX sub-groups if we were to focus only on the 

mRNA. We then analyzed the directionality of the proteins versus the RNA counterpart within the subgroups 

and the overall dynamic range of mRNA expression was greater in the concordant group than the relative 

abundance in protein expression (Fig 4B) compared to the non-concordant groups (DC.I and DC.II).  We then 

performed two sub analyses focusing on the AdCa and NE PDX tumors alone to show the overall distribution of 

the mRNA FPKM vs protein iBAQ fold changes (Fig 4C and 4D). After evaluation of the protein class analysis (Fig 

4E), we observed that NE hyper-abundant proteins which were classified as discordant Level I (DC.I) and 

discordant level II (DC.II) were mainly categorized as transcriptional regulators (such as NKX2-4, SMARCD1, ATF2, 

ZBTB21, MYEF2, and more), chromatin binding proteins (CENPH), and DNA metabolic proteins (TIPIN). This 

indicates that the mRNA transcripts of these proteins were not changed or the expression was downregulated 

while the protein was hyper-abundant (Fig 4D). These targets, have relevance in the biology of NEPC and would 

have been missed if only the mRNA transcripts were analyzed. 
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To identify if the proteins that are discordant level I (DC.I) and discordant level II (DC.II) share any common 

characteristics, we performed a gene ontology protein class analysis (Fig 4E). From this, we identified that the 

proteins involved in chromatin binding, DNA metabolism, chaperon, and protein modifying enzymes were over-

represented in the NE discordant level I and discordant level II groups (DC.I + DC.II) compared to AdCa; while 

translational proteins, transporter, scaffold proteins, and metabolite interconversion enzymes were greater in 

the AdCa DC.I  and DC.II groups. This data also shows that there was greater dissonance in the NE DC.I and DC.II 

than in AdCa PDX tumors indicating that these targets would have been disregarded if only mRNA would have 

been analyzed.  

 
To illustrate an example of extreme discordance, such as in DC.II, patterns between protein and RNA, we show 

two examples of proteins that are highly abundant in AdCa (HIC2, Fig 4F) and NE (COL3A1, Fig 4G) but the mRNA 

expression levels are very low. HIC ZBTB Transcriptional Repressor 2 (HIC2), a protein that enables protein C-

terminus binding activity, predicted to be involved in regulation of transcription by RNA polymerase. In prostate 

cancer, HIC2 protein expression was shown to be increased in tumors compared to benign hyperplasia and 

normal tissue with a Gleason score greater than 7 and grade 3 42. Collagen Type III Alpha 1 Chain (COL3A1) is a 

protein that is found in most soft connective tissues along with type I collagen 43,44. It is involved in regulation 

of cortical development, and it is the major ligand of ADGRG1 in the developing brain. Moreover, COL3A1 

binding to ADGRG1 inhibits neuronal migration and activates the RhoA pathway by coupling ADGRG1 to GNA13 

and possibly GNA12 45. In prostate cancer, COL3A1 is suppressed by miR-29b in DU145, and after treatment with 

the miR-29b inhibitor COL3A1 expression is increased as well as the cells invasiveness 44. Therefore, in the case 

of these two proteins, these would have been missed if only mRNA was used to analyze differential changes. 

However, HIC2 and COL3A1 do play a vital role in prostate cancer that could lead to potential development of 

therapeutic targets.  
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Systematic analysis of the functional proteome and phosphoproteome for actionable targets 

We further investigated if these hyper-abundant proteins and phosphoproteins from the NE and AdCa sub-

groups have other functional characteristics that can provide avenues for biomarker and drug development. For 

these interrogations, we used the secretome (found in the extracellular matrix) 46 and blood proteins (found in 

blood plasma) from the Human Proteome Atlas, the surfaceome 47 and drug analysis from the Therapeutic 

Target Database 48, and Genomics of Drug Sensitivity in Cancer (GDSC) 49. We analyzed the proteins that were 

hyper-abundant (Fig 5A, 5B) and hyper-phosphorylated (Fig 5C, 5D) in AdCa and NE PDXs and searched them 

against the databases. For this, we included concordance stratification level on the proteome. For the 

phosphoproteome, concordance was only possible by mapping the master protein concordance level from the 

proteome to the phosphorylated peptide counterpart (Fig 5C and 5D). This analysis shows that of the 82 and 70 

hyper-abundant proteins in AdCa and NE, respectively, 44% (36 proteins) and 36% (25 proteins) have drug 

targets in different stages of development, while the remaining proteins have not been investigated (or 

identified), which can be used as potential therapeutic targets. Furthermore, while we were able to identify 

proteins that are hyper-abundant with functional attributes (secreted, surface and blood protein) and that a 

therapeutic treatment is available, our results also identified new 36 in AdCa and 25 in NE potential targets for 

future therapeutic development. This clearly indicates that interrogating RNA expression alone, not only we are 

missing new insights in the biology of prostate cancer but that we are also missing proteins that can be useful 

for therapeutic treatment development.  

At the phosphoproteome level, 16% (2 proteins) and 36% (5 proteins) hyperphosphorylated proteins in AdCa 

and NE, respectively, have drug therapies developed in different stages, while the remaining have not been 

investigated as potential therapeutic targets. Our data identified several proteins and phosphoproteins that 

have a localization characteristic viable for biomarker and potentially radio-ligand targeted therapy 

development while increasing our understanding of the prostate cancer biology. Overall, our data demonstrate 
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that for certain targets there is a strong mRNA/protein concordance, but not for all, providing new insights in 

prostate cancer biology, identification and development of biomarkers, and drug targets. 

 

Discussion: 

The constant emergence of resistance to current treatment modalities in mCRPC requires identifying novel 

prognostic and predictive biomarkers and therapeutic targets for personalized patient stratification and 

development of new effective therapies.  

 

We performed the first unbiased global proteomic and phosphoproteomics enrichment analysis of the LuCaP 

PDX models using the latest state of the art mass spectrometer, FAIMS as mentioned above 31. With this 

approach, we were able to measure over 8,600 master proteins, and demonstrated intra and inter PDX tumor 

variability. Furthermore, comparison of individual AdCa pair of intact mice (NCR) versus castrated (CR) tumors 

showed that their phenotypic proteome and phosphoproteome architecture maintains its fidelity with the 

known protein signatures and disease category; however, the differences between the pairs were not significant 

(Fig 2A-D). Interestingly, the unsupervised clustering analysis of the overall phosphoproteome between NE and 

AdCa revealed that neuroendocrine PDXs 49, 93, 145.1) clustered with AdCa PDXs, and AdCa PDXs (105, 105CR, 

167, 167 CR and 96 CR- (replicate 10.C) clustered more closely with NE PDXs. However, when selecting the top 

phosphoproteins from NE and AdCa, the dichotomy of these two groups was more apparent indicating that 

most of the differences are present at the regulatory level of the protein such as phosphorylation. In addition, 

when we evaluated the phosphorylated AR, MYC, NDRG1, NDRG2 FOXA1, TACSTD2 in AdCa PDXs, and 

phosphorylated ASCL1, RET, DLL3, CHGA in NE PDXs, such as, these phosphopeptides clustered with their known 

protein/gene signature counterpart (Fig 3D). The unsupervised clustering of these phosphorylated peptides was 

not previously characterized since phosphoprotein signatures have not been established or defined to date. 

However, we can clearly observe that these phosphoresidues do maintain their clustering profile with their 
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respective disease phenotype. This is the first detailed analysis of phosphoproteome in different stages of 

prostate cancer and an outstanding resource for new therapeutic targets identification and increased insight of 

prostate cancer biology.   

 

While genomes are typically constant, proteomes are quite different from cell to cell, both spatially and 

temporally. Proteins have over 400-post translational modifications, so the diversity generated from a single 

protein is larger than that of the corresponding gene 50,51. Although all genes are present, not all genes are 

expressed in all cells, and moreover, proteins are expressed differently in different cell types depending on the 

tissue microenvironment. Many attempts have been made to correlate mRNA with proteins 33,39,40. This has 

uncovered that for a given amount of protein to be translated, it will depend on the gene classification that is 

transcribed such as a metabolic gene (required for survival) versus a transcription factor (will be turn on/off or 

degraded as needed for different biological responses), the current cell state, and the post-translational 

modification that is driving the signal. Therefore, prediction of protein abundance or activity based on mRNA 

transcript levels leads to poor mRNA/protein correlation and potential misleading biomarker and drug target 

discovery. There are some current algorithms that implement different variables (time and space), including 

protein isoforms, that could potentially increase the probability of mRNA/protein predictability, but these are 

still a way off from true implementation 52.  

 

The global unbiased analysis of the proteome and phosphoproteome indicates that there is more inter 

variability across the PDX samples at the phosphoprotein level than at the proteome, clearly demonstrating that 

phosphorylated events are more significant to the biology than predicting protein functionality by genomics and 

transcriptomics alone. Unfortunately, use of phosphoprotein analyses is currently hindered by the ability to 

generate robust phosphoprotein data from small tissue amounts.  
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In addition to evaluating the overall proteome landscape of the LuCaP PDX tumors, we took a step further by 

integrating transcriptomic 41 data to the proteome. There are two main goals of this work; 1) to investigate 

concordance/discordance of RNA and protein expression, and 2) to identify protein-based biomarkers that can 

lead to development of therapeutic targets. Our focus was on identifying the functionality of these proteins as 

defined as secreted, found in blood, and expressed on the cell surface as these would be attractive and feasible 

targets.  We initially performed a traditional spearman’s correlation that did not identify any significant targets 

due to small sample size (Supplemental Figure 2A). However, we were able to evaluate the overall dissonance 

between mRNA and proteins by comparing the directionality of the differential protein (focusing on the hyper-

abundant) and mRNA (focusing on any directionality: upregulated, downregulated, or not changed) expression 

of NE vs AdCa PDXs. Interestingly, several of the proteins known to be involved in prostate cancer biology 

showed discordance between protein and mRNA levels, a finding that may have future clearly points out to 

shortcoming of using mRNA expression in clinical disease management implications. 

 

NEPC (AR-) has been defined as a disease that is highly transcriptionally active regulating proteins involved in 

DNA replication (for example DNA polymerase, thymidine kinase, dihydrofolate reductase and cdc6), and 

chromosomal regulation 53 while AdCa (AR+) prostate cancer is highly metabolically 54 regulated. Furthermore, 

it has been shown that mRNA from transcription factors have increased average decay rates compared with 

other mRNA transcripts and are enriched for “fast-decaying” mRNA with a half-lives <2 hours 38. On the other 

hand, mRNAs related to biosynthetic proteins have decreased decay rates and are deficient in fast-decaying 

mRNAs 38,39.  

 

Therefore, the identification of discordance observed between RNA and protein expression levels, on 

transcription factors and transcriptionally regulated proteins in these two CRPC disease states (AR+ and AR-), 

might be explained mainly by the nature of the protein function on the cell such that transcriptionally regulated 
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RNA is more dominantly affected than metabolically involved RNA, leading to more or less discordance with the 

protein counterpart. In addition, this phenomenon can be explained further by comparing half-lives between 

proteins and mRNA as well the timing of data collection. Also, there are proteins involved in RNA metabolism 

that would have been missed equally since these kinds of RNA molecules would have degraded much faster (2-

10 hours) than their respective proteins (10-46 hours)55. Therefore, nominating biomarkers and subsequently 

designing clinical assays based on the most stable molecule, such as proteins, and evaluating if these proteins 

are either metabolically or transcriptional involved will be highly recommended for assay development decision 

making.  

 

In conclusion, we generated the largest proteome and phosphoproteome resource database on clinically 

relevant and widely used CRPC LuCaP PDX models. Our analysis showed that the overall proteome maintained 

its fidelity with known CRPC AdCa (AR+) and NE (AR-) markers. We found proteins that are known to be 

overexpressed and hyper-phosphorylated such AR, RET, ASCL1, DLL3, KIT, CECAM, PSMA/FOHL1 and novel 

proteins specifically with important functional characteristics for biomarker or drug development, such as 

surface localization, secreted to the extracellular matrix and/or found in blood plasma. Furthermore, our 

analyses showed that there is discordance between multiple proteins and their RNA counterpart that is more 

dominantly found in transcriptional regulated proteins compared to metabolic proteins. Future follow up 

studies where both RNA and proteins are collected at the same time and measured in parallel, will be highly 

recommended to rule in/out any temporal changes that might affect the RNA levels to the protein expression. 

We encourage multi-omic level analysis and incorporating the proteome to be considered as a vital element for 

biomarker and drug development and for effective personalized medicine.  
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Figure Legends 

 

Figure 1. Proteomics and Phosphoproteomics platform analysis. 

 A. The LuCaP series of 48 patient derived xenografts (PDX) tumors depicted in the table, where 33 

Adenocarcinoma (AdCa) either castrated and non-castrated (all) tumors are shown in dark blue and 15 

neuroendocrine prostate cancer (NEPC) tumors are shown in orange, n=2-3 biological replicates (BR). The PDXs 

were processed by extracting proteins and an enzymatic digestion was performed using Trypsin and LysC.  

Peptides were purified by reversed-phase chromatography. The final peptide pool was ran as the proteome (I.) 

and in parallel from this peptide pool a sequential metal oxide affinity chromatography was performed to enrich 

for phosphorylated Serine, Threonine and Tyrosine (II.). Finally, raw data was searched, processed and analyzed. 

B. Overall proteome results using 1%FDR for protein identification and p-value adjusted < 0.05 log2 fold change 

significance. C.  Overall proteome results using 1%FDR for phosphoprotein identification and p-value adjusted 

< 0.05 log2 fold change significance and >.75 phosphosite probability threshold. D. Venn diagram shows the 

total number of 8612 master proteins identified when both data sets are overlaid. E. Volcano plot depicting the 

intensity based average quantification (iBAQ) enriched in NE and AdCa. F. Volcano plot of the phosphoprotein 

enriched in NE vs AdCa. Grayed line in the x-axis and y-axis are the cut off threshold for NE 2-fold change and 

for AdCa -2-fold change and p value adjusted to (-log10 FDR), respectively in E-F.  

 

Figure 2. Proteomics landscape of PDXs in Prostate Cancer 
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A. Unsupervised clustering data drive 7738 master proteins 1% FDR. B. Unsupervised clustering of TOP 50 NE 

and 50 AdCA proteins. C. UMAP analysis of all PDXs.  D. Data driven supervised hierarchical clustering of NE and 

AdCa signatures proteins. E. NE signature proteins. F. AdCa signature protein. G. Pathway Analysis of NE and 

AdCa highlighting the top 3 pathways on each group. H. Hallmarks in cancer analysis of NE and AdCa highlighting 

the top 4 pathways on each group (FDR 0.25). 

 

Figure 3. Phosphoproteomics landscape of PDXs in Prostate Cancer 

A. Data driven unsupervised clustering of 9723 phosphopeptides with 1% FDR. B. Unsupervised clustering of 

TOP 50 NE and 50 AdCA hyper-phosphorylated peptides. C. Unsupervised hierarchical clustering signature 

protein-phospho-counterpart. D. UMAP analysis of all phosphopeptides. E. Functional phosphoproteome of NE 

and AD hyperphosphorylated peptides. F. Kinase/substrate enrichment (KSEA) analysis identified unique and 

known kinases that were predicted from the phosphoproteome (Top 10 hits are showed on each group). G-H. 

Gene set enrichment analysis (GSEA) was performed to identify canonical pathways (F) and hallmarks in cancer 

(G) enriched in NE (orange) and in AdCa (blue). NES, normalized enrichment score; orange, hyperphosphorylated 

in NE and blue hyperphosphorylated in AdCa. 

 

Figure 4. Proteomics and Transcriptomics data integration reveals functional overall dissonance and 

targetable proteins.  

A. Table shows the three main stratification levels of protein and RNA expression agreements, concordant (C); 

discordant I (DC.I); discordant II (DC.II) and the total number of hyper-abundant proteins in AdCa (n = 361) and 

in NE (n= 337) including percent distribution of total, respectively. B. Protein and RNA Log2 fold change 

evaluating only the hyper-abundant protein in NE (337 proteins) and AdCa (361 proteins) and simultaneously 

evaluating the direction of the mRNA expression of those proteins that are stratified as concordant (C; RNA and 

protein are upregulated and hyper-abundant), discordant I (DC.I; mRNA is not altered significantly and protein 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2023. ; https://doi.org/10.1101/2023.08.02.551697doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.02.551697
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

is hyper-abundant) and discordant II (DC.II; mRNA is significantly downregulated while the protein is hyper-

abundant). C-D. AdCa and NE hyper-abundant proteins iBAQ (VSN normalized and ROTS p-value adjusted < 0.05 

significances) RNA FPKM (ROTS normalized and p-value adjusted < 0.05) Log2 fold change highlighting proteins 

of interest. E. GO protein class analysis of the NE and AdCa concordant and non-concordant plus discordant 

proteins. Box plots of protein log 2-fold change VSN normalized and RNA log 2-fold change of n = 33 AdCa and 

n=14 NE evaluating the overall expression in F. HIC-2 and G. COL3A1. Data are represented as mean ± SEM and. 

∗∗p < 0.01, ∗∗∗p < 0.001, two-tailed Welch-corrected. 

 

5. Functional proteome and phosphoproteome characterization 

Heatmap data illustrates z-score VSN normalized protein hyper-abundance expression for AdCa (n=82) (A.) and 

NE (n=70) (B.) Heatmap data illustrates z-score VSN normalized proteins hyper-phosphorylated expression for 

AdCa (n=13)  (C.) and NE (n= 14) (D.) Concordance level was defined by using the master protein counterpart 

and clustered based on these concordance from the proteome. Pie charts illustrate the therapeutic target 

distribution identified across the hyper-abundant proteins in AdCa (E.) with a total number 337 and NE (F.) with 

a total of 374 analyzed. Functional proteins color coding that are identified as Blood (red), Secreted (yellow) 

Surface (light green) and therapy target type such as clinical trial in blue, patented in green, research target in 

light orange, successful in terracotta and no available data identified as NA in gray. 

 

Materials and Method: 

LuCap Patient Derived Xenografts Tumors 

 

A total of 48 PDX tumors from the LuCap series 29 representing 18 LuCap PDX models (2-3 independent tumors 

samples per model) were used for this analysis. These PDXs were obtained in a frozen pellet that originated 
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from subcutaneously implanted patient-derived advanced prostate cancer from primary tumors and metastatic 

sites as described previously 29.  

 

Cell Prep Protein Extraction from PDX Tumors for Phosphopeptides and Proteome Enrichment 

Approximately 150 mg of each tumor was processed as previously described 32; The lysis buffer contained 7M 

urea, 2M thiourea, 0.4M Tris pH 8.0, 20% acetonitrile (ACN), 10 mM TCEP, 25 mM chloroacetamide, Thermo 

Scientific’s Halt protease inhibitor cocktail 1x concentration (originally 100x), and phosphatase inhibitors (HALT 

from Thermo). After adding 500 uL of the lysis buffer to the tumor pieces, samples were placed on ice, then 

vortexed and centrifuged at 12000 x g for 10 min. The samples were then sonicated for 5 seconds using a probe 

sonicator set at 30% amplitude and kept on ice during the entire sonication process. After sonication, the 

samples were incubated for 0.5 hrs at 37oC, then at room temperature for 15 min to reduce and alkylate 

cysteines and centrifuged at 12,000 x g for 10 min at 18°C. Protein concentration was measured using Bradford 

Assay (Bio-Rad).  

 

We then used 2.5 mg of protein, added 10 g of 20 g/mL Lysyl Endopeptidase (WAKO, 125-05061) and 

incubated the samples @ room temperature for 5-6 hr at pH 7.4. Then adjusted pH to 7.5-8.0 using 1 M Tris, pH 

11. Then we added Worthington TPCK-treated trypsin (1 mg/mL) dissolved in 1 mM HCl supplemented with 20 

mM of CaCl2 per to prevent autolysis. The trypsin mixture incubated at 4oC for about 1 hour prior to adding to 

the protein lysate. Samples were diluted 5-fold by adding 10 mM tris, pH 8.0 to dissolve urea <2M followed by 

trypsin addition at 1:50 trypsin/protein ratio overnight at 37oC. 

 

After incubation, samples were acidified with TFA to pH 3 or less. Two sequential reverse phase extraction 

methods were used first.  HLB was used first and then the flow thru from HLB and wash fractions were vacuum 

dried, resuspended, and cleaned up again using a C18 solid phase extraction method. The peptides were 
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combined from HLB and C18 cleanups and peptide yield was measured using the BCA peptide assay (Thermo 

Fisher scientific cat# 23275). Samples digestion efficiency prior to mass spectrometry analysis was inspected by 

evaluating samples before and after enzymatic digestion using SDS-page gels and again after mass spectrometry 

analysis. 

 

Mass Spectrometry  

1 ug of purified peptides was submitted for mass spectrometry analysis (Proteome) and 2 mg of peptides were 

kept and used for enrichment of phosphopeptides using the Sequential Metal Oxide Affinity Chromatography 

(SMOAC) Kit (Thermo Fisher Cat# A32993, A32992). The quantitative analysis of phosphoserine, phosphotyrosine 

and phosphothreonine Peptides by Quantitative Mass Spectrometry was performed as previously described 56,57 

with minor modifications in-tandem using SMOAC assay. The desalted peptide mixture was fractionated online 

using EASY-spray columns (25 cm 3 75 mm ID, PepMap RSLC C18 2 mm). The gradient was delivered by an easy-

nano Liquid Chromatography 1000 ultra-high-pressure liquid chromatography (UHPLC) system (Thermo 

Scientific). Tandem mass spectrometry (MS/MS) spectra were collected on FAIMS TRIBRID mass spectrometer 

(Thermo Scientific). Samples were run in biological replicates, and raw MS files were analyzed using MaxQuant 

version 1.4.1.2 33. MS/MS fragmentation spectra were searched using ANDROMEDA against the Uniprot human 

reference proteome database with canonical and isoform sequences (downloaded August 1st 2021 from 

http://uniprot.org). N-terminal acetylation, oxidized methionine, and phosphorylated serine, threonine, or 

tyrosine were set as variable modifications, and carbamidomethyl cysteine (*C) was set as a fixed modification. 

The false discovery rate was set to 1% using a composite target-reversed decoy database search strategy. Group-

specific parameters included max missed cleavages of two and label-free quantitation (LFQ) with an LFQ 

minimum ratio count of one. Global parameters included match between runs with a match time and alignment 

time window of 5 and 20 min, respectively, and match unidentified features selected.  
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Mass Spectrometry Pre-processing of Proteomics and Phosphoproteomics Data  
 
Maxquant imputed peptide level raw intensity files were obtained for each sample after the mass spectrometry 

experiments. We first summed the intensity of duplicated peptides based on the peptide sequences. In 

considering peptides with missed cleavages, we identified and then summed groups of peptides of variable 

length but had identical base sequences. We then mapped the peptide sequences to the most likely gene 

candidate based on algorithms by MaxQuant 33. We then averaged the intensity of the peptides that belonged 

to the same gene. To note, this averaging was only performed for the proteomics and not the 

phosphoproteomics data. At this stage, we aggregated all samples and then conducted VSN normalization for 

each dataset 35,58. We omitted one 208.1 NEPC sample due to the unexpected expression of AR, which is 

normally only detected in ADCA. ROTS nomination of statistically significant features. To nominate statistically 

significant protein or phospho-peptides, we utilized ROTS 59. FDR adjusted p-values were computed in which we 

deemed less than 0.05 as statistically significant. This was used as the threshold for differentially represented 

features in ADCA or NEPC. We performed this for both proteomics and phosphoproteomics outputs. Hierarchical 

clustering was performed using the Cluster 3.0 program with the Pearson correlation and pairwise complete 

linkage analysis (Eisen et al., 1998). Java TreeView was used to visualize clustering results (Saldanha, 2004). 

Quantitative data for each phosphopeptide can be found in supplemental Table 5. 

 

Proteomics and Transcriptomics Correlation 

RNA data was obtained for the same PDX samples 41 in which we averaged, by sample ID, the log2 FPKM data 

for the RNA sequencing or the VSN normalized protein abundance data. We only included genes that were 

detected in both datasets and then conducted Spearman’s correlations between the RNA expression and 

protein abundance levels for each gene across all samples. Concordance analysis was done by comparing the 

hyperabundant proteins from the NE and AdCa groups with the RNA levels in the transcriptomics data. 

Concordance indicates that the protein and RNA fold change is greater than 1.5. Non-concordance was defined 
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as proteins that are greater than 1.5-fold change, with RNA between -1.5 to 1.5 fold change. Discordance is 

defined as proteins that are 1.5-fold change hyper abundant, with RNA is lower than -1.5 fold change. All were 

statistically significant with an adjusted p-value <.05. 

 

Protein Annotations and Databases 

We analyzed protein functional annotations using Human Proteome Atlas (HPA version 22.0 

http://www.proteinatlas.org/) that has categorized blood proteins, secretome 46 and surfaceome 47. Ontologies 

were identified using Gene Set Enrichment Analysis (GSEA version 4.2.1).  Potential drug targets were further 

mapped to gene symbol, to PhosphoSitePlus 60, Therapeutic Target Database (TTD) 48 Genomics of Drug 

Sensitivity in Cancer (GDSC) 49, and HPA to acquire additional information on whether the targets had drug 

response data, or they were receptors, kinases, or known cancer/FDA-approved/potential drug targets.  

 

Statistical Analysis  

All statistical data were presented after either t-tests or ROTS as described in the figure legends.  

 

Accession Numbers 

LuCaP PDX RNA sequencing data is available at the Gene Expression Omnibus (GEO) under accession GSE199596. 

LuCap PDX phosphoproteome data is available at ProteomeXchange PDX042859 

LuCap PDX proteome data is available at ProteomeXchange PXD042867 
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