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Abstract  
Western blot is a popular biomolecular analysis method for measuring the relative 

quantities of independent proteins in complex biological samples. However, variability in 

quantitative western blot data analysis poses a challenge in designing reproducible 
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experiments. The lack of rigorous quantitative approaches in current western blot 

statistical methodology may result in irreproducible inferences. Here we describe best 

practices for the design and analysis of western blot experiments, with examples and 

demonstrations of how different analytical approaches can lead to widely varying 

outcomes. To facilitate best practices, we have developed the blotRig tool for designing 

and analyzing western blot experiments to improve their rigor and reproducibility. The 

blotRig application includes functions for counterbalancing experimental design by lane 

position, batch management across gels, and analytics with covariates and random 

effects.  

 

Introduction 
Proteomic technologies such as protein measurement with folin phenol reagent was 

introduced by Lowry et al in 1951(1). The resulting qualitative data are typically confirmed 

by a second, independent method such as western blot (WB)(2, 3). The WB method, first 

described by Towbin et al(4) and Burnette(5) in 1979 and 1981, respectively, uses 

specific antibody-antigen interactions to confirm the protein present in the sample mixture. 

Quantitative WB (qWB assay) is a technique to measure protein concentrations in 

biological samples with four main steps: (1) protein separation by size, (2) protein transfer 

to a solid support, (3) marking a target protein using proper primary and secondary 

antibodies for visualization, and (4) semi-quantitative analysis(6). Importantly, qWB data 

is considered semi-quantitative because methods to control for experimental variability 

ultimately yield relative comparisons of protein levels rather than absolute protein 

concentrations(2, 3, 7, 8). Current methodologies do not sufficiently account for the 

diverse sources of variability, producing highly variable results between different 

laboratories and even within the same lab(9–11) . Indeed, qWB data exhibits more 

variability compared to other experimental techniques such as enzyme linked 

immunosorbent assay (ELISA)(12). For example, results have shown that qWB can 

produce significant variability in detecting host cell proteins and lead to researchers 

missing or overestimating true biological effects(13). This in turn results in publication of 

irreproducible qWB interpretations, which leads to loss of its credibility(11). In the serious 

cases, qWB results may even provide clinical misdiagnosis(14) that could impact on a 

larger public health concern due to the prevalence of WB in biomedical research, such as 

diagnosis of SARS-CoV2 infection(15). 

The process of recognizing and accounting for variability in WB analyses will ultimately 

improve reproducibility between experiments. A growing body of studies has shown that 

this requires a fundamental shift in the experimental methodology across data acquisition, 

analysis, and interpretation to achieve precise and accurate results(2, 9–11). Here we 

highlight experimental design and practices that enable a statistics-driven approach to 

improve the reproducibility of qWBs. Specifically, we discuss major sources of variability 

in qWB including the non-linearity in antibody signal(2); imbalanced experimental 

design(11); lack of standardization in the treatment of technical replicates(2, 16); and 
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variability between protein loading, lanes, and blots(3, 8, 17). To address these issues, 

we provide new comprehensive suggestions for quantitative evaluation of protein 

expression by combining linear range characterization for antibodies, appropriate 

counterbalancing during gel loading, running technical replicates across multiple gels, 

and by taking careful consideration on the analysis method. By applying these 

experimental practices, we can then account for more sources of variability by running 

analysis of covariance (ANCOVA) or generalized linear mixed models (LMM). Such 

approaches have been shown to successfully improve reproducibility compared to other 

methods(11). 

To help improve WB rigor we developed the blotRig protocol and application harnessing 

a database of 6000+ western blots from N = 281 subjects (rats and mice) collected by 

multiple UCSF labs on core equipment. To demonstrate blotRig best practices in a real-

world experiment, we carried out prospective multiplexed WB analysis of protein lysate 

from lumbar cord in rodent models of spinal cord injury (SCI) (N=29 rats) in 2 groups 

(experimental group & control group). In order to show that these experimental 

suggestions could improve qWB reproducibility, we compared different statistical 

approaches to handling loading controls and technical replicates. Specifically, we applied 

two strategies to integrate loading controls: (i) normalizing the target protein levels by 

dividing by the loading control or (ii) treating the loading control as a covariate in a LMM. 

Additionally, we analyzed technical replicates in four ways: 1) assume each sample was 

only run once without replication, 2) treat each technical replicate as an independent 

sample, 3) use the mean of the three technical replicate values, and 4) treat the replicate 

as a random effect in a LMM. Altogether, we found that the statistical power of the 

experiment was significantly increased when we used loading control as a covariate with 

technical replicates as a random effect during analysis. In addition, the effect size was 

increased, and the p-value of our analysis decreased when using this LMM, suggesting 

the potential for greater sensitivity in our WB experiment when using this approach(18). 

Through rigorous experimental design and statistical analysis we show that we can 

account for greater variability in the data and more clearly identify underlying biological 

effects. 

Materials and Methods 
Animals 

All experiments protocol were approved by the University Laboratory Animal Care 

Committee at University of California, San Francisco (UCSF, CA, USA) and followed the 

animal guidelines of the National Institutes of Health Guide for the Care and Use of 

Laboratory animals(19). Male Simonsen Long Evans rats (188-385 g; Gilroy (Santa Clara, 

CA, USA), (N=29) aged 3 weeks were housed under standard conditions with a 12-h 

light–dark cycle (6:30 am to 6:30 pm) and were given food and water ad libitum. The 

animals were housed mostly in pairs in 30 × 30 × 19-cm isolator cages with solid floors 

covered with a 3 cm layer of wood chip bedding. The experimenters were blind to the 
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identity of treatments and experimental conditions, and all experiments were designed to 

minimize suffering and limit the number of animals required. 

Experimental methodology 

In accordance with established quality standards for preclinical neurological research(20), 

experimenters were kept blind to experimental group conditions throughout the entire 

study. Western blot loading order was determined a priori by a third-party coder, who 

ensured that a representative sample from each condition was included on each gel in a 

randomized block design. The number of subjects per condition was kept consistent 

across groups for each experiment to ensure that proper counterbalancing could be 

achieved across independent western runs. All representative western images presented 

in the figures represent lanes from the same gel. Sometimes, the analytical comparisons 

of interest were not available on adjacent lanes even though they come from the same 

gel because of our randomized counterbalancing procedure. 

 

Western blot 

The example western blot data used in this paper are taken from a model of spared nerve 

injury in animals with spinal cord injury. The nerve injury model used is based on models 

from pain literature(21), where two of the three branches of the sciatic nerve are 

transected, sparing the sural nerve (SNI)(22). Two surgeons perform the procedure 

simultaneously, with injuries occurring 5 minutes apart. The spinal cord of animals was 

obtained based on fluid expulsion model(23) and a 1 cm section of the lumbar region was 

excised at the lumbar enlargement section. The tissue was then preserved in a -80 degree 

freezer until it was needed for an experiment, at which point it was thawed and used to 

run a Western blot. We conducted a Western blot analysis on 29 samples from animals 

using standard biochemical methods. We measured the protein levels of the AMPA 

receptor subunit GluA2 and used beta-actin as a loading control. The data from these 

experiments was then aggregated and used for statistical analysis. Our WB protocol: 

1. Protein Assay  

We assayed sample protein concentration using a bicinchoninic acid (BCA assay (Pierce) 

for reliable quantification of total protein using a plate reader (Tecan; GeNios) with 

triplicate samples (technical replicates) detected against a Bradford Assay (BSA) 

standard curve. Technical replicates are multiple measurements that are performed under 

the same conditions in order to quantify and correct for technical variability and improve 

the accuracy and precision of the results (48). We run the same WB loading scheme three 

times (technical replicates of the entire gel) and measured the protein levels of AMPA 

receptors. 

2. Polyacrylamide Gel Electrophoresis and Multiplexed Near-Infrared Immunoblotting  
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     The approach involved performing serial 1:2 dilutions with cold Laemmli sample buffer in 

room temperature; 15 μg of total protein per sample was loaded into separate lanes on a 

precast 10–20% electrophoresis gel (Tris-HCl polyacrylamide, BioRad). The blotRig 

software helps counterbalance sample positions across the gel by treatment condition., 

(Fig 2). A kaleidoscope ladder was loaded on the first lane of each gel to confirm 

molecular weight (Fig 2). The gel was electrophoresed for 30 minutes at 200 V in SDS 

buffer (25 mm Tris, 192 mm glycine, 0.1% SDS, pH 8.3; BioRad). Protein was transferred 

to a nitrocellulose membrane in cold transfer buffer (25 mm Tris, 192 mm glycine, 20% 

ethanol, pH 8.3). Membrane transfer was confirmed using Ponseau stain followed by a 

quick rinse and blocking in Odyssey blocking buffer (Li-Cor) containing Tween-20.  

The membrane was blocked for 1 h in Odyssey Blocking Buffer (Li-Cor) containing 0.1% 

Tween-20, followed by an overnight incubation in primary antibody solution at 4°C. 

Membrane incubation was done in a primary antibody solution containing Odyssey 

blocking buffer, Tween-20, appropriate primary antibody receptor targeting1:2,000 mouse 

PSD-95 (cat # MA1-046,Thermofisher), 1:200 rabbit GluA1 (cat # AB1504, Millipore), 

1:200 rabbit GluA2 (cat # AB1766, Millipore), 1:200 rabbit pS831(cat # 04-823, Millipore), 

1:200 p880 (cat#07-294, Millipore) or 1:1,500 mouse actin loading control (cat # 612857, 

BD Transduction)]. Following incubation, the membrane was washed 4 × 5 min with Tris-

buffered saline containing 0.1% Tween 20 (TTBS) and incubated in fluorescent-labeled 

secondary antibody (1:30K LiCor IRdye appropriate goat anti-rabbit in Odyssey blocking 

buffer plus 0.2% Tween 20) for 1 h in the dark. Subsequent to 4 × 5 min washes in TTBS, 

followed by a 5 min wash in TBS. 

Membrane incubation was used to detect the presence of a specific protein or antigen on 

a membrane. In this case, the membrane was incubated with a fluorescently labeled 

secondary antibody solution that was specifically tuned to the emission spectra of the 

laser lines used by the Li-Cor Odyssey quantitative near-infrared molecular imaging 

system instrument. This allows for specific detection of the protein of interest on the 

membrane. The sample is then imaged using an infrared imaging system that is optimized 

for detecting the specific wavelengths of light emitted by the fluorescent label. Additional 

rounds of incubation and imaging are performed to detect additional proteins using the 

multiplexing functionality of the Li-Cor instrument, with each round adding new bands at 

different molecular weight ranges. This allows for the detection of multiple proteins in the 

same sample, maximizing the proteomic detection. 

3. Quantitative Near-IR Densitometric Analysis   

Using techniques optimized in the Ferguson lab(24, 25), we established near-infrared 

labeling and detection techniques (Odyssey Infrared Imaging System, Li-Cor) to quantify 

linear intensity detection of fluorescently labeled protein bands. The biochemistry is 

performed in a blinded, counterbalanced fashion, and three independent replications of 

the assay are run on different days(26). Fluorescent Western blotting utilizes fluorescent-

labeled secondary antibodies to detect the target protein, which allows for more sensitive 

and specific detection compared to chemiluminescence(9, 27, 28). Additionally, 
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fluorescence imaging allows multiple detection of a target protein and internal loading 

control in the same blot, which enables more accurate correction of sample-to-sample 

and lane-to-lane variation(9, 29, 30). This provides a more accurate and reliable 

quantification of the target protein, making it a popular choice for quantitative analysis of 

WB data. 

4. Blinding 

It is good practice for the pipetting experimenter to remain blind to experimental conditions 

during gel loading, transfer, and densitometric quantification. We achieved this using de-

identified tube codes and a priori gel loading sequences that were developed by an 

outside experimenter using the method implemented in the blotRig software. 

 

Statistical analyses 

Statistical analyses were performed using the R statistical software (58,59). Our WB data 

was analyzed using parametric statistics. The WB was run using three independent 

replications and covariance corrected by beta-actin loading control, with replication 

statistically controlled as a random factor. Significance was assessed at p < 0.05(24, 25, 

31, 32). We report estimated statistical power and standardized regression coefficient 

effect sizes in the results section.  

All ANOVAs were run using the stats R package; standardized effect size was calculated 

using the parameters R package (58). Linear mixed models were run using the lme4 R 

package. Observed power was calculated by Monte Carlo simulation (1000x) run on the 

fitted model (either ANOVA or LMM) using the simR package (59). For the development 

of the blotRig interface, the R packages used included: shiny, tidyverse, DT, shinythemes, 

shinyjs, and sortable (58-64). You can access the blotRig analysis software, which 

includes code for inputting experimental parameters for all Western blot analysis, through 

the following link: https://github.com/ucsf-ferguson-lab/blotRig/ 

 

Results 
 

DESIGNING REPRODUCIBLE WESTERN BLOT EXPERIMENTS  

1. Determining linear range for each primary antibody  

Most WB analyses assume semi-quantitatively that the relationship between qWB assay 

optical density data (i.e. western band signal) and protein abundance is linear(2, 3, 9, 16). 

Accordingly, most qWB analyses use statistical tests that assume a linear effect. 

However, recent studies have shown that the relationship can potentially be highly non-

linear(17) As Figure 1 illustrates, the WB band signal can become non-linearly correlated 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2023. ; https://doi.org/10.1101/2023.08.02.551674doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.02.551674
http://creativecommons.org/licenses/by-nc/4.0/


with protein concentrations at low and high values. This may result in inaccurate 

quantification of relative target protein amount in the experiment and violates the 

assumptions for linear model which can lead to false inferences. To address the 

assumption of linearity, it is important to first determine the optimal linear range for each 

protein of interest so that one can be confident that a unit change in band density reflects 

a linear change in protein concentration. This enables an experimenter to accurately 

quantify the protein of interest and apply linear statistical methods appropriately for 

hypothesis testing.  

 

2. Counterbalancing during experimental design 

Counterbalancing is the practice of having each experimental condition represented on 

each gel and evenly distributing them to prevent overrepresentation of the same 

experimental groups in consecutive lanes. For example, imagine an experimental design 

in which we are studying two experimental groups (wild type and transgenic animals) and 

are also looking at two treatment conditions (Drug and Vehicle). This design gives us four 

groups total (Drug-treated Wild Type, Vehicle-treated Wild Type, Drug-Treated 

Transgenic and Vehicle-treated Transgenic) (Figure 2A). During WB gel loading, 

experimenters often distribute their samples unevenly such that certain experimental 

conditions may be missing on some gels or samples from the same experimental 

condition are loaded adjacently on a gel. This is problematic because we know that 

polyacrylamide gel electrophoresis (PAGE) gels are not perfectly uniform, reflecting a 

source of technical variability(34); in the worst case, if we have only loaded a single 

experimental group on a gel and found a significant effect of the group, we cannot 

conclude if the effect is due to the experimental condition or a technical problem of the 

gel. At minimum, experimenters should ensure that every group is represented on each 

gel to avoid confounding technical gel effects with experimental differences. 

In addition, experimenters can further counter technical variability by arranging 

experimental groups on each gel to ensure adequately counterbalanced design assuming 

the uniformed protein concentration and fluid volume of all samples. This importantly 

addresses the variability due to physical effects within an individual gel. In our example, 

this means alternating the tissue areas and experimental conditions as much as possible 

to minimize similar samples from being loaded next to one another (Figure 2B). By 

spreading the possibility of technical variability across all samples by counterbalancing 

across and within gels, we can mitigate potential technical effects that can bias our 

results. Proper counterbalancing also enables us to implement more rigorous statistical 

analysis to account for and remove more technical variability(24, 25, 31, 32). Overall, this 

will help to ensure that experimenters can find the same result in the future and improve 

reproducibility. 

 

3. Technical Replication 
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Technical replicates are used to measure the precision of an assay or method by 

repeating the measurement of the same sample multiple times (11). The results of these 

replicates can then be used to calculate the variability and error of the assay or 

method(11). This is important to establish the reliability and accuracy of the results. Most 

experimenters acknowledge the importance of running technical replicates to avoid false 

positives and negatives due to technical error(11). Even beyond extreme results, 

technical replicates can account for the differences in gel makeup, human variability in 

gel loading, and potential procedural discrepancies. In fact, most studies run at least 

duplicates; however, the experimental implementation of replicates (e.g., running 

replicates on the same gel or separate gels) as well as the statistical analysis of replicates 

(e.g., dropping “odd-man-out” or taking the mean or standard deviation) can differ 

greatly(35, 36). This experimental variability ultimately impedes our ability to meaningfully 

compare results. For experimenters to establish accuracy and advance reproducibility in 

WB experiments, it is important to implement standardized and rigorous protocols to 

handle technical replicates(9, 11). In doing so, we can further reduce the technical 

variability with statistical methods during analysis.  

As underscored previously, we recommend that technical replicates are counterbalanced 

on separate gels to mitigate any possible gel effect. Additionally, by running triplicates, 

we can treat replicates as a random effect in a LMM during statistical analysis. 

Importantly, triplicates provide more values to measure the distribution of technical 

variance to ensure the robustness of the LMM than only running duplicates. This 

approach isolates and removes technical variance from biological variation which 

ultimately improves our sensitivity for true experimental effects(37). 

In the following demonstration of statistical methods, we replicated all WB analyses in 

triplicate with a randomized counterbalanced design. We then explore how the way in 

which technical replicates and loading controls are incorporated into analysis can have a 

significant impact on both the sensitivity of our results and the interpretation of the 

findings.  

 

 

STATISTICAL METHODOLOGY TO IMPROVE WESTERN BLOT ANALYSIS 

1. Loading control as a covariate 

Most qWB assay studies use loading controls to ensure that there are no biases in total 

protein loaded in a particular lane(3, 9, 26). The most common way that loading controls 

are used to account for variability between lanes is by normalizing the target protein 

expression values by dividing it by the loading control values, resulting in a ratio between 

target protein to loading control(3, 38, 39). However, ratios may violate assumptions of 

common statistical test used to analyze qWB (e.g., t-test, ANOVA, etc.)(40) This 

ultimately hinders the ability to statistically account for the variance in qWB outcomes and 
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have a reliable estimate of the statistics. We instead propose to include loading control 

values as a covariate – a variable that is not our experimental factors that may affect the 

outcome of interest and presents a source of variance that we wish to account for(41). 

For instance, we know the amount of protein loaded is a source of variability in WB 

quantification, so we can use the loading control as a covariate to adjust for that variance. 

In doing so, we extend the method of ANOVA into that of ANCOVA(42). This approach 

accounts for the technical variability present between lanes while meeting the necessary 

assumptions for parametric statistics which helps curb bias and averts false discoveries. 

2. Replication and Subject as a random effect  

Most WB studies use ANOVA, a test that allows comparison of the means of three or 

more independent samples, for quantitative analysis of WB data(40). One of the 

assumptions in ANOVA is the independence of observations(40). This is problematic 

because we often collect multiple observations from the same analytical unit, for example 

different tissue samples from a single subject, or technical replicates. As a result, those 

observations don’t qualify as independent and would rather be analyzed using models 

controlling for variability within units of observations (e.g., the animal) to mitigate 

inferential errors (false positives and negatives)(43) caused by what is known as 

pseudoreplication. This arises when the quantity of measured values or data points 

surpasses the number of actual replicates, and the statistical analysis treats all data 

points as independent, resulting in their full contribution to the final result (65)    

In addition, when conducting experiments, it is important to consider the randomness of 

the conditions being observed. Treating both subjects and conditions as fixed effects can 

lead to inaccurate p-values. Instead, subjects/ animals should be treated as random 

effects and the conditions should be considered as a sample from a larger population(44). 

This is especially important when collecting data from different replicates or gels, as the 

separate technical replicate runs should be considered as random.  

In Figure 3 we used a simple experimental design comparing the difference in a target 

protein between two experimental groups to demonstrate four of the most common ways 

researchers tend to analyze western blot data: 1) running each sample once without 

replication, 2) treating each technical replicate as an independent sample, 3) taking the 

mean of technical replicate values, and 4) treating subject and replication as a random 

effect (Figure 3). We then tested how effect size, power, and p value are affected by each 

of these strategies to get a sense of how much these estimates vary between analyses. 

For each of these strategies, we also tested the difference between using the ratio of 

target protein to loading controls versus using loading control as a statistical covariate.  

In the first scenario, we imagined that no technical replication was run at all (by using only 

the first replication). With this strategy, we found that standardized effect size is weak, 

power is low, and the p value was high (Figure 3). Second, we demonstrate how 

analytical output would be different if we did run three technical replicates, but treated 

each as independent. As discussed above, this strategy does not take into account the 
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fact that each sample is being run three times, and consequently the overall n of your 

experiment is artificially tripled! As one might expect, observed power is quite high, and 

our p value is low (< 0.05).  Power is increased by an increase in sample size, so it is not 

surprising that the power is much higher if we erroneously report that we have a 3X larger 

sample size (i.e., pseudoreplication) (65). In this case, the observed power is inflated and 

an artifact of inappropriate statistics, and the probability of a false positive is considerably 

increased with respect to the expected 5%. 

So, what would be a more appropriate way to handle technical replicates? One method 

that researchers often use is to take the mean of their technical replicates. This does 

ensure that we are not artificially inflating our sample size, which is certainly an 

improvement over the previous strategy. With this strategy, we do find that our p value is 

less than 0.05 (when loading control is treated as a covariate). But we also see that our 

power is still low. We have effectively taken our replicates into account by collapsing 

across them within each sample, but this can be dangerous. If there is wide variation 

across replicates of a particular sample, then taking the mean of three replicates could 

produce an inaccurate estimate of the ‘true’ sample value. Ideally, we want to find a 

solution where instead of collapsing this variation, we add it to our statistical model so 

that we can better understand what amount of variation is randomly coming from within 

technical replicates, and in turn what amount of variation is actually due to potential 

differences in our experimental groups.  

To achieve this, we need to model both the fixed effect of groups and the random effect 

of replication across western blot gels. When we use both fixed and random effects, this 

is referred to as a linear mixed model (LMM). When using this strategy, we find that our 

effect size remains strong, and our p value is low. But importantly, we now have strong 

observed power (Figure 3). This suggests that we can achieve greater sensitivity in our 

WB experiment when using this approach. Specifically, if we implement careful 

counterbalancing while designing our experiments, then we can use the variability 

between gels to our advantage during analysis using linear mixed effects model(45).  

LMM is recommended because it takes into account both the multiple observations within 

a single subject/animal in a given condition and differences across subjects observed in 

multiple conditions. This reduces chances of inaccurate p-values and improves 

reliability(46). Further, treating both subjects and replication as random effects 

generalizes the results to the population of subjects and also to the population of 

conditions(47).  

 

REAL WORLD APPLICATION OF blotRig SOFTWARE FOR WESTERN BLOT 

EXPERIMENTAL DESIGN, TECHNICAL REPLICATION, and STATISTICAL 

ANALYSIS 
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We have designed a user interface that is designed to facilitate appropriate 

counterbalancing and technical replication for western blot experimental design. Upon 

starting the blotRig application, the user is prompted to upload a comma separated values 

(CSV) spreadsheet. This spreadsheet should include separate columns for subject ID and 

experimental group. The user is then prompted to enter the total number of lanes that are 

available on their particular western blot gel apparatus. The blotRig software will first run 

a quality check to confirm that each subject ID (unique sample or subject) is only found 

in one experimental group. If duplicates are found, a warning will be shown that specifies 

which subjects are repeated across groups. If no errors are found, a centered gel map 

will be generated that illustrates the western blot gel lanes into which each subject should 

be loaded (Figure 4A). The decision for each lane loading is based on two main principles 

outlined above: 1) each western blot gel should hold a representative sample of each 

experimental group 2) samples from the same experimental group are not loaded in 

adjacent lanes whenever possible. This ensures that proper counterbalancing is achieved 

so that we can limit the chances that the inherent variability within and across western 

blot gels is confounded with the experimental groups that we are interested in 

experimentally testing. 

Once the gel map has been generated, the user can then select to export this gel map to 

a CSV spreadsheet. This sheet is designed to clearly show which gel each sample is on, 

which lane on each gel a sample is found, what experimental group each sample belongs 

to, and importantly, a repetition of each of these values for three technical replicates 

(Figure 4B). User will also see columns for Target Protein and Loading Control. These 

are the cells where the user can then input their densitometry values upon completing 

their western blot runs. Once this spreadsheet is filled out, it is then ready to go for blotRig 

analysis. 

To analyze western blot data, users can upload the completed template that was exported 

in the blotRig experimental design phase under the ‘Analysis’ tab. The blotRig software 

will first ask the user to identify which columns from the spreadsheet represent 

Subject/SampleID, Experimental Group, Protein Target, Loading Control, and 

Replication. The blotRig software will again run a quality check to confirm that there are 

no subject/sample IDs that are duplicated across experimental groups. If no errors are 

found, the data will then be ready to analyze. The blotRig analysis will then be run, using 

the principles discussed above. Specifically, a linear mixed-model runs using the lmer R 

package, with Experimental Group as a fixed effect, Loading Control as a covariate, and 

Replication (nested within Subject/Sample ID) as a random factor. Analytical output is 

then displayed, giving a variety of statistical results from the linear mixed model output 

table, including fixed and random effects and associated p values (Figure 4C). These 

outputs can be directly reported in the results sections of papers, improve the statistical 

rigor of published WB reports. In addition, since the entire pipeline is opensource, the 

blotRig code itself can be reported to support transparency and reproducibility. 
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Discussion 
Although the western blot technique has proven to be a workhorse for biological research, 

the need to enhance its reproducibility is critical(11, 17, 26). Current qWB assay methods 

are still lacking for reproducibly identifying true biological effects(11). We provide a 

systematic approach to generate quantitative data from western blot experiments that 

incorporates key technical and statistical recommendations which minimize sources of 

error and variability throughout the western blot process. First, our study shows that 

experimenters can improve the reproducibility of western blots by applying the 

experimental recommendations of determining the linear range for each primary antibody, 

counterbalancing during experimental design, and running technical triplicates(11, 26). 

Furthermore, these experimental implementations allow for application of the statistical 

recommendations of incorporating loading controls as covariates and analyzing gel and 

subject as random effects(48, 49). Altogether, these enable more rigorous statistical 

analysis that accounts for more technical variability which can improve the effect size, 

observed power, and p-value of our experiments and ultimately better identify true 

biological effects.  

Biomedical research has continued to rely on p-values for determining and reporting 

differences between experimental groups, despite calls to retire the p-value(50). Power 

(sensitivity) calculations have also become increasingly common. In brief, p-values and 

the related alpha value are associated with Type I error rate – the probability of rejecting 

the null hypothesis (i.e., claiming there is an effect) when there is no true effect(51). On 

the other hand, power effectively controls for the probability of rejecting the null 

hypothesis (i.e. stating there is not effect) when there is indeed a true underlying effect – 

a concept that is closely related to reducing the Type II error rate(48, 52). Critically, 

empirical evidence estimates that the median statistical power of studies in neuroscience 

is between ∼8% and ∼31%, yet best practices suggest that an experimenter should aim 

to achieve a power of 80% with an alpha of 0.05(18). By being underpowered, 

experiments are at higher likelihood of producing a false inference. If an underpowered 

experiment is seeking to reproduce a previous observation, the resulting false negative 

may throw into question the original findings and directly exacerbate the reproducibility 

crisis(48). Even more alarmingly, a low power also increases the likelihood that a 

statistically significant result is actually a false positive due to small sample size problems 

(51). In our analyses, we show that our technical and statistical recommendations lowers 

the p-value (indicates that the observed relationship between variables is less likely to be 

due to chance) as well as observed power of our experiments. This translates into the 

ability to better avoid false negatives when there is a true effect as well as reduce the 

likelihood of false positives when there is not a true experimental effect, both of which will 

ultimately improve the reproducibility of qWB assay experiments.  

Another useful component of statistical analyses that is not as commonly reported but is 
critically related to p-value and power is effect size. Effect size is a statistical measure 
that describes the magnitude of the difference between two groups in an experiment(53). 
It is used to quantify the strength of the relationship between the variables being 
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studied(53). The estimated effect size is important because it answers the most frequent 
question that researchers ask: how big is the difference between experimental groups, or 
how strong is the relationship or association?(53). The combination of standardized effect 
size, p-value and power reflect crucial experimental results that can be broadly 
understood and compared with findings from other studies(52), thus improving 
comparability of qWB experiments.  In particular, studies with large effect sizes have more 
power: we are more likely to detect a true positive experimental effect and avoid the false 
negative if the underlying difference between experimental groups is large(37). In some 
cases, the calculated effect size is greatly influenced by how sources of variance are 
handled during analysis(11). Our results demonstrate that by reducing the residual 
variance (by modeling the random effect of replication) the estimated effect size of our 
experiment increases. This could mean that the magnitude of the difference between the 
groups in our experiment is larger than it was originally thought to be. This could be due 
to a variety of factors such as improving the experimental design, sample size, or the 
measurement of the variables(11). Likewise, conducting a power analysis is an essential 
step in experimental design that should be done before collecting data to ensure that the 
study is adequately powered to detect an effect of a certain size(54).  
 

Increasingly, power analysis is becoming a requirement for publications and grant 

proposals(55). This is because a study with low statistical power is more likely to produce 

false negative results, which means that the study may fail to detect a real effect that 

actually exists. This can lead to the rejection of true hypotheses, wasted resources, and 

potentially harmful conclusions. In brief, given an experimental effect size and variance, 

we can calculate the sample size needed to achieve an alpha of 0.05 and power of 0.8; 

an increased sample size reduces the standard error of mean (SEM), which is the 

measured spread of sample means and consequently increases the power of the 

experiment(56). We have demonstrated that our experimental and statistical 

recommendations lead to a lower p value (Figure 3C) and effect size (Figure 3B) without 

changing the sample size. This may be of greatest interest to researchers: more rigorous 

analytics ultimately improves experimental sensitivity without relying solely on increasing 

the sample size.  

Reducing the sample size of an experiment can be beneficial for several reasons, one of 

which is cost-effectiveness. A smaller sample size can lead to a reduction in the number 

of animals or other resources that are needed for the study, which can result in lower 

costs. Additionally, it can also save time and reduce the duration of the experiment, as 

fewer subjects need to be recruited, and the data collection process can be completed 

more quickly. However, it is important to note that reducing the sample size can also lead 

to decreased statistical power.  As a result, reducing sample size too much can increase 

the risk of a type II error, failing to detect significance when there is a true 

effect(52).Therefore, it is important to consider the trade-off between sample size and 

power when designing an experiment, and to use statistical techniques like power 

analysis to ensure that the sample size is sufficient to detect an effect of a certain size. 
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Moreover, when using animals in research, it's always important to consider the ethical 

aspect and the 3Rs principles of reduction, refinement, and replacement(45). 

There has been recent recognition that an appropriate study design can be achieved by 

balancing sample size (n), effect size, and power(29). The experimental and statistical 

approach presented in this study provide insight into how more rigorous planning for 

western blot experimental design and corresponding statistical analysis without 

depending on p-values only can acquire precise data resulting in true biological effects. 

Using blotRig as a standardized, integrated western blot methodology, quantitative 

western blot may become highly reproducible, reliable, and a less controversial protein 

measurement technique(16, 27, 57).  
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 Figure Legends 
 

 

 

 

 

 

 

 

 

 

 

Figure 1. Determining linear range of antibodies to optimize parametric analysis of 

Western blot data. When small or large protein concentrations are loaded, there is often 

a possibility that their representation on western blot band density may become non-

linear. If there is a disconnect between the observed and expected protein concentrations, 

results may be inaccurate. Thus determining the linear range wherein, a one-unit increase 

in protein is reflected in a linear increase in band density for each western blot antibody 

is a crucial initial step to ensure confidence in reproducibility of the linear models 

commonly applied to western blot data analysis. 
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Figure 2. Counterbalancing to reduce bias. A, Experimental design. A simple 

hypothetical experimental design for illustrating counterbalancing. Two experimental 

groups (Wild Type vs Transgenic), with two treatments (Drug vs Vehicle) analyzed within 

each individual. This 2 (Experimental Condition) by 2 (Tissue Area) design yields four 

groups. B, Counter-balanced Gel Loading. The goal of appropriate counterbalancing is 

to optimize the sequence in which samples are loaded such that groups are represented 

equally across the gel. Those with red X have with the experimental groups and treatment 

condition grouped in the same area of the gel, and thus variability across the gel may be 

conflated with group differences. In contrast, those with the green check are organized 

so that experimental condition and treatment condition are better placed to reduce the 

possibility of any single group being over-represented in a particular area of the gel.  

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2023. ; https://doi.org/10.1101/2023.08.02.551674doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.02.551674
http://creativecommons.org/licenses/by-nc/4.0/


 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2023. ; https://doi.org/10.1101/2023.08.02.551674doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.02.551674
http://creativecommons.org/licenses/by-nc/4.0/


Figure 3. Effect of different replication and loading control strategies on statistical 

outcomes. Eight possible strategies are shown, representing the most common ways in 

which replication and loading controls are treated in a typical Western blot analysis. 

Four replication strategies: either no replication at all, 3 technical replicates treated as 

independent, mean of three replicates, or replicate treated as a random effect in a linear 

mixed model. These are crossed with two loading control strategies: either target 

protein is divided by loading control, or loading control is treated as a covariate in a 

linear mixed model. A, Effect Size: Standardized effect size is generally improved when 

loading control is treated as a covariate, compared to using a ratio of the target protein 

and loading control values. B, Power: By treating each replication as independent the 

power is increased (due to the inaccurate assumption that technical replicates are not 

related, thus artificially tripling the n). Conversely, including the variability inherent in 

technical replicates as a part of the statistical model, we work to identify and account for 

a major source of variability, thus improving power in a more appropriate way.  C, P 

value: As expected, when each replication is inaccurately treated as independent the p 

value is low (due to artificially inflated n). We found that using the mean of replications 

and loading controls as covariates also resulted in a p value below 0.05. The smallest p 

value was found when including replication as a random factor. Across each of these 

statistical measures, only when replication is included as a random factor and loading 

control as a covariate do we see a strong effect size, high power, and low p value.  
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Figure 4. Example of the blotRig interface. A, Illustration of the blotRig interface. User has 

entered their sample IDs, experimental groups, and the number of lanes per western blot gel. B, 

The blotRig system then creates a counterbalanced gel map that ensures each gel contains a 

representative from each experimental group. This illustration shows the exact lane for each gel 

in which each sample should be run. C. Example output from linear mixed model, indicating 

random and fixed effects.  
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