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Abstract

Western blot is a popular biomolecular analysis method for measuring the relative
guantities of independent proteins in complex biological samples. However, variability in
guantitative western blot data analysis poses a challenge in designing reproducible
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experiments. The lack of rigorous quantitative approaches in current western blot
statistical methodology may result in irreproducible inferences. Here we describe best
practices for the design and analysis of western blot experiments, with examples and
demonstrations of how different analytical approaches can lead to widely varying
outcomes. To facilitate best practices, we have developed the blotRig tool for designing
and analyzing western blot experiments to improve their rigor and reproducibility. The
blotRig application includes functions for counterbalancing experimental design by lane
position, batch management across gels, and analytics with covariates and random
effects.

Introduction

Proteomic technologies such as protein measurement with folin phenol reagent was
introduced by Lowry et al in 1951(1). The resulting qualitative data are typically confirmed
by a second, independent method such as western blot (WB)(2, 3). The WB method, first
described by Towbin et al(4) and Burnette(5) in 1979 and 1981, respectively, uses
specific antibody-antigen interactions to confirm the protein present in the sample mixture.
Quantitative WB (qWB assay) is a technique to measure protein concentrations in
biological samples with four main steps: (1) protein separation by size, (2) protein transfer
to a solid support, (3) marking a target protein using proper primary and secondary
antibodies for visualization, and (4) semi-quantitative analysis(6). Importantly, qwB data
is considered semi-quantitative because methods to control for experimental variability
ultimately yield relative comparisons of protein levels rather than absolute protein
concentrations(2, 3, 7, 8). Current methodologies do not sufficiently account for the
diverse sources of variability, producing highly variable results between different
laboratories and even within the same lab(9-11) . Indeed, qWB data exhibits more
variability compared to other experimental techniques such as enzyme linked
immunosorbent assay (ELISA)(12). For example, results have shown that qWB can
produce significant variability in detecting host cell proteins and lead to researchers
missing or overestimating true biological effects(13). This in turn results in publication of
irreproducible qWB interpretations, which leads to loss of its credibility(11). In the serious
cases, qWB results may even provide clinical misdiagnosis(14) that could impact on a
larger public health concern due to the prevalence of WB in biomedical research, such as
diagnosis of SARS-CoV2 infection(15).

The process of recognizing and accounting for variability in WB analyses will ultimately
improve reproducibility between experiments. A growing body of studies has shown that
this requires a fundamental shift in the experimental methodology across data acquisition,
analysis, and interpretation to achieve precise and accurate results(2, 9-11). Here we
highlight experimental design and practices that enable a statistics-driven approach to
improve the reproducibility of qWBs. Specifically, we discuss major sources of variability
in gWB including the non-linearity in antibody signal(2); imbalanced experimental
design(11); lack of standardization in the treatment of technical replicates(2, 16); and
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variability between protein loading, lanes, and blots(3, 8, 17). To address these issues,
we provide new comprehensive suggestions for quantitative evaluation of protein
expression by combining linear range characterization for antibodies, appropriate
counterbalancing during gel loading, running technical replicates across multiple gels,
and by taking careful consideration on the analysis method. By applying these
experimental practices, we can then account for more sources of variability by running
analysis of covariance (ANCOVA) or generalized linear mixed models (LMM). Such
approaches have been shown to successfully improve reproducibility compared to other
methods(11).

To help improve WB rigor we developed the blotRig protocol and application harnessing
a database of 6000+ western blots from N = 281 subjects (rats and mice) collected by
multiple UCSF labs on core equipment. To demonstrate blotRig best practices in a real-
world experiment, we carried out prospective multiplexed WB analysis of protein lysate
from lumbar cord in rodent models of spinal cord injury (SCI) (N=29 rats) in 2 groups
(experimental group & control group). In order to show that these experimental
suggestions could improve gWB reproducibility, we compared different statistical
approaches to handling loading controls and technical replicates. Specifically, we applied
two strategies to integrate loading controls: (i) normalizing the target protein levels by
dividing by the loading control or (ii) treating the loading control as a covariate in a LMM.
Additionally, we analyzed technical replicates in four ways: 1) assume each sample was
only run once without replication, 2) treat each technical replicate as an independent
sample, 3) use the mean of the three technical replicate values, and 4) treat the replicate
as a random effect in a LMM. Altogether, we found that the statistical power of the
experiment was significantly increased when we used loading control as a covariate with
technical replicates as a random effect during analysis. In addition, the effect size was
increased, and the p-value of our analysis decreased when using this LMM, suggesting
the potential for greater sensitivity in our WB experiment when using this approach(18).
Through rigorous experimental design and statistical analysis we show that we can
account for greater variability in the data and more clearly identify underlying biological
effects.

Materials and Methods
Animals

All experiments protocol were approved by the University Laboratory Animal Care
Committee at University of California, San Francisco (UCSF, CA, USA) and followed the
animal guidelines of the National Institutes of Health Guide for the Care and Use of
Laboratory animals(19). Male Simonsen Long Evans rats (188-385 g; Gilroy (Santa Clara,
CA, USA), (N=29) aged 3 weeks were housed under standard conditions with a 12-h
light—dark cycle (6:30 am to 6:30 pm) and were given food and water ad libitum. The
animals were housed mostly in pairs in 30 x 30 x 19-cm isolator cages with solid floors
covered with a 3 cm layer of wood chip bedding. The experimenters were blind to the
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identity of treatments and experimental conditions, and all experiments were designed to
minimize suffering and limit the number of animals required.

Experimental methodology

In accordance with established quality standards for preclinical neurological research(20),
experimenters were kept blind to experimental group conditions throughout the entire
study. Western blot loading order was determined a priori by a third-party coder, who
ensured that a representative sample from each condition was included on each gel in a
randomized block design. The number of subjects per condition was kept consistent
across groups for each experiment to ensure that proper counterbalancing could be
achieved across independent western runs. All representative western images presented
in the figures represent lanes from the same gel. Sometimes, the analytical comparisons
of interest were not available on adjacent lanes even though they come from the same
gel because of our randomized counterbalancing procedure.

Western blot

The example western blot data used in this paper are taken from a model of spared nerve
injury in animals with spinal cord injury. The nerve injury model used is based on models
from pain literature(21), where two of the three branches of the sciatic nerve are
transected, sparing the sural nerve (SNI)(22). Two surgeons perform the procedure
simultaneously, with injuries occurring 5 minutes apart. The spinal cord of animals was
obtained based on fluid expulsion model(23) and a 1 cm section of the lumbar region was
excised at the lumbar enlargement section. The tissue was then preserved in a -80 degree
freezer until it was needed for an experiment, at which point it was thawed and used to
run a Western blot. We conducted a Western blot analysis on 29 samples from animals
using standard biochemical methods. We measured the protein levels of the AMPA
receptor subunit GluA2 and used beta-actin as a loading control. The data from these
experiments was then aggregated and used for statistical analysis. Our WB protocol:

1. Protein Assay

We assayed sample protein concentration using a bicinchoninic acid (BCA assay (Pierce)
for reliable quantification of total protein using a plate reader (Tecan; GeNios) with
triplicate samples (technical replicates) detected against a Bradford Assay (BSA)
standard curve. Technical replicates are multiple measurements that are performed under
the same conditions in order to quantify and correct for technical variability and improve
the accuracy and precision of the results (48). We run the same WB loading scheme three
times (technical replicates of the entire gel) and measured the protein levels of AMPA
receptors.

2. Polyacrylamide Gel Electrophoresis and Multiplexed Near-Infrared Immunoblotting
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The approach involved performing serial 1:2 dilutions with cold Laemmli sample buffer in
room temperature; 15 ug of total protein per sample was loaded into separate lanes on a
precast 10-20% electrophoresis gel (Tris-HCI polyacrylamide, BioRad). The blotRig
software helps counterbalance sample positions across the gel by treatment condition.,
(Fig 2). A kaleidoscope ladder was loaded on the first lane of each gel to confirm
molecular weight (Fig 2). The gel was electrophoresed for 30 minutes at 200 V in SDS
buffer (25 mm Tris, 192 mm glycine, 0.1% SDS, pH 8.3; BioRad). Protein was transferred
to a nitrocellulose membrane in cold transfer buffer (25 mm Tris, 192 mm glycine, 20%
ethanol, pH 8.3). Membrane transfer was confirmed using Ponseau stain followed by a
quick rinse and blocking in Odyssey blocking buffer (Li-Cor) containing Tween-20.

The membrane was blocked for 1 h in Odyssey Blocking Buffer (Li-Cor) containing 0.1%
Tween-20, followed by an overnight incubation in primary antibody solution at 4°C.
Membrane incubation was done in a primary antibody solution containing Odyssey
blocking buffer, Tween-20, appropriate primary antibody receptor targeting1:2,000 mouse
PSD-95 (cat # MA1-046,Thermofisher), 1:200 rabbit GIuAl (cat # AB1504, Millipore),
1:200 rabbit GIuA2 (cat # AB1766, Millipore), 1:200 rabbit pS831(cat # 04-823, Millipore),
1:200 p880 (cat#07-294, Millipore) or 1:1,500 mouse actin loading control (cat # 612857,
BD Transduction)]. Following incubation, the membrane was washed 4 x 5 min with Tris-
buffered saline containing 0.1% Tween 20 (TTBS) and incubated in fluorescent-labeled
secondary antibody (1:30K LiCor IRdye appropriate goat anti-rabbit in Odyssey blocking
buffer plus 0.2% Tween 20) for 1 h in the dark. Subsequent to 4 x 5 min washes in TTBS,
followed by a 5 min wash in TBS.

Membrane incubation was used to detect the presence of a specific protein or antigen on
a membrane. In this case, the membrane was incubated with a fluorescently labeled
secondary antibody solution that was specifically tuned to the emission spectra of the
laser lines used by the Li-Cor Odyssey quantitative near-infrared molecular imaging
system instrument. This allows for specific detection of the protein of interest on the
membrane. The sample is then imaged using an infrared imaging system that is optimized
for detecting the specific wavelengths of light emitted by the fluorescent label. Additional
rounds of incubation and imaging are performed to detect additional proteins using the
multiplexing functionality of the Li-Cor instrument, with each round adding new bands at
different molecular weight ranges. This allows for the detection of multiple proteins in the
same sample, maximizing the proteomic detection.

3. Quantitative Near-IR Densitometric Analysis

Using techniques optimized in the Ferguson lab(24, 25), we established near-infrared
labeling and detection techniques (Odyssey Infrared Imaging System, Li-Cor) to quantify
linear intensity detection of fluorescently labeled protein bands. The biochemistry is
performed in a blinded, counterbalanced fashion, and three independent replications of
the assay are run on different days(26). Fluorescent Western blotting utilizes fluorescent-
labeled secondary antibodies to detect the target protein, which allows for more sensitive
and specific detection compared to chemiluminescence(9, 27, 28). Additionally,
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fluorescence imaging allows multiple detection of a target protein and internal loading
control in the same blot, which enables more accurate correction of sample-to-sample
and lane-to-lane variation(9, 29, 30). This provides a more accurate and reliable
guantification of the target protein, making it a popular choice for quantitative analysis of
WB data.

4. Blinding

Itis good practice for the pipetting experimenter to remain blind to experimental conditions
during gel loading, transfer, and densitometric quantification. We achieved this using de-
identified tube codes and a priori gel loading sequences that were developed by an
outside experimenter using the method implemented in the blotRig software.

Statistical analyses

Statistical analyses were performed using the R statistical software (58,59). Our WB data
was analyzed using parametric statistics. The WB was run using three independent
replications and covariance corrected by beta-actin loading control, with replication
statistically controlled as a random factor. Significance was assessed at p < 0.05(24, 25,
31, 32). We report estimated statistical power and standardized regression coefficient
effect sizes in the results section.

All ANOVASs were run using the stats R package; standardized effect size was calculated
using the parameters R package (58). Linear mixed models were run using the Ime4 R
package. Observed power was calculated by Monte Carlo simulation (1000x) run on the
fitted model (either ANOVA or LMM) using the simR package (59). For the development
of the blotRig interface, the R packages used included: shiny, tidyverse, DT, shinythemes,
shinyjs, and sortable (58-64). You can access the blotRig analysis software, which
includes code for inputting experimental parameters for all Western blot analysis, through
the following link: https://github.com/ucsf-ferguson-lab/blotRig/

Results

DESIGNING REPRODUCIBLE WESTERN BLOT EXPERIMENTS
1. Determining linear range for each primary antibody

Most WB analyses assume semi-quantitatively that the relationship between qWB assay
optical density data (i.e. western band signal) and protein abundance is linear(2, 3, 9, 16).
Accordingly, most qWB analyses use statistical tests that assume a linear effect.
However, recent studies have shown that the relationship can potentially be highly non-
linear(17) As Figure 1 illustrates, the WB band signal can become non-linearly correlated
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with protein concentrations at low and high values. This may result in inaccurate
guantification of relative target protein amount in the experiment and violates the
assumptions for linear model which can lead to false inferences. To address the
assumption of linearity, it is important to first determine the optimal linear range for each
protein of interest so that one can be confident that a unit change in band density reflects
a linear change in protein concentration. This enables an experimenter to accurately
guantify the protein of interest and apply linear statistical methods appropriately for
hypothesis testing.

2. Counterbalancing during experimental design

Counterbalancing is the practice of having each experimental condition represented on
each gel and evenly distributing them to prevent overrepresentation of the same
experimental groups in consecutive lanes. For example, imagine an experimental design
in which we are studying two experimental groups (wild type and transgenic animals) and
are also looking at two treatment conditions (Drug and Vehicle). This design gives us four
groups total (Drug-treated Wild Type, Vehicle-treated Wild Type, Drug-Treated
Transgenic and Vehicle-treated Transgenic) (Figure 2A). During WB gel loading,
experimenters often distribute their samples unevenly such that certain experimental
conditions may be missing on some gels or samples from the same experimental
condition are loaded adjacently on a gel. This is problematic because we know that
polyacrylamide gel electrophoresis (PAGE) gels are not perfectly uniform, reflecting a
source of technical variability(34); in the worst case, if we have only loaded a single
experimental group on a gel and found a significant effect of the group, we cannot
conclude if the effect is due to the experimental condition or a technical problem of the
gel. At minimum, experimenters should ensure that every group is represented on each
gel to avoid confounding technical gel effects with experimental differences.

In addition, experimenters can further counter technical variability by arranging
experimental groups on each gel to ensure adequately counterbalanced design assuming
the uniformed protein concentration and fluid volume of all samples. This importantly
addresses the variability due to physical effects within an individual gel. In our example,
this means alternating the tissue areas and experimental conditions as much as possible
to minimize similar samples from being loaded next to one another (Figure 2B). By
spreading the possibility of technical variability across all samples by counterbalancing
across and within gels, we can mitigate potential technical effects that can bias our
results. Proper counterbalancing also enables us to implement more rigorous statistical
analysis to account for and remove more technical variability(24, 25, 31, 32). Overall, this
will help to ensure that experimenters can find the same result in the future and improve
reproducibility.

3. Technical Replication
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Technical replicates are used to measure the precision of an assay or method by
repeating the measurement of the same sample multiple times (11). The results of these
replicates can then be used to calculate the variability and error of the assay or
method(11). This is important to establish the reliability and accuracy of the results. Most
experimenters acknowledge the importance of running technical replicates to avoid false
positives and negatives due to technical error(11l). Even beyond extreme results,
technical replicates can account for the differences in gel makeup, human variability in
gel loading, and potential procedural discrepancies. In fact, most studies run at least
duplicates; however, the experimental implementation of replicates (e.g., running
replicates on the same gel or separate gels) as well as the statistical analysis of replicates
(e.g., dropping “odd-man-out” or taking the mean or standard deviation) can differ
greatly(35, 36). This experimental variability ultimately impedes our ability to meaningfully
compare results. For experimenters to establish accuracy and advance reproducibility in
WB experiments, it is important to implement standardized and rigorous protocols to
handle technical replicates(9, 11). In doing so, we can further reduce the technical
variability with statistical methods during analysis.

As underscored previously, we recommend that technical replicates are counterbalanced
on separate gels to mitigate any possible gel effect. Additionally, by running triplicates,
we can treat replicates as a random effect in a LMM during statistical analysis.
Importantly, triplicates provide more values to measure the distribution of technical
variance to ensure the robustness of the LMM than only running duplicates. This
approach isolates and removes technical variance from biological variation which
ultimately improves our sensitivity for true experimental effects(37).

In the following demonstration of statistical methods, we replicated all WB analyses in
triplicate with a randomized counterbalanced design. We then explore how the way in
which technical replicates and loading controls are incorporated into analysis can have a
significant impact on both the sensitivity of our results and the interpretation of the
findings.

STATISTICAL METHODOLOGY TO IMPROVE WESTERN BLOT ANALYSIS
1. Loading control as a covariate

Most qWB assay studies use loading controls to ensure that there are no biases in total
protein loaded in a particular lane(3, 9, 26). The most common way that loading controls
are used to account for variability between lanes is by normalizing the target protein
expression values by dividing it by the loading control values, resulting in a ratio between
target protein to loading control(3, 38, 39). However, ratios may violate assumptions of
common statistical test used to analyze qWB (e.g., t-test, ANOVA, etc.)(40) This
ultimately hinders the ability to statistically account for the variance in qWB outcomes and
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have a reliable estimate of the statistics. We instead propose to include loading control
values as a covariate — a variable that is not our experimental factors that may affect the
outcome of interest and presents a source of variance that we wish to account for(41).
For instance, we know the amount of protein loaded is a source of variability in WB
guantification, so we can use the loading control as a covariate to adjust for that variance.
In doing so, we extend the method of ANOVA into that of ANCOVA(42). This approach
accounts for the technical variability present between lanes while meeting the necessary
assumptions for parametric statistics which helps curb bias and averts false discoveries.

2. Replication and Subject as a random effect

Most WB studies use ANOVA, a test that allows comparison of the means of three or
more independent samples, for quantitative analysis of WB data(40). One of the
assumptions in ANOVA is the independence of observations(40). This is problematic
because we often collect multiple observations from the same analytical unit, for example
different tissue samples from a single subject, or technical replicates. As a result, those
observations don’t qualify as independent and would rather be analyzed using models
controlling for variability within units of observations (e.g., the animal) to mitigate
inferential errors (false positives and negatives)(43) caused by what is known as
pseudoreplication. This arises when the quantity of measured values or data points
surpasses the number of actual replicates, and the statistical analysis treats all data
points as independent, resulting in their full contribution to the final result (65)

In addition, when conducting experiments, it is important to consider the randomness of
the conditions being observed. Treating both subjects and conditions as fixed effects can
lead to inaccurate p-values. Instead, subjects/ animals should be treated as random
effects and the conditions should be considered as a sample from a larger population(44).
This is especially important when collecting data from different replicates or gels, as the
separate technical replicate runs should be considered as random.

In Figure 3 we used a simple experimental design comparing the difference in a target
protein between two experimental groups to demonstrate four of the most common ways
researchers tend to analyze western blot data: 1) running each sample once without
replication, 2) treating each technical replicate as an independent sample, 3) taking the
mean of technical replicate values, and 4) treating subject and replication as a random
effect (Figure 3). We then tested how effect size, power, and p value are affected by each
of these strategies to get a sense of how much these estimates vary between analyses.
For each of these strategies, we also tested the difference between using the ratio of
target protein to loading controls versus using loading control as a statistical covariate.

In the first scenario, we imagined that no technical replication was run at all (by using only
the first replication). With this strategy, we found that standardized effect size is weak,
power is low, and the p value was high (Figure 3). Second, we demonstrate how
analytical output would be different if we did run three technical replicates, but treated
each as independent. As discussed above, this strategy does not take into account the
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fact that each sample is being run three times, and consequently the overall n of your
experiment is artificially tripled! As one might expect, observed power is quite high, and
our p value is low (< 0.05). Power is increased by an increase in sample size, so it is not
surprising that the power is much higher if we erroneously report that we have a 3X larger
sample size (i.e., pseudoreplication) (65). In this case, the observed power is inflated and
an artifact of inappropriate statistics, and the probability of a false positive is considerably
increased with respect to the expected 5%.

So, what would be a more appropriate way to handle technical replicates? One method
that researchers often use is to take the mean of their technical replicates. This does
ensure that we are not artificially inflating our sample size, which is certainly an
improvement over the previous strategy. With this strategy, we do find that our p value is
less than 0.05 (when loading control is treated as a covariate). But we also see that our
power is still low. We have effectively taken our replicates into account by collapsing
across them within each sample, but this can be dangerous. If there is wide variation
across replicates of a particular sample, then taking the mean of three replicates could
produce an inaccurate estimate of the ‘true’ sample value. Ideally, we want to find a
solution where instead of collapsing this variation, we add it to our statistical model so
that we can better understand what amount of variation is randomly coming from within
technical replicates, and in turn what amount of variation is actually due to potential
differences in our experimental groups.

To achieve this, we need to model both the fixed effect of groups and the random effect
of replication across western blot gels. When we use both fixed and random effects, this
is referred to as a linear mixed model (LMM). When using this strategy, we find that our
effect size remains strong, and our p value is low. But importantly, we now have strong
observed power (Figure 3). This suggests that we can achieve greater sensitivity in our
WB experiment when using this approach. Specifically, if we implement careful
counterbalancing while designing our experiments, then we can use the variability
between gels to our advantage during analysis using linear mixed effects model(45).

LMM is recommended because it takes into account both the multiple observations within
a single subject/animal in a given condition and differences across subjects observed in
multiple conditions. This reduces chances of inaccurate p-values and improves
reliability(46). Further, treating both subjects and replication as random effects
generalizes the results to the population of subjects and also to the population of
conditions(47).

REAL WORLD APPLICATION OF blotRig SOFTWARE FOR WESTERN BLOT
EXPERIMENTAL DESIGN, TECHNICAL REPLICATION, and STATISTICAL
ANALYSIS
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We have designed a user interface that is designed to facilitate appropriate
counterbalancing and technical replication for western blot experimental design. Upon
starting the blotRig application, the user is prompted to upload a comma separated values
(CSV) spreadsheet. This spreadsheet should include separate columns for subject ID and
experimental group. The user is then prompted to enter the total number of lanes that are
available on their particular western blot gel apparatus. The blotRig software will first run
a quality check to confirm that each subject ID (unique sample or subject) is only found
in one experimental group. If duplicates are found, a warning will be shown that specifies
which subjects are repeated across groups. If no errors are found, a centered gel map
will be generated that illustrates the western blot gel lanes into which each subject should
be loaded (Figure 4A). The decision for each lane loading is based on two main principles
outlined above: 1) each western blot gel should hold a representative sample of each
experimental group 2) samples from the same experimental group are not loaded in
adjacent lanes whenever possible. This ensures that proper counterbalancing is achieved
so that we can limit the chances that the inherent variability within and across western
blot gels is confounded with the experimental groups that we are interested in
experimentally testing.

Once the gel map has been generated, the user can then select to export this gel map to
a CSV spreadsheet. This sheet is designed to clearly show which gel each sample is on,
which lane on each gel a sample is found, what experimental group each sample belongs
to, and importantly, a repetition of each of these values for three technical replicates
(Figure 4B). User will also see columns for Target Protein and Loading Control. These
are the cells where the user can then input their densitometry values upon completing
their western blot runs. Once this spreadsheet is filled out, it is then ready to go for blotRig
analysis.

To analyze western blot data, users can upload the completed template that was exported
in the blotRig experimental design phase under the ‘Analysis’ tab. The blotRig software
will first ask the user to identify which columns from the spreadsheet represent
Subject/SamplelD, Experimental Group, Protein Target, Loading Control, and
Replication. The blotRig software will again run a quality check to confirm that there are
no subject/sample IDs that are duplicated across experimental groups. If no errors are
found, the data will then be ready to analyze. The blotRig analysis will then be run, using
the principles discussed above. Specifically, a linear mixed-model runs using the Imer R
package, with Experimental Group as a fixed effect, Loading Control as a covariate, and
Replication (nested within Subject/Sample ID) as a random factor. Analytical output is
then displayed, giving a variety of statistical results from the linear mixed model output
table, including fixed and random effects and associated p values (Figure 4C). These
outputs can be directly reported in the results sections of papers, improve the statistical
rigor of published WB reports. In addition, since the entire pipeline is opensource, the
blotRig code itself can be reported to support transparency and reproducibility.
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Discussion

Although the western blot technique has proven to be a workhorse for biological research,
the need to enhance its reproducibility is critical(11, 17, 26). Current qWB assay methods
are still lacking for reproducibly identifying true biological effects(11). We provide a
systematic approach to generate quantitative data from western blot experiments that
incorporates key technical and statistical recommendations which minimize sources of
error and variability throughout the western blot process. First, our study shows that
experimenters can improve the reproducibility of western blots by applying the
experimental recommendations of determining the linear range for each primary antibody,
counterbalancing during experimental design, and running technical triplicates(11, 26).
Furthermore, these experimental implementations allow for application of the statistical
recommendations of incorporating loading controls as covariates and analyzing gel and
subject as random effects(48, 49). Altogether, these enable more rigorous statistical
analysis that accounts for more technical variability which can improve the effect size,
observed power, and p-value of our experiments and ultimately better identify true
biological effects.

Biomedical research has continued to rely on p-values for determining and reporting
differences between experimental groups, despite calls to retire the p-value(50). Power
(sensitivity) calculations have also become increasingly common. In brief, p-values and
the related alpha value are associated with Type | error rate — the probability of rejecting
the null hypothesis (i.e., claiming there is an effect) when there is no true effect(51). On
the other hand, power effectively controls for the probability of rejecting the null
hypothesis (i.e. stating there is not effect) when there is indeed a true underlying effect —
a concept that is closely related to reducing the Type Il error rate(48, 52). Critically,
empirical evidence estimates that the median statistical power of studies in neuroscience
is between ~8% and ~31%, yet best practices suggest that an experimenter should aim
to achieve a power of 80% with an alpha of 0.05(18). By being underpowered,
experiments are at higher likelihood of producing a false inference. If an underpowered
experiment is seeking to reproduce a previous observation, the resulting false negative
may throw into question the original findings and directly exacerbate the reproducibility
crisis(48). Even more alarmingly, a low power also increases the likelihood that a
statistically significant result is actually a false positive due to small sample size problems
(51). In our analyses, we show that our technical and statistical recommendations lowers
the p-value (indicates that the observed relationship between variables is less likely to be
due to chance) as well as observed power of our experiments. This translates into the
ability to better avoid false negatives when there is a true effect as well as reduce the
likelihood of false positives when there is not a true experimental effect, both of which will
ultimately improve the reproducibility of qWB assay experiments.

Another useful component of statistical analyses that is not as commonly reported but is
critically related to p-value and power is effect size. Effect size is a statistical measure
that describes the magnitude of the difference between two groups in an experiment(53).
It is used to quantify the strength of the relationship between the variables being
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studied(53). The estimated effect size is important because it answers the most frequent
guestion that researchers ask: how big is the difference between experimental groups, or
how strong is the relationship or association?(53). The combination of standardized effect
size, p-value and power reflect crucial experimental results that can be broadly
understood and compared with findings from other studies(52), thus improving
comparability of gWB experiments. In particular, studies with large effect sizes have more
power: we are more likely to detect a true positive experimental effect and avoid the false
negative if the underlying difference between experimental groups is large(37). In some
cases, the calculated effect size is greatly influenced by how sources of variance are
handled during analysis(11). Our results demonstrate that by reducing the residual
variance (by modeling the random effect of replication) the estimated effect size of our
experiment increases. This could mean that the magnitude of the difference between the
groups in our experiment is larger than it was originally thought to be. This could be due
to a variety of factors such as improving the experimental design, sample size, or the
measurement of the variables(11). Likewise, conducting a power analysis is an essential
step in experimental design that should be done before collecting data to ensure that the
study is adequately powered to detect an effect of a certain size(54).

Increasingly, power analysis is becoming a requirement for publications and grant
proposals(55). This is because a study with low statistical power is more likely to produce
false negative results, which means that the study may fail to detect a real effect that
actually exists. This can lead to the rejection of true hypotheses, wasted resources, and
potentially harmful conclusions. In brief, given an experimental effect size and variance,
we can calculate the sample size needed to achieve an alpha of 0.05 and power of 0.8;
an increased sample size reduces the standard error of mean (SEM), which is the
measured spread of sample means and consequently increases the power of the
experiment(56). We have demonstrated that our experimental and statistical
recommendations lead to a lower p value (Figure 3C) and effect size (Figure 3B) without
changing the sample size. This may be of greatest interest to researchers: more rigorous
analytics ultimately improves experimental sensitivity without relying solely on increasing
the sample size.

Reducing the sample size of an experiment can be beneficial for several reasons, one of
which is cost-effectiveness. A smaller sample size can lead to a reduction in the number
of animals or other resources that are needed for the study, which can result in lower
costs. Additionally, it can also save time and reduce the duration of the experiment, as
fewer subjects need to be recruited, and the data collection process can be completed
more quickly. However, it is important to note that reducing the sample size can also lead
to decreased statistical power. As a result, reducing sample size too much can increase
the risk of a type Il error, failing to detect significance when there is a true
effect(52).Therefore, it is important to consider the trade-off between sample size and
power when designing an experiment, and to use statistical techniques like power
analysis to ensure that the sample size is sufficient to detect an effect of a certain size.
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Moreover, when using animals in research, it's always important to consider the ethical
aspect and the 3Rs principles of reduction, refinement, and replacement(45).

There has been recent recognition that an appropriate study design can be achieved by
balancing sample size (n), effect size, and power(29). The experimental and statistical
approach presented in this study provide insight into how more rigorous planning for
western blot experimental design and corresponding statistical analysis without
depending on p-values only can acquire precise data resulting in true biological effects.
Using blotRig as a standardized, integrated western blot methodology, quantitative
western blot may become highly reproducible, reliable, and a less controversial protein
measurement technique(16, 27, 57).
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Figure 1. Determining linear range of antibodies to optimize parametric analysis of
Western blot data. When small or large protein concentrations are loaded, there is often
a possibility that their representation on western blot band density may become non-
linear. If there is a disconnect between the observed and expected protein concentrations,
results may be inaccurate. Thus determining the linear range wherein, a one-unit increase
in protein is reflected in a linear increase in band density for each western blot antibody
is a crucial initial step to ensure confidence in reproducibility of the linear models
commonly applied to western blot data analysis.
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Figure 2. Counterbalancing to reduce bias. A, Experimental design. A simple
hypothetical experimental design for illustrating counterbalancing. Two experimental
groups (Wild Type vs Transgenic), with two treatments (Drug vs Vehicle) analyzed within
each individual. This 2 (Experimental Condition) by 2 (Tissue Area) design yields four
groups. B, Counter-balanced Gel Loading. The goal of appropriate counterbalancing is
to optimize the sequence in which samples are loaded such that groups are represented
equally across the gel. Those with red X have with the experimental groups and treatment
condition grouped in the same area of the gel, and thus variability across the gel may be
conflated with group differences. In contrast, those with the green check are organized
so that experimental condition and treatment condition are better placed to reduce the
possibility of any single group being over-represented in a particular area of the gel.
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Figure 3. Effect of different replication and loading control strategies on statistical
outcomes. Eight possible strategies are shown, representing the most common ways in
which replication and loading controls are treated in a typical Western blot analysis.
Four replication strategies: either no replication at all, 3 technical replicates treated as
independent, mean of three replicates, or replicate treated as a random effect in a linear
mixed model. These are crossed with two loading control strategies: either target
protein is divided by loading control, or loading control is treated as a covariate in a
linear mixed model. A, Effect Size: Standardized effect size is generally improved when
loading control is treated as a covariate, compared to using a ratio of the target protein
and loading control values. B, Power: By treating each replication as independent the
power is increased (due to the inaccurate assumption that technical replicates are not
related, thus artificially tripling the n). Conversely, including the variability inherent in
technical replicates as a part of the statistical model, we work to identify and account for
a major source of variability, thus improving power in a more appropriate way. C, P
value: As expected, when each replication is inaccurately treated as independent the p
value is low (due to artificially inflated n). We found that using the mean of replications
and loading controls as covariates also resulted in a p value below 0.05. The smallest p
value was found when including replication as a random factor. Across each of these
statistical measures, only when replication is included as a random factor and loading
control as a covariate do we see a strong effect size, high power, and low p value.
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Figure 4. Example of the blotRig interface. A, lllustration of the blotRig interface. User has
entered their sample IDs, experimental groups, and the number of lanes per western blot gel. B,
The blotRig system then creates a counterbalanced gel map that ensures each gel contains a
representative from each experimental group. This illustration shows the exact lane for each gel
in which each sample should be run. C. Example output from linear mixed model, indicating
random and fixed effects.
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