

1 **Constraint and innovation in color evolution among species  
2 and among plumage patches in five avian radiations**

3 Chad M. Eliason<sup>1</sup>, Rafael S. Marcondes<sup>2,3</sup>, Muir D. Eaton<sup>4</sup>, Rafael Maia<sup>5</sup>, Kevin J. Burns<sup>6</sup>, Allison  
4 J. Shultz<sup>7</sup>

5

6 Author affiliations:

7 <sup>1</sup>Grainger Bioinformatics Center, Field Museum of Natural History, Chicago, IL 60605

8 <sup>2</sup>BioSciences Department, Rice University, Houston, TX 77005

9 <sup>3</sup>Museum of Natural Science and Department of Biological Sciences, Louisiana State University,  
10 Baton Rouge, Louisiana, 70803

11 <sup>4</sup>Biology Department, Drake University, Des Moines, IA 50311

12 <sup>5</sup>Data Scientist, Apple, Austin, TX

13 <sup>6</sup>Department of Biology, San Diego State University, San Diego, CA 92182

14 <sup>7</sup>Ornithology Department, Natural History Museum of Los Angeles, Los Angeles, CA 90007

15

16 Corresponding author: Chad M. Eliason

17 Email: [celiason@fieldmuseum.org](mailto:celiason@fieldmuseum.org)

18

19 Keywords: evolutionary rates, spectrophotometry, iridescence, phenotypic evolution

20

21

## 22 Abstract

23 Understanding the causes and limits of phenotypic diversification remains a key challenge in  
24 evolutionary biology. Color patterns are some of the most diverse phenotypes in nature. In  
25 birds, recent work within families has suggested that plumage complexity might be a key  
26 innovation driving color diversity. Whether these patterns hold at larger taxonomic scales  
27 remains unknown. Here, we assemble a large database of UV-Vis spectral data across five  
28 diverse clades of birds (45791 spectra, 1135 species). Using multivariate phylogenetic  
29 comparative methods, we compare evolutionary rates and color space occupancy (i.e.,  
30 quantification of observed colors) among these clades. Novel color-producing mechanisms have  
31 enabled clades to occupy new regions of color space, but using more coloration mechanisms  
32 did not result in overall more color space occupancy. Instead, the use of more color-producing  
33 mechanisms resulted in faster rates of color evolution and less integrated color among plumage  
34 regions. Flexible Bayesian modeling further allowed us to assess the relationship between  
35 interpatch and interspecific directions of color variation. We find that interpatch variation  
36 generally diverges from interspecies cladewise trends in males but not females, suggesting  
37 developmental or selective constraints operating in females across evolutionary scales. By  
38 comparing rates among clades and assessing both interpatch and interspecies color variation,  
39 we reveal how innovations and constraints operate across evolutionary and developmental  
40 scales.

## 41 Main

42 For complex phenotypes made up of two or more traits, adaptive radiation theory predicts that  
43 phenotypic evolution should occur along the major axis of an ellipse describing covariation  
44 between subtraits—that is, along genetic lines of least resistance<sup>1</sup>. Depending on the direction of  
45 selection relative to the major axes of phenotypic variation, strong covariation between subtraits  
46 can either reduce or enhance rates of phenotypic evolution<sup>2</sup>. Recent empirical evidence in avian  
47 beaks suggests that evolutionary innovations can cause discrete jumps in phenotypic space  
48 and/or reorient covariance matrices, with the end result of increasing phenotypic diversity<sup>3</sup>.  
49 Developmental and functional links between subtraits might explain such shifts. For example, in  
50 the avian skull, independent developmental trajectories explain evolutionary independence  
51 among different regions of the skull<sup>4</sup>. In avian limbs, selection for coordinated function (e.g.,  
52 flight) can strengthen evolutionary covariation among forelimb and hind limb elements<sup>5</sup>. Despite  
53 considerable research on the interplay between development constraint and the evolution of  
54 ecological traits<sup>4,6–9</sup>, less is known about how the evolution of ornamental traits is shaped by  
55 developmental or functional constraints<sup>10,11</sup>. An example of this is color pattern, a multifunctional  
56 and frequently ornamental trait highly studied by ecologists and evolutionary biologists, but a  
57 trait that is highly multidimensional, making it challenging to study in a comparative framework  
58 relative to simpler traits such as limb morphology or wing shape.

59 Courtship phenotypes of birds, such as birds-of-paradise (Paradisaeidae), comprise some of the  
60 most diverse multimodal displays in nature<sup>12</sup>. A major axis of variation in courtship signals is in  
61 plumage coloration. Diverse feather colors in birds result from a combination of light scattering  
62 by nanostructured feather tissue (keratin, melanin, and air)<sup>13</sup> and light absorption by pigments

64 deposited in feathers (e.g., melanins, carotenoids)<sup>14,15</sup>. Innovations in the production and  
65 deployment of these different color mechanisms across the body have expanded avian color  
66 space<sup>16</sup>. While plumage complexity (i.e., number of distinct colors in a plumage) has been  
67 studied extensively in relation to abiotic and biotic factors<sup>12,17–19</sup>, the role of color patch  
68 arrangement in explaining interspecific differences in color patterning has rarely been  
69 investigated<sup>20</sup>. Plumage patches are defined by developmentally distinct feather tracts that can  
70 vary independently (i.e., they are modular)<sup>21</sup>. A recent study in estrildid finches shows that color  
71 maps across the body are spatially conserved among species<sup>22</sup>, suggesting that plumage patch  
72 boundaries in a clade remain static while color pattern diversity is determined by downstream  
73 differences in regulatory factors that tune the colors of individual patches<sup>23</sup>. Co-expression of  
74 feather genes across the body<sup>24</sup> or expansion of color patches in response to increased pigment  
75 gene activity<sup>25</sup>, as has recently been shown in canids, could potentially explain observed  
76 evolutionary correlations in color among plumage patches in several clades<sup>20,26,27</sup>.

77

78 Novel colors in a bird's plumage can arise either through the evolution of new color-producing  
79 mechanisms (e.g., iridescence)<sup>28</sup> or finescale elaboration of existing mechanisms (e.g.,  
80 nanoscale changes in feather structure or variation in carotenoid pigment concentrations)<sup>29,30</sup>.  
81 Multifarious selection on multiple developmentally independent color patches would further  
82 translate to greater evolutionary potential for divergence in overall color patterns between  
83 species<sup>31,32</sup>. We hypothesized that mechanistic processes (i.e., how and where color is  
84 produced on a bird's body) will explain evolutionary trends in coloration. This hypothesis  
85 predicts that i) plumage integration (i.e., the tendency for spatially adjacent patches to display  
86 similar colors) and rates of color evolution vary among clades with different color-producing  
87 mechanisms due to differences in evolutionary lability; ii) color evolution occurs along the major  
88 axis of an ellipse describing covariation between color patches at the individual plumage level  
89 (Fig. 1); and iii) clades with a greater number of color-producing mechanisms and lower  
90 plumage integration (i.e., more modular plumages) accrue color diversity at a faster rate. Here,  
91 we use multivariate comparative methods and flexible Bayesian phylogenetic mixed models to  
92 test these predictions using a large spectral data set (46160 reflectance spectra, 8–22 plumage  
93 patches per bird) covering 1147 species across five diverse clades—African starlings  
94 (Sturnidae), kingfishers (Alcedinidae), tanagers and allies (Thraupidae), blackbirds and allies  
95 (Icteridae), and antbirds and ovenbirds (Furnariida). These clades vary in number of color-  
96 producing mechanisms and species richness, together encompassing >10% of avian  
97 biodiversity<sup>33</sup>. Comparing evolutionary trends among diverse avian clades can shed light on the  
98 relative importance of elaboration and innovation in explaining color evolution.

99 **Results**

100 **Birds expand color space using both pigments and nanostructures.** We used the avian  
101 tetrahedral color space, in which color data are plotted based on the relative stimulation of the  
102 four cones in the avian eye<sup>34</sup>, to investigate differences in plumage color within and among  
103 clades of birds. To understand differences in color space occupation among the five clades, we  
104 compared color space volumes (i.e., the 3-D volume of a convex hull encompassing points in  
105 avian color space) in the R package *pavo*<sup>35</sup> and classified each patch by overall color-producing

106 mechanism (carotenoids: red, orange, yellow; melanin: phaeomelanin, eumelanin; structural  
107 color: structural barb rami, structural barbule (iridescence); white). The estimated color space  
108 volume for Thraupidae was almost 5 times larger than any other clade (color space volume =  
109 0.066), while the smallest color space volume was seen in Furnariida (color space volume =  
110 0.012; see Table S1). The color space volume for Icteridae (color space volume = 0.016) was  
111 approximately the same as in Alcedinidae (color space volume = 0.015; Fig. 2), but each of  
112 these two clades expands color space in different ways, using either yellow and red carotenoids  
113 (Icteridae; Fig. 2d) or phaeomelanins and barb-based structural coloration (Alcedinidae; Fig. 2c). We  
114 observed the greatest color space similarity between Alcedinidae and Sturnidae (42.6%  
115 overlapping, see Table S1), both of which primarily use melanins and structural color, although  
116 different types of structural color.

117 Voxel-based (the 3-D analog of a 2-D pixel) analysis of color space reveals significant  
118 color novelty in several clades, defined as regions of the color space only occupied by that  
119 clade. In Thraupidae, mixing of carotenoid yellow pigments and non-iridescent structural blue  
120 colors<sup>36</sup> results in novel green colors within our data set (Figs. 2a, S10). Despite color space  
121 overlap between Sturnidae and Alcedinidae, Sturnidae occupies novel regions of color space  
122 (e.g., violet and blue colors with low UV content; Fig. S2b) owing to the presence of thin film and  
123 multilayer feather structures that produce the characteristic iridescent colors of the clade<sup>28,37</sup>.  
124 Further novelty is seen in Alcedinidae, as mixing of phaeomelanin pigments and structural color  
125 mechanisms produce violet colors approaching those seen in Sturnidae, yet Alcedinidae purples  
126 are less saturated and have lower UV content than those in Sturnidae (Fig. S2b,c). Icteridae  
127 shows innovation in the red parts of color space (Fig. 2d). Furnariida shows little color novelty.  
128 This clade uses almost exclusively melanin pigments as color-producing mechanisms, which is  
129 also commonly seen in the other clades (Fig. 2e; Table 1).

130  
131 **Evolutionary rates differ among clades and among patches.** To understand whether clades  
132 and feather patches are evolving at different rates, we compared rates for each patch  
133 separately for males and females using a multivariate phylogenetic comparative approach<sup>38</sup>. We  
134 found significant rate variation among both clades and patches (both  $p < 0.01$ ; Fig. 3b,c).  
135 Evolutionary rates were significantly elevated in male Thraupidae, Icteridae and Sturnidae, but  
136 in Furnariida females had significantly faster rates and in Alcedinidae rates were similar  
137 between males and females (Fig. 3b, Table S3). Furnariida showed the slowest evolutionary  
138 rates for both males and females (Fig. 3b). Comparing across clades, evolutionary rates of  
139 female coloration were significantly elevated in Alcedinidae compared to Furnariida,  
140 Thraupidae, and Sturnidae, whereas male rates were the same rate across all clades but  
141 Furnariida (Fig. 3b). Across all clades, the most rapid color evolution was seen in the belly and  
142 breast (Fig. 3c), a pattern driven primarily by Icteridae and Alcedinidae (Fig. S4). However, this  
143 pattern was not driven only by bright, colorful plumage patterns when considering the overall  
144 drabber colors of Icteridae relative to Alcedinidae (Fig. 2). Across all clades, the slowest pace of  
145 color evolution was found in the tail (Fig. 3c). An exception to this pattern was Sturnidae, with  
146 tail color rates 3.1 times faster than other clades (Fig. S4). Evolutionary rates of belly coloration  
147 in Sturnidae were significantly faster than other groups (Fig. S4). Alcedinidae was an outlier in  
148 terms of rates of dorsal (crown, rump and back) coloration, for both males (Fig. S4) and females  
149 (Fig. S5).

150

151 **Clades with more color-producing mechanisms evolve color faster.** To test whether the  
152 number of color-producing mechanisms available to a clade explains differences in the  
153 observed evolutionary rate variation (Fig. 3b), we used a phylomorphospace approach<sup>39,40</sup>.  
154 Briefly, we determined the number of color mechanisms for each clade (Table 1), following an  
155 existing scoring terminology<sup>16</sup>, and then calculated the sum of color branch lengths for each  
156 clade (see Methods for details), a measure of disparity, and also the volume of an ellipsoid  
157 encompassing the points in 3-D color space<sup>40</sup>. We then calculated evolutionary rates as the sum  
158 of color branch lengths divided by the sum of branch lengths (in My) and lineage density as the  
159 sum of color branch lengths divided by the volume in color space. We compared these two  
160 metrics to the number of mechanisms, and mechanism scores, using standard regressions. This  
161 analysis revealed a positive relationship between the number of color-producing mechanisms  
162 and the evolutionary rate of a clade (Fig. S8c). Lineage density (Fig. S8d) and color space  
163 volumes (Fig. S8b) were not strongly associated with the number of color-producing  
164 mechanisms.

165

166 **Males and females have similar levels of plumage integration.** To test the prediction that  
167 clades vary in the strength of covariation between color of different patches (i.e., plumage  
168 integration), we first estimated multivariate correlations (using paleomorph<sup>41</sup>) between each of  
169 the six focal patches in each clade. We did this for both the males and females data sets  
170 separately, using UV XYZ and luminance color variables. These comparative analyses revealed  
171 significant differences among clades in their plumage integration levels. For males, Furnariidae  
172 showed significantly stronger integration than all clades except Icteridae (Fig. 4c). The three  
173 clades with diverse structural color mechanisms (Sturnidae, Thraupidae, Alcedinidae) showed  
174 significantly lower levels of integration than the primarily pigment-based clades Icteridae and  
175 Furnariidae (Fig. 4c, Table 1). Similarly, in females, plumage integration was significantly  
176 elevated in Icteridae and Furnariidae relative to the other three clades (Fig. 4c). These  
177 cladewise differences in integration were related to evolutionary rate differences, with the fastest  
178 rates seen in clades with lower plumage integration (i.e., more modular plumages), but only in  
179 males (Fig. 4a).

180

181 **Interpatch color variation aligns with the direction of color evolution in females.** To further  
182 test our prediction that variation among patches at the plumage level would explain evolutionary  
183 trends in color, we compared the major axes of phenotypic variation in color ( $P_{\max}$ ) at both the  
184 plumage and clade levels. We used a Bayesian phylogenetic mixed modeling (BPMM)  
185 approach<sup>42</sup> to fit a multivariate response model (X, Y, Z, luminance variables) with phylogenetic  
186 covariance and patches as random effects. Using these flexible models, we were able to  
187 compare divergence in the major axes of interpatch and interspecific color variation. This angle  
188 was generally significantly different from zero in males, with the exception of Sturnidae (Table  
189 2). By contrast, in females, the divergence angles were not significantly different except for  
190 Alcedinidae (Table 2, Fig. S9). Looking at these clades in color space, the major axis of male  
191 color divergence in Alcedinidae occurs in the XY plane (i.e., chromatic variation), with patches  
192 evolving along dark blue-light yellow colors and species diverging along a turquoise-darker  
193 phaeomelanin color axis (Fig. 5). In most clades showing a significant divergence between the

194 major axes of interpatch and interspecific color variation, interpatch variation varies along a  
195 lightness axis while interspecific variation evolves along primarily chromatic axes (Fig. 5).

196 **Discussion**

197 We tested the hypothesis that the major axes of interpatch and interspecies color variation are  
198 aligned within each of five phylogenetically diverse clades of birds. We found strong support for  
199 the prediction that plumage integration and rates of color evolution vary among clades with  
200 different color-producing mechanisms, yet these differences were dependent on whether we  
201 analyzed males or females. Color evolution occurred perpendicular to the axis of interpatch  
202 variation in males, but not in females. Stronger levels of plumage integration were further  
203 associated with slower rates of color evolution. This suggests that evolving new ways of  
204 producing color and flexibility at the developmental level (i.e. the ability to produce different  
205 colors across the body) are key factors in broad phylogenetic trends of coloration.

206  
207 Novel plumage colors can be explained either by the evolution of new color-producing  
208 mechanisms, or by species evolving new colors with existing mechanisms. A comparison of  
209 color space volumes among groups of birds with different ways of producing colors led to the  
210 hypothesis that structural colors have expanded the avian color space<sup>16</sup>. Consistent with this  
211 idea, the largest color space volumes are seen in clades that commonly deploy structural  
212 coloration in their plumages (Fig. 2a-c). By contrast, the only clade without known structural  
213 color (Furnariida) occupied the lowest amount of color space (Fig. 2e). Convergence in color  
214 space between Alcedinidae and Sturnidae (Fig. 2b,c) is likely due to these clades having the  
215 greatest similarity in color-producing mechanisms (primarily structural colors; see Table 1).  
216 However, this pattern is interesting because each clade produces different forms of structural  
217 coloration in different parts of the feather. Whereas African starlings display a rainbow of  
218 iridescent colors emanating from melanin structures in feather barbules<sup>37</sup>, kingfishers produce  
219 non-iridescent (i.e., angle-independent) turquoise and blue structural colors through organized  
220 keratin structures in feather barb rami<sup>43</sup>. This result provides an example of how convergent  
221 phenotypes can result from divergent physical (or genetic) mechanisms, emphasizing the  
222 importance of identifying the specific mechanisms of color production<sup>44</sup>. Another way that birds  
223 can produce more colors from the same set of pigments is by using modified feather structures  
224 in combination with those pigments. For example, the carotenoid red colors of Thraupidae occur  
225 in a distinct part of color space compared to likely carotenoid red colors in Icteridae<sup>45</sup> (Fig. 1a,d).  
226 This is possible either through a divergence in carotenoid types between these clades, or due to  
227 the interaction between feather microstructure and pigments in tanagers<sup>46</sup>. Finescale  
228 morphological diversity (e.g., dimensions of melanin structures in barbules) or interactions  
229 between pigments and feather structures could potentially explain the lack of an association  
230 between the number of color-producing mechanisms and color space volume (Fig. S8b).  
231 However, another possibility is that expansion in color space is driven by evolutionary shifts in  
232 rates of color evolution for different color-producing mechanisms.  
233  
234 Clade comparisons are a powerful tool for understanding why some groups evolve more rapidly  
235 than others. The three clades with the greatest number of color mechanisms—Thraupidae,

236 Icteridae, and Alcedinidae—shared similarly rapid rates of color evolution (Fig. 3b). The  
237 Sturnidae clade was also indistinguishable from these clades in terms of evolutionary rate of  
238 male coloration (Fig. 3b), despite a limited suite of color-producing mechanisms (Table 1).  
239 However, Sturnidae have iridescent structural coloration<sup>28,37</sup> for which a broader range of hues  
240 are possible whereas Alcedinidae and Thraupidae primarily utilize non-iridescent structural  
241 coloration<sup>13,36,43</sup>. Thus, it could be that iridescent colors evolve faster than non-iridescent  
242 structural colors. Another possible explanation is cryptic morphological diversity in feather  
243 nanostructures that is not captured in broad classes of color-producing mechanisms (Table 1).  
244 African starlings are known to produce iridescent color using a diverse set of melanin  
245 nanostructures found in feather barbules<sup>28</sup>, whereas non-iridescent structural color in  
246 Alcedinidae and Thraupidae may stem from more highly conserved morphotypes in the barb  
247 ramus<sup>13,47</sup>. Testing this hypothesis will require more detailed microscopic information from  
248 across these non-iridescent radiations. Given the previously suggested hypothesis that clades  
249 with structural coloration expand their color space relative to clades with pigment-based  
250 coloration<sup>16</sup>, the rapid rates of color evolution in Icteridae (a clade known to display vivid  
251 carotenoid-based colors) are intriguing (Fig. 3b). Per-wavelength rate contours revealed that  
252 Icteridae males and females evolve rapidly in the yellow-red part of the spectrum (Figs. S6d,  
253 S7d), and the shapes of these rate contours are remarkably similar to those of carotenoid-based  
254 reflectance spectra<sup>48</sup>. This suggests that the mechanism for the high rates in Icteridae is rapid  
255 switching between melanin- and carotenoid-based coloration within patches. By contrast,  
256 Alcedinidae, Thraupidae, and Sturnidae show more even rate contours (Fig. S6a-c), consistent  
257 with the idea that color evolution proceeds primarily through variation in color produced by a  
258 single mechanism (e.g., iridescent structural color) or, alternatively, many switches among  
259 different mechanisms flattening out the rate contour. Fewer color-producing mechanisms in  
260 Furnariida (Table 1), along with higher plumage integration (Fig. 4c), likely both contribute to the  
261 slow evolutionary rates of color in this clade (Fig. 3b). Interestingly, color disparity was highest  
262 in female Furnariida (Fig. S8a), yet high lineage densities in this clade (Fig. S8c) are indicative  
263 of tight clustering in color space (Fig. 2e) and slow rates of evolution to other parts of color  
264 space (Fig. 3b). Across all clades, the lack of a trend between lineage density and number of  
265 color-producing mechanisms (Fig. S8d) suggests that rather than species jumping to new parts  
266 of color space by evolving novel color-producing mechanisms<sup>16</sup>, species are evolving faster for  
267 a given set of mechanisms, in line with recent work on the evolvability of iridescent feather  
268 nanostructures<sup>29,30</sup>.

269

270 Sexually selected traits evolve more rapidly than naturally selected traits<sup>49</sup>, therefore comparing  
271 evolutionary dynamics of coloration between sexes and among plumage patches can inform us  
272 about relative roles of sexual and natural selection in diversification<sup>50–53</sup>. A recent study in the  
273 avian Tyrannida clade found that rates of color evolution were faster in more sexually  
274 dichromatic species<sup>54</sup>. This study used lineage-specific evolutionary rates, whereas we use  
275 clade-based analyses here, but lineage-specific rates found significant correlations between  
276 diversification rates and rates of color evolution in both male and female tanagers<sup>55</sup>. At the clade  
277 level, we find similar and rapid evolutionary rates of male coloration in both a dichromatic  
278 clade<sup>52</sup> (Thraupidae), in a monochromatic clade<sup>51</sup> (Alcedinidae; Fig. 3b), and in a clade that  
279 includes both di- and monochromatic lineages (Furnariida). One possible explanation for this

280 difference is that males and females have more similar plumage integration levels in these  
281 clades, whereas in other dichromatic clades male plumage patches are more decoupled than in  
282 female plumage patches. However, levels of plumage integration did not differ significantly  
283 between males and females (Fig. 4c). Consistent with previous work<sup>54</sup>, we also found that  
284 evolutionary rates of coloration were generally fastest in crown and breast patches and slowest  
285 in the tail (Fig. 3b), but some dorsal regions also showed elevated rates, specifically the rump  
286 patch (Fig. 3c). This pattern was driven primarily by the Alcedinidae clade (Figs. S4, S5) in the  
287 UV and blue parts of the spectrum (Fig. S7c). Rump coloration would be visible to conspecifics  
288 during spread-wing courtship displays characteristic for the group<sup>56</sup>. If elevated rates in dorsal  
289 patches in Alcedinidae imply differences in selective regimes between dorsal and ventral parts  
290 of the body<sup>57,58</sup> (e.g., sexual selection for dorsal patches versus natural selection on ventral  
291 patches), this could weaken developmental links between body regions<sup>59</sup>, thereby reducing  
292 evolutionary covariation among color patches. Yet, we did not find support for this idea, as  
293 plumage integration levels were similarly low in Sturnidae, and Thraupidae compared to  
294 Alcedinidae (Fig. 4c). Selection on alternative (i.e., non-signaling) functions of plumages might  
295 also be driving some of the observed clade-specific patterns (Fig. 3). For example, rapid rates of  
296 tail color evolution in Alcedinidae and Sturnidae—two clades known to produce structural  
297 coloration with melanin pigments—could allow these clades to elaborate their plumage colors  
298 while at the same time maintain a wear-resistant or mechanical function in stabilization during  
299 flight or climbing<sup>44,60</sup>. In other clades with primarily pigment-based mechanisms (e.g., Icteridae  
300 and Furnariida), switches to carotenoid coloration in the tail could lead to increased wear of  
301 feathers due to abrasion<sup>61,62</sup>.

302  
303 Strong covariation among plumage patches can limit or enhance evolutionary diversification of  
304 color, depending on the alignment of the axis of variation relative to that of selection<sup>1</sup>. At the  
305 overall plumage level, faster rates of male color evolution were associated with low plumage  
306 integration levels (Fig. 4a). This suggests that more modular plumages promote color diversity  
307 in males, echoing results at the single patch level showing that low levels of integration between  
308 nanostructural subtraits promotes rapid rates of color evolution<sup>29</sup>. A recent study found that  
309 species with more distinct plumage patches evolve overall plumage coloration at a faster rate  
310 than species with fewer patches<sup>32</sup>, but this study did not consider plumage integration between  
311 patches as we do here. Compared to the low levels of plumage integration in Alcedinidae,  
312 Thraupidae, and Sturnidae, high levels of plumage integration in Icteridae and Furnariida  
313 females (Fig. 4c) are consistent with stronger developmental constraints in these clades. Yet,  
314 strong covariation among color patches at the plumage level (i.e., a narrow ellipse in color  
315 space) does not necessarily imply a similar pattern at evolutionary scales, as we found  
316 significant support for divergence in the directions of interpatch and interspecific color variation  
317 in most clades (Fig. 5). The direction of interpatch divergence was generally along the  
318 luminance axis (i.e., plumage lightness), whereas evolutionary change proceeded more along  
319 chromatic axes (Fig. 5). This makes sense if color mechanisms are more easily lost among  
320 patches (e.g., structural blue to white, or carotenoid orange to white transitions) than among  
321 species, possibly owing to a shared developmental toolkit influencing where on the body colors  
322 can be turned “on” or “off”<sup>22</sup>. One exception to interpatch variation along the luminance axis was  
323 Icteridae, as the interpatch axis was more closely aligned to the interspecies black-red/yellow

324 color axis (Fig. 5), suggestive of flexible switching between carotenoid and non-carotenoid  
325 coloration at both plumage and evolutionary scales. Previous studies have compared the  
326 alignment of the major axis of phenotypic variation ( $P_{\max}$ ) at intraspecific<sup>63</sup> and interspecific  
327 levels<sup>64</sup>, but to our knowledge none have compared  $P_{\max}$  across scales. Taken together,  
328 divergence between interpatch and interspecies  $P_{\max}$  vectors suggests that plumage patterns  
329 constrain evolution of color in these clades, whereas, in clades with similarly aligned major color  
330 axes, there is less constraint on the direction of color evolution, and color is free to evolve along  
331 “lines of least resistance”<sup>1</sup>.

## 332 **Conclusions**

333 Our spectral data set covers nearly all pigment types<sup>14,15</sup> and color-producing feather  
334 nanostructures<sup>13,65</sup> known in birds (Table 1), with the exception of some more uncommon  
335 pigments (psittacofulvin, turacoverdin). Compared to recent work on color evolution using  
336 alternative data sources (e.g., color plates<sup>50</sup> and digital photography<sup>54,66</sup>), reflectance spectra  
337 have enabled us to look at per-wavelength evolutionary rates (Figs. S6, S7) and make richer  
338 inferences about color mechanisms and evolution compared to using color space coordinates  
339 alone. We hope that future work will continue to assess how different ways of quantifying  
340 plumage coloration might lead to similar (or different) conclusions<sup>67</sup>. Our finding that color  
341 evolution across species has proceeded in a different direction than among color patches at the  
342 individual species' plumage level (Fig. 5) shows how plumage color patterns can be an ideal  
343 system for exploring the interplay between innovation and constraint in driving phenotypic  
344 evolutionary trends.

## 345 **Methods**

346 **Phylogenies.** We obtained published time-calibrated phylogenies for Icteridae<sup>68</sup> and  
347 Thraupidae<sup>69</sup>, Alcedinidae<sup>70</sup>, Sturnidae<sup>28</sup>, and Furnariidae<sup>71</sup>. We then combined these subtrees  
348 into a larger supertree using the bind.tree function in ape<sup>72</sup> based on published divergence  
349 times between the clades (<http://www.timetree.org>).

350  
351 **Measuring feather reflectance.** We used an Ocean Optics USB2000 spectrophotometer  
352 (Dunedin, FL) with a PX-2 pulsed xenon light source to record reflectance across the avian  
353 visual spectrum, ranging from 300 to 700 nm. We used a R200-7-UV/VIS reflection probe fitted  
354 with a modified rubber stopper to restrict incident light and to control the distance between the  
355 probe tip and feather surface (~1 cm). All measurements were taken with the light and probe  
356 perpendicular to the feather surface (i.e. normal incidence). The number of patches measured  
357 varied for each clade (Thraupidae n = 9, Sturnidae n = 13, Alcedinidae n = 22, Icteridae n = 20,  
358 Furnariidae N = 8), with six patches in common to all data sets (Fig. S1). We took three replicate  
359 measurements of each region for each individual and up to 11 individuals per sex per species  
360 and averaged them for subsequent analyses. After removing data for species not in the  
361 phylogeny, our final spectral data set contained 45791 mean reflectance spectra (n = 5886  
362 Thraupidae, n = 7310 Sturnidae, n = 3079 Alcedinidae, n = 5362 Icteridae, n = 24154

363 Furnariida) across 1135 species (n = 327 Thraupidae, n = 45 Sturnidae, n = 72 Alcedinidae, n =  
364 87 Icteridae, n = 604 Furnariida).

365

366 **Avian visual models.** We performed all visual model analyses in the R package *pavo*<sup>35</sup>. Briefly,  
367 we first ran avian visual models considering both a UV-sensitive (UVS) and violet-sensitive (VS)  
368 visual system using the *vismodel* function. We next calculated tetrahedral color space (TCS)  
369 coordinates for each spectrum using *colspace*, resulting in two data sets (UVS and VS) of XYZ  
370 coordinates. To assess how robust our analyses are to assumptions about the visual  
371 capabilities of our focal clades, we performed comparative analyses using both UVS and VS  
372 visual systems.

373

374 **Estimating evolutionary rates.** Using color space coordinates, we transformed data into a  
375 species by patch-coordinate matrix (e.g., *Ceyx margarethae* | wing-X wing-Y wing-Z...). We  
376 then estimated multivariate phylogenetic signal (Pagel's  $\lambda$ ) using *mvglsls*<sup>73</sup> and transformed  
377 branch lengths according to the optimal  $\lambda$  value, for both males and females. Using *geomorph*<sup>74</sup>,  
378 we then compared evolutionary rates among clades with *compare.evol.rates*<sup>38</sup> and among  
379 patches with *compare.multi.evol.rates*<sup>75</sup>. We estimated the significance of these relationships  
380 using a permutation approach (n = 999 simulations). Using these same methods, we also  
381 calculated rates using ln-transformed reflectance values in 20-nm bins.

382

383 **Comparing levels of plumage integration.** To compare evolutionary covariation among  
384 patches (i.e., plumage integration), we calculated the  $V_{rel}$  metric in the *geomorph* function  
385 *integration.Vrel* for each clade and sex. We then compared  $V_{rel}$  values using the *compare.ZVrel*  
386 function<sup>76</sup>. We adjusted P-values for multiple comparisons with the false discovery rate (FDR)  
387 metric and calculated significance letters for each group using the *multcompLetters* function in  
388 the *multcompView* R package.

389

390 **Comparing major axes of color variation.** To test our prediction that interpatch and  
391 interspecies color variation would differ in direction, we used Bayesian phylogenetic mixed  
392 models (BPMMs) implemented in the *MCMCglmm* R package<sup>42</sup>. We chose BPMMs over  
393 standard phylogenetic generalized least squares (PGLS) approaches because BPMMs are  
394 more flexible in that they allowed us to account for phylogenetic relationships and intraspecific  
395 measurements (e.g., spectral measurements on different patches of the same birds) in the  
396 same analysis. For the phylogeny, we used the merged supertree with untransformed branch  
397 lengths and estimated phylogenetic signal from the posterior variance-covariance estimates<sup>77</sup>.  
398 We used XYZ coordinates (plus luminance) as the multivariate response and patch and species  
399 as random effects. Using the posterior distribution of interpatch and interspecies covariance  
400 matrices, we then calculated the angle of divergence  $\theta$  along major axes of color variation ( $P_{max}$ )  
401 for patches and species in 3-D space (see Dryad for R code). To determine statistical  
402 significance of  $\theta$ , we followed a previous approach used to study genetic architecture in  
403 crickets<sup>63</sup>. Briefly, we subsampled 500 posterior MCMC samples, determined within and among  
404 group variation in  $\theta$ , and then calculated the test statistic  $\phi$  as the total among-group  $\theta$  variation  
405 minus the total within-group  $\theta$  variation. We then calculated P values as one minus the  
406 proportion of  $\phi$  values greater than zero.

407 **Tables**

408

409 **Table 1. Suite of color-producing mechanisms varies by avian clade.** Plumage color-  
410 producing mechanism data obtained from both general<sup>13–16,36,78</sup> and clade-specific  
411 sources<sup>19,20,28,43,79</sup>. Dashes indicate a mechanism is absent in that clade. Note: number of species  
412 refers to those in our data set, not total species richness for a clade.

| Mechanism                                                 | Clade / no. species |                   |                     |                   |                      |
|-----------------------------------------------------------|---------------------|-------------------|---------------------|-------------------|----------------------|
|                                                           | Thraupidae<br>n=327 | Sturnidae<br>n=45 | Alcedinidae<br>n=72 | Icteridae<br>n=87 | Furnariidae<br>n=604 |
| <b>Carotenoids</b>                                        |                     |                   |                     |                   |                      |
| Red carotenoids                                           | common              | –                 | –                   | common            | –                    |
| Orange carotenoids                                        | (rare)              | –                 | (rare)              | common            | –                    |
| Yellow carotenoids                                        | common              | (rare)            | (rare)              | common            | (rare)               |
| <b>Melanin</b>                                            |                     |                   |                     |                   |                      |
| Eumelanin                                                 | common              | common            | common              | common            | common               |
| Phaeomelanin                                              | common              | common            | common              | common            | common               |
| <b>Structural coloration</b>                              |                     |                   |                     |                   |                      |
| Structural barb rami                                      | common              | –                 | common              | (rare)            | –                    |
| Structural barbule                                        | (rare)              | common            | (rare)              | common            | –                    |
| White                                                     | common              | common            | common              | common            | common               |
| Total mechanisms:                                         | 8                   | 5                 | 7                   | 8                 | 4                    |
| Mechanism score:<br>(absent = 0, rare = 1,<br>common = 2) | 14                  | 9                 | 11                  | 15                | 7                    |

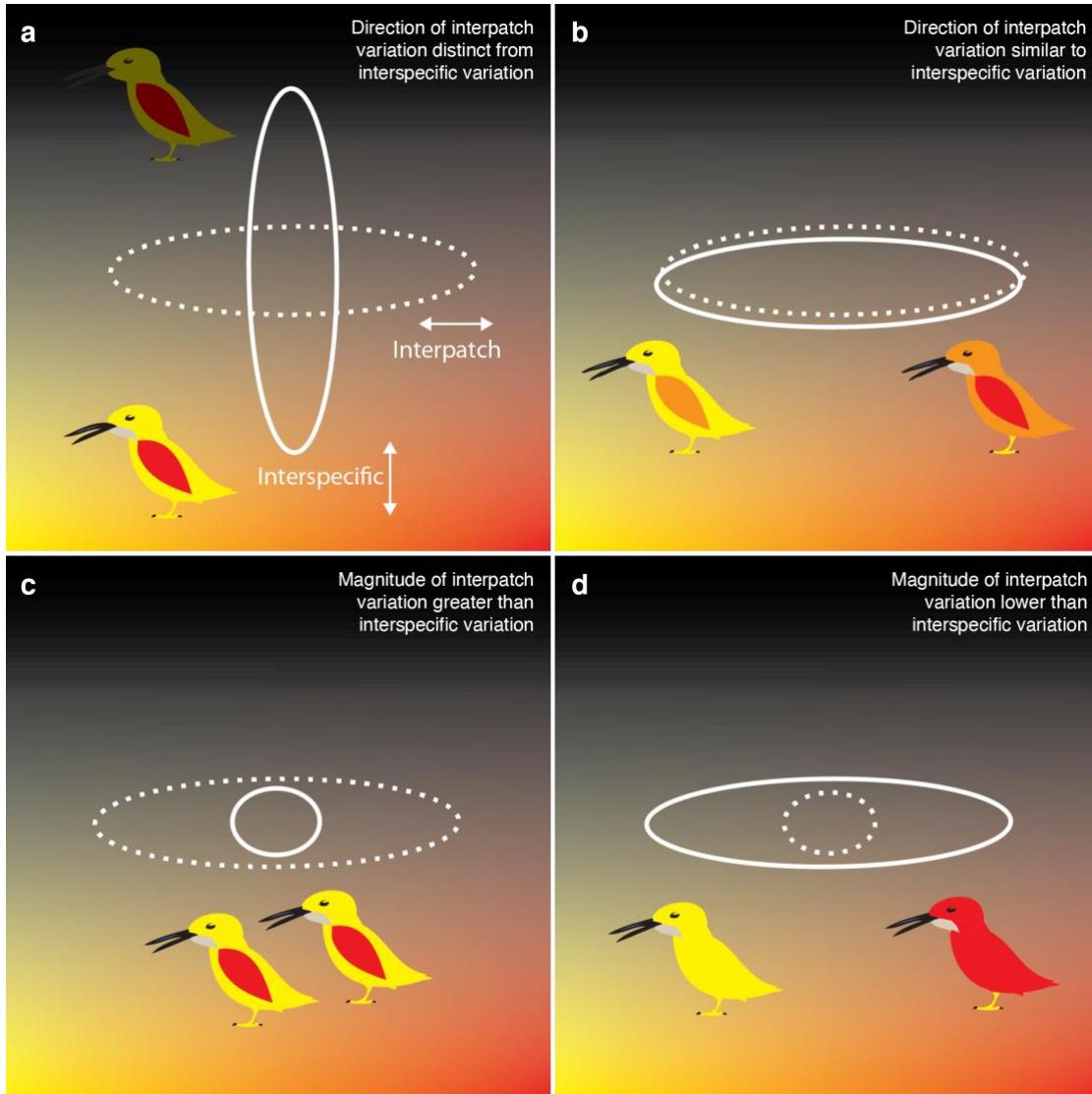
413

414

415

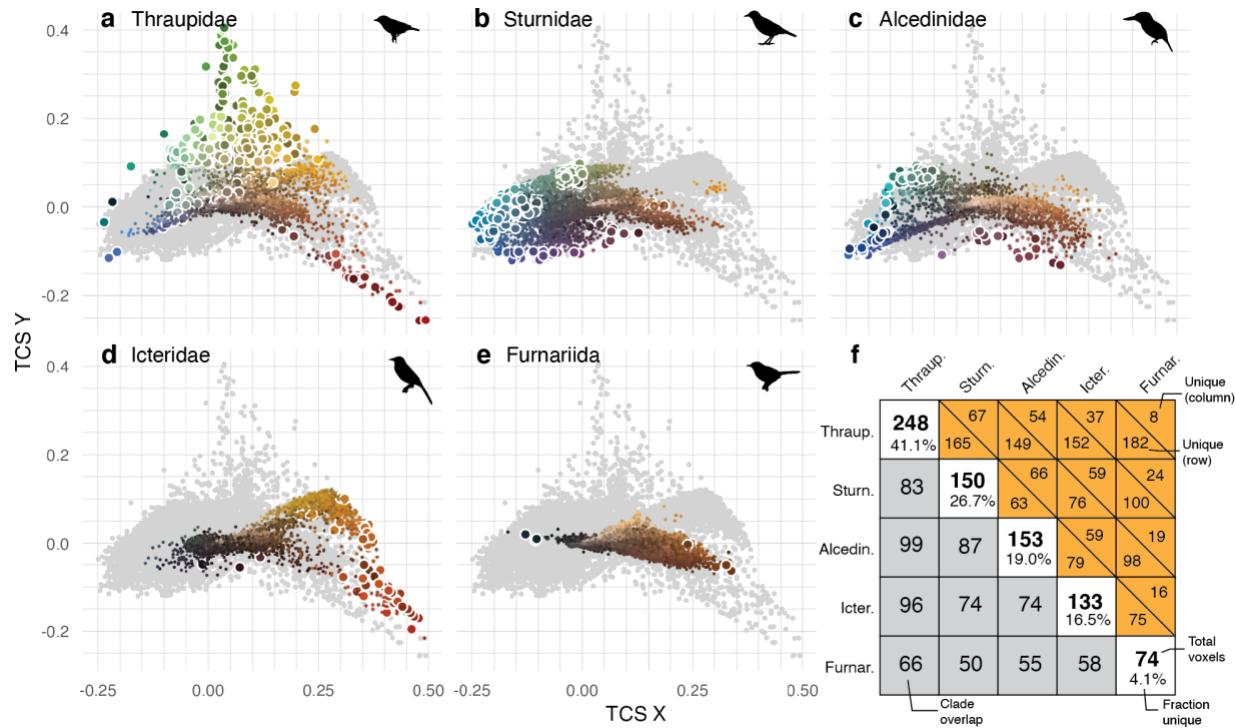
416

417 **Table 2. Divergence in major axes of color variation among patches and species.** Significant  
418 results indicated in bold. Visual model assumes a UV-sensitive visual system with luminance  
419 calculated as the quantum catch of a blue tit visual system double cone<sup>80</sup>.  $\theta$ : angle between the  
420 major axes of interpatch and interspecies color variation. See Fig. 5, ref. <sup>63</sup> for further  
421 methodological details.

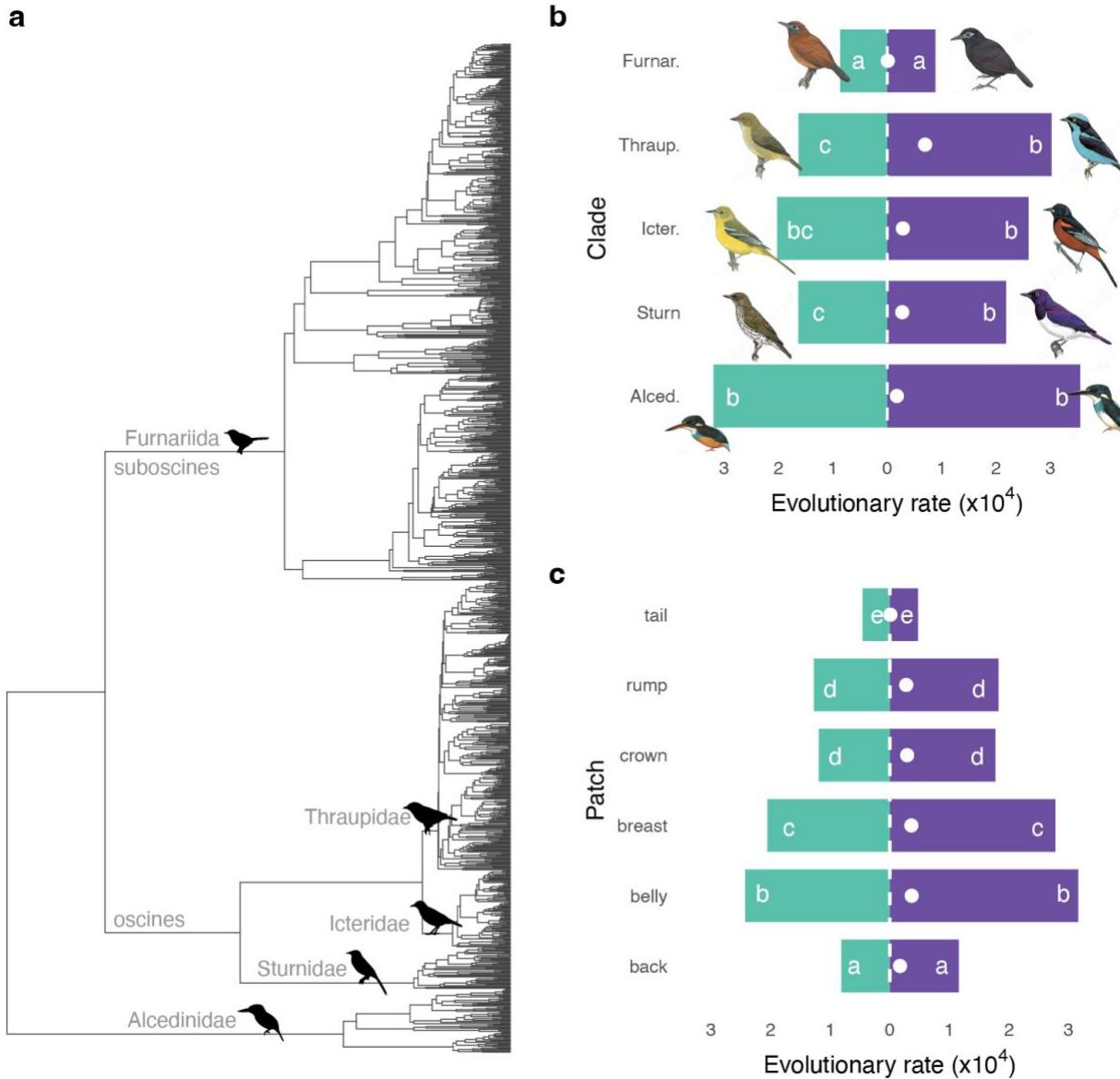

422

| Clade              | Sex           | Mean $\theta$ (°) | 95% credible interval | P-value         |
|--------------------|---------------|-------------------|-----------------------|-----------------|
| <b>Thraupidae</b>  | <b>Male</b>   | <b>61.6</b>       | <b>[40.1, 78.5]</b>   | <b>0.02</b>     |
| Thraupidae         | Female        | 68.0              | [40.9, 120.0]         | 0.10            |
| Sturnidae          | Male          | 95.6              | [26.2, 140.3]         | 0.08            |
| Sturnidae          | Female        | 113.1             | [29.8, 152.2]         | 0.10            |
| <b>Alcedinidae</b> | <b>Male</b>   | <b>49.1</b>       | <b>[32.0, 64.7]</b>   | <b>&lt;0.01</b> |
| <b>Alcedinidae</b> | <b>Female</b> | <b>42.8</b>       | <b>[29.7, 54.4]</b>   | <b>&lt;0.01</b> |
| <b>Icteridae</b>   | <b>Male</b>   | <b>16.7</b>       | <b>[5.5, 28.4]</b>    | <b>0.02</b>     |
| Icteridae          | Female        | 11.8              | [4.5, 19.9]           | 0.09            |
| <b>Furnariida</b>  | <b>Male</b>   | <b>109.5</b>      | <b>[79.1, 135.4]</b>  | <b>0.03</b>     |
| Furnariida         | Female        | 95.4              | [50.8, 126.3]         | 0.17            |

423

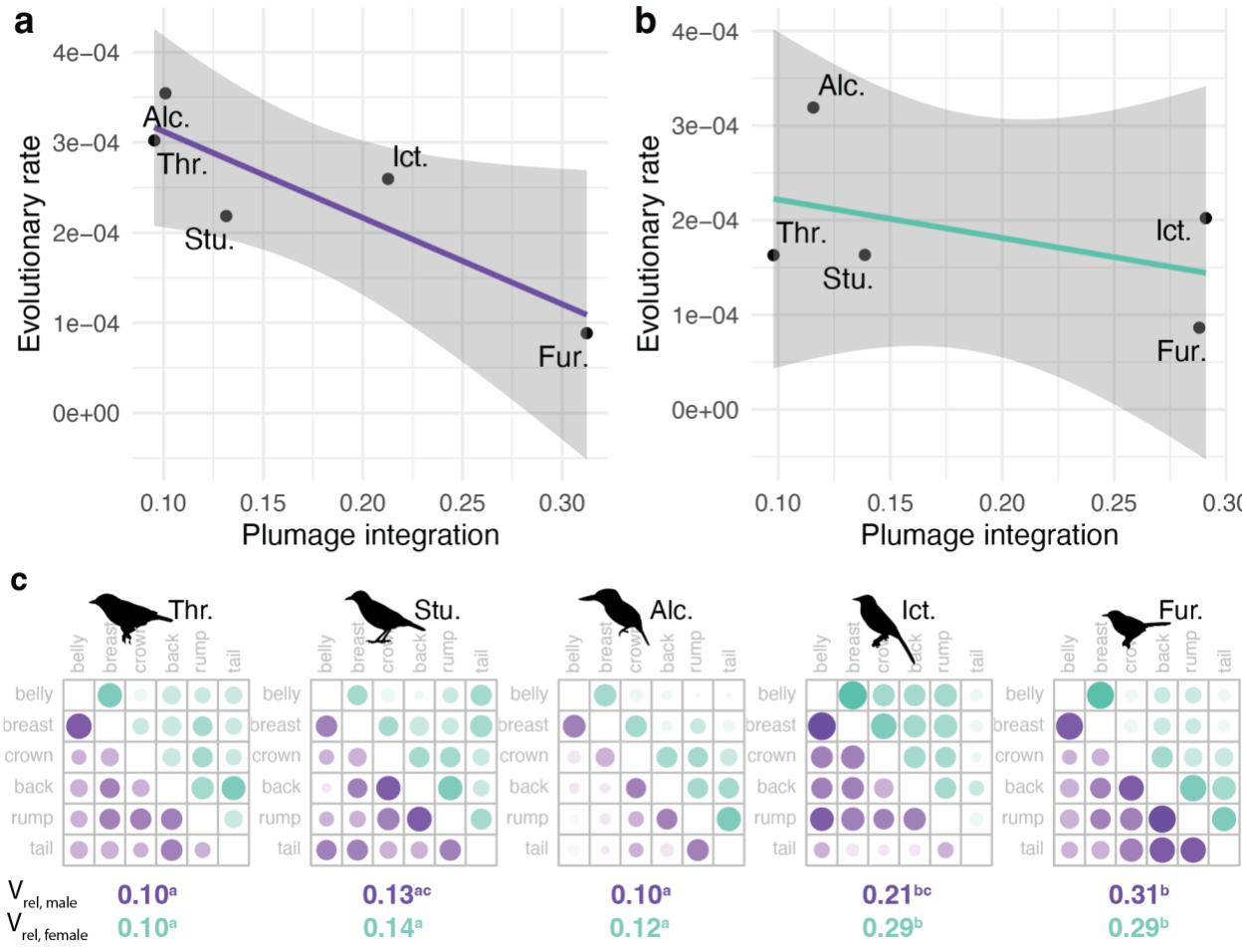

424

425 **Figures**

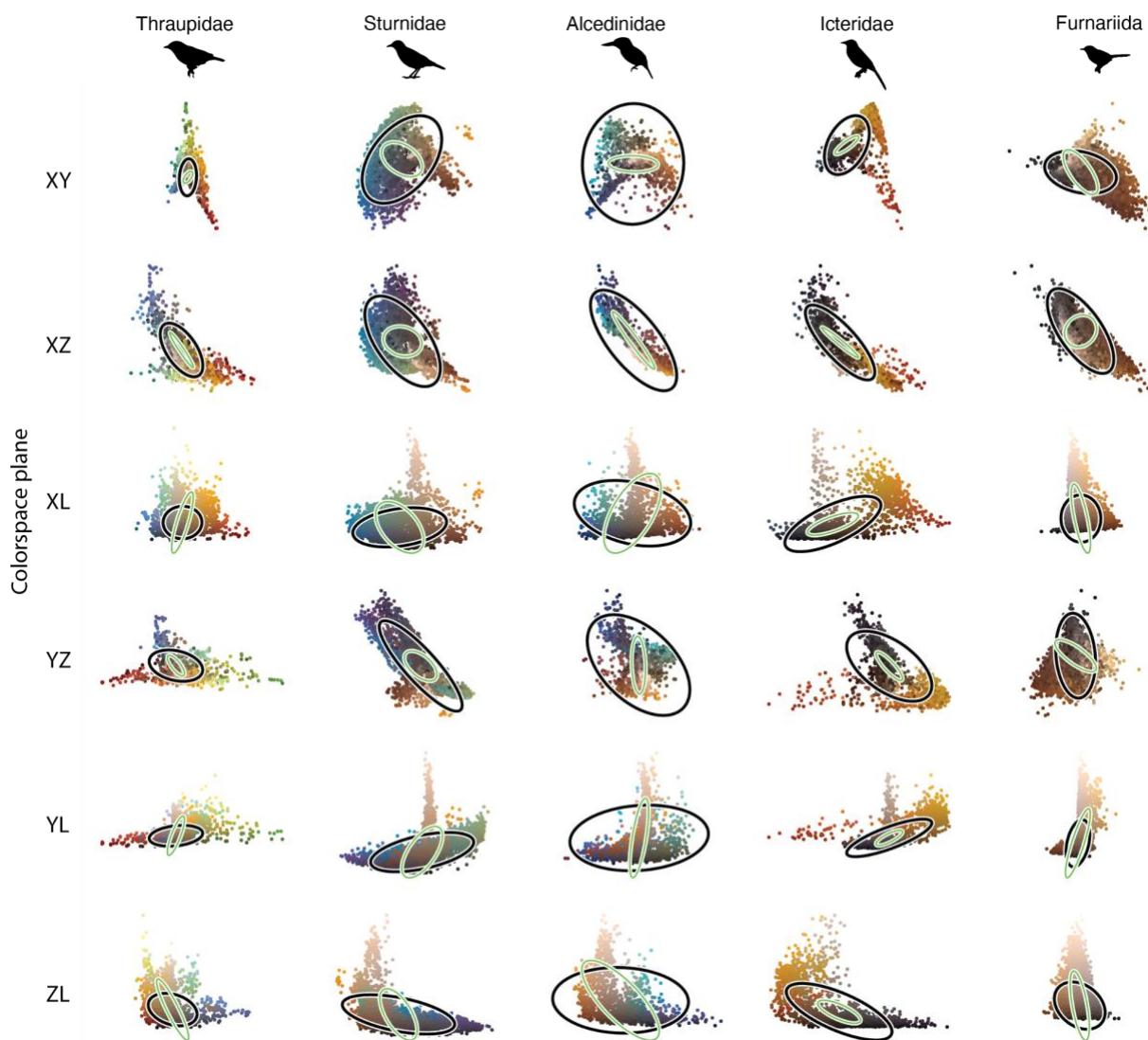



426

427 **Fig. 1. Ways that interpatch and interspecific color variation might differ.** Axes depict  
428 hypothetical variation in color axes hue (x) and lightness (y). Ellipses show orientation of primary  
429 axes of interspecific (solid; between species) and interpatch color variation (dashed lines;  
430 between patches - wing versus body). **a**, species diverge in lightness while patches vary in hue,  
431 suggesting decoupling between constraints operating at developmental and interspecific levels.  
432 **b**, species and patches vary along the same axis, suggesting constraints limiting what kinds of  
433 colors can be produced across the body are also operating at evolutionary scales. **c**, birds have  
434 complex colorful plumages but there is little variation among species, suggesting weak constraints  
435 at the plumage level but evolutionary constraints limiting color evolution. **d**, color is distributed  
436 mainly among species with little interpatch variation, suggesting strong constraints operating at  
437 the individual level but diversifying processes operating at evolutionary scales.




438  
439 **Fig. 2. Novelty in color space occupation among clades.** Tetrahedral color space plots for (a)  
440 Thraupidae, (b) Sturnidae, (c) Alcedinidae, (d) Icteridae, and (e) Furnariida. Gray points are all  
441 color space XY coordinates in the data set. Large points encircled in white depict novel colors in  
442 a clade. Lines delimit voxels dividing up color space (voxels are the 3-D equivalent of a 2-D pixel  
443 in an image). f, color space occupation determined by  $0.05 \times 0.05 \times 0.05$  voxels (i.e., grid cells  
444 shown in a - e) in tetrahedral color space. See legend for description of numbers in cells.  
445




446  
447  
448  
449  
450  
451  
452  
453

**Fig. 3. Evolutionary rate variation among clades and plumage patches.** (a) Phylogenetic tree for five focal clades. Bar plots show multivariate evolutionary rates of coloration (UV XYZ coordinates and luminance) (b) among clades and (c) among plumage patches for males (purple) and females (green). Similarly colored bars sharing similar letters are not significantly different ( $p > 0.05$ ). White circles indicate the relative rate difference between males and females. See Figs. S4, S5 for patch-wise rate analyses for each clade and sex.



**Fig. 4. Relationship between plumage integration and evolutionary rates.** Upper panels show relationship between plumage integration ( $V_{\text{rel}}$ ) and evolutionary rates for (a) males and (b) females. c, pairwise correlation plots for plumage patches (rows, columns) in each clade. Size of circles indicates strength of correlation between a given pair of patches. Color indicates males (purple) and females (green). Values below plots give the level of plumage integration ( $V_{\text{rel}}$ ) along with significance levels (numbers within a row sharing the same letter are not significantly different, FDR corrected P values). Differences between male and female plumage integration were not significant ( $V_{\text{rel}}$  effect size comparison,  $P > 0.05$ , Table S2).



465  
466

467 **Fig. 5. Directions of interpatch and interspecific color variation differ in males.** Plots of 4-D  
468 tetrahedral color space for different planes (rows) and avian clades (columns). Ellipses show the  
469 major axes of color variation among species (black) and among patches on a bird's body (green  
470 lines). Tetrahedral color space (TCS) coordinates were calculated using an ultraviolet-sensitive  
471 (UVS) visual system. Statistical analyses were also done using a violet-sensitive visual system  
472 (see Table S4). Note: axes were scaled by clade to aid in comparison of trends along a column.  
473 See Fig. S9 for results for female coloration.

474

## 475    **References**

- 476    1. Schlüter, D. Adaptive radiation along genetic lines of least resistance. *Evolution* **50**, 1766–  
477        1774 (1996).
- 478    2. Felice, R. N., Randau, M. & Goswami, A. A fly in a tube: Macroevolutionary expectations for  
479        integrated phenotypes. *Evolution* **72**, 2580–2594 (2018).
- 480    3. Guillerme, T., Cooper, N., Beckerman, A. P. & Thomas, G. H. Innovation and elaboration  
481        on the avian tree of life. *bioRxiv* 2022.08.12.503188 (2022)  
482        doi:10.1101/2022.08.12.503188.
- 483    4. Felice, R. N. & Goswami, A. Developmental origins of mosaic evolution in the avian  
484        cranium. *Proceedings of the National Academy of Sciences* **115**, 555–560 (2018).
- 485    5. Orkney, A., Bjarnason, A., Tronrud, B. C. & Benson, R. B. J. Patterns of skeletal integration  
486        in birds reveal that adaptation of element shapes enables coordinated evolution between  
487        anatomical modules. *Nat Ecol Evol* **5**, 1250–1258 (2021).
- 488    6. Fabre, A.-C. *et al.* Metamorphosis shapes cranial diversity and rate of evolution in  
489        salamanders. *Nat Ecol Evol* **4**, 1129–1140 (2020).
- 490    7. Young, N. M. & Hallgrímsson, B. Serial homology and the evolution of mammalian limb  
491        covariation structure. *Evolution* **59**, 2691–2704 (2005).
- 492    8. Martín-Serra, A. & Benson, R. B. J. Developmental constraints do not influence long-term  
493        phenotypic evolution of marsupial forelimbs as revealed by interspecific disparity and  
494        integration patterns. *Am. Nat.* **195**, (2020).
- 495    9. Rohner, P. T., Hu, Y. & Moczek, A. P. Developmental bias in the evolution and plasticity of  
496        beetle horn shape. *Proc. Biol. Sci.* **289**, 20221441 (2022).
- 497    10. Beldade, P., Koops, K. & Brakefield, P. M. Developmental constraints versus flexibility in  
498        morphological evolution. *Nature* **416**, 844–847 (2002).
- 499    11. Nordén, K. K. & Price, T. D. Historical Contingency and Developmental Constraints in Avian

500        Coloration. *Trends Ecol. Evol.* **33**, 574–576 (2018).

501        12. Ligon, R. A. *et al.* Evolution of correlated complexity in the radically different courtship

502        signals of birds-of-paradise. *PLoS Biol.* In press (2018).

503        13. Prum, R. O. Anatomy, physics, and evolution of structural colors. in *Bird Coloration, Vol. I*

504        (eds. McGraw, K. J. & Hill, G. E.) vol. 1 295–353 (Harvard Univ. Press, 2006).

505        14. McGraw, K. J. Mechanics of melanin-based coloration: mechanisms and measurements. in

506        *Bird Coloration, vol. 1* (eds. Hill, G. E. & McGraw, K. J.) 243–294 (Harvard University Press.

507        Cambridge, Massachusetts, 2006).

508        15. McGraw, K. J. Mechanics of carotenoid-based coloration. in *Bird Coloration, vol. 1* (eds.

509        McGraw, K. J. & Hill, G. E.) 177–242 (Harvard University Press, 2006).

510        16. Stoddard, M. C. & Prum, R. O. How colorful are birds? Evolution of the avian plumage color

511        gamut. *Behav. Ecol.* **22**, 1042–1052 (2011).

512        17. Shultz, A. J. & Burns, K. J. Plumage evolution in relation to light environment in a novel

513        clade of Neotropical tanagers. *Mol. Phylogenet. Evol.* **66**, 112–125 (2013).

514        18. Marchetti, K. Dark habitats and bright birds illustrate the role of the environment in species

515        divergence. *Nature* **362**, (1993).

516        19. Maia, R., Rubenstein, D. R. & Shawkey, M. D. Selection, constraints and the evolution of

517        coloration in African starlings. *Evolution* **70**, 1064–1079 (2016).

518        20. Eliason, C. M., Andersen, M. J. & Hackett, S. J. Using Historical Biogeography Models to

519        Study Color Pattern Evolution. *Syst. Biol.* **68**, 755–766 (2019).

520        21. Prum, R. O. & Dyck, J. A hierarchical model of plumage: morphology, development, and

521        evolution. *J. Exp. Zool. B Mol. Dev. Evol.* **298**, 73–90 (2003).

522        22. Hidalgo, M. *et al.* A conserved molecular template underlies color pattern diversity in

523        estrildid finches. *Sci Adv* **8**, eabm5800 (2022).

524        23. Poelstra, J. W., Vijay, N., Hoeppner, M. P. & Wolf, J. B. W. Transcriptomics of colour

525        patterning and coloration shifts in crows. *Mol. Ecol.* **24**, 4617–4628 (2015).

526 24. Wu, P. *et al.* Topographical mapping of  $\alpha$ - and  $\beta$ -keratins on developing chicken skin  
527 integuments: Functional interaction and evolutionary perspectives. *Proc. Natl. Acad. Sci.*  
528 **112**, E6770–E6779 (2015).

529 25. Bannasch, D. L. *et al.* Dog colour patterns explained by modular promoters of ancient canid  
530 origin. *Nat Ecol Evol* **5**, 1415–1423 (2021).

531 26. Merwin, J. T., Seeholzer, G. F. & Smith, B. T. Macroevolutionary bursts and constraints  
532 generate a rainbow in a clade of tropical birds. *BMC Evol. Biol.* **20**, 32 (2020).

533 27. Sly, N. D. The Genetic Mechanisms Underlying Pigmentation and Their Evolutionary  
534 Importance in Birds. (2019).

535 28. Maia, R., Rubenstein, D. R. & Shawkey, M. D. Key ornamental innovations facilitate  
536 diversification in an avian radiation. *Proc. Natl. Acad. Sci.* **110**, 10687–10692 (2013).

537 29. Eliason, C. M., Maia, R. & Shawkey, M. D. Modular color evolution facilitated by a complex  
538 nanostructure in birds. *Evolution* **69**, 357–367 (2015).

539 30. Eliason, C. M., Maia, R., Parra, J. L. & Shawkey, M. D. Signal evolution and morphological  
540 complexity in hummingbirds (Aves: Trochilidae). *Evolution* (2020).

541 31. Nosil, P., Harmon, L. J. & Seehausen, O. Ecological explanations for (incomplete)  
542 speciation. *Trends Ecol. Evol.* **24**, 145–156 (2009).

543 32. Eliason, C. M., McCullough, J. M., Hackett, S. J. & Andersen, M. J. Complex plumages  
544 spur rapid color diversification in kingfishers (Aves: Alcedinidae). *Elife* **12**, (2023).

545 33. Billerman, S. M., Keeney, B. K., Rodewald, P. G. & Schulenberg, T. S. *Birds of the World*.  
546 (Cornell Laboratory of Ornithology, 2022).

547 34. Stoddard, M. C. & Prum, R. O. Evolution of Avian Plumage Color in a Tetrahedral Color  
548 Space: A Phylogenetic Analysis of New World Buntings. *Am. Nat.* **171**, 755–776 (2008).

549 35. Maia, R., Eliason, C. M., Bitton, P.-P., Doucet, S. M. & Shawkey, M. D. *pavo*: an R package  
550 for the analysis, visualization and organization of spectral data. *Methods Ecol. Evol.* **4**, 906–  
551 913 (2013).

552 36. Auber, L. The structures producing 'non-iridescent' blue colour in bird feathers. *Proc. Zool.*  
553 *Soc. Lond.* **129**, 455–486 (1957).

554 37. Durrer. Schillerfarben der stare (Sturnidae). *J. Ornithol.* **111**, 133–153 (1970).

555 38. Denton, J. S. S. & Adams, D. C. A new phylogenetic test for comparing multiple high-  
556 dimensional evolutionary rates suggests interplay of evolutionary rates and modularity in  
557 lanternfishes (Myctophiformes; Myctophidae). *Evolution* **69**, 2425–2440 (2015).

558 39. Eliason, C. M., Proffitt, J. V. & Clarke, J. A. Early diversification of avian limb morphology  
559 and the role of modularity in the locomotor evolution of crown birds. *Evolution* **77**, 342–354  
560 (2023).

561 40. Sidlauskas, B. Continuous and arrested morphological diversification in sister clades of  
562 characiform fishes: a phylomorphospace approach. *Evolution* **62**, 3135–3156 (2008).

563 41. Lucas, T. & Goswami, A. Paleomorph: geometric morphometric tools for paleobiology. *R*  
564 *package version 0.1*.

565 42. Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative  
566 biology: phylogenies, taxonomies and multi-trait models for continuous and categorical  
567 characters. *J. Evol. Biol.* **23**, 494–508 (2010).

568 43. Stavenga, D. G., Tinbergen, J., Leertouwer, H. L. & Wilts, B. D. Kingfisher feathers -  
569 colouration by pigments, spongy nanostructures and thin films. *J. Exp. Biol.* **214**, 3960–  
570 3967 (2011).

571 44. Terrill, R. S. & Shultz, A. J. Feather function and the evolution of birds. *Biol. Rev. Camb.*  
572 *Philos. Soc.* **98**, 540–566 (2023).

573 45. McGraw, K. J., Wakamatsu, K., Clark, A. B. & Yasukawa, K. Red-winged blackbirds  
574 *Agelaius phoeniceus* use carotenoid and melanin pigments to color their epaulets. *J. Avian*  
575 *Biol.* **35**, 543–550 (2004).

576 46. McCoy, D. E. *et al.* Microstructures amplify carotenoid plumage signals in tanagers. *Sci.*  
577 *Rep.* **11**, 8582 (2021).

578 47. Noh, H. *et al.* How Noniridescent Colors Are Generated by Quasi-ordered Structures of Bird  
579 Feathers. *Adv. Mater.* **22**, 2871–2880 (2010).

580 48. Andersson, S. & Prager, M. Quantifying colors. in (eds. Hill, G. E. & Mcgraw, K. J.) vol. 1  
581 41–89 (Bird coloration, 2006).

582 49. West-Eberhard, M. J. Sexual selection, social competition, and speciation. *Q. Rev. Biol.* **58**,  
583 155–183 (1983).

584 50. Dale, J., Dey, C. J., Delhey, K., Kempenaers, B. & Valcu, M. The effects of life history and  
585 sexual selection on male and female plumage colouration. *Nature* **527**, 367–370 (2015).

586 51. Marcondes, R. S. & Brumfield, R. T. Fifty shades of brown: Macroevolution of plumage  
587 brightness in the Furnariida, a large clade of drab Neotropical passerines. *Evolution* **73**,  
588 704–719 (2019).

589 52. Shultz, A. J. & Burns, K. J. The role of sexual and natural selection in shaping patterns of  
590 sexual dichromatism in the largest family of songbirds (Aves: Thraupidae). *Evolution* **71**,  
591 1061–1074 (2017).

592 53. Dunn, P. O., Armenta, J. K. & Whittingham, L. A. Natural and sexual selection act on  
593 different axes of variation in avian plumage color. *Science Advances* **1**, e1400155–  
594 e1400155 (2015).

595 54. Cooney, C. R. *et al.* Sexual selection predicts the rate and direction of colour divergence in  
596 a large avian radiation. *Nat. Commun.* **10**, 1773 (12/2019).

597 55. Price-Waldman, R. M., Shultz, A. J. & Burns, K. J. Speciation rates are correlated with  
598 changes in plumage color complexity in the largest family of songbirds. *Evolution* **74**, 1155–  
599 1169 (2020).

600 56. Woodall, P. F. Family Acedinidae (Kingfishers). in *Handbook of the Birds of the World Alive*  
601 (eds. del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & de Juana, E.) (Lynx Edicions,  
602 2016).

603 57. Morris, D. The Feather Postures of Birds and the Problem of the Origin of Social Signals.

604        *Behaviour* **9**, 75–111 (1956).

605        58. Endler, J. A. & Thery, M. Interacting Effects of Lek Placement, Display Behavior, Ambient  
606        Light, and Color Patterns in Three Neotropical Forest-Dwelling Birds. *Am. Nat.* **148**, 421–  
607        452 (1996).

608        59. Price, T. D. & Pavelka, M. Evolution of a colour pattern: history, development, and  
609        selection. *J. Evol. Biol.* **9**, 451–470 (1996).

610        60. Dickinson, E. *et al.* Tail feather strength in tail-assisted climbing birds is achieved through  
611        geometric, not material change. *Proc. Biol. Sci.* **290**, 20222325 (2023).

612        61. Burtt, E. H. An analysis of physical, physiological, and optical aspects of avian coloration  
613        with emphasis on wood-warblers. *Ornithol. Monogr.* (1986).

614        62. Bonser, R. H. C. Melanin and the abrasion resistance of feathers. *Condor* **97**, 590–591  
615        (1995).

616        63. Robinson, M. R. & Beckerman, A. P. Quantifying multivariate plasticity: genetic variation in  
617        resource acquisition drives plasticity in resource allocation to components of life history.  
618        *Ecol. Lett.* **16**, 281–290 (2013).

619        64. Cooney, C. R. *et al.* Mega-evolutionary dynamics of the adaptive radiation of birds. *Nature*  
620        **542**, 344–347 (2017).

621        65. Durrer, H. Schillerfarben der vogelfeder als evolutionsproblem. *Denkschr. Schweiz.*  
622        *nat.forsch. Ges.* **91**, 1–127 (1977).

623        66. Cooney, C. R. *et al.* Latitudinal gradients in avian colourfulness. *Nat Ecol Evol* **6**, 622–629  
624        (2022).

625        67. Bergeron, Z. T. & Fuller, R. C. Using human vision to detect variation in avian coloration:  
626        how bad is it. *Am. Nat.* **191**, 269–276 (2018).

627        68. Powell, A. F. L. A. *et al.* A comprehensive species-level molecular phylogeny of the New  
628        World blackbirds (Icteridae). *Mol. Phylogenet. Evol.* **71**, 94–112 (2014).

629        69. Burns, K. J. *et al.* Phylogenetics and diversification of tanagers (Passeriformes:

630 Thraupidae), the largest radiation of Neotropical songbirds. *Mol. Phylogenet. Evol.* **75**, 41–  
631 77 (2014).

632 70. Andersen, M. J., McCullough, J. M., Mauck, I. W. M., Smith, B. T. & Moyle, R. G. A  
633 phylogeny of kingfishers reveals an Indomalayan origin and elevated rates of diversification  
634 on oceanic islands. *J. Biogeogr.* **45**, 269–281 (2018).

635 71. Harvey, M. G. *et al.* The evolution of a tropical biodiversity hotspot. *Science* **370**, 1343–  
636 1348 (2020).

637 72. Paradis, E. *Analysis of Phylogenetics and Evolution with R*. (Springer Science & Business  
638 Media, 2012).

639 73. Clavel, J., Escarguel, G. & Merceron, G. mvMORPH: an rpackage for fitting multivariate  
640 evolutionary models to morphometric data. *Methods Ecol. Evol.* **6**, 1311–1319 (2015).

641 74. Adams, D. C. & Otárola-Castillo, E. geomorph: an r package for the collection and analysis  
642 of geometric morphometric shape data. *Methods Ecol. Evol.* **4**, 393–399 (2013).

643 75. Adams, D. C. Comparing evolutionary rates for different phenotypic traits on a phylogeny  
644 using likelihood. *Syst. Biol.* **62**, 181–192 (2013).

645 76. Conaway, M. A. & Adams, D. C. An effect size for comparing the strength of morphological  
646 integration across studies. *Evolution* **76**, 2244–2259 (2022).

647 77. Garamszegi, L. Z. *Modern Phylogenetic Comparative Methods and Their Application in  
648 Evolutionary Biology*. (Springer, 2014).

649 78. Thomas, D. B. *et al.* Ancient origins and multiple appearances of carotenoid-pigmented  
650 feathers in birds. *Proceedings of the Royal Society Of London Series B-Biological Sciences*  
651 **281**, 20140806–20140806 (2014).

652 79. Shawkey, M. D., Hauber, M. E., Estep, L. K. & Hill, G. E. Evolutionary transitions and  
653 mechanisms of matte and iridescent plumage coloration in grackles and allies (Icteridae). *J.  
654 R. Soc. Interface* **3**, 777–786 (2006).

655 80. Hart, N. S., Partridge, J. C., Bennett, A. T. D. & Cuthill, I. C. Visual pigments, cone oil

656 droplets and ocular media in four species of estrildid finch. *J. Comp. Physiol. A* **186**, 681–  
657 694 (2000).

658

