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ABSTRACT 

Positron emission tomography (PET) provides precise molecular information on physiological 

processes, but its low temporal resolution is a major obstacle. Consequently, we characterized 

the metabolic response of the human brain to working memory performance using an 

optimized functional PET framework at a temporal resolution of 3 seconds. Consistent with 

simulated kinetic modeling, we observed a constant increase in the [18F]FDG signal during task 

execution, followed by a rapid return to baseline after stimulation ceased. The simultaneous 

acquisition of BOLD fMRI revealed that the temporal coupling between hemodynamic and 

metabolic signals in the primary motor cortex was related to individual behavioral performance 

during working memory. Furthermore, task-induced BOLD deactivations in the posteromedial 

default mode network were accompanied by distinct temporal patterns in glucose metabolism, 

which depended on the task-positive network metabolic demands. In sum, the proposed 

approach enables the advancement from parallel to truly synchronized investigation of 

metabolic and hemodynamic responses during cognitive processing. 
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INTRODUCTION 

The human brain has the ability to process a vast amount of information at incredibly high 

temporal scales, largely defined by the underlying neuronal architecture (1-3). Therefore, 

characterizing these biological processes at a high temporal resolution is key to strengthen our 

understanding of brain function. However, current non-invasive approaches are often limited 

in either their temporal or spatial domain (4, 5). In the worst case scenario, measurement 

parameters can only be obtained after the actual stimulation and the corresponding neuronal 

activity have ceased (6). 

 

One of the most commonly used techniques is electroencephalography (EEG), which provides 

the highest temporal resolution in the millisecond range. However, EEG has limited spatial 

resolution, which is why blood-oxygen level dependent (BOLD) fMRI often represents the 

method of choice to assess human brain function in vivo with a good compromise between 

temporal (seconds) and spatial resolution (mm). As a drawback, the BOLD signal can only be 

indirectly related to neuronal activation (7) since it reflects a composite of blood flow, volume 

and oxygenation (6). In contrast, positron emission tomography (PET) has a spatial resolution 

comparable to that of fMRI and provides unmatched molecular sensitivity and specificity. 

However, standard PET imaging is often limited to snapshots of the underlying molecular 

processes in the range of minutes to hours. 

 

The recent introduction of functional PET (fPET) imaging offers a solution to this problem 

through the constant administration of the radioligand and repeated stimulation, similar to fMRI 

designs (8, 9). By using the radiolabeled glucose analogue [18F]FDG, it enables the acquisition 

of baseline metabolism and task-specific changes in a single PET scan. Previous work with 

simultaneous assessment of fPET and fMRI has characterized the spatial agreement as well 

as unexpected differences between stimulation-induced changes in BOLD contrast and 

glucose metabolism by either acknowledging the different timescales of the signals (10) or by 

using a hierarchical design (11, 12). Although the temporal resolution of single fPET time 
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frames has been improved from minutes to 16 s (13) or even 6-12 s (14), this still impedes a 

direct comparison between BOLD and metabolic signals. 

 

To overcome these issues we combined multiple recent advances in PET imaging. These 

include i) fPET with a bolus plus constant infusion protocol to increase the signal-to-noise ratio 

(SNR) of the metabolic signal (14). ii) A novel dynamic filtering technique (15) with a sliding 

window was implemented, which enhances task-specific effects and enables reconstruction of 

high-temporal resolution fPET frames. iii) Finally, a truly synchronized acquisition of [18F]FDG 

fPET and BOLD fMRI data was employed during an established working memory paradigm. 

Notably, these developments are readily applicable to conventional PET scanner systems, 

thus enabling a widespread implementation without specific or costly hardware requirements. 

As a secondary aim, we evaluated the performance of a new-generation PET/CT scanner with 

time-of-flight imaging compared to an older, more widely available scanner in the context of 

fPET imaging. 
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RESULTS 

[18F]FDG fPET and BOLD fMRI data were acquired from 35 healthy participants during 

performance of the established n-back working memory task (16). Of those, 19 underwent 

simultaneous PET/MRI. Data of the remaining participants were acquired with a new-

generation PET/CT scanner and a separate MRI system. fPET data was reconstructed at three 

different temporal resolutions (3, 6 and 12 s) to investigate the complementary nature between 

BOLD signal and glucose metabolism at different levels. First, brain regions with consistent 

task-specific increases between the two modalities were identified. Moving to the temporal 

domain, the time course of each modality was then analyzed to assess the feasibility of high-

temporal resolution fPET. This was complemented by simulations of task-induced changes of 

the [18F]FDG signal across a range of variations in rate constants. Next, the individual 

association between hemodynamic and metabolic signals was investigated and related to 

working memory task performance in the simultaneous PET/MRI sample. Finally, we assessed 

the value of time domain analyses with respect to a recent spatial dissociation between the 

BOLD signal and metabolic demands in the posteromedial default mode network (12) as well 

as the corresponding influence of task-positive networks (17). 

 

Spatial domain 

Statistical conjunction analysis was used to assess whether working memory performance 

induces similar spatial activations between metabolic and BOLD signal changes. Increases 

across both signals were observed in the right dorsolateral prefrontal cortex, the left primary 

motor cortex as well as the intraparietal sulcus and anterior insula bilaterally during the 2-back 

condition (p<0.05 FWE corrected). This activation pattern was robust for all temporal 

resolutions of 3, 6 and 12 s with Dice coefficients between 0.71 and 0.78 (Fig 1). Across these 

regions the average increase was Ki = 0.011 ± 0.005 ml/cm3/min and CMRGlu = 6.74 ± 2.78 

µmol/100g/min, which corresponds to a change of 27.15 ± 9.91 %. 
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Temporal domain 

The time courses of the [18F]FDG metabolic and BOLD hemodynamic signals were then 

extracted from significant brain regions (Fig 1, p<0.05 FWE corrected voxel level) and 

averaged across all 2-back task blocks and participants. As expected, the BOLD signal 

changes exhibited a slightly delayed plateau with respect to task performance (Fig 2a). The 

high-temporal resolution [18F]FDG signal showed a continuous increase during task execution 

due to the irreversible binding of the radioligand. Interestingly, also the metabolic signal 

returned to baseline within 10 s, which was most visible for the 3 s reconstruction (Fig 2b). 

Therefore, the highest temporal resolution was used for all subsequent computations, further 

enabling direct comparison with the BOLD signal. Additional simulations were carried out to 

assess the temporal dynamics of brain metabolism in response to task-induced changes in the 

corresponding rate constants of the two-tissue compartment model. The simulated time 

courses showed a remarkable match with the observed task response (Fig 2c). Specifically, 

simulations yielded a linear increase of the signal, which returned to baseline after stimulation 

ceased. The simulation results were robust across a physiologically plausible range of different 

kinetics, which included changes in Ki of 12, 22 and 33%, elicited by variation of K1, k2 and k3 

between 5 and 15% (Fig 2d). The different simulations only changed the amplitude of the time 

course, but not the overall shape. This was also the case when using rate constants from 

previous work (8). 

 

Next, we investigated the individual association between metabolic and hemodynamic signals 

and their relationship with task performance for the sample that underwent truly simultaneous 

PET/MR imaging (n=17). Across all task regions, we observed a moderate agreement between 

both modalities (|r| = 0.31 ± 0.19). Moreover, the association of BOLD and metabolic signals 

in the left primary motor cortex correlated with the reaction time of correct 2-back button 

presses, except for one outlier whose reaction time was more than 3 standard deviations 

higher than the group average (rho = -0.69, p = 0.02 corrected, time window = -12 to +36 s 

with respect to task performance, Fig. 3d). The correlation with task performance was 
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independent of the time windows (-12 to +24 s, -6 to +12 s and -6 to +6 s) used for the 

multimodal signal correlations with rho = -0.68…-0.65 (p = 0.024…0.043 corrected). The 

corresponding time series are exemplarily shown in figure 3a-c, indicating a similar temporal 

profile of the metabolic and BOLD signals with individual delays. Importantly, the association 

between the two signals was not driven by motion artifacts (rho = -0.15, p = 0.57). 

 

Finally, we investigated the temporal domain in relation to previous findings of a spatial 

dissociation between BOLD changes and glucose metabolism in the posteromedial default 

mode network (DMN) during working memory (12). Consistent with those findings we observed 

a negative BOLD response in the posterior cingulate cortex (PCC) during the 2-back working 

memory execution. However, no change in metabolic demands was found when averaged 

across the entire sample (Fig. 4b, p<0.05 FWE-corrected cluster level following p<0.001 

uncorrected voxel level). This dissociation was also evident when using the PCC as region of 

interest (BOLD beta = -0.93 ± 0.29, p < 10-17; Ki = 0.0006 ± 0.0072 ml/cm3/min, p=0.6). 

Given the corresponding metabolic influence of frontoparietal (FPN) and dorsal attention 

networks (DAN) on the PCC (17), participants were split into quartiles according to the 

difference in task-specific Ki between the FPN and DAN (Fig. 4a). This resulted in three distinct 

groups with the metabolism of FPN < DAN (low, 25% of participants), FPN = DAN (balanced, 

50%) and FPN > DAN (high, 25%). Evaluating the temporal profile of the PCC between these 

groups revealed an interaction effect (p = 0.0016, Fig. 4c), with significant post-hoc differences 

between high vs. low participants (p < 10-5) and low vs. balanced (p = 0.025). In detail, the low 

group (i.e., with lower metabolism in FPN than DAN) was characterized by a constant decrease 

in PCC metabolism during task execution, followed by an increase afterwards. In contrast, the 

high group only exhibited a delayed increase in the metabolic signal, whereas the balanced 

group showed almost no variation in their metabolic response. Again, the temporal difference 

in the metabolic profile between the three groups was consistent across all time windows (p = 

0.0005…0.040). However, the BOLD time series of the PCC showed robust decreases for all 

three groups, without any significant difference (Fig. 4d, group-by-time interaction p = 0.9). 
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Comparison of PET systems 

In the temporal domain, there was no significant difference in the ability to identify task-specific 

changes in glucose metabolism between the scanners (PET/MR t = 3.13±0.98, PET/CT t = 

3.71±1.49, p=0.17). Similarly, Ki percent signal change of regions involved in the task (Fig. 1a, 

p<0.05 FWE-corrected voxel level) was not significantly different between the scanners 

(PET/MR = 29.79±10.22 %, PET/CT = 25.54 ± 10.87%, p=0.24). 
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DISCUSSION 

In this work we employed high temporal resolution fPET with 3 s to investigate the dynamics 

of glucose metabolism during working memory performance. The metabolic response of the 

[18F]FDG signal was characterized by a constant increase during task execution and followed 

by a rapid return to baseline, which was consistent with simulations. Using fully synchronized 

fPET/fMRI we further demonstrate the feasibility to assess the individual coupling of the 

hemodynamic and metabolic response, whose effect in the primary motor cortex was related 

to working memory reaction time. Finally, analysis of PCC signals revealed that only specific 

subgroups exhibited decreased metabolism during the task while others showed an increased 

response, which was dependent on the corresponding task-positive metabolic demands. 

Together, these findings highlight the value of assessing brain energy metabolism in the 

temporal domain, which provides unique information not accessible to conventional PET 

imaging. 

 

Regardless of the reconstructed frame length (3, 6 and 12 s), we observed spatially robust 

activations induced by working memory performance which were in line with a meta-analysis 

of BOLD signal changes (16). Moreover, the average increase in glucose metabolism was 

consistent with previous work using lower, more typical, temporal resolutions of 30 to 60 s, 

both in terms of absolute units of Ki and CMRGlu as well as percent signal changes (9, 10). 

This indicates that the lower SNR inherent to shorter time frames is compensated by the 

increased number of data points for the general linear model estimation, with the additional 

benefit to investigate fast metabolic changes. Altogether, these observations provide 

confidence for the validity to quantify task-induced changes in glucose metabolism at a high 

temporal resolution of 3 s. Compared to our previous work (14), this is now possible through 

further improvement in the protocol, specifically the combination of tracer administration as 

bolus + constant infusion and the novel implementation of the dynamic filter. In contrast, the 

use of constant infusion only (i.e., without an initial bolus) (9, 12, 13) does not seem to provide 

sufficient SNR to reconstruct data with such a high temporal resolution (see e.g., figure 2B in 
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(18)). Regarding the different PET systems, the new-generation PET/CT scanner with time-of-

flight imaging showed similar performance compared to the PET/MR. This may be related to 

the similar sensitivity of the two systems (16.4 kcps/MBq (19) and 15.0 kcps/MBq (20), 

respectively) and the fact that the benefit of time-of-flight is less pronounced for smaller 

volumes such as the head (21), which improved the spatial SNR but had little to no effect on 

the temporal resolution. 

 

Our improved protocol allowed us to depict the corresponding time course of the activated 

brain regions in unprecedented detail. This was characterized by fast changes during cognitive 

performance, namely an expected constant increase in the [18F]FDG signal during the task but 

also a rapid return to baseline within 10 s once stimulation ceased. These fast metabolic 

changes are supported by animal studies. Specifically, almost immediate differences in 

extracellular availability of ATP (22) and glucose (23, 24) upon neuronal activation have been 

reported across different animals and approaches. Although these methods differ with respect 

to the return to baseline, two of these studies also matched our work in this respect with 12 ± 

3 s (24) and a range between 10-100 s (22). As these differences are likely related to the 

specific approach and species, the exact metabolic response obtained with [18F]FDG as well 

as its variation across participants and paradigms need to be determined in future studies. 

Nevertheless, the time course of the task-induced metabolic signal was supported by previous 

(25) and our own simulations. In contrast to other work simulating slow metabolic changes due 

to variation of k3 only (8, 12), we employed a complete simulation of the irreversible two-tissue 

compartment model with changes in all three relevant rate constants. In particular, the variation 

of K1 is feasible as this parameter is closely related to cerebral blood flow (CBF). CBF in turn 

is well known to change with neuronal activation and also represents a major driver of the 

BOLD signal (26, 27). Furthermore, glucose as well as [18F]FDG are subject to transport across 

the blood brain barrier (BBB) that is facilitated by the glucose transporter 1 (GLUT1) carrier 

protein. In this transport system, however, influx from blood plasma to the brain (K1) will occupy 

the carrier protein and thus block its availability for the reverse transport (k2), i.e., influx and 
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efflux rate constants are inversely related and affect each other (28-31). Although k3 most 

closely resembles hexokinase activity and the first step in glycolysis, glucose transport across 

the BBB reflected by K1 and k2 represents an essential (but often neglected) aspect to meet 

increased metabolic demands of neuronal activation (32-34). Furthermore, all three rate 

constants contribute to the [18F]FDG signal and the final quantified CMRGlu by definition, thus, 

supporting their combined variation in the model (25) and the resulting temporal profile of 

glucose metabolism. 

 

The coupling between the BOLD signal and CMRGlu has previously been shown to increase 

during task execution at the spatial level (10). The current work extends this finding to the time 

domain, where stronger temporal coupling between metabolic and BOLD time series was 

associated with faster working memory performance. Both of these signals are related to 

neuronal activity via different yet intertwined mechanisms (33). The BOLD contrast results from 

disproportional increases in oxygen consumption (CMRO2) and CBF (26, 27). The rise in CBF 

is related to glutamate release during neuronal activation (35, 36) to maintain the supply of 

nutrients, termed neurovascular coupling. On the other hand, neurometabolic coupling links 

glutamate release to an increase in glucose consumption to meet the energy demands for the 

reversal of ion gradients (37-39). These changes in CBF, CMRO2, CMRGlu and thus also the 

neurovascular and the neurometabolic responses have previously been considered as parallel 

processes driven by neuronal activation, instead of being a serial connection of events (24, 

40). This may explain the observed delay between metabolic and BOLD signals in the primary 

motor cortex, which varied across participants. We therefore put forward the hypothesis that 

the individual differences in the coupling between BOLD and [18F]FDG signals potentially 

informs us about the integration of the metabolic and hemodynamic interplay in neuronal 

processing. Possible underlying reasons for these differences could be inter-individual 

differences in the hemodynamic response (41) as well as regional variability in the 

neurovascular unit (42, 43) and BBB glucose transport (44), which probably further translates 

to individual differences across participants and may also be present in a similar fashion for 
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neurometabolic coupling. On the other hand, dissociation between the signals may provide 

promising information about alterations in different brain disorders. For instance, in healthy 

aging increased BOLD-derived activations were not matched by glucose metabolism (45). 

Moreover, patients with Alzheimer’s disease suffer from both impaired neurovascular coupling 

(46) and widespread decreased metabolism (47). 

 

Our analysis in the temporal domain also provides further insight into the divergence between 

glucose metabolism and BOLD deactivations in the PCC (12). In line with our previous work in 

the spatial domain (17), we observed that the metabolic time course is dependent on energy 

demands of the corresponding task-positive networks involved in the cognitive process. More 

specifically, individuals with lower CMRGlu in FPN than DAN exhibited consistent negative 

deflections in both metabolic and BOLD time series. In contrast, higher CMRGlu in FPN than 

DAN did not lead to relevant changes in the metabolic signal during working memory. Since 

BOLD signal decreases without affecting metabolism seem unlikely (39), we speculate that 

metabolically expensive suppression (12, 17) and downregulation of neuronal signaling 

(presumably mediated by GABA and glutamate, respectively) (17) occur simultaneously, thus 

resulting in BOLD deactivations but a net metabolism change around zero. Interestingly, right 

after task execution both groups showed an increase in glucose metabolism. This may indicate 

that the actual return of the BOLD signal to baseline also requires energy. The effect may 

potentially be related to increased glutamate signaling, which leads to increases in both 

glucose metabolism and the BOLD signal (see above). 

Since the BOLD signal in the PCC showed a negative response throughout, we assume that 

the ratio between CBF and CMRO2 is also similar for all participants. As a consequence, the 

variation of glucose metabolism across individuals and time further implies that also the 

oxygen-to-glucose index (OGI) differs in the same manner. In particular, those individuals 

without a decreased metabolic response (and thus higher CMRGlu in FPN than DAN) would 

exhibit a decreased OGI in the PCC during task performance, indicating that energy is supplied 

by aerobic glycolysis (48). This is supported by recent work suggesting that immediate energy 
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demands are preferably met by aerobic glycolysis (49). However, to verify our hypothesis 

acquisition of the actual CMRO2 time series is required to fully understand the mechanisms of 

neurometabolic coupling (40). 

 

In conclusion, being the first study that employs such a high temporal resolution of fPET data, 

our work does not claim to provide definitive answers to the observed phenomena. Rather, the 

approach aims to spark future discussions on the relationship between hemodynamic and 

metabolic signals of the human brain. Further effort is required to identify the underlying 

mechanisms of the coupling, particularly when the signals diverge, the delay between BOLD 

and metabolic time series as well as potential dissociations in brain disorders. Nevertheless, 

the direct comparison of these signals in the temporal domain offers numerous possibilities to 

investigate these aspects in health and disease, thereby introducing a previously unseen 

perspective to our understanding of brain function. 
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METHODS 

Data acquisition, blood sampling, quantification of CMRGlu (10, 14, 50) and estimation of 

BOLD signal changes (51) were conducted analogous to our previous work, unless otherwise 

specified. 

 

Experimental design 

In this cross-sectional study participants underwent either a simultaneous fPET/fMRI (n=19) 

or separate fPET and fMRI scans (n=16, 5.2 ± 5.8 days between scans) with the radiotracer 

[18F]FDG. During each of the scans an established working memory task was completed in a 

conventional block design. fPET started with an initial resting period of 8 min, which was 

followed by 12 min of task performance. The initial baseline was omitted for the MRI-only scan, 

but the task was otherwise identical. MRI acquisitions included a T1-weighted structural image 

and a BOLD sequence. 

 

Cognitive task 

The established n-back working memory task (16) was implemented in Psychtoolbox for 

Matlab. In this task letters were presented on a screen for 0.5 s, followed by an interstimulus 

interval of 1.9 s. In the 0-back control condition, a button press was required when the letter 

“X” appeared on the screen. For the 2-back condition, a button press was required when the 

current letter was the same as the one shown two letters before. Before each task block the 

corresponding instructions were shown for 2 s. The two conditions were shown in blocks of 36 

s, each comprising 15 stimuli and 5 button presses (pseudo-randomized order). Resting 

periods were included at the beginning of the task (14 s), after each instruction (2 s) and after 

each task block (32 s). For each condition 5 blocks were presented in pseudo-randomized 

order, resulting in a total task duration of 12 min. The letters used in the task were 

phonologically similar in the German alphabet to avoid learning strategies (52, 53). Small as 

well as capital letters were used equally (b, c, d, g, p, t, w). During all periods of rest, 

participants were instructed to look at a crosshair, relax and not to focus on anything in 
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particular. Before data acquisition, participants completed a training session of each task 

condition inside the scanner to familiarize themselves with the task and the controls. 

 

Participants 

For this study 42 participants were initially recruited, and data from 35 were used in the final 

analysis (mean age ± sd = 24.5 ± 4.4 years, 19 women). Dropout reasons included: blood 

sampling failures (n=3), problems with the tracer administration (n=3) and gross anatomical 

abnormalities (n=1). Additionally, BOLD data could not be used for two participants due to 

technical reasons, blood glucose levels were not available for one subject and working memory 

performance data for another one due to failure of the response box. As no studies with such 

a high temporal resolution of fPET data are available (previously 6-12 s (14) and 16 s (13)), 

we aimed for a sample size that exceeds previous work with robust task activation by at least 

50%. Each participant underwent an initial screening visit, where general health was ensured. 

Routine medical examinations included blood tests, electrocardiography, neurological testing 

and the structural clinical interview for DSM-IV. Female participants underwent pregnancy 

tests at the screening visit and before the PET and/or MRI scans. Further exclusion criteria 

were current and previous severe somatic, neurological and psychiatric conditions, substance 

abuse or medication, pregnancy or breastfeeding, MRI contraindications and previous study-

related radiation exposure. At the screening visit, all participants provided written informed 

consent after detailed explanation of the study protocol. Participants were reimbursed and 

insured during the study. The study was approved by the ethics committee of the Medical 

University of Vienna (ethics numbers 1479/2015 and 2054/2020) and all procedures were 

carried out according to the Declaration of Helsinki. 

 

Data acquisition 

Simultaneous acquisition of fPET and fMRI data was done with a mMR scanner system. 

Separate acquisition was carried out with a Biograph Vision PET/CT and a Prisma MRI 

scanner (all Siemens Healthineers, Erlangen, Germany). 
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Participants had to fast at least 5.5 hours before the start of the fPET scan (except for 

unsweetened water) (54). The radiotracer [18F]FDG was administered in a bolus (816 ml/h for 

1 min) plus constant infusion protocol (114.9 ml/h for 19 min, total of 50 ml) for the entire fPET 

scan using a perfusion pump (Syramed µSP6000, Arcomed, Regensdorf, Switzerland), which 

was kept in an MR-shield (UniQUE, Arcomed). 

With the PET/MR scanner, BOLD fMRI was acquired simultaneously with fPET (EPI sequence, 

TE/TR = 30/2000 ms, flip angle = 90°, matrix size = 80x80, 34 slices, voxel size = 

2.5x2.5x3.325 mm, 12 min). Furthermore, a structural MRI was recorded before fPET 

acquisition, to rule out gross anatomical abnormalities and for spatial normalization (T1-

weighted MPRAGE sequence, TE/TR = 4.21/2200 ms, TI = 900 ms, flip angle = 9°, matrix size 

= 240x256, 160 slices, voxel size 1x1x1.1 mm, 7.72 min). 

For the separate MRI acquisition, corresponding imaging data were acquired (EPI sequence: 

TE/TR = 30/2050 ms, flip angle = 78°, matrix size = 100x100, 35 slices, voxel size = 

2.1x2.1x3.5 mm, 12 min; T1-weighted MPRAGE sequence: TE/TR = 2.91/2000 ms, TI = 900 

ms, flip angle = 9°, matrix size = 240x256, 192 slices, voxel size 1x1x1 mm, 8 min). 

 

Blood sampling 

Before the fPET scans, blood glucose levels were determined (Gluplasma). During the fPET 

scans, arterial blood samples were taken manually from the left radial artery. This included 

sampling every 20 s for the first three minutes, and thereafter at 4, 5, 8, 12, 16 and 20 min. To 

avoid interference with task performance, samples after 5 min were taken remotely (outside 

20 mT line) with a VAMP system. Whole-blood activity was measured in a gamma counter 

(Wizard2, Perkin Elmer). Samples obtained after 3 min were centrifuged and the plasma activity 

was measured. Whole-blood data were linearly interpolated to match fPET frames and 

multiplied with the average plasma-to-whole-blood ratio to obtain the arterial input function. 
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fPET preprocessing 

fPET data were corrected for attenuation using a database approach (55) and reconstructed 

to frames of 3, 6 and 12 s (matrix size = 344x344, 127 slices). Preprocessing was carried out 

in SPM12 (https://www.fil.ion.ucl.ac.uk/spm/), which included motion correction (quality=1, 

register to mean) and spatial normalization to MNI space with the T1-weighted structural 

image. 

We implemented a novel filtering technique in Matlab to increase the low SNR inherent to high-

temporal resolution PET data since short frames contain less radioactive counts. The filter 

represents a dynamic non-local means (NLM) filter (15) with a modified local patch selection. 

Generally, NLM filters create a weighted average of neighboring voxels within a given search 

window in the spatial and temporal domain. These types of filters have been shown to provide 

an improved contrast-to-noise ratio in dynamic PET images compared with other more 

conventional denoising approaches (56). The novel aspect implemented here is a sliding-

window approach, instead of using the entire PET time course (15). This confines the denoising 

of each voxel both temporally and spatially, preventing the baseline [18F]FDG uptake to drive 

the signal and thereby specifically strengthening task-specific effects. The local neighborhood 

was selected with a sliding-window approach for each voxel using a spatiotemporal patch of 

3x3x3 voxels and 18 s in a search window of 11x11x11 voxels. The weight is given by the 

similarity between voxels (i.e., Gaussian distance from center voxel) as in the original 

description (15). Data were subsequently smoothed with a 5 mm Gaussian kernel in SPM12. 

Together with the NLM filter, this corresponds approximately to a total kernel of 8 mm, which 

facilitates comparison with BOLD data and previous work. 

 

Cerebral metabolic rate of glucose (CMRGlu) 

Quantification of CMRGlu was carried out voxel-wise. Data were masked to include only gray 

matter. To further improve the SNR in the temporal domain, a low pass filter was used with a 

cutoff frequency of 18 s, which represented half the task block duration. To separate task-

specific effects from baseline metabolism, the general linear model (GLM) was used, which 
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included one regressor for the baseline, one for each task condition and motion regressors. 

The baseline regressor was defined as the average fPET signal across all gray matter voxels, 

excluding voxels activated during the individual BOLD fMRI (2-back vs. rest, p<0.001 

uncorrected) and those identified in a meta-analysis (16). This combination of activation maps 

ensures that task effects do not contaminate the baseline and yields an optimal model fit (14). 

The task regressors were defined as a ramp function with slope = 1 kBq/frame. For the motion 

regressors, the realignment parameters obtained from SPM12 were subject to a principal 

component analysis and a variable amount of regressors were included using the elbow 

method, to ensure that the majority of explained variance is covered. After the GLM, the Patlak 

plot was used for absolute quantification of glucose metabolism. This yields the influx constant 

Ki, which reflects the combination of the individual rate constants K1-k3 

Ki = K1*k3 / (k2+k3)        (1) 

Ki was then converted to the cerebral metabolic rate of glucose (CMRGlu) 

CMRGlu = Ki * Gluplasma / LC * 100      (2) 

with LC being the lumped constant, which was set to 0.89 (57). This results in task-specific 

maps of Ki and CMRGlu, which were used for subsequent analysis. 

 

Blood-oxygen level dependent (BOLD) signal changes 

BOLD data were processed in SPM12 (51). Images were corrected for slice timing effects 

(reference = middle slice) and head motion (quality = 1, register to mean), followed by spatial 

normalization to MNI space and spatial smoothing with an 8 mm Gaussian kernel. Task-related 

changes in the BOLD signal were computed with the GLM, including one regressor for each 

condition (0-back, 2-back) as well as potentially confounding signals (instructions, 24 motion 

parameters (58), white matter and cerebrospinal fluid). The autocorrelation option was set to 

FAST (59). The contrast of interest was 2-back vs. rest to facilitate comparison with fPET data. 
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Statistical analyses 

For statistical analyses data from n=35 participants were used for [18F]FDG glucose 

metabolism and n=33 for BOLD signal analyses (n=2 missing due to technical reasons). For 

correlation between the signals in the temporal domain and association with task performance, 

n=17 with simultaneous PET/MRI acquisition were used. 

 

Spatial conjunction of task-specific neuronal activation 

To assess the spatial overlap between changes in the BOLD signal and metabolic demands 

as induced by the 2-back working memory task, a statistical conjunction analysis was carried 

out in SPM12 (17). BOLD and Ki maps were individually z-scored and included in a one-way 

ANOVA with each modality representing a “group” and an additional factor accounting for the 

different scanners (i.e., PET/MR vs. separate PET/CT and MRI). Ki was used instead of 

CMRGlu as blood glucose data was missing for one subject. The conjunction was corrected 

for multiple comparisons using family-wise error rate (FWE) at the voxel level (p<0.05) and 

clusters with less than 5 voxels were removed. This was carried out for the three different fPET 

reconstructions of 3, 6 and 12 s. The Dice coefficient was used to assess the spatial agreement 

between the three resulting conjunction maps. For completeness and comparison with 

previous work (12, 17), inference was also computed at p<0.05 FWE-corrected cluster level 

after an initial voxel threshold of p<0.001 uncorrected. 

 

Time-domain analyses 

Task-specific signals were obtained as GLM residuals after removing all effects except those 

of the task. The resulting BOLD signal and [18F]FDG time series were extracted from significant 

voxels of the above spatial conjunction (p<0.05 FWE-corrected voxel-level). For visualization, 

these were averaged across 2-back blocks, participants and voxels for a time window starting 

12 s before the task began until 36 s after the task (total of 84 s). Next, the BOLD and metabolic 

signals were correlated within each subject to evaluate the individual coupling between the two 

imaging modalities. These correlation values were further associated with the working memory 
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performance, specifically the average reaction time of correct responses during the 2-back 

condition. This was done separately for each brain region (three clusters of the right DLPFC, 

left primary motor cortex, right insula, left and right intraparietal sulcus). Spearman’s rho was 

used to account for an outlier with substantially slower reaction time (> 3*sd of the group) and 

corrected for the seven brain regions using the Bonferroni method. To assess the robustness 

of the brain-behavior association, the time window was also constrained to -12…+24 s, -

6…+12 s and -6…+6 s, followed by re-calculation of the correlation. To rule out that individual 

associations between metabolic and BOLD signals are driven by motion, these values were 

correlated with framewise displacement as obtained from the BOLD realignment parameters 

(60). 

 

Analyses of the posterior cingulate cortex (PCC) 

We further investigated a previously reported spatial dissociation of glucose metabolism and 

BOLD responses in the PCC (12). First, separate maps with a negative BOLD response and 

a positive metabolic response during the 2-back working memory task were computed (p<0.05 

FWE-corrected cluster level following p<0.001 uncorrected voxel level). Specific attention was 

given to the PCC, as we recently showed an opposite influence of the FPN and DAN 

metabolism onto the PCC (17). Thus, the difference in task-specific Ki between FPN and DAN 

during the 2-back working memory condition was computed. Percent signal change was used 

to enable better comparison between the different networks. Based on this difference, 

participants were split into three groups comprising those where metabolism of FPN < DAN 

(lower quartile, low group), FPN = DAN (interquartile range, balanced group) and FPN > DAN 

(upper quartile, high group). [18F]FDG metabolic time series were then extracted for the PCC 

region (17) and the three groups, which were compared using a repeated measures ANOVA, 

where the interaction between groups by time served the relevant outcome parameter. 

Similarly, BOLD signal time courses were extracted from the PCC and compared in a repeated 

measures ANOVA. 
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Scanner comparison 

The secondary aim was to investigate differences between PET scanners, here we compared 

a widely used mMR PET/MR to a new generation Vision PET/CT with time-of-flight (both 

Siemens) in the feasibility to compute high-temporal resolution fPET. For the subsequent 

analyses, data were extracted from regions with significant activation during the 2-back 

condition (p<0.05 FWE corrected voxel-level, Fig 1a). In the temporal domain the identifiability 

of task-specific changes in glucose metabolism is given by t-values of the GLM analysis, i.e., 

the estimated effect size divided by the standard error (14). A two-sample t-test between the 

scanners was performed. Next, Ki percent signal change was compared between the 

scanners, again with a two-sample t-test. 

 

Simulations 

Simulations were carried out to assess whether the observed time course of the [18F]FDG 

metabolic signal matches theoretical calculations. The two-tissue compartment model was 

implemented in Matlab with an average arterial input function and rate constants as observed 

in our previous work at resting state (K1 = 0.0827 ml/cm3/min, k2 = 0.0771 min-1, k3 = 0.0629 

min-1, k4 = 0 min-1) (14, 50). Task-specific changes in rate constants were introduced to 

simulate physiologically plausible increases in Ki (see equation 1). Previous work showed task-

induced changes in Ki around 22% (9, 10), but for completeness also increases of 12 and 33% 

were introduced. These values were obtained by the following changes in rate constants i) K1 

= 10% and k3 = 10%, ii) K1 = 12% and k3 = 5%, iii) K1 = 8% and k3 = 15%, iv) K1 = 15% and k3 

= 12%, v) K1 = 5% and k3 = 8%. In all cases k2 = -K1 (28-31). Please see discussion for a 

neurophysiological rationale of these parameter variations. In addition, the simulation was 

repeated with baseline rate constants of previous work (K1 = 0.1 ml/cm3/min, k2 = 0.15 min-1, 

k3 = 0.08 min-1, k4 = 0 min-1) (8). 
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FIGURES 

 

 

Figure 1: Spatial correspondence of BOLD fMRI changes and [18F]FDG fPET glucose 

metabolism induced by the 2-back task condition. Statistical conjunction analysis between the 

two signals yields robust task effects in several brain regions involved in working memory (16), 

such as the right dorsolateral prefrontal cortex, left primary motor cortex and bilateral anterior 

insula (blue: p<0.05 FWE-corrected voxel level, yellow: p<0.05 FWE-corrected cluster level 

following p<0.001 uncorrected voxel level). The effects were stable for different temporal 

resolutions of the fPET data, namely 3s (a), 6s (b) and 12s (c). Dice coefficients between the 

activation patterns obtained with the three temporal resolutions were between 0.71 and 0.78. 

Voxel-level corrected regions of the 3s data (i.e., blue regions in a) were used for subsequent 

temporal assessment. MNI coordinates for slices are z = -1, 17 and 35 mm. Left is left. 
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Figure 2: Concurrent temporal changes in BOLD fMRI and [18F]FDG fPET signals during 

working memory performance across all active regions. a) Task-induced changes in the BOLD 

signal show a plateau of activation as expected from the block design. b) Task-specific time 

course of [18F]FDG glucose metabolism resulted in a constant increase during task 

performance (due to the irreversible binding of the radiotracer) and rapid return to baseline 

afterwards (i.e., a steady activity level). The time course was generally similar for the different 

temporal resolutions of 3s (black), 6s (blue) and 12s (green), but the 3s data showed highest 

ability to reconstruct the return to baseline. c) Simulation of task-related changes in the 

[18F]FDG signal was in close agreement with the shape of the experimental observation in b 

across different variations in rate constants. Colors of lines match those of symbols in d. d) 

Matrix of changes in Ki induced by variation of rate constants K1, k2 and k3 from 0 to 20%. 

Changes in rate constants were chosen to yield physiological increases in the net influx 

constant Ki around 22% (black line as well as black, yellow and magenta circles) as observed 

in this and previous work (9). In addition, rate constants yielding Ki = 12 and 33% (i.e., 

orthogonal to the expected 22%-line) were investigated (orange and red x, respectively). For 

all simulations k2 = -K1. Gray areas in a-c indicate the time of the task performance. Data in a 

and b represent the average across participants, 2-back task blocks and regions obtained from 

the statistical conjunction analysis (blue regions in brain slices, p<0.05 FWE-corrected voxel 

level, identical to Fig. 1a). Data in b and c show task effects after subtraction of baseline 

metabolism. 
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Figure 3: Temporal associations between signals of fMRI BOLD (blue) and fPET glucose 

metabolism (CMRGlu, red) in the left primary motor cortex. a-c depict three representative 

examples of individual time courses of the BOLD signal and [18F]FDG glucose metabolism, 

averaged across the 2-back working memory task blocks. For CMRGlu, the first derivative is 

shown to account for the irreversible accumulation of the radiotracer. The three time courses 

show that a) the metabolic signal may either precede the BOLD signal, b) both signal changes 

occur simultaneously or c) that the BOLD signal precedes that of CMRGlu. Data in a-c were 

z-transformed to account for different amplitudes of the signal. Gray areas indicate the time of 

the task performance. d) The individual temporal correlation between the CMRGlu and BOLD 

signals was associated with the corresponding response time of correct button presses during 

the 2-back working memory task (rho=-0.69, p=0.02 corrected). 
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Figure 4: fPET metabolic and fMRI BOLD signals in the posterior cingulate cortex (PCC) during 

the 2-back working memory task. a) Participants were split into three groups according to 

significant changes in CMRGlu in the frontoparietal (FPN) and dorsal attention network (DAN, 

p<0.05 FWE-corrected voxel level, Fig. 1a) as these networks drive CMRGlu changes in the 

PCC (17). By definition, the quartile split separates 50% of participants with similar changes in 

these networks (green, balanced group), while 25% had lower task-specific CMRGlu in FPN 

than DAN (blue, low) and 25% had higher CMRGlu in FPN than DAN (red, high). b) Task-

specific decreases in the BOLD signal (blue) and increases in CMRGlu (red) during working 

memory performance (p<0.05 FWE-corrected cluster level following p<0.001 uncorrected 

voxel level). Replicating previous work (12), BOLD decreases where pronounced in the PCC, 

while CMRGlu did not change significantly. The white area indicated by the cross-hair 

represents the PCC cluster of our recent study (17), which was used for c and d. c) The time 

course of [18F]FDG glucose metabolism in the PCC was significantly different between the 

three groups (group*time interaction p=0.0016). Participants with lower CMRGlu in FPN than 

DAN exhibited a decrease in PCC CMRGlu (blue) during working memory, while participants 

with higher CMRGlu in FPN than DAN showed a delayed positive deflection in the metabolic 

signal. d) BOLD signals in the PCC showed similar decreases during the task for all three 

groups (interaction p=0.9). Colors in a, c and d represent the same groups of participants. 

Boxplots in a indicate median values (center line), upper and lower quartiles (box limits) and 

1.5*interquartile range (whiskers). Data in c show task effects after subtraction of baseline 

metabolism. Gray areas indicate the time of the task performance. 
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