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Abstract

This study builds on work on language processing and information theory which

suggests that informationally uniform, or smoother, sequences are easier to process than

ones in which information arrives in clumps. Because episodic memory is a form of

memory in which information is encoded within its surrounding context, we predicted

that episodic memory in particular would be sensitive to information distribution. We

used the “dual process” theory of recognition memory to separate the episodic memory

component (recollection) from the non-episodic component (familiarity) of recognition

memory. Though we find a weak effect in the predicted direction, this does not reach

statistical significance and so the study does not support the hypothesis. The study

does replicate a known effect from the literature where low frequency words are more
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easily recognized than high frequency ones when participants employ recollection-type

memory. We suggest our results may be explained by linguistic processing being

particularly adapted to processing linear sequences of information in a way that episodic

memory is not. Episodic memory likely evolved to deal with unpredictable, sometimes

clumped, information streams.

Keywords: episodic memory, language, information theory, recognition, recollection,

familiarity

Introduction 1

Information theory [1] characterizes the dynamics of a variety of systems in which 2

information is passed from a sender to a receiver, including the transmission of 3

information across neuronal networks [2] or DNA translation and transcription [3]. 4

Recently, the application of information theory to language has led to the discovery that 5

people tend to distribute information as evenly as possible across utterances as they 6

speak, which helps to maintain effective communication in the presence of “noise” (i.e. 7

interference) of various types [4–7]. This may reflect a general bias for distributing 8

information evenly in transmission in information theoretic systems more generally. For 9

example, abnormally clumped neuronal spikes have been connected to Parkinson’s 10

Disease [8] and chronic tinnitus [9], indicating that clustered information disrupts 11

normal neuronal functioning. In genetics, redundancy spreads information in an 12

adaptive way: there are over three times as many unique mRNA codons as amino acids 13

they code for. Because the same amino acid is coded for by multiple similar codons, it is 14

less likely that a single nucleotide mutation alters the amino acid than if each amino 15

acid had a unique code [10]. 16

Memory encoding can also be viewed in information theoretic terms, as the process 17

of information transfer from the outside world to brain circuits. If the same principles 18

apply to this information transfer as those found in language, and suggested for neural 19

systems and DNA, then clumps of information should inhibit encoding. In other words, 20

more information should be encoded when the incoming information is distributed more 21

evenly in temporal terms. The memory system that is dedicated to storing and 22

retrieving unique events in context (such as unique sequences of words) is called 23
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episodic memory [11,12]. Here, we build on the “‘dual process” theory of recognition 24

memory. [13–15] Familiarity is the recognition that a particular item has been 25

encountered before, but without retrieval of the surrounding context (i.e., whether or 26

not you believe you have seen an item). Recollection, on the other hand, is understood 27

as recognition of an item or word and the episodic context in which it was encountered. 28

The two processes are hypothesized to be separable both cognitively and 29

neurobiologically [14, 16–18]. One way to separate the two processes behaviourally is by 30

the use of Receiver Operating Characteristic (ROC) curves, which are fit for each 31

participant so as to calculate the contributions of recollection and familiarity by 32

estimating the ROC’s y-intercept parameter (for recollection) and curvature parameter 33

(“d′”, for familiarity [19]). To do this, participants are first presented with a target word 34

list during a study phase. After a retention interval, they are then presented with 35

another list of words, made up of the old words combined with distractor words. 36

Participants are then asked to identify which words they had seen before, and to report 37

their confidence for each judgement. The confidence measures are used to fit the ROC 38

curve. 39

To investigate how the episodic memory system deals with information that is 40

distributed in different manners throughout a temporal stream, we added a 41

manipulation of the word order in the study phase, so that some participants saw all 42

low frequency words (i.e. high information content words) and high frequency words (i.e. 43

low information content) sorted in ascending or descending order (“Clumped”), while 44

others saw a list of words in which low and high frequency words alternated (“Even”). 45

The Even order, which spreads information across the sequence as a whole in a more 46

distributed fashion, is known to be resistant to catastrophic effects of certain types of 47

noise [20,21]. We therefore hypothesize that episodic memory encoding will be more 48

successful when participants see sequences where information is more evenly distributed, 49

when it is a sequence that is being stored. In other words, we predict this effect for 50

recollection type memory only, which stores and retrieves a target item with its 51

surrounding context. 52
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Materials and methods 53

Participants 54

Sample A 55

The experiment was approved by the Newcastle University Ethics Committee, REF 56

232/2020, and all research was performed in accordance with relevant guidelines and 57

regulations. Data collection for this sample took place between 10 February 2020 and 20 58

July 2020. Written informed consent was obtained from all participants prior to the 59

start of the experimental task. A total of 315 participants were recruited on Amazon 60

Mechanical Turk (paid $4 for completing the task) and 10 participants volunteered on 61

social media. The task took approximately 20-30 minutes in piloting. Participants took 62

on average 22 minutes to complete (SD= 12 minutes); some participants completed 63

extremely quickly (e.g., within 7 minutes) while others took over an hour. Due to the 64

unmonitored online nature of the task, participants with completion times shorter than 65

1 standard deviation below the mean completion time and greater than 2 standard 66

deviations longer than the mean were excluded, leaving 284 participants (186 male, 98 67

female, 1 preferred not to say) for analysis. Only two volunteers were eliminated and 68

the remainder were Mechanical Turk workers (of 285 participants analysed, 277 were 69

recruited via Mechanical Turk and 8 volunteered via social media). Participants 70

included in analyses had ages ranging from 19 to 72 years old (mean ≈ 37.3, SD± 11.6), 71

and completion times in the range of 10-51 minutes, with a mean completion time of 72

21.55 minutes. 73

139 participants were in the smooth condition (shown a list of words with 74

alternating high and low information content, making for a smoother distribution of 75

information across the list), and 147 were in the clumped condition (shown a list of 76

words sorted by information content, such that information is clumped within the list). 77

Sample B 78

The experiment was approved by the Newcastle University Ethics Committee on 18 79

March 2021, and all research was performed in accordance with relevant guidelines and 80

regulations. Written informed consent was obtained from all participants prior to the 81
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start of the experimental task. Data collection for this sample took place between 5 82

April 2021 and 12 July 2021. A total of 199 participants were recruited on Amazon 83

Mechanical Turk. For this sample, the word memory/recollection task occurred 84

alongside an image memory/recollection task not analysed here: participants either 85

randomly completed the image portion of the task or the word portion of the task first. 86

Due to the variable nature of completion times in the first task, this task was time 87

limited: participants had to submit the completed task on Mechanical Turk within one 88

hour of accepting it. Given the longer overall nature of this task and the time-limited 89

completion, participants were paid $12 for completing this task (all participants who 90

completed the task in Sample A were excluded based on their Mechanical Turk Worker 91

ID). Completion times for the word block of the task on its own were not collected; 92

however, participants were excluded from analyses based on their overall completion 93

time as in Sample A. Here, the mean completion time was 29 minutes, with a minimum 94

of 14 minutes and a maximum of 59 minutes (as this was the maximum permitted by 95

the task), with an standard deviation of 7 minutes. As with Sample A, participants 96

with completion times less than 1 SD below the mean (22 minutes) and more than 2 97

SDs above the mean (43 minutes) were excluded. 98

This left a total of 173 participants included in analysis. 87 were in the smooth 99

condition, and 86 were in the clumped condition. 100

Materials 101

A total of 140 words were chosen from the English Lexicon Project [22], including 70 102

target words and 70 distractors. All words were two syllable monomorphemic nouns 103

between 5-8 characters, and fell into three frequency categories based on their log 104

frequency in the HAL corpus [23]. Of the 70 target words, 35 were low frequency (log 105

frequency between 10.12 and 12.55) and 35 were high frequency (log frequency between 106

2.57 and 6.68). The 70 distractor words were of a mid range; log frequency between 7.16 107

and 9.89 (overlapping with neither the high or low categories). Materials were identical 108

for both samples. 109

The target word lists were presented in four potential orders, according to the 110

smooth vs clumped condition, and whether a list started with high frequency words or 111

July 31, 2023 5/20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2023. ; https://doi.org/10.1101/2023.08.02.551617doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.02.551617
http://creativecommons.org/licenses/by/4.0/


low frequency words (low start and high start respectively). In lists which had clumped 112

information distributions, words were sorted either in ascending (from low to high) or 113

descending (from high to low) order according to their frequency. In conditions which 114

had even information distributions, the words in each frequency grouping were sorted in 115

ascending order separately, and then alternately appended to a central list pulling from 116

the start of one list and the end of the other. In other words, for the high start/even 117

condition, the low frequency and high frequency words were each arranged in ascending 118

order, and then rearranged into a central list which was assembled by removing the first 119

word from the high frequency list and the last word from the low frequency list 120

iteratively until both the original lists were empty. Participants were systematically 121

assigned a condition as described below (in “Procedure”). The list of words for rating 122

(including all low frequency, high frequency, and mid frequency words for a total of 140 123

items) was presented in a random order for each participant (using the random.shuffle() 124

function in Python). 125

Procedure 126

The task was conducted in the browser using JavaScript and jQuery, with a 127

Python/Flask server deployed on Heroku (https://heroku.com), and data stored in 128

MongoDB Atlas. Fully documented code for the experimental setup is available at 129

https://github.com/CCuskley/Wordmemory/tree/main/Materials, and can be 130

demoed at https://exps-main.herokuapp.com/wmdemo (Note that this demo only 131

shows the low start smooth list of words invariably, although the open source code 132

includes condition assignment.) 133

Each target word was shown in the centre of a white screen, and target words 134

alternated with a fixation cross. Each target word displayed for 1000ms and the fixation 135

cross displayed for 500ms between words. 136

Participants were randomly allocated to a condition based on how many previous 137

participants had completed the task in that condition. Participants began the 138

experiment by consenting to standard terms of participation, including details about 139

compensation, length of the task, and data use. They were then given very brief 140

instructions indicating approximately how long the experiment would take, and 141
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explaining that they would be tasked with recalling a list of words. Before proceeding to 142

the main task, participants were first given a simple test to prevent bots or scripts from 143

completing the task. If they failed this task, they could not view or proceed to the 144

remainder of the experiment, and thus could not complete the task, either as a 145

volunteer or on Mechanical Turk. 146

After passing this test, participants were asked to provide their age and gender 147

(male, female, other, or prefer not to say). They were then asked whether their first 148

language is English. If they said yes, they were asked if they knew other languages. If 149

they said ’no’, they were asked for the age at which they started learning English, 150

providing us with a rough proxy for proficiency when combined with their current age. 151

Following this, they were given more detailed instructions, that they would see a list 152

of words, watch a video, and then try to recall words from the list. First, participants 153

were shown a short demo list to become familiar with how the list would be displayed 154

for the target words; this simply displayed each word in the sentence ’This is where the 155

words will show try to remember them’ in succession. None of the words in this 156

sentence were part of the target or distractor set used in the main task. Before moving 157

onto the target list, participants were advised that the target list would include 158

unrelated words, and initiated the list of 70 target words. After this, participants 159

watched a short ( 3min) video (with no lyrics or narration) of either cats 160

(https://vimeo.com/212247939 or plants (https://vimeo.com/69225705), before 161

being given brief instructions on the recall phase. In the recall phase, they were shown 162

all 140 words (the 70 targets and 70 medium frequency distractors) in a random order. 163

Each word was shown in isolation with the questions ”Did you see it?” (answer was yes 164

or no button) and ”How sure are you” (answers were ”Not at all”, ”Sort of” and 165

”Very”). Participants could change their answers before moving onto the next word, and 166

a progress bar at the top of the screen displayed how far along they were. When they 167

had completed the entire list the task ended. 168
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Analysis 169

Fitting 170

The fitting of Receiver Operating Characteristics for each participant, and in the second 171

analysis for high frequency words and low frequency words for each participant, was 172

conducted with purpose-built scripts in R, which can be found in the Github repository 173

below. All other statistical analysis used R (core libraries, [24] lme4 for mixed-effects 174

models, [25] and ggplot2 for plots [26]). 175

Mathematical model 176

The model assumes that during the recall phase, each word elicits an internal signal

indicating its familiarity. This signal is assumed to be normally distributed and to have

unit variance. The mean familiarity is d′ for words that were in the previously-seen

target list, and 0 for words that were not. Words that were in the target list may also

be recollected via episodic memory, with probability R. We assume that participants

judge a word as ”previously seen” if the familiarity signal exceeds a criterion value C, or

(for words in the target list) if they recollect it. An observer’s performance is therefore

characterized by the three parameters d′, R and C. Where the word was in the target

list, the probability that the observer correctly identifies it as such is

pHit(C) = R+ (1−R)Φ(d′/2− C)

where Φ is the cumulative distribution function of the standard normal distribution.

The probability they class it as not seen is

pMiss(C) = 1− pHit(C) = (1−R)(1− Φ(d′/2− C))

For words not in the target list, the probability that the observer makes a ”false alarm”

is

pFA(C) = 1− Φ(d′/2 + C)
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while the probability that they correctly reject it is

pCR(C) = 1− pFA(C) = Φ(d′/2 + C);

Estimating the ROC curve 177

We have written these as functions of the decision criterion C because we assume that, 178

whereas R and d′ are fixed for a given observer and experimental condition, C can vary. 179

The Receiver Operating Characteristic curve, or ROC curve, is obtained by plotting 180

pHit(C) against pFA(C) as C varies. 181

We estimate the effect of varying C by rescoring observers based on their stated 182

confidence. We simulate a high decision criterion by recoding as ”no” trials where 183

observers actually responded ”yes” the word was in the target list but indicated that 184

they were ”not at all” or ”sort of” sure; only trials where observers said ”yes, very” were 185

retained as ”yes”. This reduces both the probability of hits and the probability of false 186

alarms. We can then lower the decision criterion by recoding as ”no” only trials where 187

observers answered ”yes” but were ”not at all sure”, and so on. In this way, we obtain 188

estimates of 5 points on the ROC curve. We use this to fit maximum-likelihood 189

estimates of R and d′, the parameters of interest. This also involves fitting 5 nuisance 190

parameters, the decision criteria, Cj . 191

Fitting procedure 192

For a given R,d′ and C, corresponding to a single point on an ROC curve, the 193

log-likelihood of getting a particular set of results is 194

L(n;R, d′, C) = nHit ln(pHit(C))+nMiss ln(pMiss(C))+nFA ln(pFA(C))+nCR ln(pCR(C))

(1)

where the vector n represents the number of trials in each of the four categories. For 195

given values of R, d′, we first optimize Cj individually for each of the 5 confidence 196

boundaries nj : 197

Cj = argmax
c

(L(nj ;R, d′, c)) (2)
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This corresponds to fixing the ROC curve, and sliding points along it to match the data. 198

Then we seek the values of R and d′ which maximize 199

LROC(R, d′) =
5∑

j=1

L(nj;R, d′, Cj) (3)

subject to the bounds R = [0, 1) and d′ = [0, 2]. The upper bound of d′ is for practical 200

reasons: very large d′ cause numerical overflow and are not needed to model the data 201

anyway. We bound d′ at 0 because negative values correspond to performance below 202

chance. 203

0.0.1 Optimization starting point 204

In optimization problems, a suitable initial guess is often critical. To obtain this, we 205

first look at the proportion of correct rejections in the observer’s actual judgments (i.e. 206

without any recoding), PCR. From the equations above, we expect 207

0.5d′ + C = Φ−1(PCR). Since d′ is bounded at 0, if Φ−1(PCR) < 0, we set d′ = 0 and 208

C = Φ−1(PCR); otherwise, we set C = 0 and 0.5d′ = Φ−1(PCR). We can then estimate 209

R from 210

R =
Phit − Φ(0.5d′ − C)

1− Φ(0.5d′ − C)
(4)

These values are taken as the starting-point for the R optimization routine ”optim”, 211

using method ”L-BFGS-B” with lower, upper bounds set to 0, 0.999 for R and 0, 2 for 212

d′. We also checked that the same results, to within the tolerance, were obtained with 213

the MATLAB function ”fminsearch”, with the cost function set to infinity when R < 0 214

or d′ < 0. 215

Confidence intervals 216

We estimate confidence intervals on R and d′ using the likelihood ratio approach. The 217

95% confidence intervals correspond to the contours L95 = Lmax − 1.92. Having 218

obtained the values Rfit and d′fit which give the maximum log-likelihood Lmax, for 219

each R we seek the maximum and minimum d′ for which LROC(R, d′) > L95. The 220

maximum and minimum values encountered over all R are taken as the 95% confidence 221

interval on d′. The 95% confidence interval on R is obtained similarly. 222
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Statistical analysis 223

Distributions of all three fitted ROC parameters were highly skewed, with a peak at 224

zero (cf Fig 1, Fig 2), so are very poorly approximated by a normal distribution. 225

Accordingly, we fitted the parameters with a gamma distribution using a log link 226

function. To avoid numerical problems with very small values and to avoid taking the 227

log of zeros, all fitted values of R and d′ ¡0.01 were set equal to 0.01 for analysis and 228

display. The gamma distribution has two parameters: a shape parameter allowing for 229

different amounts of skew, and a scale or rate parameter controlling the variance. In 230

fitting the models, the shape parameter was assumed to be the same for all participants 231

and conditions, while the scale parameter was allowed to vary. Mixed models were fitted 232

using function glmer from R package lme4. 233

Availability of data and materials 234

The datasets generated and analyzed during the current study are available in the 235

Wordmemory/DataAndAnalyses/ repository, 236

https://github.com/CCuskley/Wordmemory 237

Results 238

Unusual words are recollected better 239

Previous studies have found some significant, though conflicting, effects of word 240

frequency on the recollection of individual words [14] (esp. pp.466–467). In order to 241

distinguish the effect of word frequency per se from the distribution of information 242

across the sequence, we first split each participant’s data into scores for low frequency 243

words and scores for high frequency words, and fitted ROC curves separately to each 244

subset. We thus have two observations per participant for each parameter (i.e. the 245

parameter calculated only on low frequency words, and the parameter calculated only 246

on high frequency words). 247

Note that we performed the recollection experiment twice, in two different years, and 248

will refer to the results of those experimental runs as “Sample A” and “Sample B” (see 249
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Methods for details). Results are discussed with respect to both samples unless 250

otherwise indicated (with effect of “Sample” controlled for statistically). 251

Overall performance was significantly better for the low-frequency words (p < 10−6, 252

β = 0.040, mixed effects gamma regression of AUROC on frequency). This was because 253

the low-frequency words were recollected better (p < 10−15, β = 0.63, ROC y-intercept 254

R), and not because they were more familiar on re-presentation (p = 0.27, β = −0.082, 255

ROC d′ ). The effect on recollection is illustrated in Fig 1, where it is clear that R is 256

consistently much higher for the low-frequency words. Fig 2 shows the lack of an effect 257

for dprime. 258

Fig 1. Distribution of logarithm of fitted recollection parameter log(R), fitted
separately to high-frequency and low-frequency words. Distributions are shown
separately for Clumped and Even conditions, and for the two samples (see Methods).
The three lines on each distribution mark the 25%, 50% and 75% quantiles. The large
number of points at log(R)=-4.6 represents all fitted values ¡0.01, which were set to a
nominal value of 0.01 for analysis and display.

Fig 2. Distribution of logarithm of fitted familiarity parameter dprime, fitted
separately to high-frequency and low-frequency words. Other details as in Fig 1.

Information distribution did not have a detectable effect 259

Fig 1 and Fig 2 show summary statistics for the conditions where high and low 260

frequency words were evenly distributed (Even) vs where they were ordered (Clumped). 261

While in both groups R is a little higher for the Even condition, this difference is not 262

significant. In a mixed effects gamma regression of R on frequency and order, the effect 263

of frequency was unchanged (p < 10−15, β = 0.63) while the effect of order was not 264

significant (p = 0.40, β = 0.12). The AIC and BIC were both higher (i.e. worse) for the 265

model including order as well as word frequency. There was also no significant 266

interaction with sample. 267

Because we halve the number of trials per participant when we fit separately to high 268

and low frequency words, the estimates of ROC parameters are noisier. To investigate 269

whether this was obscuring the effect of information distribution, we also examined 270

fitting all words for each participant with a single ROC curve. 271

There was now a hint of an effect of order on recollection (p = 0.078, β = 0.17, 272
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fixed-effect gamma regression of R on order), though not on overall performance 273

(p = 0.15, β = 0.026, AUROC) nor on familiarity (p = 0.21, β = 0.13, d′). 274

The effect of order was significant in Sample A (p = 0.01, β = 0.31, fixed-effect 275

gamma regression of R on order), but not in Sample B (p = 0.77, β = −0.05). However, 276

the AIC and BIC are both higher (worse) for a model including sample as a regression 277

parameter, suggesting that there is not a genuine difference between samples. Overall, 278

therefore, we do not have evidence for an effect of order. 279

We also examined whether time taken to complete the task correlated with 280

performance. Very low or very high completion times were excluded from analyses, and 281

participants in Sample A had a wider range of completion times than in Sample B due 282

to task differences (see Methods for details). Overall, the 9/284 participants from 283

Sample A who spent more than 45 minutes on the task performed slightly better. Once 284

these participants were removed, there was no relationship between time taken and 285

performance (p=0.19, β = 0.0014 per minute, fixed-effect gamma regression of AUROC 286

on time taken in minutes). 287

Discussion 288

The results did not support our hypothesis that recollection memory benefits from 289

receiving stimuli in an informationally even order rather than a more clumped order. 290

We believe this points to an important difference between the word recognition task and 291

linguistic processing in ecologically valid conditions. 292

Literature on information theory and language has shown that, given the choice, 293

speakers tend to produce utterances which avoid major peaks in their information 294

content, possibly because such “even” distributions mitigate against information loss 295

due to noise events [4, 5, 20, 27]. Sequences which distribute information more uniformly 296

also tend to lose information to noise in uniform amounts, avoiding the potentiality for 297

catastrophic noise events, e.g. where a majority of a sequence’s information is 298

destroyed [21]. Such catastrophic noise events run the risk of making an entire sequence 299

of information-bearing symbols useless to a receiver, assuming the receiver cares about 300

interpreting or processing the sequence as a whole, i.e. the symbols are evaluated with 301

respect to each other in some way (as words are in a sentence). 302
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Our hypothesis was based on the idea that the episodic memory might encode 303

memories as sequences of symbols, particularly if people were presented with stimuli to 304

remember in a sequence. Under the dual process model of episodic memory, recollection 305

involves the retrieval of a recognized item with the context in which the item was 306

encountered [15,17–19]. If the target item and its context were stored and retrieved as 307

an ordered sequence of symbols (or a few such sequences), then we might reasonably 308

expect recollection to function under similar constraints to the linguistic processing of a 309

sentence. Thus, recollection might similarly prefer sequences that are more even in their 310

information distributions, and so more robust to noise events. (Note that we did not 311

expect familiarity to process items in sequences, since familiarity does not involve 312

retrieval of an item’s context in the dual process model.) In our experiment, the items 313

to be remembered were temporally ordered words in a list, and so the items in their 314

context in this case were particularly amenable to storage and retrieval as ordered 315

sequences. The words crucially did not form phrases or sentences, so that we could see 316

if recollection preferred informationally even sequences when there was no 317

sentence-processing task at play. 318

Our results show no evidence that recollection does prefer even sequences, however, 319

so recollection may operate quite differently from linguistic processing, and perhaps does 320

not process memories in sequences at all. This null result is perhaps unsurprising for a 321

number of reasons. First, the task of linguistic processing always involves a temporally 322

ordered sequence of symbols, so the language processing system will be naturally 323

adapted to preserving information in temporal sequences of symbols. Even if some parts 324

of the linguistic signal are processed in parallel (e.g. intonation and word identity in 325

spoken languages, or hand shape and hand movement in signed languages), there is still 326

always some important temporal ordering of linguistic symbols to be processed. 327

Additionally, linguistic processing deals not just with sequences of symbols, but with 328

meaningful sequences of symbols: the ordering of sounds phonemes, morphemes, words, 329

phrases and their composition into larger groupings (constituents) is itself meaningful, 330

and so crucial to linguistic communication. General episodic memory, on the other 331

hand, may well not be adapted to processing ordered lists of items. Just as language 332

processing is adapted to temporally ordered elements, episodic memory will be adapted 333

to the way people generally encounter the variety of meaningful stimuli that make up 334
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episodes of their experience. Much of this information will be visual, and so ordered in 335

multiple dimensions with no one dimension privileged, and there will be overlapping 336

stimuli from other senses making up each episode that recollection processes. Such 337

layered and multi-dimensional input could theoretically be digitized into an ordered list 338

brain-internally, just as photographs can be digitized into binary sequences, but it also 339

may not be (or not at a level we can detect with this kind of experiment). 340

Our results also show that word frequency was a good predictor of recollection 341

performance, with lower frequency words (i.e. higher information content) being 342

recognized more accurately. There was no significant effect of word frequency on the d’ 343

familiarity parameter in our sample. The increase in recollection with low frequency 344

words and the lack of an effect on familiarity are both consistent with the majority of 345

previous studies (e.g. [28], review in [14], discussion of the word frequency mirror 346

pattern in [29]) though a few report recollection effects in the opposite direction. [14] 347

There is also some evidence that frequency can affect familiarity performance in 348

different directions depending on the recency of stimuli. [29] The recollection effect may 349

in part be a general attention or surprise effect, eliciting a variety of brain and 350

sympathetic nervous system responses that are known to be associated with novel, 351

unfamiliar, surprising, or contextually deviant stimuli [30]. Schomaker & Meeter (2015) 352

also review a body of findings suggesting that these responses to unexpected stimuli 353

may aid the memory encoding of such stimuli, and confer attentional advantages, e.g. in 354

improving focus on a specific task (at least in the short term) [30]. To the extent that 355

the low frequency words in our experiment were generally novel or unexpected to the 356

participants, we might expect novelty responses to translate into main effects of word 357

frequency on overall memory performance. 358

The greatest limitation of the study was surely that participant recruitment and 359

data collection was all conducted online, due to restrictions stemming from the global 360

pandemic. Researchers could therefore not control the recruiting pool very tightly, nor 361

could we control the setting in which participants completed the experiment, or monitor 362

participants’ behaviour during experimentation. We know from time-to-completion data 363

that some participants completed the task far too quickly for their results to be treated 364

as reliable. Others took an unusually long time to complete the task, and our results 365

show that their overall performance was better when they took longer than 45 minutes. 366
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These participants could conceivably have taken notes or otherwise introduced noise 367

into their performance. We excluded both of these types of participants post hoc, but 368

we do not know what else participants might have done e.g. in their own homes, or how 369

their attention might have wandered in various settings. The fact that we found a 370

possibly borderline effect of stimulus order on recollection when we calculated 371

parameters on the maximum number of data points per participant suggests that it 372

would be worth replicating these results in a laboratory environment. Another 373

limitation and direction for future research is the recognition task itself, which is known 374

throughout the dual process literature to involve both recollection and familiarity. This 375

was a reasonable choice, as we did predict a contrast between recollection and 376

familiarity. However, a future study could introduce the “clumped” vs “even” 377

manipulation to a paradigm which specifically targets recollection [18]. 378

Conclusions 379

The present study is the first attempt to test whether the information distribution of 380

stimuli has an effect on episodic memory encoding and retrieval, as has been argued for 381

human language processing. We did not observe such an effect, which may point to 382

different evolutionary trajectories for the general episodic memory system and linguistic 383

processing. The latter may well be specifically adapted to preserving information in 384

meaningful sequences of symbols. Episodic memory, however, may not benefit from such 385

a specific adaptation because of the much wider array of stimulus configurations it must 386

process in the natural environment. In addition to this null result, our study replicated 387

a known result: recollection memory performs better on low frequency words than on 388

high frequency words. 389
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