

1 **Next-generation anti-PD-L1/IL-15 immunocytokine elicits superior**
2 **antitumor immunity in cold tumors with minimal toxicity**

3 Wenqiang Shi^{1,2,#}, Nan Liu^{3,#}, Zexin Liu^{1,2}, Yuqi Yang^{3,4}, Qiongya Zeng^{1,2}, Yang Wang^{1,2}, Luyao
4 Song^{1,2}, Jianwei Zhu², Huili Lu^{1,2,*}

5 ¹ Shanghai Frontiers Science Center for Drug Target Identification and Delivery, College of
6 Pharmaceutical Sciences, Shanghai Jiao Tong University

7 ² Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, College of
8 Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240,
9 China

10 ³ Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road,
11 Shanghai 201203, China

12 ⁴ School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing
13 100049, China

14 [#] These authors contributed equally.

15 Corresponding to: Dr. Huili Lu, email: roadeer@sjtu.edu.cn.

16

17 **Abstract**

18 Immunocytokines, such as anti-PD-L1/IL-15, have shown promising efficacy in
19 preclinical studies, but their clinical development still faces severe safety concerns,
20 with the problem not easily overcome by simply reducing the cytokine activity. We
21 proposed a next-generation immunocytokine concept of designing a
22 tumor-conditional anti-PD-L1/IL-15 prodrug (LH05), which innovatively masks
23 IL-15 with steric hindrance of its flanking moieties of anti-PD-L1 and IL-15R α -sushi
24 domain. The design successfully attenuated the ‘cytokine sink’ effect of IL-15 and
25 resulted in a significantly reduced systemic toxicity when compared to wild-type
26 anti-PD-L1/IL-15. LH05 would be specifically cleaved in the tumor
27 microenvironment (TME) to release the active IL-15/IL-15R α -sushi domain (ILR) in
28 a proteolytic cleavage-dependent manner and exhibited potent antitumor effects in
29 mouse syngeneic models. Mechanistically, the antitumor efficacy of LH05 was
30 dependent on both innate and adaptive immunity, which altered the TME to Th1-type
31 by recruiting and stimulating both NK and CD8 $^{+}$ T cells and fired up cold tumors.
32 LH05 also showed superior efficacy in restoring immunotherapy response in a
33 refractory U251 xenograft model. Collectively, we introduced a novel next-generation
34 immunocytokine strategy for tumor immunotherapy, contributing to the establishment
35 of optimal treatment for patients with resistance to immune checkpoint inhibitors or
36 cold tumors.

37 **Introduction**

38 Many cytokines have demonstrated potent antitumor activity in preclinical studies, but
39 their clinical utility is limited due to their short half-lives and systemic toxicity ^[1].

40 Antibody–cytokine fusion proteins (immunocytokines) delivering these
41 immunostimulatory payloads to tumor lesions can substantially broaden the
42 therapeutic window of cytokine therapy. Additionally, combining antibody and
43 cytokine can generate synergistic antitumor effects ^[2]. Some immunocytokines based
44 on IL-2, IL-12, TNF- α , etc. have been investigated in clinical trials, among which
45 EDB (fibronectin extradomain)-specific immunocytokines with TNF- α or IL-2
46 payloads have progressed to phase III trials (NCT02938299 and NCT03567889) ^[3].

47 The antibodies of previously published immunocytokines mostly targeted highly
48 expressed targets in the tumor microenvironment (TME), such as fibronectin and
49 fibroblast activation protein ^[4]. With the considerable advancements of immune
50 checkpoint inhibitors (ICIs) in cancer immunotherapy, antibodies targeting immune
51 checkpoints have recently emerged as the main protagonists of immunocytokines ^[5,6].

52 However, immunocytokines can be trapped by cognate receptors in circulation
53 before reaching their target cells (so-called “sink effect”) ^[7]. This off-target effect of
54 immunocytokines can lead to systemic toxicity. Moreover, only a small fraction of the
55 immunocytokine can be taken up by the neoplastic lesion (in the best cases, 0.01%–
56 0.1% injected dose/g of tumor), often resulting in toxicity profiles similar to that of
57 parental cytokine ^[8]. Notably, patients treated with KD033 (a PD-L1/IL-15 bispecific
58 molecule) at a dose of 50 μ g/kg experienced severe lymphocytopenia, despite the fact

59 that this dose is much lower than the clinical dose of anti-PD-L1 (10–20 mg/kg) ^[9,10].

60 It is crucial to develop novel strategies to overcome safety challenges of
61 immunocytokines and promote their clinical applications.

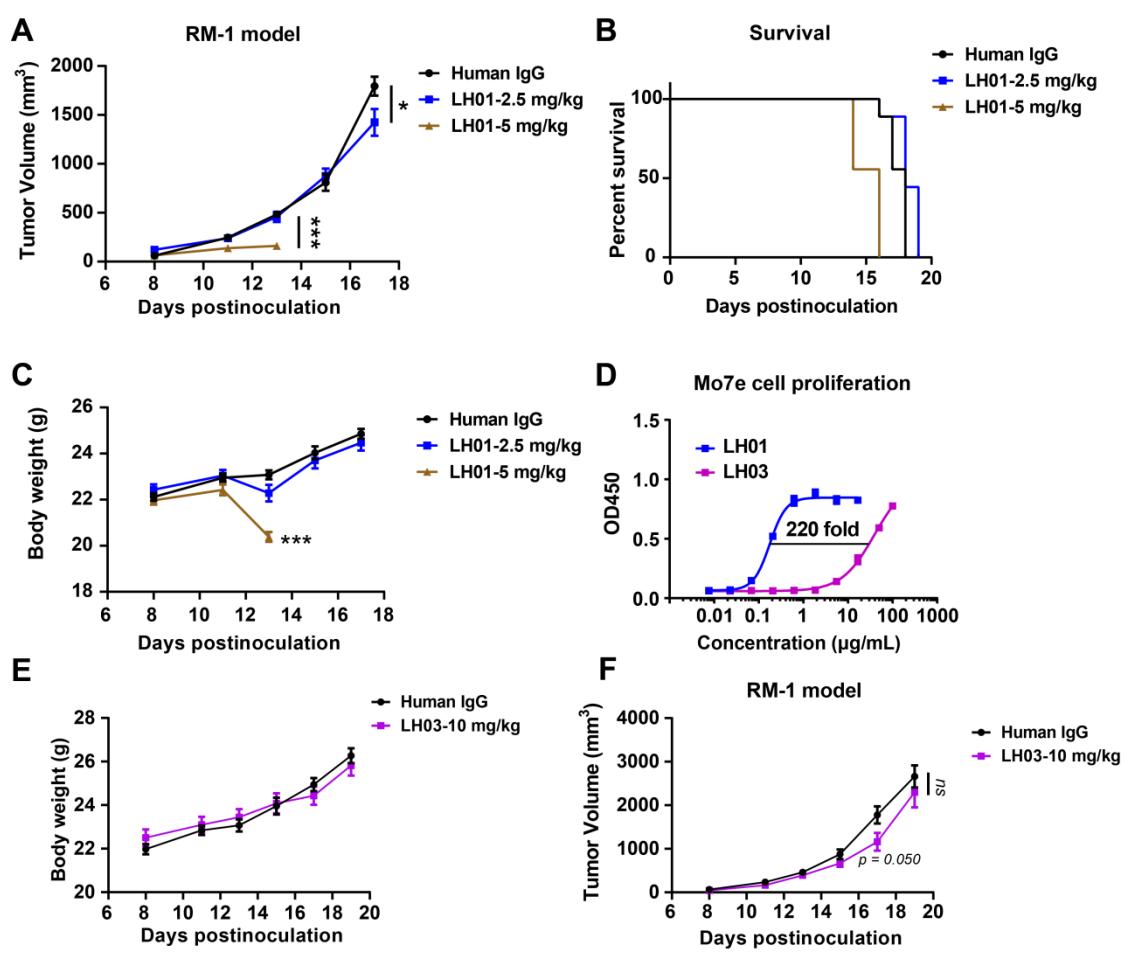
62 To reduce systemic toxicity of immunocytokines, cytokines should be engineered to
63 reduce affinity for their cognate receptors. For example, AcTaferon, comprising
64 human IFN α 2 (Q124R) that is 100 folds less active on mouse cells as compared to
65 murine IFN α fused to anti-CD20, demonstrated a strong antitumor activity without
66 any associated toxicity, in contrast with wild-type IFN α 2. Additionally, the prodrug
67 strategy that can selectively release cytokine activity in the TME represents a
68 promising approach for the development of next-generation immunocytokine. Spatial
69 hindrance and affinity peptides are among the most popular masking strategies for
70 biomolecules, including antibodies or cytokines ^[11,12]. Using a cleavable linker, Fu et
71 al. engineered masked IL-2, IL-12, IL-15, and type I IFN with their natural receptors
72 ^[13-16]. These pro-cytokines reactivate after being cleaved by tumor-associated
73 enzymes within the TME. Although the receptor-masked strategy can reduce the
74 peripheral activity of the cytokine, the introduction of the masking receptor
75 complicates the structure. Moreover, the cleaved receptors may have unfavorable
76 influence on sufficiently restoring the cytokine activity, since cytokines and their
77 receptors have a high affinity for each other ^[17].

78 IL-15 is a highly attractive immunostimulatory cytokine due to its remarkable
79 activity in treating various cancer types ^[18, 19]. Immunocytokines with IL-15 as a
80 payload have shown great prospect in clinical applications, including KD033 and

81 BJ-001, which fuse IL-15 with anti-PD-L1 antibody and integrin-targeting RGD
82 peptide, respectively [20, 21]. We have previously developed an anti-PD-L1/IL-15
83 immunocytokine (LH01), which can overcome anti-PD-L1 resistance and elicit both
84 innate and adaptive immune responses. However, LH01 also induces systemic toxicity
85 similar to that of IL-15 [22].

86 To improve the drug-like properties of immunocytokines and treat cold tumors
87 resistant to existing immunotherapy regimens, in the present study, we designed
88 next-generation anti-PD-L1/IL-15 (LH05), a prodrug masking IL-15, with an
89 innovative steric hindrance strategy. This prodrug can be preferentially cleaved within
90 the TME by a tumor-associated protease to release the reactivated
91 IL-15/IL-15R α -sushi domain (ILR, an IL-15 superagonist) [23], which would have
92 more pleiotropic anticancer effects as compared to being bound to the antibody. Using
93 this strategy, LH05 addressed the safety concerns of IL-15-based immunocytokines
94 and enhanced its efficacy, providing a preclinical proof of concept for the
95 development of next-generation immunocytokines.

96 **Results**


97 ***Systemic toxicity restricts the efficacy of anti-PD-L1/IL-15 immunocytokine in cold***
98 ***tumor***

99 We have demonstrated the potent antitumor efficacy of anti-PD-L1/IL-15
100 immunocytokine (LH01) in syngeneic murine tumor and xenograft models in previous
101 studies. In the present study, we further studied the therapeutic effect of LH01 in
102 treating cold tumors. We observed that LH01 has a dose-related therapeutic outcome

103 and toxicity in RM-1 syngeneic prostate model with a “cold” immune landscape.
104 LH01 was well tolerated at 2.5 mg/kg but it only exerted a slight antitumor activity
105 (Fig. 1A-C). When the dosage was increased to 5 mg/kg, LH01 demonstrated a
106 significant antitumor activity (Fig. 1A). However, it induced significant body weight
107 loss and even death (half of the mice died) after two treatments (Fig. 1B and C). In
108 short, the dose-limiting toxicities hinder the therapeutic efficacy of LH01 in treating
109 cold tumors.

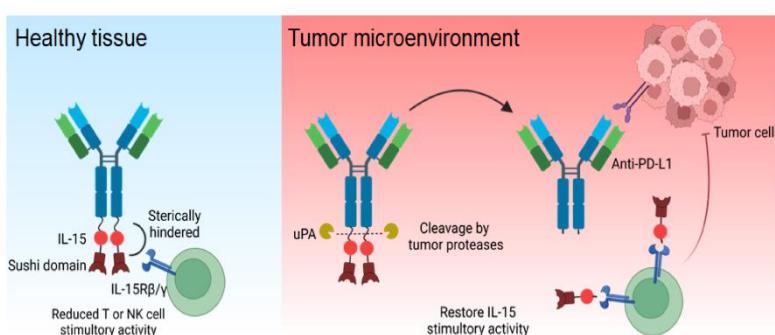
110 To improve the efficacy and avoid toxicity, we first attempted to mitigate the IL-15
111 activity. The lower biological activity allows the use of higher doses, which may
112 provide an avenue to create *in vivo* selectivity. We then engineered an anti-PD-L1
113 fusion (LH03), wherein IL-15 is fused to the C-terminus of anti-PD-L1 and the
114 N-terminus of sushi domain via an engineered linker. LH03 demonstrated decreased
115 affinity toward the IL-15R β as compared with LH01 (Supplementary Fig. 1). Besides,
116 LH03 (EC₅₀ = 39.24 μ g/mL or 194.2 nM) induced 220-fold less proliferative activity
117 than LH01 (EC₅₀ = 0.177 μ g/mL or 0.88 nM) in human Mo7e cells, suggesting
118 successfully masked IL-15 immuno-stimulatory activity (Fig. 1D). As expected, the
119 safety was largely improved and no body weight loss was observed for the LH03
120 group even at a dose of 10 mg/kg (Fig. 1E). However, there was also no therapeutic
121 efficacy was observed, and the tumor growth was close to that of the control (Fig. 1F).
122 Additionally, LH03 at 10 mg/kg exerts no significant antitumor effects but it has good
123 tolerability in the MC38 and Renca models (Supplementary Fig. 2). Altogether, our
124 findings demonstrated that balancing the toxicity and efficacy of immunocytokines by

125 reducing cytokine activity is difficult. A novel strategy or design is necessary to
126 address the challenges of immunocytokine drug development.

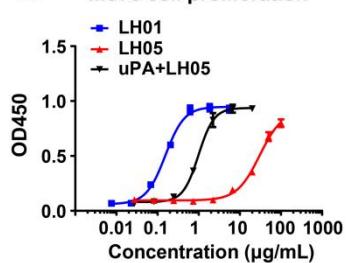
127
128 **Fig. 1 The limited antitumor efficacy of LH01 and LH03 in RM-1 cold tumor.**

129 (A-C) RM-1 tumor cells (5×10^5) were subcutaneously implanted into the right flank of male
130 C57BL/6J mice. Mice were randomized into three groups based on tumor size and treatment
131 initiated when tumors reached 50-100 mm³ (n = 9). Mice were intravenously injected with IgG
132 control (10 mg/kg) or LH01 (2.5 mg/kg or 5 mg/kg) on days 9, 12, and 15. (A) Tumor growth
133 curves were plotted over time. Mouse survival (B) and body weight (C) were monitored. (D) The
134 proliferative potential of LH03 was compared with LH01 in human Mo7e cells. Data were
135 analyzed using the four parameter fit logistic equation to calculate the EC₅₀ values. (E-F) Male
136 C57BL/6J mice were inoculated with 5×10^5 RM-1 tumor cells. When tumors reached 50-100

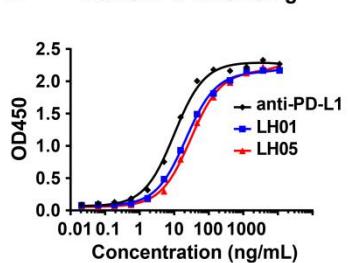
137 mm³, mice were intravenously injected with IgG control (10 mg/kg) or LH03 (10 mg/kg) on days
138 9, 12, and 15. (E) Tumor progression curves and body weight (F) were depicted. All graphs show
139 the mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.


140 ***Steric masking of IL-15 activity and in vitro activation of LH05 by tumor-specific
141 protease***

142 We sought to develop an engineered IL-15 blockade that retains its antitumor activity
143 while limiting systemic exposure. Considering that ILR complex was reported as an
144 IL-15 superagonist, we devised a next-generation IL-15-based immunocytokine
145 (LH05) by incorporating a protease-cleavable linker between the antibody and ILR,
146 which can mask IL-15 activity by steric hindrance caused by the Fc fragment and the
147 sushi domain. The cleavable linker was chosen for its protease sensitivity, which is
148 overexpressed in various human carcinomas: urokinase-type plasminogen activator
149 (uPA) (Supplementary Fig. 3). It would act as a switch for IL-15 activity. Before its
150 cleavage, IL-15 is shielded by the joint forces of Fc and sushi domain. After its
151 cleavage, ILR would be released, restoring the antitumor activity. The proposed
152 mechanism of action of LH05 is illustrated in Fig. 2A. We simulated the
153 conformational structures of LH01 and LH05 by using AlphaFold, which showed that
154 the IL-15 portion in LH01 was free and the receptor-binding sites were exposed.
155 Contrarily, the IL-15 portion of LH05 was restricted due to steric hindrance caused by
156 the Fc fragment and the sushi domain (Supplementary Fig. 4A and B).


157 SDS-PAGE analysis revealed that LH05, but not LH03, can be cleaved after
158 incubation with uPA (Supplementary Fig. 4C). LH05 (EC₅₀ = 30.31 μg/mL or 147.5

159 nM) induced 168-fold less proliferative activity than LH01 ($EC_{50} = 0.177 \mu\text{g/mL}$ or
160 0.88 nM) in Mo7e cells. When LH05 was cleaved, it restored the Mo7e cell
161 proliferation stimulatory activity by more than 30 folds ($EC_{50} = 4.9 \text{ nM}$) (Fig. 2B).
162 LH05 also showed a decreased IL-2R β binding affinity than LH01 due to IL-15
163 masking, which could explain its weaker proliferative activity in human Mo7e cells
164 (Supplementary Fig. 1). In ELISAs, both fusion proteins bound to human PD-L1 with
165 a profile similar to that of the anti-PD-L1 antibody ($EC_{50} = 21.83, 29.95$, and 10.02 ng/mL ,
166 or $109.04, 145.80$, and 69.28 pM , for LH01, LH05, and anti-PD-L1,
167 respectively) (Fig. 2C), as well as similar affinities for mouse PD-L1 as anti-PD-L1
168 antibody ($EC_{50} = 22.23, 34.90$ and 10.32 ng/mL , or $111.03, 169.90$ and 71.36 pM , for
169 LH01, LH05, and anti-PD-L1, respectively) (Fig. 2D). Our results demonstrated that
170 the anti-PD-L1 portion of LH05 was unaffected, and the ILR portion would be
171 preferentially released within the TME to restore IL-15 activity.


A

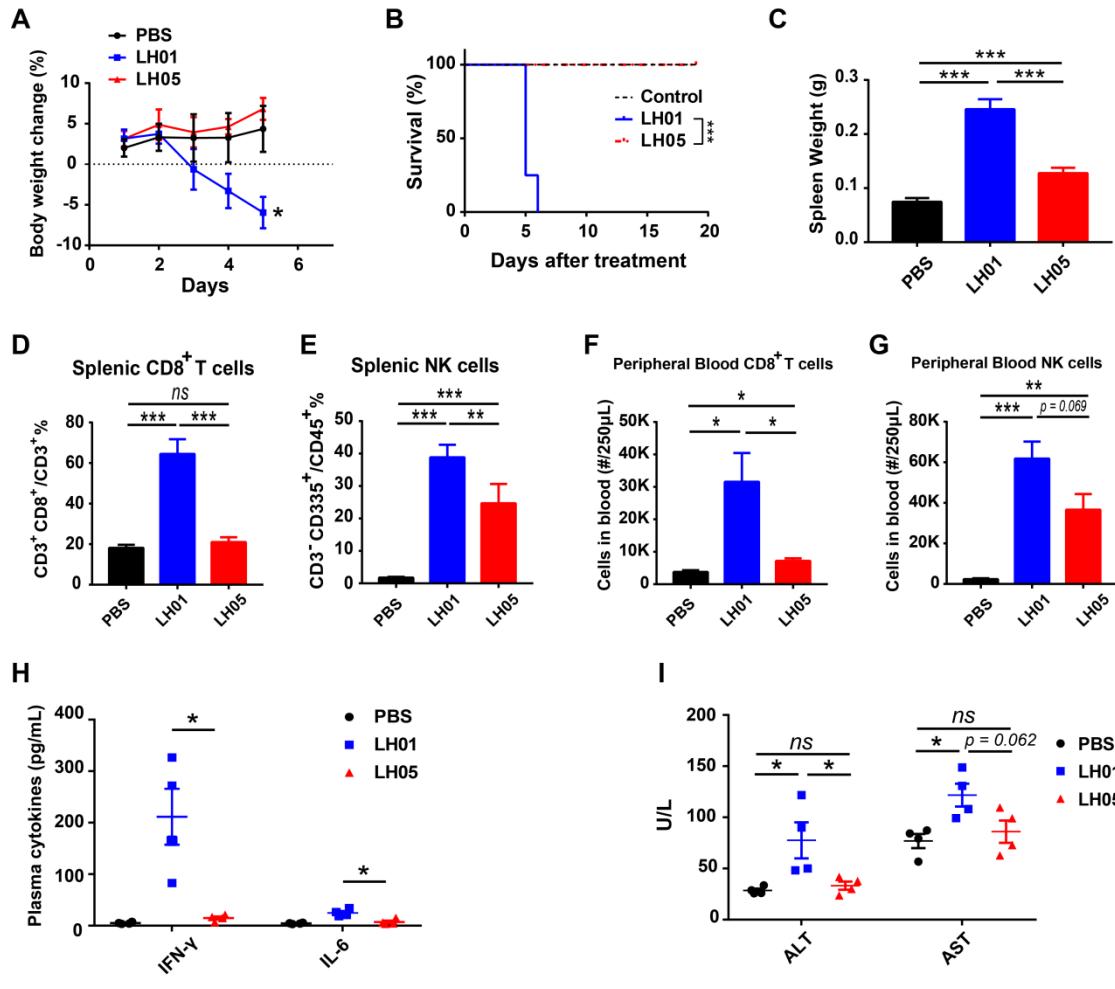

B Mo7e cell proliferation

C Human PD-L1 binding

D Mouse PD-L1 binding

172

173 **Fig. 2 Structure based tumor-conditional anti-PD-L1/IL-15 design. (A)** Schematic of the
174 anti-PD-L1/IL-15 prodrug in healthy tissue and tumor environments. In healthy tissue, IL-15 is
175 masked by the Fc fragment and sushi domain; in the tumor, it is cleaved by tumor-associated
176 proteases, releasing the immunostimulatory ILR. **(B)** The proliferative potential of LH05 and
177 uPA-cleaved LH05 (incubated with uPA at 20°C *in vitro* for 12 h) was compared with LH01 in
178 human Mo7e cells. Data were analyzed using the four parameter fit logistic equation to calculate
179 the EC₅₀ values. **(C and D)** Binding of anti-PD-L1, LH01, and LH05 to plate-bound human (C) or
180 mouse (D) PD-L1. Data were analyzed using the one site-total to calculate the EC₅₀ values. All
181 graphs are shown as mean ± SEM.


182 ***LH05 exhibits excellent safety profile in vivo***

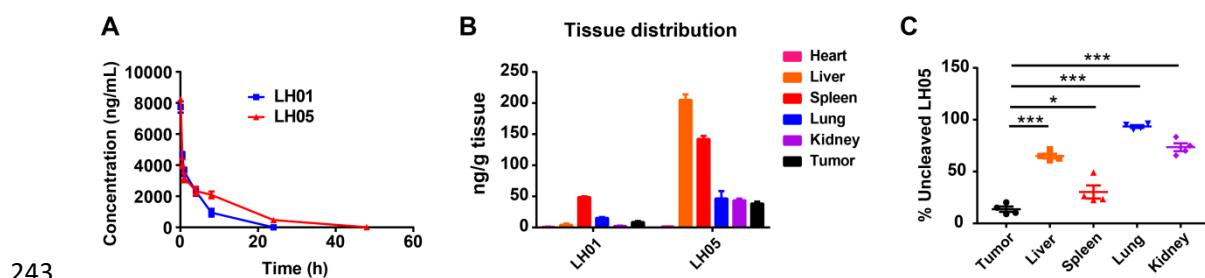
183 Given its lower immunostimulatory activity *in vitro*, we suppose that LH05 would
184 attenuate the expansive capacity of peripheral lymphocytes and minimize systemic
185 toxicity *in vivo*. To confirm whether LH05 has a significantly improved safety profile
186 as compared with LH01, we treated mice with PBS, LH01 (5 mg/kg), or LH05 (10
187 mg/kg). After two LH01 treatments, all mice experienced dramatic body weight loss
188 and eventually died within 6 days. Contrarily, none of mice treated with LH05 lost
189 weight or died even after six injections (Fig. 3A and B). Compared with the PBS
190 treatment, LH01 treatments induced a 229.3% increase in spleen weight, whereas
191 double doses of LH05 only resulted in a 70.9% increase, indicating that LH05 can
192 effectively shield IL-15 activity in circulation (Fig. 3C).

193 Interestingly, LH05 treatment did not lead to a significant increase in splenic CD8⁺
194 T proportion or peripheral blood CD8⁺ T-cell counts as compared to LH01 treatment

195 (Fig. 3D-G, Supplementary Fig. 5). It retained some stimulatory activities on splenic
196 and peripheral blood NK cells, although they were much weaker than those of LH01
197 (Fig. 3D-G, Supplementary Fig. 5). Moreover, unlike LH01, LH05 did not
198 significantly trigger cytokines, such as IFN- γ and IL-6, further indicating that the risk
199 of systemic toxicity induced by LH05 was greatly minimized (Fig. 3H). LH01
200 treatments also caused increased plasma alanine aminotransferase (ALT) and aspartate
201 aminotransferase (AST) levels, whereas LH05 treatments did not cause any observed
202 liver damage (Fig. 3I). Additionally, neither LH01 nor LH05 increased the plasma
203 creatinine levels in comparison to PBS, implying that no renal injury occurred
204 (Supplementary Fig. 6). Overall, these findings suggest that LH05 was effectively
205 sheltered against peripheral activity and adverse effects.

206

208 **Fig. 3 LH05 significantly reduces systemic toxicity.**


209 (A and B) Female Balb/c mice were intraperitoneally injected with PBS, LH01 (5 mg/kg), or
 210 LH05 (10 mg/kg) every 3 days, with body weight changes (A) and survival (B) monitored (n = 8).
 211 (C) Spleens of mice were extracted and weighed after euthanasia on day 5 (n = 4). (D and E) The
 212 percentages of splenic CD8⁺ T cells and NK cells are shown for populations of CD3⁺ and CD45⁺
 213 lymphocytes, respectively. (F and G) The number of CD8⁺ T cells (F) and NK cells (G) in
 214 peripheral blood was counted. (H and I) Blood samples were collected after euthanasia on day 5,
 215 and plasma cytokine levels were measured using ELISA (H), ALT and AST plasma levels were
 216 also quantified (I). All graphs show the mean \pm SEM. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not
 217 significant.

218 **LH05 extends half-life due to the attenuated “cytokine sink” effect**

219 In fact, even though being conjugated to a targeting moiety, wild-type
220 immunocytokines may rapidly disappear from circulation before reaching tumor
221 tissues due to the ubiquitous expression of their cognate receptors (known as the
222 cytokine sink effect)^[8]. Considering the significantly reduced affinity of the prodrug
223 LH05 for the IL-15 receptor, it would confer superior pharmacokinetic properties to
224 LH01. As expected, the plasma concentrations of LH05 decreased at a slower rate
225 than those of LH01, with calculated half-lives of 8.40 and 3.45 h, respectively,
226 following intravenous injection. These findings suggest that the reduced “cytokine
227 sink effect” of the masked prodrug could prolong the half-life of LH01 by
228 approximately 2.4 folds (Fig. 4A). To further investigate the tissue distribution of
229 LH01 and LH05, mouse tissues were collected 18 h after treatment. The LH05
230 concentration in tumor tissue was significantly higher than the LH01 concentration,
231 indicating its superior tumor-targeting capacity (Fig. 4B).

232 Although uPA is reported to be highly expressed in multiple tumors, it is also found
233 in normal tissues, such as liver, spleen, and kidney^[24]. This poses a risk of
234 non-selective cleavage of LH05 in healthy tissues, potentially limiting its therapeutic
235 efficacy. Therefore, we further investigated the selectivity of LH05 cleavage between
236 tumor and normal tissues, utilizing ELISAs coated with PD-L1 or IL-15R β to
237 quantify total or un-cleaved LH05, respectively. Our results showed that LH05 was
238 predominantly cleaved in tumor tissues when compared to any other tissue. Notably,
239 we detected a relatively higher degree of cleavage of LH05 in the spleen, which was

240 considerably lower than that observed in the tumor (Fig. 4C). These findings
241 demonstrate the preferential cleavage of LH05 in tumors, reducing the risk of
242 systemic toxicity.

244 **Fig. 4 Prolonged half-life and improved tumor-targeting distribution of LH05.**

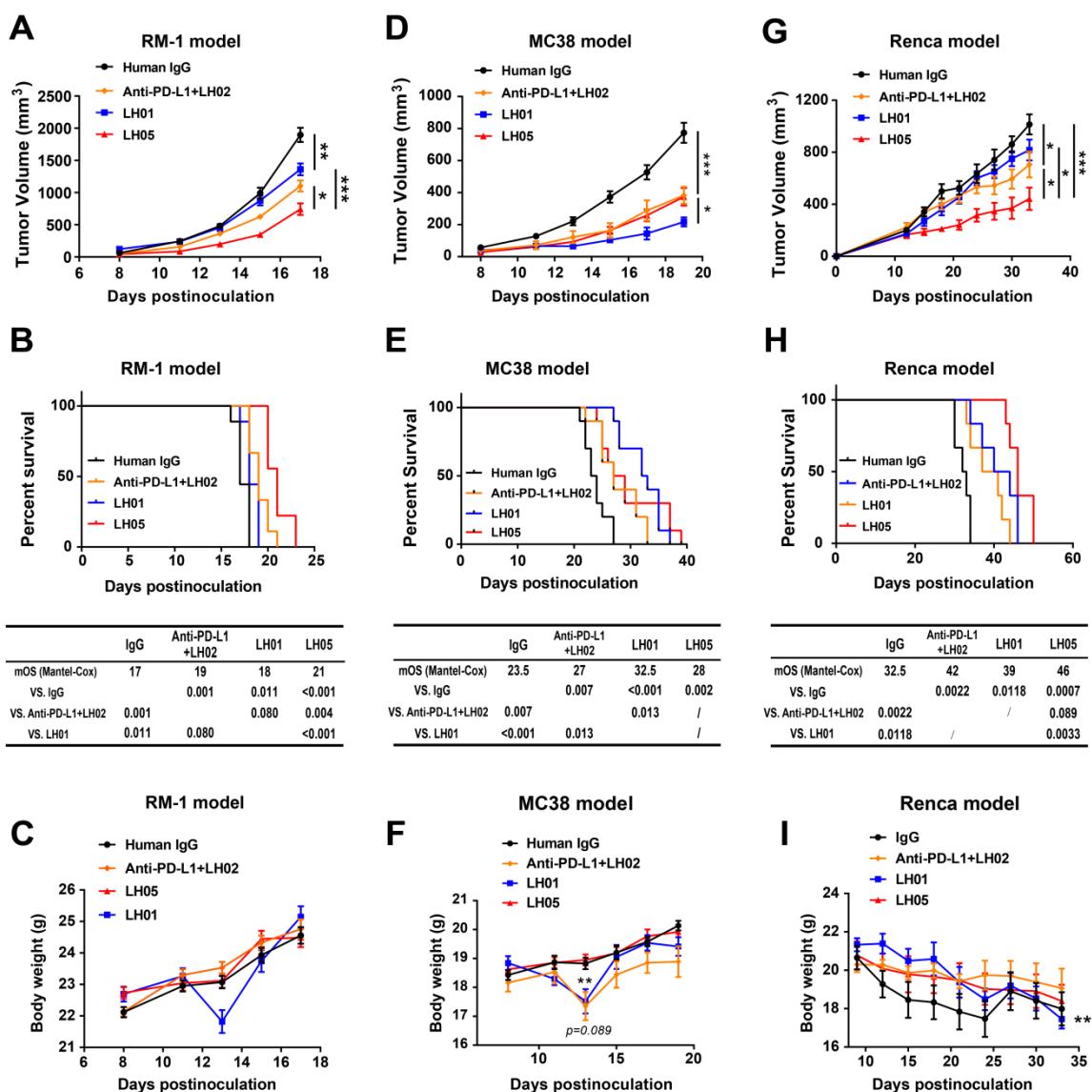
245 (A) Nine-week old male Balb/c mice were injected intravenously with 1 mg/kg LH01 or LH05
246 (equimolar molecules). The plasma concentration-time curves were plotted (n = 5). (B) RM-1
247 tumor-bearing mice (n = 4) were intravenously injected with 1 mg/kg LH01 or LH05, and tissues
248 were collected at 18 h post-injection. The concentrations of LH01 or LH05 were measured using
249 ELISA. (C) The cleavage efficiency of LH05 in tumor and organs were evaluated by determining
250 the percentage of intact (un-cleaved) molecules in all detected anti-PD-L1 portions, using lysates
251 collected after homogenization and centrifugation (n = 4). Both graphs show the mean \pm SEM. *p
252 < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.

253 **Table 1. Pharmacokinetic parameters of LH01 and LH05**

Parameters	LH01	LH05
Half-life (T _{1/2}), h	3.45	8.40
C _{max} , ng/mL	7734.76	8237.93
AUC (0→∞), ng×h/mL	28364.2	48535.74
MRT, h	4.57	10.41

254 * Calculated with PK Solver 2.0 for a non-compartmental model.

255 * Cmax, peak concentration; AUC, area under the curve; MRT, mean resident time.


256 ***LH05 exhibits potent antitumor activity with greatly reduced toxicity***

257 We first investigated the antitumor effects of LH05 in the syngeneic murine RM-1
258 prostate carcinoma model with a high uPA expression ^[25, 26]. LH01 was well tolerated
259 at 2.5 mg/kg but it exerted much weaker antitumor activity than LH05. LH05 at 10
260 mg/kg was well tolerated and no mice had obvious weight loss. The LH02 (an IL-15
261 superagonist) dosage used in this study was 0.25 mg/kg, as established in previous
262 research ^[22]. It is worth noting that LH05 also demonstrated superior antitumor
263 efficacy as compared with anti-PD-L1+LH02 (Fig. 5A-C).

264 We further explored the antitumor effects of LH05 in the murine MC38 colon
265 carcinoma model with a low uPA expression ^[16, 27]. LH05 exhibited comparable
266 antitumor efficacy with anti-PD-L1+LH02 but it was somewhat weaker than LH01
267 (Fig. 5D). Although LH05 did not improve the median overall survival (mOS) as
268 much as LH01 (28 vs 32.5), the difference was not statistically significant (Fig. 5E).
269 Notably, LH01 and anti-PD-L1+LH02 induced significant body weight loss after two
270 treatments, but not LH05, suggesting that the superior antitumor effects of LH01 was
271 at the expense of severe toxicity (Fig. 5F). Moreover, in the murine Renca renal cell
272 carcinoma model with a uPA expression level between MC38 and RM-1, LH05
273 generated a greater antitumor effect than LH01 or anti-PD-L1+LH02 (Fig. 5G and H)
274 ^[27]. Besides, among the treatments, LH01 induced the most significant decreases in
275 body weight in Renca tumor-bearing mice (18.14%, day 33 vs day 9) (Fig. 5I).

276 In all three tumor models, we observed that LH03 containing a non-cleavable linker

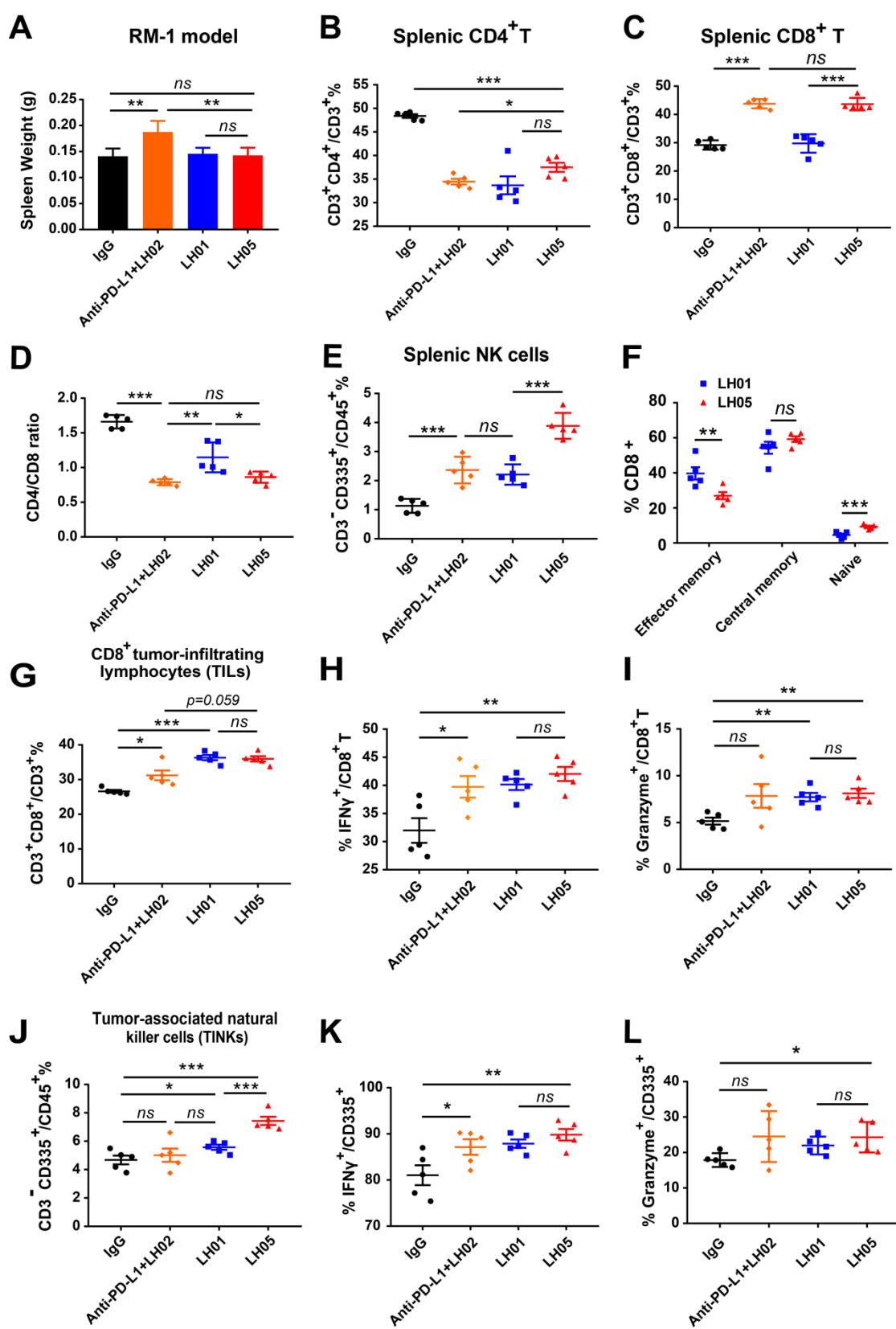
277 displayed substantially weaker antitumor effects than LH05, demonstrating that *in*
 278 *vivo* cleavage is required to release the masked LH05's bioactivity (Fig. 4A, D, and G,
 279 Fig. 1F, and Supplementary Fig. 2). These findings suggest that, compared with LH01,
 280 LH05 has superior tolerability while maintaining an uncompromised overall
 281 therapeutic effect in a proteolytic cleavage-dependent manner.

282
 283 **Fig. 5 LH05 exerts potent antitumor efficacy with reduced toxicity.**

284 Mice were randomized into four groups based on tumor size, with treatment initiating when
 285 tumors reached 50-100 mm³. Tumor growth curves were plotted over time. Mice were observed

286 for survival starting from the day after tumor cell inoculation. The body weights of tumor-bearing
287 mice were recorded throughout the study. **(A-C)** RM-1 tumor cells (5×10^5) were subcutaneously
288 implanted into the right flank of male C57BL/6J mice. On days 9, 12, and 15 (n = 12), mice were
289 intravenously injected with IgG control (10 mg/kg), anti-PD-L1 (10 mg/kg) + LH02 (0.25 mg/kg),
290 LH01 (2.5 mg/kg) or LH05 (10 mg/kg). **(D-F)** MC38 tumor cells (5×10^5) were subcutaneously
291 implanted into the right flank of female C57BL/6J mice. On days 8, 11, 14, and 17 (n = 10), mice
292 were intravenously injected with IgG control (10 mg/kg), anti-PD-L1 (10 mg/kg) + LH02 (0.25
293 mg/kg), LH01 (2.5 mg/kg) or LH05 (10 mg/kg). **(G-I)** Renca cells (5×10^5) were suspended in 50
294 μ L PBS and an equal volume of matrigel and subcutaneously implanted into the right flank of
295 female Balb/c mice. On days 9, 12, 16, and 21 (n = 6), mice were intravenously injected with IgG
296 control (10 mg/kg), anti-PD-L1 (10 mg/kg) + LH02 (0.25 mg/kg), LH01 (2 mg/kg) or LH05 (10
297 mg/kg). All graphs show the mean \pm SEM. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not
298 significant.

299 ***LH05 induces both innate and adaptive immune responses for tumor control***


300 In RM-1 tumor-bearing mice, anti-PD-L1+LH02 significantly increased the spleen
301 weight as compared with IgG, but there was no obvious spleen weight gain observed
302 in the LH05 treatment at a dose of 10 mg/kg (equivalent to 2.5 mg/kg of LH02 for
303 IL-15), implying that LH05 had very weak peripheral immunostimulatory activity
304 (Fig. 6A). A flow cytometry analysis of dissociated spleens and tumors from RM-1
305 tumor-bearing mice was then performed to explore the changes in splenic and
306 intratumoral CD8⁺ T or NK populations. The gating strategy for the analysis of T and
307 NK cells is shown in Supplementary Figs. 5 and 7. We observed that LH01, LH05,

308 and anti-PD-L1+LH02 treatments markedly decreased the frequency of splenic CD4⁺
309 T cells as compared with the IgG treatment (Fig. 6B). The percentage of splenic CD8⁺
310 T cells increased significantly in the LH05 and anti-PD-L1+LH02 groups but not in
311 the LH01 group (Fig. 6C). Furthermore, both LH05 and anti-PD-L1+LH02 treatments
312 led to significantly decreased splenic CD4/CD8 ratio as compared to the other three
313 treatments, indicating a stronger immune response (Fig. 6D). All other treatments
314 markedly increased the splenic NK cells when compared to IgG treatment, but the
315 percentage of NK cells was much lower in the LH01 group than in the LH05 group
316 (Fig. 6E). Interestingly, although LH05 treatment significantly increased the
317 percentage of splenic CD8⁺ T and NK cells, it did not induce spleen weight gain as
318 compared to IgG treatment.

319 To further compare the difference in peripheral immunostimulatory activity
320 between LH01 and LH05, we investigated the phenotypes of CD8⁺ T cells in the
321 spleen. We observed that LH05 and LH01 treatments induced comparable proportions
322 of central memory CD8⁺ T in the spleen, whereas LH01 treatment resulted in a
323 significantly higher percentage of effector memory CD8⁺ T in the spleen as compared
324 to LH05 treatment. Moreover, LH01 treatment markedly reduced the percentage of
325 splenic naïve CD8⁺ T-cell population as compared to LH05 treatment, partly
326 explaining why LH05 showed a better safety profile than LH01 (Fig. 6F).

327 LH05 treatment resulted in comparable increases in CD8⁺ tumor-infiltrating
328 lymphocytes (TILs) than LH01 (Fig. 6G). To assess whether LH05 treatment
329 enhanced the effector function of CD8⁺ T cells, we determined the IFN- γ and

330 granzyme expression of tumor-infiltrating CD8⁺ T cells by flow cytometry. We found
331 that LH05 treatment significantly increased the frequencies of both CD8⁺ IFN γ ⁺ and
332 CD8⁺ granzyme⁺ T cells inside the tumor as compared with IgG treatment, but no
333 significant difference was observed between the LH05 and LH01 groups (Fig. 6H and
334 I). However, LH05 treatment led to significantly higher levels of tumor-associated NK
335 cells (TINKs) than LH01 treatment, which could explain why LH05 exhibited
336 superior antitumor efficacy to LH01 (Fig. 6J). Similarly, LH05 treatment increased the
337 frequencies of IFN- γ and granzyme-expressing CD335⁺ NK cells as compared to IgG
338 treatment, but no significant difference was observed between the LH01 and LH05
339 groups (Fig. 6K and L). Altogether, these results showed that LH05 can be
340 enzymatically cleaved within the TME, and the released ILR can activate the CD8⁺ T
341 and NK cells for tumor inhibition.

342

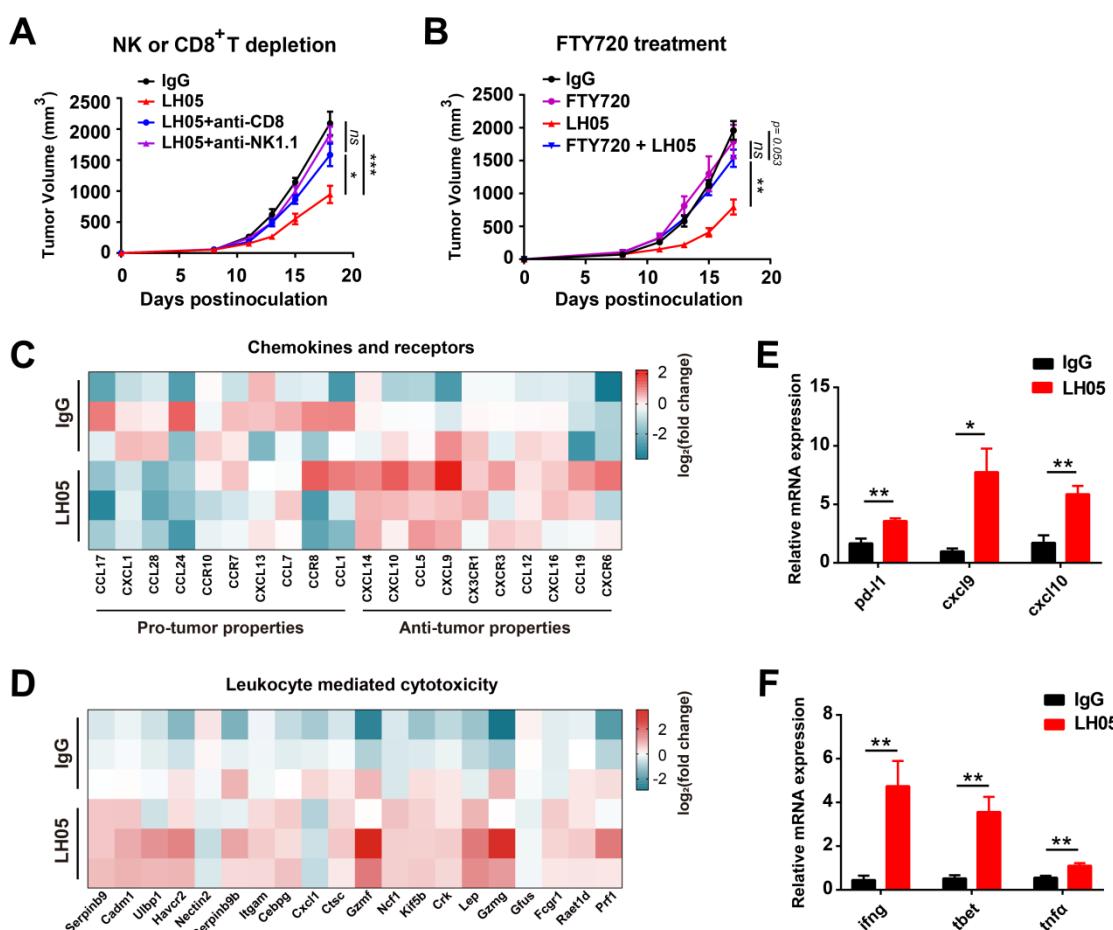
343 **Fig. 6 LH05 induces both adaptive and innate immune cells activation.**

344 Flow cytometry analysis of spleens and tumors of RM-1 tumor-bearing mice treated as described

345 in Fig. 5. **(A)** The spleens of RM-1 tumor-bearing mice were extracted and weighed after
346 euthanasia (n = 5). **(B and C)** The frequency of splenic CD4⁺ T cells (B) and CD8⁺ T cells (C) for
347 CD3⁺ lymphocytes, respectively. **(D)** The ratio of CD4⁺ to CD8⁺ T cells was calculated. **(E)** The
348 percentage of splenic NK cells for CD45⁺ lymphocytes was determined. **(F)** The expression of the
349 memory cell markers CD62L and CD44 on splenic CD8⁺ T cells were assessed. **(G-I)** The
350 percentage of intratumoral CD8⁺ T cells (G) within the population of CD3⁺ lymphocytes, and the
351 frequency of IFN γ ⁺ (H) or perforin⁺ (I) CD8⁺ T cells within the tumor were assessed. **(J-L)** The
352 percentage of intratumoral NK cells (J) within the population of CD45⁺ lymphocytes, and the
353 frequency of IFN γ ⁺ (K) or perforin⁺ (L) NK cells within the tumor were determined. All graphs
354 show the mean \pm SEM. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.

355 ***Both CD8⁺ T and NK cells recruited by LH05 contribute to its antitumor efficacy***

356 First, we calculated the correlation coefficients of IL-15 expression and immune
357 infiltration levels by employing the MCP-counter, xCELL, and CIBERSORT abs.
358 mode algorithms. Then, we depicted the landscape of IL-15 correlating with immune
359 cell infiltrates in various TCGA cohorts. Our resulting heatmap showed a statistically
360 significantly positive correlation between IL-15 expression and immune infiltration of
361 NK cells, particularly activated NK cells, and the central and effector memory subset
362 of CD8⁺ T cells in the majority of cancers (Supplementary Fig. 8).


363 To ascertain which cell type contributes to LH05-mediated tumor control, we
364 depleted the CD8⁺ T or NK cells in RM-1 tumor-bearing mice with respective
365 depletion antibodies. The results showed that the depletion of NK cells completely
366 abrogated the antitumor efficacy of LH05, indicating that NK cells played an essential

367 role in tumor killing (Fig. 7A). Depleting CD8⁺ T cells also compromised LH05's
368 therapeutic effect, suggesting that CD8⁺ T cells are required for tumor immunity (Fig.
369 7A). We then used FTY720 (an inhibitor of T and NK cells egress from lymph nodes)
370 to further determine whether the pre-existing immune cells within the tumor or
371 recruited cells are indispensable for LH05's anticancer effect. The experiment
372 revealed that inhibiting lymph node egress almost entirely eliminated LH05's efficacy
373 (Fig. 7B). Additionally, the RM-1 tumor is known as a typical "cold tumor," with few
374 pre-existing T cells. Altogether, these findings suggest that LH05's antitumor activity
375 is primarily dependent on CD8⁺ T and NK cells that infiltrate the TME from the
376 circulation, making it a promising candidate in the treatment of "cold tumors."

377 To further evaluate the impact of LH05 treatment on immune responses, we
378 conducted RNA sequencing (RNA-seq) of RM-1 tumors treated with or without LH05.
379 A gene set enrichment analysis revealed that the LH05 treatment positively impacted
380 the expression profile of chemokines and receptors in RM-1 tumors. Specifically, we
381 observed a decrease in the expression of chemokines and receptors known for
382 pro-tumor effects, such as CXCL1 and CCL28, whereas the expression of chemokines
383 and receptors with antitumor properties, such as CXCL9 and CXCL10, was increased
384 (Fig. 7C). These findings suggest that LH05 may potentially modulate the TME by
385 altering the chemokine and receptor signaling balance toward an antitumor immune
386 response. Additionally, we also discovered that LH05 treatment led to a general
387 enhancement of immune pathways in the tumor tissue and an increase in the
388 expression of genes related to leukocyte-mediated cytotoxic effector activity (Fig. 7D

389 and Supplementary Fig. 9). These results are consistent with the findings from those
390 obtained by flow cytometry (Fig. 6), indicating that LH05 have immunostimulatory
391 effects on the TME.

392 We previously reported that the anti-PD-L1 treatment increased the *pd-l1*
393 expression in tumors ^[22]. In the present study, the *pd-l1* level was significantly
394 up-regulated by LH05, implying an improvement in antitumor immune responses.
395 Two CXCR3 ligands, CXCL9 and CXCL10, are critical factors that facilitate immune
396 cell migration to the TME and bring “heat” to tumors ^[28]. LH05 treatment resulted in
397 a dramatic increase in *cxcl9* and *cxcl10* expression, which may explain the recruitment
398 of CD8⁺ T cells in RM-1 tumors (Fig. 7E). Compared to IgG treatment, LH05
399 treatment also significantly increased the expression of *ifng*, *tnfa*, and *tbet* expression
400 in the tumor, suggesting a T helper (Th) 1-skewed TME (Fig. 7F). IL-15 promotes
401 intratumoral immune cell functions via a cytokine network involving XCL1, IFN- γ ,
402 CXCL9, and CXCL10 ^[29]. Taken together, when LH05 reaches the TME, the
403 reactivated LH05, specifically the released ILR, can stimulate an immune-activating
404 microenvironment by recruiting CD8⁺ T and NK cells, promoting their expansion and
405 cytotoxicity, and inducing Th-1 type cytokines secretion to exert a potent antitumor
406 immunity.

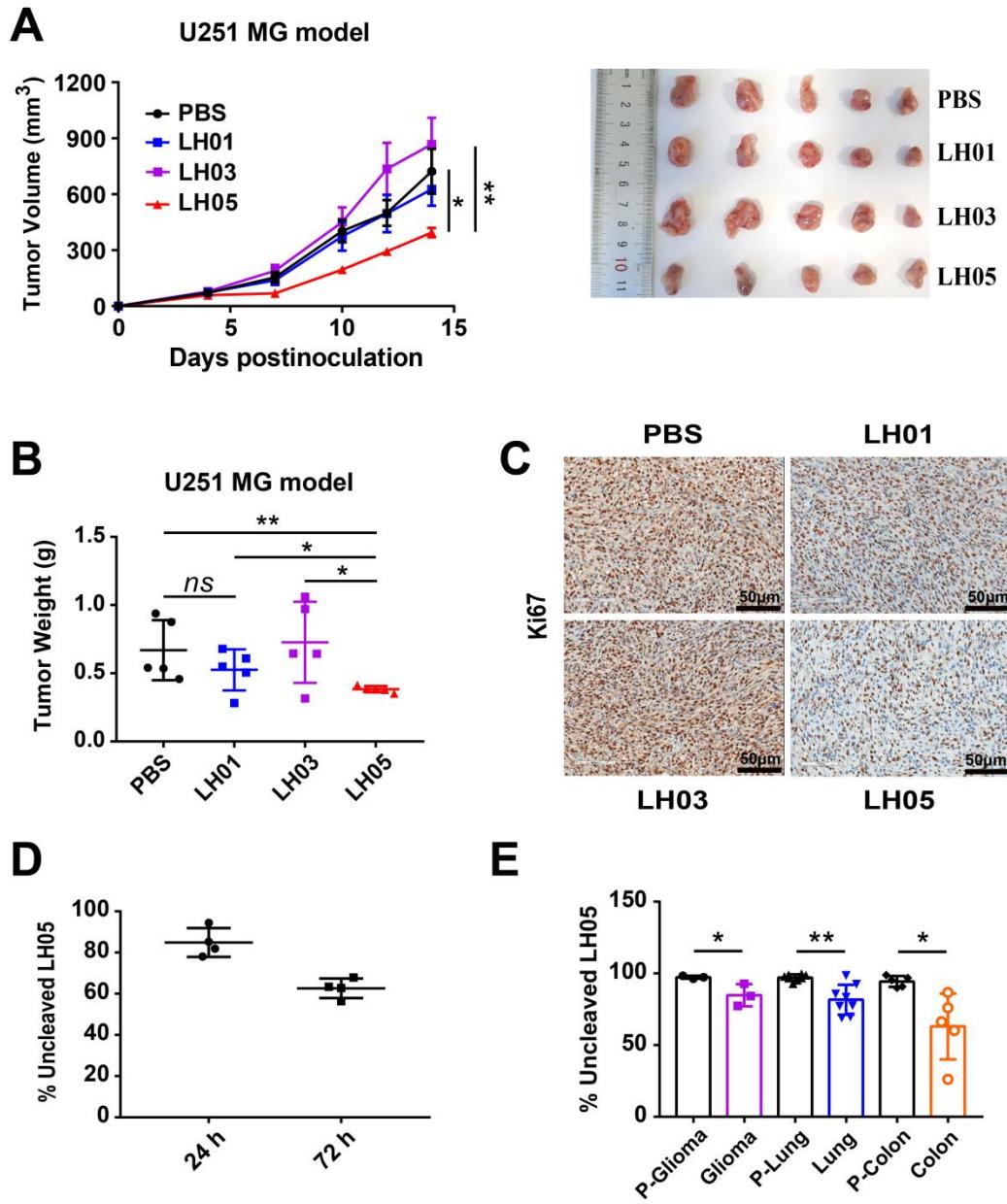
408 **Fig. 7 The recruited CD8⁺ T cells and NK cells contribute to LH05-mediated antitumor**
409 **efficacy.**

410 **(A and B)** Growth curves of RM-1 tumors of mice treated with IgG, LH05, and CD8⁺ T or NK
411 cells depletion (using anti-CD8 or anti-NK1.1 antibody, respectively) (A), or FTY720 (B) in the
412 presence or absence of LH05. **(C and D)** The heatmaps depict gene expression alterations of
413 chemokines and receptors (C) and leukocyte-mediated cytotoxic effector (D) in response to
414 treatment, as indicated by the log2(fold change) values. **(E and F)** The expression levels of *pd-l1*,
415 *cxcl-9*, and *cxcl-10* (E), and *ifng*, *t-bet*, and *tnfα* (F) in the TME were measured using quantitative
416 real-time PCR. All graphs show the mean \pm SEM. * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$; ns, not
417 significant.

418

419 ***LH05 restores response to immunotherapy in U251 cold tumors***

420 Glioblastoma (GBM) is a highly malignant primary brain tumors with a five-year
421 survival rate of <5% despite treatment by surgical resection, targeted radiation therapy,
422 and chemotherapy ^[30]. GBMs are considered “cold” tumors characterized by poor
423 lymphocyte infiltration and an immunosuppressive TME, which poses challenges for
424 ICIs to stimulate effective antitumor immune responses ^[31].


425 Given LH05’s ability to overcome ICI resistance and re-induce immunotherapeutic
426 responses, we evaluated its antitumor efficacy in the U251 glioblastoma xenograft
427 model. LH01 was used as a control with a dosage of 3 mg/kg for safety concerns. The
428 results showed that LH01 exhibited only a minor antitumor effect without statistically
429 significant differences when compared to that of PBS, indicating that it failed to elicit
430 a robust immune response to inhibit tumor growth. Contrarily, the LH05 treatment
431 significantly reduced the tumor volume and weight compared with PBS or LH03 (10
432 mg/kg) controls, indicating that LH05 cleaved in the TME can trigger profound
433 antitumor immunity and efficiently suppress tumor growth (Fig. 8A and B). At 10
434 mg/kg, LH05 was well tolerated and did not cause weight loss in the U251
435 tumor-bearing mice (Supplementary Fig. 10). Furthermore, LH05 treatment
436 significantly reduced Ki67 expression of tumors when compared with the other three
437 treatments, demonstrating a reduced tumor cell proliferation and metastasis ability
438 (Fig. 8C). Overall, LH05’s ability to overcome immunotherapy resistance and
439 stimulate antitumor immunity in the glioblastoma model highlights its potential as a
440 therapeutic strategy for other tumors types with similar immunosuppressive

441 characteristics.

442 ***LH05 is stable in human serum and susceptible to tumor-specific proteolytic***
443 ***cleavage***

444 Given the marked increase in protease expression in solid human tumors, we verified
445 LH05's efficient and selective cleavage in a range of primary human tumor samples.
446 We first incubated LH05 with human serum from healthy donors (n = 4) for 24 or 72
447 hours. LH05 underwent slight cleavage after incubation for 24 hours, with only an
448 approximately 40% cleavage rate observed after 72 hours (Fig. 8D), demonstrating a
449 good human serum stability.

450 To evaluate the specificity of LH05 cleavage by tumors versus healthy tissues, we
451 obtained various tumors and their corresponding peri-tumoral tissues from patients.
452 We homogenized these tissues and incubated the homogenates with LH05; then,
453 ELISA was performed to quantify the un-cleaved and total LH05. As expected, the
454 cleavage efficiency rates varied across individuals. Some colonic tumors efficiently
455 cleaved LH05 (>40% within 24 hours), but the lung or glioma tumors exhibited only
456 35% or even a lower cleavage after 24 hours of digestion (Fig. 8E). Notably, no LH05
457 cleavage was observed in any of the adjacent normal tissue homogenates, indicating
458 that LH05 is stable in human normal tissues (Fig. 8E). Overall, these data suggest that
459 LH05 has a low risk of systemic toxicity due to its high peripheral stability and can be
460 specifically activated in human tumors. However, careful consideration of tumor types
461 is crucial to guarantee efficient cleavage *in vivo*.

462

463 **Fig. 8 LH05 exerts enhanced antitumor efficacy than LH01 in U251 cold tumor.**

464 (A) NCG mice were inoculated subcutaneously with 2×10^6 U251 cells and received 4.0×10^6
465 fresh human PBMCs intravenously on day 4. Mice were then randomized into four groups, and
466 treatment initiated when tumors reached 50-100 mm³. The groups were treated with PBS, LH03
467 (10 mg/kg), LH01 (3 mg/kg), or LH05 (10 mg/kg) intraperitoneally on days 5, 8, and 11 (n = 5).
468 Tumor volumes were measured. (B) After euthanasia, tumors were removed, weighed, and
469 photographed. (C) Immunohistochemical staining for Ki67 was performed on the tumor tissues to

470 assess cell proliferation. **(D)** LH05 was incubated with human serum at 37°C for 24 or 72 hours
471 before the cleavage was measured by ELISA (n = 4). **(E)** LH05 was incubated with human cancer
472 homogenate or adjacent normal tissues homogenate at 37°C for 24 hours, and the cleavage
473 efficiency was detected by ELISA. Data are shown as the mean \pm SEM. * p < 0.05; ** p < 0.01;
474 *** p < 0.001; ns, not significant.

475 **Discussion**

476 Immunocytokines are designed to enhance the targeting activity of cytokines, but only
477 a modest 10-fold increase in targeted activity is reportedly achieved, which provides a
478 limited increase in the therapeutic index ^[32]. In clinical studies, the majority of
479 immunocytokines still has a dose-limiting toxicity similar to the parental cytokines ^[33].
480 To achieve more effective modalities of immunocytokines, further reducing systemic
481 toxicity and increasing antitumor activity are imperative.

482 One solution for reducing systemic toxicity of immunocytokines is to engineer
483 cytokines with reduced affinity for their cognate receptors ^[34-36]. Decreasing affinity
484 toward the cognate receptor can reduce the “cytokine sink” effect, thereby extending
485 half-life. Additionally, the lower biological activity allows for higher doses and
486 immunocytokine accumulation at the tumor site. For example, IL-2 has been
487 engineered to reduce its affinity for IL-2R α or IL-2R β/γ ^[37-39]. However, these
488 mutants reduced the affinity of immunocytokines for both tumoral and peripheral
489 lymphocytes, posing a challenge to the balance between insufficient antitumor activity
490 at low doses and the risk of systemic toxicity at high doses.

491 Prodrug-based strategies for conditionally activating cytokines in the TME can

492 potentially improve their safety profile while maintaining the antitumor activity. One
493 of the most promising directions for achieving tumor-localized cytokine activation is
494 by leveraging tumor-associated proteases. Until now, two main prodrug strategies
495 have been developed for macromolecules, including monoclonal antibodies, using a
496 masking domain or via steric hindrance. Various masking domains have been used to
497 shield cytokines, including native cytokine receptors, antibody fragments,
498 anti-cytokine antibodies, and peptides ^[12]. Fu et al. have reported cognate
499 receptor-masked IL-2, IL-12, IL-15, and IFN- α prodrugs ^[13-16]. WTX-124, an IL-2
500 prodrug, comprising native human IL-2 linked to a Fab antibody fragment
501 (inactivation domain) and a single-domain antibody targeting human albumin
502 (half-life extension domain), has entered phase I clinical trial (NCT05479812) by
503 Werewolf ^[40]. However, the released masking moiety might still bind to the activated
504 cytokine due to its high affinity, and the introduction of the masking domain could
505 complicate the structure and increase the immunogenicity risk.

506 Currently, there is limited research on immunocytokine prodrugs. Only Askgene
507 has reported an anti-PD-1/IL-15 prodrug, ASKG915, that utilizes IL-2R β to mask the
508 IL-15 activity ^[41]. In this study, we propose a next-generation immunocytokine
509 prodrug strategy with two features: 1) a novel steric hindrance method is used to mask
510 cytokine activity; and 2) the cytokine would not be confined to the antibody moiety
511 but be released after a tumor-associated proteolysis. With this strategy we constructed
512 a tumor-conditional anti-PD-L1/IL-15 immunocytokine, LH05, which has a
513 prolonged plasma half-life and improved safety profile due to the attenuated “cytokine

514 “sink” effect in circulation. As expected, it exhibited a potent antitumor efficacy in a
515 proteolytic cleavage-dependent manner with significantly lower systemic toxicity than
516 wild-type anti-PD-L1/IL-15. Our results showed that our design has the following
517 clear advantages: it does not introduce additional proteins or peptides, thereby
518 avoiding an increase in structural complexity or the potential for immunocytokine
519 immunogenicity; and after cleavage, the released ILR can elicit broad-spectrum
520 immune responses with superior antitumor efficacy.

521 Mechanically, the excellent efficacy of LH05 can be attributed to both the
522 PD-L1-trans delivery of ILR to the TME and the release of active ILR after cleavage.
523 Previously reported PD-1 cis-targeted IL-2/IL-15R agonists, including PD-1-laIL-2,
524 α PD1-IL15m, and α PD1-IL15-R, can selectively deliver IL-2 or IL-15 to PD-1⁺CD8⁺
525 TILs and bypass NK cells ^[42-44]. All of these immunocytokines showed an antitumor
526 efficacy that was dependent on intra-tumoral CD8⁺ T cells but not on NK or lymph
527 node T cells. However, in our study, the IL-15 superagonist ILR was trans-delivered
528 into the TME by the anti-PD-L1 moiety, and it not only stimulated the adaptive and
529 innate immune cells but also increased their infiltration into tumor tissues, illustrating
530 a more comprehensive antitumor role than the PD-1-cis-delivered immunocytokines.

531 RM-1 prostate carcinoma and U251 glioblastoma are both considered
532 immunologically “cold” tumors, where therapeutic difficulties and failures are
533 primarily due to an immune-hostile and immunosuppressive TME that abrogates
534 T-cell infiltration and activation. LH05 showed significant antitumor effects in both of
535 these models, indicating its potential as a treatment for cold tumors. To further explore

536 why LH05 is effective, we investigated the TME. CXCL9 and CXCL10 are two
537 critical chemokines for recruiting effector T cells from the circulation into the tumor
538 and establishing a “hot” TME ^[27]. Our findings revealed that LH05 treatment
539 significantly increased the mRNA levels of CXCL9 and CXCL10 but it had no
540 influence on the Treg recruiting CCL-17 and CCL-22 (Supplementary Fig. 11) ^[45].
541 Additionally, there was a significant increase in the IFN γ , TNF- α , and T-bet
542 expression levels after LH05 treatment, suggesting a Th1-biased TME. Moreover, the
543 greatly improved safety of conditionally activated LH05 allows the use of higher
544 doses, which is beneficial for improving antitumor effects.

545 In conclusion, LH05 represents a new class of next-generation immunocytokines
546 that differ from all the reported molecules, including conditionally activated cytokines
547 or immunocytokines ^[12]. In preclinical models, it demonstrated a favorable safety
548 profile and superior antitumor efficacy. LH05 has a great potential for creating a “hot”
549 TME by recruiting lymphocytes from the circulation into the tumor and inducing a
550 Th1-skewed TME. Therefore, it is a promising candidate for further clinical
551 investigation in patients with ICIs resistance or cold tumors. However, individual
552 differences in tumor-associated protease expression levels, including uPA, MMPs, or
553 matriptase, could add uncertainty to the clinical application of such products, which
554 should also be considered in all prodrug strategies.

555 **Materials and Methods**

556 **Cloning, expression, and purification**

557 LH01, LH02, and anti-PD-L1 were constructed and produced as previously described

558 [22]. For LH03 or LH05 construction, the human IL-15 mutant
559 (IL-15N72D)/IL-15R α -sushi domain (Ile31 to Val 115) complex (ILR) was fused to
560 the C-terminal of anti-PD-L1 heavy chain via a GS flexible linker or a uPA-substrate
561 linker, respectively, in the pMF09 vector we reported before [46]. The light and heavy
562 chain expression plasmids of LH03 or LH05 were mixed with 25 kDa linear
563 polyethylenimine (PEI, Polysciences) and transiently transfected in HEK293E cells.
564 All fusion proteins were purified by using a protein A affinity column (GE Healthcare)
565 and analyzed on SDS-PAGE in the reducing condition.

566 **Cell lines**

567 HEK293E and Mo7e cell lines were kept in our laboratory and cultured as previous
568 described [22]. RM-1 murine prostate carcinoma cell line, MC38 murine colon
569 carcinoma cell line, Renca murine renal carcinoma cell line, and U251 human
570 glioblastoma cell line were obtained from the American Type Culture Collection
571 (ATCC). RM-1, MC38, Renca, and U251 cells were maintained in Dulbecco's
572 modified Eagle's medium (DMEM) containing 10% FBS. All of the cells mentioned
573 above were kept in aseptic conditions and incubated at 37°C with 5% CO₂.

574 **ELISA to evaluate the affinity of anti-PD-L1/IL-15 for PD-L1**

575 ELISAs were conducted following standard procedures. Briefly, 96-well ELISA plates
576 (Corning) were coated with 1.0 μ g/mL of recombinant human or mouse PD-L1
577 (Novoprotein) overnight at 4°C, followed by washing four times with PBST (PBS,
578 0.05% Tween-20) and blocked with 5% bovine serum albumin for 2 hours at room
579 temperature. After washing the plates, serial dilutions (1:3) of LH01, LH05, or

580 anti-PD-L1 antibody were added in duplicate to the plates and incubated at room
581 temperature for 2 hours. The plates were washed four times and then incubated with
582 Peroxidase AffiniPure Goat Anti-Human IgG (H+L) (Jackson ImmunoResearch,
583 1:10,000 dilution) at room temperature for 1 hour. After washing, the plates were
584 incubated with TMB single component substrate solution (Solarbio) in the dark for
585 3-5 min. The reaction was stopped with 2 M sulfuric acid, and absorbance was read at
586 450 nm with a reference at 630 nm (Teacan, Infinite 200 PRO).

587 **Pharmacokinetics studies of immunocytokines**

588 Plasma samples were collected 5 min, 0.5 h, 1 h, 4 h, 8 h, 24 h, and 48 h after
589 intraperitoneal injection with 1 mg/kg LH01 or LH05. A 96-well ELISA plate,
590 previously coated overnight at 4°C with 1.0 µg/mL of recombinant human PD-L1,
591 was incubated for 2 hours with plasma samples from mice. The following
592 experimental procedure for ELISA was the same as described above.

593 **Quantitative biodistribution studies of immunocytokine**

594 Heart, liver, spleen, lung, kidney, and tumor tissues of RM-1 tumor-bearing mice were
595 collected. About 25 mg of tissues were weighed and homogenized in 10% PBS before
596 being centrifuged to obtain supernatant. We employed two ELISA assays to quantify
597 the amount of LH01 or LH05, either cleaved or un-cleaved, in each homogenate,
598 normalized by total tissue weight. And the above ELISA assay developed to evaluate
599 anti-PD-L1/IL-15 affinity for PD-L1 was used to detect the total amount of LH01 or
600 LH05 in both cleaved and un-cleaved forms. Since both LH01 and LH05 can bind
601 IL-15R β with high affinity, an ELISA assay was developed to detect LH01 or

602 un-cleaved LH05 with IL-15R β coated on the plate and Peroxidase AffiniPure Goat
603 Anti-Human IgG (H+L) (Jackson ImmunoResearch, 1:10,000 dilution) as the
604 detection antibody. In detail, 2.0 μ g/mL of recombinant human IL-15R β was coated
605 overnight at 4°C, and then incubated with supernatant from tissue homogenate for 2
606 hours. The following experimental procedure for ELISA was the same as described
607 above.

608 ***In vitro* cleavage of immunocytokines with uPA**

609 *In vitro* cleavage was performed by incubating 10 μ g LH03 or LH05 with 0.25 μ g uPA
610 in phosphate buffer saline in a total reaction volume of 10 μ L at 20°C for 12 h.

611 **LH05 stability in human serum and cleavage of LH05 by human tumors**

612 Human serum was purchased from Shanghai Xinfan Biotechnology Co., Ltd. 1 μ L
613 LH05 (2 μ g) was added to 9 μ L human serum, then incubated at 37 °C for 24 or 72
614 hours. Colon, lung and brain tumors as well as their adjacent peritumoral tissues were
615 collected from Zhejiang University School of Medicine, Shanghai Jiao Tong
616 University School of Medicine, and Fudan University School of Medicine,
617 respectively. All subjects provided broad informed consent for the research use of
618 their biological samples. Homogenization was performed using FastPrep tissue
619 homogenizer (MP Bio, USA). Supernatant was collected by centrifugation at 10000 g
620 for 15 min. For the cleavage experiments, 9 μ L tissue lysate was incubated with 0.2
621 μ g LH05 (0.2 mg/mL) at 37°C for 24h.

622 The un-cleaved and total LH05 was quantified by the ELISA described above. To
623 confirm the feasibility of the above ELISA methods, LH03 containing non-cleavable

624 linker and uPA-activated LH05 were included as negative and positive control,
625 respectively.

626 **Mo7e cell proliferation assay**

627 Mo7e cells were washed with human GM-CSF free medium (RPMI1640 + 10% FBS)
628 before being seeded into 96-well plates at a density of 2×10^4 cells in a volume of 50
629 μL per well. After 4 hours' starvation, serial dilutions (1:3) of LH01, LH03, or LH05
630 (treated with or without uPA) were added to the plate in sextuplicate at 50 μL per well
631 to achieve a final density of 2×10^4 cells/100 μL /well. Cell viability was measured
632 using the Cell Counting Kit-8 kit (Dojindo, Japan) after 96 hours of incubation at
633 37°C with 5% CO₂. The absorbance was read at 450 nm with an ELISA reader
634 (Teacan, Infinite 200 PRO), and the final OD450 value of the sample wells have
635 subtracted the blank reading.

636 **Animal experiments**

637 All animal experiments were approved by the Animal Care and Use Committee of
638 Shanghai Jiao Tong University. Sex-matched Balb/c and C57BL/6 mice aged 6-8
639 weeks were purchased from Shanghai SLAC Laboratory Animal Co., Ltd. Female
640 NCG mice aged 6-8 weeks were purchased from Jiangsu GemPharmatech LLC. All
641 mice were raised in pathogen-free environments and received humane treatment
642 throughout the experimental period. Human peripheral blood mononuclear cells
643 (PBMCs) were purchased from Shanghai Milestone Biotechnologies. For antitumor
644 studies, tumors were measured every two or three days using a digital caliper, and
645 volumes were calculated as (length \times width²) $/2$. Tumor Growth Inhibition (TGI): TGI

646 (%) = $100 \times (1 - T/C)$. T and C were the mean tumor volumes of the treated and control
647 groups, respectively.

648 **Flow cytometry analysis**

649 About 150 mg of tumor tissues was cut into small pieces and re-suspended in
650 digestion buffer [RPMI1640 medium containing collagenase IV (2 mg/mL) and
651 hyaluronidase (1.2 mg/mL)]. Tumors were digested for 60 min at 37°C and then
652 filtered through a 200-mesh nylon net to obtain the cell suspension. The cells were
653 washed by RPMI 1640 and filtrated through a 200-mesh nylon net again, and then
654 resuspended in FACS buffer (PBS + 2% FBS) to obtain pre-treated single cell
655 suspension. Splenic lymphocytes were isolated from the spleens with lymphocyte
656 separation medium (Dakewe, China) after the spleens were gently ground.

657 Cell samples were blocked with anti-mouse CD16/CD32 mAb 2.4G2 (BD
658 Biosciences, USA) at 4°C for 30 min before being incubated with surface marker
659 antibodies at 4°C for 30 min. The Zombie Red Fixable Viability Kit (BioLegend) was
660 used to exclude dead cells. For the detection of intracellular IFN- γ and granzyme, cell
661 samples were further fixed and permeabilized by Fixation/Permeabilization Kit (BD
662 Biosciences).

663 The following antibodies and reagents were used: mouse anti-mouse
664 CD45.2-APC-Cy7 (BD Biosciences), hamster anti-mouse CD3e-FITC (BD
665 Biosciences), rat anti-mouse CD4-PE (BD Biosciences), rat anti-mouse CD8a-BV510
666 (BD Biosciences), rat anti-mouse CD8a-APC (BD Biosciences), rat anti-mouse
667 Nkp46-BV421 (BioLegend), rat anti-mouse Nkp46-Alexa Flour 647 (BD

668 Biosciences), rat anti-mouse IFN- γ -BV786 (BD Biosciences), mouse
669 anti-human/mouse Grzyme B-PE Cyanine 7 (BioLegend), rat anti-mouse CD8-FITC
670 (BioLegend), rat anti-mouse CD44-PE (BioLegend), rat anti-mouse CD62L-APC (BD
671 Biosciences). Flow cytometry was performed using CytoFLEX cytometer (Beckman
672 Coulter, USA) or ACEA Novocyte (Agilent, Technologies, USA) and analyzed by
673 FlowJo 10 (TreeStar, USA) or NovoExpress (Agilent, Technologies, USA).

674 **Detection of plasma ALT, AST, CREA, UREA, IFN- γ , and IL-6**

675 Plasma levels of ALT, AST, CREA, and UREA were measured with a Roche
676 biochemical analyzer (Roche, Switzerland). Plasma levels of IFN- γ and IL-6 was
677 determined by mouse IFN- γ and IL-6 ELISA Kit (Multi Sciences, China) according to
678 the manufacturer's procedures, respectively.

679 **Depletion of immune cells in mice**

680 To deplete the individual immune cell types, RM-1 tumor-bearing mice were
681 intravenously injected with IgG control (10 mg/kg) or LH05 (10 mg/kg) on days 9, 12,
682 and 15. For cell depletion, mice were intraperitoneally given 200 μ g of anti-NK1.1
683 antibody (BioXcell, BE0036) or 200 μ g anti-CD8 α antibody (BioXcell, BE0061) on
684 days 7, 9, and 13. Tumor growth curves ($n = 5$) were plotted. To study the effect of
685 lymphocytes egressing from lymph nodes, RM-1 tumor-bearing mice were
686 administered with IgG (10 mg/kg, i.v.), LH05 (10 mg/kg, i.v.), or FTY720
687 (Sigma-Aldrich, USA) with or without LH05. FTY720 (25 μ g) was intraperitoneally
688 administered every other day beginning 8 days after tumor cell inoculation ($n = 6$).

689 **RNA isolation and qRT-PCR analysis**

690 Total RNAs were extracted from tissues using the Ultrapure RNA Kit (Cwbio, China),
691 and cDNA was synthesized using a PrimeScript RT Master Mix (Takara, Japan).
692 Real-time qRT-PCR was performed on an Applied Biosystems 7500 Fast Real-Time
693 PCR System (Thermo Fisher Scientific, USA) using Hieff qPCR SYBR Green Master
694 Mix (Yeasen, China). The primer sequences are listed in Table S1. All results were
695 normalized to GAPDH expression and calculated using the $2^{-(\Delta\Delta Ct)}$ method.

696 **Immunohistochemistry analysis**

697 The tumor tissues were fixed in 4% paraformaldehyde, embedded in paraffin, and
698 sectioned (4 μ m). After dewaxing and hydration, heat-induced epitope retrieval and 3%
699 H_2O_2 treatment were used to block endogenous peroxidase activity. The tumor
700 sections were then blocked with 5% BSA for 30 min before being incubated with
701 anti-human Ki67 rabbit antibody (Servicebio, China) at 4°C overnight. Next, the
702 sections were incubated with the HRP-conjugated goat anti-rabbit secondary antibody
703 (Servicebio, China) for 60 min. Finally, the sections were stained with a DAB
704 detection kit (Dako, Copenhagen, Denmark) and hematoxylin, then observed and
705 photographed with an OLYMPUS BX53 Microscope.

706 **Statistical analysis**

707 Prism 7.0 software (GraphPad, USA) was used for statistical analysis. The two-tailed
708 Student's t test and analysis of variance were used to determine the statistical
709 significance of differences between experimental groups (*: $p < 0.05$, **: $p < 0.01$,
710 ***: $p < 0.001$). The log rank (Mantel-Cox) test was used to assess survival.

711 **Competing interests**

712 The authors declare no competing interests.

713 **References**

- 714 1. Zheng, X. et al. The use of supercytokines, immunocytokines, engager cytokines, and
715 other synthetic cytokines in immunotherapy. *Cell Mol Immunol.* **19**, 192-209 (2022).
- 716 2. Hutmacher, C. & Neri, D. Antibody-cytokine fusion proteins: Biopharmaceuticals with
717 immunomodulatory properties for cancer therapy. *Adv Drug Deliv Rev.* **141**, 67-91
718 (2019).
- 719 3. Gout, D. Y., Groen, L. S. & van Egmond, M. The present and future of immunocytokines
720 for cancer treatment. *Cell Mol Life Sci.* **79**, 509 (2022).
- 721 4. Valedkarimi, Z., Nasiri, H., Aghebati-Maleki, L. & Majidi, J. Antibody-cytokine fusion
722 proteins for improving efficacy and safety of cancer therapy. *Biomed Pharmacother.* **95**,
723 731-742 (2017).
- 724 5. Runbeck, E., Crescioli, S., Karagiannis, S. N. & Papa S. Utilizing Immunocytokines for
725 Cancer Therapy. *Antibodies.* **10**, 10 (2021).
- 726 6. Mortezaee, K. & Majidpoor, J. Checkpoint inhibitor/interleukin-based combination
727 therapy of cancer. *Cancer Med.* **11**, 2934-2943 (2022).
- 728 7. Cauwels, A. et al. A safe and highly efficient tumor-targeted type I interferon
729 immunotherapy depends on the tumor microenvironment. *Oncoimmunology.* **7**, e1398876
730 (2017).
- 731 8. Neri, D. Antibody-Cytokine Fusions: Versatile Products for the Modulation of Anticancer
732 Immunity. *Cancer Immunol Res.* **7**, 348-354 (2019).
- 733 9. Luke, J.J. et al. Phase I dose escalation of KD033, a PDL1-IL15 bispecific molecule, in

734 advanced solid tumors. *J Clin Oncol.* **39:15(suppl)**, 2568-2568 (2021).

735 10. Finn, R. S. et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular

736 Carcinoma. *N Engl J Med.* **382**, 1894-1905 (2020).

737 11. Lin, W. W., Lu, Y. C., Chuang, C.H. & Cheng, T. L. Ab locks for improving the selectivity

738 and safety of antibody drugs. *J Biomed Sci.* **27**, 76 (2020).

739 12. Holder, P. G. Engineering interferons and interleukins for cancer immunotherapy. *Adv*

740 *Drug Deliv Rev.* **182**, 114112 (2022).

741 13. Hsu, E. J. et al. A cytokine receptor-masked IL2 prodrug selectively activates

742 tumor-infiltrating lymphocytes for potent antitumor therapy. *Nat Commun.* **12**, 2768

743 (2021).

744 14. Xue, D. et al. A tumor-specific pro-IL-12 activates preexisting cytotoxic T cells to control

745 established tumors. *Sci Immunol.* **7**, eabi6899 (2022).

746 15. Guo, J. et al. Tumor-conditional IL-15 pro-cytokine reactivates anti-tumor immunity with

747 limited toxicity. *Cell Res.* **31**, 1190-1198 (2021).

748 16. Cao, X. et al. Next generation of tumor-activating type I IFN enhances anti-tumor

749 immune responses to overcome therapy resistance. *Nat Commun.* **12**, 5866 (2021).

750 17. Lodolce, J. P. et al. Regulation of lymphoid homeostasis by interleukin-15. *Cytokine*

751 *Growth Factor Rev.* **13**, 429-439 (2002).

752 18. Waldmann, T.A., Dubois, S., Miljkovic, M. D. & Conlon, K. C. IL-15 in the Combination

753 Immunotherapy of Cancer. *Front Immunol.* **11**, 868 (2020).

754 19. Wrangle, J. M. et al. ALT-803, an IL-15 superagonist, in combination with nivolumab in

755 patients with metastatic non-small cell lung cancer: a non-randomised, open-label, phase

756 1b trial. *Lancet Oncol.* **19**, 694-704 (2018).

757 20. Martomo, S. A. et al. Single-Dose Anti-PD-L1/IL-15 Fusion Protein KD033 Generates

758 Synergistic Antitumor Immunity with Robust Tumor-Immune Gene Signatures and

759 Memory Responses. *Mol Cancer Ther.* **20**, 347-356 (2021).

760 21. Chung, K. Y. et al. Phase I study of BJ-001, a tumor-targeting interleukin-15 fusion

761 protein, in patients with solid tumor. *J Clin Oncol.* **39**, e14545 (2021).

762 22. Shi, W. et al. A novel anti-PD-L1/IL-15 immunocytokine overcomes resistance to PD-L1

763 blockade and elicits potent antitumor immunity. *Mol Ther.* **31**, 66-77 (2023).

764 23. Mortier, E. et al. Soluble interleukin-15 receptor alpha (IL-15R alpha)-sushi as a selective

765 and potent agonist of IL-15 action through IL-15R beta/gamma. Hyperagonist IL-15 x

766 IL-15R alpha fusion proteins. *J Biol Chem.* **281**, 1612-1619 (2006).

767 24. Solberg, H. et al. The murine receptor for urokinase-type plasminogen activator is

768 primarily expressed in tissues actively undergoing remodeling. *J Histochem Cytochem.* **49**,

769 237-246 (2001).

770 25. Zhang, J. et al. Activation of urokinase plasminogen activator and its receptor axis is

771 essential for macrophage infiltration in a prostate cancer mouse model. *Neoplasia.* **13**,

772 23-30 (2011).

773 26. Pai, C. S. et al. Tumor-conditional anti-CTLA4 uncouples antitumor efficacy from

774 immunotherapy-related toxicity. *J Clin Invest.* **129**, 349-363 (2019).

775 27. Jing, Y. et al. Role of plasminogen activator inhibitor-1 in urokinase's paradoxical in vivo

776 tumor suppressing or promoting effects. *Mol Cancer Res.* **10**, 1271-1281 (2012).

777 28. Reschke, R. & Gajewski, T. F. CXCL9 and CXCL10 bring the heat to tumors. *Sci*

778 *Immunol.* **7**, eabq6509 (2022).

779 29. Bergamaschi, C. et al. Heterodimeric IL-15 delays tumor growth and promotes
780 intratumoral CTL and dendritic cell accumulation by a cytokine network involving XCL1,
781 IFN- γ , CXCL9 and CXCL10. *J Immunother Cancer* **8**, e000599 (2020).

782 30. Zhang, C. et al. Tumor Immune Microenvironment Landscape in Glioma Identifies a
783 Prognostic and Immunotherapeutic Signature. *Front Cell Dev Biol* **9**, 717601 (2021).

784 31. Sampson, J. H., Gunn, M. D., Fecci, P. E. & Ashley, D. M. Brain immunology and
785 immunotherapy in brain tumours. *Nat Rev Cancer* **20**, 12-25 (2020).

786 32. Lis, T. & Neri, D. Immunocytokines: a review of molecules in clinical development for
787 cancer therapy. *Clin Pharmacol* **5(Suppl 1)**, 29-45 (2013).

788 33. Rossi, E. A. et al. CD20-targeted tetrameric interferon-alpha, a novel and potent
789 immunocytokine for the therapy of B-cell lymphomas. *Blood* **114**, 3864-3871 (2009).

790 34. Overwijk, W. W., Tagliaferri, M. A. & Zalevsky, J. Engineering IL-2 to Give New Life to
791 T Cell Immunotherapy. *Annu Rev Med* **72**, 281-311 (2021).

792 35. Mendoza, J. L. et al. Structure of the IFN γ receptor complex guides design of biased
793 agonists. *Nature* **567**, 56-60 (2019).

794 36. Glassman, C. R. et al. Structural basis for IL-12 and IL-23 receptor sharing reveals a
795 gateway for shaping actions on T versus NK cells. *Cell* **184**, 983-999 (2021).

796 37. Codarri, D. L. et al. PD-1-cis IL-2R agonism yields better effectors from stem-like
797 CD8 $^+$ T cells. *Nature* **610**, 161-172 (2022).

798 38. Sun, Z. et al. A next-generation tumor-targeting IL-2 preferentially promotes
799 tumor-infiltrating CD8 $^+$ T-cell response and effective tumor control. *Nat Commun* **10**,

800 3874 (2019).

801 39. Shanafelt, A. B. et al. A T-cell-selective interleukin 2 mutein exhibits potent antitumor

802 activity and is well tolerated in vivo. *Nat Biotechnol.* **18**, 1197-1202 (2000).

803 40. Nirschl, C. J. et al. Discovery of a Conditionally Activated IL-2 that Promotes Antitumor

804 Immunity and Induces Tumor Regression. *Cancer Immunol Res.* **10**, 581-596 (2022).

805 41. Shanebeck, K. et al. An anti-PD-1 antibody-IL-15 prodrug fusion molecule with enhanced

806 therapeutic potentials. *J Immunother Cancer.* **10 (Suppl 2)**, A1-A1603 (2022).

807 42. Ren, Z. et al. Selective delivery of low-affinity IL-2 to PD-1+ T cells rejuvenates

808 antitumor immunity with reduced toxicity. *J Clin Invest.* **132**, e153604 (2022).

809 43. Shen, J. et al. An engineered concealed IL-15-R elicits tumor-specific CD8+T cell

810 responses through PD-1-cis delivery. *J Exp Med.* **219**, e20220745 (2022).

811 44. Xu, Y. et al. An Engineered IL15 Cytokine Mutein Fused to an Anti-PD1 Improves

812 Intratumoral T-cell Function and Antitumor Immunity. *Cancer Immunol Res.* **9**,

813 1141-1157 (2021).

814 45. Gobert, M. et al. Regulatory T cells recruited through CCL22/CCR4 are selectively

815 activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse

816 clinical outcome. *Cancer Res.* **69**, 2000-2009 (2009).

817 46. Zhao, M. et al. Development of a recombinant human IL-15 sIL-15Ra/Fc superagonist

818 with improved half-life and its antitumor activity alone or in combination with PD-1

819 blockade in mouse model. *Biomed Pharmacother.* **112**, 108677 (2019).