

1 **Long-term impact of early life stress on serotonin connectivity**

2

3 **Author Names and Affiliations:**

4 Raksha Ramkumar^{1,5,6*}, Moriah Edge-Partington^{1,5,6*}, Kabirat Adigun^{3,4,5}, Yi Ren^{3,4,5}, Dylan J
5 Terstege^{3,4,5}, Nazmus S Khan^{1,5,6}, Nahid Rouhi^{1,5,6}, Naila F Jamani^{1,5,6}, Mio Tsutsui^{1,5,6}, Jonathan
6 R Epp^{3,4,5}, Derya Sargin^{1,2,5,6}

7

8 Department of Psychology¹, Department of Physiology and Pharmacology², Department of Cell
9 Biology and Anatomy³, Cumming School of Medicine⁴, Hotchkiss Brain Institute⁵, Alberta
10 Children's Hospital Research Institute⁶, University of Calgary, Canada

11 *These authors contributed equally.

12

13 **Corresponding author:**

14 Derya Sargin

15

16 Address:

17 University of Calgary

18 2500 University Ave Dr NW T2N 1N4

19 Calgary, AB, Canada

20 Phone: 403-2204349

21 Email: derya.sargin@ucalgary.ca

22

23

24

25

26

27 **Abstract**

28 Chronic childhood stress is a prominent risk factor for developing mood disorders, yet
29 mechanisms underlying this association remain unclear. Serotonin (5-HT) plays a crucial role in
30 neurodevelopment and vulnerability to mood disorders. Maintenance of optimal 5-HT levels
31 during early postnatal development is critical for the maturation of brain circuits. Developmental
32 stress can alter the serotonin system, leading to chronic behavioral deficits. Yet, our
33 understanding of the long-term impact of early life stress (ELS) on serotonin connectivity remains
34 incomplete. Using a mouse model of chronic developmental stress, we sought to determine how
35 ELS impacts brain-wide serotonin activity and behavior in adulthood. We established that adult
36 female and male mice exposed to ELS during the first postnatal week show heightened anxiety-
37 like behavior. Using *in vivo* fiber photometry and c-fos dependent activity mapping, we found that
38 ELS enhances susceptibility to acute stress by disrupting the brain-wide functional connectivity of
39 the raphe nucleus and the activity of dorsal raphe serotonin neuron population, in conjunction with
40 a profound increase in the orbitofrontal cortex (OFC) activity. We further identified that 5-HT
41 release in the medial OFC during environmental challenge is disrupted in mice exposed to ELS.
42 Optogenetic stimulation of 5-HT terminals in the mOFC elicited an anxiolytic effect in ELS mice in
43 a sex-dependent manner. Our findings hold significant insight into the mechanisms underlying
44 long-term brain connectivity deficits induced by ELS, with potential implications for developing
45 targeted stimulation-based treatments for affective disorders that arise from early life adversities.

46 **Introduction**

47 Exposure to early life stress (ELS) is associated with changes in brain function, emotional
48 behavior, and can contribute to the development of psychiatric disorders in adulthood¹⁻³.
49 Research over the past three decades has established the long-lasting effects of ELS on the risk
50 and course of mood and anxiety disorders⁴. Although genetics can influence vulnerability to these
51 disorders, environmental factors play a key role in contributing to worsened psychological and
52 behavioral outcomes⁵. Early traumatic experiences including social deprivation, neglect, and

53 abuse correlate with aberrant hypothalamic pituitary adrenal axis reactivity⁶, altered brain
54 activity^{7,8} and impaired social and emotional behaviors⁹, with an overall increased risk for lifetime
55 mood disorders¹⁰⁻¹².

56 In mammals, there are critical periods in development where exposure to stress can lead
57 to enduring maladaptive psychological effects. After birth, the brain continues to undergo
58 significant developmental processes such as neuronal growth, synaptic stabilization, and synaptic
59 pruning¹³. The developing brain is highly plastic to allow for organization and adaptation to the
60 environment, which consequently creates a vulnerability to external influences^{14,15}. Traumatic
61 experience or chronic stress during this critical developmental period can impact brain function,
62 behavior, and induce vulnerability to future stress. In particular, brain regions with extended
63 postnatal development including the higher-order cortical structures, such as the dorsolateral
64 prefrontal and orbitofrontal cortices are suggested to have increased vulnerability to the negative
65 effects of ELS^{16,17}.

66 Serotonin (5-hydroxytryptamine; 5-HT) is a neurotransmitter that is widely distributed
67 across the central nervous system (CNS) and is critical for social and emotional regulation. During
68 early development, serotonin regulates cell survival, growth and differentiation, and is important
69 for the maturation of neural circuits^{18,19}. Peak serotonin levels occur during the first two years in
70 humans²⁰ and the first postnatal week in rodents²¹. Manipulations that alter the serotonin system
71 during these periods, such as stress, physical abuse, and lack of maternal care, are associated
72 with chronic behavioral deficits in rodents and primates¹⁵. Maternal absence during development
73 lowers serotonin release^{22,23}, disrupts serotonin receptor levels and function^{24,25} resulting in mood
74 deficits in adulthood²⁶⁻²⁸. Disruption of serotonin signaling via the blockade of 5-HT transporters
75 or manipulation of 5-HT levels results in behavioral deficits during adulthood²⁹⁻³¹. Some of these
76 impairments can be rescued by increasing serotonin levels in the affected brain regions²⁷,
77 providing evidence of the role of 5-HT in the pathophysiology and treatment of these conditions.

78 5-HT neurons originate from the nine distinct nuclei clustered in the brainstem and project
79 widely throughout the brain providing widespread modulation of the activity of many neural
80 networks^{32,33}. The dorsal raphe nucleus (DRN) contains the majority of 5-HT-producing neurons
81 which are highly heterogenous in terms of physiological function and gene expression
82 profiles^{32,34,35}. DRN 5-HT neurons densely innervate cortical and subcortical regions of the brain,
83 regulating a wide range of physiological and behavioral processes^{36,37}. Emerging evidence
84 implicates DRN 5-HT neurons to modulate emotionally salient information via diverse subcircuits.
85 There is considerable overlap in the response of DRN 5-HT neurons to differentially salient stimuli
86 however, distinct projection subpopulations can show functional bias based on their downstream
87 connectivity. While a mixed population of DRN 5-HT neurons are activated by reward^{35,38-40}, those
88 projecting to cortical and subcortical regions encode opposing responses to aversive stimuli³⁸.
89 Despite the involvement of each projection in emotional behavior, the proportion of DRN 5-HT
90 neurons projecting to reward- or anxiety-modulating regions is correlated with the specific function
91 of each pathway, leading to a projection-based average response to stimuli associated with
92 positive or negative valence.

93 Overall, DRN 5-HT neurons play a critical role in environment-specific behavioral
94 regulation when faced with positive stimuli or threat⁴¹. Early postnatal stress can disrupt the
95 maturation and activity of the 5-HT circuits, leading to persistent negative effects on emotional
96 behavior and threat response⁴². It is imperative to develop targeted treatments to overcome ELS-
97 induced behavioral dysregulation. Yet, we do not fully understand how distinct 5-HT projections
98 involved in emotionally salient behavior are impacted by ELS. Here, we first established a
99 modified chronic ELS model based on the limited bedding and nesting (LBN) paradigm⁴³ in female
100 and male mice. When ELS offspring reached adulthood, we parsed out the threat-induced
101 alterations in raphe nucleus functional connectivity, 5-HT neuron activity and consequent 5-HT
102 release in mice exposed to ELS, compared with controls. We found that ELS during postnatal day
103 2-10 (PND2-10) disrupts functional connectivity of the raphe nucleus and perturbs the response

104 of 5-HT neurons to threat, imposed by footshock. This is accompanied by an increased activity in
105 the orbitofrontal cortex (OFC) but not central amygdala (CeA), two regions that receive dense 5-
106 HT innervation and encode emotionally salient stimuli. Further analysis of the 5-HT signaling in
107 the medial orbitofrontal cortex (mOFC) revealed blunted 5-HT release in the face of challenge in
108 mice exposed to ELS, and a disruption of 5-HT signaling in the mOFC pyramidal neurons.
109 Optogenetic stimulation of 5-HT projections in the mOFC improved anxiety-like behavior observed
110 in male ELS mice, suggesting a sex-dependent anxiolytic effect. Ultimately, these findings have
111 important implications for stimulation-based treatment approaches.

112 **Materials and Methods**

113 Refer to Supplemental Methods for the extended details.

114 **Animals**

115 Female and male Fos[2A-iCreER] (TRAP2) (JAX 030323) mice crossed with Ai14 reporter line
116 (JAX 007914), and ePet1-cre (JAX 012712) mice crossed with Ai148 reporter line (JAX 030328)
117 on C57Bl6 background were used for all experiments.

118 **Limited Bedding and Nesting**

119 LBN was performed as previously described⁴³ on PND2-10 with modifications in the protocol to
120 enhance pup survival. Maternal behavior was recorded during light and dark cycles.

121 **Network connectivity and FASTMAP analysis**

122 For brain-wide functional connectivity analyses, c-fos immunoreactive density was assessed
123 across 60 neuroanatomical regions (see Table S1) using NeuroInfo software (MBF Bioscience).
124 Regional c-fos immunoreactive density was cross-correlated across all mice within each group to
125 generate correlation matrices of regional coactivation. For subsequent targeted c-fos
126 immunoreactive density analyses, FASTMAP was used for the bilateral registration of the OFC
127 and CeA.

128 **Stereotaxic Viral Delivery and Fiber Implantation**

129 For fiber photometry experiments, 400 nl AAV2/9-CAG-iSeroSnFR-NLG (Canadian
130 Neurophotonics Platform) was infused into the mOFC (AP: 2.34, ML: 0.3, DV: 2.5 mm from
131 Bregma), followed by optic fiber implantation. For ePet1::Ai148 mice, the optic fiber was implanted
132 above the DRN (30° angle, AP: -6.27, ML: 0, DV: -4.04 from Bregma). For optogenetic
133 experiments, 800 nl AAV2/9-EF1a-DIO-mCherry or AAV2/9-EF1a-DIO-hChR2(H134R)-mCherry
134 was infused into the DRN. Optic cannulae were implanted above the mOFC bilaterally (21° angle,
135 AP: 2.34, ML: ±1.25, DV: -2.6 from Bregma).

136 ***In vivo* Fiber Photometry**

137 Ca²⁺ signal of the 5-HT neuron population was recorded in ePet1::Ai148 mice to measure 5-HT
138 neuron activity in response to footshocks (0.5 mA, 2 sec, 10X). Serotonin release in mOFC was
139 recorded in mice infused with the iSeroSnFR 5-HT sensor during open field and tail suspension
140 tests. Data were extracted and analyzed using a custom-written script in MATLAB (Mathworks).

141 **Statistical Analysis**

142 Statistical analysis was performed using GraphPad Prism 9 software. Data were shown as means
143 ± standard error of the mean (SEM). Data were analyzed using two-way ANOVA or unpaired t-
144 test. Following significant interactions in two-way ANOVA, post-hoc analysis was conducted using
145 Tukey's multiple comparisons tests.

146 **Results**

147 **LBN differentially affects dam behavior in light and dark cycles**

148 To model early life stress (ELS), we used a modified limited bedding and bedding nesting
149 (LBN) paradigm (**Figure 1A**). On postnatal day (PND) 2, dams and pups were placed into LBN
150 cages until PND 10. Control dams and pups were moved to a cage that was otherwise identical
151 but contained regular bedding and nesting material. The time dams spent with pups was analyzed
152 using 30 min recordings during the light (day; 8:00-9:30 am) and dark (night; 9:00-10:30 pm)
153 cycles separately on PND 3, 6 and 9. Control and LBN dams spent comparable time with pups
154 during the day (two-way ANOVA; effect of group: F(1, 48) = 2.51, p = 0.12, effect of time: F(2, 48)

155 = 0.86, $p = 0.43$) (**Figure 1B**). During night time, control dams spent significantly less time with
156 pups compared with LBN dams, predominantly on PND 6 and 9 (two-way ANOVA; effect of group:
157 $F(1, 48) = 7.79, p = 0.007$, effect of time: $F(2, 48) = 2.84, p = 0.07$) (**Figure 1C**). Although the total
158 time spent with pups did not differ between control and LBN dams during the light cycle, dams
159 exposed to LBN exhibited higher number of exits from the nests compared with control dams
160 (two-way ANOVA; effect of group: $F(1, 48) = 10.02, p = 0.003$, effect of time: $F(2, 48) = 0.35, p =$
161 0.71) (**Figure 1D**). While the LBN dams spent significantly greater time with their pups during the
162 dark cycle, the amount of nest exits/entries were significantly higher when compared with control
163 dams (two-way ANOVA; effect of group: $F(1, 48) = 19.95, p < 0.001$, effect of time: $F(2, 48) =$
164 1.74, $p = 0.19$) (**Figure 1E**). During the time away from their pups, LBN dams were engaged with
165 drinking and eating, similar to the control dams but also engaged in frequent bouts of tail chasing,
166 a behavior that was not observed among control dams. Overall, dams exposed to LBN showed
167 the most striking differences in maternal care during the dark cycle, with a significantly higher time
168 spent with pups accompanied by greater frequency of nest entries and exits. This change in
169 behavior may indicate attempted compensatory care on the part of the LBN dams to overcome
170 the impoverished housing conditions.

171 **Female and male offspring exposed to LBN show anxiety-like behavior in adulthood**

172 To determine the long-term impacts on the behavior of offspring reared under ELS
173 conditions, we performed open field, 3-chamber social interaction and tail suspension tests when
174 pups reached adulthood (> PND 60) (**Figure 2A**). Female and male mice exposed to ELS spent
175 a significantly greater amount of time in the outer zone of the open field (**Figure 2B**; two-way
176 ANOVA; effect of group: $F(1, 34) = 19.69, p < 0.001$, effect of sex: $F(1, 34) = 1.48, p = 0.23$) while
177 they spent significantly less time in the intermediate (**Figure 2C**; two-way ANOVA; effect of group:
178 $F(1, 34) = 16.84, p < 0.001$, effect of sex: $F(1, 34) = 1.77, p = 0.19$) and inner (**Figure 2D**; two-
179 way ANOVA; effect of group: $F(1, 34) = 13.52, p < 0.001$, effect of sex: $F(1, 34) = 0.006, p = 0.94$)
180 zones, indicating greater anxiety-like behavior, compared with control female and male mice. The

181 overall distance traveled in the open field also differed between control and ELS mice, with
182 significant sex-dependent effects (**Figure S1A**; two-way ANOVA; effect of group: $F(1, 34) = 4.31$,
183 $p = 0.04$, effect of sex: $F(1, 34) = 16.4$, $p < 0.001$).

184 Next, we performed 3-chamber social interaction test to assess the effect of ELS on
185 sociability. The time spent interacting with a sex- and age-matched stranger conspecific was
186 comparable between ELS and control mice (two-way ANOVA; effect of group: $F(1, 34) = 0.49$, p
187 = 0.49, effect of sex: $F(1, 34) = 2.15$, $p = 0.15$) (**Figure 2E**). However, female and male ELS mice
188 spent a significantly greater time in the non-social interaction zone, investigating the empty cup
189 compared with controls (two-way ANOVA; effect of group: $F(1, 34) = 4.47$, $p = 0.04$, effect of sex:
190 $F(1, 34) = 4.35$, $p = 0.04$) (**Figure 2F**). The sociability index showed a significant sex difference
191 between female and male mice, but female and male ELS groups showed comparable sociability
192 to controls (two-way ANOVA; effect of group: $F(1, 34) = 3.21$, $p = 0.08$, effect of sex: $F(1, 34) =$
193 6.11 , $p = 0.019$) (**Figure S1B**). Female ELS mice showed a tendency to spend less time in the
194 social chamber (two-way ANOVA; group X sex interaction: $F(1, 34) = 5.62$, $p = 0.024$, Tukey's
195 multiple comparisons test: Female ctrl vs ELS $p = 0.067$; female ELS vs male ELS $p = 0.06$, all
196 other p 's > 0.1) (**Figure S1C**) and spent significantly greater time in the non-social chamber,
197 compared with controls (two-way ANOVA; group X sex interaction: $F(1, 34) = 8.18$, $p = 0.007$,
198 Tukey's multiple comparisons test: Female ctrl vs ELS $p = 0.04$; female ELS vs male ELS $p =$
199 0.007 , all other p 's > 0.1) (**Figure S1D**).

200 In order to investigate the effect of a stressful environment on coping behaviors in both
201 control and ELS mice, we conducted a tail suspension test (TST), which acts as an inescapable
202 stressor in a high threat environment⁴¹. We quantified the time mice were engaged in active
203 (struggling behavior) and passive (immobility) coping behaviors⁴⁴ over the entire duration of the
204 test. Female ELS mice spent significantly greater time engaged in active coping behavior
205 indicated by increased mobility duration, compared with control females and ELS males. We did
206 not find a difference in stress coping strategies in TST between control and ELS males (two-way

207 ANOVA; group X sex interaction: $F(1, 34) = 7.78, p = 0.009$, Tukey's multiple comparisons test:
208 Female ctrl vs ELS $p = 0.02$; female ELS vs male ELS $p < 0.001$, male ctrl vs ELS $p = 0.84$)
209 (**Figure 2G**).

210 Together, these data suggested that female and male offspring exposed to ELS show
211 striking increases in anxiety-like behavior. Sociability is reduced only in female ELS mice while
212 both male control and ELS mice spent comparable time interacting with strangers. Female ELS
213 mice additionally show greater inescapable stress-induced active coping behavior during
214 adulthood.

215 **ELS disrupts raphe nucleus functional connectivity**

216 ELS has been associated with disrupted brain connectivity and increased emotional and
217 social deficits later in life^{7,45,46}. The organization of behavior is highly complex and most functions
218 tend to be distributed throughout numerous regions of the brain. In order to understand ELS-
219 induced functional network deficits, we sought to determine changes in the patterns of functional
220 connectivity in response to threat in control and ELS mice. We used FosTRAP2::tdTomato mice
221 in which cells that are active during a discrete temporal window can be permanently tagged with
222 the fluorescent reporter tdTomato⁴⁷. FosTRAP2::tdTomato mice were administered ten 0.5 mA
223 foot shocks prior to intraperitoneal (i.p.) injection of 4-hydroxytamoxifen. Mice were perfused three
224 days later and entire brains were cryosectioned, counterstained and imaged. c-Fos-
225 immunoreactive cells were segmented using supervised machine learning and images were
226 registered to the Allen Mouse Brain Reference Atlas. Regional c-fos-immunoreactive densities
227 were correlated across mice within each group, to generate correlated activity matrices (**Figure**
228 **3A**). We then examined functional connectivity based on the regional c-fos immunoreactivity
229 within 60 brain regions. Because the raphe nucleus is strongly modulated in response to stress
230 and important for emotional regulation, we used this region as a seed to assess its functional
231 connectivity in both female and male control and ELS mice exposed to footshock stress (**Figure**
232 **3B**). The number of brain regions showing anti-correlated activity with the raphe nucleus was

233 greater in ELS mice, compared to controls, with the most striking differences present in the male
234 ELS group (**Figure 3C, D, Table S1**). This suggested that ELS leads to a large increase in anti-
235 correlated functional connectivity of the raphe nucleus signifying a loss of coordinated activity
236 between the raphe nucleus and many other brain regions. We plotted the distribution of the
237 Pearson's correlation coefficients (*R* values) for all the possible correlations in each network. The
238 comparison of the distribution of *R* values revealed significant differences in the distribution
239 between male control and ELS mice (K-S test, *p* < 0.0001), female control and ELS mice (K-S
240 test, *p* = 0.0025) as well as between male ELS and female ELS mice (K-S test, *p* < 0.0001).
241 Importantly we did not see a difference in the distribution of *R* values between male and female
242 control groups (K-S test, *p* = 0.18) (**Figure 3E**).

243 Taken together, the functional connectome of the raphe nucleus in ELS mice showed a
244 higher number of anti-correlated functional connections, with males showing greater disruption in
245 connectivity compared to females. These data suggest that offspring exposed to ELS show
246 reduced synchronization between the raphe nucleus and other brain regions in adulthood.

247 **ELS disrupts serotonin neuron activity in response to an aversive stimulus**

248 The raphe nucleus contains a heterogenous neural network composed predominantly of
249 serotonin neurons, which play a crucial role in mediating threat adaptive behaviors⁴¹. Given the
250 imperative role of serotonin during development, supported by our findings in ELS-induced
251 disruption in raphe functional connectivity, we next determined the threat-induced differences in
252 the activity of serotonin neuron population between control and ELS mice. For these experiments,
253 we crossed the ePet1-Cre transgenic driver mouse line⁴⁸ with the Ai148 reporter line to express
254 the genetically encoded Ca²⁺ sensor GCaMP6f specifically in serotonin neurons (**Figure 4A, B**).
255 We implanted the optical fiber above the dorsal raphe nucleus (DRN) and three weeks after
256 surgery, we exposed control and ELS mice to acute footshock while recording the response of
257 serotonin neuron population using fiber photometry. After a 3 min baseline recording, ten
258 footshocks (0.5 mA, 2 sec duration each) were delivered with 30 second intervals (**Figure 4C**).

259 The averaged Ca^{2+} signal from serotonin neuron population yielded a biphasic response to
260 footshock with an initial increase, followed by a depression in activity in female and male control
261 and ELS mice (**Figure 4D, E**). We analyzed and compared the footshock-induced increase (peak)
262 and depression (trough) in the amplitude of the serotonin Ca^{2+} signal between each group. In
263 females, two-way ANOVA revealed no significant interaction between group (control vs ELS) and
264 time (baseline t=0 s; peak, t = 0-1 s; trough, t = 2-4 s) [$F(2, 30) = 17.4, p = 0.55$]. In females,
265 there was no significant main effect of group [$F(1, 30) = 2.3, p = 0.14$] however, there was a
266 significant main effect of time [$F(2, 30) = 71.32, p < 0.001$], indicating footshock-induced changes
267 in activity over time (**Figure 4F**). We found a significant main effect of group [$F(1, 27) = 4.51, p =$
268 0.04] and time [$F(2, 27) = 32.48, p < 0.001$] but no significant interaction between group and time
269 in males (two way ANOVA; $F(2, 27) = 1.7, p = 0.2$) (**Figure 4G**). The quantification of footshock-
270 induced maximum amplitude (peak) of the serotonin Ca^{2+} signal revealed no significant
271 differences between the groups (two-way ANOVA; effect of group: $F(1, 19) = 1.01, p = 0.33$, effect
272 of sex: $F(1, 19) = 0.14, p = 0.72$) (**Figure 2H**). The analysis of the magnitude of depression
273 (trough) showed a significantly larger reduction in footshock-induced serotonin Ca^{2+} signal in
274 female and male ELS mice, compared to controls (two-way ANOVA; effect of group: $F(1, 19) =$
275 12.14, $p = 0.002$, effect of sex: $F(1, 19) = 2.11, p = 0.16$) (**Figure 2I**). These data suggested that
276 serotonin neurons show significantly reduced depression in activity in response to threat in ELS
277 mice, compared with controls.

278 The biphasic changes in serotonin neuron activity in response to footshock may be
279 attributed to the heterogeneity of this population based on connectivity. Previous work has
280 demonstrated that DRN serotonin neurons that project to the orbitofrontal cortex (OFC) and
281 central amygdala (CeA) exhibit contrasting changes in activity in response to aversive stimuli³⁸.
282 Accordingly, serotonin neurons projecting to the CeA display a predominantly biphasic response
283 to footshock, characterized by a large initial elevation in Ca^{2+} signal, followed by a small
284 depression. In contrast, serotonin neurons projecting to the OFC predominantly exhibit a

285 reduction in Ca^{2+} signal in response to footshock. In order to determine whether acute footshock
286 modulates the activity of these projection regions differentially in control and ELS mice, we
287 perfused a group of mice 90 min after footshock and immunolabeled the brains for c-fos (**Figure**
288 **4J**). We used the Flexible Atlas Segmentation Tool for Multi-Area Processing (FASTMAP)
289 machine-learning pipeline⁴⁹ for high-throughput quantification of c-fos density in the OFC and CeA
290 from female and male control and ELS mice subjected to footshock. Two-way ANOVA revealed a
291 significant interaction between group (ctrl, ELS) and brain region (OFC, CeA) [$F(1, 21) = 5.77, p$
292 $= 0.02$]. Tukey's multiple comparisons test showed that ELS mice have significantly more c-fos-
293 immunoreactive cells in the OFC (Ctrl vs ELS, $p = 0.008$) while the c-fos density in the CeA was
294 comparable between control and ELS mice ($p = 0.89$) (**Figure 4K**).

295 Together these data indicated that female and male mice subjected to ELS show reduced
296 footshock-induced depression in serotonin Ca^{2+} signal, suggesting a disruption in serotonin
297 response to acute stress. The analysis of c-fos immunoreactive density revealed that there are
298 regional differences in footshock-induced activity following ELS. In the OFC, c-fos
299 immunoreactivity is significantly more dense in ELS mice compared to controls, while activity in
300 the CeA is similar between the two groups.

301 **ELS-induced disruption in serotonin release in avoidable and unavoidable threat**
302 **environment**

303 To determine whether activity dependent alterations in the orbitofrontal cortex of ELS mice
304 could be mediated in part by stress-induced deficits in serotonin modulation, we investigated
305 serotonin release during low- and high-threat environments⁴¹. We injected AAV2/9-CAG-
306 iSeroSnFR-NLG⁵⁰ expressing the serotonin sensor into the medial orbitofrontal cortex (mOFC) of
307 control and ELS female and male C57Bl6 mice and implanted the optical fiber above the mOFC
308 (**Figure 5A, B**). Four weeks after viral infusion, we performed fiber photometry while mice
309 investigated an avoidable threat environment (open field). One week after the open field test, we

310 performed fiber photometry while mice were subjected to an unavoidable threat (TST) (**Figure**
311 **5C**).

312 Mice tend to perceive the inner zones of the open field as more aversive than the
313 peripheral zones, likely due to the higher level of uncertainty. To investigate how serotonin release
314 is modulated during transition from a lower to higher risk environment, we quantified the
315 iSeroSnFR signal as mice moved from the outer zone to the intermediate zone (**Figure 5D**). The
316 area under the curve of the iSeroSnFR signal in control and ELS mice was greater while mice
317 were in the intermediate zone, compared with the outer zone (two-way ANOVA; effect of zone:
318 $F(1, 28) = 6.31, p = 0.02$), suggesting greater serotonin release as mice transitioned to a more
319 aversive environment (**Figure 5E**, **Figure S2A-C**). Although the area under the curve was not
320 significantly different between the groups [$F(1, 28) = 2.2, p = 0.15$], the mean amplitude of the
321 iSeroSnFR signal before and after entry into the intermediate zone revealed a significant
322 reduction in mOFC serotonin release in ELS mice compared to control mice (two-way ANOVA;
323 effect of group: $F(1, 28) = 6.9, p = 0.01$, effect of zone: $F(1, 28) = 3.48, p = 0.07$) (**Figure 5F**,
324 **Figure S2A, B, D**).

325 TST exposes mice to an inescapable stressor, eliciting passive and active coping
326 behaviors in response. Building on our observations of enhanced mobility in ELS mice during TST
327 and the established link between chronic stress and altered coping strategies, we quantified the
328 mOFC iSeroSnFR signal 2 sec before and after the onset of immobility in mice (**Figure 5G**).
329 Compared to controls, ELS mice exhibited a significant decrease in both the area under the curve
330 and mean amplitude of the iSeroSnFR signal before and after the onset of immobility in TST
331 (AUC: two-way ANOVA; effect of group: $F(1, 28) = 9.91, p = 0.004$; mean dF/F: two-way ANOVA;
332 effect of group: $F(1, 28) = 16.82, p < 0.001$) (**Figure 5H, I**, **Figure S2E-G**), with an overall increase
333 in amplitude following immobility onset in both groups (two-way ANOVA; effect of mobility: $F(1,$
334 $28) = 7.86, p = 0.009$) (**Figure 5I**, **Figure S2E, F, H**). Our results indicate that serotonin release
335 in the mOFC is greater during the transition to passive coping behavior in the TST, however this

336 release is significantly lower in ELS mice compared to control, regardless of the coping strategy
337 employed.

338 To investigate the physiological response of mOFC pyramidal neurons to serotonin, we
339 next performed whole-cell patch-clamp electrophysiology in cortical slices obtained from control
340 and ELS mice (**Figure 5J**). Voltage-clamp recordings revealed an inhibitory outward current in
341 response to exogenous serotonin application in mOFC pyramidal neurons of control and ELS
342 mice (**Fig 5K**). The amplitude of the outward serotonin current was significantly smaller in mOFC
343 neurons of ELS mice compared to that of controls (unpaired t-test, $p = 0.048$). The passive
344 membrane characteristics of mOFC neurons including the membrane capacitance (Cm), resting
345 membrane potential (Vm) and input resistance (Rinput) did not differ between control and ELS
346 mice (**Figure S3A-D**). The spike threshold was significantly more depolarized in mOFC neurons
347 of ELS mice (unpaired t-test, $p = 0.046$), without changes in spike amplitude or intrinsic excitability
348 when compared with mOFC neurons of control mice (**Figure S3E-H**).

349 Taken together, our data showed that ELS is associated with a significant reduction in
350 mOFC serotonin release during high risk and high threat conditions. Additionally, we observed a
351 reduced inhibitory response to serotonin in mOFC pyramidal neurons of ELS mice, indicating a
352 disruption in the long-term serotonin-induced modulation of mOFC activity caused by ELS.

353 **Optogenetic stimulation of serotonin terminals in mOFC elicits an anxiolytic effect in male
354 ELS mice**

355 The orbitofrontal cortex is integral to encoding emotionally salient stimuli⁵¹. Altered activity
356 of the OFC has been associated with anxiety disorders⁵², especially during exposure to anxiety-
357 inducing imagery in humans^{53,54}, while OFC lesions lead to dysregulated threat response and
358 anxiety, as shown in primates⁵⁵. Successful antidepressant treatment targeting 5-HT can
359 overcome deficits in OFC activity^{56,57}. However, the role of the DR^{5-HT} → mOFC pathway in
360 emotional behavior remains to be determined. To investigate whether stimulation of 5-HT
361 terminals in mOFC in adult female and male mice exposed to ELS is sufficient to deficits in

362 emotional behavior, we infused a Cre-dependent AAV encoding channelrhodopsin-2 fused to
363 mCherry (hChR2-mCherry) or mCherry only (control) into the DR of ePet1-Cre transgenic mice
364 and implanted the optical fibers bilaterally over the mOFC to selectively illuminate this region
365 (**Figure 6A**). This led to robust expression of the virus in the DR 5-HT neurons and their processes
366 in the mOFC (**Figure 6B, C**). Using slice electrophysiology, we verified that the activation of 5-HT
367 neuron terminals in the mOFC with blue light resulted in the suppression of action potentials in
368 pyramidal neurons, which was abolished by application of the 5-HT1A receptor antagonist WAY-
369 100635 (**Figure 6D**). 5 weeks after surgeries, we performed open field test followed by TST in
370 male and female ELS mice infused with mCherry or hChR2-mCherry (**Figure 6E**) while
371 stimulating the 5-HT neuron projections in the mOFC using blue light (470 nm, 20 Hz, 10 ms, 3
372 min epochs). In the open field, optogenetic stimulation of 5-HT projections in the mOFC increased
373 the time spent in the outer zone, and decreased the time in the central zone in male ELS mice,
374 suggesting an anxiolytic effect (two-way ANOVA; outer zone, effect of group: $F(1, 40) = 16.59, p$
375 $= 0.0002$, effect of time: $F(4, 40) = 0.62, p = 0.65$; central zone, effect of group: $F(1, 40) = 16.59,$
376 $p = 0.0002$, effect of time: $F(4, 40) = 0.59, p = 0.67$) (**Figure 6F, G**). In contrast, in female ELS
377 mice, we did not obtain a difference between ChR2 and mCherry groups in the open field test
378 upon optogenetic stimulation of the mOFC 5-HT terminals (two-way ANOVA; outer zone, effect of
379 group: $F(1, 40) = 0.77, p = 0.39$, effect of time: $F(4, 40) = 0.47, p = 0.76$) (**Figure 6H, I**). We also
380 did not obtain any changes in locomotor activity upon blue light stimulation in female and male
381 ChR2 and mCherry mice in the open field test (two-way ANOVA; change in distance traveled light
382 on – light off; effect of group: $F(1, 16) = 0.03, p = 0.87$, effect of sex: $F(1, 16) = 1.76, p = 0.2$).

383 To determine whether $DR^{5-HT} \rightarrow mOFC$ pathway stimulation will affect stress coping
384 strategy of male ELS mice and overcome the alterations in the active coping behavior observed
385 in female ELS mice, we next performed TST in the absence or presence of blue light (470 nm, 20
386 Hz, 10 ms, 3 min epochs). While there were no significant differences in the mobility of male ELS
387 mice in TST (two-way ANOVA; outer zone, effect of group: $F(1, 16) = 0.58, p = 0.46$, effect of time:

388 $F(1, 16) = 0.15, p = 0.71$) (**Figure 6J**), female ELS mice expressing ChR2 had significantly
389 increased immobility compared to those expressing mCherry only (two-way ANOVA; effect of
390 group: $F(1, 16) = 8.49, p = 0.01$, effect of time: $F(1, 16) = 0.12, p = 0.73$) (**Figure 6K**). Although
391 this may indicate a trend towards normalized mobility changes, the consequence of increased
392 immobility with mOFC 5-HT terminal stimulation warrants further investigation.

393 Overall, stimulation of 5-HT neuron terminals in the mOFC significantly reduced the time
394 spent in the outer zone of the open field and increased the time spent in the central zone,
395 suggesting an anxiolytic effect in male ELS mice. While in females, the absence of an anxiolytic
396 effect suggests that ELS-induced anxiety-like behavior may be influenced by different circuits.

397 **Discussion**

398 Based on its significant brain-wide connectivity and role in circuit maturation, 5-HT plays
399 a critical role in socioemotional regulation. Disruption of the development and activity of the 5-HT
400 system during early life has persistent negative effects on affective behaviors. However, which
401 neural circuits are involved in ELS-induced emotional dysregulation remains to be determined.
402 Here, we used a modified LBN paradigm to recapitulate chronic stress during postnatal
403 development in mice. We report that ELS induces altered maternal care, resulting in increased
404 anxiety-like and impaired stress-related active coping behavior in female and male offspring
405 during adulthood. Probing the ELS-induced network alterations revealed a significant disruption
406 in the functional connectivity of the raphe nucleus in response to an aversive stimulus (footshock)
407 predominantly in male ELS animals. The disruption of the raphe connectivity in ELS mice was
408 accompanied by altered activity of the 5-HT neuron population to footshock. Further interrogation
409 of two emotionally salient regions that receive dense 5-HT innervation revealed a significant
410 increase in the activity of the OFC in response to footshock in ELS mice, without concomitant
411 changes in the activity of CeA, which suggested that distinct 5-HT circuits may be differentially
412 impaired in response to ELS. Fiber photometry in control and ELS mice revealed a significant
413 decrease in the mOFC 5-HT release in avoidable- and unavoidable-threat environments. These

414 impairments coincided with a disruption in the physiological 5-HT response of mOFC pyramidal
415 neurons.

416 ELS has previously been associated with structural and functional alterations to fronto-
417 limbic connectivity. Several key regions, including the hippocampus, medial prefrontal cortex and
418 amygdala, have been particularly deemed susceptible to the effects of stress during the critical
419 periods of development^{58–60}. Given the strong significant connectivity of 5-HT neurons with
420 regions and circuits implicated to be impaired in response to ELS, we sought to examine the
421 functional connectivity of the raphe nucleus with 60 cortical and subcortical regions. Our data
422 identified a shift towards anticorrelated functional connectivity of the raphe nucleus in response
423 to ELS, with this effect being most prominent in males. This decrease in the correlation coefficient
424 between ELS mice and controls was present across most regions paired with the raphe (42/59 in
425 females, 56/59 in males). The OFC was among the most notable of these changes, with ELS
426 decreasing the communication between this region and the raphe nucleus. This change is
427 noteworthy as these two regions share reciprocal structural connections, through which the OFC
428 contributes to the regulation of serotonergic inputs throughout the forebrain⁶¹. It is worth noting
429 that the medial prefrontal cortex also shares this relationship with the raphe nucleus and changes
430 in functional connectivity were also observed in this region. Further studies are needed to dissect
431 the contributions of each of these pathways in behavioral changes observed with ELS.

432 It has recently been established that serotonin neuron population activity is influenced by
433 environmental valence⁴¹ and encodes aversive states differentially^{35,38}. 5-HT neurons projecting
434 to the OFC are preferentially inhibited by a negatively valanced stimulus such as footshock while
435 those projecting to the CeA are activated by footshock³⁸. Our data showing a selective disruption
436 in the footstock-induced inhibitory response of 5-HT neurons suggested a subcircuit specific
437 impairment in ELS mice in response to threat. In support of this, we observed an elevated
438 footshock-induced activity of the OFC in ELS mice, indicating that this region is more sensitive to
439 negative valence. Given the absence of significant activity differences in CeA, we characterized

440 the alterations in 5-HT signaling induced by ELS in the OFC. The OFC is a highly conserved
441 region involved in motivation, reward, and emotional regulation⁶², which are all disrupted in
442 depressive disorders. Chronic exposure to early life adversities during infancy and to prenatal
443 maternal depression results in reduced OFC cortical thickness observed many years later^{63,64}, in
444 association with elevated depressive symptoms⁶⁵. Our findings, which reveal disrupted 5-HT
445 release during emotionally salient behaviors and impaired 5-HT physiology in the OFC of ELS
446 mice, offer a mechanistic insight into the potential role of the OFC in mediating increased
447 depressive symptoms following early life adversities.

448 ELS leads to long-lasting increased anxiety-like behavior in female and male mice, and
449 altered coping strategies in female mice. One critical question that remains unanswered is
450 whether impaired serotonin release and altered activity of the OFC in ELS mice contribute to the
451 observed deficits in behavior. The role of the 5-HT signaling in the OFC was previously delineated
452 in non-human primates and rodents in the context of reversal learning, cognitive flexibility and
453 impulsivity and processing of emotional salience^{61,66–68}. While more studies are needed to
454 elucidate how emotional behavior is modulated by 5-HT projections to the OFC, reducing 5-HT
455 release in OFC of male mice has previously shown to increase anxiety-like behavior³⁸. To our
456 knowledge, ours is the first study that reports the effects of 5-HT neuron terminal stimulation in
457 OFC in ELS mice. While stimulating the mOFC 5-HT terminals had an anxiolytic effect in male
458 ELS mice, this approach was not sufficient to improve anxiety-like behavior of ELS females,
459 necessitating further studies focused on the circuits underlying ELS-induced behavioral deficits in
460 females. Moreover, exploring the impact of ELS-induced deficits in 5-HT signaling in the OFC on
461 additional behaviors modulated by this region including impulsivity, cognitive flexibility, and reward
462 processing could yield additional mechanistic insight into the broader effects of 5-HT dysfunction
463 and its contribution to behavioral deficits associated with ELS.

464 In summary, our study presents a novel mechanistic understanding of the long-term
465 impact of ELS-induced disruptions on brain circuits that are modulated by 5-HT inputs. Moreover,

466 our findings reveal ELS-induced impairments in the DRN 5-HT → OFC pathway. While our
467 network connectivity findings implicate additional pathways to be potentially impaired by ELS, the
468 DRN 5-HT → OFC pathway represents a promising target for therapeutic intervention, given its
469 critical role in reward and emotional regulation. Indeed, as the sex-dependent rescue of anxiety-
470 like behavior by mOFC 5-HT terminal stimulation offers a potential therapeutic target for ELS-
471 induced anxiety, our data also emphasize the importance of understanding the mechanisms of
472 sex-dependent deficits underlying emotional dysregulation for the development of effective
473 treatment strategies. Altogether, due to the increasing evidence of disrupted OFC connectivity in
474 anxiety disorders^{69–71}, the OFC has recently garnered a significant interest as a potential
475 therapeutic target for novel neurostimulation treatments⁷². The top-down control mediated by this
476 region onto other emotional circuits places it in a critical place and thus its activity to be maintained
477 as normal is important. Therefore, our findings highlight the potential of combining targeted
478 stimulation and pharmacotherapies to improve 5-HT neurotransmission as a promising approach
479 for treating emotional dysregulation that arises from childhood stress.

480 **Acknowledgements**

481 Funding for this study was provided by an CIHR Early Career Investigator Grant in Maternal,
482 Reproductive, Child and Youth Health (#177446), a CFI-JELF fund (#42065) to DS and an Alberta
483 Children's Hospital Research Institute (ACHRI) Child Health and Wellness Grand Challenge
484 Seedling Award to D.S. and J.R.E. RR received the Alberta Graduate Excellence Scholarship
485 (AGES). K.A. received Eyes High Doctoral Recruitment Award. Y.R. was awarded the Harley
486 Hotchkiss-Samuel Weiss Doctoral Scholarship. D.J.T. was awarded the NSERC Postgraduate
487 Scholarship (PGS D). N.R. received Harley Hotchkiss-Samuel Weiss Postdoctoral Fellowship.
488 Schematic images were created with BioRender.com.

489 **Author Contributions**

490 D.S., R.R. and M.E. designed the experiments and wrote the manuscript. N.F.J. and M.T.
491 performed the surgeries. R.R. and M.E. performed the behavioral, photometry and optogenetic

492 experiments and performed the histological procedures. K.A., D.J.T and J.R.E. performed the
493 network analysis. Y.R. contributed to the photometry and S.K. to the behavioral experiments. N.R.
494 performed the electrophysiological experiments and analysis.

495 **Competing Interests**

496 The authors declare no competing interests.

497 **References**

- 498 1. Targum, S. D. & Nemeroff, C. B. The Effect of Early Life Stress on Adult Psychiatric Disorders. *Innov. Clin. Neurosci.* **16**, 35–37 (2019).
- 499 2. Carr, C. P., Martins, C. M. S., Stingel, A. M., Lemgruber, V. B. & Juruena, M. F. The role of
500 early life stress in adult psychiatric disorders: a systematic review according to childhood
501 trauma subtypes. *J. Nerv. Ment. Dis.* **201**, 1007–1020 (2013).
- 502 3. Syed, S. A. & Nemeroff, C. B. Early Life Stress, Mood, and Anxiety Disorders. *Chronic Stress*
503 (*Thousand Oaks*) **1**, (2017).
- 504 4. Nemeroff, C. B. Paradise Lost: The Neurobiological and Clinical Consequences of Child
505 Abuse and Neglect. *Neuron* **89**, 892–909 (2016).
- 506 5. Eley, T. C. *et al.* The Intergenerational Transmission of Anxiety: A Children-of-Twins Study. *AJP* **172**, 630–637 (2015).
- 507 6. Bick, J. & Nelson, C. A. Early Adverse Experiences and the Developing Brain. *Neuropsychopharmacology* **41**, 177–196 (2016).
- 508 7. Kopala-Sibley, D. C. *et al.* Early Childhood Parenting Predicts Late Childhood Brain
509 Functional Connectivity During Emotion Perception and Reward Processing. *Child Dev.* **91**,
510 110–128 (2020).
- 511 8. Alink, L. R. A., Cicchetti, D., Kim, J. & Rogosch, F. A. Longitudinal associations among child
512 maltreatment, social functioning, and cortisol regulation. *Dev. Psychol.* **48**, 224–236 (2012).
- 513 9. Chapman, D. P. *et al.* Adverse childhood experiences and the risk of depressive disorders in
514 adulthood. *J. Affect. Disord.* **82**, 217–225 (2004).
- 515 10. Fava, M. Diagnosis and definition of treatment-resistant depression. *Biol. Psychiatry* **53**, 649–
516 659 (2003).
- 517 11. Lupien, S. J., McEwen, B. S., Gunnar, M. R. & Heim, C. Effects of stress throughout the
518 lifespan on the brain, behaviour and cognition. *Nat. Rev. Neurosci.* **10**, 434–445 (2009).
- 519 12. Repetti, R. L., Taylor, S. E. & Seeman, T. E. Risky families: family social environments and
520 the mental and physical health of offspring. *Psychol. Bull.* **128**, 330–366 (2002).
- 521 13. Bale, T. L. *et al.* Early life programming and neurodevelopmental disorders. *Biol. Psychiatry*
522 **68**, 314–319 (2010).
- 523 14. Chen, Y. & Baram, T. Z. Toward Understanding How Early-Life Stress Reprograms Cognitive
524 and Emotional Brain Networks. *Neuropsychopharmacology* **41**, 197–206 (2016).
- 525 15. Shah, R., Courtiol, E., Castellanos, F. X. & Teixeira, C. M. Abnormal Serotonin Levels During
526 Perinatal Development Lead to Behavioral Deficits in Adulthood. *Front. Behav. Neurosci.* **12**,
527 114 (2018).
- 528 16. Pechtel, P. & Pizzagalli, D. A. Effects of early life stress on cognitive and affective function:
529 an integrated review of human literature. *Psychopharmacology* **214**, 55–70 (2011).
- 530 17. Teicher, M. H. *et al.* The neurobiological consequences of early stress and childhood
531 maltreatment. *Neurosci. Biobehav. Rev.* **27**, 33–44 (2003).

535 18. Bonnin, A., Peng, W., Hewlett, W. & Levitt, P. Expression mapping of 5-HT1 serotonin
536 receptor subtypes during fetal and early postnatal mouse forebrain development.
537 *Neuroscience* **141**, 781–794 (2006).

538 19. Gaspar, P., Cases, O. & Maroteaux, L. The developmental role of serotonin: news from
539 mouse molecular genetics. *Nat. Rev. Neurosci.* **4**, 1002–1012 (2003).

540 20. Sodhi, M. S. K. & Sanders-Bush, E. Serotonin and brain development. *Int. Rev. Neurobiol.*
541 **59**, 111–174 (2004).

542 21. Hohmann, C. F., Hamon, R., Batshaw, M. L. & Coyle, J. T. Transient postnatal elevation of
543 serotonin levels in mouse neocortex. *Brain Res.* **471**, 163–166 (1988).

544 22. Arborelius, L. & Eklund, M. B. Both long and brief maternal separation produces persistent
545 changes in tissue levels of brain monoamines in middle-aged female rats. *Neuroscience* **145**,
546 738–750 (2007).

547 23. Maestripieri, D., McCormack, K., Lindell, S. G., Higley, J. D. & Sanchez, M. M. Influence of
548 parenting style on the offspring's behaviour and CSF monoamine metabolite levels in
549 crossfostered and noncrossfostered female rhesus macaques. *Behav. Brain Res.* **175**, 90–
550 95 (2006).

551 24. Bravo, J. A., Dinan, T. G. & Cryan, J. F. Early-life stress induces persistent alterations in 5-
552 HT1A receptor and serotonin transporter mRNA expression in the adult rat brain. *Front. Mol.*
553 *Neurosci.* **7**, 24 (2014).

554 25. Benekareddy, M., Goodfellow, N. M., Lambe, E. K. & Vaidya, V. A. Enhanced Function of
555 Prefrontal Serotonin 5-HT2 Receptors in a Rat Model of Psychiatric Vulnerability. *J. Neurosci.*
556 **30**, 12138–12150 (2010).

557 26. Shannon, C. *et al.* Maternal absence and stability of individual differences in CSF 5-HIAA
558 concentrations in rhesus monkey infants. *Am. J. Psychiatry* **162**, 1658–1664 (2005).

559 27. Rincón-Cortés, M. *et al.* Enduring good memories of infant trauma: rescue of adult
560 neurobehavioral deficits via amygdala serotonin and corticosterone interaction. *Proc. Natl.*
561 *Acad. Sci. U. S. A.* **112**, 881–886 (2015).

562 28. Hellstrom, I. C., Dhir, S. K., Diorio, J. C. & Meaney, M. J. Maternal licking regulates
563 hippocampal glucocorticoid receptor transcription through a thyroid hormone–serotonin–
564 NGFI-A signalling cascade. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* **367**, 2495–2510 (2012).

565 29. Ansorge, M. S., Zhou, M., Lira, A., Hen, R. & Gingrich, J. A. Early-life blockade of the 5-HT
566 transporter alters emotional behavior in adult mice. *Science* **306**, 879–881 (2004).

567 30. Yu, Q. *et al.* Dopamine and serotonin signaling during two sensitive developmental periods
568 differentially impact adult aggressive and affective behaviors in mice. *Mol. Psychiatry* **19**,
569 688–698 (2014).

570 31. Rok-Bujko, P., Krząćik, P., Szyndler, J., Kostowski, W. & Stefański, R. The influence of
571 neonatal serotonin depletion on emotional and exploratory behaviours in rats. *Behav. Brain*
572 *Res.* **226**, 87–95 (2012).

573 32. Ren, J. *et al.* Single-cell transcriptomes and whole-brain projections of serotonin neurons in
574 the mouse dorsal and median raphe nuclei. *Elife* **8**, (2019).

575 33. Muzerelle, A., Scotto-Lomassese, S., Bernard, J. F., Soiza-Reilly, M. & Gaspar, P. Conditional
576 anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5-B9) to
577 the forebrain and brainstem. *Brain Struct. Funct.* **221**, 535–561 (2016).

578 34. Okaty, B. W., Commons, K. G. & Dymecki, S. M. Embracing diversity in the 5-HT neuronal
579 system. *Nat. Rev. Neurosci.* **20**, 397–424 (2019).

580 35. Paquet, G. E. *et al.* Single-cell activity and network properties of dorsal raphe nucleus
581 serotonin neurons during emotionally salient behaviors. *Neuron* **110**, 2664–2679.e8 (2022).

582 36. Sargin, D., Jeoung, H.-S., Goodfellow, N. M. & Lambe, E. K. Serotonin Regulation of the
583 Prefrontal Cortex: Cognitive Relevance and the Impact of Developmental Perturbation. *ACS*
584 *Chem. Neurosci.* **10**, 3078–3093 (2019).

585 37. Ranade, S. P. & Mainen, Z. F. Transient firing of dorsal raphe neurons encodes diverse and
586 specific sensory, motor, and reward events. *J. Neurophysiol.* **102**, 3026–3037 (2009).

587 38. Ren, J. *et al.* Anatomically Defined and Functionally Distinct Dorsal Raphe Serotonin Sub-
588 systems. *Cell* **175**, 472-487.e20 (2018).

589 39. Li, Y. *et al.* Serotonin neurons in the dorsal raphe nucleus encode reward signals. *Nat.*
590 *Commun.* **7**, 10503 (2016).

591 40. Liu, Z. *et al.* Dorsal raphe neurons signal reward through 5-HT and glutamate. *Neuron* **81**,
592 1360–1374 (2014).

593 41. Seo, C. *et al.* Intense threat switches dorsal raphe serotonin neurons to a paradoxical
594 operational mode. *Science* **363**, 538–542 (2019).

595 42. Malave, L., van Dijk, M. T. & Anacker, C. Early life adversity shapes neural circuit function
596 during sensitive postnatal developmental periods. *Transl. Psychiatry* **12**, 1–14 (2022).

597 43. Walker, C.-D. *et al.* Chronic early life stress induced by limited bedding and nesting (LBN)
598 material in rodents: critical considerations of methodology, outcomes and translational
599 potential. *Stress* **20**, 421–448 (2017).

600 44. de Kloet, E. R. & Molendijk, M. L. Floating Rodents and Stress-Coping Neurobiology. *Biol.*
601 *Psychiatry* **90**, e19–e21 (2021).

602 45. Posner, J. *et al.* Alterations in amygdala-prefrontal circuits in infants exposed to prenatal
603 maternal depression. *Transl. Psychiatry* **6**, e935 (2016).

604 46. Fareri, D. S. *et al.* Altered ventral striatal–medial prefrontal cortex resting-state connectivity
605 mediates adolescent social problems after early institutional care. *Dev. Psychopathol.* **29**,
606 1865–1876 (2017).

607 47. Guenthner, C. J., Miyamichi, K., Yang, H. H., Heller, H. C. & Luo, L. Permanent genetic
608 access to transiently active neurons via TRAP: Targeted recombination in active populations.
609 *Neuron* **79**, 1257 (2013).

610 48. Scott, M. M. *et al.* A genetic approach to access serotonin neurons for in vivo and in vitro
611 studies. *Proc. Natl. Acad. Sci. U. S. A.* **102**, 16472–16477 (2005).

612 49. Terstege, D. J., Oboh, D. O. & Epp, J. R. FASTMAP: Open-Source Flexible Atlas
613 Segmentation Tool for Multi-Area Processing of Biological Images. *eNeuro* **9**, (2022).

614 50. Unger, E. K. *et al.* Directed evolution of a selective and sensitive serotonin sensor via
615 machine learning. *Cell* **183**, 1986-2002.e26 (2020).

616 51. Rempel-Clower, N. L. Role of orbitofrontal cortex connections in emotion. *Ann. N. Y. Acad.*
617 *Sci.* **1121**, 72–86 (2007).

618 52. Shin, L. M. & Liberzon, I. The neurocircuitry of fear, stress, and anxiety disorders.
619 *Neuropsychopharmacology* **35**, 169–191 (2010).

620 53. Shin, L. M. *et al.* Regional cerebral blood flow during script-driven imagery in childhood
621 sexual abuse-related PTSD: A PET investigation. *Am. J. Psychiatry* **156**, 575–584 (1999).

622 54. Bystritsky, A. *et al.* Functional MRI changes during panic anticipation and imagery exposure.
623 *Neuroreport* **12**, 3953–3957 (2001).

624 55. Kalin, N. H., Shelton, S. E. & Davidson, R. J. Role of the primate orbitofrontal cortex in
625 mediating anxious temperament. *Biol. Psychiatry* **62**, 1134–1139 (2007).

626 56. Nordahl, T. E. *et al.* Regional cerebral metabolic asymmetries replicated in an independent
627 group of patients with panic disorder. *Biol. Psychiatry* **44**, 998–1006 (1998).

628 57. Rauch, S. L., Shin, L. M., Whalen, P. J. & Pitman, R. K. Neuroimaging and the Neuroanatomy
629 of Posttraumatic Stress Disorder. *CNS Spectr.* **3**, 30–41 (1998).

630 58. Holz, N. E. *et al.* Early Social Adversity, Altered Brain Functional Connectivity, and Mental
631 Health. *Biol. Psychiatry* **93**, 430–441 (2023).

632 59. Heyn, S. A. *et al.* Abnormal Prefrontal Development in Pediatric Posttraumatic Stress
633 Disorder: A Longitudinal Structural and Functional Magnetic Resonance Imaging Study. *Biol.*
634 *Psychiatry Cogn Neurosci Neuroimaging* **4**, 171–179 (2019).

635 60. McLaughlin, K. A. Future directions in childhood adversity and youth psychopathology. *J.*
636 *Clin. Child Adolesc. Psychol.* **45**, 361–382 (2016).

637 61. Roberts, A. C. The importance of serotonin for orbitofrontal function. *Biol. Psychiatry* **69**,
638 1185–1191 (2011).

639 62. Miyazaki, K. *et al.* Serotonergic projections to the orbitofrontal and medial prefrontal cortices
640 differentially modulate waiting for future rewards. *Science Advances* **6**, eabc7246 (2020).

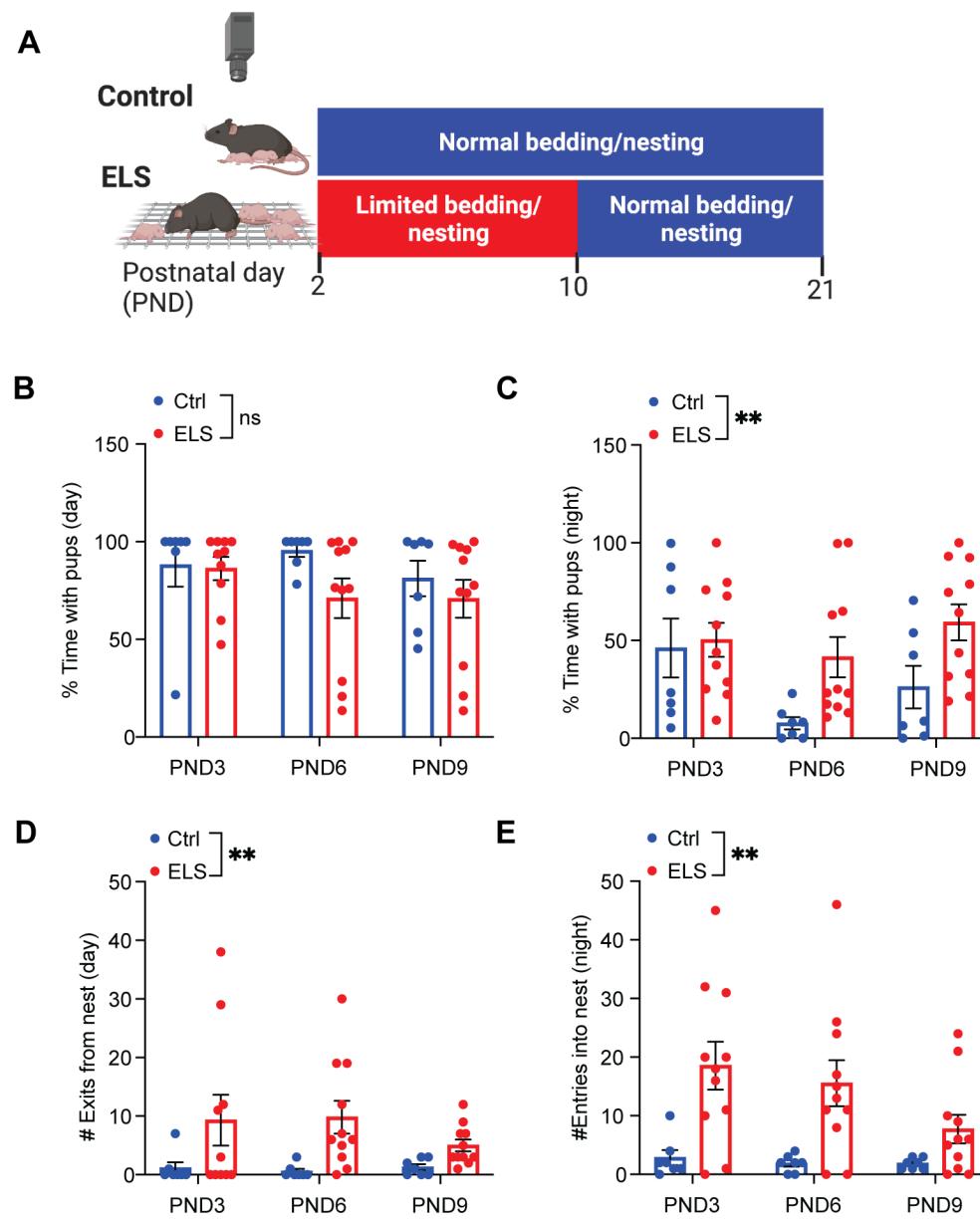
641 63. Hanson, J. L. *et al.* Early stress is associated with alterations in the orbitofrontal cortex: a
642 tensor-based morphometry investigation of brain structure and behavioral risk. *J. Neurosci.*
643 **30**, 7466–7472 (2010).

644 64. Holz, N. E. *et al.* The long-term impact of early life poverty on orbitofrontal cortex volume in
645 adulthood: results from a prospective study over 25 years. *Neuropsychopharmacology* **40**,
646 996–1004 (2015).

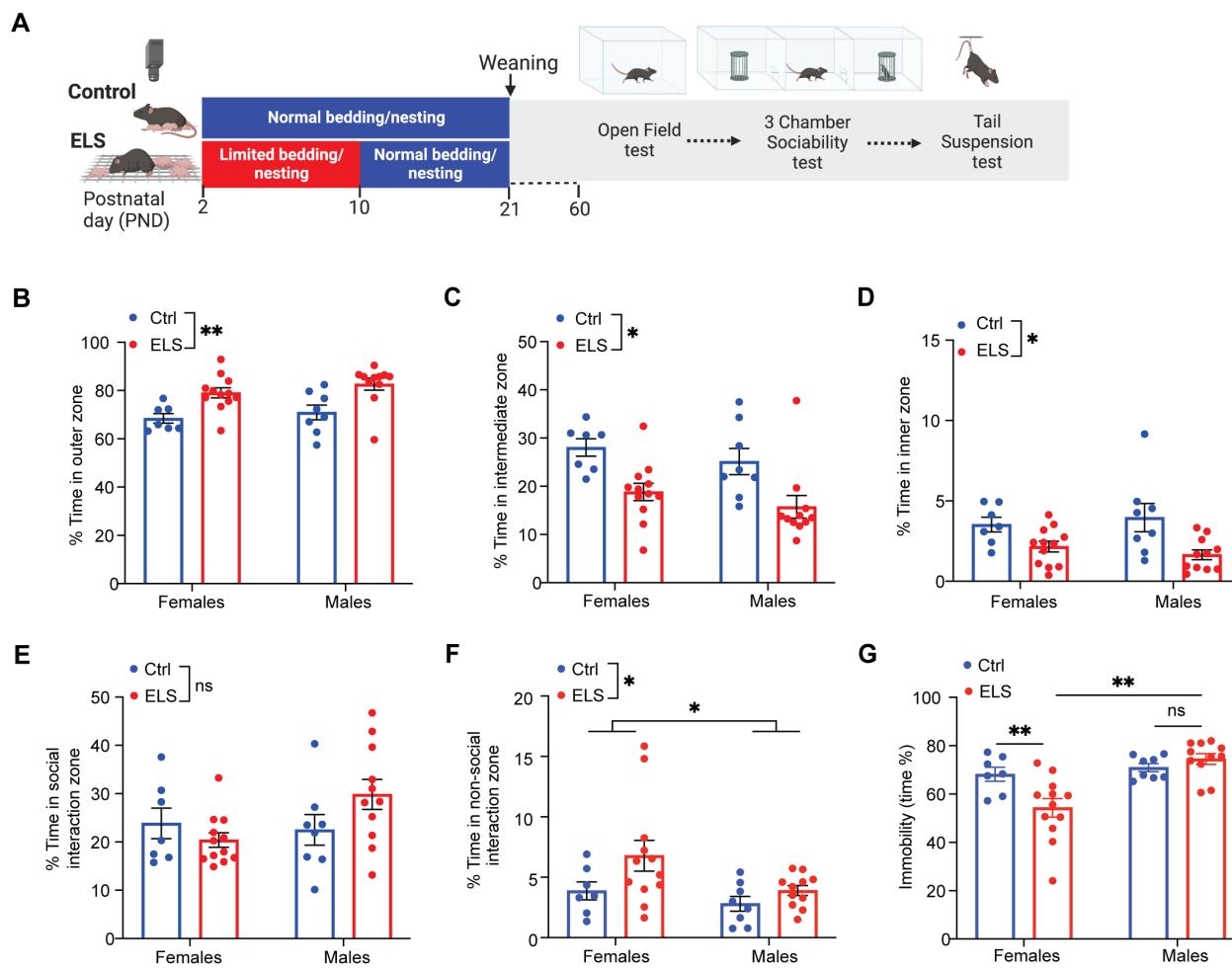
647 65. Monninger, M. *et al.* The Long-Term Impact of Early Life Stress on Orbitofrontal Cortical
648 Thickness. *Cereb. Cortex* **30**, 1307–1317 (2020).

649 66. Barlow, R. L. *et al.* Markers of serotonergic function in the orbitofrontal cortex and dorsal
650 raphé nucleus predict individual variation in spatial-discrimination serial reversal learning.
651 *Neuropsychopharmacology* **40**, 1619–1630 (2015).

652 67. Alsiö, J. *et al.* Serotonergic Innervations of the Orbitofrontal and Medial-prefrontal Cortices
653 are Differentially Involved in Visual Discrimination and Reversal Learning in Rats. *Cereb.*
654 *Cortex* **31**, 1090–1105 (2020).


655 68. Costa, V. D. & Averbeck, B. B. Primate Orbitofrontal Cortex Codes Information Relevant for
656 Managing Explore-Exploit Tradeoffs. *J. Neurosci.* **40**, 2553–2561 (2020).

657 69. Sladky, R. *et al.* Disrupted effective connectivity between the amygdala and orbitofrontal
658 cortex in social anxiety disorder during emotion discrimination revealed by dynamic causal
659 modeling for fMRI. *Cereb. Cortex* **25**, 895–903 (2015).


660 70. Milad, M. R. & Rauch, S. L. The role of the orbitofrontal cortex in anxiety disorders. *Ann. N.*
661 *Y. Acad. Sci.* **1121**, 546–561 (2007).

662 71. Hahn, A. *et al.* Reduced resting-state functional connectivity between amygdala and
663 orbitofrontal cortex in social anxiety disorder. *Neuroimage* **56**, 881–889 (2011).

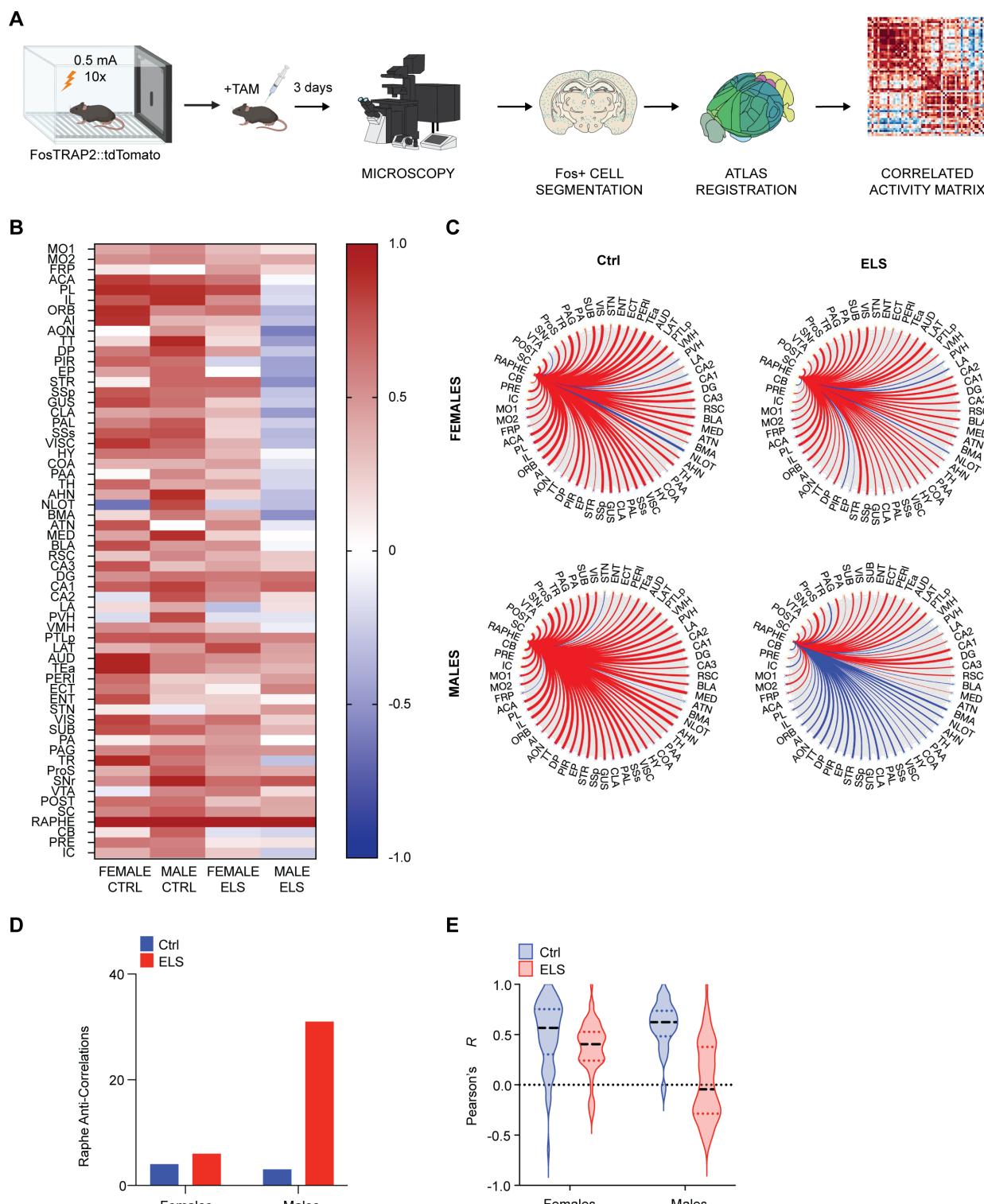

664 72. Downar, J. Orbitofrontal Cortex: A “Non-rewarding” New Treatment Target in Depression?
665 *Current Biology: CB* vol. 29 R59–R62 (2019).

Figure 1. Maternal behavior during light and dark cycle. A) Experimental paradigm showing the implementation of control and limited bedding/nesting (LBN) conditions. Dams and pups were exposed to LBN on PND2-10. **B)** The time LBN dams ($n = 11$) spent with pups on PND3, 6 and 9 during the light cycle was comparable to control ($n = 7$) dams (two-way ANOVA; effect of group: $F(1, 48) = 2.51, p = 0.12$, effect of time: $F(2, 48) = 0.86, p = 0.43$). **C)** LBN dams spent significantly greater time with pups across PND3, 6 and 9 during the dark cycle, compared to control dams (two-way ANOVA; effect of group: $F(1, 48) = 7.79, **p = 0.007$, effect of time: $F(2, 48) = 2.84, p = 0.07$). **D)** LBN dams exhibited significantly higher frequency of nest exits on PND3, 6 and 9 during the light cycle, compared to control dams (two-way ANOVA; effect of group: $F(1, 48) = 10.02, **p = 0.003$, effect of time: $F(2, 48) = 0.35, p = 0.71$). **E)** During the dark cycle, LBN dams exhibited significantly higher frequency of nest entries, compared to control dams (two-way ANOVA; effect of group: $F(1, 48) = 19.95, **p < 0.01$, effect of time: $F(2, 48) = 1.74, p = 0.19$). ** $p < 0.01$, ns; non-significant. Data represent mean \pm SEM.

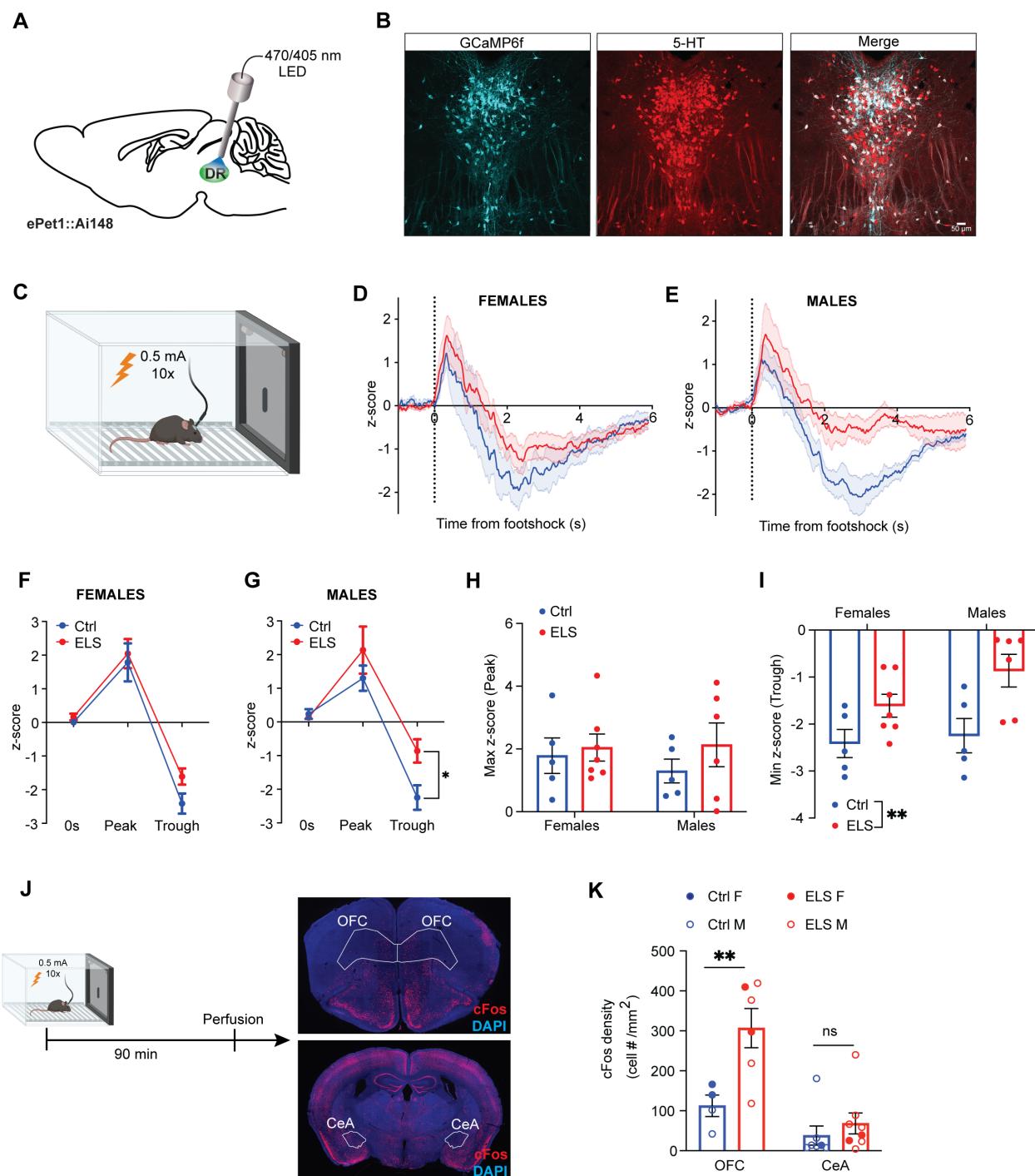
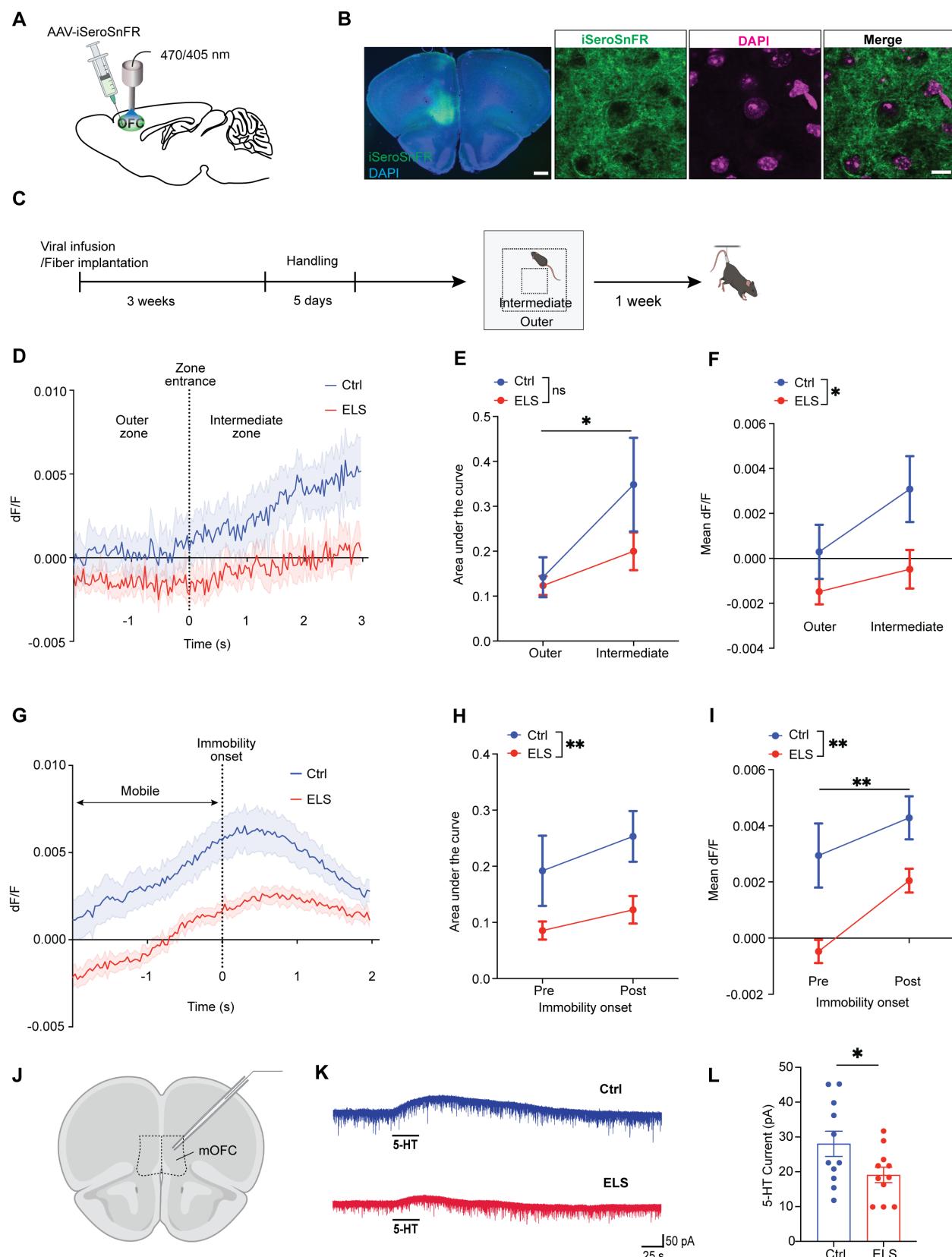
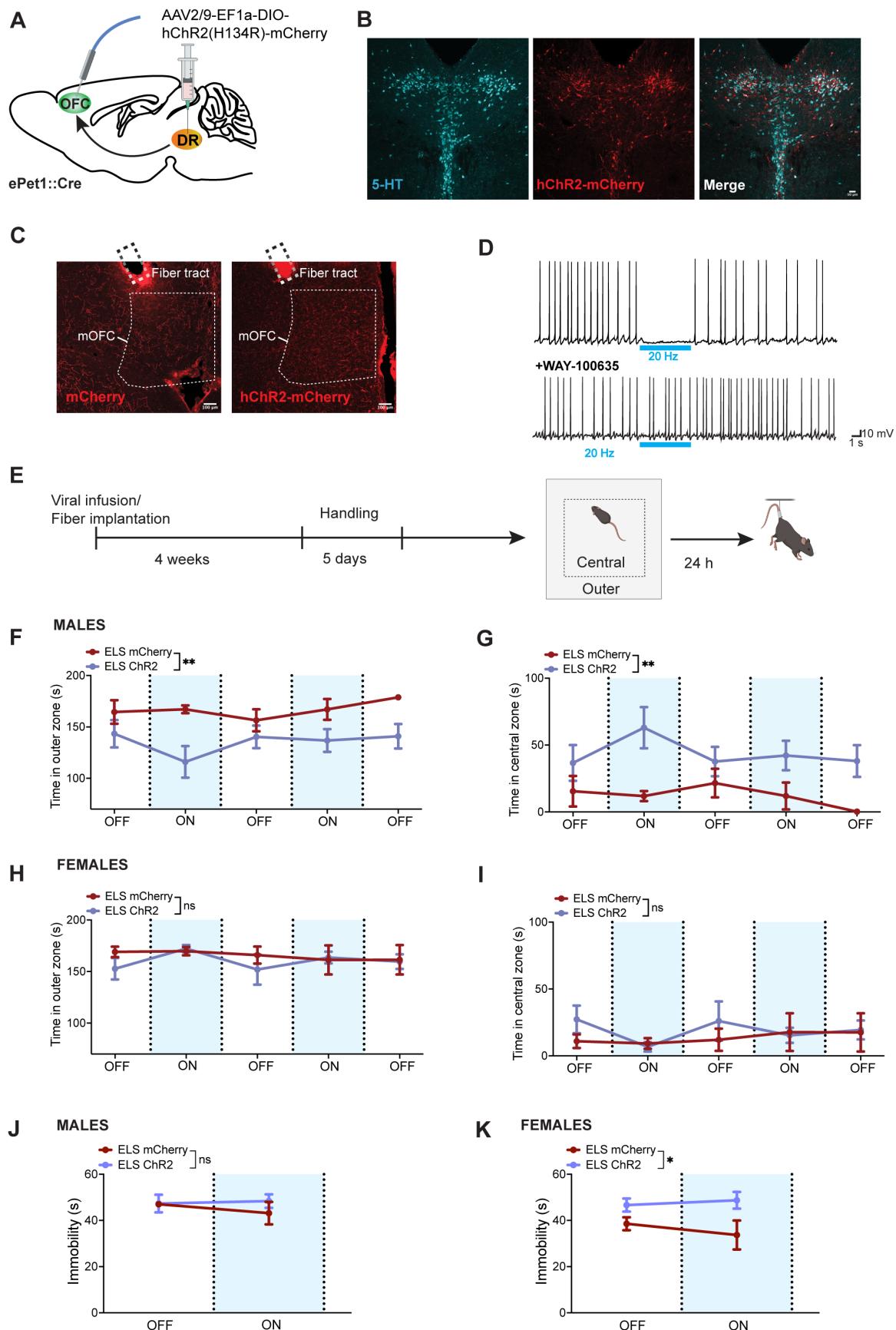


Figure 2. Long-term impact of ELS on offspring behavior. **A)** Experimental paradigm showing behavioral tests performed after offspring reared under control and LBN conditions reached adulthood (> PND60). Female (n = 12) and male ELS (n = 11) mice spent significantly greater amount of time in the outer zone (two-way ANOVA; effect of group: $F(1, 34) = 19.69$, $**p < 0.001$, effect of sex: $F(1, 34) = 1.48$, $p = 0.23$) (**B**), and significantly less time in the intermediate (two-way ANOVA; effect of group: $F(1, 34) = 16.84$, $**p < 0.001$, effect of sex: $F(1, 34) = 1.77$, $p = 0.19$) (**C**) and inner (two-way ANOVA; effect of group: $F(1, 34) = 13.52$, $p < 0.001$, effect of sex: $F(1, 34) = 0.006$, $p = 0.94$) (**D**) zones of the open field, indicating a greater anxiety-like behavior, compared with female (n = 7) and male (n = 8) controls. **E)** Time spent interacting with a stranger mouse (social interaction zone) was comparable between female and male control and ELS mice (two-way ANOVA; effect of group: $F(1, 34) = 0.49$, $p = 0.49$, effect of sex: $F(1, 34) = 2.15$, $p = 0.15$). **F)** Female and male ELS mice spent significantly greater time interacting with an empty cup (non-social interaction zone) compared to control mice (two-way ANOVA; effect of group: $F(1, 34) = 4.47$, $*p = 0.04$, effect of sex: $F(1, 34) = 4.35$, $*p = 0.04$). **G)** Female and male ELS mice show frequently greater passive coping behavior (immobility) during tail suspension test, compare to controls (two-way ANOVA; effect of group: $F(1, 34) = 17.4$, $**p < 0.01$, effect of sex: $F(1, 34) = 7.57$, $**p = 0.009$). *p<0.05, **p<0.01, ns; non-significant. Data represent mean \pm SEM.


Figure 3. ELS-induced disruption in raphe functional connectivity. A) Pipeline for assessing functional connectivity underlying acute footshock stress in female control (n = 7), male control (n = 7), female ELS (n = 11) and male ELS (n = 10) mice. **B)** Functional connectivity of the raphe nucleus based on the regional c-fos activity was assessed by isolating the column in the correlated

activity matrix corresponding to this region for female and male control and ELS mice. **C)** ELS led to an increase in anti-correlated connectivity in the raphe nucleus, which was more prominent in males. Blue lines depict anti-correlations, red lines show positive correlations. Line weight is indicative of the magnitude of the Pearson's R value. **D)** Number of brain regions showing anti-correlated activity (negative correlations) with the raphe nucleus in female and male control and ELS mice. **E)** Distribution of Pearson correlation coefficients showed significantly altered correlation between control and ELS mice, with male ELS group showing the most striking difference from controls (Kolmogorov-Smirnov tests: Female Ctrl vs. Female ELS, $p = 0.0025$; Male Ctrl vs. Male ELS, $p < 0.0001$; Female Ctrl vs. Male Ctrl, $p = 0.1813$; Female ELS vs. Male ELS, $p < 0.0001$). Also see Table S1 for the list of names for abbreviated brain regions.


Figure 4. ELS alters footshock-induced activity of DR serotonin neurons and postsynaptic regions. **A)** Schematic showing implantation of an optical fiber in the dorsal raphe nucleus (DR) of ePet1::Ai148 mice, allowing *in vivo* Ca²⁺ imaging in serotonin neurons. **B)** Representative images showing GCaMP6f (cyan) and serotonin (red) co-localization in the DR of a ePet1::Ai148 mouse. **C)** Footshock paradigm (ten 0.5 mA footshocks, each 2 sec, presented with 30sec intervals). Averaged Ca²⁺ signal changes in serotonin neurons in female (ctrl: n = 5; ELS: n = 7) (**D**) and male (ctrl: n = 5; ELS: n = 6) mice (**E**) in response to acute footshock. The activity (z-score) of serotonin neuron population in response to footshock. The baseline at footshock onset (t=0s), the maximum response during t = 0-1 s (peak) and minimum response during t = 2-4 s

(trough) were plotted for female (**F**) and male (**G**) control and ELS mice (two-way ANOVA; Females, effect of group: $F(1, 30) = 2.3, p = 0.14$, effect of time: $F(2, 30) = 71.32, **p < 0.001$; Males, effect of group: $F(1, 27) = 4.51, *p = 0.04$, effect of time: $F(2, 27) = 32.48, **p < 0.001$). **H**) Footshock-induced maximum serotonin neuron activity (peak) is comparable between female and male control and ELS mice (two-way ANOVA; effect of group: $F(1, 19) = 1.01, p = 0.33$, effect of sex: $F(1, 19) = 0.14, p = 0.72$). **I**) Footshock-induced minimum serotonin neuron activity (trough) is significantly reduced in female and male ELS mice, compared to controls (two-way ANOVA; effect of group: $F(1, 19) = 12.14, **p = 0.002$, effect of sex: $F(1, 19) = 2.11, p = 0.16$). **J**) Experimental paradigm showing representative images of c-fos staining in mice perfused 90 min after footshock. OFC, orbitofrontal cortex; CeA, central amygdala. **K**) ELS mice show increased activity in the OFC indicated by significantly greater number of c-fos positive cells induced by footshock, compared to controls. The activity in CeA is comparable between control and ELS mice (two-way ANOVA, group X brain region: $F(1, 21) = 5.77, *p = 0.02$; Tukey's multiple comparisons test, OFC ctrl vs ELS: $**p = 0.008$, CeA ctrl vs ELS: $p = 0.89$). $*p < 0.05$, $**p < 0.01$, ns; non-significant. Data represent mean \pm SEM.

Figure 5. ELS leads to reduced serotonin release in the medial orbitofrontal cortex under aversive conditions. A) Schematic showing AAV2/9-CAG-iSeroSnFR-NLG infusion and fiber

optic implantation in the medial orbitofrontal cortex (mOFC). **B)** Representative images showing iSeroSnFR (green) expression in the mOFC. Section is co-labeled with DAPI. **C)** Experimental scheme showing viral infusion and fiber implantation followed by handling prior to open field and tail suspension tests. **D)** Averaged iSeroSnFR signal 2 sec before and 3 sec after the mouse transitioned from the outer to the intermediate zone (ctrl: n = 7; ELS: n = 9). **E)** The area under the curve of the iSeroSnFR signal in the outer and intermediate zone. 5-HT is released in the mOFC after control and ELS mice entered the intermediate zone (two-way ANOVA; effect of group: $F(1, 28) = 2.2, p = 0.15$, effect of zone: $F(1, 28) = 6.31, *p = 0.02$). **F)** The mean amplitude of the iSeroSnFR signal (dF/F) in the outer and intermediate zone. ELS mice exhibit significantly lower serotonin release in the mOFC in the transition from outer to intermediate zone (two-way ANOVA; effect of group: $F(1, 28) = 6.9, **p = 0.01$, effect of zone: $F(1, 28) = 3.48, p = 0.07$). **G)** Averaged iSeroSnFR signal 2 sec before and after immobility onset in the tail suspension test (ctrl: n = 7; ELS: n = 9). **H)** The area under the curve of the iSeroSnFR signal before and after immobility onset in TST is significantly lower in ELS mice (two-way ANOVA; effect of group: $F(1, 28) = 9.91, **p = 0.004$; effect of mobility: $F(1, 28) = 1.7, p = 0.2$). **I)** The mean amplitude of the iSeroSnFR signal (dF/F) before and after immobility onset in TST is significantly lower in ELS mice (two-way ANOVA; effect of group: $F(1, 28) = 16.82, **p < 0.001$; effect of mobility: $F(1, 28) = 7.9, **p = 0.009$), suggesting reduced serotonin release. **J)** Slices comprising the mOFC were used for patch clamp recordings. **K)** Representative voltage-clamp recordings from mOFC neurons of a ctrl and an ELS mouse showing the outward inhibitory current in response to serotonin (5-HT) application. **L)** The amplitude of the outward inhibitory serotonin current is significantly lower in ELS mice, compared with controls (4 control male mice, n = 11 neurons; 3 ELS male mice, n = 11 neurons) (unpaired t-test, $*p = 0.048$). $*p < 0.05$, $**p < 0.01$, ns; non-significant. Data represent mean \pm SEM.

Figure 6. Optogenetic stimulation of 5-HT terminals in mOFC improves anxiety-like behavior in male ELS mice. **A)** Schematic showing AAV2/9-EF1a-DIO-hChR2(H134R)-mCherry infusion in DR and fiber optic implantation in mOFC. **B)** Representative images showing 5-HT (cyan) and hChR2-mCherry (red) expression in DRN. Scale bar, 50 μ m. **C)** Representative images showing mCherry-labeled 5-HT neuron processes in the mOFC from mice expressing mCherry or hChR2-mCherry. Scale bars, 100 μ m. **D)** Representative current clamp traces from an mOFC pyramidal neuron showing inhibition of action potentials upon blue light (above; 470 nm, 20 Hz, 10 ms) stimulation and the absence of light-induced inhibition after application of the 5-HT1A receptor blocker WAY-100635 (below). **E)** Experimental paradigm for optogenetic stimulation during open field and TST. **F, G)** Optogenetic stimulation of 5-HT terminals in mOFC decreases the time in the outer zone and increases the time in the central zone of the open field in male ELS mice (mCherry: n = 4; ChR2: n = 6) (two-way ANOVA; outer zone, effect of group: F(1, 40) = 16.59, p = 0.0002, effect of time: F(4, 40) = 0.62, p = 0.65; central zone, effect of group: F(1, 40) = 16.59, p = 0.0002, effect of time: F(4, 40) = 0.59, p = 0.67). **H, I)** No effect of optogenetic stimulation in the time spent in outer or central zones of the open field in female ELS mice (mCherry: n = 4; ChR2: n = 6) (two-way ANOVA; outer zone, effect of group: F(1, 40) = 0.77, p = 0.39, effect of time: F(4, 40) = 0.47, p = 0.76). **J)** Optogenetic stimulation of 5-HT terminals in mOFC does not lead to a change in mobility of male ELS mice in TST (mCherry: n = 4; ChR2: n = 6) (two-way ANOVA; outer zone, effect of group: F(1, 16) = 0.58, p = 0.46, effect of time: F(1, 16) = 0.15, p = 0.71). **K)** Increased immobility in hChR2-mCherry expressing female ELS mice in TST during optogenetic stimulation of 5-HT terminals in mOFC (mCherry: n = 4; ChR2: n = 6) (two-way ANOVA; effect of group: F(1, 16) = 8.49, *p = 0.01, effect of time: F(1, 16) = 0.12, p = 0.73).