

1 Metabolic adjustments to winter severity in two geographically 2 separated great tit (*Parus major*) populations

3 Cesare Pacioni^{a*}, Andrey Bushuev^b, Marina Sentís^a, Anvar Kerimov^b, Elena Ivankina^c, Luc Lens^a,
4 Diederik Strubbe^a

5

6 ^a Terrestrial Ecology Unit, Ghent University, Ghent, Belgium

7 ^b Department of Vertebrate Zoology, Faculty of Biology, M.V. Lomonosov Moscow State University,
8 Moscow, Russia

9 ^c S.N. Skadovsky Zvenigorod Biological Station, M.V. Lomonosov Moscow State University, Moscow,
10 Russia

11

12 *Corresponding author: Cesare Pacioni, Ghent University, Department of Biology, Terrestrial Ecology
13 Unit. Karel Lodewijk Ledeganckstraat 35, 9000 Ghent, Belgium. E-mail: cesare.pacioni@ugent.be

14

15 Abstract

16 Understanding the potential limits placed on organisms by their ecophysiology is crucial for
17 predicting their responses to varying environmental conditions. Studies to date have
18 traditionally relied on between-species comparisons, however, recently, there has been a
19 growing recognition of the importance of intraspecific variation in shaping an organism's
20 ecological and physiological responses. In this context, widely distributed resident bird species
21 offer a well-suited study system to examine intraspecific geographical variation in
22 ecophysiological traits. A main hypothesis for explaining avian thermoregulatory mechanisms
23 is the aerobic capacity model, which posits a positive correlation between basal (BMR) and
24 summit (M_{sum}) metabolism, caused by the energetic maintenance costs associated with
25 increased muscle mass for shivering thermogenesis and enhanced investment in digestive
26 organs for food processing. Most evidence for this hypothesis, however, comes from

27 interspecific comparisons only, and the ecophysiological underpinnings of avian
28 thermoregulatory capacities hence remain controversial. Here, we focus on great tits (*Parus*
29 *major*), measuring winter BMR and M_{sum} in two populations from different climates, a
30 maritime-temperate (Gontrode, Belgium) and a continental (Zvenigorod, Russia) one. We test
31 for the presence of intraspecific geographical variation in metabolic rates and assess the
32 predictions following the aerobic capacity model. We found that metabolic rates differed
33 between populations, whereby the birds from the maritime-temperate climate (Gontrode)
34 showed higher (whole-body and mass-independent) BMR whereas conversely, great tits from
35 Zvenigorod showed higher levels of both (whole-body and mass-independent) M_{sum} . Within
36 each population, our data did not fully support the aerobic capacity model's predictions. We
37 argue that the decoupling of BMR and M_{sum} observed may be caused by different selective
38 forces acting on these metabolic rates, with birds from the continental-climate Zvenigorod
39 population facing the need to conserve energy for surviving long winter nights (by keeping their
40 BMR at low levels) while simultaneously being able to generate more heat (i.e., a high M_{sum})
41 to withstand cold spells. We argue that the coupling or uncoupling of basal and maximum
42 metabolic rates at the intraspecific level is likely influenced by different selective pressures that
43 shape local adaptations in response to different climate regimes.

44

45 **Keywords:** Metabolic rates; Great tit; Aerobic capacity model; Basal metabolic rate; Summit
46 metabolic rate.

47

48

49

50

51

52 **Introduction**

53 A key question in ecology is how species adjust their physiology to cope with different
54 environmental conditions, as a better understanding of the underlying processes may allow
55 ecologists to better predict how organisms will respond to changes in their environment
56 (Bozinovic and Pörtner, 2015; Herrando-Pérez et al., 2023). This is particularly important for
57 endotherms, as they need to maintain their core body temperature within a relatively narrow
58 range. While endothermy allows animals to be active over a wide range of ambient
59 temperatures, it comes at a potentially high energetic cost and places additional demands on
60 their physiology, such as the need for efficient respiratory and cardiovascular systems and the
61 ability to process food quickly and efficiently (Boyles et al., 2011; Kronfeld-Schor and Dayan,
62 2013). Studies attempting to unravel these physiological adjustments have relied heavily on
63 interspecific comparisons, considering a given species as a homogenous physiological unit and
64 assuming that conspecific populations have comparable responses (Reed et al., 2011; Thomas
65 et al., 2004). However, different populations of a single species are likely to exhibit varying
66 adjustments and different thermal tolerances to local environmental conditions (Cavieres and
67 Sabat, 2008; Furness, 2003; Wikelski et al., 2003), as it is unlikely that a single phenotype will
68 be the best fit for all conditions. This may be particularly true for populations that experience
69 contrasting climatic conditions across their distribution range (Cavieres and Sabat, 2008; Root,
70 1988). Indeed, previous studies have shown that within-species variability in ecophysiological
71 traits (e.g., metabolic rates) can be high, and by comparing individuals within a species,
72 intraspecific studies can be used to test predictions derived from between-species comparisons
73 and to identify factors beyond those revealed by interspecific studies (Cruz-Neto & Bozinovic,
74 2004).

75

76 Widely distributed resident bird species with geographical distributions spanning a
77 range of climatic zones therefore provide an interesting study system for assessing intraspecific
78 geographical variation in ecophysiological traits related to thermoregulation and providing
79 functional explanations for it. The wide distribution suggests a role for local adaptation and/or
80 phenotypic flexibility for population persistence in different climates (Kendeigh and Blem,
81 1974; Piersma and Drent, 2003). For instance, while interspecific studies have shown that
82 differences in metabolic rates between species are largely due to differences in body mass,
83 reflecting either local adaptation or phenotypic plasticity, functional explanations for this
84 scaling remain controversial (Giancarli et al., 2023; White et al., 2019). In line with the 'food-
85 habitat' hypothesis (Thompson, 2019), interspecific studies often document strong correlations
86 between diet and metabolism, such as the finding that species feeding on a combination of
87 insects with seeds and fruits typically have higher metabolic rates (McNab, 2009). However,
88 intraspecific comparisons typically show mixed support for this hypothesis (McKeechnie &
89 Swanson, 2010), suggesting that individual-level variability in factors such as enzymatic
90 plasticity and the use of energy-saving mechanisms such as facultative torpor must be taken
91 into account to understand the functional significance of such correlations (Cruz-Neto and
92 Bozinovic, 2004).

93

94 Failure to identify, quantify, and explain intraspecific variation in thermoregulatory
95 capacities can also lead to erroneous forecasts of range shifts due to climate change (Bozinovic
96 et al., 2011; Pearman et al., 2010). To gain a comprehensive understanding of species' responses
97 to environmental changes, it is crucial to consider their thermoregulatory capacities (Boyles et
98 al., 2011). Considerable uncertainty however remains regarding the extent to which local
99 populations of a given species respond to weather and climate conditions across their range by
100 adjusting their physiological characteristics. Birds from highly seasonal environments are

101 known to be able to increase their cold tolerance in winter, which they achieve through
102 physiological adjustments in, for example, body mass and metabolic rate (Swanson, 1990,
103 2010; Swanson and Olmstead, 1999; Swanson and Vézina, 2015). Several studies have
104 documented that the magnitude of such thermogenic adjustments correlates with climate
105 severity. For example, studies on house finch (*Carpodacus mexicanus*) populations living in
106 different regions of North America, each with distinct climatic conditions, found that summit
107 metabolism (M_{sum} , which reflects maximal thermogenic capacity) was higher in colder areas
108 (Dawson et al., 1983; O'Connor, 1996). However, Swanson (1993) compared M_{sum} in winter-
109 acclimatized dark-eyed juncos (*Junco hyemalis*) from the cold winter climate of South Dakota
110 (USA) and the milder winter climate of western Oregon (USA), but found that M_{sum} was similar
111 between the two populations. More recently, Stager et al. (2021) studied dark-eyed juncos
112 across North America and found that while thermogenic capacity was higher in colder areas,
113 there was substantial variation among populations in the extent to which they adjusted their
114 M_{sum} in response to climate.

115
116 Similar debates exist about the mechanisms underlying intraspecific variation in M_{sum} .
117 An important explanation for this comes from the aerobic capacity model for the evolution of
118 endothermy (Bennett & Ruben, 1979), which assumes a positive correlation between basal and
119 summit metabolism, e.g., due to energetic maintenance costs associated with increased muscle
120 mass for shivering thermogenesis and/or increased investment in the gut and digestive organs
121 to process enough food to fuel muscle thermogenesis (McKechnie & Swanson, 2010). Between-
122 species comparisons generally support the aerobic capacity model (Auer et al., 2017; Rezende
123 et al., 2002). For example, Dutenhoffer and Swanson (1996) found a positive correlation
124 between whole-body and mass-independent basal metabolic rate (BMR) and M_{sum} in ten
125 different bird species from South Dakota, USA. Intraspecific studies, in contrast, provide

126 inconclusive support for functional correlations between BMR and M_{sum} (Swanson et al., 2012).
127 For example, Liknes and Swanson (1996) found that BMR and M_{sum} were positively correlated
128 in winter and late summer for white-breasted nuthatches (*Sitta carolinensis*) and downy
129 woodpeckers (*Picoides pubescens*) in South Dakota. However, at higher latitudes, winters are
130 not only colder but are also characterized by shorter day lengths, limiting the time available for
131 foraging. High maintenance costs (i.e., high BMR) during long nights may cause birds to
132 exhaust their energy reserves, leading to selection against high winter BMR (Bozinovic and
133 Sabat, 2010; Broggi et al., 2005). Indeed, O'Connor (1995) found that BMR was seasonally
134 stable in house finches in Michigan, USA, whereas M_{sum} was higher in winter. Similarly, Le
135 Pogam et al. (2020) demonstrated that snow buntings (*Plectrophenax nivalis*) increased their
136 M_{sum} by about 25% during cold Canadian winters without a concomitant increase in BMR.
137 Therefore, intraspecific studies examining variations in both metabolic rates have yielded
138 inconsistent results, leaving uncertainties regarding the extent of variation within species.

139
140 Here, we study intraspecific geographic variation in ecophysiological traits
141 hypothesized to underpin avian thermoregulation, using great tits (*Parus major*) as a case study.
142 The great tit is one of the best studied bird species, breeding from approximately 10°S to 71°N,
143 and remaining resident even at the northernmost limit of its breeding range (Cramp et al., 1993;
144 Silverin, 1995). To this end, we measured the basal (BMR) and summit (M_{sum}) metabolic rates
145 in two populations of great tits, one living in a maritime-temperate climate characterized by
146 mild winters (Belgium, Gontrode, Melle), and the other living in a continental climate
147 characterized by long and cold winters (Russia, Zvenigorod Biological Station, Moscow
148 Oblast). We predict (i) that individuals from the cold, continental population will be
149 characterized by higher maximal thermogenic capacity (i.e., M_{sum}) but lower maintenance costs

150 (i.e., BMR) compared to those from the maritime temperate population, and that (ii) BMR and
151 M_{sum} will be correlated within each population, following the aerobic capacity model.

152

153 **Materials and methods**

154 *Study areas, trapping and maintenance*

155 The research in Belgium (Gontrode, Melle) took place in the Aelmoeseneie forest
156 (50.975°N, 3.802°E), covering an area of 28.5 hectares. The forest is a mixed deciduous forest
157 surrounded by residential areas and agricultural fields. The fieldwork was carried out during
158 the late winter (February 01 – March 11, 2022). Since autumn 2015, the forest has been
159 equipped with 84 standard nest boxes specifically designed for great tits. The climate in this
160 region is maritime-temperate, characterized by mild winters and constant rainfall throughout
161 the year (corresponds to the *Cfb* subtype in the Köppen climate classification). To monitor the
162 ambient temperature (T_a) in the forest, 20 TMS-4 data loggers were deployed, positioned
163 approximately 15 cm above the ground (Wild et al., 2019).

164 The research in Russia (Zvenigorod) took place at the Zvenigorod Biological Station
165 (55.701°N, 36.723°E), affiliated with Lomonosov Moscow State University. The station
166 territory encompasses two small settlements within the mixed forest of the Moskva River
167 valley, as well as a predominantly spruce forest in the watershed area. The fieldwork was carried
168 out during the late winter (January 22 – February 02, 2021; January 27 – February 23, 2022;
169 March 04-17, 2023). Although the reserve spans a total territory of 715 hectares and comprises
170 540 nest boxes, the winter bird catching was carried out only near the feeder located at the
171 center of one of the settlements. Additionally, a nighttime check was conducted only on the
172 nearest nest boxes within a distance of 250 meters from the feeder. The climate of Zvenigorod
173 region is temperate continental (corresponding to the *Dfb* subtype in the Köppen climate
174 classification). To monitor the T_a in the forest, the DS1921G Thermochron iButton logger

175 (Dallas Semiconductor) was used, positioned approximately 1.5 m above the ground near the
176 feeder.

177 In both populations, bird capture consisted of nightly nest box checks and daily mist
178 netting. The captured birds were transported to a nearby laboratory, where they were
179 individually ringed for identification purposes. They were also assessed for age (1st winter or
180 adult), sex (based on plumage characteristics), weighed to the nearest 0.1g (before and after
181 each metabolic measurement), and placed in individual cages with access to food (mealworms
182 and sunflower seeds) and water. Following the metabolic experiments, all birds were released
183 at their original capture site. The study protocol in Belgium was approved by the Ethics
184 Committee on Animal Experiments VIB/Faculty of Science of Ghent University (EC2020-
185 063), and in Russia by the Bioethics Committee of Lomonosov Moscow State University
186 (applications #120-a and #120-a-2 for the experimental procedures, and #10.2-hous. and 10.3-
187 hous. for the short-term housing of birds).

188 In Gontrode (Table 1), we measured BMR in 40 individuals (19 males and 21 females,
189 including 35 adults and 5 1st-winter). Of these, we also measured the M_{sum} of 36 individuals
190 (16 males and 20 females, including 31 adults and 5 1st-winter). In Zvenigorod (Table 1) we
191 measured BMR in 128 individuals (77 males and 51 females, including 51 adults and 77 1st-
192 winter), and M_{sum} was measured in 20 individuals using flow-through respirometry (11 males
193 and 9 females, including 6 adults and 14 1st-winter) and 35 individuals using closed-circuit
194 respirometry (21 males and 13 females, including 14 adults and 20 1st-winter). Table 2 provides
195 a summary of the T_a in both locations.

196

197

198

199

Location	sex	age	Body mass (g)	BMR (ml O ₂ /min)	M _{sum} (ml O ₂ /min)	ME (M _{sum} /BMR)
Gontrode	F	ad	15.6 ± 1.1 (20)	1.13 ± 0.12 (20)	4.30 ± 0.37 (19)	3.85 ± 0.48 (18)
		sad	17.0 (1)	1.18 (1)	5.33 (1)	4.52 (1)
	M	ad	16.9 ± 1.6 (15)	1.16 ± 0.16 (15)	4.68 ± 0.21 (12)	3.93 ± 0.47 (10)
		sad	18.1 ± 1.1 (4)	1.35 ± 0.37 (4)	5.19 ± 0.37 (4)	4.03 ± 0.92 (4)
mean			16.4 ± 1.5	1.17 ± 0.17	4.56 ± 0.45	3.92 ± 0.53
Zvenigorod	F	ad	17.1 ± 1.2 (21)	1.05 ± 0.09 (21)	6.80 ± 0.45 (3)	6.47 ± 1.14 (3)
		sad	16.9 ± 0.9 (30)	1.07 ± 0.06 (30)	5.91 ± 0.51 (6)	5.29 ± 0.88 (6)
	M	ad	18.1 ± 0.7 (30)	1.10 ± 0.06 (30)	6.41 ± 0.38 (3)	6.03 0.77 (3)
		sad	17.8 ± 0.8 (47)	1.08 ± 0.07 (47)	6.80 ± 0.62 (8)	6.41 0.40 (8)
mean			17.6 ± 1.0	1.08 ± 0.07	6.48 ± 0.64	6.11 ± 0.81

200

201 Table 1. Mean ± standard deviation of body mass (g), basal metabolic rate (BMR; ml O₂/min),
202 summit metabolic rate (M_{sum}; ml O₂/min) and metabolic expansibility (i.e., the ratio between
203 M_{sum} and BMR; ME) in great tits (*Parus major*) from two different locations: Gontrode
204 (Belgium) and Zvenigorod (Russia). The values for each location are further grouped by sex
205 (female, F; males; M) and age (adult, ad; subadult; sad). The sample size *n* for each group is
206 provided within brackets.

207

		January	February	March
Gontrode	2022	-	6.5 ± 1.8 °C	9.3 ± 2.9 °C
	2021	-6.6 ± 7.1 °C	-11.6 ± 7.0 °C	-2.5 ± 6.8 °C
Zvenigorod	2022	-6.1 ± 3.7 °C	-1.9 ± 3.4 °C	-2.9 ± 5.5 °C
	2023	-5.5 ± 7.6 °C	-5.0 ± 4.4 °C	-0.1 ± 5.0 °C

208

209 Table 2. Mean ± standard deviation of ambient temperatures (T_a) in both locations during the
210 study periods.

211

212 *BMR measurements*

213 The assessment of winter BMR in Gontrode was conducted at night using open flow-
214 through respirometry (Lighton, 2018). To measure BMR, the oxygen consumption (VO₂) of 40
215 individuals in a fasted state was monitored, following the methods described in Pacioni et al.
216 (2023). Before and after the respirometry measurement, the body masses of the birds were taken
217 to the nearest 0.1g. Each individual was then placed in a 1.1-liter plastic chamber within a
218 darkened climate control unit (Combisteel R600). Ambient air was delivered by two pumps at
219 a flow rate of 400 ml/min. The chambers were maintained at 25°C, which falls within the birds'
220 thermoneutral zone (Bech & Mariussen, 2022; Pacioni et al., 2023), determined according to
221 the procedures outlined by van de Ven et al. (2013). The birds were measured in cycles, along
222 with several baselines, with the timing and duration of measurements varying depending on the
223 number of birds present during each session. On average, each bird underwent measurements
224 for approximately 30 minutes per cycle, with three cycles conducted throughout the night.
225 Following the metabolic measurements, the birds were returned to their cages and provided
226 with water and food ad libitum. Additional details regarding calibration and the respirometry
227 setup can be found in Pacioni et al. (2023).

228 The assessment of winter BMR in Zvenigorod was conducted similarly to BMR
229 measurements in Gontrode. VO₂ measurements were carried out throughout the night (from 14
230 h in late January to 11 h in mid-March) using flow-through respirometry. An 8-channel system
231 enabled the measurement of VO₂ in up to 7 birds (on average, 3.3 individuals). Outdoor air was
232 pushed through columns containing silica gel. Subsequently, the dehumidified air was directed
233 at an average flow rate of 430 ml/min into 1.25-liter polypropylene chambers housing the birds,
234 which were maintained at a T_a of 26.5°C in thermostats. The air from the chambers was dried
235 using a small chamber with 10-20 mesh Drierite® (W.A. Hammond Drierite Co. Ltd) and
236 directed into the flowmeter of the FoxBox respirometer (Sable Systems). A subsample of the
237 airflow, at a rate of 100 ml/min, was then directed to the O₂ and CO₂ analyzers in two FoxBoxes

238 (the second one was used for control), which recorded gas concentrations and flow rates every
239 6 sec. The measurements of gas concentrations in the airflow from the chambers with birds and
240 the reference chamber were alternated, with durations of 20-25 min for each bird and 5-10 min
241 for the baseline measurement. The minimum VO_2 (BMR) typically occurred around 3:30 am.
242 Additional details regarding calibration and leakage testing can be found in Bushuev et al.
243 (2021).

244

245 *M_{sum} measurements*

246 During the day, individual measurements of winter M_{sum} were conducted in Gontrode
247 on 36 individuals. The maximum cold-induced oxygen consumption (VO_2) in a heliox
248 atmosphere (79% helium, 21% oxygen) was used as the indicator for M_{sum} , following the
249 methodology outlined in Pacioni et al. (2023). The sliding cold exposure method of Swanson
250 et al. (1996) was used. Prior to and after the trials, the body mass of each bird was recorded
251 with an accuracy of 0.1g. Subsequently, the birds were placed in a 0.9-liter metal chamber. The
252 chamber, along with the bird inside, was positioned within the same climate control unit used
253 for BMR measurements, with an initial temperature setting of 10°C. The climate control unit
254 was supplied with flowing heliox gas a few minutes prior to the trial, allowing the bird to
255 acclimate. The heliox gas was pumped into the chamber at a flow rate of approximately 812
256 ml/min. Each M_{sum} trial began with a 7-minute baseline measurement using heliox, ensuring
257 complete replacement of the air in the metabolic chambers before data recording commenced.
258 After the baseline period, the experimental channel was activated. Following the removal of the
259 bird from the chamber, baseline values were once again recorded for a minimum duration of 5
260 minutes. The trial was stopped when a steady decline in VO_2 was observed for several minutes.
261 M_{sum} was considered reached when the body temperature of a bird after a trial was 38°C
262 (Cooper & Gessaman, 2005), measured by inserting a thermocouple (5SC-TT-TI-36-2M;

263 Omega) coated with vaseline into the cloaca. The bird was then placed in a warm room with
264 access to water and food. Additional details regarding calibration and the respirometry setup
265 can be found in Pacioni et al. (2023).

266 In Zvenigorod, M_{sum} was estimated during the day using both flow-through respirometry
267 (utilizing the same FoxBox system as for BMR measurements; $n = 20$) and closed-circuit
268 respirometry ($n = 35$). The design of the flow-through respirometry setup was generally similar
269 to that used in Gontrode, but the static cold exposure method described by Swanson et al. (1996)
270 was employed. Before the start of the experiment, the birds were placed inside a 1.3-liter metal
271 chamber with its interior painted black. Subsequently, the chamber was flushed with heliox
272 until the volume of gas passing through the chamber reached six times its volume. The flow
273 through the chamber was then reduced to 1.5 l/min, and a 5-minute reference measurement of
274 concentrations of O_2 and CO_2 (baselining) was initiated. During this period, the chamber was
275 carefully placed inside an Alpicool C40 refrigerator (avg. $T_a = -10^\circ C$) filled with a mixture of
276 propylene glycol, propanol, and water. The heliox flow from the gas cylinder passed through
277 the FoxBox mass flow meter and then entered the chamber with the bird through a 20-meter-
278 long tube, which was also located inside the refrigerator to allow the gas mixture to cool down.
279 The experimental channel was activated every 20-25 min, alternating with 5-min baseline
280 periods. After the chamber, the flow was subsampled at a rate of 200 ml/min. The subsampled
281 gas was then passed through a 20 ml column containing Drierite® 10-20 mesh absorbent to
282 remove water. Subsequently, the air passed through two FoxBoxes (the second one was used
283 for control), which recorded O_2 and CO_2 concentrations every second.

284 To measure M_{sum} in a closed system, a respirometer constructed by D.V. Petrovski
285 (Institute of Cytology and Genetics, Russian Academy of Sciences) was utilized. The bird,
286 housed in a metal mesh cage, along with a permeable container containing CO_2 and water
287 absorbent (KOH granules), was placed inside a cylindrical steel chamber. This 1.2-liter

288 chamber was located in WAECO TropiCool TC-35FL-AC thermoelectric refrigerator filled
289 with antifreeze liquid (see above) at $T_a = -1^\circ\text{C}$. Subsequently, the chamber was purged with
290 heliox six times its volume. During the VO_2 measurement, the heliox inside the airtight chamber
291 with the bird was mixed using an internal membrane pump for a duration of 50 seconds.
292 Following this, the decreased pressure within the chamber was balanced with atmospheric
293 pressure by briefly opening a valve connecting the chamber to an oxygen pillow with pure O_2
294 for 5 seconds. Another 5 seconds were dedicated to gas mixture mixing, so the cycle repeated
295 every minute. The decrease in partial pressure of O_2 in the chamber with the bird during each
296 cycle was measured using an internal pressure gauge and converted to VO_2/min . Further details
297 can be found in Moshkin et al. (2002) and Vasilieva et al. (2020). Similar to Gontrode, a notable
298 decrease in VO_2 within a few minutes served as an indication of hypothermia. To measure
299 cloacal temperature, we used a K-type thermocouple coated with vaseline and connected it to a
300 calibrated Testo 175 T3 thermologger.

301

302 *Respirometry and data analysis*

303 For the Gontrode data, BMR (ml O_2/min) and M_{sum} (ml O_2/min) were extracted using
304 the ExpeData software provided by Sable Systems. The calculations for BMR, TNZ, and M_{sum}
305 were performed using equation 9.7 from Lighton (2008). The lowest stable section of the curve,
306 averaged over 5 minutes, was utilized to estimate BMR and TNZ throughout the entire night,
307 while the highest 5-minute average VO_2 during the test period was used to estimate M_{sum} . To
308 ensure accuracy, all data were adjusted for drift in O_2 , CO_2 , and H_2O baselines utilizing the
309 Drift Correction function available in ExpeData.

310 For the Zvenigorod data on BMR measurements, the calculation of VO_2 from fractional
311 concentrations of O_2 and CO_2 was performed using the equation from Bushuev et al. (2018).
312 However, for the M_{sum} trials in the flow-through respirometer, the flow rate was estimated prior

313 to the metabolic chamber. Therefore, the calculation of VO_2 for these trials was conducted using
314 a different equation, specifically equation 9.7 from Lighton (2008). In this equation, $\% \text{H}_2\text{O}$ was
315 set to zero, as water was eliminated using a chemical dryer. To estimate BMR and M_{sum} , the
316 minimum and maximum running average VO_2 values over a 5-minute period were used,
317 respectively. To account for drift in the O_2 and CO_2 baselines, linear correction was applied
318 using two adjacent baselines: one before and one after the VO_2 measurement. In closed-circuit
319 respirometry, the VO_2 readings were adjusted to standard conditions (STP) and then M_{sum} was
320 calculated using the 5-minute maximum running average.

321

322 *Statistical analysis*

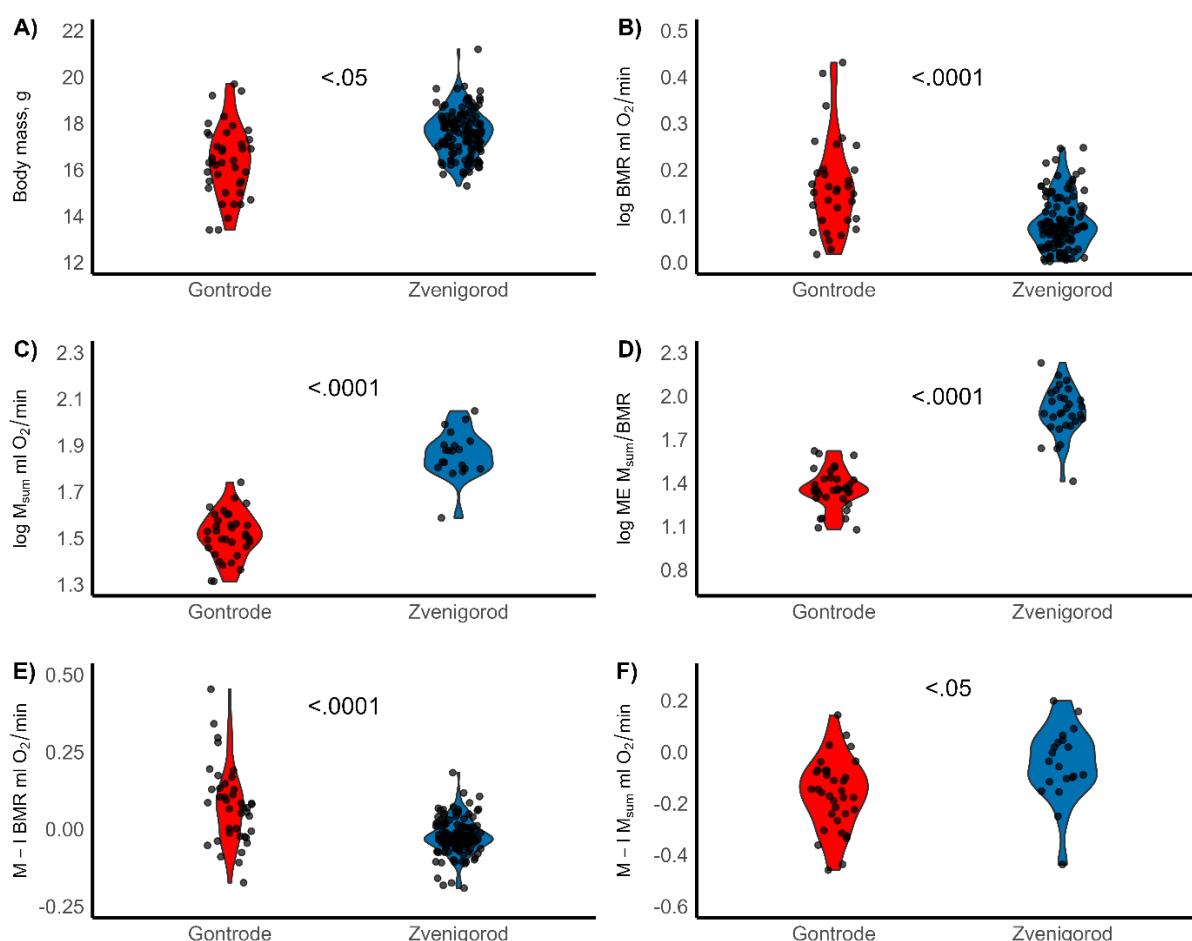
323 Linear regression models with a Gaussian error distribution were used to test whether
324 body mass, BMR, M_{sum} , and metabolic expansibility (i.e., the ratio between M_{sum} and BMR;
325 ME) differed between the two populations, specifying body mass, BMR, M_{sum} , and, ME as
326 dependent variables while adding location, sex, and age as covariates, with 2-way and 3-way
327 interactions. Here, we followed Swanson et al. (1996), and considered M_{sum} values obtained
328 from the sliding cold exposure method and the static cold exposure method to be comparable.
329 Models were first run using whole-body metabolic rates, and then also using mass-independent
330 metabolic rates. Mass-independent metabolic rates were considered as the residuals of
331 regressions of (log) BMR, and (log) M_{sum} on (log) body mass (after the measurements). Prior
332 to investigating potential intraspecific geographic variation in BMR, we assessed whether BMR
333 and M_{sum} from Zvenigorod differed among the three years (2021, 2022, and 2023). Our analysis
334 did not find any significant differences ($p > 0.1$), hence we decided to consider BMR and M_{sum}
335 measurements from three years as a single dataset for further analysis.

336 Regarding the assumption of the aerobic capacity model, similar linear models were
337 used to test for positive correlations between body mass and metabolic rates, and between BMR

338 and M_{sum} . To avoid collinearity issues when assessing the relationship between mass-
339 independent BMR and mass-independent M_{sum} we first calculated the residuals from the
340 regression of (log) BMR and (log) M_{sum} on (log) body mass and then used the residual values
341 of M_{sum} as the dependent variable and the residual value of BMR as the explanatory variable
342 (Downs et al., 2013).

343 For all models, we used a backward stepwise procedure to eliminate non-significant
344 interactions and variables. Post-hoc comparisons between species and seasons were performed
345 with the emmeans function in the ‘emmeans’ package (Lenth, 2022). We used interquartile
346 ranges as a criterion to identify outliers by using the quantile function. Then, we use the subset
347 function to eliminate outliers. For all models, the normality of residuals was tested and verified
348 (i.e., Shapiro-Wilk $W > 0.9$), and the significance level was set at $p \leq 0.05$. Body mass, BMR,
349 M_{sum} , and ME were log-transformed before all analyses. Statistical analysis was performed
350 using R v. 4.2.2 software (R Core Team, 2022).

351


352 **Results**

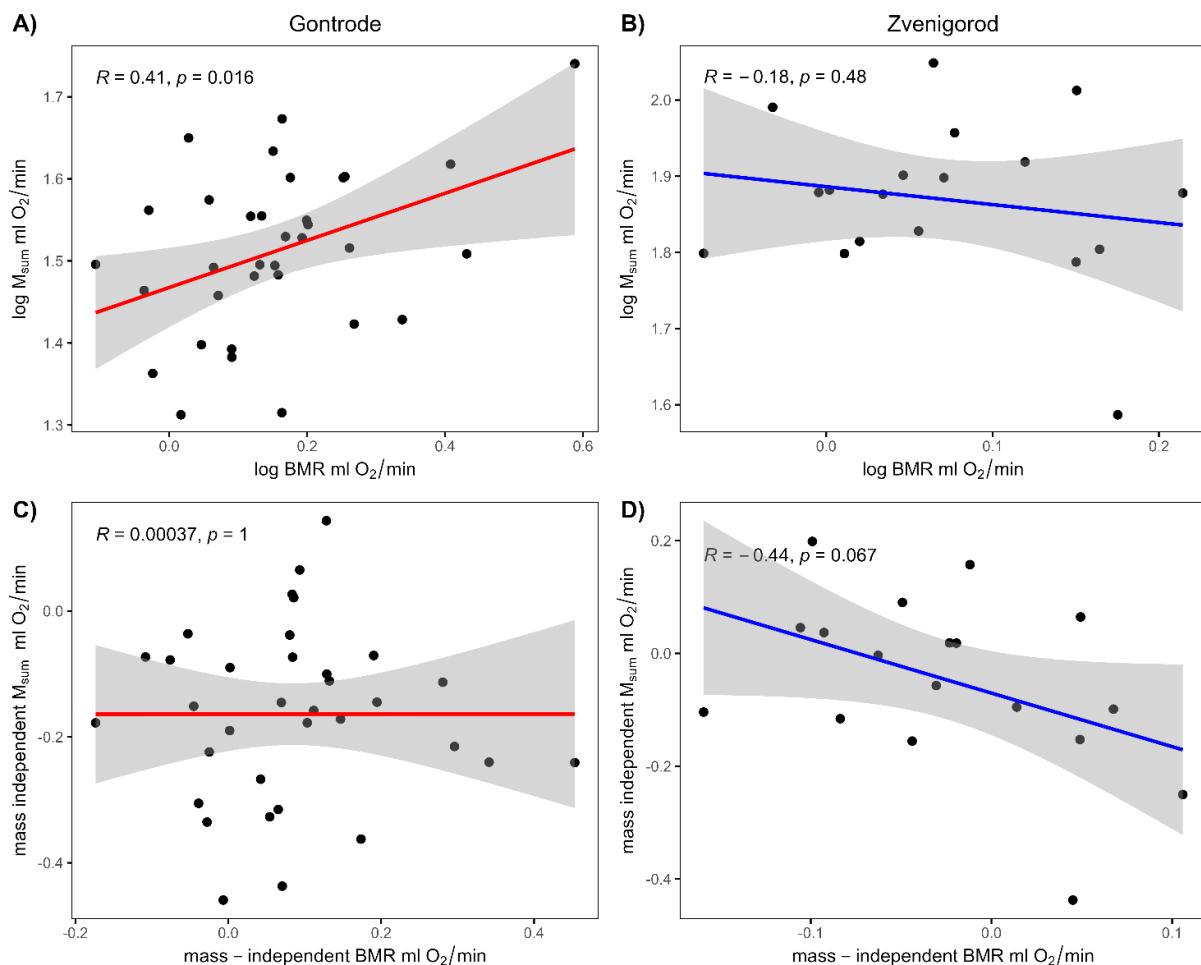
353 *Variation in body mass and metabolic rate*

354 We found a positive correlation between body mass and whole-body BMR, and between
355 body mass and whole-body M_{sum} in both populations (BMR: Gontrode: $R=0.48$, $p<0.01$;
356 Zvenigorod: $R=0.58$, $p<0.0001$; M_{sum} : Gontrode: $R=0.49$, $p<0.001$; Zvenigorod: $R=0.45$,
357 $p<0.05$). Individuals from Zvenigorod were significantly heavier (either considering the body
358 mass before and after the metabolic measurements; $p<0.05$) than those from Gontrode
359 (Gontrode: 16.4 ± 1.5 g; Zvenigorod: 17.6 ± 1.0 g; Table 1). Males were significantly ($p<0.0001$)
360 heavier than females between and within populations, while adults and subadults did not differ
361 in body mass between and within populations ($p>0.05$). Individuals from Gontrode had a
362 significantly higher BMR than those from Zvenigorod, regardless of whether the analysis was

363 conducted on whole-body (about two-fold higher, $p<0.0001$) or mass-independent (about four-
364 fold higher, $p<0.0001$) metabolic rates. Males had a significantly higher whole-body BMR than
365 females ($p<0.05$) between and within locations, due to their larger body mass, as mass-
366 independent BMR did not differ between the sexes ($p>0.1$). Birds from Zvenigorod measured
367 using the same open-flow respirometry set-up as used in Gontrode had a significantly higher
368 M_{sum} (an increase of more than 30% ($p<0.0001$) for whole-body and almost two times higher
369 ($p<0.05$) for mass-independent) than those from Gontrode. Great tits from Gontrode had a ME
370 of 3.92 ± 0.53 , whereas great tits from Zvenigorod had a whole-body ME of 5.83 ± 1.52 . Whole-
371 body ME from Zvenigorod was significantly higher (about 50%, $p<0.0001$) compared to birds
372 from Gontrode (Figure 1). When considering the Zvenigorod birds whose M_{sum} was measured
373 using closed-flow respirometry, differences between Gontrode and Zvenigorod great tits were
374 even more outspoken (e.g., 1.5 times higher mass-independent M_{sum} ; see Supplementary file 1
375 for details). In the remainder of the manuscript, we therefore focus on the more conservative
376 and comparable open-flow metabolic rates.

377

378


379 Figure 1. Violin plots of A) body mass (g), B) whole-body basal metabolic rate (BMR; ml
380 O₂/min), C) whole-body summit metabolic rate (M_{sum}; ml O₂/min), D) whole-body ME
381 (M_{sum}/BMR), E) mass-independent (M-I) BMR and F) mass-independent (M-I) M_{sum} in great
382 tits (*Parus major*) from two different locations: Gontrode (Belgium, red) and Zvenigorod
383 (Russia, blue). The p-value indicating the statistical significance of the differences is displayed
384 between the two corresponding box plots.

385

386 *Aerobic capacity model of endothermy predictions*

387 Whole-body BMR and M_{sum} were also positively correlated in individuals from Gontrode
388 (R=0.41, p<0.05), while mass-independent metabolic rates were not (p>0.1). In Zvenigorod, no
389 significant correlations were found between BMR (whole-body or mass-independent) and M_{sum}
390 (Figure 2). Details of the results of all statistical analyses are available in Supplementary file 1.

391

392

393 Figure 2. Relationships between (log) BMR and (log) M_{sum} in Gontrode, Belgium (A) and
394 Zvenigorod, Russia (B) and between mass-independent BMR and mass-independent M_{sum} in
395 Gontrode (C) and Zvenigorod (D).

396

397 Discussion

398 Here, we test for intraspecific variation in ecophysiological traits related to
399 thermoregulation using great tits living in two geographically and climatically separate
400 locations that experience different winter conditions. While several studies have documented
401 that metabolic rates can vary between geographical areas, this study is, to our knowledge, the
402 first to test for concurrent variation in basal (BMR) and summit (M_{sum}) metabolic rates.
403 Observed differences between populations suggest that avian basal and summit metabolic rates

404 may vary independently in response to environmental influences, as great tits from the colder
405 site (Zvenigorod, Russia) had significantly higher thermogenic capacity (i.e., M_{sum}) than those
406 from the warmer site (Gontrode, Belgium), but a lower basal metabolic rate (BMR). Contrary
407 to the prediction of the aerobic capacity model, we find only weak support for a functional
408 relationship between these metabolic rates at the individual level as (mass-independent) BMR
409 and M_{sum} were uncorrelated.

410

411 During winter, continental high-latitude areas are characterized by low temperatures,
412 limited food resources, shorter foraging periods, and extended fasting periods during the long
413 nights. Physiological adaptations have long been hypothesized to be key to enduring such
414 challenging environments (Swanson and Olmstead, 1999). Indeed, more recently, Petit et al.
415 (2017), for example, found that winter survival of black-capped chickadees (*Poecile*
416 *atricapillus*) in Quebec, Canada, was positively associated with M_{sum} . However, the
417 relationship between winter survival and M_{sum} was not linear, but exhibited a threshold
418 function, and many individuals had M_{sum} values significantly higher than required for survival.
419 Petit et al. (2017) suggested that this increase in M_{sum} may be due to selection for increased
420 muscle mass to power the sustained foraging flights required to gather sufficient food in the
421 generally resource-poor winter habitat, with the thermogenic effects providing a secondary
422 benefit. Such an explanation for high M_{sum} is less likely here, as higher muscle mass should
423 correspond to higher overall energetic maintenance costs, which was not confirmed by our data.
424 Moreover, birds from the colder Zvenigorod site were characterized by lower whole-body BMR
425 compared to birds from Gontrode, despite having higher body mass. This suggests that the
426 differences in mass between the populations are not due to a higher muscle mass, but rather that
427 the Zvenigorod birds may have a greater amount of metabolically (relatively) inactive fat mass
428 (Scott and Evans, 1992). Indeed, the accumulation of fat reserves during winter, known as

429 winter fattening, is a well-known mechanism observed in small passerines to survive colder
430 climates and longer nights (King and Farner, 1966; Pravosudov and Grubb, 1997).

431
432 The Zvenigorod population thus has a higher metabolic expansibility (whole-body
433 M_{sum}/BMR ; ME: ~6 times the BMR compared to ~4 times for the Gontrode population), which
434 is commonly used as an indicator of the organism's ability to produce heat for a given level of
435 metabolic maintenance cost (Arens and Cooper, 2005; Cooper and Swanson, 1994). As we
436 found no support for the aerobic capacity model of endothermy, which postulates a positive
437 correlation between minimum (BMR) and maximum (M_{sum}) aerobic metabolic rates (Bennett
438 and Ruben, 1979), it remains unclear what mechanisms underlie the summit metabolic capacity
439 of our study birds. The aerobic model has been supported primarily by interspecific studies
440 (Dutenhoffer and Swanson, 1996; Rezende et al., 2002), but these relationships often disappear
441 at the individual level, at least after accounting for variation in body mass (Swanson et al., 2012;
442 Vézina et al., 2006). The reasons for the differences between inter- and intraspecific studies of
443 these phenotypic correlations are not yet fully understood. On the one hand, this lack of
444 correlations may represent a statistical artefact associated with much lower levels of variation
445 in body mass and metabolic rates in intraspecific studies (Swanson et al., 2017). On the other
446 hand, Swanson et al. (2023) carried out a literature review investigating flexibility in BMR,
447 M_{sum} and metabolic expansibility, and found that, in fact, for none of the six species for which
448 data were available, higher levels of flexibility in M_{sum} or metabolic expansibility did not
449 typically result in increased maintenance costs (i.e., BMR). This suggests that non-shivering
450 thermogenesis mechanisms may also contribute significantly to thermoregulation in birds (Pani
451 & Bal, 2022). Indeed, multiple adaptations at the cellular and biochemical level have been
452 shown to affect an organism's thermogenic capacity when exposed to changing temperatures
453 (Milbergue et al., 2018; Swanson, 2010). For example, Nord et al. (2021) recently showed that

454 resident great tits in western Scotland were able to upregulate mitochondrial respiration rate
455 and mitochondrial volume in winter, thereby increasing thermogenic capacity at the subcellular
456 level. Further intraspecific studies should consider measuring and accounting for the body
457 composition of individual birds, in particular the relative contributions of fat and muscle mass
458 to the observed body mass differences, as well as blood sampling to investigate the possible
459 role of non-shivering thermogenesis.

460

461 Alternatively, the decoupling of BMR and M_{sum} often observed in intraspecific studies
462 may be caused by different selective forces acting on these metabolic rates (Petit et al., 2013),
463 with birds from the Zvenigorod population facing the need to conserve energy (by keeping their
464 BMR at comparatively low levels) while simultaneously increasing their thermogenic capacity
465 (by increasing their M_{sum}). Swanson et al. (2017) argues that, from an energetic point of view,
466 natural selection should generally favor reducing BMR to the lowest possible level under
467 prevailing environmental or ecological demands, allowing energy to be allocated to other
468 functions. Bozinovic and Sabat (2010) similarly suggested that in resource-poor habitats,
469 organisms that can reduce their BMR will reduce their daily energy expenditure and hence food
470 requirements, thereby increasing fitness through increased survival. Broggi et al. (2005) used a
471 common garden experiment to investigate the physiological basis of interpopulation differences
472 in BMR in Scandinavian great tits, and found that selection pressure for low BMR was
473 particularly strong in more northerly populations, where the energetic costs of thermoregulation
474 and activity are highest. More recently, a literature review by Stager et al. (2016) suggested that
475 latitudinal trends in metabolic rate are primarily driven by a necessary balance between
476 increased thermogenic capacity to cope with cold temperatures and pressure to reduce excess
477 maintenance costs in cold and low food availability environments.

478

479 Our results are therefore consistent with the expectation that birds in resource-poor, cold
480 environments will be characterized by low BMR but high M_{sum} . In contrast, in Gontrode,
481 temperatures are never very cold and birds had access to abundant and stable food resources
482 throughout the winter because the forest is surrounded by a residential area with several gardens
483 equipped with bird feeders (Dekeukeleire, 2021). This may explain their lower body mass
484 compared to the Zvenigorod birds, as the rich and stable food may allow birds to adopt a lean
485 body mass by trading off predation and starvation risk (Macleod et al., 2005). Ambient air
486 temperatures at Gontrode in February and March averaged 6.5 ± 1.8 °C and 9.3 ± 2.9 °C
487 respectively (Table 2), compared to a normal average temperature of about 4.2 °C for February,
488 and about 7.1 °C for March (Pacioni et al., 2023). Due to these comparatively warm
489 temperatures, relatively few great tits were found roosting in nest boxes, further suggesting that
490 thermoregulatory demands and starvation risks were less severe for Gontrode birds, weakening
491 selection for lower BMR in this population.

492

493 *Conclusions*

494 In conclusion, great tits from the colder site (Zvenigorod, Russia) had significantly
495 higher thermogenic capacity (i.e., M_{sum}) than those from the warmer site (Gontrode, Belgium),
496 but a lower basal metabolic rate (BMR). This contradicts the aerobic capacity model, showing
497 that avian basal and summit metabolic rates may vary independently in response to
498 environmental influences. The coupling or uncoupling of minimum and maximum metabolic
499 rates at the intraspecific level may then be influenced by different selective pressures that shape
500 local adaptations in response to different degrees of seasonality. Therefore, future intraspecific
501 studies should consider the potential impact of local adaptations and selective pressures on
502 different conspecific populations when testing the applicability of the aerobic capacity model.
503 These findings would contribute to a better understanding of the adaptive strategies used by

504 birds in different environments and highlight the importance of considering multiple factors
505 when studying and comparing avian metabolic rates.

506

507 **Acknowledgements**

508 We express our gratitude to ForNaLab (Gontrode) for giving us access to their facilities.
509 We extend special thanks to Luc Willems for his invaluable support and to Dries Landuyt for
510 providing us with the temperature data from the dataloggers (Gontrode). We are grateful to the
511 administration of the Zvenigorod biological station for providing the necessary conditions for
512 the study. Furthermore, we would like to acknowledge the valuable assistance provided by
513 bachelor student Hanne Danneels during the data collection process. This study acknowledges
514 funding by FWO-Vlaanderen (project G0E4320N), by Methusalem Project 01M00221 (Ghent
515 University) awarded to Frederick Verbruggen, Luc Lens, and An Martel, and by the Russian
516 Science Foundation (project 20-44-01005). Marina Sentís acknowledges the support of FWO-
517 Vlaanderen (project 11E1623N).

518

519 **Author contributions**

520 Cesare Pacioni: Conceptualization, Methodology, Validation, Formal analysis,
521 Investigation, Data curation, Writing – original draft, Visualization. Andrey Bushuev:
522 Conceptualization, Methodology, Validation, Formal analysis, Investigation, Data curation,
523 Writing – review & editing. Marina Sentís: Conceptualization, Methodology, Investigation,
524 Writing – review & editing. Anvar Kerimov: Conceptualization, Methodology, Validation,
525 Formal analysis, Investigation, Data curation, Writing – review & editing. Elena Ivankina:
526 Methodology, Investigation, Writing – review & editing. Luc Lens: Conceptualization,
527 Validation, Writing – review & editing, Supervision. Diederik Strubbe: Conceptualization,

528 Methodology, Validation, Investigation, Writing – review & editing, Visualization,
529 Supervision.

530

531 **Data availability**

532 Script and data are made available on Mendeley Data (DOI: 10.17632/t84ntxxcbn.1)

533

534 **Conflict of interest**

535 The authors have no conflict of interests.

536

537 **References**

538 Arens, J. R., & Cooper, S. J. (2005). Metabolic and Ventilatory Acclimatization to Cold Stress in House
539 Sparrows (*Passer domesticus*). *Physiological and Biochemical Zoology*, 78(4), 579–589.

540 <https://doi.org/10.1086/430235>

541 Auer, S. K., Killen, S. S., & Rezende, E. L. (2017). Resting vs. active: A meta-analysis of the intra- and
542 inter-specific associations between minimum, sustained, and maximum metabolic rates in
543 vertebrates. *Functional Ecology*, 31(9), 1728–1738. <https://doi.org/10.1111/1365-2435.12879>

544 Bech, C., & Mariusson, C. (2022). Breathing in the Cold: Seasonal Changes in the Ventilatory Pattern
545 in a Small Boreal Passerine Bird. *Frontiers in Ecology and Evolution*, 10.
546 <https://doi.org/10.3389/fevo.2022.866102>

547 Bennett, A. F., & Ruben, J. A. (1979). Endothermy and Activity in Vertebrates. *Science*, 206(4419),
548 649–654. <https://doi.org/10.1126/science.493968>

549 Boyles, J. G., Seebacher, F., Smit, B., & McKechnie, A. E. (2011). Adaptive Thermoregulation in
550 Endotherms May Alter Responses to Climate Change. *Integrative and Comparative Biology*,
551 51(5), 676–690. <https://doi.org/10.1093/icb/icr053>

552 Bozinovic, F., Calosi, P., & Spicer, J. I. (2011). Physiological Correlates of Geographic Range in
553 Animals. *Annual Review of Ecology, Evolution, and Systematics*, 42(1), 155–179.
554 <https://doi.org/10.1146/annurev-ecolsys-102710-145055>

555 Bozinovic, F., & Pörtner, H.-O. (2015). Physiological ecology meets climate change. *Ecology and*
556 *Evolution*, 5(5), 1025–1030. <https://doi.org/10.1002/ece3.1403>

557 Bozinovic, F., & Sabat, P. (2010). On the intraspecific variability in basal metabolism and the food
558 habits hypothesis in birds. *Current Zoology*, 56(6), 759–766.
559 <https://doi.org/10.1093/czoolo/56.6.759>

560 Broggi, J., Hohtola, E., Orell, M., & Nilsson, J.-Å. (2005). Local Adaptation to Winter Conditions in a
561 Passerine Spreading North: A Common-Garden Approach. *Evolution*, 59(7), 1600–1603.
562 <https://doi.org/10.1111/j.0014-3820.2005.tb01810.x>

563 Bushuev, A., Zubkova, E., & Kerimov, A. (2021). Evidence of torpor in a tropical passerine, the Scarlet-
564 backed Flowerpecker *Dicaeum cruentatum*. *Ornithological Science*, 20(2), 213-222.
565 <https://doi.org/10.2326/osj.20.213>

566 Cavieres, G., & Sabat, P. (2008). Geographic variation in the response to thermal acclimation in rufous-
567 collared sparrows: Are physiological flexibility and environmental heterogeneity correlated?
568 *Functional Ecology*, 22(3), 509–515. <https://doi.org/10.1111/j.1365-2435.2008.01382.x>

569 Cooper, S. J., & Gessaman, J. A. (2005). Nocturnal Hypothermia in Seasonally Acclimatized Mountain
570 Chickadees and Juniper Titmice. *The Condor*, 107(1), 151–155.
571 <https://doi.org/10.1093/condor/107.1.151>

572 Cooper, S. J., & Swanson, D. L. (1994). Seasonal Acclimatization of Thermoregulation in the Black-
573 Capped Chickadee. *The Condor*, 96(3), 638–646. <https://doi.org/10.2307/1369467>

574 Cramp, S., Perrins, C. M., & Brooks, D. J. (1993). Vol. VII: Flycatchers to shrikes. Oxford [etc.]: Oxford
575 University Press.

576 Cruz-Neto, A. P., & Bozinovic, F. (2004). The Relationship between Diet Quality and Basal Metabolic
577 Rate in Endotherms: Insights from Intraspecific Analysis. *Physiological and Biochemical*
578 *Zoology: Ecological and Evolutionary Approaches*, 77(6), 877–889.
579 <https://doi.org/10.1086/425187>

580 Dawson, W. R., Marsh, R. L., Buttemer, W. A., & Carey, C. (1983). Seasonal and Geographic Variation
581 of Cold Resistance in House Finches *Carpodacus mexicanus*. *Physiological Zoology*, 56(3),
582 353–369. <https://doi.org/10.1086/physzool.56.3.30152600>

583 Dekeukeleire, D. (2021). *Effects of forest fragmentation and resource availability on mobility and*
584 *reproduction of two avian insectivores, and consequences for ecosystem functioning*
585 [Dissertation, Ghent University]. <http://hdl.handle.net/1854/LU-8696449>

586 Downs, C. J., Brown, J. L., Wone, B., Donovan, E. R., Hunter, K., & Hayes, J. P. (2013). Selection for
587 increased mass-independent maximal metabolic rate suppresses innate but not adaptive immune
588 function. *Proceedings of the Royal Society B: Biological Sciences*, 280(1754), 20122636.
589 <https://doi.org/10.1098/rspb.2012.2636>

590 Dutenhoffer, M. S., & Swanson, D. L. (1996). Relationship of Basal to Summit Metabolic Rate in
591 Passerine Birds and the Aerobic Capacity Model for the Evolution of Endothermy.
592 *Physiological Zoology*, 69(5), 1232–1254. <https://doi.org/10.1086/physzool.69.5.30164255>

593 Furness, R. W. (2003). Impacts of fisheries on seabird communities. *Scientia Marina*, 67(S2), Art. S2.
594 <https://doi.org/10.3989/scimar.2003.67s233>

595 Giancarli, S. M., Dunham, A. E., & O'Connor, M. P. (2023). Clade-specific allometries in avian basal
596 metabolic rate demand a broader theory of allometry. *Physiological and Biochemical Zoology*.
597 <https://doi.org/10.1086/725207>

598 Herrando-Pérez, S., Vieites, D. R., & Araújo, M. B. (2023). Novel physiological data needed for
599 progress in global change ecology. *Basic and Applied Ecology*, 67, 32–47.
600 <https://doi.org/10.1016/j.baae.2023.01.002>

601 Kendeigh, C. S., & Blem, C. R. (1974). Metabolic adaptation to local climate in birds. *Comparative*
602 *Biochemistry and Physiology Part A: Physiology*, 48(1), 175–187.
603 [https://doi.org/10.1016/0300-9629\(74\)90865-2](https://doi.org/10.1016/0300-9629(74)90865-2)

604 King, J. R., & Farner, D. S. (1966). The Adaptive Role of Winter Fattening in the White-Crowned
605 Sparrow with Comments on its Regulation. *The American Naturalist*, 100(914), 403–418.
606 <https://doi.org/10.1086/282435>

607 Kronfeld-Schor, N., & Dayan, T. (2013). Thermal Ecology, Environments, Communities, and Global
608 Change: Energy Intake and Expenditure in Endotherms. *Annual Review of Ecology, Evolution,*
609 *and Systematics*, 44(1), 461–480. <https://doi.org/10.1146/annurev-ecolsys-110512-135917>

610 Le Pogam, A., Love, O. P., Régimbald, L., Dubois, K., Hallot, F., Milbergue, M., Petit, M., O'Connor,
611 R. S., & Vézina, F. (2020). Wintering Snow Buntings Elevate Cold Hardiness to Extreme Levels
612 but Show No Changes in Maintenance Costs. *Physiological and Biochemical Zoology*, 93(6),
613 417–433. <https://doi.org/10.1086/711370>

614 Lenth, R. (2022). emmeans: estimated marginal means, aka least-squares means. R package version
615 1.8.2. 2020.

616 Lighton, J. R. B. (2018). *Measuring Metabolic Rates: A Manual for Scientists*. Oxford University Press.

617 Liknes, E. T., & Swanson, D. L. (1996). Seasonal Variation in Cold Tolerance, Basal Metabolic Rate,
618 and Maximal Capacity for Thermogenesis in White-Breasted Nuthatches *Sitta carolinensis* and
619 Downy Woodpeckers *Picoides pubescens*, Two Unrelated Arboreal Temperate Residents.
620 *Journal of Avian Biology*, 27(4), 279–288. <https://doi.org/10.2307/3677259>

621 Macleod, R., Gosler, A. G., & Cresswell, W. (2005). Diurnal mass gain strategies and perceived
622 predation risk in the great tit *Parus major*. *Journal of Animal Ecology*, 74(5), 956–964.
623 <https://doi.org/10.1111/j.1365-2656.2005.00993.x>

624 McKechnie, A. E., & Swanson, D. L. (2010). Sources and significance of variation in basal, summit and
625 maximal metabolic rates in birds. *Current Zoology*, 56(6), 741–758.
626 <https://doi.org/10.1093/czoolo/56.6.741>

627 McNab, B. K. (2009). Ecological factors affect the level and scaling of avian BMR. *Comparative
628 Biochemistry and Physiology Part A: Molecular & Integrative Physiology*, 152(1), 22–45.
629 <https://doi.org/10.1016/j.cbpa.2008.08.021>

630 Milbergue, M. S., Blier, P. U., & Vézina, F. (2018). Large muscles are beneficial but not required for
631 improving thermogenic capacity in small birds. *Scientific Reports*, 8(1), Art. 1.
632 <https://doi.org/10.1038/s41598-018-32041-w>

633 Moshkin, M. P., Novikov, E. A., Kolosova, I. E., Surov, A. V., Telitsina, A. Y., & Osipova, O. A.
634 (2002). Adrenocortical and bioenergetic responses to cold in five species of murine rodent.
635 Journal of mammalogy, 83(2), 458-466. [https://doi.org/10.1644/1545-1542\(2002\)083<0458:AABRTC>2.0.CO;2](https://doi.org/10.1644/1545-1542(2002)083<0458:AABRTC>2.0.CO;2)

637 Nord, A., Metcalfe, N. B., Page, J. L., Huxtable, A., McCafferty, D. J., & Dawson, N. J. (2021). Avian
638 red blood cell mitochondria produce more heat in winter than in autumn. *The FASEB Journal*,
639 35(5), e21490. <https://doi.org/10.1096/fj.202100107R>

640 O'Connor, T. P. (1995). Metabolic characteristics and body composition in house finches: Effects of
641 seasonal acclimatization. *Journal of Comparative Physiology B*, 165(4), 298–305.
642 <https://doi.org/10.1007/BF00367313>

643 O'Connor, T. P. (1996). Geographic Variation in Metabolic Seasonal Acclimatization in House Finches.
644 *The Condor*, 98(2), 371–381. <https://doi.org/10.2307/1369155>

645 Pacioni, C., Sentis, M., Hambly, C., Speakman, J., Kerimov, A., Bushuev, A., Lens, L., & Strubbe, D.
646 (2023). Seasonal variation in great tit (*Parus major*) energy requirements: reallocation versus
647 increased demand. bioRxiv, 2023-04. <https://doi.org/10.1101/2023.04.01.535061>

648 Pani, P., & Bal, N. C. (2022). Avian adjustments to cold and non-shivering thermogenesis: Whats,
649 wheres and hows. *Biological Reviews*, 97(6), 2106–2126. <https://doi.org/10.1111/brv.12885>

650 Pearman, P. B., D'Amen, M., Graham, C. H., Thuiller, W., & Zimmermann, N. E. (2010). Within-taxon
651 niche structure: Niche conservatism, divergence and predicted effects of climate change.
652 *Ecography*, 33(6), 990–1003. <https://doi.org/10.1111/j.1600-0587.2010.06443.x>

653 Petit, M., Clavijo-Baquet, S., & Vézina, F. (2017). Increasing Winter Maximal Metabolic Rate Improves
654 Intrawinter Survival in Small Birds. *Physiological and Biochemical Zoology*, 90(2), 166–177.
655 <https://doi.org/10.1086/689274>

656 Petit, M., Lewden, A., & Vézina, F. (2013). Intra-Seasonal Flexibility in Avian Metabolic Performance
657 Highlights the Uncoupling of Basal Metabolic Rate and Thermogenic Capacity. *PLOS ONE*,
658 8(6), e68292. <https://doi.org/10.1371/journal.pone.0068292>

659 Piersma, T., & Drent, J. (2003). Phenotypic flexibility and the evolution of organismal design. *Trends
660 in Ecology & Evolution*, 18(5), 228–233. [https://doi.org/10.1016/S0169-5347\(03\)00036-3](https://doi.org/10.1016/S0169-5347(03)00036-3)

661 Pravosudov, V. V., & Grubb, T. C. (1997). Energy Management in Passerine Birds during the
662 Nonbreeding Season. In V. Nolan, E. D. Ketterson, & C. F. Thompson (Eds.), *Current
663 Ornithology* (pp. 189–234). Springer US. https://doi.org/10.1007/978-1-4757-9915-6_5

664 Reed, T. E., Schindler, D. E., & Waples, R. S. (2011). Interacting Effects of Phenotypic Plasticity and
665 Evolution on Population Persistence in a Changing Climate. *Conservation Biology*, 25(1), 56–
666 63. <https://doi.org/10.1111/j.1523-1739.2010.01552.x>

667 Rezende, E. L., Swanson, D. L., Novoa, F. F., & Bozinovic, F. (2002). Passerines versus nonpasserines:
668 So far, no statistical differences in the scaling of avian energetics. *Journal of Experimental
669 Biology*, 205(1), 101–107. <https://doi.org/10.1242/jeb.205.1.101>

670 Root, T. (1988). Energy Constraints on Avian Distributions and Abundances. *Ecology*, 69(2), 330–339.
671 <https://doi.org/10.2307/1940431>

672 Scott, I., & Evans, P. R. (1992). The metabolic output of avian (*Sturnus vulgaris*, *Calidris alpina*)
673 adipose tissue liver and skeletal muscle: Implications for BMR/body mass relationships.
674 *Comparative Biochemistry and Physiology Part A: Physiology*, 103(2), 329–332.
675 [https://doi.org/10.1016/0300-9629\(92\)90589-I](https://doi.org/10.1016/0300-9629(92)90589-I)

676 Silverin, B. (1995). Reproductive Adaptations to Breeding in the North. *American Zoologist*, 35(3),
677 191–202. <https://doi.org/10.1093/icb/35.3.191>

678 Stager, M., Pollock, H. S., Benham, P. M., Sly, N. D., Brawn, J. D., & Cheviron, Z. A. (2016).
679 Disentangling environmental drivers of metabolic flexibility in birds: The importance of
680 temperature extremes versus temperature variability. *Ecography*, 39(8), 787–795.
681 <https://doi.org/10.1111/ecog.01465>

682 Stager, M., Senner, N. R., Swanson, D. L., Carling, M. D., Eddy, D. K., Greives, T. J., & Cheviron, Z.
683 A. (2021). Temperature heterogeneity correlates with intraspecific variation in physiological
684 flexibility in a small endotherm. *Nature Communications*, 12(1), Art. 1.
685 <https://doi.org/10.1038/s41467-021-24588-6>

686 Swanson, D. L. (1990). Seasonal Variation in Cold Hardiness and Peak Rates of Cold-Induced
687 Thermogenesis in the Dark-Eyed Junco (*Junco hyemalis*). *The Auk*, 107(3), 561–566.
688 <https://doi.org/10.1093/auk/107.3.561>

689 Swanson, D. L. (1993). Cold tolerance and thermogenic capacity in dark-eyed Juncos in winter:
690 Geographic variation and comparison with American tree Sparrows. *Journal of Thermal
691 Biology*, 18(4), 275–281. [https://doi.org/10.1016/0306-4565\(93\)90014-K](https://doi.org/10.1016/0306-4565(93)90014-K)

692 Swanson, D. L. (2010). Seasonal Metabolic Variation in Birds: Functional and Mechanistic Correlates.

693 In C. F. Thompson (Ed.), *Current Ornithology Volume 17* (pp. 75–129). Springer.

694 https://doi.org/10.1007/978-1-4419-6421-2_3

695 Swanson, D. L., Drymalski, M. W., & Brown, J. R. (1996). Sliding vs static cold exposure and the

696 measurement of summit metabolism in birds. *Journal of Thermal Biology*, 21(4), 221–226.

697 [https://doi.org/10.1016/0306-4565\(96\)00005-8](https://doi.org/10.1016/0306-4565(96)00005-8)

698 Swanson, D. L., McKechnie, A. E., & Vézina, F. (2017). How low can you go? An adaptive energetic

699 framework for interpreting basal metabolic rate variation in endotherms. *Journal of*

700 *Comparative Physiology B*, 187(8), 1039–1056. <https://doi.org/10.1007/s00360-017-1096-3>

701 Swanson, D. L., & Olmstead, K. L. (1999). Evidence for a Proximate Influence of Winter Temperature

702 on Metabolism in Passerine Birds. *Physiological and Biochemical Zoology*, 72(5), 566–575.

703 <https://doi.org/10.1086/316696>

704 Swanson, D. L., Stager, M., Vézina, F., Liu, J.-S., McKechnie, A. E., & Amirkhiz, R. G. (2023).
705 Evidence for a maintenance cost for birds maintaining highly flexible basal, but not summit,
706 metabolic rates. *Scientific Reports*, 13(1), Art. 1. <https://doi.org/10.1038/s41598-023-36218-w>

707 Swanson, D. L., Thomas, N. E., Liknes, E. T., & Cooper, S. J. (2012). Intraspecific Correlations of Basal
708 and Maximal Metabolic Rates in Birds and the Aerobic Capacity Model for the Evolution of
709 Endothermy. *PLOS ONE*, 7(3), e34271. <https://doi.org/10.1371/journal.pone.0034271>

710 Swanson, D. L., & Vézina, F. (2015). Environmental, ecological and mechanistic drivers of avian
711 seasonal metabolic flexibility in response to cold winters. *Journal of Ornithology*, 156(1), 377–
712 388. <https://doi.org/10.1007/s10336-015-1192-7>

713 Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus,
714 B. F. N., de Siqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld,
715 A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Townsend Peterson, A., Phillips, O. L.,
716 & Williams, S. E. (2004). Extinction risk from climate change. *Nature*, 427(6970), Art. 6970.
717 <https://doi.org/10.1038/nature02121>

718 Thompson, S. D. (1992). Gestation and lactation in small mammals: basal metabolic rate and the limits
719 of energy use. In T. E. Tomasi & T. H. Horton (eds.) *Mammalian energetics. Interdisciplinary*

720 views of metabolism and reproduction (pp. 213-259). Ithaka & London: Comstock Publishing
721 Associates. <https://doi.org/10.7591/9781501737978-011>

722 van de Ven, T. M. F. N., Mzilikazi, N., & McKechnie, A. E. (2013). Seasonal Metabolic Variation in
723 Two Populations of an Afrotropical Euplectid Bird. *Physiological and Biochemical Zoology*,
724 86(1), 19–26. <https://doi.org/10.1086/667989>

725 Vasilieva, N. Y., Khrushchova, A. M., Kuptsov, A. V., Shekarova, O. N., Sokolova, O. V., Wang, D.,
726 & Rogovin, K. A. (2020). On the winter enhancement of adaptive humoral immunity:
727 Hypothesis testing in desert hamsters (*Phodopus roborovskii*: Cricetidae, Rodentia) kept under
728 long-day and short-day photoperiod. *Integrative Zoology*, 15(3), 232-247.
729 <https://doi.org/10.1111/1749-4877.12419>

730 Vézina, F., Jalvingh, K. M., Dekkinga, A., & Piersma, T. (2006). Acclimation to different thermal
731 conditions in a northerly wintering shorebird is driven by body mass-related changes in organ
732 size. *Journal of Experimental Biology*, 209(19), 3952–3952. <https://doi.org/10.1242/jeb.02512>

733 White, C. R., Marshall, D. J., Alton, L. A., Arnold, P. A., Beaman, J. E., Bywater, C. L., Condon, C.,
734 Crispin, T. S., Janetzki, A., Pirtle, E., Winwood-Smith, H. S., Angilletta, M. J., Chenoweth, S.
735 F., Franklin, C. E., Halsey, L. G., Kearney, M. R., Portugal, S. J., & Ortiz-Barrientos, D. (2019).
736 The origin and maintenance of metabolic allometry in animals. *Nature Ecology & Evolution*,
737 3(4), 598–603. <https://doi.org/10.1038/s41559-019-0839-9>

738 Wikelski, M., Spinney, L., Schelsky, W., Scheuerlein, A., & Gwinner, E. (2003). Slow pace of life in
739 tropical sedentary birds: A common-garden experiment on four stonechat populations from
740 different latitudes. *Proceedings of the Royal Society of London. Series B: Biological Sciences*,
741 270(1531), 2383–2388. <https://doi.org/10.1098/rspb.2003.2500>

742 Wild, J., Kopecký, M., Macek, M., Šanda, M., Jankovec, J., & Haase, T. (2019). Climate at ecologically
743 relevant scales: A new temperature and soil moisture logger for long-term microclimate
744 measurement. *Agricultural and Forest Meteorology*, 268, 40–47.
745 <https://doi.org/10.1016/j.agrformet.2018.12.018>