
 

Combined kinome inhibition states are predictive of cancer cell line sensitivity to kinase 
inhibitor combination therapies 

Chinmaya U. Joisa1,2, Kevin A. Chen3, Samantha Beville2, Timothy Stuhlmiller2, Matthew E. Berginski2, 
Denis Okumu2, Brian T. Golitz2, Gary L. Johnson2, Shawn M. Gomez1,2,*  

 
1Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, 

NC, USA and North Carolina State University, Raleigh, NC, USA 
2Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 

3Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 
* Corresponding Author: Shawn M. Gomez (smgomez@unc.edu) 

 

Protein kinases are a primary focus in targeted therapy development for cancer, owing to their role 
as regulators in nearly all areas of cell life. Kinase inhibitors are one of the fastest growing drug 
classes in oncology, but resistance acquisition to kinase-targeting monotherapies is inevitable due 
to the dynamic and interconnected nature of the kinome in response to perturbation. Recent 
strategies targeting the kinome with combination therapies have shown promise, such as the 
approval of Trametinib and Dabrafenib in advanced melanoma, but similar empirical combination 
design for less characterized pathways remains a challenge. Computational combination screening 
is an attractive alternative, allowing in-silico screening prior to in-vitro or in-vivo testing of 
drastically fewer leads, increasing efficiency and effectiveness of drug development pipelines. In 
this work, we generate combined kinome inhibition states of 40,000 kinase inhibitor combinations 
from kinobeads-based kinome profiling across 64 doses. We then integrated these with baseline 
transcriptomics from CCLE to build robust machine learning models to predict cell line sensitivity 
from NCI-ALMANAC across nine cancer types, with model accuracy R2 ~ 0.75-0.9 after feature 
selection using elastic-net regression. We further validated the model’s ability to extend to real-
world examples by using the best-performing breast cancer model to generate predictions for 
kinase inhibitor combination sensitivity and synergy in a PDX-derived TNBC cell line and saw 
reasonable global accuracy in our experimental validation (R2 ~ 0.7) as well as high accuracy in 
predicting synergy using four popular metrics (R2 ~ 0.9). Additionally, the model was able to 
predict a highly synergistic combination of Trametinib (MEK inhibitor) and Omipalisib (PI3K 
inhibitor) for TNBC treatment, which incidentally was recently in phase I clinical trials for TNBC. 
Our choice of tree-based models over networks for greater interpretability also allowed us to 
further interrogate which specific kinases were highly predictive of cell sensitivity in each cancer 
type, and we saw confirmatory strong predictive power in the inhibition of MAPK, CDK, and STK 
kinases. Overall, these results suggest that kinome inhibition states of kinase inhibitor 
combinations are strongly predictive of cell line responses and have great potential for integration 
into computational drug screening pipelines. This approach may facilitate the identification of 
effective kinase inhibitor combinations and accelerate the development of novel cancer therapies, 
ultimately improving patient outcomes.  

Keywords: Kinase signaling, precision medicine, systems biology, drug response prediction.

1.  Introduction 

Protein kinases, which serve as the primary conduits for information transfer within cells, are often 
implicated as key drivers in cancer development and have thus become a cornerstone in current 
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targeted therapies [1]. The rapid expansion of kinase inhibitor therapies as an oncology drug class 
is exemplified by the FDA's approval of nearly 60 such therapies over the past 20 years [2]. Despite 
their initial promise, kinase-targeting monotherapies frequently give rise to resistance [3], in part 
due to the dynamic nature of the kinase network, i.e., the “kinome,” which has been shown to 
reprogram and respond to the inhibition of single kinases by upregulating expression of partner 
pathways [4–6]. This necessitates the development of novel strategies to effectively target the 
kinome and harness the vast array of potential drug targets it offers. 

One emerging strategy to counteract the dynamic acquisition of kinase inhibitor resistance 
involves the design of combination therapies, which perturb multiple targets with two or more drugs. 
These targets may be either known compensatory pathway partners, referred to as "horizontal 
pathway inhibition," or multiple targets within the same pathway, known as "vertical pathway 
inhibition" [7]. This approach has recently gained traction with the FDA approval of the 
combination of trametinib and dabrafenib for treating advanced melanoma [8]. This combination 
therapy "vertically" targets both BRAF and MEK within the RAF-MEK-ERK (MAPK) pathway, 
demonstrating the potential effectiveness of this strategy. However, this method of empirical design 
of combination therapies is not feasible for less characterized kinase pathways, and the sheer number 
of possible combinations of potential kinase targets (2~500) prevents comprehensive screening or 
drug design.  

To circumvent this issue, computational screening offers an appealing alternative, enabling the 
prediction of effective drug combinations in-silico prior to testing a reduced pool of potential 
combinations in-vitro. This method not only potentially streamlines the drug development process 
but, when combined with patient-specific genomic profiling, can also enable personalized drug 
combination selection to potentially achieve resistance-proof responses in patients. 

In recent years, a variety of computational approaches have been developed to predict 
combination therapy responses for cancer drug screening [9,10]. The majority of these methods 
primarily rely on drug structure characteristics and cancer-specific baseline genomic profiling to 
predict effective drug combinations, spurred by advancements in the high-throughput acquisition of 
these data types. For example, a high-dimensional tensor-based modeling strategy used similar data 
and achieved impressive accuracy (Overall R2 ~ 0.8) in predicting response to combination 
therapies, validated experimentally [11]. This approach and others employ intricate neural network 
architectures that, while capable of producing high performing models, can be challenging to 
interpret, posing a barrier to the broader adoption and understanding of their underlying 
mechanisms. Tree-based machine learning models on the other hand, although simpler and 
sometimes less powerful, are generally considered interpretable depending on the type of data fed 
to them [12]. Notably, drug-protein interactions, which are intuitively central to the process of 
phenotype reversal, have been relatively underexplored in these computational approaches. In part, 
the minimal amount of drug-target information leveraged in current response prediction efforts is 
because of the sheer amount of data generated by genomics and molecular fingerprinting, generating 
thousands of features for each measurement, while drug target data has been generally sparse with 
only a few annotated targets per drug. However, recent advances in technology to profile the 
interactions of clinical drugs with all the members of the kinome represent an unprecedented ability 
to measure drug-target information across ~500 proteins simultaneously in a quantitative manner 
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[13,14]. The breadth, density, and ease of acquisition of this data, often measured at multiple dose 
points, is ideal for integration into machine learning models that can leverage diverse data types for 
drug response prediction.  

Specifically, recent advances in proteomics techniques have facilitated the large-scale 
characterization of drug-kinase interactions, providing valuable information on the extent to which 
the entire kinome is inhibited by specific drugs or drug combinations. A landmark paper in 2017 
used a mass spectrometry-based assay that used promiscuous kinase-binding compounds 
immobilized on beads to measure the binding competition between any given inhibitor and any 
given kinase (henceforth called the “kinobeads” assay) [15]. Using this assay, the kinome-wide 
binding profiles for ~230 clinical kinase inhibitors at eight doses each were elucidated using cancer 
cell lysates, forming the largest in-cell drug-target binding database publicly available at this time. 
The data generated from these assays allow interrogation of how clinical and investigational drugs 
interact with the entire kinome on an unprecedented scale. By analyzing the degree of inhibition of 
all kinases simultaneously for a given inhibitor, we can treat this as characterizing the degree of 
departure from the “baseline kinome state”, thus moving through drug-induced alteration of multiple 
kinase activities to a new “kinome inhibition state”. Given the degree to which modulation of the 
kinome alters cellular state and downstream behavior, these baseline kinome states and kinome 
inhibition states can be directly connected to various measured cellular phenotypes. We have 
recently demonstrated this idea by showing that kinome inhibition state is significantly predictive 
of cancer cell responses to kinase inhibitor monotherapies when integrated with cancer-specific 
information, such as baseline transcriptomics, using tree-based machine learning models [16].  

In this work, we show that by combining the inhibition states of two kinase inhibitors, we can 
generate a hypothetical “combined” inhibition state for an untested inhibitor combination. In this 
manner, we can rationally use all combinatorial kinome inhibition states to sample all possible 
kinase target combinations, hypothetically including all pathway partners. By integrating these 
inhibition states with cancer-specific baseline transcriptomics, we demonstrate that the combined 
inhibition state can predict the sensitivity of cancer cell lines to inhibitor combination treatments 
from the NCI-ALMANAC dataset using interpretable machine learning models. We further validate 
these models experimentally by examining novel inhibitor combinations in a PDX-derived triple-
negative breast cancer (TNBC) cell line. By focusing on dual-inhibitor drug-kinase interactions 
combined with cancer-specific baseline genomic profiling, we can enhance computation 
combination drug screening pipelines with combinatorial kinase targeting. Furthermore, this 
approach lays the foundation for the rational design and a priori prediction of combination kinase 
inhibitor treatments for patients with the potential to ultimately reduce single kinase inhibitor 
resistance acquisition by prior rational targeting of partner pathways and associated kinases. 
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Figure 1. Kinome inhibition State Combination Modeling and Data Overview. (a) Schematic 
of modeling pipeline. (b) Heatmap showing the inhibition state of individual kinase inhibitors (row 
1 and 2), and the hypothetical “combined” inhibition state for the two inhibitors (row 3) (c) Bar 
plot showing number of cell lines tested per cancer type in training data set (d) Bar plot showing 
number of unique combinations tested per cell line for the breast cancer subset of the training data 
set (e) Ridge plots showing cell viability (x-axis) variation for a random subset of different kinase 
inhibitor combinations (y-axis) in the NCI-ALMANAC data for breast cancer cell lines. Different 
breast cancer subtypes are represented with differing colors. 

2.  Results 

2.1.  Creating a Set of Combined Kinome Inhibition States Representing Current and 
Potential Kinase Inhibitor Combination Therapies 

In this work, we have focused on a specific set of 200 kinase inhibitors characterized using the 
kinobeads assay [15]. These inhibitors were profiled in-cell for their interactions with ~500 kinases 
and kinase-interacting proteins, across eight doses. From this data, as described previously (insert 
citation), we extracted monotherapy “kinome inhibition states”, denoting the degree to which they 
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inhibit each kinase in the kinome at eight doses on a scale of 0-1 (0 is complete inhibition and 1 is 
no inhibition of a given kinase).  

We next tested different methods to approximate the kinome inhibition state of a kinase inhibitor 
combination. Intuitively, this can be thought of as simply superimposing two individual 
monotherapy inhibition states, but for the few cases where different inhibitors target the same 
kinase, we have to find ways to accurately reflect the resulting effect on the kinome. Here, we tested 
combining monotherapy kinome inhibition state vectors through addition, multiplication, truncated 
multiplication (excluding kinase inhibition values >1). All three methods were compared for 
downstream model performance.  

After combining the individual inhibition states, we were left with a dataset describing all 
possible pairwise combinations of ~220 kinase inhibitors. These ~45,000 combinations represent 
the kinome inhibition states of existing clinical therapies (example), therapies currently in clinical 
trials (example), as well as potential therapies. Together, they interrogate a search space that 
includes nearly every known kinase on the phylogenetic tree (Fig S1). 

2.2.  Connecting Inhibited Kinome States with Cancer Cell Line Combination Sensitivities 

Next, we linked the data set describing kinase inhibitor combinations to their cell sensitivity 
phenotypes in the large-scale ALMANAC drug combination screen. The ALMANAC screen 
contains cell sensitivity data for 53 kinase inhibitor combinations, over ~200 unique dose 
combinations for 45 cell lines across 9 cancer types. Additionally, previous high-throughput 
combination screens conducted in our lab in breast cancer offered data for 56 inhibitor combinations 
in four cell lines. Ideally, we would like exact matches between the dose at which kinome inhibition 
state is profiled and the dose at which cell sensitivity was measured. However, there are very few 
exact matches between the datasets. To overcome this, we found the nearest dose (at maximum 
differing by 1uM) at which kinome inhibition was profiled for each cell sensitivity measurement 
and connected the two datasets using these dose matches.  

Additionally, we added cell line specific information to the dataset to complement the drug-
specific kinome inhibition states. The CCLE database contains baseline transcriptomics data for 
~1500 cancer cell lines, and almost all of the cell lines included in our data set were represented. 
Using this, we further added baseline gene expression into the dataset, now containing kinase 
inhibitor combinations, their inhibition state of the kinome, the cell line sensitivity to their treatment, 
as well as that cell line’s baseline gene expression. In this way, the dataset connects the kinome 
inhibition states of inhibitor combinations to their cell sensitivity phenotypes.  

The collected dataset represents a total of eight major cancer types, with the majority having ~7 
cell lines represented each, while breast cancer had the most representation (11 cell lines). To ensure 
that the machine learning model downstream could find cancer-specific linkages between the 
kinome and cell sensitivity, we split the dataset into eight individual cancer type datasets and 
conducted all modeling on each data split in parallel. 
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2.3.  Elastic-Net Feature Selection Reveals Kinome Inhibition States to be Most Informative 

In our collected dataset, kinome inhibition states and baseline gene expression together represent 
~20,000 variables or “features” that could affect the phenotype of cell sensitivity to kinase inhibitors. 
It is both practically prohibitive and ineffective to build models using all available features, and so 
keeping in mind computational efficiency we sought to filter down the dataset to include only the 
most informative features.  To accomplish this “feature selection”, we built our machine learning 
pipeline starting with an elastic-net regression [17] model built against the outcome of cell 
sensitivity. This generated coefficients for each feature, with the absolute value of the feature 
coefficient directly proportional to its predictive value for the outcome. We ensured non-informative 
features were not included in modeling by only considering features with non-zero coefficients. We 
fit the model on the entire dataset to visualize a snapshot of the feature coefficients globally. This 
revealed overwhelmingly larger coefficients for kinome inhibition states compared to baseline gene 
expression (Fig 2a), thus indicating that kinome inhibition states were globally more informative 
for cell sensitivity prediction compared to baseline gene expression.  

For downstream model building, the data set was split into a training and testing set five times 
(five-fold cross validation). For the training set data to not have any influence on the test set (to 
prevent data leakage), the elastic net model is fit on only the training data, and features are selected 
within each fold. Parameters for the elastic net model and hyperparameters for the tested model 
types were also tuned this way.  

2.4.  Machine Learning Models Can Predict Cancer Cell Line Sensitivity to Combination 
Therapies by Integrating Kinome Inhibition States and Baseline Transcriptomics 

After data set preparation and feature selection, we built machine learning models that can predict 
cell sensitivity to kinase inhibitor combinations. For each cancer type, three machine learning model 
types were tested: random forest, boosted trees (xgboost) and deep neural networks. Xgboost 
performed the best for all cancer types, with type-specific performance largely dependent on 
abundance of data in the training set (Fig 3b). The most abundant cancer type (breast) had the best 
performing model with an R2 score of 0.93 (Fig 3b) while the lowest performing model was prostate 
cancer with R2 = 0.73. Given our previous lab experience with breast cancer, we chose the breast 
cancer model for downstream experiments and validation. 

Additionally, since the best-performing model was tree-based gradient boosting, we were able 
to further analyze the model using computed feature importance to find the most informative 
features in the data set based on the feature importance metric. Similar to the feature selection output, 
we saw much higher feature importance scores overall for kinome inhibition states when compared 
to baseline gene expression, and several kinases implicated in breast cancer dysfunction had high 
importance scores, such as MAP2K1/2 and EGFR(Fig. 3c).   

2.5.  Experimental Validation of Model Predictions in a PDX-Derived Triple Negative 
Breast Cancer Cell Line was Successful.  

We demonstrated that machine learning models using the kinome inhibition states of combination 
therapies along with cell-specific baseline gene expression could robustly predict cell sensitivity in 
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multiple cancer types. However, to see if these predictive models could extend to real-world 
experiments, we experimentally validated 35 kinase inhibitor combinations in a PDX-tumor derived 
cell line(Fig 4A).  

High-throughput cell line drug screens have been widely documented to suffer from a lack of 
reproducibility and poor translation to more complex samples like patient tumours. We sought to 
test whether our model of cell sensitivity in breast cancer, trained on 11 well-characterized 
immortalized cell lines, could effectively predict cell sensitivity in a PDX (Patient-Derived 
Xenograft) derived cell line. We chose the WHIM12 PDX-derived cell line, which was generated 
from a highly chemo-resistant TNBC tumor [18]. Previous experiments in the lab had conducted a 
drug combination screen in the WHIM12 cell line, out of which 35 kinase inhibitors were tested in 
combination with trametinib. Complementary baseline gene expression data was also generated 
through RNAseq. Using these in-house data, we were able to input the unseen WHIM12 gene 
expression into the trained model and predict the cell sensitivity outcomes of the conducted drug 
combination screen. We achieved robust prediction accuracy (Global R2 = 0.74 / RMSE = 0.14) in 
predicting exact cell viability in response to treatment with 35 kinase inhibitor combinations, across 
64 dose combinations (Fig 4c, d). 

 

 
 

Figure 2. Feature Selection using an Elastic-net Regression Model against Cancer Cell Line 
Sensitivity. (a) Ridge plot showing the distribution of LASSO coefficient sizes as a metric for 
feature importance, for each feature type (b) Horizontal bar plot showing kinases with the largest 
elastic-net coefficient values, coloured by whether they are defined as “understudied” (Dark) or 
“well-characterized” (Light).  
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Figure 3.  Development of Models to Predict Cancer Cell Line Sensitivities to Kinase 
Inhibitor Combination Therapies from Kinome Inhibition States. (a) Model performance 
metrics (R-squared) for Random Forest (dots) and XGBoost (triangles). (b) Scatter Plot of 
predicted sensitivity values from the best-performing model vs actual sensitivity values. The red 
line indicates a smooth fit through the data points. (c) Horizontal bar plot showing model 
importance of individual kinase inhibition states by importance values. (d) Horizontal bar plot 
showing model importance of individual baseline gene expression by importance values. 

2.6.  Model Predictions Reveal Known Synergy in trametinib/omipalisib Combination 

The model predictions in the WHIM12 cell line were further interrogated for potential synergy. 
We generated synergy scores for all 35 combinations at each of the 64 dose points using the R 
package SynergyFinder [19] based on four different metrics: Zero-Interaction Potency [10] (ZIP), 
Bliss Independence [20], Highest Single-Agent (HSA), and Loewe Additivity [21].  Additionally, 
we generated similar synergy scores using the actual experimental data generated for validation as 
a comparison. We found a high degree of similarity (Global R2 ~ 0.94/ RMSE ~ 0.5) between 
predicted and actual synergy, with trametinib + omipalisib as our most synergistic predicted 
combination, with a ZIP score of ~8 at certain dose combinations (Fig 4e, f). This is significant as 
the model predictions were in a TNBC PDX-derived line, and the trametinib/omipalisib 
combination represents the popular strategy of simultaneously targeting the MAPK and PI3K 
pathways[ 22].    

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 3, 2023. ; https://doi.org/10.1101/2023.08.01.551346doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.01.551346
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 

 

 
 

Figure 4. Experimental Validation of Model through a Trametinib Combination Screen in 
the WHIM12 Patient-Derived TNBC Cell Line. (a) Schematic showing experimental validation 
pipeline for the WHIM12 PDX-derived cell line. (b) Kinome phylogenetic map showing diversity 
of kinome space targeted (red = inhibited by a validated kinase inhibitor combination). (c) Grid of 
scatter plots showing accuracy of predicted vs experimental sensitivity to the top 9 tested 
combinations. For all scatter plots, the dashed line indicates where perfect predictions would lie 
and the red line shows a linear fit through the data. Quantitative accuracy is represented by the R-
squared score. (d) Scatter plot showing the global accuracy of model predicted sensitivity 
compared to experimental sensitivity. (e) Grid of scatter plots showing accuracy of model 
predicted synergy scores compared to experimentally measured synergy scores across two metric 
types (ZIP, Bliss). (f) Grid of heatmap plots showing comparison of predicted vs experimentally 
measured sensitivity and synergy for the highly synergistic trametinib / omipalisib combination.  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 3, 2023. ; https://doi.org/10.1101/2023.08.01.551346doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.01.551346
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 

3.  Discussion 

Kinase inhibitors are one of the fastest growing drug classes for cancer therapy, with ~62 FDA 
approved in total against neoplasms [2]. With 500 potential druggable targets, there is significant 
interest in decoding the spectrum of kinases targeted by current inhibitors, and streamlining the 
kinase inhibitor screening process. We have previously introduced [16,23,24] the idea that the full 
spectrum of a given inhibitor’s effect on the kinome as measured by recent advances in kinobead-
competition/MS technology [15] can be represented as a “kinome inhibition state”, i.e. a vector 
representing the effect of a given inhibitor on the kinome as a whole.  

In this work, we have extended this idea to represent the kinome inhibition state of a combination 
of inhibitors, using a simple multiplicative probability model to “combine” the inhibition states of 
two given kinase inhibitors. By generating these “combined” inhibition states, we can vastly expand 
the search space targeted by inhibitor monotherapies, sampling all possible combinations of 
currently available therapies. To accomplish this, we used publicly available drug-kinome 
interaction data to generate snapshots of the combined effect of a combination therapy on the protein 
kinome. We then linked these kinome inhibition states of inhibitor combinations to cancer cell 
sensitivity phenotypes to combination treatment, creating a framework for predicting the efficacy 
of combination therapies in different cancer types.  

We fit tree-based machine learning models as well as neural networks on this linked data set to 
robustly predict precise cancer cell line sensitivity and synergy for untested kinase inhibitor 
combinations therapies and validate those predictions in complex patient derived samples. gradient-
boosted tree models were highly accurate across cancer types (R2 0.75-0.93), comparable to two 
recent neural-network driven attempts to predict cell line response to drug combinations [9,11]. We 
chose to move forward with the highest performing breast cancer model for further validation. We 
chose to validate our model predictions in the PDX-dervied WHIM12 line, reasoning that PDX-
derived cell lines retain many of the molecular and genetic features of the xenografted original 
tumors and offer a closer representation of the disease state compared to traditional cell lines. We 
were able to show that the models performed robustly on novel baseline gene expression data 
(Global Accurcacy R2 ~0.74) , representing its ability to extend to complex and clinical-adjacent 
samples compared to well-characterized cell line data. 

One of the strengths of tree-based models compared to deep neural networks is that they are 
generally considered to be interpretable through feature importance computation [12,25]. Using this, 
we were able to investigate the “black box” and query which specific kinase inhibition states and 
baseline genes were most predictive of cell sensitivity. We found that for the best performing breast 
cancer model, the inhibition of the kinases MAP2K1/2 were the most informative by far. This is 
intuitive considering the most abundant kinase inhibitor in the dataset is the allosteric MEK inhibitor 
trametinib, but it must be noted that MEK inhibition is always only just one half of the kinome 
targeting in the combination. There has been increasing clinical interest recently in targeting the 
PI3K and MAPK pathways [22], and our lab has shown before that MEK1/2 inhibition in TNBC by 
trametinib induces widespread transcriptional adaptation, and that there is potential for clinical 
efficacy for complementary kinome targeting with trametinib [26]. Since our model’s sensitivity 
predictions can effectively simultaneously predict synergy, our top synergy prediction for breast 
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cancer according to the ZIP metric was trametinib and omipalisib, which we were able to validate 
experimentally in the WHIM12 line. This indicates that from the training breast cancer screening 
data, the model was able to learn that targeting the complementary PI3K and MAPK pathways is 
effective and synergistic in TNBC cell lines.  

Interestingly, the predicted high-synergy combination of trametinib/omipalisib was recently in 
phase I clinical trials for advanced solid tumors but failed due to patient intolerability [27]. This 
highlights some limitations of our modeling approach. Ideally, kinome inhibition state would be one 
of many different drug modalities included for response prediction, and we plan to further expand 
these models in the future by considering toxicity, drug structure and cancer-describing multi-omic 
data types not limited to baseline gene expression. Additionally, in this proof-of-concept study we 
utilized a simple multiplicative probability model to generate the “combined” inhibition state of two 
inhibitors on the kinome, by assuming that the inhibition of a given kinase is mutually exclusive 
from that of other kinases. We know that kinases function physiologically as part of complex 
signaling networks, and their inhibition may have downstream effects on other kinases and signaling 
pathways. To address this limitation, future models will incorporate more biologically 
representative schemes to hypothesize combined kinome inhibition states. 

In summary, through this work we demonstrate the development of a framework for predicting 
the efficacy of combination therapies in different cancer types using just kinome-drug interactions 
and baseline gene expression. We use a multiplicative probability model to generate the "kinome 
inhibition state" of a combination of kinase inhibitors and link these states to cancer cell sensitivity 
phenotypes. First, we were able to show that a given combination therapy’s cancer-agnostic 
interaction with the kinome was far more informative than baseline genomics in predicting 
downstream response. This is intuitive fundamentally, as drug-protein interactions are the primary 
means of drug effect on physiology, but this type of data is still underutilized in computational 
screening approaches. We then used machine learning models to predict cell line sensitivity and 
synergy for untested kinase inhibitor combination therapies and validate those predictions in 
complex patient derived samples. We found that the inhibition of the kinases MAP2K1/2 was the 
most informative for predicting breast cancer cell sensitivity, and the predicted high-synergy 
combination of trametinib/omipalisib was validated experimentally in a PDX-derived TNBC cell 
line. 

4.  Methods 

Data Sources. The primary data sources we used can be split into three categories: the kinome 
profiling data set, the combination-treated cell line sensitivity set, and the cancer cell line 
transcriptomics set. The kinome profiling data set from the kinobeads assay was downloaded from 
the supplementary materials of Klaeger et al. 2017  [15]. For cancer cell line sensitivity to kinase 
inhibitor combinations, data was downloaded from (1) NCI-ALMANAC: cell sensitivity data was 
downloaded from the NCI wiki database (https://wiki.nci.nih.gov/display/NCIDTPdata/NCI-
ALMANAC) and (2) Supplementary materials of previous lab combination screens published in 
Beville et al. 2019 [28] and Stuhlmiller et al. 2015 [29].  The CCLE gene expression set 
(“CCLE_expression.csv”) was downloaded from the DepMap portal 
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(https://depmap.org/portal/download/all/) to create the set of cancer cell lines and their gene 
expression characteristics. In-house baseline gene expression data for the PDX-derived WHIM12 
line was downloaded from the GEO repository for the Zawitowski et al. paper[26] (GSE87424). 
 
Data Preprocessing. The scripts implementing these descriptions are all available through github. 

Klaeger et al. Kinobead Kinase Inhibition Profiles: As previously described [16], we read the 
values from the supplemental data table into R and produced a filtered list of kinase and kinase 
interactor relative intensity values. We imputed missing values with the default “no interaction” 
value of 1 and truncated likely outlier values to the 99.99 percentile (3.43). 

Creating the Combination Inhibition State Data Set: To create a “combined” inhibition state of 
a given kinase inhibitor combination, we sought to superimpose the inhibition states of two 
individual states at specific doses. There were eight doses measured for each individual inhibitor, 
thus there were 64 possible combinations for each combination. We took the monotherapy kinome 
inhibition states from the Klaeger et al. set and computed a “combined” inhibition state for each 
kinase, based on three different combination schemes: 
1. Simple Multiplicative: The simple conditional probability rule assumes two independent events 

(Eq. 1). Since the default “no interaction” inhibition value is 1, for kinases that are not targeted 
by both inhibitors simultaneously, the “combined” inhibition state value is simply either one in 
monotherapy.  

2. Truncated Multiplicative: A minority of measured kinase inhibition states (~1%) have values > 
1 in the Klaeger et al. dataset, a possible artifact from the mass spectrometry measuring process. 
To avoid inflating those values, all >1 values were truncated at 1 and simple multiplication was 
performed as described above. 

3. Addition: All kinase inhibition states were inverted into “Percent Inhibition” values, where 0 
denotes no inhibition and 100 denotes complete inhibition. Then, when two inhibition states 
were combined, they were simply added together (truncated at a max value of 100). 

Eq.	1.	P(AB)	=	P(A)	P(B)	{If	P(A|B)	=	P(A)}	

All three methods were tested in downstream modeling, resulting in minor variation. Truncated 
multiplied vectors were slightly more predictive (R2 score of ~0.01 greater) so we used that scheme 
for all downstream modeling. In this way, we were able to compute hypothetical “combined” 
inhibition states for all possible combinations of ~220 inhibitors, altogether comprising ~2,000,000 
combined inhibition states. 

Dataset of Cancer Cell Line Sensitivity to Kinase Inhibitor Combinations: The cell sensitivity 
dataset from NCI-ALMANAC and previous lab publications were filtered to contain only kinase 
inhibitor small molecules, then summarized over replicates and converted to cell viability (1 = fully 
viable cell and 0 = full cell death). Relevant cancer types were annotated and individual cancer type 
datasets were subsetted for downstream cancer type-specific modeling.   

Matching of Kinase Inhibitors between Inhibition State Dataset and Cell Line Sensitivity 
Dataset: The drug names from each dataset were read into R, and the package Webchem [30] was 
used to retrieve PubChem compound IDs (cid’s). The two sets of drug names were then matched 
based on these reference IDs, with a total of ~100 matches between the two sets.  
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Baseline Gene Expression from CCLE: Data was preprocessed as described before [31] from 
the “CCLE_expression.csv” file. Cell line names were matched manually between CCLE and the 
NCI naming scheme. All cell lines represented in NCI-ALMANAC had a match in the CCLE 
database. 

  String: The STRING database [32] was processed as described previously [31] to annotate 
kinases and kinase interacting genes.Modeling Techniques. To assess our models we used a random 
5-fold cross validation strategy. The features included in each fold were selected as specified by the 
feature selection scheme described in the results section. We implemented Elastic-net regression 
using the glmnet engine [33] for the feature selection scheme [17], We compared the performance 
of three model types using this strategy: random forest using the ranger engine [34] and gradient 
boosting using the XGBoost (eXtreme Gradient Boosting) engine [35]. Model performance was 
assessed by the R-squared value between predicted and actual outcome within the cross-validation 
scheme. For each model type and for the feature selection model, we tuned sets of 20 
hyperparameters to find the best possible performer as follows: (a) Elastic-net: Penalty (0 - 0.1), 
Regularization (0.1-1) (b) Random Forest: Trees (100 - 2000) (c)  XGBoost: Trees (100 - 1000), 
Tree Depth (4 - 30). After final model selection, we fit the model on the entire dataset and then made 
predictions on the experimental validation data.  

All of the code written to support this paper is available through github 
(https://github.com/gomezlab/kinotype_combination_prediction) along with a brief walkthrough 
explaining where to find the code relevant to each part of the paper. 

Experimental Validation. 6x6 dose combination screens were performed in the WHIM12 cell 
line as described in Beville et al. 2019 [28]. Briefly, cells were seeded in 384-well plates and 
dosed with drug after 24h. The screening library was tested for growth inhibition alone or in 
combination with Trametinib across 6 doses: 10 nmol/L, 100 nmol/L, 300 nmol/L, 1 μmol/L, 3 
μmol/L, and 10 μmol/L. 0.1% DMSO was included as the control for growth inhibition on 
each plate. Plates were incubated at 37°C for 96 hours and lysed using CellTiter-Glo Reagent 
(Promega, catalog. no. G7570). Luminescence was measured using a PHERAstar FS 
instrument and growth inhibition was calculated relative to DMSO-treated wells. 
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