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Protein kinases are a primary focus in targeted therapy development for cancer, owing to their role
as regulators in nearly all areas of cell life. Kinase inhibitors are one of the fastest growing drug
classes in oncology, but resistance acquisition to kinase-targeting monotherapies is inevitable due
to the dynamic and interconnected nature of the kinome in response to perturbation. Recent
strategies targeting the kinome with combination therapies have shown promise, such as the
approval of Trametinib and Dabrafenib in advanced melanoma, but similar empirical combination
design for less characterized pathways remains a challenge. Computational combination screening
is an attractive alternative, allowing in-silico screening prior to in-vitro or in-vivo testing of
drastically fewer leads, increasing efficiency and effectiveness of drug development pipelines. In
this work, we generate combined kinome inhibition states of 40,000 kinase inhibitor combinations
from kinobeads-based kinome profiling across 64 doses. We then integrated these with baseline
transcriptomics from CCLE to build robust machine learning models to predict cell line sensitivity
from NCI-ALMANAC across nine cancer types, with model accuracy R? ~ 0.75-0.9 after feature
selection using elastic-net regression. We further validated the model’s ability to extend to real-
world examples by using the best-performing breast cancer model to generate predictions for
kinase inhibitor combination sensitivity and synergy in a PDX-derived TNBC cell line and saw
reasonable global accuracy in our experimental validation (R? ~ 0.7) as well as high accuracy in
predicting synergy using four popular metrics (R* ~ 0.9). Additionally, the model was able to
predict a highly synergistic combination of Trametinib (MEK inhibitor) and Omipalisib (PI3K
inhibitor) for TNBC treatment, which incidentally was recently in phase I clinical trials for TNBC.
Our choice of tree-based models over networks for greater interpretability also allowed us to
further interrogate which specific kinases were highly predictive of cell sensitivity in each cancer
type, and we saw confirmatory strong predictive power in the inhibition of MAPK, CDK, and STK
kinases. Overall, these results suggest that kinome inhibition states of kinase inhibitor
combinations are strongly predictive of cell line responses and have great potential for integration
into computational drug screening pipelines. This approach may facilitate the identification of
effective kinase inhibitor combinations and accelerate the development of novel cancer therapies,
ultimately improving patient outcomes.
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1. Introduction

Protein kinases, which serve as the primary conduits for information transfer within cells, are often
implicated as key drivers in cancer development and have thus become a cornerstone in current
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targeted therapies [1]. The rapid expansion of kinase inhibitor therapies as an oncology drug class
is exemplified by the FDA's approval of nearly 60 such therapies over the past 20 years [2]. Despite
their initial promise, kinase-targeting monotherapies frequently give rise to resistance [3], in part
due to the dynamic nature of the kinase network, i.e., the “kinome,” which has been shown to
reprogram and respond to the inhibition of single kinases by upregulating expression of partner
pathways [4—6]. This necessitates the development of novel strategies to effectively target the
kinome and harness the vast array of potential drug targets it offers.

One emerging strategy to counteract the dynamic acquisition of kinase inhibitor resistance
involves the design of combination therapies, which perturb multiple targets with two or more drugs.
These targets may be either known compensatory pathway partners, referred to as "horizontal
pathway inhibition," or multiple targets within the same pathway, known as "vertical pathway
inhibition" [7]. This approach has recently gained traction with the FDA approval of the
combination of trametinib and dabrafenib for treating advanced melanoma [8]. This combination
therapy "vertically" targets both BRAF and MEK within the RAF-MEK-ERK (MAPK) pathway,
demonstrating the potential effectiveness of this strategy. However, this method of empirical design
of combination therapies is not feasible for less characterized kinase pathways, and the sheer number
of possible combinations of potential kinase targets (2~500) prevents comprehensive screening or
drug design.

To circumvent this issue, computational screening offers an appealing alternative, enabling the
prediction of effective drug combinations in-silico prior to testing a reduced pool of potential
combinations in-vitro. This method not only potentially streamlines the drug development process
but, when combined with patient-specific genomic profiling, can also enable personalized drug
combination selection to potentially achieve resistance-proof responses in patients.

In recent years, a variety of computational approaches have been developed to predict
combination therapy responses for cancer drug screening [9,10]. The majority of these methods
primarily rely on drug structure characteristics and cancer-specific baseline genomic profiling to
predict effective drug combinations, spurred by advancements in the high-throughput acquisition of
these data types. For example, a high-dimensional tensor-based modeling strategy used similar data
and achieved impressive accuracy (Overall R? ~ 0.8) in predicting response to combination
therapies, validated experimentally [11]. This approach and others employ intricate neural network
architectures that, while capable of producing high performing models, can be challenging to
interpret, posing a barrier to the broader adoption and understanding of their underlying
mechanisms. Tree-based machine learning models on the other hand, although simpler and
sometimes less powerful, are generally considered interpretable depending on the type of data fed
to them [12]. Notably, drug-protein interactions, which are intuitively central to the process of
phenotype reversal, have been relatively underexplored in these computational approaches. In part,
the minimal amount of drug-target information leveraged in current response prediction efforts is
because of the sheer amount of data generated by genomics and molecular fingerprinting, generating
thousands of features for each measurement, while drug target data has been generally sparse with
only a few annotated targets per drug. However, recent advances in technology to profile the
interactions of clinical drugs with all the members of the kinome represent an unprecedented ability
to measure drug-target information across ~500 proteins simultaneously in a quantitative manner
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[13,14]. The breadth, density, and ease of acquisition of this data, often measured at multiple dose
points, is ideal for integration into machine learning models that can leverage diverse data types for
drug response prediction.

Specifically, recent advances in proteomics techniques have facilitated the large-scale
characterization of drug-kinase interactions, providing valuable information on the extent to which
the entire kinome is inhibited by specific drugs or drug combinations. A landmark paper in 2017
used a mass spectrometry-based assay that used promiscuous kinase-binding compounds
immobilized on beads to measure the binding competition between any given inhibitor and any
given kinase (henceforth called the “kinobeads” assay) [15]. Using this assay, the kinome-wide
binding profiles for ~230 clinical kinase inhibitors at eight doses each were elucidated using cancer
cell lysates, forming the largest in-cell drug-target binding database publicly available at this time.
The data generated from these assays allow interrogation of how clinical and investigational drugs
interact with the entire kinome on an unprecedented scale. By analyzing the degree of inhibition of
all kinases simultaneously for a given inhibitor, we can treat this as characterizing the degree of
departure from the “baseline kinome state”, thus moving through drug-induced alteration of multiple
kinase activities to a new “kinome inhibition state”. Given the degree to which modulation of the
kinome alters cellular state and downstream behavior, these baseline kinome states and kinome
inhibition states can be directly connected to various measured cellular phenotypes. We have
recently demonstrated this idea by showing that kinome inhibition state is significantly predictive
of cancer cell responses to kinase inhibitor monotherapies when integrated with cancer-specific
information, such as baseline transcriptomics, using tree-based machine learning models [16].

In this work, we show that by combining the inhibition states of two kinase inhibitors, we can
generate a hypothetical “combined” inhibition state for an untested inhibitor combination. In this
manner, we can rationally use all combinatorial kinome inhibition states to sample all possible
kinase target combinations, hypothetically including all pathway partners. By integrating these
inhibition states with cancer-specific baseline transcriptomics, we demonstrate that the combined
inhibition state can predict the sensitivity of cancer cell lines to inhibitor combination treatments
from the NCI-ALMANAC dataset using interpretable machine learning models. We further validate
these models experimentally by examining novel inhibitor combinations in a PDX-derived triple-
negative breast cancer (TNBC) cell line. By focusing on dual-inhibitor drug-kinase interactions
combined with cancer-specific baseline genomic profiling, we can enhance computation
combination drug screening pipelines with combinatorial kinase targeting. Furthermore, this
approach lays the foundation for the rational design and a priori prediction of combination kinase
inhibitor treatments for patients with the potential to ultimately reduce single kinase inhibitor
resistance acquisition by prior rational targeting of partner pathways and associated kinases.
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Figure 1. Kinome inhibition State Combination Modeling and Data Overview. (a) Schematic
of modeling pipeline. (b) Heatmap showing the inhibition state of individual kinase inhibitors (row
1 and 2), and the hypothetical “combined” inhibition state for the two inhibitors (row 3) (c) Bar
plot showing number of cell lines tested per cancer type in training data set (d) Bar plot showing
number of unique combinations tested per cell line for the breast cancer subset of the training data
set () Ridge plots showing cell viability (x-axis) variation for a random subset of different kinase
inhibitor combinations (y-axis) in the NCI-ALMANAC data for breast cancer cell lines. Different
breast cancer subtypes are represented with differing colors.
2. Results

2.1. Creating a Set of Combined Kinome Inhibition States Representing Current and
Potential Kinase Inhibitor Combination Therapies

In this work, we have focused on a specific set of 200 kinase inhibitors characterized using the
kinobeads assay [15]. These inhibitors were profiled in-cell for their interactions with ~500 kinases
and kinase-interacting proteins, across eight doses. From this data, as described previously (insert
citation), we extracted monotherapy “kinome inhibition states”, denoting the degree to which they
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inhibit each kinase in the kinome at eight doses on a scale of 0-1 (0 is complete inhibition and 1 is
no inhibition of a given kinase).

We next tested different methods to approximate the kinome inhibition state of a kinase inhibitor
combination. Intuitively, this can be thought of as simply superimposing two individual
monotherapy inhibition states, but for the few cases where different inhibitors target the same
kinase, we have to find ways to accurately reflect the resulting effect on the kinome. Here, we tested
combining monotherapy kinome inhibition state vectors through addition, multiplication, truncated
multiplication (excluding kinase inhibition values >1). All three methods were compared for
downstream model performance.

After combining the individual inhibition states, we were left with a dataset describing all
possible pairwise combinations of ~220 kinase inhibitors. These ~45,000 combinations represent
the kinome inhibition states of existing clinical therapies (example), therapies currently in clinical
trials (example), as well as potential therapies. Together, they interrogate a search space that
includes nearly every known kinase on the phylogenetic tree (Fig S1).

2.2. Connecting Inhibited Kinome States with Cancer Cell Line Combination Sensitivities

Next, we linked the data set describing kinase inhibitor combinations to their cell sensitivity
phenotypes in the large-scale ALMANAC drug combination screen. The ALMANAC screen
contains cell sensitivity data for 53 kinase inhibitor combinations, over ~200 unique dose
combinations for 45 cell lines across 9 cancer types. Additionally, previous high-throughput
combination screens conducted in our lab in breast cancer offered data for 56 inhibitor combinations
in four cell lines. Ideally, we would like exact matches between the dose at which kinome inhibition
state is profiled and the dose at which cell sensitivity was measured. However, there are very few
exact matches between the datasets. To overcome this, we found the nearest dose (at maximum
differing by 1uM) at which kinome inhibition was profiled for each cell sensitivity measurement
and connected the two datasets using these dose matches.

Additionally, we added cell line specific information to the dataset to complement the drug-
specific kinome inhibition states. The CCLE database contains baseline transcriptomics data for
~1500 cancer cell lines, and almost all of the cell lines included in our data set were represented.
Using this, we further added baseline gene expression into the dataset, now containing kinase
inhibitor combinations, their inhibition state of the kinome, the cell line sensitivity to their treatment,
as well as that cell line’s baseline gene expression. In this way, the dataset connects the kinome
inhibition states of inhibitor combinations to their cell sensitivity phenotypes.

The collected dataset represents a total of eight major cancer types, with the majority having ~7
cell lines represented each, while breast cancer had the most representation (11 cell lines). To ensure
that the machine learning model downstream could find cancer-specific linkages between the
kinome and cell sensitivity, we split the dataset into eight individual cancer type datasets and
conducted all modeling on each data split in parallel.
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2.3. Elastic-Net Feature Selection Reveals Kinome Inhibition States to be Most Informative

In our collected dataset, kinome inhibition states and baseline gene expression together represent
~20,000 variables or “features” that could affect the phenotype of cell sensitivity to kinase inhibitors.
It is both practically prohibitive and ineffective to build models using all available features, and so
keeping in mind computational efficiency we sought to filter down the dataset to include only the
most informative features. To accomplish this “feature selection”, we built our machine learning
pipeline starting with an elastic-net regression [17] model built against the outcome of cell
sensitivity. This generated coefficients for each feature, with the absolute value of the feature
coefficient directly proportional to its predictive value for the outcome. We ensured non-informative
features were not included in modeling by only considering features with non-zero coefficients. We
fit the model on the entire dataset to visualize a snapshot of the feature coefficients globally. This
revealed overwhelmingly larger coefficients for kinome inhibition states compared to baseline gene
expression (Fig 2a), thus indicating that kinome inhibition states were globally more informative
for cell sensitivity prediction compared to baseline gene expression.

For downstream model building, the data set was split into a training and testing set five times
(five-fold cross validation). For the training set data to not have any influence on the test set (to
prevent data leakage), the elastic net model is fit on only the training data, and features are selected
within each fold. Parameters for the elastic net model and hyperparameters for the tested model
types were also tuned this way.

2.4. Machine Learning Models Can Predict Cancer Cell Line Sensitivity to Combination
Therapies by Integrating Kinome Inhibition States and Baseline Transcriptomics

After data set preparation and feature selection, we built machine learning models that can predict
cell sensitivity to kinase inhibitor combinations. For each cancer type, three machine learning model
types were tested: random forest, boosted trees (xgboost) and deep neural networks. Xgboost
performed the best for all cancer types, with type-specific performance largely dependent on
abundance of data in the training set (Fig 3b). The most abundant cancer type (breast) had the best
performing model with an R? score of 0.93 (Fig 3b) while the lowest performing model was prostate
cancer with R? = 0.73. Given our previous lab experience with breast cancer, we chose the breast
cancer model for downstream experiments and validation.

Additionally, since the best-performing model was tree-based gradient boosting, we were able
to further analyze the model using computed feature importance to find the most informative
features in the data set based on the feature importance metric. Similar to the feature selection output,
we saw much higher feature importance scores overall for kinome inhibition states when compared
to baseline gene expression, and several kinases implicated in breast cancer dysfunction had high
importance scores, such as MAP2K1/2 and EGFR(Fig. 3c¢).

2.5. Experimental Validation of Model Predictions in a PDX-Derived Triple Negative
Breast Cancer Cell Line was Successful.

We demonstrated that machine learning models using the kinome inhibition states of combination
therapies along with cell-specific baseline gene expression could robustly predict cell sensitivity in
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multiple cancer types. However, to see if these predictive models could extend to real-world
experiments, we experimentally validated 35 kinase inhibitor combinations in a PDX-tumor derived
cell line(Fig 4A).

High-throughput cell line drug screens have been widely documented to suffer from a lack of
reproducibility and poor translation to more complex samples like patient tumours. We sought to
test whether our model of cell sensitivity in breast cancer, trained on 11 well-characterized
immortalized cell lines, could effectively predict cell sensitivity in a PDX (Patient-Derived
Xenograft) derived cell line. We chose the WHIM12 PDX-derived cell line, which was generated
from a highly chemo-resistant TNBC tumor [18]. Previous experiments in the lab had conducted a
drug combination screen in the WHIM12 cell line, out of which 35 kinase inhibitors were tested in
combination with trametinib. Complementary baseline gene expression data was also generated
through RNAseq. Using these in-house data, we were able to input the unseen WHIM12 gene
expression into the trained model and predict the cell sensitivity outcomes of the conducted drug
combination screen. We achieved robust prediction accuracy (Global R? = 0.74 / RMSE = 0.14) in
predicting exact cell viability in response to treatment with 35 kinase inhibitor combinations, across
64 dose combinations (Fig 4c, d).
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Figure 2. Feature Selection using an Elastic-net Regression Model against Cancer Cell Line
Sensitivity. (a) Ridge plot showing the distribution of LASSO coefficient sizes as a metric for
feature importance, for each feature type (b) Horizontal bar plot showing kinases with the largest
elastic-net coefficient values, coloured by whether they are defined as “understudied” (Dark) or
“well-characterized” (Light).
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Figure 3. Development of Models to Predict Cancer Cell Line Sensitivities to Kinase
Inhibitor Combination Therapies from Kinome Inhibition States. (a) Model performance
metrics (R-squared) for Random Forest (dots) and XGBoost (triangles). (b) Scatter Plot of
predicted sensitivity values from the best-performing model vs actual sensitivity values. The red
line indicates a smooth fit through the data points. (c) Horizontal bar plot showing model
importance of individual kinase inhibition states by importance values. (d) Horizontal bar plot
showing model importance of individual baseline gene expression by importance values.

2.6. Model Predictions Reveal Known Synergy in trametinib/omipalisib Combination

The model predictions in the WHIM12 cell line were further interrogated for potential synergy.
We generated synergy scores for all 35 combinations at each of the 64 dose points using the R
package SynergyFinder [19] based on four different metrics: Zero-Interaction Potency [10] (ZIP),
Bliss Independence [20], Highest Single-Agent (HSA), and Loewe Additivity [21]. Additionally,
we generated similar synergy scores using the actual experimental data generated for validation as
a comparison. We found a high degree of similarity (Global R? ~ 0.94/ RMSE ~ 0.5) between
predicted and actual synergy, with trametinib + omipalisib as our most synergistic predicted
combination, with a ZIP score of ~8 at certain dose combinations (Fig 4e, f). This is significant as
the model predictions were in a TNBC PDX-derived line, and the trametinib/omipalisib
combination represents the popular strategy of simultaneously targeting the MAPK and PI3K
pathways| 22].
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Figure 4. Experimental Validation of Model through a Trametinib Combination Screen in
the WHIM12 Patient-Derived TNBC Cell Line. (a) Schematic showing experimental validation
pipeline for the WHIM12 PDX-derived cell line. (b) Kinome phylogenetic map showing diversity
of kinome space targeted (red = inhibited by a validated kinase inhibitor combination). (c) Grid of
scatter plots showing accuracy of predicted vs experimental sensitivity to the top 9 tested
combinations. For all scatter plots, the dashed line indicates where perfect predictions would lie
and the red line shows a linear fit through the data. Quantitative accuracy is represented by the R-
squared score. (d) Scatter plot showing the global accuracy of model predicted sensitivity
compared to experimental sensitivity. (e) Grid of scatter plots showing accuracy of model
predicted synergy scores compared to experimentally measured synergy scores across two metric
types (ZIP, Bliss). (f) Grid of heatmap plots showing comparison of predicted vs experimentally
measured sensitivity and synergy for the highly synergistic trametinib / omipalisib combination.
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3. Discussion

Kinase inhibitors are one of the fastest growing drug classes for cancer therapy, with ~62 FDA
approved in total against neoplasms [2]. With 500 potential druggable targets, there is significant
interest in decoding the spectrum of kinases targeted by current inhibitors, and streamlining the
kinase inhibitor screening process. We have previously introduced [16,23,24] the idea that the full
spectrum of a given inhibitor’s effect on the kinome as measured by recent advances in kinobead-
competition/MS technology [15] can be represented as a “kinome inhibition state”, i.e. a vector
representing the effect of a given inhibitor on the kinome as a whole.

In this work, we have extended this idea to represent the kinome inhibition state of a combination
of inhibitors, using a simple multiplicative probability model to “combine” the inhibition states of
two given kinase inhibitors. By generating these “combined” inhibition states, we can vastly expand
the search space targeted by inhibitor monotherapies, sampling all possible combinations of
currently available therapies. To accomplish this, we used publicly available drug-kinome
interaction data to generate snapshots of the combined effect of a combination therapy on the protein
kinome. We then linked these kinome inhibition states of inhibitor combinations to cancer cell
sensitivity phenotypes to combination treatment, creating a framework for predicting the efficacy
of combination therapies in different cancer types.

We fit tree-based machine learning models as well as neural networks on this linked data set to
robustly predict precise cancer cell line sensitivity and synergy for untested kinase inhibitor
combinations therapies and validate those predictions in complex patient derived samples. gradient-
boosted tree models were highly accurate across cancer types (R? 0.75-0.93), comparable to two
recent neural-network driven attempts to predict cell line response to drug combinations [9,11]. We
chose to move forward with the highest performing breast cancer model for further validation. We
chose to validate our model predictions in the PDX-dervied WHIM12 line, reasoning that PDX-
derived cell lines retain many of the molecular and genetic features of the xenografted original
tumors and offer a closer representation of the disease state compared to traditional cell lines. We
were able to show that the models performed robustly on novel baseline gene expression data
(Global Accurcacy R? ~0.74) , representing its ability to extend to complex and clinical-adjacent
samples compared to well-characterized cell line data.

One of the strengths of tree-based models compared to deep neural networks is that they are
generally considered to be interpretable through feature importance computation [12.,25]. Using this,
we were able to investigate the “black box” and query which specific kinase inhibition states and
baseline genes were most predictive of cell sensitivity. We found that for the best performing breast
cancer model, the inhibition of the kinases MAP2K1/2 were the most informative by far. This is
intuitive considering the most abundant kinase inhibitor in the dataset is the allosteric MEK inhibitor
trametinib, but it must be noted that MEK inhibition is always only just one half of the kinome
targeting in the combination. There has been increasing clinical interest recently in targeting the
PI3K and MAPK pathways [22], and our lab has shown before that MEK 1/2 inhibition in TNBC by
trametinib induces widespread transcriptional adaptation, and that there is potential for clinical
efficacy for complementary kinome targeting with trametinib [26]. Since our model’s sensitivity
predictions can effectively simultaneously predict synergy, our top synergy prediction for breast
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cancer according to the ZIP metric was trametinib and omipalisib, which we were able to validate
experimentally in the WHIM12 line. This indicates that from the training breast cancer screening
data, the model was able to learn that targeting the complementary PI3K and MAPK pathways is
effective and synergistic in TNBC cell lines.

Interestingly, the predicted high-synergy combination of trametinib/omipalisib was recently in
phase I clinical trials for advanced solid tumors but failed due to patient intolerability [27]. This
highlights some limitations of our modeling approach. Ideally, kinome inhibition state would be one
of many different drug modalities included for response prediction, and we plan to further expand
these models in the future by considering toxicity, drug structure and cancer-describing multi-omic
data types not limited to baseline gene expression. Additionally, in this proof-of-concept study we
utilized a simple multiplicative probability model to generate the “combined” inhibition state of two
inhibitors on the kinome, by assuming that the inhibition of a given kinase is mutually exclusive
from that of other kinases. We know that kinases function physiologically as part of complex
signaling networks, and their inhibition may have downstream effects on other kinases and signaling
pathways. To address this limitation, future models will incorporate more biologically
representative schemes to hypothesize combined kinome inhibition states.

In summary, through this work we demonstrate the development of a framework for predicting
the efficacy of combination therapies in different cancer types using just kinome-drug interactions
and baseline gene expression. We use a multiplicative probability model to generate the "kinome
inhibition state" of a combination of kinase inhibitors and link these states to cancer cell sensitivity
phenotypes. First, we were able to show that a given combination therapy’s cancer-agnostic
interaction with the kinome was far more informative than baseline genomics in predicting
downstream response. This is intuitive fundamentally, as drug-protein interactions are the primary
means of drug effect on physiology, but this type of data is still underutilized in computational
screening approaches. We then used machine learning models to predict cell line sensitivity and
synergy for untested kinase inhibitor combination therapies and validate those predictions in
complex patient derived samples. We found that the inhibition of the kinases MAP2K1/2 was the
most informative for predicting breast cancer cell sensitivity, and the predicted high-synergy
combination of trametinib/omipalisib was validated experimentally in a PDX-derived TNBC cell
line.

4. Methods

Data Sources. The primary data sources we used can be split into three categories: the kinome
profiling data set, the combination-treated cell line sensitivity set, and the cancer cell line
transcriptomics set. The kinome profiling data set from the kinobeads assay was downloaded from
the supplementary materials of Klaeger et al. 2017 [15]. For cancer cell line sensitivity to kinase
inhibitor combinations, data was downloaded from (1) NCI-ALMANAC: cell sensitivity data was
downloaded from the NCI wiki database (https://wiki.nci.nih.gov/display/NCIDTPdata/NCI-
ALMANAC) and (2) Supplementary materials of previous lab combination screens published in
Beville et al. 2019 [28] and Stuhlmiller et al. 2015 [29]. The CCLE gene expression set
(“CCLE _expression.csv”) was downloaded from the DepMap portal
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(https://depmap.org/portal/download/all/) to create the set of cancer cell lines and their gene
expression characteristics. In-house baseline gene expression data for the PDX-derived WHIM12
line was downloaded from the GEO repository for the Zawitowski et al. paper[26] (GSE87424).

Data Preprocessing. The scripts implementing these descriptions are all available through github.
Klaeger et al. Kinobead Kinase Inhibition Profiles: As previously described [16], we read the

values from the supplemental data table into R and produced a filtered list of kinase and kinase

interactor relative intensity values. We imputed missing values with the default “no interaction”

value of 1 and truncated likely outlier values to the 99.99 percentile (3.43).

Creating the Combination Inhibition State Data Set: To create a “combined” inhibition state of

a given kinase inhibitor combination, we sought to superimpose the inhibition states of two

individual states at specific doses. There were eight doses measured for each individual inhibitor,

thus there were 64 possible combinations for each combination. We took the monotherapy kinome
inhibition states from the Klaeger et al. set and computed a “combined” inhibition state for each
kinase, based on three different combination schemes:

1. Simple Multiplicative: The simple conditional probability rule assumes two independent events
(Eq. 1). Since the default “no interaction” inhibition value is 1, for kinases that are not targeted
by both inhibitors simultaneously, the “combined” inhibition state value is simply either one in
monotherapy.

2. Truncated Multiplicative: A minority of measured kinase inhibition states (~1%) have values >
1 in the Klaeger et al. dataset, a possible artifact from the mass spectrometry measuring process.
To avoid inflating those values, all >1 values were truncated at 1 and simple multiplication was
performed as described above.

3. Addition: All kinase inhibition states were inverted into “Percent Inhibition” values, where 0
denotes no inhibition and 100 denotes complete inhibition. Then, when two inhibition states
were combined, they were simply added together (truncated at a max value of 100).

Eq. 1. P(AB) = P(A) P(B) {If P(A|B) = P(A)}

All three methods were tested in downstream modeling, resulting in minor variation. Truncated
multiplied vectors were slightly more predictive (R? score of ~0.01 greater) so we used that scheme
for all downstream modeling. In this way, we were able to compute hypothetical “combined”
inhibition states for all possible combinations of ~220 inhibitors, altogether comprising ~2,000,000
combined inhibition states.

Dataset of Cancer Cell Line Sensitivity to Kinase Inhibitor Combinations: The cell sensitivity
dataset from NCI-ALMANAC and previous lab publications were filtered to contain only kinase
inhibitor small molecules, then summarized over replicates and converted to cell viability (1 = fully
viable cell and 0 = full cell death). Relevant cancer types were annotated and individual cancer type
datasets were subsetted for downstream cancer type-specific modeling.

Matching of Kinase Inhibitors between Inhibition State Dataset and Cell Line Sensitivity
Dataset: The drug names from each dataset were read into R, and the package Webchem [30] was
used to retrieve PubChem compound IDs (cid’s). The two sets of drug names were then matched
based on these reference IDs, with a total of ~100 matches between the two sets.
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Baseline Gene Expression from CCLE: Data was preprocessed as described before [31] from
the “CCLE_expression.csv” file. Cell line names were matched manually between CCLE and the
NCI naming scheme. All cell lines represented in NCI-ALMANAC had a match in the CCLE
database.

String: The STRING database [32] was processed as described previously [31] to annotate
kinases and kinase interacting genes.Modeling Techniques. To assess our models we used a random
5-fold cross validation strategy. The features included in each fold were selected as specified by the
feature selection scheme described in the results section. We implemented Elastic-net regression
using the glmnet engine [33] for the feature selection scheme [17], We compared the performance
of three model types using this strategy: random forest using the ranger engine [34] and gradient
boosting using the XGBoost (eXtreme Gradient Boosting) engine [35]. Model performance was
assessed by the R-squared value between predicted and actual outcome within the cross-validation
scheme. For each model type and for the feature selection model, we tuned sets of 20
hyperparameters to find the best possible performer as follows: (a) Elastic-net: Penalty (0 - 0.1),
Regularization (0.1-1) (b) Random Forest: Trees (100 - 2000) (c) XGBoost: Trees (100 - 1000),
Tree Depth (4 - 30). After final model selection, we fit the model on the entire dataset and then made
predictions on the experimental validation data.

All of the code written to support this paper is available through github
(https://github.com/gomezlab/kinotype combination prediction) along with a brief walkthrough
explaining where to find the code relevant to each part of the paper.

Experimental Validation. 6x6 dose combination screens were performed in the WHIM12 cell
line as described in Beville et al. 2019 [28]. Briefly, cells were seeded in 384-well plates and
dosed with drug after 24h. The screening library was tested for growth inhibition alone or in
combination with Trametinib across 6 doses: 10 nmol/L, 100 nmol/L, 300 nmol/L, 1 pmol/L, 3
umol/L, and 10 pmol/L. 0.1% DMSO was included as the control for growth inhibition on
each plate. Plates were incubated at 37°C for 96 hours and lysed using CellTiter-Glo Reagent
(Promega, catalog. no. G7570). Luminescence was measured using a PHER Astar FS
instrument and growth inhibition was calculated relative to DMSO-treated wells.
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