

1 **A conserved odorant receptor underpins borneol-mediated repellency in culicine
2 mosquitoes**

3
4 Yuri Vainer², Yinliang Wang^{2,7}, Robert M. Huff¹, Dor Perets², Evyatar Sar-Shalom², Esther
5 Yakir², Majid Ghaninia⁵, Iliano V. Coutinho-Abreu Gomes³, Carlos Ruiz⁶, Dhivya
6 Rajamanickam, A. Warburg⁴, Omar S. Akbari³, Philippos A. Papathanos², R. Ignell⁵, Jeffrey
7 A. Riffell⁶, R. Jason Pitts^{1*}, Jonathan D. Bohbot^{2*}

8
9 ¹*Department of Biology, Baylor University, USA*

10 ²*Department of Entomology, The Hebrew University of Jerusalem, Israel*

11 ³*Division of Biological Sciences, University of California, USA*

12 ⁴*Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem,
13 Israel*

14 ⁵*Department of Plant Protection Biology, Swedish University of Agricultural Sciences,
15 Sweden*

16 ⁶*Department of Biology, University of Washington, USA*

17 ⁷*Northeast Normal University, China*

18
19 *Corresponding authors: jonathan.bohbot@mail.huji.ac.il & Jason_Pitts@baylor.edu

20
21 **Keywords:** mosquitoes, monoterpenoids, borneol, camphor, repellent, odorant receptor

22
23 **Abstract**

24 The use of essential oils derived from the camphor tree to repel mosquitoes is an ancient
25 practice that originated in Southeast Asia and gradually spread to China and across Europe
26 via the Maritime Silk Road. The olfactory mechanisms by which these oils elicit avoidance
27 behavior are unclear. Here we show that plant bicyclic monoterpenoids and borneol
28 specifically activate a neural pathway that originates in the orphan olfactory receptor neuron
29 of the capitellum sensillum in the maxillary palp, and projects to the mediodorsal
30 glomerulus 3 in the antennal lobe. This neuron co-locates with two olfactory receptor neurons
31 tuned to carbon dioxide and octenol that mediate human-host detection. We also confirm that
32 borneol elicits repellency against human-seeking female mosquitoes. Understanding the
33 functional role of the mosquito maxillary palp is essential to investigating olfactory signal
34 integration and host-selection behavior.

35

36 **Main**

37 The use of plants to ward off insects has been a human practice since prehistorical times¹ and
38 is still used in many parts of the world^{2,3}. Plant-based essential oils (EOs), including lemon
39 eucalyptus leaf oil⁴, citronella oil⁵, and coconut oil⁶ exhibit different degrees of mosquito
40 repellency due to the presence of pyrethrins⁷, phenol derivatives, and terpenoids⁸. The latter
41 includes oxygen-containing compounds with open-chain hydrocarbons, such as linalool,
42 citronellol, geraniol, and bicyclic derivatives such as cineole, fenchone, camphor and borneol
43 (Fig. 1a). The EO of the camphor tree *Cinnamomum camphora* is composed of over 70
44 volatile organic compounds (VOCs), most of which are oxygenated monoterpenes dominated
45 by camphor and other related compounds⁹. Camphor and borneol extracts are believed to
46 have originated from the camphor tree in the island of Borneo (Fig. 1a), where they were
47 initially traded with China and then introduced to the West due to their therapeutic,
48 refreshing, and repellent effects against mosquitoes¹⁰. How these terpenoids molecules exert
49 repelling effects against mosquitoes is not well-understood but is likely mediated by their
50 olfactory system.

51 The capitate-peg (cp) sensillum located on the mosquito maxillary palp comprises three
52 olfactory neurons, each distinguishable by size, olfactory receptor gene expression profile,
53 and odor response characteristics (Fig. 1b). In both culicine and anopheline mosquitoes, the
54 largest olfactory sensory neuron (cpA) expresses three gustatory receptors (*Grs*) that
55 specifically detect CO₂^{11,12}. The medium-sized cpB neuron of *Anopheles gambiae* and *Aedes*
56 *aegypti* expresses the 1-octen-3-ol odorant receptor *Or8* and its co-receptor *Orco*^{13–15}. Both
57 CO₂ and 1-octen-3-ol elicit attraction and signal the presence of animal hosts in anopheline¹⁶
58 and culicine¹⁷ mosquitoes. This cellular and functional organization have remained
59 remarkably conserved over 180 million years of mosquito evolution (Fig. 1b).
60

61 In anophelines, the small cpC neuron expresses the *Or28* gene¹³, which responds to plant
62 volatile organic compounds (pVOC)¹⁸. In culicines, the cpC neuron expresses the *Or49* gene
63¹⁹, which is unrelated to *AgamOr28* (Fig. 1b). Using a pharmacological approach, we
64 expressed *Or49* in a heterologous expression system and exposed it to odorant mixtures, EOs
65 and individual volatile odorant compounds. Our findings provide strong evidence that the
66 OR49 receptor and the cpC neuron respond to plant-derived bicyclic monoterpenoids with a
67 marked selectivity towards borneol, traditionally used as a mosquito repellent. We observed
68 that a loss-of-function mutation in the *Or49* gene leads to a lack of electrophysiological
69 responses when stimulated by borneol. Furthermore, we show that borneol elicits selective
70 activation of the MD3 glomerulus in the antennal lobe of *Ae. aegypti*, indicating that all 3 cp
71 neurons project to the same brain area. Confirming our pharmacological and
72 electrophysiological results, our behavioral study reveals that borneol induces repellency in
73 human-seeking female mosquitoes. our findings lay the groundwork to understand the
74 detailed molecular and neural basis shaping olfactory integration and governing host
75 selection in mosquitoes.
76

77 **Odorant receptor 49 is an evolutionary conserved borneol receptor**

78 The odorant receptor 49 gene^{18,19} is conserved in *Aedes albopictus*, *Culex quinquefasciatus*,
79 *Toxorhynchites amboinensis* and *Anopheles gambiae* (Supplementary Fig. 1). Phylogenetic
80 analyses support previous studies^{19,20} describing the OR49 family as a Culicinae-specific
81 group (Supplementary Fig. 1c–d) that includes the more distantly related anopheline
82 OR48/49 group. The *Or49* genes are located on chromosome 2 in both *Aedes* and *Anopheles*
83 mosquitoes (Supplementary Fig. 1e) and exhibit conserved syntenic relationships with
84 neighbouring genes (Supplementary Fig. 1f).
85

86 As a continuation of our work on the functional identity of the cp sensillum in culicine
87 mosquitoes^{19,21}, we investigated the receptive field of *Ae. albopictus* OR49 (AalbOR49)
88 using two-electrode voltage clamp recordings (Fig. 1c–d) and a panel of 81 odorants
89 representing a variety of chemical classes (Supplementary Table 1). Oocytes expressing
90 functional receptor complexes were strongly activated by blends containing ketonic
91 compounds (Fig. 1c). Individual testing of the single compounds from the ketone blend
92 revealed the efficacy of bicyclic monoterpenoids, with camphor emerging as the most
93 efficacious member followed by cineole (also called eucalyptol) and fenchones (Fig. 1d).
94 Subsequently, we screened OR49 from the nectar-feeding *Tx. amboinensis* (TambOR49) with
95 8 *Cannabis* EOs (Fig. 2a, Supplementary Table 1) containing 42 plant VOCs dominated by
96 terpenes (Supplementary Fig. 2). The three most active mixtures were Pineapple Haze, OG
97 Kush, Adom #9 followed by Master Kush with a much lower efficacy (Fig. 2a), all evoking
98 consistent current responses (Supplementary Fig. 3). Successive fractionations of these EOs
99 down to 6 sub-mixtures and 4 single compounds were then administered of which the
100 racemic borneol showed the highest potency (Fig. 2b), consistent with the borneol content in

101 the original *Cannabis* mixtures (Fig. 2a, Supplementary Fig. 4a) and sub-mixtures
102 (Supplementary Fig. 4b).

103
104 In *An. gambiae*, the cpC neuron expresses OR28 (Figure 1a), which is activated by plant
105 VOCs, with acetophenone and 2,4,5-trimethylthiazole being the most effective ligands in the
106 *Xenopus* oocyte expression system^{13,18}. The EC₅₀ values of acetophenone, α -pinene, and α -
107 terpineol were in the low millimolar range indicating that more potent ligands remain to be
108 identified (Supplementary Fig. 5). Borneol did not elicit any response at the tested
109 concentrations suggesting that AgamOR28 is tuned to VOCs belonging to a different
110 chemical class.

111
112 TambOR49 and AaegOR49 did not exhibit enantioselectivity towards the (+) and (−)-borneol
113 (Figure 2c) as indicated by their EC₅₀ values in the one-digit micromolar range. We
114 established concentration-response relationships between TambOR49, *Cx. quinquefasciatus*
115 OR38 (CquiOR49), *Ae. aegypti* OR49 (AaegOR49), and *Ae. albopictus* OR49 (AlbOR49),
116 for the two most potent ligands, (+)-borneol and (+)-camphor (Fig. 2d). (+)-Borneol was 19-
117 32 times more potent than (+)-camphor in all cases except for TambOR49 in which both
118 compounds were equally active in the low micromolar range. In all four examined culicine
119 species, including the nectar-feeding *Tx. amboinensis*, (+)-borneol elicited significantly
120 higher responses than (+)-camphor across all concentrations (Fig. 2e, Supplementary Fig. 3).
121 This data indicates that OR49 is a selective borneol receptor.

122
123 **The *Or49* gene confers sensitivity to borneol**

124 To investigate the olfactory effect of camphor and borneol *in vivo*, we conducted
125 electropalpogram (EPG) recordings on three culicine (*Ae. albopictus*, *Ae. aegypti*, *Cx.*
126 *pipiens*) and one anopheline (*An. gambiae*) species. 1-Octen-3-ol, which served as a positive
127 control, induced significant responses in all mosquitoes tested. Camphor and borneol elicited
128 consistent palp responses in Culicinae mosquitoes, including *Ae. albopictus*, *Ae. aegypti*, and
129 *Cx. pipiens* but not in *An. gambiae* (Fig. 3a). Camphor and borneol evoked lower responses
130 than 1-octen-3-ol in the culicine palps, which is consistent with the smaller size of the cpC
131 neuron in comparison to the cpB neuron. In *Ae. albopictus*, (−)-borneol was more active than
132 (+)-camphor, while in *Ae. aegypti* both borneol enantiomers elicited significantly greater
133 EPG responses than camphor enantiomers. In *Cx. pipiens*, borneol and camphor elicited
134 comparable EPG responses. We established dose-response relationships with (+)-camphor
135 and (+)-borneol in *Ae. albopictus*, *Ae. aegypti*, and *Cx. pipiens* (Fig. 3b). Among the three
136 culicine species, *Cx. pipiens* exhibited the largest responses in response to (+)-camphor.
137 However, we did not find any significant statistical differences in activity between camphor
138 and borneol in the tested species.

139
140 To test a potential causal gene-function relationship between *Or49* and the borneol response,
141 we used homology directed repair (HDR) to knock-in a transgenic construct containing the
142 QF2 transactivator and a ubiquitously expressing eCFP fluorescent marker driven by the
143 OpiE2 promoter at the start codon of the *Or49* gene in *Ae. aegypti* (Supplementary Fig. 6).
144 To investigate the genetic mechanism determining borneol sensitivity in the palp, we
145 conducted single-sensillum recordings (Fig. 4a) from the cp sensillum of *Ae. aegypti* (Fig.
146 4b), *An. gambiae* (Fig. 4c), *Ae. albopictus* (Fig. 4d), and *Cx. quinquefasciatus* (Fig. 4e). The
147 response of the cpA and cpB neurons to CO₂²² (data not shown) and *R*-(−)-1-octen-3-ol²³,
148 respectively, has been well characterized in previous studies¹³⁻¹⁵. (+)-Borneol elicited a dose-
149 dependent response in the cpC neuron of *Ae. aegypti*, *Ae. albopictus*, *Cx. quinquefasciatus*
150 but not in *An. gambiae* s.s. (Fig. 4f). Single sensillum recordings identified the spontaneous

151 activity of three sensory neurons, distinguished by differences in spike amplitudes, housed in
152 the capitate peg sensilla of wild type *Ae. aegypti* (Fig. 4c) and *An. gambiae* (Fig. 4d). No SSR
153 responses were recorded from the cpC neuron in the *Ae. aegypti* *Or49* null mutant line in
154 response to (+)-borneol (Fig. 4c) indicating that *Or49* is sufficient and necessary to confer the
155 cpC neuron sensitivity to borneol. The lack of response of the cpC neuron in *Anopheles* (Fig.
156 4d and f) is consistent with the expression of *Or28* instead of *Or49*, which is not activated by
157 borneol (Supplementary Fig. 5). The absence of OR28 activation and *An. gambiae* palp EPG
158 responses by borneol and camphor support this conclusion.
159

160 **Borneol and camphor specifically activate the MD3 glomerulus in the antennal lobe**
161 To examine how *Ae. aegypti* processes borneol in the antennal lobe (AL), two-photon
162 imaging experiments were conducted using pan-neuronal GCaMP-expressing *Ae. aegypti*
163 mosquitoes. We utilized existing mosquito lines that contained a *QUAS-GCaMP6s* transgene
164 crossed with the *brp-QF2* driver line²⁴, allowing the directed expression of the calcium
165 indicator GCaMP6s in all neurons of the AL. Mosquitoes were glued to holders that
166 permitted two-photon imaging of calcium responses in the AL (Fig. 5a), allowing repeatable
167 registration of the AL glomeruli between preparations (Fig. 5b) and recording of glomerular
168 responses (Fig. 5c)²⁵. Glomeruli from our two-photon imaging results were mapped to AL
169 atlases^{26,27}, allowing accurate identification of the glomeruli of interest in their spatial
170 context (Extended Data Fig. 5). We focused on the mediiodorsal (MD) glomeruli, as these
171 glomeruli receive input from the capitate peg sensilla of maxillary palps (Fig. 5b and c) and
172 are responsive to host odors, including 1-octen-3-ol (MD2) and CO₂ (MD1)²⁷.
173

174 To determine the odor coding of the MD glomeruli, and identify the cognate glomerulus
175 representing borneol, we first recorded from the MD1-3 glomeruli while stimulating with
176 CO₂ (5%), 1-octen-3-ol (10⁻⁴ dilution), borneol (10⁻⁴ dilution), and the solvent control. For
177 the MD3 glomerulus, (+)-borneol elicited strong, tonic responses that were significantly
178 greater than the solvent control (P<0.001) (Fig. 5d and g). By contrast, responses of the MD1
179 and MD2 glomeruli to borneol were not significantly different from the control (P=0.09 and
180 0.23, respectively). The MD2 glomerulus showed the greatest responses to 1-octen-3-ol (Fig.
181 5e) (P = 0.00003), and the MD1 glomerulus to CO₂ (P=0.01) (Fig. 5f). Given MD3's
182 response to (+)-borneol, and OR49/cpC's responses to other terpene compounds, we next
183 examined how this glomerulus responded to a limited panel of different odorants, including
184 enantiomers of borneol and camphor. From this panel, (−)-borneol elicited the greatest
185 response in the MD3 glomerulus (Fig. 5g), closely followed by (+)-borneol, enantiomers of
186 camphor, and geosmin. These findings are consistent with previous studies demonstrating
187 that the three MD glomeruli receive input from the maxillary palp cp neurons whereby the
188 MD1 glomerulus receiving CO₂ input from the cpA neurons²⁸ while the medium size MD2
189 glomerulus receives 1-octen-3-ol input from the cpB neurons²⁷.
190

191 **Borneol repels human-host seeking female *Ae. aegypti***

192 To examine the impact of (±)-borneol on blood-seeking *Ae. aegypti* mosquitoes, we
193 conducted an arm-in-a-cage assay (Extemded Data Fig. 1a), exposing 15 females to human
194 skin odor for 10 minutes (Figure 6). A protective glove covered the hand, allowing
195 mosquitoes to detect the odor through a dorsal open area, which was protected with a screen
196 and equipped with a chemical holder for the deposition of (±)-borneol (1M) (Extended data
197 Fig. 1). To monitor host-seeking behavior—specifically, the presence of females, their
198 walking path (in cm), and visit duration in the region of interest (ROI)—we fine-tuned a
199 custom object detection YOLOv8 model²⁹. Our results demonstrated a significant reduction
200 (54%) in the number of trajectories within the ROI when the hand was treated with (±)-

201 borneol compared to the vehicle-treated hand (Fig. 6a). All trajectories across treatments and
202 repetitions are shown in Figure 6b, where different colors indicate different trajectories.
203 Vehicle and borneol-induced trajectories were 951 and 428, respectively. This trend was
204 consistent across time (Fig. 6c). On average, the total time spent in the ROI was three times
205 higher in the control than in the (\pm)-borneol treatment (Fig. 6d). Additionally, the distance
206 walked within the ROI was significantly lower in the presence of (\pm)-borneol (Fig. 6e).
207 Figure 6f visually represents the mosquito detections throughout the experiment, highlighting
208 the differences between the control and (\pm)-borneol treatments. A video sample is available in
209 Extended Data Fig. 6. When purifying the *Or49* homozygote mutant, we noticed severe
210 reduction in fitness, which precluded further behavioral experiments.
211

212 Discussion

213 We have identified a conserved mechanism in culicine mosquitoes responsible for the
214 selective detection of borneol, a bicyclic monoterpenoid that has been used as an insect
215 repellent since ancient times. Recent studies have shown that borneol is a broad-acting insect
216 repellent against fungus gnats³⁰, the booklouse *Liposcelis bostrychophila*³¹ and fire ants³²
217 suggesting that more than one olfactory-mediated mechanisms in insects are at play since
218 *Or49* homologs in these insects have not been identified. Interestingly, borneol elicits
219 responses in the *Ae. aegypti* antenna as well³³. However, antennal activation by borneol
220 requires doses 10,000 times greater than in the maxillary palp (Supplementary Fig. 7). This
221 difference in sensitivity in favor of the palp indicates that whatever mechanism is involved in
222 the antenna is likely not an ecologically-relevant response but rather the product of chemical
223 overstimulation. Moreover, this alternative mechanism is *Or49*-independent since its
224 expression has not been reported in the antenna.
225

226 In *Anopheles*, the antennal-expressed *Or48*³⁴, one of the two closest homologs to the culicine
227 *Or49* (Supplementary Fig. 1c), responds to straight chains alcohols, ketones, and acetates^{18,35}
228 suggesting that this receptor is tuned to a different class of compounds setting apart the
229 olfactory coding logic between these two mosquito subfamilies. Contrary to OR8, which
230 discriminates between the 1-octen-3-ol enantiomers²¹, the two borneol enantiomers elicited
231 comparable activations at the pharmacological, physiological and AL levels. These findings
232 suggest that the receptor binding pocket accommodates both forms of borneol or that a
233 closely related structural analog of borneol, with greater potency, remains to be identified³⁶.
234

235 Our results suggest that in *Ae. aegypti* and other culicine mosquitoes, the repellent properties
236 of traditional Chinese medicinal plants such as the camphor tree EO are largely mediated by
237 the activation of OR49 by bicyclic monoterpenoids and more specifically by borneol.
238

239 Borneol repels human host-seeking *Ae. aegypti*, *Cx. quinquefasciatus* and *An. stephensi*
240 while its presence in EOs attracts gravid *Ae. aegypti*³⁹, suggesting that this compound
241 has opposite effects on animal-host-seeking behavior and oviposition preferences. The reason
242 for borneol being a signal mediating repellency is puzzling. While several monoterpenoids
243 such as 1-8-cineol, limonene, and fenchone exhibit anticholinesterase activity^{40,41} causing
244 paralysis and death in a variety of insects, there are conflicting reports on the larvicidal
245 activity of borneol and camphor against mosquito larvae^{39,42-45}. Future studies should focus
246 on the ecological role of borneol in different contexts, including foraging and oviposition site
247 selection.

248 We found that the co-location of the three cp neurons in the cp sensillum is reflected by the
249 anatomical proximity of their projections in the MD glomeruli cluster in the AL. Whether the
250 grouping of these three glomeruli has a functional significance and why the cp sensillum

251 houses ORNs tuned to animal and plant host olfactory cues should be the focus of future
252 studies. The two largest cp neurons are tuned to animal-host attractants whereas the smallest
253 and third cpC neuron responds to a plant-host odorant with repellent activity. This
254 antagonism in valence whereby an attractive signal is detected by the largest of two ORNs
255 within the same sensillum while a deterring signal is detected by the smallest ORN is
256 widespread in animals⁴⁶. We surmise that the main function of the mosquito cp sensillum is
257 to detect animal host odorants, while the cpC neuron exerts a presynaptic inhibitory effect
258 mediated by lateral coupling when activated by borneol.
259

260 Our findings indicate that the cp sensillum in the palp of culicine mosquitoes detects signals
261 from animal and plant hosts. Why OR49 is selectively tuned to this particular compound and
262 not to a more ubiquitous volatile phytochemical remains a mystery. Further experiments will
263 reveal how these three signals are integrated at the pre-synaptic level within the sensillum and
264 in the AL. Understanding the ecological and neurological significance of the mosquito cp
265 sensillum, i.e., the packaging of animal and plant host detectors within the same sensillum,
266 may be exploited to design novel repellent formulations.
267

268 **Methods**

269 **Insects**

270 Our mosquito colonies were reared according to previously published protocols⁴⁷. *Ae.*
271 *aegypti* originated from a colony established by Prof. Joel Margalit. The *Ae. aegypti*
272 Liverpool strain was provided by the Akbari lab. *Aedes albopictus* was the FPA Foshan strain
273 collected (Foshan, China) reared at the insectary of the University of Pavia since 2013
274 (Palatini et al., 2017). *Anopheles gambiae* was the G3 strain originally isolated from West
275 Africa (MacCarthy Island, The Gambia) in 1975 (Federica Bernardini et al., 2017). *Culex*
276 *pipiens* originated from a wild type population was provided by Dr. Laor Orshan (Ministry of
277 Health, Israel).
278

279 **Phylogenetic and genomic analyses**

280 The AaegOR49 protein sequence (AAEL001303-PA) was used as a query to identify
281 homologs in other mosquito species. Amino acid sequences of homologous odorant receptors
282 were obtained from the Vectorbase database (vectorbase.org) and the *Tx. Amboinensis*
283 genome assembly (Zhou et al., 2014). The multiple sequence alignment was conducted using
284 ClustalW (Chenna et al., 2003). The Maximum-likelihood phylogenetic tree was constructed
285 using MEGAX software (Model: G, bootstraps: 5000). Exon-intron structure analysis was
286 conducted manually by aligning predicted amino-acid sequences to genomic regions.
287

288 Approximate mapping of the genes in chromosome location for each mosquito species and
289 construction of synteny maps done using Geneious prime software (Kearse et al., 2012) using
290 latest genome assemblies available for each mosquito species (Matthews et al., 2018, Palatini
291 et al., 2020, Boyle et al., 2021, Arensburger et al., 2012, Sharakhova et al., 2007).

292 Genomic DNA (gDNA) was isolated from whole bodies of *Tx. amboinensis* adults. gDNA
293 was diluted to 25ng/µL in nuclease free water and used as a template in polymerase chain
294 reactions to amplify odorant receptors (TambOR) using Taq polymerase and the following
295 primer sets: TambOr6.F1 (ATGCGCTTCTACGAGAAATAC), TambOr6.R1
296 (TCAGAAATTATCCTTCAGGATC); TambOr12.F1 (ATGCCATCGGTTTCTGGTT),
297 TambOr12.R1 (CTAAAACACTCGCTTCAATATC); TambOr13.F1
298 (ATGTTCTGCTTCAGGAAGATC), TambOr13.R1
299 (CTAGAAGTGGTTTCAATATAA); TambOr49.F1
300 (ATGTTGTTCAAGAACTGTTCC), TambOr49.R1
300 (TTAATAATTGAATCTTCCTTCAG); TambOr71.F1

301 (ATGGGCAGCAGTGATGGTGAC), TambOr71.R1 (CTACTGGTTGATTTACTGAGG).
302 Cycling conditions were 94°C for 60s; 30 cycles of 94°C for 20s, 56°C for 20s, 72°C for 30s;
303 and a final extension of 72°C for 5 minutes. Amplicons were analyzed by electrophoresis on
304 a 1% agarose gel, cloned into the TOPO-TA pCR2 plasmid, heat-shock transformed into
305 TOP10 competent *E. coli* cells, and grown overnight at 37°C on LB+ampicillin+X-gal agar
306 plates. Ampicillin resistant, white colonies were isolated using a sterile pipette tip and grown
307 overnight 37°C in 3mL of LB+ampicillin. Plasmids were isolated by DNA miniprep and the
308 Sanger method was used to determine the DNA sequence in both directions using standard
309 T7 and M13.rev primers. TambOR nucleotide sequences were compiled into contigs and
310 intron/exon regions were inferred by comparing to coding sequences described in a previous
311 publication ⁴⁸.
312

313 **Chemical reagents**

314 The chemicals used for the deorphanization of receptors were obtained from Acros Organics
315 (Morris, NJ, USA), Alfa Aesar (Ward Hill, MA, USA), ChemSpace (Monmouth Junction,
316 NJ, USA), Sigma Aldrich (St. Louis, MO, USA), TCI America (Portland, OR, USA), and
317 Thermo Fisher Scientific (Waltham, MA, USA) and Penta Manufacturing Corp. (Livingston,
318 NJ, USA) at the highest purity available. *Cannabis* essential oils and sub-mixtures were
319 formulated and supplied by Eybna Technologies (Givat Hen, Israel) (Table S1 and
320 Supplementary Fig. 2–3).
321

322 **Two-electrode voltage clamp of *Xenopus laevis* oocytes**

323 In vitro transcription and two-microelectrode voltage clamp electrophysiological recordings
324 were carried out as previously described ⁴⁹. Experimental procedures for the *Ae. albopictus*
325 receptor clone was performed as previously described ⁵⁰. *AalbOr49* and *AalbOrco* templates
326 were synthesized by Twist Biosciences (San Francisco, CA, USA) and cloned into the
327 pENTRTM vector using the Gateway^R directional cloning system (Invitrogen Corp., Carlsbad,
328 CA, USA) and subcloned into the *X. laevis* expression destination vector pSP64t-RFA.
329 Several of these genes were codon-optimized (Supplementary Table 2). For pairwise current
330 comparisons of (+)-borneol and (+)-camphor, two separate perfusion systems were
331 assembled, one for each compound. The outlet from each system was connected to a 2 to 1
332 perfusion manifold. At each tested concentration, (+)-borneol and (+)-camphor were
333 administered consecutively. Representative current traces can be seen in Supplementary
334 Figure 4. *Odorant receptor 49* and *Orco* clones and recording measurements can be found in
335 Supplementary Table 2 and 3, respectively. The use of *Xenopus laevis* frog eggs was carried
336 out according to The Hebrew University of Jerusalem Ethics committee.
337

338 **Electropalpogram recordings**

339 Based on the voltage clamp data, responses from the maxillary palps of *Ae. albopictus*, *Ae.*
340 *aegypti*, *Cx. pipiens* and *An. gambiae* were recorded with camphor or borneol.
341 Electropalpogram (EPG) assays were performed according to published procedures ⁵¹ with a
342 few modifications. Within the Pasteur pipette, 20 µL of odorants diluted in hexane were
343 deposited at desired dose onto a 4×20 mm Whatman filter paper strip. The odorants were
344 delivered into a consistent humidified airstream (at a flow rate of 50 cm/s) at approximately 2
345 cm from the maxillary palps. The pulse duration was 0.1 s, and the recording time was set for
346 5 s. A 2-min gap was allowed between stimuli to recover the EPG sensitivity. At least 5
347 individual females were tested, for each individual, 3 technical replicates were performed
348 with doses ranging from 0.01 µg to 100 µg. Negative controls (hexane and air) and positive
349 controls (1-octen-3-ol) were performed at both the beginning and end for each recording

350 session to monitor the decline in sensitivity of the maxillary palps. EPG peak responses were
351 normalized to the response of hexane.
352

353 **Generating *Or49* knockout line in *Ae. aegypti* and isolating an *OR49^{-/-}* homozygous line**

354 To knock out the gene encoding the *Ae. aegypti* OR49 receptor, we used homology directed
355 repair (HDR) to knock in a transgenic construct containing the QF2 transactivator and a
356 ubiquitously expressing eCFP fluorescent marker driven by the OpiE2 promoter at the start
357 codon of the *Or49* gene (Supplementary Fig. 6a–b). HDR was triggered by double strand
358 breaks at the *Or49* promoter and the 1st exon mediated by two guide RNAs, whose cleavage
359 activities had been tested *in vitro* (Supplementary Fig. 6c). Genomic DNA was extracted
360 from whole bodies of *Ae. aegypti* Liverpool individuals using the DNeasy Blood & Tissue
361 Kit (Qiagen, Redwood City, CA). Homology arms of the *Or49* gene flanking 1 kb upstream
362 and downstream of the desired insertion site (Supplementary Fig. 6a) were amplified with the
363 Q5 High Fidelity DNA polymerase (New England Biolabs, Ipswich, MA), using primer pairs
364 Left_Arm_Or49_FWD and Left_Arm_Or49_REV as well as Right_Arm_Or49_FWD and
365 Right_Arm_Or49_REV, respectively (Supplementary Table 4). The QF2-ECFP DNA
366 cassette was amplified using the V1117A plasmid as template and the primer pair
367 QF2_OpIE_ECFP FWD and QF2_OpIE_ECFP REV. The cassette contains the *QF2*
368 sequence and the 3' UTR of the *HSP70* gene along with the *ECFP* gene under the control of
369 the *OpiE2* promoter and the 3' UTR of the *SV40* gene. PCR bands were cut out from agarose
370 gels and purified with Zymoclean Gel DNA Recovery Kit (Zymo Research, Irvine, CA).
371 Upstream and downstream homology arms as well as the QF2-ECFP cassette PCR products
372 were assembled into the backbone of the V1117A plasmid (Supplementary Fig. 6b) using
373 Gibson assembly reaction, following the manufacturer recommendations. Gibson's reaction-
374 derived plasmid product was used to transform JM109 cells (Zymo Research), and colonies
375 were individually grown overnight for minipreps with Zippy Plasmid Miniprep Kit (Zymo
376 Research). The sequence of the plasmid V1117F-Or49 was confirmed by restriction enzyme
377 digestion using the enzymes ScaI-HF and AvrII as well as by whole plasmid sequencing
378 (Primordium Labs, Monrovia, CA). V1117F-Or49 plasmid was used to retransform JM109
379 cells, which were grown for maxiprep purification using the PureLink Expi Endotoxin-Free
380 Maxi Plasmid Purification Kit (Thermo Fisher Scientifics, Waltham, MA).
381 For guide RNA synthesis, non-template reactions were carried out with the
382 gRNA_Left_Or49_F and gRNA_Left_Or49_R forward primers and the universal guide RNA
383 reverse primer (Universal-sgRNA_R). PCR bands were isolated from agarose gel and
384 purified as above described. Guide RNAs were synthesized with the Ambion MEGAscript kit
385 (Thermo Fisher Scientifics) for 4 hours at 37°C, using 300 ng of purified PCR product. Guide
386 RNAs were further purified with the Megaclear Kit (Thermo Fisher Scientifics).
387 To assess the cleavage activity of the synthesized guide RNAs, *in vitro* Cas9 cleavage assays
388 were carried out. A DNA fragment spanning 1,009 bp overlapping the cleavage sites of the
389 guide RNAs was amplified with primers Or49_cleav_F and Or49_cleav_R, DNA bands were
390 isolated from agarose gel, purified, and 100 ng of which was used in cleavage assays with
391 300 ng of recombinant Cas9 (PNA BIO, Thousand Oaks, CA) and 100 ng of each guide RNA
392 upon incubation at 37°C for 1 hour (Supplementary Fig. 6c).
393 For embryo microinjection, an injection mix was prepared with the plasmid V1117F-Or49 at
394 500 ng/ul, gRNAs left and right at 100 ng/ul each, and recombinant Cas9 at 300 ng/ul. Mix
395 was filtered with the Ultrafree-MC Centrifugal Filter UFC30GUOS (Millipore, Burlington,
396 MA). Freshly harvested *Ae. aegypti* embryos (Liverpool strain) were injected with the
397 transformation mix using a custom-made insect embryo microinjector (Hive Technologies,
398 Cary, NC) at 100 psi pulse and 3 psi back pressures, using quartz needles pulled with a P-
399 2000 needle puller (Sutter Instrument Co., Novato, CA). Genomic DNA of the G1

400 fluorescent mosquitoes (Supplementary Fig. 6d) were individually extracted with the Qiagen
401 blood kit, and PCR amplified for Sanger Sequencing reactions (Retrogen, San Diego, CA)
402 using the primer pairs Or49_diag_up_F and Or49_diag_up_R targeting the upstream and
403 primer pair Or49_diag_down_F and Or49_diag_down_R targeting the downstream insertion
404 site (Supplementary Fig. 6e). For whole DNA cassette sequencing (Primordium), 2.5kb DNA
405 fragments were amplified from the DNA of G1 individuals using the primer pair
406 Or49_diag_up_F and Or49_diag_down_R (Supplementary Fig. 6f).
407 For isolation of homozygous knockout individuals, pupae were sex sorted, and single pairs
408 were transferred into Narrow *Drosophila* Vials (Genesee Scientific, El Cajon, CA), filled
409 with 10 mL of deionized water (DI) and closed with cotton stoppers. Upon emergence, water
410 was drained, and sugar cottons were placed into the vials. Mosquitoes were allowed to mate
411 for 5 days in the vials, and then all individuals were transferred to a single cage for blood
412 feeding. Three days after blood feeding, females were individually transferred to a fresh vial
413 containing a piece of brown paper towel wetted with 1 mL DI water. Females were allowed
414 to lay eggs, and each egg batch was individually hatched in 250 mL Clear Pet Cups (9oz).
415 Larvae were screened for fluorescence, and the batches that resulted in 100% fluorescent
416 individuals were grown to adulthood and intercrossed to confirm homozygosity in the
417 following generation. Two out of thirty egg batches resulted in homozygous offspring. To
418 further confirm the homozygous status of these individuals, genomic DNA of three pools of
419 10 males, 10 females, and a mix of males and females were PCR amplified with the primer
420 pair Or49_diag_up_F and Or49_diag_down_R, which resulted in a single band for
421 homozygous individuals and two bands for heterozygous individuals (Supplementary Fig.
422 6g). Out of 739 injected embryos, 5.5% survived to the pupal stage. These G₀ individuals
423 were sex sorted and outcrossed with wildtypes. Sixteen G₁ larvae displayed blue (cyan)
424 fluorescent bodies (Supplementary Fig. 6d). Insertion of the transgenes within *Or49* was
425 confirmed in multiple G₁ individuals (Supplementary Fig. 6e–f) by sequencing of the
426 insertion sites as well as the transgene (Supplementary Fig. 6e–f) resulting in a nonfunctional
427 receptor. An *Or49*^{−/−} homozygous mosquito strain was isolated by single-pair mating,
428 screening the fluorescence marker in the offspring for 100% penetrance, and PCR
429 confirmation for the presence of homozygous mutant alleles (Supplementary Fig. 6g).
430

431 **Single-sensillum electrophysiology**

432 Single sensillum recordings from capitate peg sensilla on the maxillary palp of wild type *Ae.*
433 *aegypti* (Liverpool), *Ae. albopictus* (FPA), *Cx. quinquefasciatus* (Thai) and *An. gambiae*
434 *sensu stricto* (G3) and *Ae. aegypti* *Or49*^{−/−} mutant mosquitoes were performed using an
435 established protocol⁵². Spikes were quantified offline using the established nomenclature for
436 the sensory neurons⁵³. The number of spikes counted during a 0.5 s stimulus delivery
437 interval was subtracted from the number of spikes counted during a 0.5 s prestimulus period,
438 and the result was multiplied by 2 to obtain the activity of individual sensory neurons housed
439 in the capitate peg sensillum as a spikes/s measurement.

440 To investigate the physiological activity of the A, B and C neurons housed in single capitate
441 peg sensilla, CO₂, *R*-(−)-1-octen-3-ol and (+)-borneol were used: gas cylinders containing
442 metered amounts of CO₂ (300, 600, 1200, 2400, or 4800 ppm) and oxygen (20%), balanced
443 by nitrogen (Strandmollen AB, Ljungby, Sweden) were used to assess the activity of the A
444 neuron; serial decadic dilutions of *R*-(−)-1-octen-3-ol (CAS: 3687-48-7, Penta Manufacturing,
445 Livingston, USA), diluted in paraffin oil, were used to assess the activity of the B neuron;
446 and serial decadic dilutions of (+)-borneol (CAS: 464-43-7, Sigma-Aldrich, St. Louis, MO,
447 USA), diluted in diethyl ether (SupraSolv, Billerica, MA, USA) were used to assess the
448 activity of the C neuron. Pasteur pipettes were filled with the metered CO₂ and used
449 immediately to stimulate the preparation. A 15 µL aliquot of each dilution of *R*-(−)-1-octen-3-

450 ol and (+)-borneol was pipetted onto a filter paper (5 mm × 15 mm) inserted inside a Pasteur
451 pipette, and the diethyl ether was allowed 15 min to evaporate, before being used for stimulus
452 delivery. All stimuli were delivered into the airstream passing over the maxillary palp
453 preparation.

454

455 **Calcium imaging in the *Ae. aegypti* antennal lobe (AL)**

456 Odor-evoked responses in the *Ae. aegypti* antennal lobe (AL) were imaged using the brp-
457 QF2>QUAS-GCaMP6s progeny from the brp-QF2 and QUAS-GCaMP6s parental lines²⁴. A
458 total of eight 6-8 day-old female mosquitoes were used for all calcium experiments. Each
459 mosquito was cooled on ice and transferred to a Peltier-cooled holder that allowed the
460 mosquito head to be fixed to a custom stage using ultraviolet glue. The stage permits the
461 superfusion of saline to the head capsule and space for wing and proboscis movement^{25,54}.
462 Once the mosquito was fixed to the stage, a window in its head was cut to expose the brain,
463 and the brain was continuously superfused with physiological saline⁵⁵. Calcium-evoked
464 responses in the AL were imaged using the Prairie Ultima IV two-photon excitation
465 microscope (Prairie Technologies) and Ti-Sapphire laser (Chameleon Ultra; Coherent; at
466 1910 mW power). Experiments were performed at 75 μ m depth from the ventral surface of
467 the AL, allowing characterization of the mediodorsal glomerular responses to olfactory
468 stimuli and allowing these glomeruli to be repeatedly imaged across preparations. To record
469 odor-evoked responses, images were collected from a 110 μ m × 83 μ m plane at 2 Hz (line
470 period of 1 ms), and for each odor stimulus, images were acquired for 25 s, starting 10 s
471 before the stimulus onset. Image data were imported into Matlab (v2017; Mathworks, Natick,
472 Massachusetts) for Gaussian filtering (2×2 pixel; σ = 1.5-3) and alignment using a single
473 frame as the reference at a given imaging depth and subsequently registered to every frame to
474 within 1/4 pixel. Odor stimuli were diluted to 10⁻³ and 10⁻⁴ concentration in hexane (>99.5%
475 purity; Sigma), with hexane used as the solvent control. During an experiment, odor stimuli
476 were separated by intervals of 120 s to avoid receptor adaptation, and odor syringes were
477 used once per preparation to prevent decreased concentration within the cartridge. Calcium
478 responses are calculated as the change in fluorescence and time-stamped and synced with the
479 stimulus pulses. After an experiment, the AL was sequentially scanned at 0.5 μ m depths from
480 the ventral to the dorsal surface to provide glomerular assignment and registration between
481 preparations. Glomeruli (1 μ m³ voxel) were mapped and registered based on the positions
482 and odor-evoked responses of the putative AL3, MD1-3, and AM2 glomeruli, using available
483 AL atlases^{26,27} and the Amira software (v. 6.5, FEI Houston Inc.).

484

485 **Behavioral assay**

486 The role of borneol in human host-seeking female mosquitoes was examined with an arm-in-
487 a-cage assay (Extended Data Fig. 1a) described previously⁴⁷ with minor modifications
488 (Extended Data Fig. 1b and c) in an air-conditioned room (26±1 °C, 60±5 % RH). Briefly, the
489 experimenter's hand was presented to fifteen 5–10 days post emergence adult females. A
490 three-dimensional-printed interlocking ring with a diameter of 55 mm was used in this
491 experiment (Extended Data Fig. 1b). The ring was placed over the dorsal side of a nitrile
492 glove (powder-free latex). To evoke human odor and prevent mosquito bites, we replaced the
493 nitrile glove between the two ring components with a plastic net (Extended Data Fig. 1c).
494 The interlocking ring included a central odorant delivery platform comprising a 10-mm-
495 diameter cover glass and two 5-mm-diameter filter discs (WHA10016508; Merck) for the
496 evaluation of VOCs (stl files are provided in Extended Data Fig. 2 and 3). Plastic net, nitrile
497 glove and odorant delivery platform were replaced between repetitions to avoid
498 contaminations. Mosquitoes were placed in a 20.3-cm³ metal cage located in an experimental
499 room with a vent, under a video camera (EOS 70D, lens: MACRO 0.25/0.8ft; Canon Inc.,

500 Tokyo, Japan) and a light ring. Mosquitoes were allowed to acclimate for ten minutes before
501 recording. Mosquito behavior was recorded for 10 min at 25 frames per second. The number
502 of mosquito detection on the screen and ring were automatically counted using a custom
503 YOLOv8 model. We used the solvent diethyl ether (DEE) as a vehicle. On a blank filter disc,
504 25 μ L of DEE, and DEE with racemic borneol (1M, 3.58 mg) were deposited on the filter
505 paper and allowed to evaporate for 2 min prior to mosquito exposure outside the experimental
506 room to avoid contamination. To enhance attractiveness, at the beginning of each experiment,
507 the experimenter first rubbed the ring-mounted glove against the shirt and skin for 1 minute.
508 Additionally, the experimenter blew twice, once into the cage and once into the glove. All
509 experiments were conducted during the first 4 hours of the diurnal period and lasted 10 min.
510 This schedule was chosen for practical reasons and because mosquitoes consistently
511 exhibited attraction to the human hand. Mosquito detection was normalized to the mean
512 detection of the control ($\frac{\text{Sum of trajectories per minute}}{\text{Mean of summed trajectories for all minutes (control)}} * 100$). Statistical
513 comparisons of mosquito detections per minute were carried out with Mann Whitney U test
514 (P -value < 0.001 , $n = 3$). For data variation across time and repetitions, see Figure 6. Data
515 was analyzed using R Studio ⁵⁶.

516

517 YOLOv8 model

518 In this study, we fine-tuned the pre-trained YOLOv8m model ⁵⁷ using a customized dataset
519 comprising images from the bioassay, along with additional data from previously published
520 literature ⁵⁸, to investigate the behavioral role of borneol on mosquitoes. The training process
521 involved 250 epochs with a batch size of 10, utilizing separate sets of images and
522 corresponding annotations for training, validation, and testing (5,334, 1,498, and 1,479
523 images, respectively). To assess the model's performance, we employed the mean Average
524 Precision (mAP) metric across a range of intersection-over-union (IoU) thresholds from 50%
525 to 95% (mAP50-95). The resulting mAP50-95 value of 0.755 indicates the average precision
526 considering different IoU thresholds. Furthermore, the recall value of 0.978 indicates a high
527 proportion of true positive detections in this setup, while the precision value of 0.978 reflects
528 the accurate identification of mosquitoes. It's worth noting that detections were collected
529 with a minimum confidence threshold and IoU of 0.5 to ensure reliable results. Video
530 samples with automated detection are available in Extended Data Fig. 6. The model output
531 was processed with Python, resulting data frame with the following columns, including frame,
532 x, y, treatment and trajectory identification. Statistical comparisons of all parameters were
533 carried out with Mann Whitney U test with Benjamini-Hochberg (BH) adjustment method.
534 Data was analyzed using R Studio (Team, 2021). The behavioral data can be found in
535 (Extended Data Fig. 4). All codes can be obtained by request to the corresponding authors.
536

537

538 Figure legends

539

540 **Figure 1. Odorant receptor 49 is activated by bicyclic monoterpenoids.**

541 **a**, Borneol and camphor oils from the camphor tree *Cinnamomum camphora* originated from
542 the island of Borneo and were traded with China and the rest of the Western world through
543 the maritime silk road during the classic age due to their medicinal and repellent properties.
544 The world map is a modified illustration Vecteezy.com (free license) where blue dots indicate
545 major trading ports. **b**, The capitate peg sensillum (cp) on the 4th segment of the mosquito
546 maxillary palps houses three neurons, including the CO₂ capitate-peg neuron (cpA)
547 expressing three gustatory receptors, the 1-octen-3-ol-sensitive neuron (cpB), and the orphan
548 neuron (cpC). **c**, The response profile of *Aedes albopictus* OR49 (AalbOR49) to odorant
mixtures (100 μ M) belonging to a variety of chemical classes highlights the activity of

549 ketones. **d**, Bicyclic monoterpenoids, including camphor and fenchone are the most
550 efficacious activators of AalbOR49 (labeled in green). Statistical differences were evaluated
551 by ANOVA followed by a Kruskal-Wallis multiple comparisons test. ns, non-significant, *p
552 < 0.0332, **p < 0.0021, ***p < 0.0002 and ****p < 0.0001. Data indicate the means ± SEM.
553

554 **Figure 2. Odorant receptor 49 is a borneol receptor.**

555 **a**, Pineapple Haze (PH), OG Kush (OGK), Adom9 (A9), and Master Kush (MK) elicited the
556 highest currents from *Toxorhynchites amboinensis* OR49 (TambOR49). Borneol content is
557 indicated on the right Y-axis. A correlation between the OR49 response and the borneol
558 content in each Cannabis EO was observed ($R^2 = 0.89$). **b**, Response of TambOR49 to 6
559 *Cannabis* sub-mixtures and the constituents from sub-mixture 2. **c**, Concentration-response
560 relationships of TambOR49 and AaegOR49 to the two borneol enantiomers. **d**,
561 Concentration-response relationships of TambOR49, *Culex quinquefasciatus* OR38
562 (CquiOR38), *Ae. aegypti* OR49 (AaegOR49) and AalbOR49 in response to (+)-borneol and
563 (+)-camphor. Effective concentrations at 50% of the maximal response (EC_{50}) are circled. **e**
564 Pairwise comparisons of the current responses of all four mosquito species OR49s elicited by
565 increasing concentrations of (+)-borneol and (+)-camphor. Statistical differences were
566 evaluated by multiple t-tests. *p < 0.0332, **p < 0.0021, ***p < 0.0002 and ****p < 0.0001.
567 Data indicate the means ± SEM. Representative current traces can be found in Supplementary
568 Fig. 3.

569

570 **Figure 3. The maxillary palp of culicine mosquitoes respond to borneol and camphor.**

571 **a**, Electropalpogram (EPG) responses in *Aedes albopictus*, *Aedes aegypti*, *Culex pipiens*, and
572 *Anopheles gambiae*. EPG responses to 1-octen-3-ol (blue, 10 μ g), camphor (purple, 10 μ g),
573 and borneol (green, 10 μ g) enantiomers relative to hexane. Representative traces for each
574 odorant are shown below the x-axis. Statistical differences were evaluated via one-way
575 anova. *p < 0.05, **p < 0.01, ***p < 0.005 and ****p < 0.001. Data indicate the means ±
576 SEM, $n = 15$. **b**, Dose-response relationships of the maxillary palps of three culicine
577 mosquito species in response to increasing concentrations of (+)-borneol and (+)-camphor.
578 Representative traces are shown on the right. Statistical differences were evaluated by
579 multiple t-tests. Data indicate the means ± SEM, $n = 15$.

580

581 **Figure 4. Species-dependent response to (+)-borneol of the C neuron of the capitate peg
582 sensilla and its reliance of *Or49* in *Ae. aegypti*.**

583 **a**, A tungsten electrode was used to record action potentials (spikes) from the capitate peg
584 sensillum on the maxillary palp, which houses three neurons. The cpA neuron responds to
585 CO_2 (large spike in traces), the cpB neuron responds to 1-octen-3-ol (medium size spikes)
586 and the cpC neuron responds to borneol (small size spikes). **b-e**, The spontaneous activity of
587 the three sensory neurons in the capitate peg sensilla of *Ae. aegypti* and *Anopheles gambiae*
588 s.s.. In the top traces, note the differences in spike amplitude of the A, B (orange markers)
589 and C neurons (green markers). $R(-)$ -1-octen-3-ol and (+)-borneol elicit responses in the B
590 and C neurons of *Ae. aegypti*, respectively. The response to (+)-borneol is abolished in
591 *AaegOr49^{-/-}* mutant mosquitoes. The C neuron of *An. gambiae* s.s. does not respond to (+)-
592 borneol. **b-e**, Representative traces of the cp sensilla of *Ae. albopictus* and *Cx.*
593 *quinquefasciatus*. **f**, Species- and dose-dependent response of the C neuron to (+)-borneol
594 with mean ± s.e.m. at each concentration. The arrow and dotted line indicate the borneol dose
595 to the shown representative traces. *Ae. aegypti* ($n = 10$), *Ae. albopictus* ($n = 7$), *Cx.*
596 *quinquefasciatus* ($n = 2$), *Ae. aegypti* *Or49^{-/-}* ($n = 8$), *An. gambiae* ($n = 15$).

597

598 **Figure 5. Borneol elicits robust responses in the *Ae. aegypti* AL.**

599 **a**, Schematic of the two-photon setup used to record calcium dynamics in the mosquito
600 antennal lobe (AL). **b**, AL atlas, highlighting the MD1 (blue), MD2 (orange), and MD3
601 (green) glomeruli. Non-responsive AL glomeruli (grey) and the mediodorsal glomeruli were
602 registered and mapped to previously published atlases. **c**, Pseudo color plot from a single
603 preparation of $\Delta F/F_0$ calcium responses (0-0.8 scale) to (+)-borneol (10^{-4} dilution), at a depth
604 of 75 μm from the surface of the AL. Borneol evoked a strong response in the region of
605 interest mapped to the MD3 glomerulus (highlighted in white). **d**, Glomerular responses
606 ($\Delta F/F_0$) to (+)-borneol for the MD1, MD2, and MD3 glomeruli. Lines are the mean of one
607 glomerulus ($n = 4-8$ preparations); shaded areas are the SEM. The grey bar denotes stimulus
608 duration (2 s). **e**, Same as in D, except the glomeruli were stimulated with 1-octen-3-ol (10^{-4}
609 dilution). **f**, Same as in D, except the glomeruli were stimulated with CO_2 (5%). **g**, Tuning
610 curve for the MD3 glomerulus to a limited panel of 8 odorants, each tested at 10^{-4}
611 concentration. The MD3 glomerulus (bars in green) showed significant calcium responses to
612 enantiomers of borneol and camphor compared to the solvent control (Kruskal-Wallis test: χ^2
613 = 37.1, $P < 0.0001$; posthoc multiple comparisons: $p < 0.05$). Bars represent the mean \pm
614 SEM.

615

616 **Figure 6. Borneol inhibits host-seeking female *Ae. aegypti* (Liverpool) behavior.**

617 **a**, The average number of females trajectoreis detection per minute (normalized to the control
618 group) in the ROI in response to control (DEE) and treatment (DEE + racemic borneol). **b**,
619 Schematics of all trajectories across treatment and repetitions ($n=3$). **c**, Average trajectories
620 over time (min). **d**, Sum of trajectory durations (seconds) within the ROI over time (minutes).
621 **e**, Total distance traveled per minute in the ROI. All comparisons were conducted with 30
622 data points for each treatment and tested with a Mann-Whitney U test (p -value < 0.001 , $n =$
623 3). **f**, Schematics of all detections as a function of time.

624

625 **Supplementary information**

626 **Supplementary Figure 1. The phylogenetically-conserved gene encoding OR49.**

627 **a**, Amino-acid sequence alignment of OR49 homologs in *Culex quinquefasciatus* (Cqui),
628 *Aedes albopictus* (Aalb), *Aedes aegypti* (Aaeg), *Toxorhynchites amboinensis* (Tamb), and
629 *Anopheles gambiae* (Agam). The top chart presents the amino-acid consensus. High
630 consensus marked in green to yellow, low consensus are in red. **b**, Amino-acid sequence
631 identity matrix. Intensity of shading indicates percentage of homologies. **c**, Phylogenetic tree
632 of mosquito OR49 proteins (green). Closest brachyceran homologs (red branches) include
633 *Glossina fuscipes* (Gfuc) and *Drosophila melanogaster* (Dmel). Bootstrap support above
634 50% are shown. Gene exon structure of OR49 genes and other phylogenetically-related
635 genes. **d**, Exon composition of the OR49 group and related homologs. Exons are labeled in
636 white and black. The nucleotide positions of exon-exon boundaries are shown and intron
637 phases are color-coded. **e**, Chromosomal locations of Or49 homolog genes (green) and
638 indoleric ORs (indolORs, in red). **f**, Syntenic relationships of OR49 genes in mosquito
639 species and gene structure of OR49 genes.

640

641 **Supplementary Figure 2. List of volatile organic compounds present in *Cannabis***
642 **essential oils.**

643 Each Cannabis blend represented by a distinct color is composed of VOCs belonging mainly
644 to different terpene categories but also to non-terpene chemical classes.

645

646 **Supplementary Figure 3. Representative current traces of oocytes expressing mosquito**
647 **OR49 proteins.**

648 **a**, Representative traces of TambOR49+TambOrco injected oocytes vs monoterpenoid blends
649 and compounds. Pineapple Haze (PH), Adom #9 (A9), O.G Kush (OGK), Master Kush (MK)
650 and Jack Herrer (JH) triggered a measurable response. (\pm)-camphor, (+)-camphor, (+)-
651 fenchone and eucalyptol were used as positive controls at concentration of 0.1 mM, all
652 *Cannabis* essential oils were diluted by a factor of 1.5×10^5 . **b**, Representative trace of
653 TambOR49+TambOrco vs sub-mixtures No. 1 through 6, which were formulated based on
654 overlapping active compounds from *Cannabis* essential oils. All sub-mixtures were diluted
655 by a factor of 1.5×10^6 . Only sub-mixture No.2 activated TambOR49+TambOrco. (+)-
656 Camphor was used as positive control at concentration of 0.1 mM. **c**, Representative trace of
657 TambOR49+TambOrco vs the components of sub-mixture No. 2. (\pm)-Borneol elicited
658 currents 8-fold larger than the other tested single monoterpenoids. All compounds were tested
659 at concentration of 0.1 mM. **d**, Representative traces of TambOR49+TambOrco
660 concentration response curves (CRCs). Top left TambOR49+TambOrco vs (-)-borneol, Top
661 right TambOR49+TambOrco vs (+)-borneol and bottom left TambOR49+TambOrco vs (+)-
662 camphor. **e**, Representative traces of AaegOR49 CRC's. Left AaegOR49 vs (-)-Borneol;
663 right, AaegOR49 vs (+)-Borneol. **f**, Representative traces of CquiOR38+CquiOrco CRCs in
664 response to increasing concentrations of (+)-camphor (left) and (+)-borneol (right). **g**,
665 Representative traces of AaegOR49+Orco CRCs in response to increasing concentrations of
666 (+)-camphor (left) and (+)-borneol (right). **h**, Representative traces of AalbOR49+AalbOrco
667 CRCs in response to increasing concentrations of (+)-camphor (left) and (+)-borneol (right).
668 **i**, Representative traces of pairwise current comparisons between (+)-camphor and (+)-
669 borneol. From top to bottom, TambOR49+TambOrco, CquiOR38+CquiOrco,
670 AaegOR49+AaegOrco and AalbOR49+AalbOrco. Down arrows indicate odorant
671 administrations and concentrations. All concentrations are in micromolar [μ M].
672

673 **Supplementary Figure 4. VOC content in *Cannabis* essential oils.**

674 **Supplementary Figure 5. *Anopheles gambiae* OR28 (AgamOR28) does not respond to 675 borneol.**

676 **a**, Concentration-response of AgamOR28 in response to increasing concentrations of four
677 plant volatile organic compounds, including aromatic (acetophenone and α -terpineol) and
678 terpenoid compounds (α -pinene and (+)-borneol). EC₅₀ values shown in the inset are in the
679 low millimolar range. **b**, Representative current traces of AgamOR28-Orco activation by 4
680 plant volatile organic compounds. Arrowheads above the traces indicate the onset of the
681 odorant stimulus.
682

683 **Supplementary Figure 6. Construction of *Ae. aegypti* *Or49* knockout line.**

684 **a**, Diagram depicting the *Ae. aegypti* *Or49* gene and the gRNA target sites on the top and the
685 insertion cassette on the bottom flanked by the upstream (Left) and downstream (Right)
686 homology arms. The insertion cassette encompasses the *QF2* sequence and the 3' UTR of the
687 *HSP70* gene along with the *ECFP* gene under the control of the *Opie2* promoter and the 3'
688 UTR of the *SV40* gene. Arrows indicate primer binding sites. Primers P1-12 are listed
689 in Table S4. **b**, Plasmid V1117F-Or49 map. **c**, *In vitro* Cas9 cleavage assay. Guide RNAs left
690 and right targeting the *Or49* gene almost completely digested PCR fragment containing target
691 sequence. (-) negative controls without guide RNAs show no PCR fragment digestion. **d**,
692 Sanger sequencing of amplified PCR fragments of G1 transgenic male individuals unveiling
693 the sequences overlapping upstream (left) and downstream (right) of the DNA cassette
694 inserted by homology directed repair. **e**, Sequencing of G1 individuals showing the complete
695 insertion of the DNA cassette containing *QF2* and *ECFP*. The presence of a single point
696 mutation was confirmed as an artifact and excluded by Sanger sequencing. **f**, Diagnostic PCR
697

698 reactions showing the presence of double bands in single G1 heterozygous individuals and
699 single upper band in pools of 10 individuals of the *OR49^{-/-}* homozygous line.
700

701 **Supplementary Figure 7. The lowest borneol detection threshold of the maxillary palp is**
702 **0.1 µg.**

703 Bar plot of the maxillary palp responses to vehicle and increasing doses of borneol. Raw data
704 are shown in the adjacent table. Statistical differences were evaluated via one-way anova.
705 ***p < 0.005 and ****p < 0.001. Data indicate the means ± SEM, n = 15-27.
706

707 **Table S1. List of blends and single compounds used in the pharmacological screen.**

708 **Table S2. List of *Or* genes.**

709 **Table S3. Raw pharmacological data.**

710 **Table S4. Primer list (*Or49* knockout).**

711 **Extended data figures and tables**

712 **Extended Data Fig. 1 Diagrams of the odor delivery system.**

713 The odor delivery system is composed of interlocking top and bottom rings attached to a
714 removable chemical holder (overview, top, bottom and side views are provided). Dimensions
715 are provided in millimeters.
716

717 **Extended Data Fig. 2 Hand rings.stl.**

718 File format for 3D-printing of the two complementary hand rings.
719

720 **Extended Data Fig. 3 Chemical holder.stl.**

721 File format for 3D-printing of the chemical holder component.
722

723 **Extended Data Fig. 4 Behavioral data.**

724 CSV file of collected mosquito visits on the ROI.
725

726 **Extended Data Fig. 5 Video recording example of the of the female *Ae. aegypti* antennal
727 lobe.**

728 **Extended Data Fig. 6 Video recording example of the arm-in-a-cage assay.**

729 Thirty-second-long recording example at the 4-minute mark of mosquito landing behavior in
730 the presence of the vehicle diethyl ether (DEE) and racemic borneol.
731

732 **Acknowledgments**

733 This study was supported by ISF 997/19 awarded to A.W., ISF 719/21 awarded to J.B., NIH
734 RO1AI175152 and NSF IOS-2242604 awarded to O.S.A., NIH R01AI148300 awarded to
735 J.A.R, O.S.A., and R.J.P. J.A.R was funded by the Bill and Melinda Gates Foundation (INV-
736 021766). Science and Technology Development Plan Project of Jilin Province, China
737 (20200402001NC) awarded to Y.W. This research was supported by the Ministry of Science
738 & Technology, Israel to P.A.P. (grant numbers 3-16795 and 3-17985). We thank Ziv Kassner
739 for consultation, processing, analysis guidance, and technical support in the creation of the
740 mosquito detection model. We are especially grateful to Nadav Eyal at Eybna Terpene Based
741 Technologies for their time and supply of *Cannabis* essential oils. We are grateful to Dr. Laor
742 Orshan (Ministry of Health, Israel) for providing a colony of *Culex pipiens*. Special thanks to
743

748 Dr. Osnat Malka for productive discussions. Drs. Pitts and Bohbot are co-corresponding
749 authors.

750

751 **Contributions**

752 RJP initiated the functional characterization of OR49. JB conceived the study. YV identified
753 borneol as a key OR49 ligand. YW conducted mosquito electropalpograms. RMH identified
754 camphor as an OR49 agonist. OSA and IVC-A engineered the *Ae. aegypti* *Or49* knockout
755 strain. MG and RI designed and conducted the single sensillum recordings. ESS conducted
756 the behavioral experiments, created the YOLOv8 model and analyzed the data. DP and PP
757 conducted gene annotations, phylogenetic analyses and described OR49 syntenic
758 relationships. DR completed the *Toxorhynchites amboinensis* OR genomic PCRs and
759 sequencing. EY provided genetic constructs and injectable mRNA. AW provided funding and
760 scientific oversight. JB wrote the manuscript with individual contributions from all the
761 authors.

762

763 **Corresponding authors**

764 Correspondence to Jonathan D. Bohbot or Ronald J. Pitts.

765

766 **Ethics declarations**

767 Competing interests

768 The authors declare no competing interests.

769

770 **References**

- 771 1. Wadley, L. *et al.* Middle Stone Age Bedding Construction and Settlement Patterns at
772 Sibudu, South Africa. *Science* **334**, 1388–1391 (2011).
- 773 2. Pålsson, K. & Jaenson, T. G. T. Plant products used as mosquito repellents in Guinea
774 Bissau, West Africa. *Acta Trop* **72**, 39–52 (1999).
- 775 3. Maia, M. F. & Moore, S. J. Plant-based insect repellents: a review of their efficacy,
776 development and testing. *Malaria journal* **10 Suppl 1**, S11 (2011).
- 777 4. Moore, S. J. & Debboun, M. History of Insect Repellents. in *Insect Repellents: Principles,
778 Methods, and Uses* (eds. Debboun, M., Frances, S. P. & Strickman, D.) vol. 1 (CRC Press,
779 2007).
- 780 5. Kongkaew, C., Sakunrag, I., Chaiyakunapruk, N. & Tawatsin, A. Effectiveness of
781 citronella preparations in preventing mosquito bites: systematic review of controlled
782 laboratory experimental studies. *Trop. Med. Int. Heal.* **16**, 802–810 (2011).
- 783 6. Zhu, J. J. *et al.* Better than DEET Repellent Compounds Derived from Coconut Oil. *Sci.
784 Rep.* **8**, 14053 (2018).
- 785 7. Liu, F. *et al.* A dual-target molecular mechanism of pyrethrum repellency against
786 mosquitoes. *Nat Commun* **12**, 2553 (2021).
- 787 8. Iovinella, I., Pelosi, P. & Conti, B. A rationale to design longer lasting mosquito repellents.
788 *Parasitology research* **113**, 1813–1820 (2014).

789 9. Poudel, D. K. *et al.* The Chemical Profiling of Essential Oils from Different Tissues of
790 *Cinnamomum camphora* L. and Their Antimicrobial Activities. *Molecules* **26**, 5132 (2021).

791 10. Mei, Y. *et al.* The history, stereochemistry, ethnopharmacology and quality assessment of
792 borneol. *J Ethnopharmacol* **300**, 115697 (2023).

793 11. Erdelyan, C., Mahood, T., Bader, T. & Whyard, S. Functional validation of the carbon
794 dioxide receptor genes in *Aedes aegypti* mosquitoes using RNA interference. *Insect*
795 *molecular biology* **21**, 119–127 (2012).

796 12. McMeniman, C. J., Corfas, R. A., Matthews, B. J., Ritchie, S. A. & Vosshall, L. B.
797 Multimodal integration of carbon dioxide and other sensory cues drives mosquito attraction
798 to humans. *Cell* **156**, 1060–1071 (2014).

799 13. Lu, T. *et al.* Odor coding in the maxillary palp of the malaria vector mosquito *Anopheles*
800 *gambiae*. *Current biology* **17**, 1533–1544 (2007).

801 14. Grant, A. J. & Dickens, J. C. Functional characterization of the octenol receptor neuron
802 on the maxillary palps of the yellow fever mosquito, *Aedes aegypti*. *PLoS ONE* **6**, e21785
803 (2011).

804 15. Grant, A. J. & O'Connell, R. J. Electrophysiological responses from receptor neurons in
805 mosquito maxillary palp sensilla. in (ed. Block, E.) vol. 200 233-48-discussion 248-53-281–4
806 (John Wiley & Sons, Ltd., 1996).

807 16. Takken, W. & Kline, D. L. Carbon dioxide and 1-octen-3-ol as mosquito attractants.
808 *Journal of the American Mosquito Control Association* **5**, 311–316 (1989).

809 17. Gillies, M. T. The role of carbon dioxide in host-finding by mosquitoes (Diptera:
810 Culicidae): a review. *Bull Entomol Res* **70**, 525–532 (1980).

811 18. Wang, G., Carey, A. F., Carlson, J. R. & Zwiebel, L. J. Molecular basis of odor coding in
812 the malaria vector mosquito *Anopheles gambiae*. *PNAS* **107**, (2010).

813 19. Bohbot, J. *et al.* Molecular characterization of the *Aedes aegypti* odorant receptor gene
814 family. *Insect molecular biology* **16**, 525–537 (2007).

815 20. Matthews, B. J. *et al.* Improved reference genome of *Aedes aegypti* informs arbovirus
816 vector control. *Nature* **563**, 501–507 (2018).

817 21. Bohbot, J. D. & Dickens, J. C. Characterization of an enantioselective odorant receptor in
818 the yellow fever mosquito *Aedes aegypti*. *PLoS ONE* **4**, e7032 (2009).

819 22. Majeed, S., Hill, S. R., Dekker, T. & Ignell, R. Detection and perception of generic host
820 volatiles by mosquitoes: responses to CO₂ constrains host-seeking behaviour. *Royal Society*
821 *open science* **4**, 170189 (2017).

822 23. Majeed, S., Hill, S. R., Birgersson, G. & Ignell, R. Detection and perception of generic
823 host volatiles by mosquitoes modulate host preference: context dependence of (R)-1-octen-3-
824 ol. *Royal Society open science* **3**, 160467 (2016).

825 24. Zhao, Z. *et al.* Mosquito brains encode unique features of human odour to drive host
826 seeking. *Nature* 1–7 (2022) doi:10.1038/s41586-022-04675-4.

827 25. Lahondère, C. *et al.* The olfactory basis of orchid pollination by mosquitoes. *Proceedings*
828 *of the National Academy of Sciences USA* (2019) doi:10.1073/pnas.1910589117.

829 26. Shankar, S. & McMeniman, C. J. An updated antennal lobe atlas for the yellow fever
830 mosquito *Aedes aegypti*. *Plos Neglect Trop D* **14**, e0008729 (2020).

831 27. Wolff, G. H., Lahondère, C., Vinauger, C., Rylance, E. & Riffell, J. A. Neuromodulation
832 and differential learning across mosquito species. *Proc. R. Soc. B* **290**, 20222118 (2023).

833 28. Anton, S., Loon, J. van, Meijerink, J. & Smid, H. Central projections of olfactory receptor
834 neurons from single antennal and palpal sensilla in mosquitoes. *Arthropod Structure &*
835 *Development* **32**, 319–327 (2003).

836 29. Jocher, G. *et al.* ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance
837 Segmentation. (2022) doi:10.5281/zenodo.7347926.

838 30. Cloyd, R. A., Marley, K. A., Larson, R. A., Dickinson, A. & Arieli, B. Repellency of
839 Naturally Occurring Volatile Alcohols to Fungus Gnat *Bradysia* sp. nr. *coprophila* (Diptera:
840 Sciaridae) Adults Under Laboratory Conditions. *J Econ Entomol* **104**, 1633–1639 (2011).

841 31. Liang, Y. *et al.* Evaluation of Repellency of Some Chinese Medicinal Herbs Essential
842 Oils Against *Liposcelis bostrychophila* (Psocoptera: Liposcelidae) and *Tribolium castaneum*
843 (Coleoptera: Tenebrionidae). *J Econ Entomol* **106**, 513–519 (2013).

844 32. Zhang, N. *et al.* Insecticidal, Fumigant, and Repellent Activities of Sweet Wormwood Oil
845 and Its Individual Components Against Red Imported Fire Ant Workers (Hymenoptera:
846 Formicidae). *J Insect Sci* **14**, 241 (2014).

847 33. Wood, M. J., Bull, J. C., Kanagachandran, K. & Butt, T. M. Development and laboratory
848 validation of a plant-derived repellent blend, effective against *Aedes aegypti* [Diptera:
849 Culicidae], *Anopheles gambiae* [Diptera: Culicidae] and *Culex quinquefasciatus* [Diptera:
850 Culicidae]. *PLOS ONE* **19**, e0299144 (2024).

851 34. Hill, C. A. *et al.* G protein-coupled receptors in *Anopheles gambiae*. *Science (New York,*
852 *NY*) **298**, 176–178 (2002).

853 35. Carey, A. F., Wang, G., Su, C.-Y., Zwiebel, L. J. & Carlson, J. R. Odorant reception in
854 the malaria mosquito *Anopheles gambiae*. *Nature* **464**, 66–71 (2010).

855 36. Bohbot, J. D. & Pitts, R. J. The narrowing olfactory landscape of insect odorant receptors.
856 *Frontiers in Ecology and Evolution* **3**, 39 (2015).

857 37. Hwang, Y.-S., Wu, K.-H., Kumamoto, J., Axelrod, H. & Mulla, M. S. Isolation and
858 identification of mosquito repellents in *Artemisia vulgaris*. *J Chem Ecol* **11**, 1297–1306
859 (1985).

860 38. Pitarokili, D., Michaelakis, A., Koliopoulos, G., Giatropoulos, A. & Tzakou, O. Chemical
861 composition, larvicidal evaluation, and adult repellency of endemic Greek Thymus essential
862 oils against the mosquito vector of West Nile virus. *Parasitol Res* **109**, 425–430 (2011).

863 39. Waliwitiya, R., Kennedy, C. J. & Lowenberger, C. A. Larvicidal and
864 oviposition-altering activity of monoterpenoids, trans-anethole and rosemary oil to the
865 yellow fever mosquito *Aedes aegypti* (Diptera: Culicidae). *Pest Manag Sci* **65**, 241–248
866 (2009).

867 40. Picollo, M. I., Toloza, A. C., Cueto, G. M., Zygadlo, J. & Zerba, E. Anticholinesterase
868 and pediculicidal activities of monoterpenoids. *Fitoterapia* **79**, 271–278 (2008).

869 41. Abdelgaleil, S. A. M., Mohamed, M. I. E., Badawy, M. E. I. & El-arami, S. A. A.
870 Fumigant and Contact Toxicities of Monoterpenes to *Sitophilus oryzae* (L.) and *Tribolium*
871 *castaneum* (Herbst) and their Inhibitory Effects on Acetylcholinesterase Activity. *J. Chem.*
872 *Ecol.* **35**, 518–525 (2009).

873 42. Rajkumar, S. & Jebanesan, A. Chemical composition and larvicidal activity of leaf
874 essential oil from *Clausena dentata* (Willd) M. Roam. (Rutaceae) against the chikungunya
875 vector, *Aedes aegypti* Linn. (Diptera: Culicidae). *J Asia-pac Entomol* **13**, 107–109 (2010).

876 43. Afify, A. & Galizia, C. G. Gravid females of the mosquito *Aedes aegypti* avoid
877 oviposition on m-cresol in the presence of the deterrent isomer p-cresol. *Parasite Vector* **7**,
878 315 (2014).

879 44. Raj, G. A., Chandrasekaran, M., Krishnamoorthy, S., Jayaraman, M. & Venkatesalu, V.
880 Phytochemical profile and larvicidal properties of seed essential oil from *Nigella sativa* L.
881 (Ranunculaceae), against *Aedes aegypti*, *Anopheles stephensi*, and *Culex quinquefasciatus*
882 (Diptera: Culicidae). *Parasitol Res* **114**, 3385–3391 (2015).

883 45. Nunes, R. K. V. *et al.* Evaluation of (–)-borneol derivatives against the Zika vector,
884 *Aedes aegypti* and a non-target species, *Artemia* sp. *Environ Sci Pollut R* **25**, 31165–31174
885 (2018).

886 46. Ng, R., Wu, S. & Su, C. Neuronal Compartmentalization: A Means to Integrate Sensory
887 Input at the Earliest Stage of Information Processing? *Bioessays* **42**, e2000026 (2020).

888 47. Dekel, A., Sar-Shalom, E., Vainer, Y., Yakir, E. & Bohbot, J. D. The oviposition cue
889 indole inhibits animal host attraction in *Aedes aegypti* (Diptera: Culicidae) mosquitoes.
890 *Parasite Vector* **15**, 422 (2022).

891 48. Zhou, X., Rinker, D. C., Pitts, R. J., Rokas, A. & Zwiebel, L. J. Divergent and conserved
892 elements comprise the chemoreceptive repertoire of the non-blood feeding mosquito
893 *Toxorhynchites amboinensis*. *Genome biology and evolution* **6**, 2883–2896 (2014).

894 49. Dekel, A., Pitts, R. J., Yakir, E. & Bohbot, J. D. Evolutionarily conserved odorant
895 receptor function questions ecological context of octenol role in mosquitoes. *Scientific*
896 *reports* **6**, 37330 (2016).

897 50. Huff, R. M. & Pitts, R. J. Carboxylic acid responses by a conserved odorant receptor in
898 culicine vector mosquitoes. *Insect Mol Biol* **29**, 523–530 (2020).

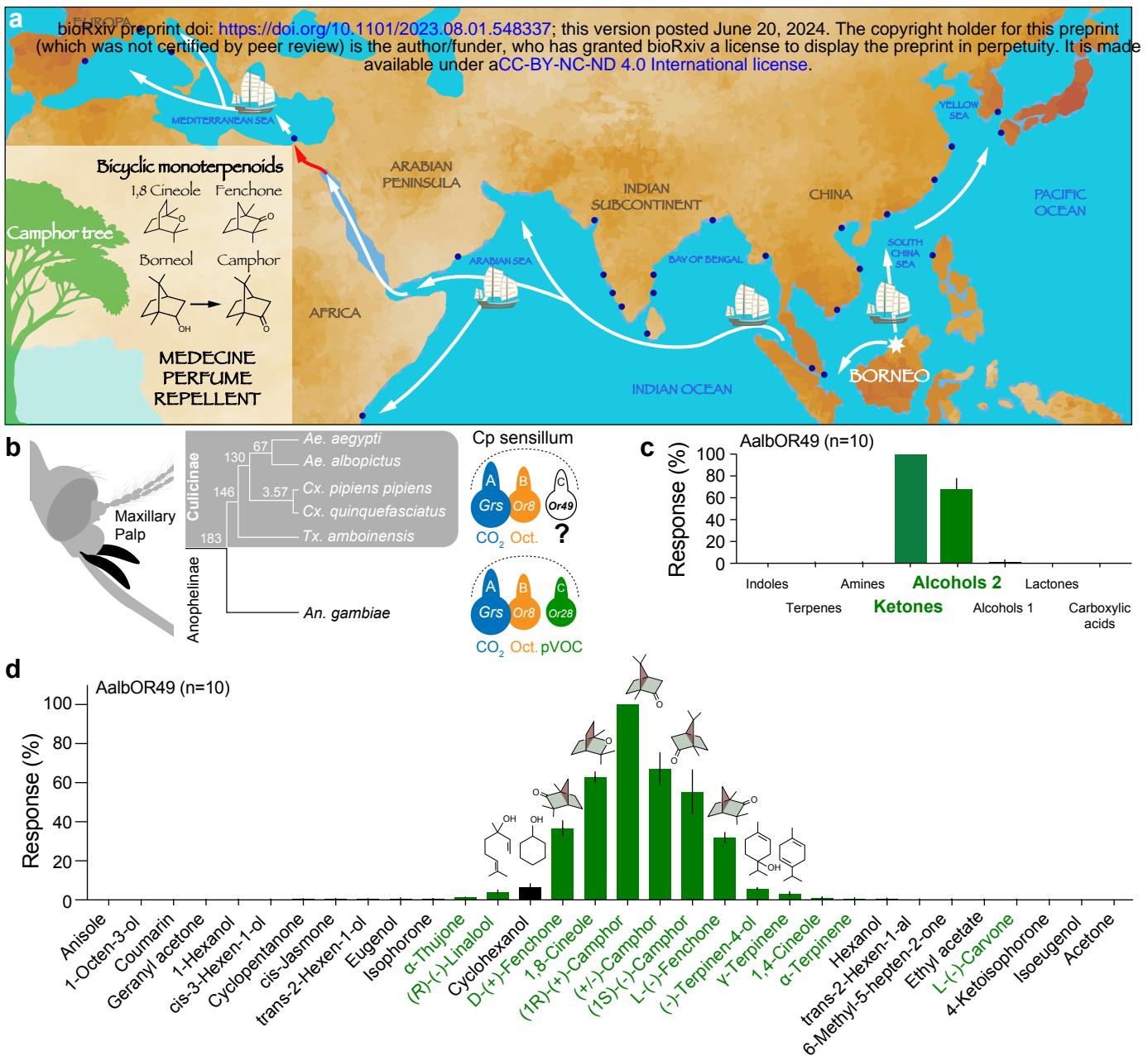
899 51. Wang, Y. *et al.* Molecular basis of peripheral olfactory sensing during oviposition in the
900 behavior of the parasitic wasp *Anastatus japonicus*. *Insect Biochem. Mol. Biol.* **89**, 58–70
901 (2017).

902 52. Herre, M. *et al.* Non-canonical odor coding in the mosquito. *Cell* **185**, 3104-3123.e28
903 (2022).

904 53. Ghaninia, M., Majeed, S., Dekker, T., Hill, S. R. & Ignell, R. Hold your breath –
905 Differential behavioral and sensory acuity of mosquitoes to acetone and carbon dioxide. *Plos
906 One* **14**, e0226815 (2019).

907 54. Melo, N. *et al.* Geosmin attracts *Aedes aegypti* mosquitoes to oviposition sites. *Current
908 Biology* **30**, 1–8 (2020).

909 55. Vinauger, C. *et al.* Visual-Olfactory Integration in the Human Disease Vector Mosquito
910 *Aedes aegypti*. *Current biology* **29**, 2509-2516.e5 (2019).


911 56. Team, R. C. *R: A Language and Environment for Statistical Computing*. (R Foundation
912 for Statistical Computing, Vienna, Austria, 2021).

913 57. Jocher, G., Chaurasia, A. & Qiu, J. YOLO by Ultralytics (Version 8.0. 0)[Computer
914 software]. (2023).

915 58. Janson, K. D. *et al.* Development of an automated biomaterial platform to study mosquito
916 feeding behavior. *Frontiers Bioeng Biotechnology* **11**, 1103748 (2023).

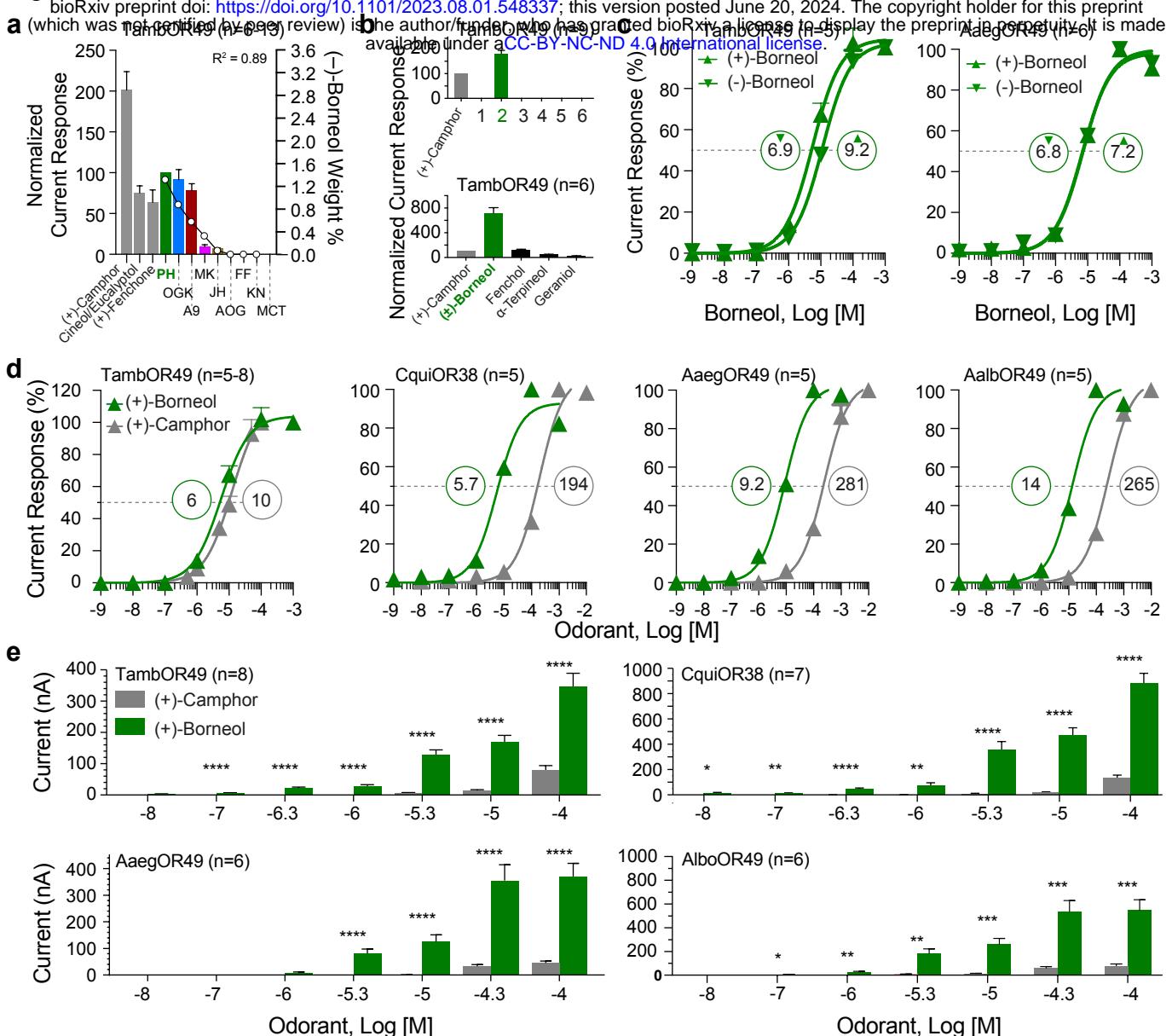
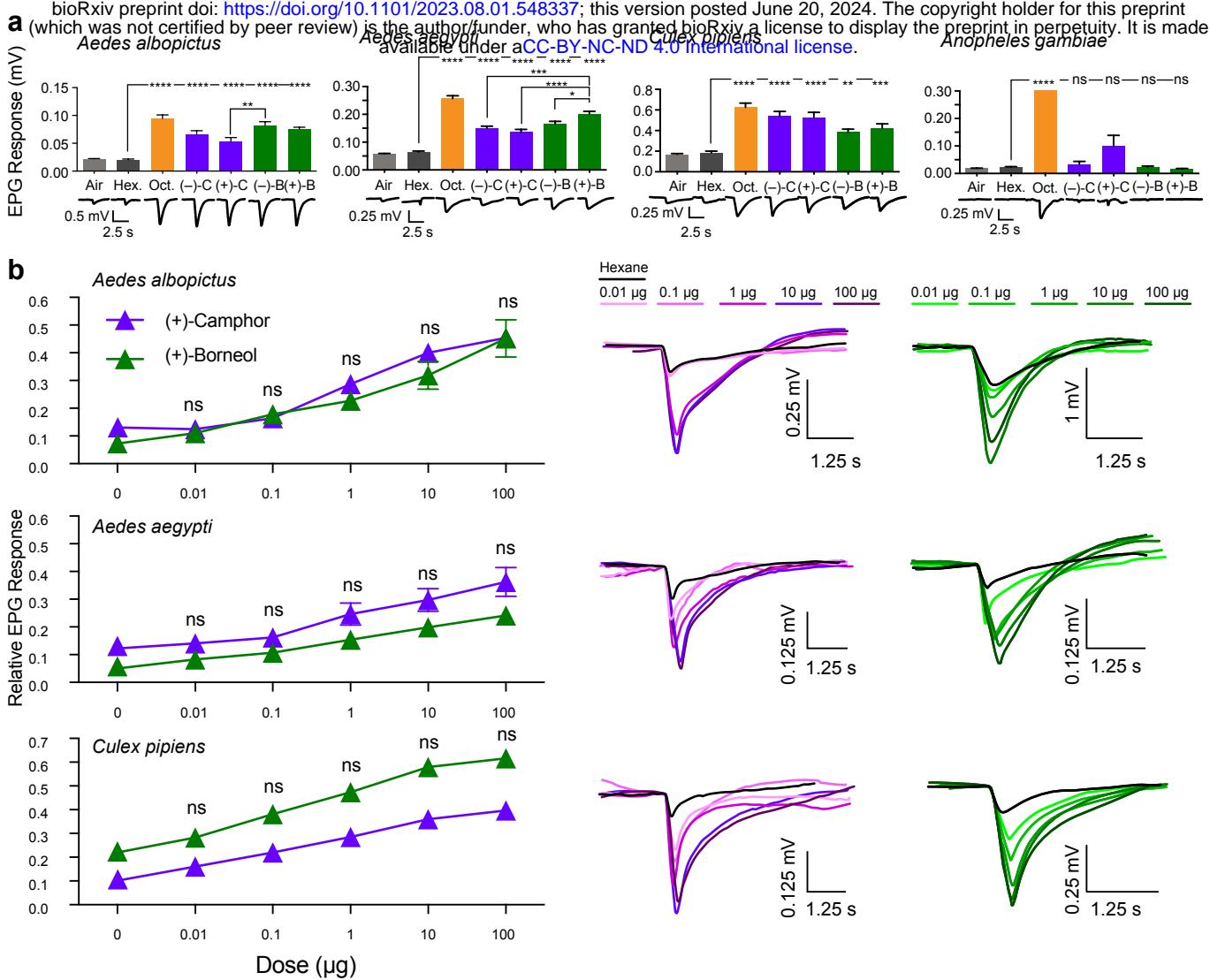

917

Figure 1


Figure 2

bioRxiv preprint doi: <https://doi.org/10.1101/2023.08.01.548337>; this version posted June 20, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Figure 3

bioRxiv preprint doi: <https://doi.org/10.1101/2023.08.01.548337>; this version posted June 20, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Figure 5

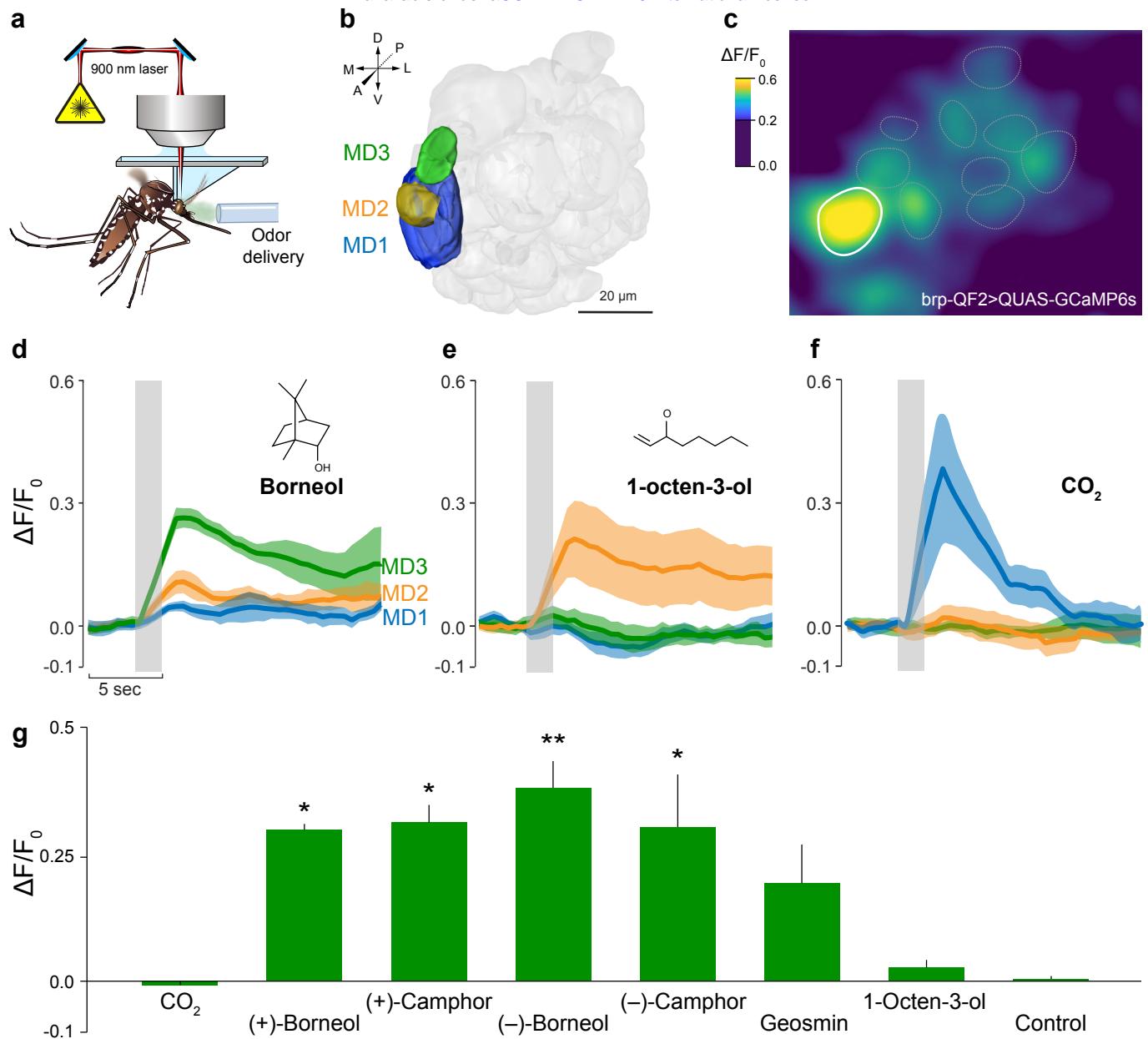
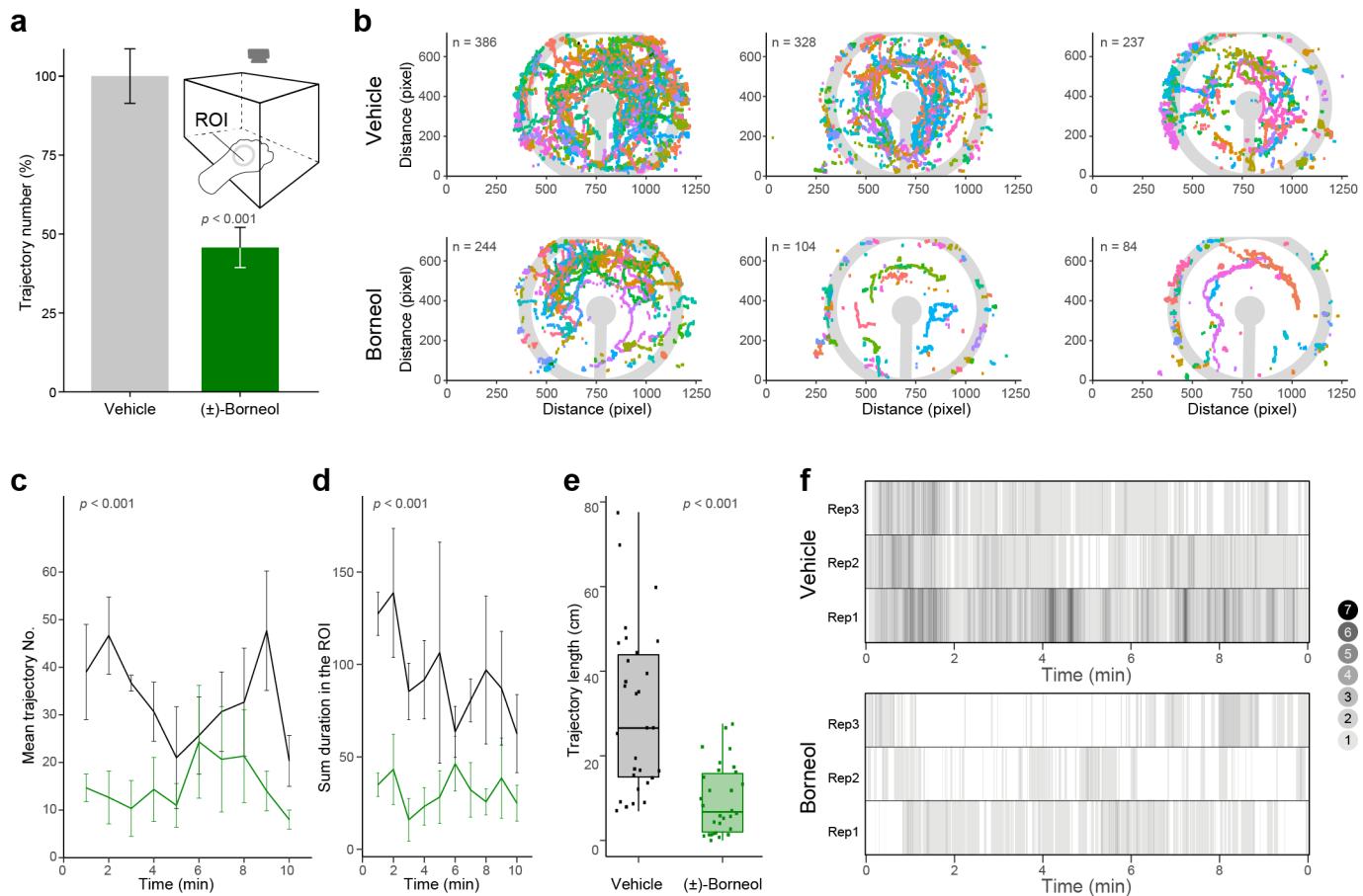



Figure 6

