

Liu et al

DRP1 receptor binding Fatty acyl-CoA

1 Long-chain fatty acyl-coenzyme A activates the mitochondrial fission factors MiD49
2 and MiD51 by inducing their oligomerization

3
4
5
6

7 Ao Liu^{1,3}, Frieda Kage^{1,3}, Gracie Sapp², Halil Aydin² & Henry N. Higgs^{1*}

8

9 ¹Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth
10 College, Hanover NH 03755, USA

11

12 ²Department of Biochemistry, University of Colorado Boulder, Boulder CO 80309, USA

13

14 ³These authors contributed equally to this work

15

16 *Corresponding author. henry.higgs@dartmouth.edu

17

18 **Abstract**

19 Mitochondrial fission occurs in many cellular processes, but the regulation of fission is
20 poorly understood. We show that long-chain acyl coenzyme A (LCACA) activates two
21 related mitochondrial fission proteins, MiD49 and MiD51, by inducing their
22 oligomerization, activating their ability to stimulate DRP1 GTPase activity. The 1:1
23 stoichiometry of LCACA:MiD in the oligomer suggests interaction in the previously
24 identified nucleotide-binding pocket, and a point mutation in this pocket reduces
25 LCACA binding and LCACA-induced oligomerization for MiD51. In cells, this LCACA
26 binding mutant does not assemble into puncta on mitochondria or rescue MiD49/51
27 knock-down effects on mitochondrial length and DRP1 recruitment. Furthermore,
28 cellular treatment with the fatty acid analogue 2-bromopalmitate, which causes
29 increased acyl-CoA, promotes mitochondrial fission in an MiD49/51-dependent manner.
30 These results suggest that LCACA is an endogenous ligand for MiDs, inducing
31 mitochondrial fission and providing a potential mechanism for fatty acid-induced
32 mitochondrial fragmentation. Finally, MiD49 or MiD51 oligomers synergize with MFF,
33 but not with actin filaments, in DRP1 activation, suggesting distinct pathways for DRP1
34 activation.

35 **Introduction**

36 Mitochondrial fission is a key cellular process, with defects in fission being linked to
37 multiple human diseases¹. The reasons for which mitochondria undergo fission vary
38 considerably, including for distribution to daughter cells during cell division,
39 distribution to remote areas of polarized cells, and in response to changing metabolic
40 conditions^{2,3}. In addition, mitochondrial fission is an important step in mitophagy of
41 damaged mitochondrial segments, and defects in fission result in decreased overall
42 mitochondrial health⁴. Finally, mitochondrial fission proteins participate in the
43 production of mitochondrially-derived vesicles⁵, an additional mechanism for removal
44 of dysfunctional mitochondrial components.

45

46 A key protein in mitochondrial fission is the membrane-remodeling GTPase DRP1, which
47 is recruited from the cytoplasm to the outer mitochondrial membrane (OMM), where it
48 oligomerizes into a ring structure around the mitochondrion². Oligomerization activates
49 DRP1's GTPase activity by bringing the GTPase domains in close proximity⁶⁻⁸. GTP
50 hydrolysis by the DRP1 oligomer results in constriction of the oligomer, driving the
51 fission process.

52

53 Given the variety of cellular situations requiring mitochondrial fission, it is likely that
54 there are multiple mechanisms for regulating the process. One potential step for
55 differential control of mitochondrial fission is in DRP1 recruitment to the OMM. In
56 mammals, three DRP1 receptors have been identified: mitochondrial fission factor
57 (MFF), and two related proteins: mitochondrial dynamics proteins of 49 and 51 kDa
58 (MiD49 and MiD51, also called MIEF2 and MIEF1 respectively)². All three proteins are
59 widely expressed in mammalian cells. However, it is unclear to what extent these
60 receptors function together versus independently. Knock-down or knock-out of MFF
61 alone causes dramatic mitochondrial elongation in many metazoan cell types tested⁹⁻¹³
62 with one exception¹⁴, suggesting that it might play a role in many forms of mitochondrial
63 fission. Knock-down or knock-out of MiD49 and MiD51 also causes mitochondrial
64 elongation, although the effect is more variable between studies and there are differing
65 reports of the redundancy between MiD49 and 51^{11,13-16}.

66

67 These findings suggest that MiD49 and MiD51 might play roles in a sub-set of
68 mitochondrial fission events. Three other properties of MiD49/51 suggest that they act
69 in a context-specific manner. First, while depletion of MiD49/51 results in mitochondrial
70 elongation, over-expression of either protein has the same effect^{11,15-17}. Over-expressed
71 MiD49/51 also causes extensive DRP1 recruitment to mitochondria^{11,15-17}, suggesting
72 that unregulated MiD-mediated DRP1 recruitment is detrimental to its controlled
73 assembly during fission. Second, MiD49/51 expressed at low levels appear punctate on
74 mitochondria, suggesting oligomerization^{13,17,18}. In contrast, the purified cytoplasmic

75 regions of either MiD49 or MiD51 behave as monomers or dimers^{19,20}, suggesting that this
76 oligomerization is regulated.

77

78 A third property of both MiD49 and MiD51 is that their purified cytoplasmic regions do
79 not stimulate DRP1 GTPase activity biochemically^{19,21}, in contrast to MFF²²⁻²⁴. These
80 findings suggest that the MiD proteins themselves require activation in order to activate
81 DRP1. The structures of both proteins reveal large putative ligand-binding cavities (Fig.
82 1a). MiD51 is capable of binding purine nucleotide diphosphate, with ADP being
83 preferred to GDP^{19,20}, while MiD49 displays no affinity for these ligands²⁰. The effect of
84 ADP on MiD51's ability to activate DRP1 is modest, with an approximate 2-fold
85 stimulation of DRP1 GTPase activity over DRP1 alone²⁰. These results suggest that
86 MiD49 and MiD51 might bind alternate ligands to stimulate their DRP1-activating ability
87 in cells.

88

89 We have previously shown that actin filaments can bind and activate DRP1^{25,26}, and that
90 inhibition of actin polymerization or of the actin polymerization factor INF2 decreases
91 mitochondrial DRP1 recruitment and inhibits mitochondrial fission in cells^{25,27,28}. Actin
92 activates DRP1 GTPase activity in a characteristic 'bi-phasic' manner, in which low
93 concentrations stimulate while higher concentrations do not^{24,26}. This bi-phasic behavior
94 is likely due to the fact that DRP1 activation requires inter-molecular binding between
95 GTPase domains⁶⁻⁸, with low actin concentrations facilitating this juxtaposition while
96 higher actin concentrations cause DRP1 to bind more sparsely along the filament,
97 minimizing interaction. In addition to its ability to increase DRP1 activity in a stand-
98 alone manner, actin can synergize with MFF in DRP1 activation, decreasing the
99 concentration of MFF needed for DRP1 stimulation²⁴. It is not clear what effect MiD49
100 or MiD51 would have on actin- or MFF-mediated DRP1 activation.

101

102 While mitochondrial fission is often associated with mitochondrial dysfunction and
103 mitophagy, fission has also been correlated with increased mitochondrial fatty acid
104 oxidation in several contexts, including brown adipocytes, hepatocytes, and pancreatic
105 beta cells^{3,29}. An obligatory step in mitochondrial long-chain fatty acid import is
106 coupling of fatty acid to coenzyme A to make long-chain acyl-coenzyme A (LCACA). In
107 this paper, we show that both MiD49 and MiD51 bind LCACA, which induces MiD
108 oligomerization. LCACA-oligomerized MiD49 or MiD51 activates DRP1 GTPase activity
109 ~10-fold, and this activation is synergistic with MFF-mediated DRP1 activation but not
110 with actin-mediated activation. An MiD51 mutant defective in LCACA binding does not
111 assemble into punctate structures on mitochondria, recruit DRP1 to mitochondria, or
112 rescue the mitochondrial elongation phenotype caused by MiD49/51 knock-down.
113 Overall, our work suggests that MiD49 and MiD51 might respond to LCACA for DRP1
114 recruitment *en route* to mitochondrial fission.

115

Liu et al

DRP1 receptor binding Fatty acyl-CoA

116

117 **Results**

118

119 **Long-chain acyl-CoA induces MiD49 oligomerization**

120 Both MiD49 and MiD51 contain putative nucleotide-binding pockets structurally similar
121 to that of cyclic GMP-AMP synthase (cGAS) (Fig. 1a). While MiD51 can bind ADP or GDP
122 in this pocket, MiD49 displays no apparent binding to these purine nucleotides²⁰.
123 Interestingly, the purine rings of ADP and GDP adopt distinct orientations in the binding
124 pocket of MiD51 (Fig. 1b).

125

126 The absence of a strong effect of ADP or GDP on MiD51's ability to stimulate DRP1^{19,20},
127 coupled with the absence of a known ligand for MiD49, prompted us to screen for other
128 possible ligands. We postulated that a ligand for MiD49 might induce oligomerization,
129 because of the punctate appearance of MiD49 in cells. Using blue-native gel
130 electrophoresis (BNGE) on a murine MiD49 cytoplasmic region construct (amino acids
131 125-454, **Extended Data Fig. 1a, b**), we screened several purine-containing compounds
132 for the ability to cause a shift in MiD49 mobility, indicative of higher oligomeric species.
133 Of these compounds, only palmitoyl-coenzyme A (palmitoyl-CoA) causes such a
134 mobility shift (Fig. 1c). Neither the fatty acid moiety alone nor CoA alone causes a
135 similar shift (Fig. 1d,e). Long-chain acyl-CoAs (LCACA) including stearoyl (18 carbons),
136 oleoyl (18 carbons, 1 double bond), palmitoyl (16 carbons), myristoyl (14 carbon) and
137 lauroyl-CoA (12 carbon) cause a shift in MiD49 mobility (Fig. 1d). In contrast, octanoyl-
138 CoA (8 carbon) does not cause an MiD49 mobility shift, nor do two short-chain acyl-CoAs
139 found in the cytoplasm, acetyl-CoA and malonoyl-CoA (Fig. 1d). We also tested
140 lysophosphatidic acid (LPA), as well as geranylgeranyl-pyrophosphate (GG-PP), neither
141 of which display an ability to shift MiD49 mobility (Fig. 1d).

142

143 To examine the oligomerization effect further, we used size exclusion chromatography
144 (SEC). MiD49 cytoplasmic region alone (100 μ M) elutes near the position of ovalbumin
145 (~ 45 kDa), suggestive of a monomer (Extended Data Fig. 1c). Palmitoyl-CoA
146 concentrations from 10 to 100 μ M cause a fraction of the protein to shift to a peak near
147 the void volume, indicative of higher-order oligomers (Fig. 1f, Extended Data Fig. 1c).
148 By velocity analytical ultracentrifugation, this void fraction sediments as a broad peak
149 centered at 82 S (Fig. 1g), with a calculated mass of 4815 kDa (Extended Data Fig. 1d),
150 which would suggest oligomers averaging 126 subunits. In contrast, the late-eluting
151 fraction sediments at 2.9 S (Fig. 1g), with an apparent mass of 36.4 kDa (Extended Data
152 Fig. 1d), which is close to the calculated monomer mass (38.7 kDa). Negative-stain
153 transmission electron microscopy (EM) reveals that the void fraction contains a
154 heterogeneous array of oblate particles, whereas the late-eluting fraction contains a
155 more uniform spread of small particles (Fig. 1h). Analysis of a limited number of
156 particles from the void fraction reveals long and short particle axes of 66.7 ± 12.7 and
157 39.7 ± 13.5 nm, respectively (Extended Data Fig. 2a-c), for a mean axial ratio of

158 0.61±0.20. For comparison, the majority of palmitoyl-CoA micelles are more spherical,
159 with an axial ratio of 0.85±0.15 and a mean diameter of 9.5±1.8 nm (17 particles
160 measured, **Extended Data Fig. 2d**).

161
162 The negative-stain EM also allows determination of the critical micelle concentration
163 (cmc) for palmitoyl-CoA. From quantification of micelle number over a range of
164 palmitoyl-CoA concentrations, we calculate a cmc of 47 μ M in our buffer conditions
165 (**Extended Data Fig. 2e**), similar to published values at similar ionic strength³⁰. The fact
166 that palmitoyl-CoA concentrations below this value cause a shift in MiD49 to by size-
167 exclusion chromatography (**Fig. 1f**) suggests that MiD49 is not binding to palmitoyl-CoA
168 micelles to affect this shift. In the ensuing experiments, we refer to the void peak as
169 MiD49 oligomers, and the late-eluting peak as MiD49 monomers.

170
171 One question regards the stoichiometry of palmitoyl-CoA:MiD49 in the oligomer
172 fraction. To quantify palmitoyl-CoA, we conducted reversed phase HPLC analysis.
173 Palmitoyl-CoA elutes at 14.7 mL in this solvent system (**Extended Data Fig. 3a**), and the
174 peak area (from 260 nm absorbance) is proportional to the quantity of palmitoyl-CoA
175 loaded in the range of 0.5 – 2 nmole (**Extended Data Fig. 3b,c**). In an oligomer fraction
176 containing 5.3 μ M MiD49, the measured palmitoyl-CoA concentration is 5.5 μ M
177 (**Extended Data Fig. 3d**).

178
179 As a second technique to determine palmitoyl-CoA concentration in MiD49 oligomer
180 fractions, we used a phosphate assay (coenzyme A contains three phosphates). From
181 these assays, the palmitoyl-CoA:MiD49 ratios from three oligomerization reactions
182 range from 0.8 to 1.11 (**Extended Data Fig. 3e,f**). These results suggest that palmitoyl-
183 CoA binds in a 1:1 complex with MiD49 in oligomers.

184
185 We also used the HPLC analysis method to test acyl chain preference of MiD49 further,
186 by incubating MiD49 with equal concentrations of six acyl-CoAs (stearoyl, oleoyl,
187 palmitoyl, myristoyl, lauroyl, and octanoyl), and then analyzing the acyl-CoA
188 composition of the isolated MiD49 oligomer fraction. The three longer-chain acyl-CoAs
189 (stearoyl, oleoyl, palmitoyl) are abundant in this fraction, while there is minimal
190 myristoyl-CoA or lauroyl-CoA and no detectable octanoyl-CoA (**Extended Data Fig. 4**).
191 This result suggests that, even though myristoyl-CoA or lauroyl-CoA can induce MiD49
192 oligomerization (**Fig. 1d**), they are out-competed by longer chain acyl-CoAs.

193
194 MiD49 oligomers stimulate DRP1 GTPase activity
195 The preceding results suggest that LCACA binds MiD49 in a 1:1 complex, and promotes
196 MiD49 oligomerization. We next tested the effect of MiD49 oligomers on DRP1 GTPase
197 activity. Similar to past results^{19,20}, MiD49 monomers do not stimulate DRP1 GTPase
198 activity (**Fig. 2a**). In contrast, MiD49 oligomers display an approximate 10-fold

199 stimulation (**Fig. 2a**). We then analyzed the concentration dependence of DRP1
200 activation by MiD49 oligomers. Intriguingly, MiD49 oligomers have a bi-phasic effect on
201 DRP1 GTPase activity, with stimulatory effects up to 1 μ M and then decreasing activation
202 at higher concentrations (**Fig. 2b**). This effect is similar for MiD49 oligomers isolated
203 from a range of initial MiD49:palmitoyl-CoA ratios in the oligomerization reaction (**Fig.**
204 **2b**).

205
206 The bi-phasic effect of MiD49 oligomer concentration on DRP1 GTPase activity is
207 reminiscent of that shown by actin filaments²⁶ (**Fig. 2c, Extended Data Fig. 5a**). We
208 postulate that, in both cases, low concentrations of the oligomeric molecule (MiD49 or
209 actin filaments) induce the juxtaposition of DRP1 G domains, which stimulates GTPase
210 activity⁶⁻⁸. Beyond a certain concentration of oligomeric molecule, however, DRP1
211 binding becomes sparser and G domains are separated (**Fig. 2d**). If this situation is true,
212 increasing the DRP1 concentration should shift the optimally stimulating MiD49
213 oligomer concentration to a higher value. Indeed, the concentration of MiD49 oligomer
214 needed to reach peak activation increases with increasing DRP1 concentration (**Fig. 2e**).
215

216 We have previously shown that actin filaments synergize with MFF in stimulating DRP1,
217 with actin filaments decreasing the concentration of MFF needed for optimal
218 stimulation^{24,26}. We tested the possibility that MiD49 oligomers might act in a similar
219 manner to actin. Indeed, an MiD49 concentration that causes sub-optimal DRP1
220 activation alone (250 nM) allows further DRP1 activation by low concentrations of MFF
221 (EC₅₀ 1 μ M, **Fig. 2f, Extended Data Fig. 5b**), as opposed to the situation for MFF alone,
222 in which 100 μ M MFF is required for full DRP1 activation (**Extended Data Fig. 5c**). In
223 contrast, MiD49 monomer reduces the effectiveness of MFF in DRP1 activation (**Fig. 2f,**
224 **Extended Data Fig. 5b, c**). We tested whether MiD49 oligomers, like MFF, had the
225 ability to synergize with actin filaments. However, varying concentrations of actin
226 filaments do not change the effect of MiD49 monomers or oligomers on DRP1 activity
227 (**Fig. 2g**). In addition, MiD49 monomers inhibit the effect of actin filaments on DRP1
228 GTPase activity (**Fig. 2g**), with an IC₅₀ below 500 nM (**Fig. 2h**).
229

230 These results suggest that LCACA-induced oligomerization converts MiD49 into a DRP1-
231 activating protein. MiD49 oligomers are synergistic with MFF for DRP1 activation, in a
232 similar manner to the synergism between actin filaments and MFF. In contrast, MiD49
233 and actin filaments do not synergize. In fact, MiD49 monomers eliminate the activating
234 effect of actin filaments on DRP1 activity, suggesting that the two are competitive for
235 DRP1 binding.
236

237 MiD51 displays acyl-CoA induced oligomerization

238 We next tested the ability of LCACA to induce oligomerization of the cytoplasmic region
239 of MiD51 (**Extended Data Fig. 1a,b**). Similar to MiD49, MiD51 migration on BNGE is

240 slower in the presence of acyl-CoA of 12 carbons or longer, but not with octanoyl-CoA ,
241 acetyl-CoA, malonyl-CoA, CoA alone, palmitic acid, lyso-PA (**Fig. 3a**), or a series of
242 purine nucleotides (**Extended Data Fig. 6a**). By size-exclusion chromatography,
243 palmitoyl-CoA causes a shift in MiD51 to an apparent oligomer, with the size depending
244 on the palmitoyl-CoA:MiD51 ratio in the oligomerization reaction. Lower palmitoyl-CoA
245 concentrations cause migration in the void volume (**Extended Data Fig. 6b**) and higher
246 concentrations result in an oligomer that is resolved in the column (**Fig. 3b**). By velocity
247 analytical ultracentrifugation, this resolved oligomer sediments at 51 S (**Fig. 3c**), and has
248 an apparent mass of 2450 kDa (**Extended Data Fig. 6c**), suggesting oligomers averaging
249 68 subunits. In contrast, the MiD51 peak in the absence of palmitoyl-CoA elutes
250 similarly to the ovalbumin marker by size-exclusion chromatography (**Fig. 3b**) and
251 sediments at 2.9 S (**Fig. 3c**) with a calculated mass of 38.3 kDa (**Extended Data Fig. 6c**),
252 suggestive of a monomer. By negative stain electron microscopy, the oligomer displays
253 a range of particle sizes, generally smaller than those for MiD49 oligomers (**Fig. 3d**,
254 **Extended Data Fig. 2**). We assessed palmitoyl-CoA:MiD51 ratio across the oligomer
255 peak, and found an approximate 1:1 correspondence (**Fig. 3e**). These results suggest that
256 the increase in MiD51 size is due to LCACA-induced oligomerization of MiD51.
257

258 MiD51 has been previously shown to bind ADP^{19,20}. We find that ADP does not induce
259 MiD51 oligomerization (**Extended Data Fig. 6d**). ADP does decrease palmitoyl-CoA
260 induced MiD51 oligomerization at higher concentrations, whereas CoA or acetyl-CoA
261 have less effect (**Extended Data Fig. 6d**). This result suggests that ADP and palmitoyl-
262 CoA compete for MiD51 binding. Even at 0.5 mM ADP, however, significant MiD51 still
263 oligomerizes.
264

265 We took advantage of a previously used assay to examine MiD51 binding specificity in
266 more detail. In this assay²⁰, MiD51 is mixed with fluorescent MANT-ADP, and the change
267 in MANT-ADP fluorescence is monitored, with binding correlating with higher
268 fluorescence intensity. Similar to the past study, MiD51 binds MANT-ADP with an
269 apparent K_d of 0.65 μ M, while MiD49 displays no detectable MANT-ADP binding
270 (**Extended Data Fig. 6e**). We then assessed MiD51 binding to potential ligands using a
271 competition assay in which increasing competitor ligand is mixed with fixed
272 concentrations of MANT-ADP and MiD51. Palmitoyl-CoA causes a concentration-
273 dependent decrease in MANT-ADP fluorescence back to the level of MANT-ADP alone,
274 with an EC_{50} of 2 μ M (**Fig. 3f**), suggesting competition for the same binding site on
275 MiD51. Using this assay, we screened several molecules at fixed concentration (20 μ M)
276 for competition with MANT-ADP. LCACAs (stearoyl, oleoyl, palmitoyl, myristoyl)
277 compete efficiently, whereas lauroyl-CoA, octanoyl-CoA, malonoyl-CoA, acetyl-CoA,
278 CoA alone, palmitoyl-carnitine, and lyso-phosphatidic acid display no competition (**Fig.**
279 **3g**). Interestingly, ADP is a poor competitor for MANT-ADP (**Fig. 3f**), suggesting that

280 the hydrophobic MANT group contributes significantly to the affinity of MiD51 for
281 MANT-ADP in a similar manner to the fatty acid tail of acyl-CoA.

282

283 As with MiD49, oligomerized MiD51 activates DRP1 GTPase activity, whereas
284 monomeric MiD51 does not (**Extended Data Fig. 6f**). Also similar to MiD49, MiD51
285 oligomers activate DRP1 in a bi-phasic manner, with an optimal concentration at 1 μ M
286 (**Fig. 3h**). The optimal concentration increases if DRP1 concentration is increased (**Fig.**
287 **3i**), supporting the model of increased DRP1 density on MiD51 oligomers to allow
288 GTPase domain interaction (**Fig. 2d**). In addition, MiD51 oligomers synergize with MFF
289 for DRP1 activation, with the EC₅₀ of MFF being 2 μ M in the presence of MiD51 oligomers,
290 which is over 10-fold lower than for MFF alone (**Fig. 3j, Extended Data Fig. 6g**). In
291 contrast, the same concentration of MiD51 monomers reduces MFF-mediated DRP1
292 activation (**Fig. 3j, Extended Data Fig. 6g**). Similar to MiD49, MiD51 displays no ability
293 to synergize with actin filaments in DRP1 activation (**Extended Data Fig. 6h**), and
294 MiD51 monomers are potent inhibitors of actin-stimulated DRP1 GTPase activity (**Fig.**
295 **3k**).

296

297 These results suggest that, similar to MiD49, MiD51 binding to LCACA induces
298 oligomerization, and these oligomers are capable of DRP1 activation. While MiD51 is
299 capable of binding ADP, LCACAs are preferred ligands, presumably constituting the
300 physiological ligands in cells. MiD51 oligomers synergize with MFF in DRP1 activation,
301 while MiD51 monomers inhibit both MFF- and actin-mediated DRP1 activation.

302

303 **Mutation of R342 in MiD51 reduces LCACA-induced oligomerization**

304 We sought to design an MiD51 mutant deficient in LCACA binding, using published
305 structural information as a guide ^{19,20}. We made mutations to two residues protruding
306 from either side of MiD51's pocket, Y185A and R342A. The R342 side chain is in close
307 proximity to the alpha phosphate of both ADP and GDP, whereas Y185 is in the vicinity
308 of the purine ring (**Fig. 4a**). The cytoplasmic regions of both MiD51-R342A and MiD51-
309 Y185A express and purify in bacteria similar to WT MiD51 (**Extended Data Fig. 1b**),
310 eluting from SEC as apparent monomers (**Fig. 4b**). MiD51-R342A displays an apparent
311 inability to bind MANT-ADP, whereas MiD51-Y185A displays binding similar to WT (K_d
312 WT 0.27 μ M, K_d Y185A 0.9 μ M, **Fig. 4c**). By BNGE, MiD51-R342A displays a reduced
313 ability to oligomerize in response to palmitoyl-CoA (**Fig. 4d**), quantified by loss of the
314 MiD51 monomer band with increasing palmitoyl-CoA (**Fig. 4e**). Similarly, a lower
315 amount of oligomer peak is recovered from SEC for the R342A mutant upon incubation
316 with palmitoyl-CoA (**Fig. 4f**). Interestingly, the MiD51-R342A oligomer maintains the
317 ability to activate DRP1 GTPase activity (**Fig. 4g**) suggesting that, although MiD51-
318 R342A has reduced affinity for LCACA, it maintains DRP1 binding and activation once
319 oligomerized.

320

321 **Acyl-CoA binding mutants display reduced oligomerization and mitochondrial**
322 **phenotypes in cells**

323 At low expression levels, MiD proteins display a punctate appearance^{15,17}, suggestive of
324 oligomerization. At higher expression, MiD distribution is uniform and causes
325 mitochondrial elongation by its ability to sequester DRP1^{11,15,17}. We found similar effects
326 with GFP-fusions of MiD49 and MiD51 (Fig. 5a, Extended Data Fig. 7a). Live-cell
327 imaging suggests that, for both MiD49 and MiD51, the puncta appear stable on the
328 mitochondria, despite considerable fluctuation of the mitochondria themselves (Movies
329 1, 2).

330

331 Identification of an MiD51 mutant defective in LCACA binding provided an opportunity
332 to test the importance of LCACA binding to MiD function in cells. We expressed GFP-
333 fusions of WT, Y185A or R342A MiD51 in HeLa cells and evaluated their ability to form
334 puncta at low expression level, as well as their effect on mitochondria at high expression
335 level. Low level expression of either MiD51-WT or MiD51-Y185A results in punctate GFP
336 accumulation on mitochondria, in contrast to the even distribution of MiD51-R342A
337 (Fig. 5a,b, Movies 2-4). The expression levels of these constructs are similar, and lower
338 than endogenous MiD51 levels (Fig. 5c). We quantified MiD51 puncta by examining the
339 average size of each MiD51 particle and the % of mitochondrial area covered by MiD51
340 staining (examples in Extended Data Fig. 7b), with lower numbers denoting puncta.
341 Both average particle size and % mitochondrial area are significantly lower for MiD51-
342 WT and MiD51-Y185A than for MiD51-R342A (Fig. 5d,e). At higher expression, MiD51-
343 WT and MiD51-Y185A are evenly distributed along mitochondria and cause
344 mitochondrial elongation, while MiD51-R342A causes a collapsed mitochondrial
345 phenotype, which could be due to dominant negative effects of this mutant on the
346 endogenous MiD51 and/or MiD49 proteins (Extended Data Fig. 7c,d).

347

348 We next tested whether MiD51-WT, MiD51-Y185A or MiD51-R342A could rescue
349 phenotypes caused by siRNA-mediated double knock-down (KD) of MiD49 and MiD51.
350 MiD49/51 KD in HeLa cells results in significant mitochondrial elongation (Fig. 6a).
351 Expression of MiD51-WT or MiD-Y185A results in substantial rescue of the
352 mitochondrial elongation phenotype, while expression of MiD51-R342A does not (Fig.
353 6a,b). In addition, MiD51-R342A appears diffuse on mitochondria in the MiD49/51 KD
354 cells (Fig. 6a), similar to its distribution in WT HeLa cells (Fig. 5a).

355

356 Knock-down of MiD49/51 also results in a decrease in the punctate appearance of DRP1
357 on mitochondria (Fig. 6c), similar to results from other studies¹³⁻¹⁵. We quantified these
358 effects either by % mitochondrial area covered by DRP1 (Fig. 6d) or the size of DRP1
359 puncta (Fig. 6e). Re-expression of MiD51-WT or MiD51-Y185A results in a recovery of
360 DRP1 puncta to larger sizes and mitochondrial coverage than in control cells (Fig. 6c-e),
361 suggesting enhanced DRP1 oligomerization. In contrast, expression of MiD51-R342A

362 does not cause recovery of DRP1 puncta size or overall mitochondrial area covered by
363 DRP1 (**Fig. 6c-e**). The combination of these results suggest that LCACA binding is
364 required for MiD51-mediated DRP1 recruitment and mitochondrial fission.

365

366 **Increased cellular LCACA causes increased MiD-dependent mitochondrial fission**

367 To test the involvement of LCACA in MiD-mediated mitochondrial fission, we treated
368 cells with 2-bromopalmitate (2-BP), a palmitate analogue that gets converted to 2-
369 bromopalmitoyl-CoA that is slow in subsequent processing^{31,32}. We treated HeLa cells
370 for 1-hr with either 150 μ M 2-BP or methyl-palmitate (MP) as a negative control³², and
371 evaluated the mitochondrial phenotype. In HeLa WT cells, a 1-hr treatment with 2-BP
372 causes a 2.8-fold decrease in mitochondrial area after 1 h (**Fig. 7a-c**), as well as an
373 increase in mitochondrial DRP1 accumulation (**Extended Data Fig. 8**) when compared
374 to control (MP-treated) cells. DRP1 KD causes mitochondrial area to increase 3.4-fold in
375 control cells, and eliminates the 2-BP mediated decrease, suggesting that the change in
376 mitochondrial length is due to increased fission (**Fig. 7a-d**). Similarly, MiD49/51 KD
377 causes mitochondrial area to increase 2-fold in control cells, and eliminates the 2-BP-
378 induced mitochondrial shortening (**Fig. 7a-d**). These results suggest that 2-BP mediated
379 mitochondrial fission occurs through increased acyl-CoA levels, activating MiD49/51.

380

381

382

383 **Discussion**

384 We report that long chain fatty acyl CoAs (LCACAs) are ligands for the mitochondrial
385 DRP1 receptors MiD49 and MiD51, triggering oligomerization which in turn enables
386 activation of the DRP1 GTPase. LCACA-oligomerized MiD can synergize with MFF in
387 activating DRP1, but is not synergistic with actin. A mutant compromising LCACA
388 binding reduces cellular MiD51 oligomerization and its ability to enhance mitochondrial
389 fission. Cellular treatment with 2-bromopalmitic acid, which increases acyl-CoA levels,
390 stimulates mitochondrial fission in an MiD-dependent manner.

391

392 The identification of LCACAs as MiD ligands answers an outstanding question
393 concerning these proteins. Both MiD49 and MiD51 contain large interior pockets similar
394 to that of cGAS, but no ligand had been identified for MiD49, whereas the ligands
395 identified for MiD51 (ADP or GDP) do not result in a dramatic change in its ability to
396 activate DRP1^{19,20}. We find that the affinity of MiD51 for palmitoyl-CoA is significantly
397 higher than for ADP, suggesting that LCACAs likely out-compete ADP for MiD51 binding
398 in cells. The demonstration that LCACAs bind with 1:1 stoichiometry to MiDs and cause
399 a substantial increase in DRP1 activation suggests that these are physiological ligands.
400 In addition, the fact that palmitoyl-CoA concentrations below its critical micelle
401 concentration (measured here to be 47 μ M) can induce MiD oligomerization suggests
402 that MiDs are not simply aggregating around micelles. Furthermore, LCACAs are
403 preferred over other possible ligands such as lyso-phosphatidic acid, acetyl-CoA,
404 malonyl-CoA, or a variety of nucleotides.

405

406 The activation mechanism induced by LCACA is intriguing. In this study and previous
407 studies^{19,20}, the cytoplasmic regions of MiD49 or MiD51 cannot activate DRP1, and even
408 display an inhibitory effect on GTPase activity. We show that LCACA-induced MiD
409 oligomers activate DRP1. This activation is presumably induced by bringing GTPase
410 domains in close proximity, which is a common activation mechanism for dynamin
411 proteins in general⁶⁻⁸. The fact that MiDs display bi-phasic concentration effects on
412 DRP1 activation, with activation reaching a peak and then declining at higher MiD
413 oligomer concentrations, further suggests activation through inducing GTPase domain
414 proximity.

415

416 DRP1 recruitment to and activation by oligomeric ‘receptors’ occurs in two other
417 contexts: with MFF, which requires oligomerization through its coiled-coil²⁴; and with
418 actin filaments^{24,26}. A recent paper revealed the structure of ‘cofilaments’ assembled by
419 DRP1 and MiD49 in the presence of GTP or non-hydrolyzable GTP analogues³³. In this
420 structure, monomeric MiD49 is bound around a core of DRP1, and GTP hydrolysis causes
421 MiD49 release. It is unclear how the assembly of MiD49 oligomers might alter this
422 interaction.

423

424 Another intriguing aspect of MiD effects on DRP1 is the ability of oligomerized MiD49 or
425 MiD51 to synergize with MFF in DRP1 activation. MFF alone is a poor DRP1 activator,
426 requiring high concentrations to stimulate DRP1 activity. Addition of a low
427 concentration of MiD49 or MiD51 oligomers reduces the concentration of MFF required
428 for DRP1 activation. We have observed a similar effect for actin filaments²⁴.
429

430 These results raise a model whereby either activation of MiD proteins (by increased
431 LCACA) or polymerization of specific actin-based structures (through the
432 polymerization factors INF2 or Spire1C^{27,34}) might serve as initiating signals for DRP1
433 recruitment, with MFF working downstream. A previous study suggests that MFF
434 preferentially binds DRP1 oligomers³⁵, supporting the model. This model might also
435 suggest that MiDs and actin operate in distinct mitochondrial fission events, which is
436 further supported by the lack of synergy between oligomerized MiDs and actin, as well
437 as the potent inhibition of actin-mediated DRP1 activation by monomeric MiDs. While
438 the possibility of actin and MiDs operating in distinct pathways has not been tested
439 directly, a recent publication reveals two mechanistically distinct pathways to DRP1-
440 dependent mitochondrial fission³⁶, one which is actin-dependent and one which is actin-
441 independent. Interestingly, deletion of MiD49 and MiD51 partially reduces both types
442 of fission in this study, suggesting that additional factors might be at play.
443

444 Another question pertains to the pools of LCACA that stimulate MiD activity in cells.
445 LCACAs are involved in both anabolic (phospholipid and triacylglycerol synthesis) and
446 catabolic (beta-oxidation) processes, in addition to being required for protein
447 myristoylation and palmitoylation. In principle, processes involving LCACA on the
448 mitochondrial surface, such as fatty acid import into mitochondria for beta-oxidation,
449 would be the most likely candidates for MiD regulation. For fatty acid import, long chain
450 fatty acids are first coupled to CoA in the cytoplasm, then converted to acyl-carnitine by
451 carnitine O-palmitoyltransferase 1 (CPT1) on the outer mitochondrial membrane³⁷.
452

453 A recently published paper has established a correlation between increased
454 mitochondrial fission and increased fatty acid oxidation, with the fission-activated step
455 being CPT1³. A possible mechanism for fission-mediated CPT1 activation is through
456 increased membrane curvature, facilitating intra-molecular interactions^{38,39}. The results
457 presented here, in combination with this recent publication, lead to a model whereby
458 increased cytoplasmic fatty acid leads to increased fatty acyl-CoA, activating MiD
459 proteins to trigger mitochondrial fission. Fission leads to CPT1 activation, increased
460 fatty acid import and beta-oxidation (Fig. 8), which could be used for ATP production
461 (hepatocytes, pancreatic beta-cells, and oxphos-dependent B lymphoma cells³) or for
462 heat generation (brown adipocytes²⁹). Interestingly, a recent publication suggests that
463 CPT1 might have a reciprocal effect, enhancing mitochondrial fission through
464 succinylation-mediated stabilization of MFF⁴⁰.

465
466 MiD proteins are only found in metazoans, so it is unclear whether LCACA influences
467 mitochondrial fission in non-metazoans. Interestingly, knocking out cytoplasmic acyl-
468 CoA binding protein in *Schizosaccharomyces pombe* causes DRP1-dependent
469 mitochondrial fission ⁴¹, implying that increasing levels of free acyl-CoA induces
470 mitochondrial fission. The proteins mediating this effect remain to be elucidated.
471
472 The regulation of MiD49/51 adds to a growing list of LCACA regulatory functions.
473 LCACAs are allosteric inhibitors of acetyl-CoA carboxylase (ACC), with this inhibition
474 simultaneously decreasing fatty acid synthesis and relieving inhibition of CPT1 ³².
475 Interestingly, the basis for this inhibition might be in regulating ACC's oligomeric
476 state⁴². Recently, LCACAs have also been shown to act as allosteric activators AMP-
477 dependent kinase beta1, further inhibiting ACC ³². All of these effects lead to more
478 efficient mitochondrial fatty oxidation, and could act in a concerted fashion toward these
479 goals.
480
481
482
483
484

485 **METHODS**

486

487 **Plasmids/siRNA.** For bacterial expression, MiD49 Δ 1-124 (mouse amino acids 125-454, UniProt ID Q5NCS9) was inserted into a modified pGEX-KT vector by BamH1 and EcoR1 sites, in which a GST-thrombin site-6xHis-TEV tag is in front of multiple cloning site (MCS). MiD51 Δ 1-133 (human amino acids 134-463, UniProt ID Q9NQG6) was inserted into another modified pGEX-KT vector by BamH1 and EcoR1 sites, where a GST-thrombin site-6xHis-HRV3C-6xHis sequence is in front of MCS. Quick Change mutagenesis was performed to make MiD49 or MiD51 mutants. Full-length of human DRP1 isoform 3 (NP_055681.2, UniProt ID O00429-4) and truncated human MFF isoform 4 (UniProt ID Q9GZY8-4) (MFF- Δ TM) have been described previously^{14,26}. For cellular assays, full length MiD49/51 and corresponding mutants were inserted into a modified GFP-N1 vector, in which the MCS is followed by HRV3C-GFP-2xStrep-tag. Mito-plum plasmid was obtained from Addgene (#55988). The following oligonucleotides used for siRNA-mediated protein silencing were synthesized by Integrated DNA Technologies: MiD49 (3'UTR Exon 4): 5'-AUUCUGACUUUGAAGCCUGUUAAGA-3'; MiD51 (3'UTR Exon 6): 5'-GAAGAGCUGUGAUAGCAUGUUUCAA-3'; DRP1 (CDS Exon 8): 5'-GCCAGCTAGATATTAACAAACAAG AA-3'; silencer negative control (IDT) was 5'-CGUUAUCGCGUAUAAUACGCGUAU-3'.

504

505 **Protein Expression, Purification.**

506 MiD49 and MiD51 was expressed in One Shot BL21 Star (DE3) *Escherichia coli* (C6010-03; Life Technologies, Carlsbad, CA) in LB broth, induced by isopropyl- β -D-thiogalactoside (IPTG) at 16 °C for 16 h when OD600 reached 1.5. Cell pellets were resuspended in MiD lysis buffer (25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid [Hepes], pH 7.4, 500 mM NaCl, 1 mM dithiothreitol [DTT], 2 μ g/ml leupeptin, 10 μ g/ml aprotinin, 2 μ g/ml pepstatin A, 2 mM benzamidine, 1 μ g/ml calpain inhibitor I [ALLN], and 1 μ g/ml calpeptin) and lysed using a high-pressure homogenizer (M-110L Microfluidizer Processor; Microfluidics, Newton, MA). The lysate was cleared by centrifugation at 40,000 rpm (type 45 Ti rotor; Beckman, Brea, CA) for 1 hour at 4°C and then was loaded onto Pierce™ Glutathione Agarose (16101; ThermoFisher) by gravity flow. The column was washed with 20 column volumes (CV) of lysis buffer without protease inhibitors. To elute MiD49/51, 1 unit/ μ L thrombin (T4648, Sigma-Aldrich) or 0.01 mg/ml HRV3C protease in lysis buffer without protease inhibitors was added for 16 hours at 4°C. The protein eluate was captured by HiTrap IMAC column (17-5248-01, GE Healthcare, Chicago, IL) and eluted by IMAC-B buffer (50 mM Tris-HCl pH 7.5, 0.1 M NaCl, 500 mM imidazole). The His-trap protein eluate was further purified by size exclusion chromatography on Superdex200 (GE Biosciences, Piscataway, NJ) with S200 buffer (20 mM Hepes, pH 7.4, 65 mM KCl, 2 mM MgCl₂, 1 mM DTT, 0.5 mM ethylene glycol tetraacetic acid [EGTA]), spin concentrated (UFC903024, EMD Millipore Corporation, Burlington, MA), frozen in liquid nitrogen, and stored at -80 °C.

526 DRP1 was expressed and purified as previously described with modifications²⁶. Briefly,
527 DRP1 construct was expressed in One Shot BL21 Star (DE3) *Escherichia coli* in LB broth,
528 induced by isopropyl-β-D-thiogalactoside (IPTG) at 16 °C for 16 hours when OD600
529 reached to 1.5. Cell pellets were resuspended in lysis buffer (100 mM Tris-Cl, pH 8.0, 500
530 mM NaCl, 1 mM dithiothreitol [DTT], 1 mM Ethylenediaminetetraacetic acid [EDTA], 2
531 µg/ml leupeptin, 10 µg/ml aprotinin, 2 µg/ml pepstatin A, 2 mM benzamidine, 1 µg/ml
532 ALLN, and 1 µg/ml calpeptin) and lysed using a high-pressure homogenizer. The lysate
533 was cleared by centrifugation at 40,000 rpm in Ti-45 rotor for 1 hour at 4°C. Avidin (20
534 µg/ml; PI-21128; Thermo Fisher Scientific, Waltham, MA) was added to the supernatant,
535 and then was loaded onto Strep-Tactin Superflow resin (2-1206-025; IBA, Göttingen,
536 Germany) by gravity flow. The column was washed with 20 column volumes (CV) of lysis
537 buffer without protease inhibitors. To elute DRP1, 0.01 mg/ml HRV3C protease in lysis
538 buffer without protease inhibitors was added for 16 hours at 4°C. The Strep-Tactin
539 Superflow eluate was further purified by size exclusion chromatography on Superdex200
540 with DRP1-S200 buffer (20 mM HEPES pH 7.5, 150 mM KCl, 2 mM MgCl₂, 1 mM DTT, 0.5
541 mM EGTA), spin concentrated, frozen in liquid nitrogen, and stored at -80 °C.
542

543 MFF-ΔTM was expressed in RosettaTM2 BL21-(DE3) *Escherichia coli* (71400; EMD
544 Millipore Corporation, Burlington, MA) in LB broth, induced by 1M IPTG at 30 °C for 4 h
545 when OD600 reached to 1.5. Cell pellets were resuspended in lysis buffer (50 mM Tris-
546 HCl, pH 7.5, 500 mM NaCl, 20 mM imidazole, pH 7.5, 1 mM DTT, 1 mM EDTA, 2 µg/ml
547 leupeptin, 10 µg/ml aprotinin, 2 µg/ml pepstatin A, 2 mM benzamidine, 1 µg/ml ALLN,
548 and 1 µg/ml calpeptin) and lysed using M-110 microfluidizer processor. The lysate was
549 cleared by centrifugation at 40,000 rpm in Ti45 for 40 minutes at 4°C, the supernatant
550 was saved. Affinity capture was performed using FPLC and a HiTrap IMAC column (17-
551 5248-01, GE Healthcare, Chicago, IL) equilibrated with IMAC-A buffer (50 mM Tris-HCl
552 pH 7.5, 0.1 M NaCl, 20 mM imidazole). Cleared lysate was loaded onto the column with
553 a rate of 3 mL/min and washed to baseline with IMAC-A. MFF was eluted from the
554 column with gradient step washes by IMAC-B buffer (50 mM Tris-HCl pH 7.5, 0.1 M NaCl,
555 500 mM imidazole): step1 10% IMAC-B for 5CV, step2 20% IMAC-B for 5CV, step3 100%
556 for 5CV. Fractions from step3 were pooled and diluted 10-fold in ion exchange (IEX)-A
557 buffer (50 mM Tris-HCl pH 7.5, 1 mM DTT). Diluted fractions were loaded onto a HiTrap
558 Q anion exchange column (54816, EMD Millipore Corporation, Burlington, MA). The
559 column was washed to baseline with IEX-A and MFF was eluted by IEX-B buffer (50 mM
560 Tris-HCl pH 7.5, 1 M NaCl, 1 mM DTT) with a step gradient: step1 10% 5CV, linear 10-
561 50% 30CV followed by linear 50-100% 5CV. Peak MFF fractions were concentrated by
562 reloading onto the HiTrap IMAC column and eluted with 100% IMAC-B step wash. MFF
563 fractions were pooled and further purified by size exclusion chromatography on
564 Superdex200 with S200 buffer (20 mM HEPES, pH 7.4; 2 mM MgCl₂, 0.5 mM EGTA, 65

566 mM KCl, 1 mM DTT), spin concentrated (UFC903024, EMD Millipore Corporation,
567 Burlington, MA), aliquots were frozen in liquid nitrogen, and stored at -80 °C.

568

569 Rabbit skeletal muscle actin was extracted from acetone powder as previously described
570 ⁴³, and further gel-filtered on Superdex 75 16/60 columns (GE Healthcare). Actin was
571 stored in G buffer (2 mM Tris, pH 8.0, 0.5 mM DTT, 0.2 mM ATP, 0.1 mM CaCl₂, and 0.01%
572 NaN₃) at 4°C.

573

574 **Actin preparation for biochemical assays**

575 For high-speed pelleting assay, actin filaments were polymerized from 20 μM monomers
576 for 3 h at 23 °C by addition of a 10x stock of polymerization buffer (200 mM HEPES, pH
577 7.4, 650 mM KCl, 10 mM MgCl₂, 10 mM EGTA) to a final 1x concentration. For GTPase
578 assay, actin monomers in G-buffer were incubated with AG1-X2 100–200 mesh anion
579 exchange resin (Dowex; 1401241; Bio-Rad) at 4 °C for 5 min to remove ATP, followed by
580 low-speed centrifugation. 20 μM actin filaments were polymerized as described before.
581 To maintain ionic strength across all samples, an actin blank was prepared in parallel
582 using G-buffer in place of actin monomers and used to dilute actin filaments as needed
583 for each sample. DRP1 was diluted in MEHD buffer (20 mM HEPES, pH 7.4, 2 mM MgCl₂,
584 0.5 mM EGTA, 1 mM DTT) to adjust the ionic strength to the same as S200 buffer before
585 biochemical assays.

586

587 **Size exclusion Chromatography assays.**

588 MiD49Δ1-124 and MiD51Δ1-133 oligomeric distribution was determined by Superose 6
589 increase 10/300 GL SEC column (GE Biosciences) in S200 buffer (20 mM HEPES, pH7.4,
590 65 mM KCl, 2 mM MgCl₂, 0.5 mM EGTA, 1 mM DTT). Protein at varying concentration
591 was loaded onto the column in a total volume of 500 μL and gel-filtered with a flow rate
592 of 0.4 mL/min.

593

594 **Purine-containing ligand screening and Blue-Native PAGE**

595 Purine-containing ligands were incubated with MiD49 or MiD51 at 37 °C for 1 hour
596 before BN-PAGE analysis. Ligands include: NADP+ (Sigma-Aldrich, 077K7000), NAD+
597 (Sigma-Aldrich, N1636), NADH (Sigma-Aldrich, 10107735001), c-di-AMP (Sigma-
598 Aldrich, A3262), 2'3'-GAMP (Sigma-Aldrich, 1229), AMP (Sigma-Aldrich, 01930),
599 ADP(Sigma-Aldrich, 01897), ATP (Sigma-Aldrich, A2383), GMP (Sigma-Aldrich, G8377),
600 GDP (Sigma-Aldrich, G7127), GTP (Sigma-Aldrich, G8877), cAMP (Sigma-Aldrich, 1231),
601 dNTP (New England Biolabs, N0447S), hypoxanthine (Sigma-Aldrich, H9377), stearoyl-
602 CoA (Sigma-Aldrich, S0802), oleoyl-CoA (Sigma-Aldrich, O1012), palmitoyl-CoA
603 (Sigma-Aldrich, P9716), myristoyl-CoA (Sigma-Aldrich, M4414), lauoryl-CoA (Sigma-
604 Aldrich, L2659), octanoyl-CoA (Sigma-Aldrich, O6877), malonoyl-CoA (Sigma-
605 Aldrich, 4263), acetyl-CoA (Sigma-Aldrich, A2056), coenzyme A (Sigma-
606 Aldrich, C4282), lyso-PA (Avanti Polar Lipids, 857127P25MG), geranylgeranyl

607 pyrophosphate (Sigma-Aldrich, G6025), palmitic acid (Sigma-Aldrich, P0500), palmityl-
608 carnitine (Sigma-Aldrich, P1645). If not stated in the legend, concentrations were 500
609 μ M ligand, 100 μ M MiD49, and 50 μ M MiD51.

610

611 MiD49 or MiD51 was incubated with ligand for 1hr at 37 °C for 1 hr in S200 buffer, then
612 mixed with the Native PAGE Sample buffer (Thermo Fisher Scientific, catalog BN2003).
613 The samples were separated on a NativePAGE Novex 3%–12% Bis-Tris protein gel system
614 (Thermo Fisher Scientific, catalog BN1003BOX) according to the manufacturer's
615 instructions. In brief, the electrophoresis was performed with 1 \times NativePAGE Running
616 Buffer (Thermo Fisher Scientific, BN2001) and blue cathode buffer (containing 0.002%
617 G-250). BN PAGE gel was destained in distilled water overnight, and band intensity was
618 analyzed using ImageJ software.

619

620 **GTPase assay**

621 DRP1 (0.75 μ M) was mixed with indicated concentrations of MiD49, 51, MFF and/or actin
622 filaments in S200 buffer. Sample were incubated at 37 °C for 5 min. At this point, GTP
623 was added to a final concentration of 500 μ M to start the reaction at 37 °C. Reactions
624 were quenched at designated time points by mixing 15 μ L sample with 5 μ L of 125 mM
625 EDTA in a clear, flat-bottomed, 96-well plate (Greiner, Monroe, NC). Six time points were
626 acquired for all conditions, either in a 12 min time range, or in a 45 min time range
627 depending on reaction speed. Released phosphate was determined by addition of 150 μ L
628 of malachite green solution as previously described²⁶. Absorbance at 650 nm was
629 measured 15 min after malachite green solution incubation. GTP hydrolysis rates were
630 determined by plotting phosphate concentration as a function of time in the linear phase
631 of the reaction.

632

633 **Velocity Analytical Ultracentrifugation**

634 Analytical ultracentrifugation was conducted using a Beckman Proteomelab XL-A and
635 an AN-60 rotor. For sedimentation velocity analytical ultracentrifugation, MiD49/51
636 (5 μ M) in S200 buffer (65 mM KCl, 1 mM MgCl₂, 0.5 mM EGTA, 1 mM DTT, 20 mM HEPES,
637 pH 7.4) was centrifuged at either 5,000 (for oligomer) or 35,000 (for monomer) rpm with
638 monitoring at 280 nm. Data analyzed by Sedfit to determine sedimentation coefficient,
639 frictional ratio, and apparent mass. Sedimentation coefficient reported is that of the
640 major peak (at least 80% of the total analyzed mass) at OD₂₈₀.

641

642 **MANT-ADP assay**

643 MANT-ADP assay was performed as previously described with modifications²⁰.
644 Fluorescence measurements of MANT-ADP (Sigma-Aldrich, 19511) were performed
645 using a 96-well fluorescence plate reader (Infinite M1000; Tecan, Mannedorf,
646 Switzerland) at room temperature in S200 buffer (65 mM KCl, 1 mM MgCl₂, 0.5 mM
647 EGTA, 1 mM DTT, 20 mM HEPES, pH 7.4). Samples were excited at 355 nm, and

648 fluorescence emission was monitored at 448 nm. For titrations, MANT-nucleotide was
649 held constant at 300 nM and the protein concentration was varied as indicated,
650 measurements were conducted after 30 minutes incubation at room temperature.
651

652 **High-speed pelleting assay**

653 Interactions between DRP1, actin and MiD49 were tested in the S200 buffer; 1.3 μ M
654 DRP1, 1 μ M actin, and 4 μ M MFF were mixed as described and were incubated for 1 hr at
655 room temperature in a 100 μ l volume. After incubation, samples were centrifuged at
656 80,000 rpm for 20 min at 4°C in a TLA-100.1 rotor (Beckman). The supernatant was
657 carefully removed. Pellets were washed three times with S200 buffer and then
658 resuspended in 100 μ l of SDS-PAGE sample buffer and resolved by SDS-PAGE (LC6025;
659 Invitrogen, Carlsbad, CA). Gels were stained with Coomassie Brilliant Blue R-250
660 staining (1610400, Bio-Rad, Hercules, CA), and band intensity was analyzed using ImageJ
661 software.
662

663 **HPLC analysis of long-chain Acyl-CoA esters.**

664 HPLC analysis was performed as previously described with modifications⁴⁴. A Betasil C18
665 column (150 x 4.6 mm) from Thermo (0711365H; Thermo Fisher Scientific, Waltham,
666 MA) was used. The two mobile-phase solvents were 25 mM KH₂PO₄, pH 5.3 (pump A) and
667 acetonitrile (pump B). Column was equilibrated in 95% pump A/5% pump B at 2 mL/min.
668 A discontinuous gradient for elution of long-chain acyl-CoA esters was divided into four
669 steps. Step 1: 95%/5% to 70%/30% over 5 min. Step 2: 70%/30% to 60%/40% over 2.5
670 min. Step 3: 60%/40% to 54%/46% over 4.5 min. Step 4: 54%/46% to 38%/62% over 2.5
671 min, then held for an additional 2.5 min at 38%/62% before re-equilibration by a 5 min
672 reversed-flow gradient. The volume of the sample injected was 200 μ L. The acyl-CoA
673 esters were detected at 260 nm. Quantitation was based on peak areas.
674

675 **Phosphate Assay**

676 Fractions from Superose 6 size exclusion chromatography were assayed for phosphate
677 content as follows. The fraction (0.4 mL) was mixed with 0.1 mL of 70% perchloric acid
678 (Sigma-Aldrich 244252) in a 13x100 mm glass tube, and heated to 190°C for 20 min. After
679 cooling, the following were added: 0.6 mL water, 0.25 mL molybdate solution (1.25%
680 ammonium molybdate in 2.5 N sulfuric acid), and 0.06 mL Fiske-Subbarow reducer
681 (Sigma-Aldrich 46345, 16% solution in water). Sample heated to 90°C for 20 min. After
682 cooling, absorbance at 820 nm recorded. Phosphate content determined against
683 standard curve of sodium phosphate, and converted to coenzyme A content by dividing
684 by 3. This assay provides linear detection of inorganic phosphate from 1.5-40 nmole,
685 and displays near-100% detection of known amounts of palmitoyl-CoA.
686

687 **Negative-stain transmission electron microscopy**

688 Negative-stain TEM grids of purified MiD49 and MiD51 were prepared following an
689 established protocol (Booth et al. PMID: 22215030). Briefly, 4ul of the sample at a
690 concentration range of 0.1 – 0.4 mg/ml was applied to a glow-discharged 400 mesh
691 copper grid coated with a continuous thin carbon film (prepared in house), blotted with
692 filter paper, and then stained with freshly prepared 0.75% (w/v) uranyl formate. Grids
693 were visualized at room temperature using a Tecnai T12 Spirit (FEI) equipped with an
694 AMT 2k x 2k side-mounted CCD camera and operated at a voltage of 100 kV. Images were
695 recorded at a nominal magnification range of 120,000-150,000x at the sample level with
696 a calibrated pixel size range of 5.28-4.22 Å per pixel. Particle dimensions were measured
697 by cropping 150x150 nm boxes from the original fields, and then determining the length
698 of the longest and shortest axis for each particle manually.

699

700 **Cell culture and transfections**

701 Human cervical cancer HeLa cells were purchased from ATCC (CCL-2) and grown in
702 DMEM (Corning; 10-013-CV) supplemented with 10% fetal bovine serum (F4135; Sigma).
703 Cells were cultivated at 37°C with 5% CO₂. For plasmid transfections, cells were seeded
704 at 4 × 10⁵ cells per 35 mm well 24 h before transfection. Transfections were performed in
705 OPTI-MEM medium (Life Technologies; 31985062) with 2 µl of Lipofectamine 2000
706 (Invitrogen; 11668) per well for 6 h, followed by trypsinization and replating onto
707 coverslips or glass-bottomed dishes (MatTek Corporation; P35G-1.5-14-C) at a cell
708 density of ~2 × 10⁵ cells per well. For MiD51 plasmid transfections carried out in wildtype
709 HeLa cells 50 ng of each plasmid were transfected, respectively. For live-cell time-lapse
710 acquisition, 100 ng of mito-plum were co-transfected with 50 ng of the respective MiD49
711 or 51 constructs.

712 For siRNA transfections, 1 × 10⁵ cells for control knockdown and 1.5 × 10⁵ cells for
713 MiD49/51 or DRP1 knockdown were plated on 6-well plates, and 2 µl RNAi max
714 (Invitrogen; 13778) and 63 pmol of each siRNA was used per well. Since MiD51 constructs
715 were not sequence-modified for RNAi-resistance, 150 ng of the respective GFP-tagged
716 MiD51 plasmids were used in MiD49/51 siRNA-treated cells. For these rescue
717 experiments, siRNA-treated cells were transfected with 150 ng of respective MiD51
718 plasmids and 2 µl Lipofectamine 2000 ~48 h after siRNAs have been transfected. Overall,
719 cells were fixed and analyzed 72 h post siRNA-transfection.

720

721 **Western blotting and antibodies**

722 For preparation of whole-cell extracts, confluent cell layers in 35 mm dishes were washed
723 3× with phosphate-buffered saline (PBS), lysed using ~350 µl of 1×DB (50 mM Tris-HCl,
724 pH 6.8, 2 mM EDTA, 20%glycerol, 0.8% SDS, 0.02% bromophenol blue, 1000 mM NaCl, 4
725 M urea), and boiled for 5 min at 95°C, and genomic DNA was sheared using a 27×G
726 needle. Proteins were separated by standard SDS-PAGE and transferred to a PVDF
727 (polyvinylidene difluoride) membrane (Millipore). The membrane was blocked with TBS-
728 T (20 mM Tris-HCl, pH 7.6, 136 mM NaCl, and 0.1% Tween-20) containing 3% bovine

729 serum albumin for 1 h and then incubated with the primary antibody solution at 4°C
730 overnight. Primary antibodies used were as follows: MiD51 (rabbit; 20164-1-AP;
731 Proteintech; 1:1000), GFP (rabbit, self-made, 1:1000), DRP1 (mouse; 611112; BD
732 Transduction Laboratories; 1:1000), GAPDH (G-9, mouse; Santa Cruz Biotechnology;
733 1:500), actin (mouse; mab1501R; Millipore; 1:1000), tubulin (DM1- α , mouse; T9026;
734 Sigma; 1:10,000). After being washed with TBS-T, the membrane was incubated with
735 horseradish peroxidase (HRP)-conjugated secondary antibodies (goat anti mouse
736 #1721011; Bio-Rad or goat anti rabbit #1706515; BioRad) for 1 h at room temperature.
737 Chemiluminescence signals were detected upon incubation with ECL Prime Western
738 Blotting Detection Reagent (45-002-40; Cytiva Amersham) and recorded with an ECL
739 Chemocam imager (SYNGENE G:BOX Chemi XRQ). For LI-COR Western blots,
740 membranes were incubated with either IRDye 680 goat anti-mouse (926-68070; LI-COR),
741 IRDye 800CW goat anti-rabbit (926-32211; LI-COR), or IRDye 680 donkey anti-chicken
742 (926-68075) secondary antibodies for 1 h at room temperature. Signals were detected
743 using the LI-COR Odyssey CLx imaging system.

744

745 **Immunofluorescence staining**

746 For immunolabeling of proteins of interest, cells were seeded subconfluently on
747 fibronectin (F1141; Sigma)-coated (1:100 in PBS) coverslips (72222-01; Electron
748 Microscopy Sciences) in 35 mm dishes and allowed to spread overnight. On the following
749 day, cells were fixed in pre-warmed 4% paraformaldehyde (PFA; 15170; Electron
750 Microscopy Sciences) in PBS for 20 min followed by three PBS washes. Then, cells were
751 permeabilized with 0.1% Triton X-100 in PBS for 1 min and washed 3x with PBS. Before
752 antibody staining, cells were blocked with 10% calf serum in PBS for ~30 min. Primary
753 antibodies were diluted in 1% calf serum in PBS and incubated for 1 h. Mitochondria were
754 visualized using a primary antibody against the OMM protein Tom20 (rabbit; ab78547;
755 Abcam; 1:200). DRP1 was stained using DRP1 primary antibody (mouse; 611112; BD
756 Transduction Laboratories; 1:50). Coverslips were washed several times in PBS and
757 incubated with secondary antibody solution for 45 min. Either anti-rabbit Texas Red (TI-
758 1000; Vector Laboratories; 1:300), anti-mouse Texas Red (TI-2000; Vector Laboratories;
759 1:300) or anti-rabbit Alexa Fluor 405 (A31556; Invitrogen; 1:300) were used as secondary
760 antibodies. Coverslips were washed in PBS and fixed on glass slides using ProLong Gold
761 antifade mounting media (P36930; Invitrogen).

762

763 **2-bromopalmitate treatment**

764 A 100 mM stock of 2-bromopalmitic acid (2-BP, Sigma-Aldrich 248422) or methyl-
765 palmitate (MP, Sigma-Aldrich P5177) was made in DMSO, and diluted to 150 μ M in
766 DMEM+10% fetal bovine serum that had been pre-equilibrated overnight to 37°C/5% CO₂
767 immediately prior to use. HeLa cells (80-90% confluent) were treated for 1 hr with this
768 150 μ M 2-BP stock or MP as control. Cells were then fixed and stained as indicated above.

769

770 **Confocal microscopy**

771 Imaging was performed on a Dragonfly 302 spinning-disk confocal (Andor Technology)
772 on a Nikon Ti-E base and equipped with an iXon Ultra 888 EMCCD camera, and a Zyla
773 4.2 Mpixel sCMOS camera, and a Tokai Hit stage-top incubator was used. A solid-state
774 405 smart diode 100-mW laser, solid-state 488 OPSL smart laser 50-mW laser, solid-state
775 560 OPSL smart laser 50-mW laser, and a solid-state 637 OPSL smart laser 140-mW laser
776 were used (objective: 100 × 1.4 NA CFI Plan Apo; Nikon). Images were acquired using
777 Fusion software (Andor Technology). Live-cell imaging was performed in DMEM (21063-
778 029; Life Technologies) with 25 mM D-glucose, 4 mM D-glutamine, and 25 mM HEPES,
779 supplemented with 10% FBS (F4135; Sigma) on glass-bottomed dishes (MatTek
780 Corporation; P35G-1.5-14-C).

781

782 **Analysis of MiD51 localization patterns on mitochondria**

783 HeLa WT cells were transfected with 50 ng of either GFP-tagged MiD51 WT or various
784 MiD51 mutants harboring a single amino acid exchange within their putative acyl-CoA
785 binding pocket. After ~6 h of transfection, cells were plated on fibronectin-coated
786 coverslips, fixed and stained for Tom20 on the following day. GFP-fusion expression
787 level was assessed by the detectability of GFP signal upon short (<100 msec, <50% laser
788 power) or long (500 msec, 100% laser power) exposure, binning cells into high expression
789 and low expression categories, respectively. Cells were classified in a blinded manner.
790 For low expression, classification was for GFP pattern on mitochondria (punctate or non-
791 punctate). For high expression, classification was for mitochondrial morphology
792 (elongated, collapsed). Respective fractions of cells [%] were plotted in a stacked bar
793 graph. Results combine three independently performed replicates of this experiment.
794 To assess the different localization patterns of MiD51 constructs in a more quantitative
795 manner, the % coverage of the mitochondrial surface by GFP signal, as well as the average
796 size of the GFP signal on the mitochondrion, were determined using ImageJ. 20 μm^2 -
797 sized ROIs with representative MiD51 localization were auto-thresholded for the Tom20
798 staining and converted to binary masks. GFP signals were first processed by background
799 subtraction using ImageJ (math → subtract → value: 500), then converted to a binary
800 mask. Binary images were analyzed using the “analyze particles” tool with settings as
801 follows: size (pixel2) 0.05–infinity, circularity 0.00–1.00. MiD51: Mito area ratios [%] as
802 well as MiD51 average sizes [μm^2] were plotted as box-and-whiskers plots using
803 Microsoft Excel. Data corresponds to three independent experiments.

804

805 **Mitochondrial area quantification**

806 Cells were silenced for both MiD49 and MiD51 and compared to cells treated with a
807 scrambled siRNA. 48 h after siRNA transfections, cells were transfected with 150 ng of
808 GFP-tagged MiD51 construct. Transfected cells were re-plated onto fibronectin-coated
809 coverslips, fixed and stained for Tom20 on the following day. To avoid adverse effects of
810 high MiD51 expression on mitochondria morphology, only cells with low expression

811 levels were used for mitochondrial area analysis (requiring 500 msec exposure with 100%
812 power of the 488 nm laser for GFP detection). For mitochondrial area quantifications, a
813 20 μm^2 -sized ROI of resolvable mitochondria (Tom20 signal) was selected, auto-
814 thresholded, converted to a binary mask and analyzed using the “analyze particles” plug-
815 in in ImageJ to obtain the number of mitochondrial fragments and the area of each
816 fragment per ROI. The data shown as mean mitochondrial area in μm^2 was plotted in a
817 bar graph combining the results of four biological replicates.

818
819 HeLa cells, treated with siRNAs for either DRP1, MiD49/51 or containing a scrambled
820 sequence, were plated on fibronectin-coated coverslips, and treated with growth medium
821 containing either 150 μM 2-BP or MP for 1 h. Afterwards, cells were washed, fixed,
822 stained and subjected to mitochondrial area measurements essentially as described
823 above.

824
825 **Quantification of mitochondrially-associated DRP1 puncta**
826 HeLa cells knocked down for MiD49/51 with or without re-expression of MiD51
827 constructs were analyzed for DRP1 recruitment to mitochondria as well as DRP1 puncta
828 size. Cells were fixed and stained for endogenous DRP1 in combination with Tom20. 20
829 μm^2 -sized ROIs containing resolvable mitochondria in spread cell areas were
830 thresholded using the same contrast settings for the Tom20 staining. DRP1 stainings
831 were first processed by background subtraction using ImageJ (math \rightarrow subtract \rightarrow value:
832 1500), then converted to an 8-bit image. To determine DRP1 recruitment to
833 mitochondria, DRP1 fluorescence signals overlapping with corresponding Tom20
834 staining were measured using the ImageJ “Colocalization” plug-in with the following
835 parameters: ratio 40% (0–100%), threshold channel 1: 50 (0–255), threshold channel 2:
836 50 (0–255), display value (0–255): 255. Colocalized pixels were then converted to a
837 binary mask and analyzed using the “analyze particles” tool with settings as follows: size
838 (pixel2) 0.05–infinity, circularity 0.00–1.00. DRP1: Mito area ratios [%] were plotted as
839 box-and-whiskers plots using Microsoft Excel. Furthermore, average DRP1 puncta size
840 [μm^2] was determined from these binary masks using the “analyze particles” plug-in.
841 Three independent experiments were performed.

842
843
844 **Data processing and statistical analyses**
845 For biochemical assays, numerical data were processed and assembled with Kaleidagraph
846 (Synergy Software) and Photoshop CS4 (Adobe). Data analyses were carried out in ImageJ
847 and Excel 2010 (Microsoft). Statistical comparisons were performed with GraphPad
848 Prism 6.01 (Dotmatics) using unpaired t test. A probability of error of 5% ($p \leq 0.05$; * in
849 figure panels) was considered to indicate statistical significance; **, ***, **** indicated
850 p values ≤ 0.01 , 0.001, and 0.0001, respectively.

851

852 For imaging data, brightness and contrast levels were adjusted using ImageJ software.
853 Figures were further processed and assembled with Photoshop CS4. Data analyses were
854 carried out in ImageJ and Microsoft Excel. All statistical analyses and p-value
855 determinations were done using GraphPad Prism 6.01. Data sets were either compared
856 using an unpaired Student's t-test or a One-way Anova multiple comparisons
857 (Dunnett's) test, as indicated in respective figures. A probability of error of 5% ($p \leq 0.05$;
858 * in figure panels) was considered to indicate statistical significance. **, ***, and ****
859 indicate p values ≤ 0.01 , ≤ 0.001 , and ≤ 0.0001 , respectively.

860

861 **Data Availability**

862 No datasets were generated in this study. Primary data that was analyzed in this study
863 are included in this published article (and its supplementary information files), or
864 available from the corresponding author on reasonable request. The latter data include
865 the primary analytical ultracentrifugation files.

866 **Acknowledgements**

867 We thank Asan Abdulkareem, Mac Pholo Aguirre Huamani, Jose Delgado, Sam Liu,
868 Zdenek Svyndrych and Andreia Isabel Ferreira Verissimo for much appreciated help
869 during these investigations. We also thank Ajit Divakaruni and Anthony Jones for advice
870 on acyl-CoA extraction methods from cells, and Cy Ocala for stimulating interaction.
871 This work was supported by NIH R35 GM122545 and R01 DK088826 to HNH, NIH P20
872 GM113132 to the Dartmouth BioMT, and by the Deutsche Forschungsgemeinschaft
873 (DFG) fellowship KA5106/1-1 (418076373) to FK.

874 **References:**

- 876 1. Chan, D. C. Mitochondrial Dynamics and Its Involvement in Disease. *Annu. Rev. Pathol. Mech. Dis.* **15**, 235–259 (2020).
- 877 2. Kraus, F., Roy, K., Pucadyil, T. J. & Ryan, M. T. Function and regulation of the divisome for mitochondrial fission. *Nature* vol. 590 57–66 (2021).
- 878 3. Ngo, J. *et al.* Mitochondrial morphology controls fatty acid utilization by changing CPT1 sensitivity to malonyl-CoA. *EMBO J.* e111901 (2023) doi:10.15252/embj.2022111901.
- 879 4. Pickles, S., Vigié, P. & Youle, R. J. Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance. *Current Biology* vol. 28 R170–R185 (2018).
- 880 5. König, T. *et al.* MIROs and DRP1 drive mitochondrial-derived vesicle biogenesis and promote quality control. *Nat. Cell Biol.* **23**, 1271–1286 (2021).
- 881 6. Fröhlich, C. *et al.* Structural insights into oligomerization and mitochondrial remodelling of dynamin 1-like protein. *EMBO J.* **32**, 1280–1292 (2013).
- 882 7. Koirala, S. *et al.* Interchangeable adaptors regulate mitochondrial dynamin assembly for membrane scission. *Proc. Natl. Acad. Sci.* **110**, 1342–1351 (2013).
- 883 8. Bui, H. T. & Shaw, J. M. Dynamin assembly strategies and adaptor proteins in mitochondrial fission. *Curr. Biol.* **23**, 891–899 (2013).
- 884 9. Gandre-Babbe, S. & van der Bliek, A. M. The Novel Tail-anchored Membrane Protein Mff Controls Mitochondrial and Peroxisomal Fission in Mammalian Cells. *Mol. Biol. Cell* **19**, 2402–2412 (2008).
- 885 10. Otera, H. *et al.* Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. *J. Cell Biol.* **191**, 1141–1158 (2010).
- 886 11. Losón, O. C., Song, Z., Chen, H. & Chan, D. C. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. *Mol. Biol. Cell* **24**, 659–667 (2013).
- 887 12. Shen, Q. *et al.* Mutations in Fis1 disrupt orderly disposal of defective mitochondria. *Mol. Biol. Cell* **25**, 145–59 (2014).
- 888 13. Otera, H., Miyata, N., Kuge, O. & Mihara, K. Drp1-dependent mitochondrial fission via MiD49/51 is essential for apoptotic cristae remodeling. *J. Cell Biol.* **212**, 531–544 (2016).
- 889 14. Osellame, L. D. *et al.* Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission. *J. Cell Sci.* **129**, 2170–2181 (2016).
- 890 15. Palmer, C. S. *et al.* MiD49 and MiD51, new components of the mitochondrial fission machinery. *EMBO Rep.* **12**, 565–573 (2011).
- 891 16. Zhao, J. *et al.* Human MIEF1 recruits Drp1 to mitochondrial outer membranes and promotes mitochondrial fusion rather than fission. *EMBO J.* **30**, 2762–2778 (2011).

915 17. Palmer, C. S. *et al.* Adaptor proteins MiD49 and MiD51 can act independently of
916 Mff and Fis1 in Drp1 recruitment and are specific for mitochondrial fission. *J.*
917 *Biol. Chem.* **288**, 27584–27593 (2013).

918 18. Elgass, K. D., Smith, E. A., LeGros, M. A., Larabell, C. A. & Ryan, M. T. Analysis of
919 ER-mitochondria contacts using correlative fluorescence microscopy and soft X-
920 ray tomography of mammalian cells. *J. Cell Sci.* (2015) doi:10.1242/jcs.169136.

921 19. Richter, V. *et al.* Structural and functional analysis of mid51, a dynamin receptor
922 required for mitochondrial fission. *J. Cell Biol.* (2014) doi:10.1083/jcb.201311014.

923 20. Losón, O. C. *et al.* The mitochondrial fission receptor MiD51 requires ADP as a
924 cofactor. *Structure* **22**, 367–377 (2014).

925 21. Losón, O. C. *et al.* Crystal structure and functional analysis of MiD49, a receptor
926 for the mitochondrial fission protein Drp1. *Protein Sci.* (2015)
927 doi:10.1002/pro.2629.

928 22. Clinton, R. W., Francy, C. A., Ramachandran, R., Qi, X. & Mears, J. A. Dynamin-
929 related protein 1 oligomerization in solution impairs functional interactions with
930 membrane-anchored mitochondrial fission factor. *J. Biol. Chem.* **291**, 478–492
931 (2016).

932 23. Kamerkar, S. C., Kraus, F., Sharpe, A. J., Pucadyil, T. J. & Ryan, M. T. Dynamin-
933 related protein 1 has membrane constricting and severing abilities sufficient for
934 mitochondrial and peroxisomal fission. *Nat. Commun.* **9**, 1–15 (2018).

935 24. Liu, A., Kage, F. & Higgs, H. N. Mff oligomerization is required for Drp1
936 activation and synergy with actin filaments during mitochondrial division. *Mol.*
937 *Biol. Cell* **32**, (2021).

938 25. Ji, W. K., Hatch, A. L., Merrill, R. A., Strack, S. & Higgs, H. N. Actin filaments
939 target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial
940 fission sites. *Elife* **4**, e11553 (2015).

941 26. Hatch, A. L., Ji, W. K., Merrill, R. A., Strack, S. & Higgs, H. N. Actin filaments as
942 dynamic reservoirs for Drp1 recruitment. *Mol. Biol. Cell* **27**, 3109–3121 (2016).

943 27. Korobova, F., Ramabhadran, V. & Higgs, H. N. An actin-dependent step in
944 mitochondrial fission mediated by the ER-associated formin INF2. *Science* (80-.).
945 **339**, 464–467 (2013).

946 28. Chakrabarti, R. *et al.* INF2-mediated actin polymerization at the ER stimulates
947 mitochondrial calcium uptake, inner membrane constriction, and division. *J. Cell*
948 *Biol.* **217**, 251–268 (2018).

949 29. Liesa, M. & Shirihi, O. S. Mitochondrial dynamics in the regulation of nutrient
950 utilization and energy expenditure. *Cell Metabolism* vol. 17 491–506 (2013).

951 30. Constantinides, P. P. & Steim, J. M. Physical properties of fatty acyl-CoA. Critical
952 micelle concentrations and micellar size and shape. *J. Biol. Chem.* **260**, 7573–7580
953 (1985).

954 31. Davda, D. *et al.* Profiling targets of the irreversible palmitoylation inhibitor 2-
955 bromopalmitate. *ACS Chem. Biol.* **8**, 1912–1917 (2013).

956 32. Pinkosky, S. L. *et al.* Long-chain fatty acyl-CoA esters regulate metabolism via
957 allosteric control of AMPK $\beta 1$ isoforms. *Nat. Metab.* **2**, 873–881 (2020).

958 33. Kalia, R. *et al.* Structural basis of mitochondrial receptor binding and constriction
959 by DRP1. *Nat. 2018 5587710 558*, 401–405 (2018).

960 34. Manor, U. *et al.* A mitochondria-anchored isoform of the actin-nucleating spire
961 protein regulates mitochondrial division. *Elife* **4**, (2015).

962 35. Liu, R. & Chan, D. C. The mitochondrial fission receptor Mff selectively recruits
963 oligomerized Drp1. *Mol. Biol. Cell* **26**, 4466–4477 (2015).

964 36. Kleele, T. *et al.* Distinct fission signatures predict mitochondrial degradation or
965 biogenesis. *Nature* **593**, 435–439 (2021).

966 37. Houten, S. M., Violante, S., Ventura, F. V. & Wanders, R. J. A. The Biochemistry
967 and Physiology of Mitochondrial Fatty Acid β -Oxidation and Its Genetic
968 Disorders. *Annual Review of Physiology* vol. 78 23–44 (2016).

969 38. Frigini, E. N., Barrera, E. E., Pantano, S. & Porasso, R. D. Role of membrane
970 curvature on the activation/deactivation of Carnitine Palmitoyltransferase 1A: A
971 coarse grain molecular dynamic study. *Biochim. Biophys. Acta - Biomembr.* **1862**,
972 183094 (2020).

973 39. Rao, J. N., Warren, G. Z. L., Estolt-Povedano, S., Zammit, V. A. & Ulmer, T. S. An
974 environment-dependent structural switch underlies the regulation of carnitine
975 palmitoyltransferase 1A. *J. Biol. Chem.* **286**, 42545–42554 (2011).

976 40. Zhu, Y. *et al.* Carnitine palmitoyltransferase 1A promotes mitochondrial fission
977 by enhancing MFF succinylation in ovarian cancer. *Commun. Biol.* **6**, 1–14 (2023).

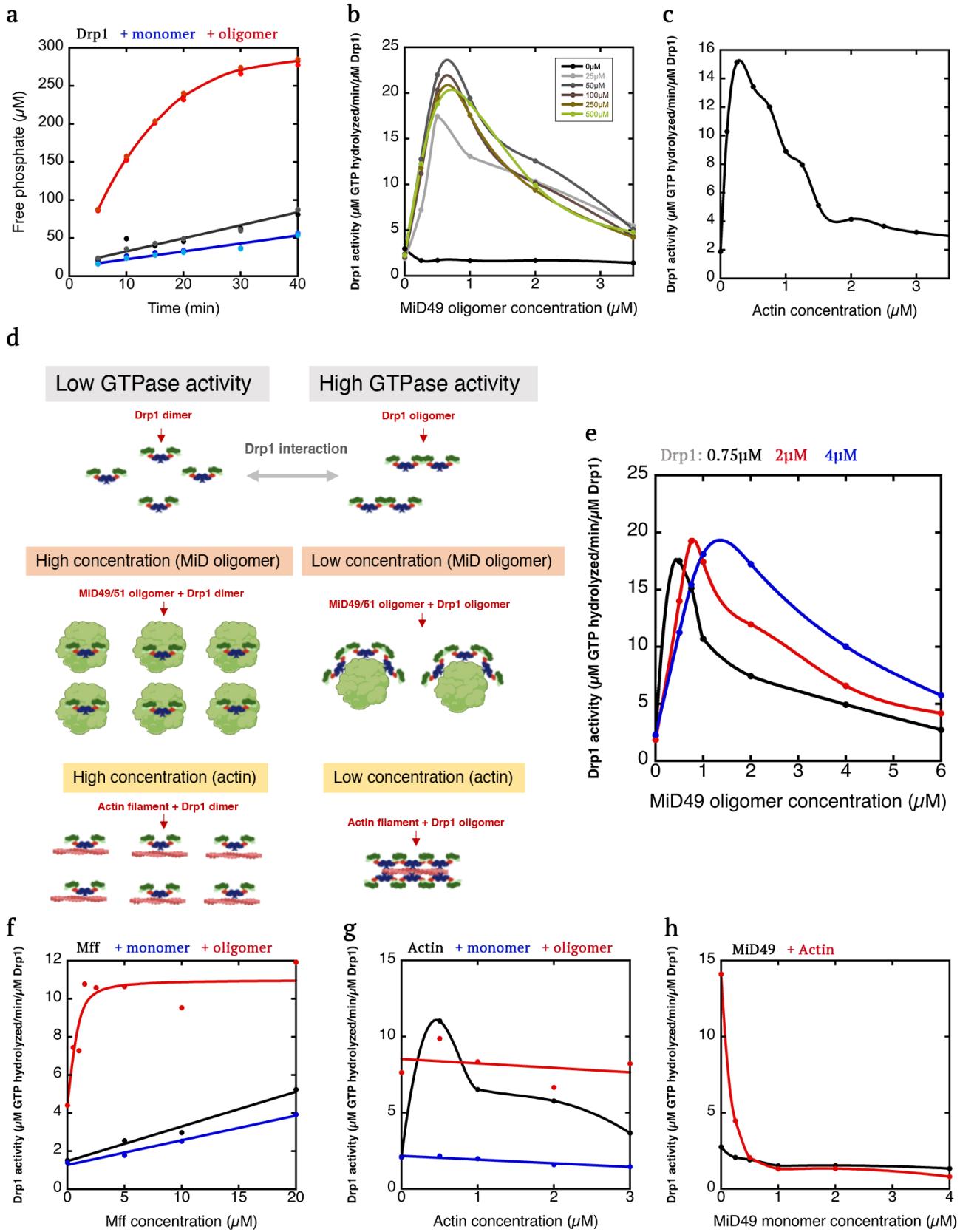
978 41. He, J. *et al.* The acyl-CoA-binding protein Acb1 regulates mitochondria, lipid
979 droplets, and cell proliferation. *FEBS Lett.* **596**, 1795–1808 (2022).

980 42. Hunkeler, M. *et al.* Structural basis for regulation of human acetyl-CoA
981 carboxylase. *Nature* **558**, 470–474 (2018).

982 43. Spudich, J. A. & Watt, S. The regulation of rabbit skeletal muscle contraction. I.
983 Biochemical studies of the interaction of the tropomyosin-troponin complex with
984 actin and the proteolytic fragments of myosin. *J. Biol. Chem.* **246**, 4866–4871
985 (1971).

986 44. Woldegiorgis, G., Spennetta, T., Corkey, B. E., Williamson, J. R. & Shrago, E.
987 Extraction of tissue long-chain acyl-CoA esters and measurement by reverse-
988 phase high-performance liquid chromatography. *Anal. Biochem.* **150**, 8–12
989 (1985).

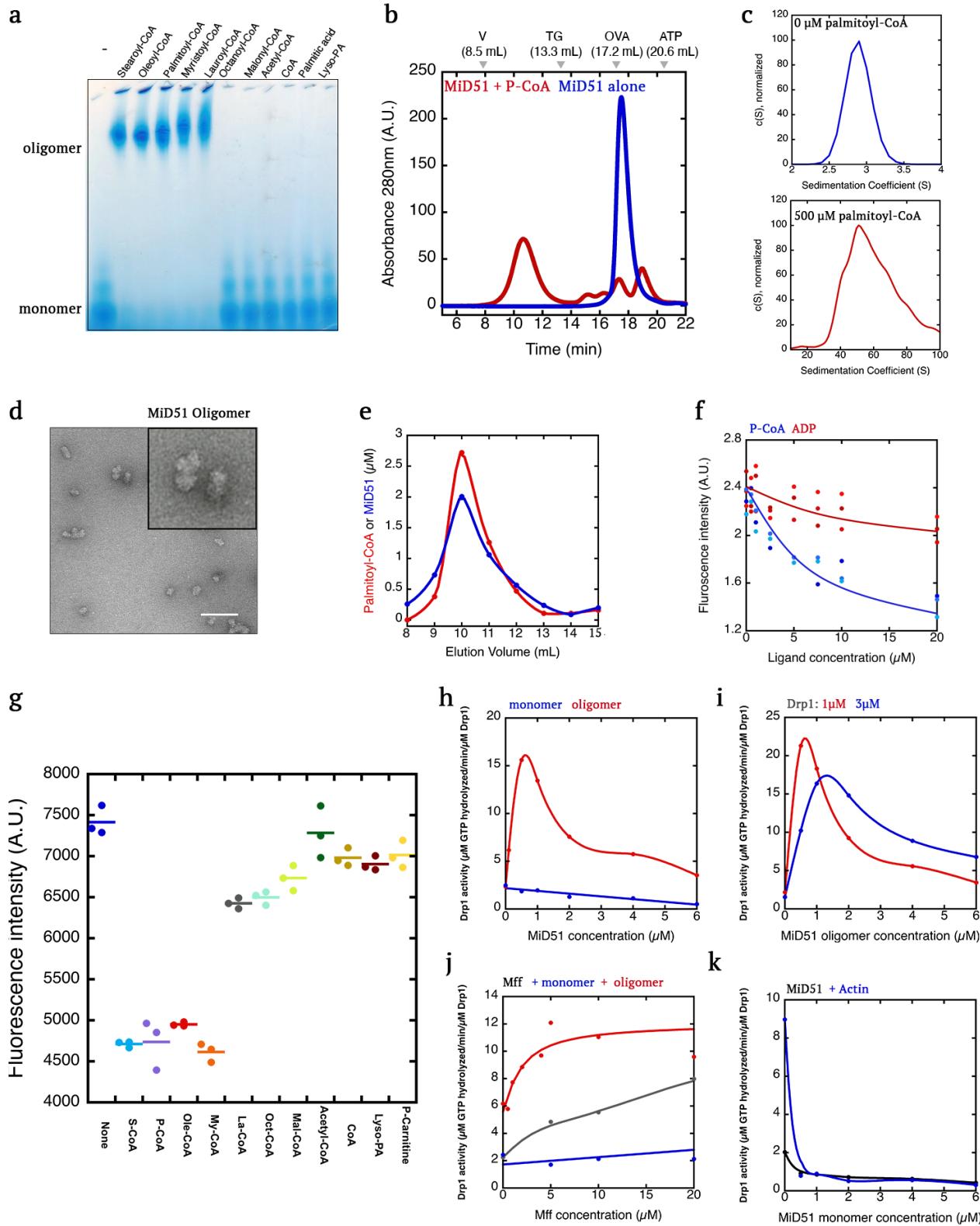
990


991

Liu et al

DRP1 receptor binding Fatty acyl-CoA

993 **Fig. 1: Long-chain acyl CoA induces MiD49 oligomerization.**
994 **a**, Surface model of human MiD51 with bound ADP (PDB 4NXW, left) and murine MiD49
995 without bound ligand (PDB 4WOY, right). Residues lining the binding pocket in pink. **b**,
996 Configurations of ADP and GDP bound to human MiD51, from PDB 4NXW and 4NXX. **c**,
997 Blue-native gel electrophoresis of MiD49 cytoplasmic region (100 μ M) mixed with 500
998 μ M of the indicated purine-containing compounds. **d**, Blue-native gel electrophoresis
999 of MiD49 cytoplasmic region (100 μ M) mixed with 500 μ M of the indicated molecule. **e**,
1000 Bond-line formulas comparing ADP, CoA, acetyl-CoA, palmitoyl-CoA and palmitate. **f**,
1001 Size exclusion chromatography of MiD49 (100 μ M) incubated with the indicated
1002 concentrations of palmitoyl-CoA. Peak shown is near the void volume of the Superose 6
1003 column, indicative of a high molecular weight species. Full chromatogram in Extended
1004 Data Fig. 1c. **g**, Velocity analytical ultracentrifugation of peak fractions from Superose 6
1005 size exclusion chromatography of MiD49 cytoplasmic region (100 μ M) incubated without
1006 or with palmitoyl-CoA (100 μ M). Sedimentation coefficients shown (2.9 and 82 S for 0
1007 and 100 μ M palmitoyl-CoA, respectively). C(S) normalized to the maximum peak value.
1008 Extended Data Fig. 1d shows molecular mass conversion. **h**, Negative stain electron
1009 microscopy of the void fraction from the 50 μ M palmitoyl-CoA condition or the late-
1010 eluting fraction from the 0 μ M palmitoyl-CoA condition from panel F. Scale bar, 150 nm.
1011
1012


1014 **Fig. 2: LCACA-induced MiD49 oligomers activate Drp1 in a synergistic manner with Mff.**

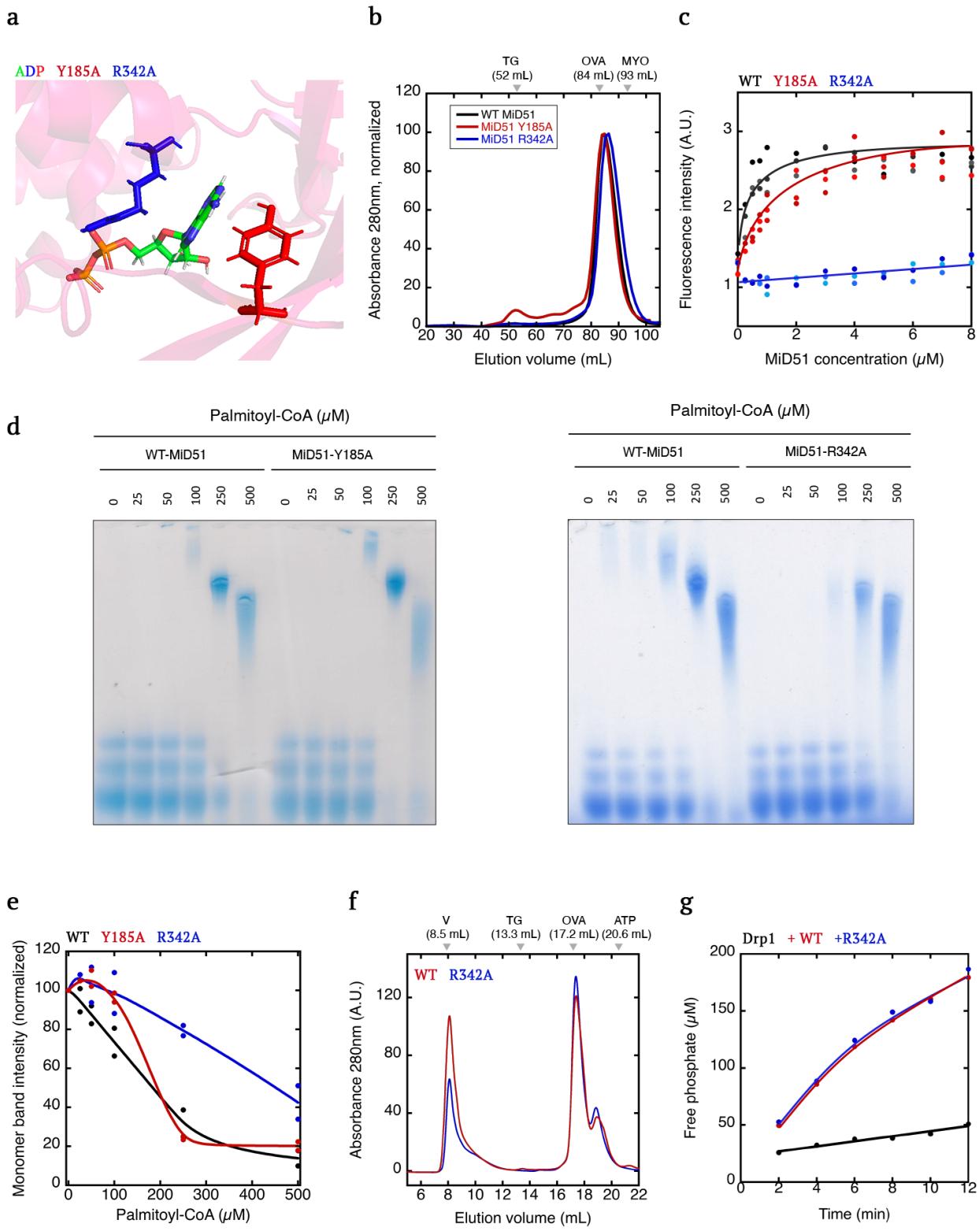
1015 **a**, Drp1 GTPase assays (0.75 μ M Drp1) alone (black points) or in the presence of 0.5 μ M
1016 MiD49 oligomers (red) or monomers (blue). MiD49 oligomers from the 50 μ M palmitoyl-
1017 CoA condition described in panel b. **b**, Effect of varying concentrations of MiD49
1018 oligomers (assembled from mixtures of 100 μ M MiD49 and varying concentrations of
1019 palmitoyl-CoA (given in μ M) on Drp1 GTPase activity (0.75 μ M Drp1). Concentration
1020 effect of MiD49 monomers also shown. **c**, Effect of varying concentrations of actin
1021 filaments on Drp1 GTPase activity (0.75 μ M Drp1). **d**, Schematic diagram of effect of
1022 MiD49 oligomers or actin filaments on Drp1 activity. At low concentration, MiD49
1023 oligomers or actin filaments cause close juxtaposition of bound Drp1, allowing
1024 interaction between G domains and higher GTPase activity. At high concentration, Drp1
1025 molecules are no longer juxtaposed, so that increased GTPase activity does not occur. **e**,
1026 Effect of varying concentrations of MiD49 oligomers (assembled from mixtures of 100
1027 μ M MiD49 and 50 μ M palmitoyl-CoA) on Drp1 GTPase activity at 0.75, 2 and 4 μ M Drp1.
1028 **f**, Effect of varying concentrations of Mff on Drp1 GTPase activity (0.75 μ M Drp1) in the
1029 absence or presence of 250 nM MiD49 oligomers (red) or monomers (blue). Full curve to
1030 100 μ M Mff shown in Extended Data 5c. **g**, Effect of varying concentrations of actin
1031 filaments on Drp1 GTPase activity (0.75 μ M Drp1) in the absence (black) or presence of
1032 100 nM MiD49 oligomers (red) or monomers (blue). **h**, Effect of varying concentrations
1033 of MiD49 monomers on Drp1 GTPase activity (0.75 μ M Drp1) in the absence (black) or
1034 presence (red) of 500 nM actin filaments.

1035
1036
1037

Liu et al

DRP1 receptor binding Fatty acyl-CoA

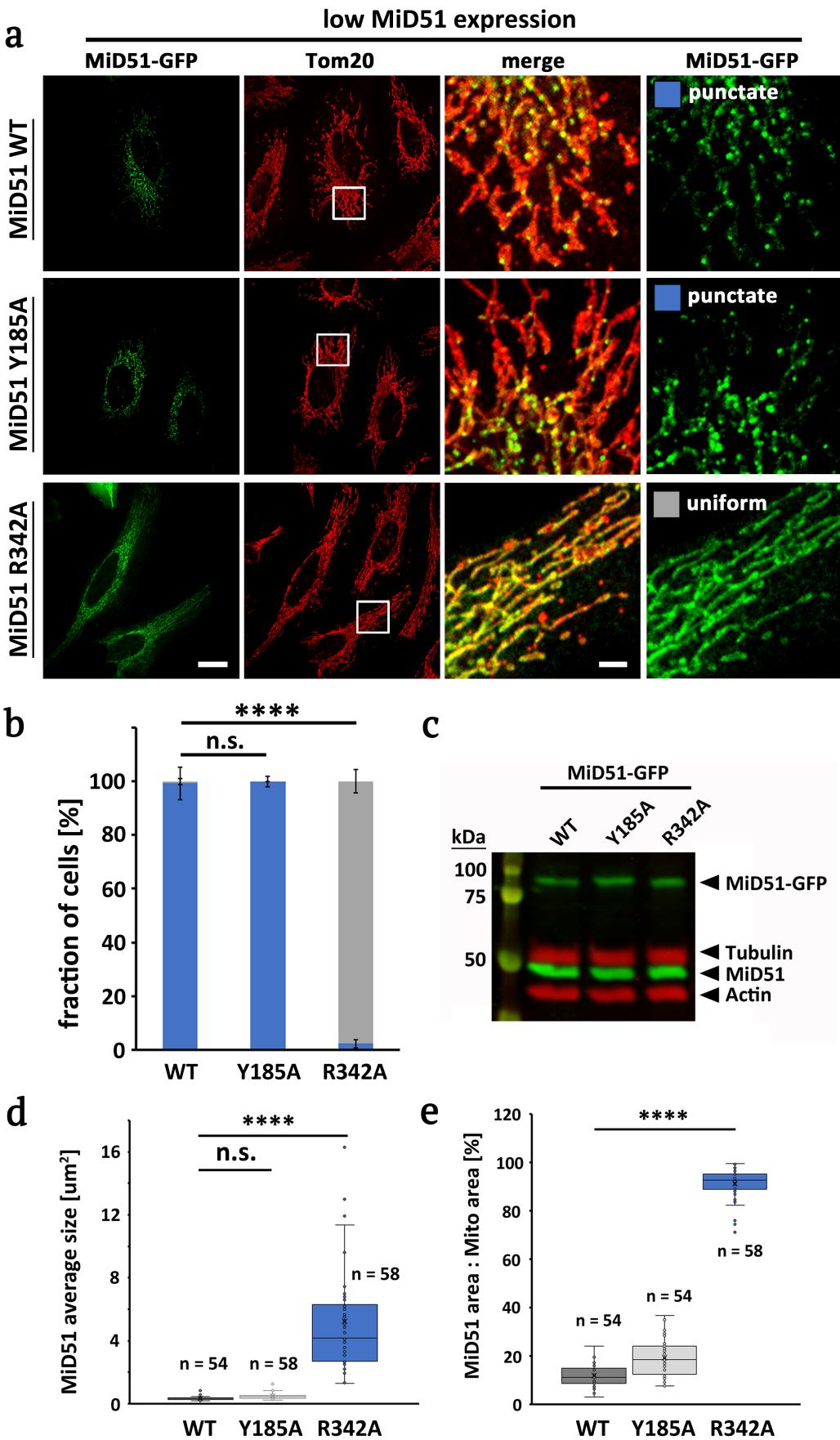
1039 **Fig. 3. MiD51 oligomerizes in the presence of long-chain acyl-CoA.**


1040 **a**, Blue-native gel electrophoresis of MiD51 cytoplasmic region (50 μ M) alone or in the
1041 presence of 500 μ M of the indicated molecules. **b**, Size-exclusion chromatography
1042 (Superose 6) of MiD51 (50 μ M) alone or in the presence of 500 μ M palmitoyl-CoA. **c**,
1043 Velocity analytical ultracentrifugation of the MiD51 oligomer peak from panel B (left)
1044 and the un-treated MiD51 monomer (right). MiD51 polypeptide concentration 5 μ M in
1045 both cases. Calculated mass distribution shown in Extended Data Fig. 6c. **d**, Negative-
1046 stained electron micrograph of a representative particle from the MiD51 oligomer peak
1047 from panel B. More examples in Extended Data Fig. 2. **e**, Quantification of palmitoyl-
1048 CoA (phosphate assay) and MiD51 (Bradford assay) concentrations across the oligomer
1049 peak from panel b. **f**, MANT-ADP competition assay in which 300 nM MANT-ADP and
1050 1 μ M MiD51 are mixed with varying concentrations of palmitoyl-CoA (blue) or ADP (red)
1051 and the fluorescence intensity monitored. **g**, MANT-ADP competition assays in which
1052 300 nM MANT-ADP and 1 μ M MiD51 are mixed with 20 μ M of the indicated molecule
1053 and the fluorescence intensity monitored. S-, P-, O-, M-, L-, Oct- and Mal- indicate
1054 stearoyl, palmitoyl, oleoyl, myristoyl, lauroyl-, octanoyl-, and malonyl-, respectively. **h**,
1055 Effect of varying concentrations of MiD51 oligomers on Drp1 GTPase activity (0.75 μ M
1056 Drp1). Concentration effect of MiD51 monomers also shown. **i**, Similar experiment to
1057 that in Panel B, using two concentrations of Drp1, 1 μ M and 3 μ M. **j**, Effect of varying
1058 concentrations of Mff on Drp1 GTPase activity (0.75 μ M Drp1) in the absence (gray) or
1059 presence of 100 nM MiD51 oligomers (red) or monomers (blue). **k**, Effect of varying
1060 concentrations of MiD51 monomers on Drp1 GTPase activity (0.75 μ M Drp1) in the
1061 absence (black) or presence (blue) of 500 nM actin filaments.

1062

1063

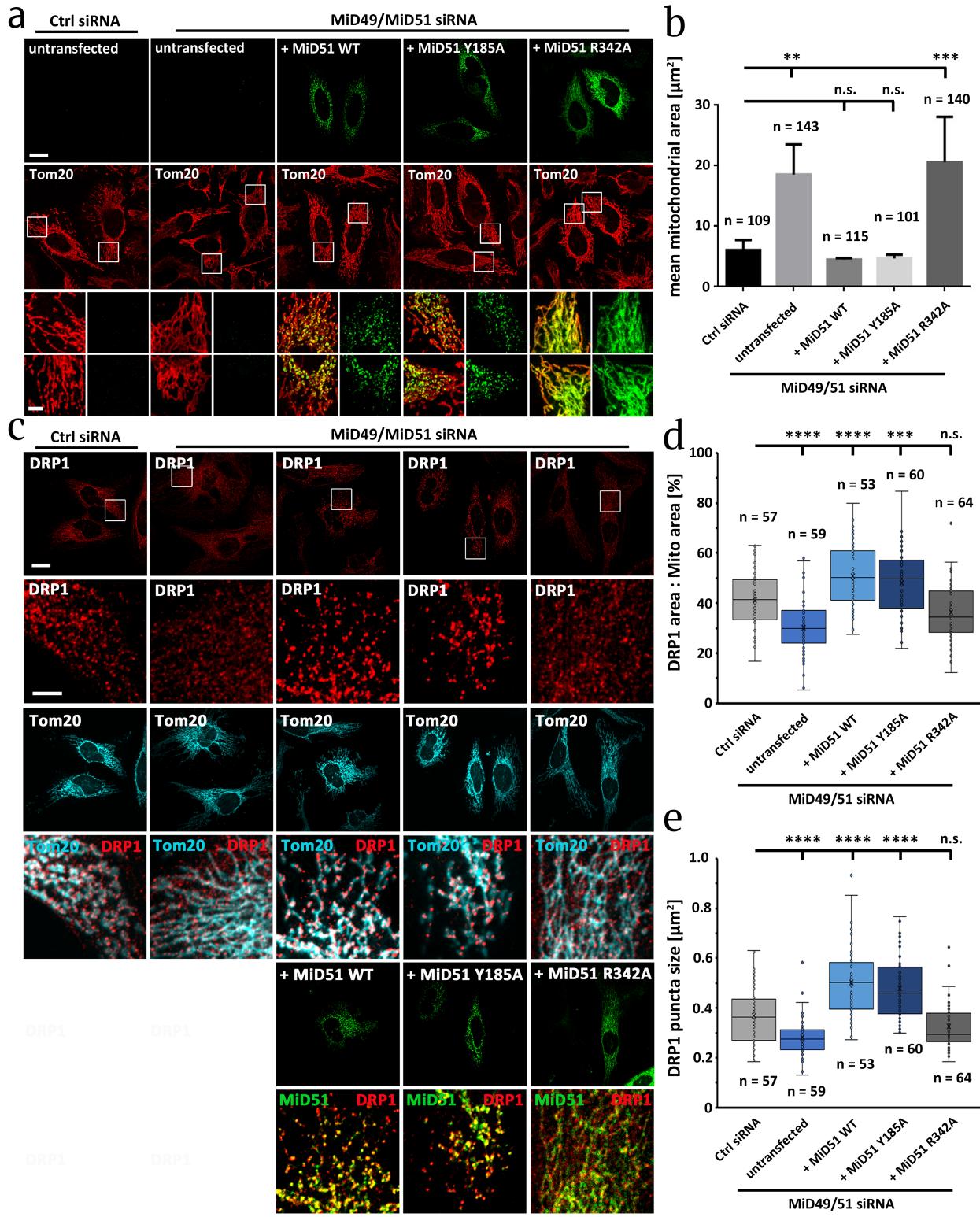
Liu et al


DRP1 receptor binding Fatty acyl-CoA

1064
1065
1066

1067 **Fig. 4. Mutation of R342 in MiD51 reduces LCACA-induced oligomerization.**

1068 **a**, Model of human MiD51 with bound ADP (PDB 4NXW), showing the positions of R342
1069 and Y185. **b**, Superdex 200 size exclusion chromatograms from the bacterial
1070 preparations of MiD51-WT, MiD51-R342A and MiD51-Y185A. Marker positions shown
1071 for: TG, thyroglobulin (660 kDa); OVA, ovalbumin (43 kDa); myoglobin (17 kDa). **c**,
1072 MANT-ADP binding assay in which 300 nM MANT-ADP is mixed with the indicated
1073 concentrations of MiD51-WT, MiD51-R342A or MiD51-Y185A, and the fluorescence
1074 change monitored. **d**, Blue-native gel electrophoresis of MiD51-WT, MiD51-R342A or
1075 MiD51-Y185A (50 μ M) mixed with varying concentrations of palmitoyl-CoA. **e**, Graph
1076 of density of the MiD51 monomer band as a function of palmitoyl-CoA concentration,
1077 from the blue-native gels such as in panel B (two independent gels for each construct).
1078 **f**, Superose 6 size exclusion chromatography of 50 μ M MiD51-WT or MiD51-R342A
1079 mixed with 250 μ M palmitoyl-CoA. Oligomer and monomer peaks indicated. **g**, Drp1
1080 GTPase assays containing Drp1 alone (0.75 μ M, black points) or in the presence of 2 μ M
1081 MiD51-WT (red) or MiD51-R342A (blue).

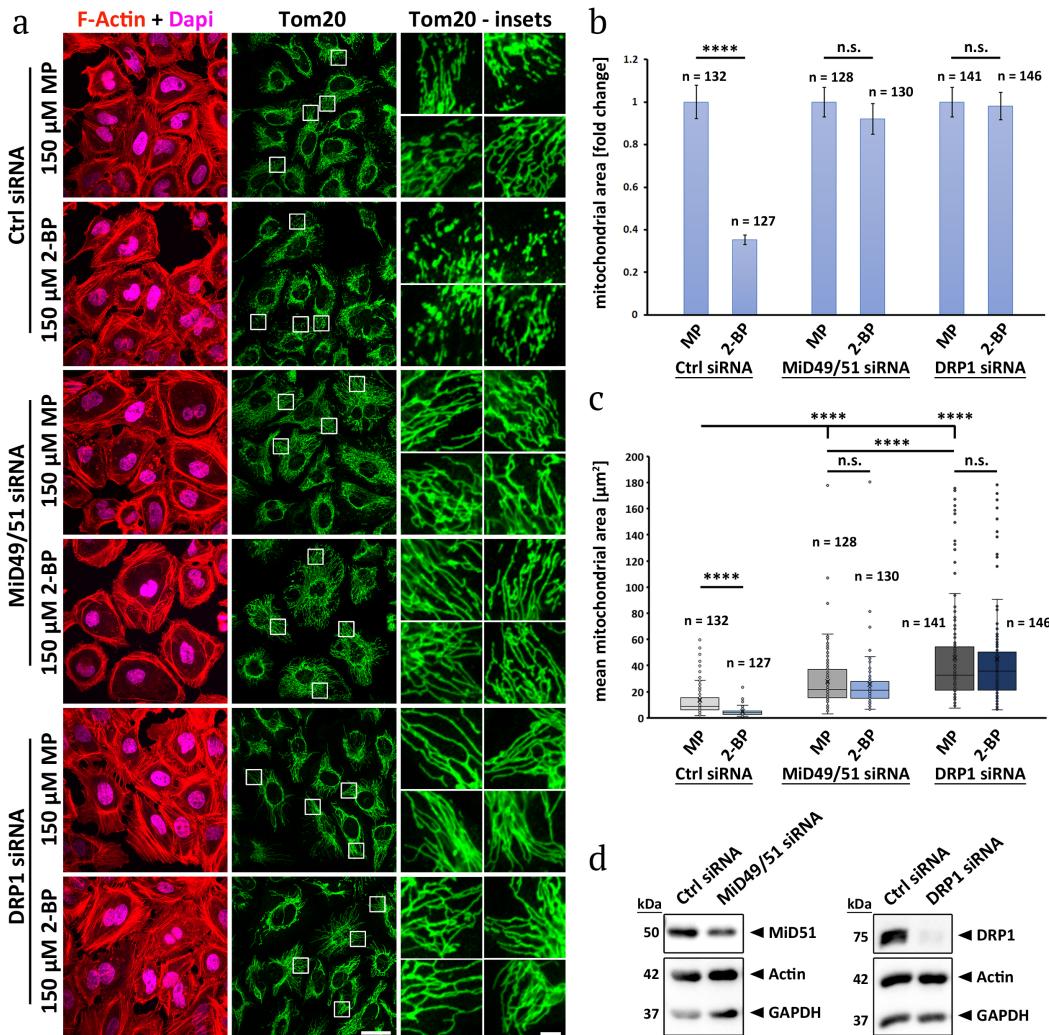


1083 **Fig. 5. Effect of LCACA binding mutant on ability of MiD51 to form puncta in cells.**

1084 **a**, GFP fusion constructs of MiD51-WT, MiD51-Y185A or MiD51-R342A were transiently
1085 transfected into HeLa cells, then cells were fixed and stained for mitochondria (Tom20).
1086 Low-expressing cells shown here (requiring 500 msec exposure at 100% laser power for
1087 GFP). Boxed regions denote insets shown in merges to the right of full images. Scale
1088 bars, 20 μ m in full images and 3 μ m in insets. **b**, Bar graph illustrating % cells displaying
1089 punctate (blue) or uniform (gray) mitochondrial GFP pattern for low-expressing cells.
1090 Representative examples of respective phenotypes are shown on the right. Scale bar is
1091 10 μ m. N = 276, 266, and 281 cells analyzed for MiD51 WT, Y185A, R342A, respectively.
1092 **** denotes p value of ≤ 0.0001 by ANOVA (Dunnett's multiple comparisons) test. n.s.
1093 = not significant (p value > 0.05). **c**, Western blot showing expression levels of GFP-fusion
1094 constructs, versus endogenous MiD51 using anti-MiD51 (green). Actin and tubulin
1095 levels in red. **d**, Box and whiskers plot of average MiD51 puncta size for MiD51-WT,
1096 MiD51-Y185A and MiD51-R342A. Number of cells analyzed per condition denoted by n.
1097 **** indicates a p value of ≤ 0.0001 and n.s. (not significant) corresponds to p > 0.05 by
1098 ANOVA (Dunnett's multiple comparisons) test. **e**, Box and whiskers plot of %
1099 mitochondrial area covered by MiD51 staining, for MiD51-WT, MiD51-Y185A and
1100 MiD51-R342A. Number of cells analyzed per condition denoted by n. **** indicates a p-
1101 value of ≤ 0.0001 by ANOVA (Dunnett's multiple comparisons) test. Bars in panels b, d
1102 and e represent standard error of the mean.

1103

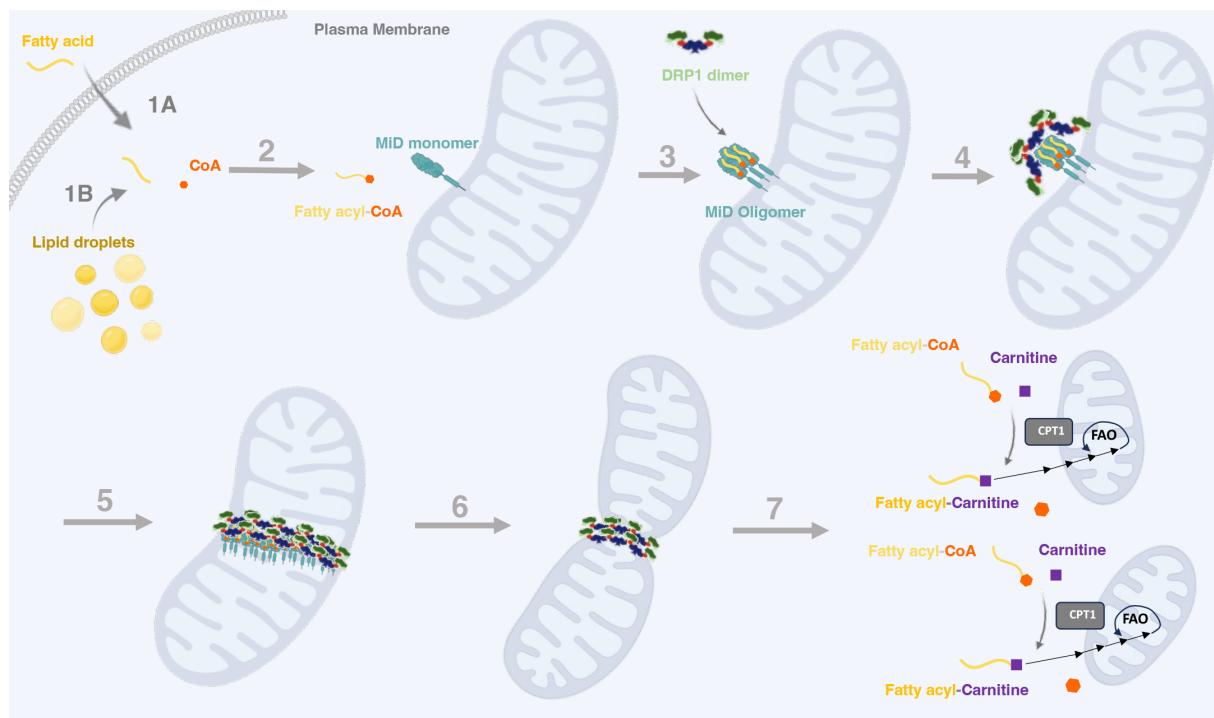
1104


1105
1106
1107
1108

1109 **Fig. 6. Effect of LCACA binding defect on ability of MiD51 re-expression to rescue**
1110 **mitochondrial elongation caused by MiD49/51 suppression.**

1111 **a**, C-terminal GFP fusion constructs of MiD51-WT, MiD51-Y185A or MiD51-R342A were
1112 transiently transfected into HeLa cells that had been previously treated with siRNAs
1113 against MiD49 and MiD51. Cells were then fixed and stained for mitochondria (Tom20).
1114 Cells displaying low GFP levels were imaged. Boxed regions denote insets shown in zoom
1115 to the right of full images. Zoom images either display MiD51-GFP signal alone or as
1116 corresponding merge image with Tom20. Scale bars, 20 mm in overview images and 5
1117 mm in inset images. **b**, Graph of mean mitochondrial area, determined as described in
1118 Methods, under the indicated conditions. N represents the number of cells analyzed per
1119 respective condition. ** and *** indicate p values ≤ 0.01 and ≤ 0.001 by ANOVA
1120 (Dunnett's multiple comparisons) test. n.s. = not significant (p value > 0.05). Statistical
1121 test was performed on the average values of four independent experiments. **c**, Drp1
1122 distribution on mitochondria in control versus MiD49/51 siRNA-treated HeLa cells either
1123 without or with re-expression of the indicated MiD51-GFP construct. Cells fixed and
1124 stained for Drp1 and Tom20. Scale bars, 20 mm in overview images and 5 mm in zoom
1125 images. **d**, Quantification of % mitochondrial area covered by Drp1 for the indicated
1126 conditions. **** and *** indicate p values ≤ 0.0001 and ≤ 0.001 by ANOVA (Dunnett's
1127 multiple comparisons) test. n.s. = not significant (p value > 0.05). N represents the
1128 number of cells analyzed per condition. **e**, Quantification of Drp1 puncta size for the
1129 indicated conditions. **** indicate a p value of ≤ 0.0001 by ANOVA (Dunnett's multiple
1130 comparisons) test. n.s. = not significant (p value > 0.05). N represents the number of cells
1131 analyzed per condition. Bars in b, d and e represent standard error of the mean.

1132


1133

1134

1135 **Fig. 7. 2-bromopalmitate induced mitochondrial fission is MiD-dependent.**

1136 **a**, Fixed-cell fluorescence micrographs of HeLa cells transfected with the indicated
 1137 siRNAs, treated for 1-hr with either 2-BP or MP and stained for actin (TRITC-phalloidin,
 1138 red) with Dapi (magenta) and mitochondria (Tom20, green). **b**, Quantification of relative
 1139 mitochondrial lengths between the MP and 2-BP treatments. Data normalized to the MP
 1140 treatment. Corresponding non-normalized data are in Panel C. *** indicates p value \leq
 1141 0.0001 by unpaired Student's t-test. n.s. = not significant (p value > 0.05). N represents
 1142 the number of cells analyzed per condition. **c**, Quantification of mean mitochondrial area
 1143 between the MP and 2-BP treatments. Corresponding normalized data are in Panel B.
 1144 *** indicates p value ≤ 0.0001 by unpaired Student's t-test. n.s. = not significant (p value
 1145 > 0.05). N represents the number of cells analyzed per condition. Mean values are as
 1146 follows: Ctrl siRNA/MP = 13.46; Ctrl siRNA/2-BP = 4.75; MiD49/51 siRNA/MP = 27.64;
 1147 MiD49/51 siRNA/2-BP = 25.44; DRP1 siRNA/MP = 45.88; DRP1 siRNA/2-BP = 44.97. **d**,
 1148 Western blot of HeLa cells knocked down for either MiD49/MiD51 or DRP1, confirming
 1149 the efficiency of the used siRNAs. Actin and GAPDH serve as loading controls. Bars in b
 1150 and c represent standard error of the mean.

1151
1152

Fig. 8. Model for MiD function in activation of fatty acid oxidation

This model is developed from results in this paper and from (Ngo *et al*, 2023). Step 1. Long-chain fatty acid enters cytoplasm from the extracellular milieu (1A) or from intracellular lipid droplets (1B). Step 2. Fatty acid is coupled to CoA through fatty acyl-CoA synthetase. Step 3. Fatty acyl-CoA binds to MiD49 and/or MiD51 monomers on the outer mitochondrial membrane (OMM), inducing their oligomerization. Step 4. Oligomerized MiD initiates assembly of active DRP1 oligomers on the OMM. Step 5. DRP1 oligomerization continues on the OMM to create a ring around the mitochondrion. Step 6. DRP1-mediated constriction of the OMM leads to mitochondrial fission. Step 7. Mitochondrial fission causes increased carnitine-palmitoyl transferase 1 (CPT1) activity, increasing fatty acid import into the mitochondrial matrix and subsequent fatty acid oxidation (FAO).

1165
1166