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23 Abstract

24  Breeding for new peach cultivars with enhanced traits is a prime target in breeding
25  programs. In this study, we used a discovery pane of 90 peach accessions in order to
26 dissect the genetic architecture of 16 fruit-related traits. ddRAD-seq genotyping and the
27  intersection between three variant callers yielded 13,045 high-confidence SNPs. These
28  markers were subjected to an exhaustive association analysis by testing up to seven GWAS
29 modes. Blink was selected as the most adjusted, simultaneously balancing false positive
30 and negative associations. Totally, we identified 16 association signals for six traits
31 showing high broad-sense heritability: harvest date, fruit weight, flesh firmness, contents of
32 flavonoids, anthocyanins and sorbitol. By assessing the alelic effect of significant markers
33  on phenotypic attributes, nine SNP alleles were denoted favorable. A promising marker
34  (SNC _034014.1 7012470) was found to be smultaneously associated with harvest date
35 and fruit firmness conferring a positive allelic effect on both traits. We anticipate that this
36 marker could be used to improve firmness in late harvested cultivars. Candidate causal
37  genes were shortlisted when fulfilling the following criteria: 1) position within the linkage
38  disequilibrium block, ii) functional annotation and iii) expression pattern. A bibliographic
39 review of previously reported QTLs mapping nearby the associated markers allowed us to
40  benchmark the accuracy of our approach. Despite the moderate germplasm size, ddRAD-
41  seq allowed us to produce an accurate representation of peach’s genome resulting in SNP
42  markers suitable for empirical association studies. Together with candidate genes, they lay

43  thefoundation for further genetic dissection of peach key traits.

44  Key words: lead SNP, prime candidate genes, haplotype blocks, fruit-related traits, linkage
45  disequilibrium, Prunus persica

46  Background

47 Peach is one of the most economically vaued fleshy fruits worldwide (FAO,
48  http://faostat.fao.org). The advances in the peach industry largely rely on fruit quality
49  improvement in response to the market and consumers demands. The term quality may
50 include all agronomical aspects and chemical compounds such as fruit size, firmness, sugar

51  and acid concentration, etc. Some of those characteristics are thought to be monogenic,
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52 controlled by a single gene (fruit shape, hairiness, flesh color, texture)* while others are

53  polygenic, such as sugar content, fruit firmness, antioxidant concentration®.

54  Breeding for polygenic quantitative traits is far from being a straightforward task. Thus,
55 ingights on genetic drivers controlling these traits and their inheritance are required to
56  bridge the phenotype-genotype gap®°. For instance, the development of molecular markers
57 linked to desirable traits would considerably speed up the selection of superior plant
58  varieties through marker-assisted selection (MAS)®. Genome-wide association studies
59 (GWAS) have also revolutionized the breeding process by detecting the genetic loci
60 underlying trait variations at a relatively high resolution. This approach has been
61  successfully applied in many breeding programs. For instance, GWAS have provided
62 insight into fruit-related traits such as skin color in apple’ and fruit firmness in sweet
63 cherry’. The power and prediction accuracy of GWAS critically depend on various
64 considerations, including phenotypic data quality, experimental sample size, linkage
65 disequilibrium (LD) between genetic variants and population structure. If not adjusted
66  properly, these factors may lead to spurious associations as well as masking the true ones.
67  Another key factor while performing GWAS is the density and chromosome distribution of

68  markers/SNPs along the reference genome.

69  Generaly, genotyping methods fall into three categories, whole genome resequencing,
70 reduced representation sequencing, and SNP arrays | 1°. Whole genome resequencing
71 returns the highest number of SNP calls if sequencing depth is sufficient, which is
72 expensivefor large genomes. For this reason, SNP arrays are widely used, reducing the cost
73 and enabling the detection of thousands of SNPsin asingle assay®. In peach, commercially
74 available arrays IPSC peach 9K and IPSC peach 18K™ have been used to explore the
75  genetic diversity and to assist the breeding process™2. Despite their utility, the major
76  drawback of SNP genotyping arrays consists in their ascertainment bias™. In other words,
77  they narrow the discovery of novel variants other than those detected in the discovery panel
78 and used to build the respective array. This might distort subsequent genetic inferences.
79  Additionally, efficient SNP probes require a well-assembled reference genome and their

80 design and further optimization can be time consuming.
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81  With the massive progress of high-throughput technologies, reduced representation
82 seqguencing such as restriction-associated DNA (RAD) sequencing and its derivative
83 (ddRADseq) emerged to overcome both cost and ascertainment bias'®. Double digest
84  restriction-site associated DNA (ddRADseq) relies on the use of a pair of restriction
85 enzymes to limit the sequencing effort to a subset of evenly distributed loci in the
86  genome™. Moreover, by picking the best enzyme combination, repetitive DNA can be less
87  targeted, thereby reducing the computational burden associated with aligning genomes with
88  highly repetitive segments.

89  Unlike other genotyping methods, prior genomic information is strictly not required for
90  ddRADseq™. Nevertheless, as shown in thiswork, it is most powerful when combined with
91 a reference genome sequence. From a technical standpoint, a common shortcoming of
92  ddRADseq isthe high rate of missing calls which can be straightforwardly handled through
93  genotype imputation.

94  Herein, we report the application of ddRADseq genotyping to identify high confidence
95 SNPs in a discovery pand of 90 Prunus persica accessions. Consequently, GWAS was
96 carried out to identify genomic loci associated with 16 fruit traits. To optimize the analysis
97 and to overcome the limitations arising from the size of our peach germplasm, we
98  considered the following aspects: 1) peach accessions were geographically distant in order
99 to maximize the genetic variance, 2) SNPs were called using three variant detectors
100 (BCFtools, Freebayes and GATK) and only those resulting from the intersection were
101  retained for subsequent analysis, and 3) several statistical models were assessed to control
102  the confounding effects.

103  Genotype-to-phenotype associations for agronomic and fruit-related traits have been widely
104  tested in peach using different genotyping methods like SSRs™, 9K SNP array***®, 18K

312 and high-throughput resequencing technology®’. However, to the best of our

105  SNP array
106  knowledgethisisthefirst report characterizing the genetic architecture of peach traitsusing
107 ddRADseg-derived SNPs. In this study, we propose best practices for GWAS analysis
108  mainly relying on a comparative approach for SNPs calling and datistical model
109  assessment. Therefore, we demonstrate the utility of ddRAD-based genotyping in unveiling

110 desirable alleles and genomic regions putatively responsible for trait variation. By
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111  contrasting our findings with those previously reported using the peach 9K SNP array™ we

112 confirm the accuracy of our approach.

113  Reaults

114  Phenotypic analysisand heritability

115  Broad sense heritability was estimated over three consecutive years and the results denote
116  that most of the traits were highly heritable (Figure 1.A). Hence, their phenotypic
117  variability among the individuals was mainly driven by the genetic effects. However,
118  contents of glucose, fructose, sucrose and total sugars (TS) were found to be lowly heritable
119  traits (H? < 0.5), denoting that their variability may be mostly due to the environmental
120 factors. These traits were therefore left out of the association analyses. Furthermore, normal
121 digribution fit tests conducted on averaged phenotypic measures, revealed that six out of 16
122 traits were found to be normally distributed (flesh firmness, soluble solids content (SSC),
123 ripening index, vitamin C, relative antioxidant capacity (RAC) and glucose). Source code,
124  documentation and detailed results can be accessed a
125  https://github.com/najlaksouri/GWAS-Workflow. The remaining ones, skewed either

126  positively or negatively, were transformed accordingly. Likewise, the phenotypic
127  correlation was estimated and significant interactions between agronomical and fruit quality
128  traits were observed (Figure 1.B). For instance, harvest date (HvD) had the highest
129  heritability estimates (H?=0.94) and exhibited strong positive correlations with flesh
130  firmness, sugar contents measured as (SSC, TS and sorbitol) and antioxidant activity
131  measured as (RAC, flavonoids and phenols). As expected, moderate positive interaction
132 was also reported between the HvD and fruit weight as well as between total and individual
133 sugars. Moreover, a strong positive correlation was also observed between total phenolics
134  and flavonoids. Indeed, flavonoids are the largest group of naturally occurring phenolic
135 compounds in plants. Both compounds showed a significant positive interaction with
136  (RAC) suggesting that they could be used as a good indicator of antioxidant properties in
137  peaches.
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138  SNP genotyping

139  To construct an informative SNP panel, polymorphic sites were called in individual sample
140  mode using three different algorithms. Raw calls were subjected to standardized quality
141  thresholdsin order to mitigate the effect of sequencing and/or alignment flaws. Post-filtered
142  calls from each pipeline were merged together into multi-samples format (Table 1).
143 According to our results, GATK-HaplotypeCaller (HC) outperformed both Freebayes and
144 BCFTools in terms of computational time and sensitivity yielding a total of 233,535 SNP
145  calls (see repository https://github.com/najlaksouri/GWAS-Workflow). Freebayes ranked
146 second, followed by BCFTools, with 166,080 and 148,998 SNPs, respectively. For a robust
147  variant detection, the intersection between multi-sample sets was computed. About 32% of
148  SNPs were found to be commonly shared by the above-stated tools. Multi-alelic and

149  scaffold variants were excluded and additional filters (missing call rate and MAF) were
150 applied (Tablel1). Finaly, aset of 13,045 SNPs was kept for subsequent analysis.

151  Using VEP tool, polymorphic sites were found to be distributed along upstream (21%),
152  downstream (9%), intronic (26%) and intergenic (8%) regions (Figure S1). Low
153  proportions of SNPs were tagged as 3’ UTR and 5 UTR variants. Within coding regions,

154  11% of SNPs were defined as synonymous while 13% were annotated as missense variants.

155  SNP distribution and L D decay

156  The distribution of polymorphic sites was calculated within adjacent windows of 1 Mbp
157 and provided a genome-wide coverage estimate along the eight peach chromosomes. As
158 illustrated in Figure 2.A, markers were unevenly partitioned throughout the genome with
159  the highest number of mapped SNPs on chromosome 2 (4,440) and the lowest on
160 chromosome 5 (1,768). Interestingly, SNPs accumulated within the short arms of
161  chromosomes 2 and 4. In contrast, large gaps were observed towards the telomere of the
162 long arm of chromosome 2. Similarly, several blank regions were located aong
163  chromosome 1. Gaps highlighted with asterisks correspond to predicted centromeric
164  regions™.

165 To determine the extent of LD decay in the diversity panel, we estimated the pairwise LD
166  coefficient (r?) at chromosomic level. LD decay was estimated for each chromosome by
167  estimating the intersection of r’=0.25 with the physical distance (Figure 2.B and Figure
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168  S2). We found that LD dropped at short distance, ranging from 250 to 500 kbp along all
169  chromosomes, with the exception of chromosome 5 (ca. 4.7 Mbp). After LD pruning, a
170  total of 1,959 unlinked SNPs was kept for population structure and kinship estimations.

171 Population structure

172 PCA analysis separated the germplasm panel into 4 sub-populations based on the genetic
173 origin (landrace vs modern breeding line) and fruit type (peach vs nectarine) (Figure S3).
174  Clade 1 on the top left corner, grouped exclusively modern breeding lines of peach and
175 nectarine. This group seems to be driven by the geographical origin as most of the
176  accessions were originated from North America (Table S1). Clade 2 represents a diverse
177  genetic entity gathering both landrace and breed peach varieties. Genotypes within this
178  clade were originated from Spain and North America suggesting the presence of higher
179  admixture that could arise due to the exchange of the germplasm material. In contrast,
180 clades 3 and 4 contained only landrace peach accessions mostly from different regions of
181  Spain, Europe and South Africa. A neighbor joining (NJ) tree aso identified four clear
182  clusters, as illustrated in Figure $4. Comparable results were obtained from
183  fastSTRUCTURE and are provided in the GitHub repository.

184  Critical evaluation of GWAS models

185 Genome wide association studies may be susceptible to bias in the presence of
186  measurement erors. False positive and negative associations arising from population
187  structure or/and family relatedness may lead to erroneous conclusions. The examination of
188  Q-Q plots can be used as a straight visual inspection to determine the appropriate statistical
189  method controlling the confounding effects. In fact, Q-Q plots illustrate the distribution of
190  markers under the null hypothesis, by plotting the observed -logio P-values (y-axis) versus
191  the expected -logip P-values (x-axis). If a sharp diagonal line is observed then the null
192  hypothesis is respected and no significant associations are reported. However, an upper
193  deviated tail from the diagonal line would likdly indicate true associations. Upward
194  inflation close to the lin€'s origin indicates suspicious false positives while downward
195  deflated tail suggests false negatives.

196  We empirically evaluated the adjustment of seven models to our data and in Figure 3, we
197  plot their Q-Q behavior for significantly associated traits. Despite yielding statistically
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198  significant associations, represented as bigger dots, both single locus models GLM and
199  SUPER exhibited prominent inflation beyond the expected null line. This deviation starting
200 close to the origin indicates false positive predictions due to confounding effects
201 (population stratification or genotype relatedness). MLM and CMLM multi-locus models
202 showed matching P-value distributions, therefore their Q-Q plots were overlaid. Except for
203  harvest date, where the null hypothesis cannot be rejected with neither inflated nor deflated
204  P-values, MLM and CMLM unveiled downshifted line tails when assessed with the rest of
205 traits. Such a result may indicate that these tests were able to reduce false positive
206  associations, but likely yielded false negative ones. Another complex model (MLMM) was
207  found to follow the null hypothesis with both harvest date and flavonoids; nonetheless a
208  dlightly downward tail was discerned for fruit weight and sorbitol content. Although being
209  the best-fitting model yielding marker-trait associations with harvest date and flavonoids,
210  FarmCPU did not show the same statistical power with other traits. Finally, the observed P-
211 values produced by Blink (green color) were lying on the diagonal line with clear deviated
212 tailstoward the y-axisfor all six aforementioned traits. All in all, Blink seems to be the best
213 calibrated model, appropriately controlling false positive and false negative effects. For
214  these reasons, we consider Blink as the most suitable model, best adjusted with all
215  phenotypic data and from here on the GWAS results are based on it.

216  Marker-trait associations and identification of candidate genes

217 GWAS analysis was conducted on phenotypic traits with moderate to high heritability (H?
218 > 0.5). Consequently, contents of glucose, fructose, sucrose and total sugars were discarded
219  from the subsequent analysis. To sum it up, among the remaining 12 traits, only six were
220 found to be potentialy influenced by polymorphic markers. Sixteen marker-trait
221  association peaks were scattered throughout all chromosomes except chr 7 (Table 2). In the
222 following sections we will discuss the results for each of these traits, namely harvest date,
223 fruit weight, flesh firmness, and contents of flavonoids, anthocyanins, and sorbitol. For ease
224  of interpretation, in the following paragraphs we summarize the lead SNPs and their
225  corresponding LD blocks. The annotation of 250 kbp regions centering the peak SNPs
226 resulted inalist of candidate causal genes provided in Table S2.
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227 Harvest date (HvD)

228  The GWAS analysis resulted in five SNPs meeting the Bonferroni-adjusted threshold
229  (Figure 4). Two SNPs were located on chr 4 and tagged as (SNC _034012.1 10916234,
230 GI/T) and (SNC_034012.1 14096987, A/C). Their allelic effect is summarized in Figure
231 S5, where it can be seen that the first one correlates with delayed harvest and the second
232 one with ealy one. Another associated marker was located on chr 5
233 (SNC_034013.1 13023165, T/A). Although covering the highest portion of %PVE, no
234 dgignificant allelic effect was observed (Table 2). This lead SNP was mapped within the
235  first exon of Prupe.5G138500, a gene encoding a germin-like protein. One more significant
236 site was identified on chr 6 and labeled as (SNC_034014.1 7012470, A/T). Alldlic effect
237  on phenotypic variation highlighted that both heterozygous and homozygous genotypes
238  carrying the aternate allele (T) were lately harvested with respectively 6 and 13-days of
239 delay (Figure 4.C). Similarly, the intergenic SNP located on chr 8
240 (SNC _034016.1 18841611, A/G), showed approximately 20-days delay in harvest date
241 with heterozygous accessions (Figure S5).

242 LD block analysis reveadled various candidate genes, including cell wall modification
243 (Prupe.8G197700: galacturonosyltransferase and Prupe.8G199700: cell divison control
244  protein), cytochrome P450 enzymes (Prupe.8G196800, Prupe.8G196900, Prupe.8G197100
245 and Prupe.8G197300), UV-photoreceptor (Prupe.4G185200) and ethylene-responsive
246  transcription factor (Prupe.8G198700).

247 Fruit weight (FW)

248  Significant marker-trait associations were detected on three chromosomes. chr 3
249  (SNC_034011.1 26371177, T/A), chr 6 (SNC_034014.1 1805059, A/G) and chr 8
250 (SNC_034016.1 16407694, A/C). The explained variance oscillated between 17 and 22%,
251 with SNC_034014.1 1805059 tagged as the lead intergenic marker (Table 2). The allelic
252 effect of this lead marker (A/G) was found to be unfavorable, with the allele G associated
253  with weight loss (~22 grams) in homozygous accessions (Figure 5.C). A similar negative
254  effect was observed with the SNP on chr 3 (T/A), with a significant reduction in fruit
255  weight of 53g. Only marker mapped on chr 8 (A/C) was found to have a positive effect in
256  heterozygous (Figure S6). Based on the LD block results, the lead SNP fell within the
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257  fourth block, a small interval (84 bp) overlapping no genes (Figure 5.B). Nonetheless, the
258 associated SNPs did overlap protein-coding genes. Among them, genes encoding f-
259  galactosidase (Prupe.3G298200), a-galactosyltransferase (Prupe.3G298800), thymidylate
260  kinase (Prupe.3G301400) and transcription factors (GTES8: Prupe.3G301300 and trihelix
261 GT-4: Prupe.3G300500) (Table S2).

262 Flesh Firmness (FF)

263 A single intergenic marker (SNC_034014.1 7012470; A/T) detected on chr 6 was
264  satistically linked to flesh firmness and explained 33.9% of the total phenotypic variance
265 (Table 2). This polymorphism showed a significant increase in the fruit firmness in both
266  heterozygous and alternate homozygous genotypes which underlined the favorable effect of
267 thealternative alee (T) on fruit firmness (Figure 6.C). It's noteworthy to mention that this
268 is the only marker simultaneously associated with two different traits (HvD and FF).
269  Moreover, peach accessions carrying the aforementioned alele (either homozygous or
270  heterozygous), were denoted late-harvested and firm peach accessons. Such a result may
271 judtify the high correlation existing between both traits (Figure 1.B).

272 By examining 250 kbp upstream and downstream the lead marker, it was found to reside in
273 block 3, which makes it a relevant region to seek for candidate firmness-related genes. On
274  the basis of their functional annotation, six genes were selected as potential candidates,
275 including Prupe.6G100500 encoding an E3 ubiquitin-protein ligase, Prupe.6G101100
276 corresponding to vegetative cell wall protein, Prupe.6G101600 annotated as aquaporin
277  PIP2 and Prupe.6G102300 encoding homeobox-leucine zipper transcription factor (Table
278  S2).

279 Flavonoids (Flvs)

280 The Manhattan plot displayed two peaks statistically associated with flavonoids content
281  (Figure S7.A). The first peak was identified within the intergenic region of chr 2 and
282 named as (SNC_034010.1 643430, T/C). The dternative alele (C) was marked as
283  favorable for heterozygous (TC) and homozygous aternate (CC) genotypes since they
284  showed approximately two-fold increase in the flavonoids content (Figure S7.C). The
285 second associated SNP (SNC 034014.1 3066620; G/T) was located on chr 6 and
286  physically mapped on the first exon of Prupe.6G041500; a candidate gene encoding a non-

10
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287  specific lipid-transfer protein-like (Table S2). The average flavonoids content in alternative
288  homozygous peach accessions (TT) was significantly enhanced compared to the reference
289  homozygous individuals (GG) (Figure S8). Thus, the T allele can be consdered as a
290 favorable one. Based on LD block results, we annotated a total of 14 genes (Table S2).
291 According to their biological function and tissue-specific expression, we narrowed the list
292 to a few promising ones, including two genes encoding transcription factors
293 (Prupe.2G009100, bHLH and Prupe.6G041400, bZIP).

294 Anthocyanins (ACNS)

295  Regarding the anthocyanins content, we detected a single peak signal on chr 5 exceeding
296  the threshold line (Figure S9.A). This locus tagged as (SNC_034013.1 12838635; G/T)
297  falls within exon 2 of Prupe.5G134900, encoding a B3 domain-containing transcription
298  factor. Thus, Prupe.5G134900 was considered as a prime candidate gene. The identified
299 marker explained a large portion of the variation (53%), and was found to exert an
300 unfavorable effect on anthocyanins content (Figure S9.C). Indeed, pairwise comparisons of
301 SNP dldic effect showed a significantly lower anthocyanins content in the homozygous
302 dternate individuals (TT) compared to the reference homozygous (GG). Screening for
303 genes residing within LD block resulted in three further candidate genes involved in
304 different biological functions (Prupe.5G134200, Prupe.5G134800 and Prupe.5G135200)
305 (TableS2).

306 Sorbitol (SRB)

307  Four significant association signals dispersed on different chromosomes were predicted to
308 affect the sorbitol content (Table 2 and Figure S10). On chr 1, an intergenic SNP
309 (SNC_034009.1 _2706825; T/C) explained the lowest proportion of phenotypic variation.
310 The SNPon chr 2 (SNC_034010.1_3682553; G/C), in the third intron of a gene encoding a
311 flowering time control protein (Prupe.2G0303400), explained 12% of the PVE. Similarly,
312 (SNC_034014.1 28343678; G/A) was located on chr 6 and mapped on the intronic region
313  of Prupe.6G320000, a gene encoding a serine/arginine rich factor. Both Prupe.2G0303400
314 and Prupe.6G320000 are suggested as plausible sorbitol-related genes. The lead SNP
315 explaining the highest PVE (14%) was identified in an intergenic region of chr 8
316 (SNC_034016.1 18841643; G/A).

11
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317  With the exception of (SNC_034014.1 28343678) the remaining loci were observed to
318 have desirable effect on sorbitol content (Figure S11). We identified 26 genes distributed
319 in 250 kbp on either side of each associated SNP. Among them, some were discovered to
320 be over-expressed in the fruit (LogoFC > 11377), including genes encoding heavy metal-
321 associated  isoprenylated  proteins  (Prupe.2G033600, Prupe.2G033700 and
322 Prupe.6G321400), pectinesterases (Prupe.6G318500), exonucleases (Prupe.6G316100),
323  dormancy-associated proteins (Prupe.6G319600), cell cycle checkpoint control proteins
324  (Prupe.6G321300) and the E3 ubiquitin-protein ligase RNF4 (Prupe.8G199600). A cluster
325  of four cytochrome P450 encoding genes was also identified. This plethora of genes may

326  shed light on several key processes that are subject to influence the sorbitol biosynthesis.

327 Discussion

328 Performance of variant callers

329  SNPsdiscovery in plant genomes has been a widely used strategy for devel oping molecular
330 markers useful for MAS, genomic selection, phylogenetic analysis, etc. In order to detect
331  and track these genetic variations, we performed a SNP discovery pipeline on paired-end
332 reads mapped to a diploid genome using BCFtools, Freebayes, and GATK-
333  HaplotypeCaller. SNP calling is known to be error prone. Spurious variants may have
334 severa sources, errors associated with sample processing (library preparation, PCR
335  amplification), sequencing, as well as, computational analysis'. To remove likely false
336  poditive variants, best practices and carefully chosen cut-offs are needed. In our analysis, a
337  SNP site was kept when passing the following filters: mapping and call quality, read depth,
338 as well as call rate and MAF. Though either calling tool can be adapted, we observed a
339  certain inconsistency in the number of high-quality SNPs revealed by each tool. Notably,
340 GATK-HC exhibited the highest sensitivity in SNPs calling, followed by Freebayes then
341  BCFtools. The outperformance of GATK-HC is actually not surprising as it heavily relies
342 on local de-novo assembly of haplotypes in active regions®. In other terms and unlike the
343  rest of tools, whenever GATK encounters regions with substantial evidence of variation
344  reative to the reference, it discards the existing mapping information and reassembles the
345  read mappings. Our results are in line with®* concluding that in Arabidopsis thaliana,
346 GATK-HC was found to be more accurate compared to BCFtools. Additionally, GATK-
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347 HC had the lowest proportion of false positives compared to both Freebayes and
348  BCFtools”. On the other hand, the variation in the number of detected SNPs may be partly
349  due to the underlying algorithms. Indeed, GATK-HC and Freebayes are Bayesian variant
350 detectors while BCFtools mpileup uses Hidden Markov Modds. Although having an
351 extensive format requirement (e.g: read group specified in the input header), GATK-HC
352  seemsto be more precise dealing with ddRAD-seq mapped reads in peach. Nevertheless, to
353  further increase confidence, in this study we only considered SNPs called by all three
354  approaches.

355 Statistical model selection

356 Choosing a statistically reliable model is another fundamental pillar for a successful
357  GWAS. Population structure and genetic relatedness are confounding factors increasing the
358 rate of ambiguous associations and decreasing the statistical power. When ignored, they
359 lead to substantial inflation of P-values as highlighted in the GLM modd (Figure 3). In
360 spite of including PCA components and kinship as covariates, SUPER model had also a
361 large number of false positives. This may be explained by the fact that both GLM and
362 SUPER are single-locus approaches failing to catch true associations when dissecting
363 complex traits. Comparable inflated P-values were observed in Arabidopsis thaliana when
364  testing flowering time, a polygenic trait, with the naive model (GLM)?. In contrast, two
365  other single-locus models, MLM and its compressed version (CMLM), were observed to
366 adjust for false positives at the cost of failing to find any significant marker. Similar results
367 were observed with MLMM, a multi-locus extension of MLM model (Figure 3). Overall,
368  we conclude that MLM-based methods are likely missing potentially important SNPs.

369 The ingpection of Q-Q plots declared FarmCPU and Blink as the most sophisticated
370  algorithms yielding significant associations. Whereas FarmCPU returned significant
371 signatures with only two traits (HvD and Fvs), Blink consistently inferred associations
372 with six traits (HvD, FW, FF, Flvs, ACNs and SRB). FarmCPU and Blink have emerged to
373 prevent over-fitting and to control false positives simultaneously?*®. FarmCPU employs
374  iteratively the fixed-effect model (FEM) and random effect model (REM) to eiminate
375  confounding factors. FEM contains testing markers, one at a time, and associated markers

376  as covariates to control false positives. To circumvent model over-fitting in FEM, the
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377  associated markers are estimated in REM and are used to derive the kinship?*. Additionally,
378  FarmCPU rdlies on the binning approach, where the whole genome is equally divided into
379  bins and only the most significant marker is selected from each bin®’. Despite its promise,
380 thismodd is hampered by two major pitfalls: REM is computationally demanding and the
381 assumption of bins rarely occurs in practice. As a consequence, Blink was designed to
382 optimize the computational burden by substituting the REM with FEM through
383  approximating maximum likelihood using the Bayesian Information Criterion and by
384 increasing the statistical power by replacing the bin approach with the LD method?.

385 Overdl, Blink seems to be the well-suited model for our set of data, balancing false
386  positives and false negatives. This statement is underpinned by the GAPIT team, which
387  already stated that Blink is statistically more powerful than FarmCPUZ.

388 Marker-trait association for the target traits

389 Out of 16 studied traits, association mapping using ddRAD-derived-SNPs and Blink,
390 revealed association signals with six traits. Totally, 16 significant loci were inferred and
391  digtributed as follows: harvest date (chr 4, 5, 6 and 8), fruit weight (chr 3, 6 and 8), flesh
392  firmness (chr 6), flavonoids (chr 2 and 6), anthocyanins (chr 5), and sorbitol (chr 1, 2, 6,
393 and 8). Promising candidate genes were selected when residing within the LD block
394  containing the significant loci, known to be related to the targeted trait and being over-
395  expressed in fruit tissue. Our results were further discussed in comparison with®® which
396  studied the same phenotypic data and germplasm material, but genotyped using the 9K SNP
397 array instead.

398 Harvest date

399  Peaches and nectarines are generally harvested at physiological maturity, then ripening off
400 thetrees. Harvest date and maturity date are frequently used as synonyms and are expressed
401  in Julian days. HvD is defined as the day on which a certain percentage of peaches reach
402  maturity. Maturity date (MD) is defined as the interval of time from the first day of the
403  calendar year till the harvest date?’. In our study, five association signals for HvD were
404  highlighted. Two were inferred on chromosome 4 and the rest were distributed on
405  chromosomes5, 6 and 8.
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406  As established by?®?°, major QTLs controlling maturity date have been reported on linkage
407 groups LG4 and LG6 (Table S3). Particularly, amajor QTL on LG4 referred to asqgMD4.1
408  showed a pleiotropic effect on fruit weight and firmness®®. Interestingly, our marker
409 SNC_034012.1 10916234 mapped at (~10.91 Mbp), was overlapping the (QMD4.1_CA)
410  locus from CxA progeny spanning the interval between 10.87-12.09 Mbp®. This same
411 QTL from WxByYy progeny (gqMD4.1 WB) was found 65 kbp from our marker (Figure
412 4.D). In the same vein, SNC_034012.1 10916234 was delimited by one downstream (HD-
413 EX}4)* and two upstream quantitative loci (qP-MD4)* and (qMD4_1)* mapped
414  respectively at 0.5, 5.3 and 1245 kbp from the SNP's coordinate (Figure 4.D). Likewise,
415  the second marker on chr 4 (SNC_034012.1 14096987) mapped at (~14.09 Mbp) was
416  found within the genomic region of strong confidence QTL (gMD4 2) spanning the
417  interval (11.20 - 14.10 Mbp)*. Contrasting with associated SNP from the 9K assay™®, our
418  markers seems to be more confident as they are located within the QTL boundaries which
419  supports their reliability. Altogether, we anticipate that the aforementioned SNPs on chr 4
420  could be integrated as promising markers for HvD breeding goals. As well, we conclude
421  that LG4 seems to be a chromosomal hotspot hosting a cluster of major QTLs associated
422  with the maturity date. QTLs influencing maturity date were also detected on LG4 in
423 peach-related species, for instance; sweet cherry®®. Therefore, we believe that this trait
424  could be controlled by orthologous loci within Prunus species.

425  Marker *SNC_034013.1_13023165" mapped on chr 5 (~13.02 Mbp) was supported by an
426  adjacent locus (QTLMD5) spanning the region (14.38 - 17.64 Mbp)®* and other distant
427  signals (qP-MD5 and gMD5)***. Significant markers from 9K array™® were found to be
428  physically closer to the QTLs (Figure 4.D and Table S3). Finally, the significant SNP on
429  chr 6 ‘SNC_034014.1_ 7012470’ was residing within two QTL intervals® QTLMD6.1 and
430 QTLMD®6.1, supporting it. Similar findings were observed with 9K -associated markers.

431  Multiple candidate genes potentially influencing the harvest date were shortlisted (Table
432  S2). Most importantly, an ethylene-responsive transcription factor (Prupe.8G198700).
433  Ethylene-responsive elements are relevant in climacteric fruits and have been proposed as
434 candidate genes for fruit maturation date in different Prunus species®™’. We also identified
435 a cel wal remodeling gene encoding galacturonosyltransferase. This finding is in
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436  consonance with® defining a galacturonosyltransferase as a candidate gene for late
437  harvested cultivars.

438 Fruit weight

439  Fruit weight is a quantitative trait with great importance in peach breeding. Previous studies
440 in peach have divulged that FW is monitored by multiple QTLs distributed across all
441 chromosomes™**° Using GWAS, we identified a significant SNP on chr 3 (~26.37 Mbp)
442  located respectively at 4.07 and 7.27 Mbp downstream of two QTLs gFRW.ZC_3 and
443 gFRW.WB (Figure 5, Table S3). On chr 6, another significant marker was predicted at
444  (~1.80 Mbp). This marker was delimited in near proximity by two reliable QTLs
445  (QFRW.ZC_6)® and (qFW6.1)*, situated respectively at 387 and 1,358 bp. On chr 8,
446  SNC_034016.1 16407694, was localized at (~6 Mbp) downstream of marker flanking QTL
447  (FW 10-b)®. Thisisin contrast with'® where no associated loci were reported for this trait
448 (Table S3). Such results support the relevance of our findings in dissecting the genetic
449  control of complex fruit traits and shed light on the effectiveness of ddRAD-seq genotyping
450  oninferring novel association signatures.

451 Candidate genes prediction revealed two transcription factors, triheix GT-4
452  (Prupe.3G300500) and GTE-8 (Prupe.3G301300). Transcriptional regulators are abundant
453  in plant genomes and they are implicated in various biological processes. Interestingly,
454 trihdlix genes are known to be photo-responsive proteins™. It's well documented that light
455  exposure affects fruit size, shape and quality®. Thus, we speculate that trihelix TF may
456  regulate the fruit weight in peaches. Moreover, cell wall enzymes such as p-galactosidase,
457  o-galactosyltransferase may act as key components of cell wall turnover during stone fruit
458  growth®™. Finally, thymidylate kinase exhibited strong upregulation suggesting a possible
459  rolein peach fruit development as validated in rice, barley and maize**.

460 Flesh firmness

461  Firmnessis akey textural indicator of peach quality and directly influences their shelf life.
462  Inour study, we identified a single firmness related locus SNC_034014.1 7012470 on chr
463 6. Inthesame LG6, afirmnessloss QTL (gP-FL5d6) was described (Figure 6.D and Table
464  S3). Another stable QTL (gP-FF6.1™) was also detected over two years in related species,
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465  particularly in sweet cherry®. Using 9K inferred SNPs and MLM model*®, no significant
466  association signals were found.

467 Four genes were selected as strong candidates encoding: ubiquitin-protein ligase
468  (Prupe.6G100500), vegetative cell protein (Prupe.6G101100), aquaporin PIP2
469  (Prupe.6G101600) homeobox-leucine zipper protein (Prupe.6G102300). E3 ligase genes
470  were found to be differentially expressed in either melting flesh or stony hard fruit during
471 the ripening™®. Aquaporins are transmembrane water transporters and water uptake within
472 fruit is highly related with fruit firmness®™. Thus, aquaporins could play a key role in
473  maintaining cell turgor in peach. Finally, homeobox-leucine zipper proteins were denoted

474  aspotential biomarkers for the ripening processin peach™.

475 Flavonoid and anthocyanin contents

476  Flavonoids are mgjor polyphenol compounds playing a central rolein fruit color and flavor.
477  Our analysis yielded two potential association signatures in chr 2 and 6. These results go
478  along with* affirming that the majority of lead SNPs linked with many flavonoid
479  metabolites in peach were located on chr 2. Herein, SNC_034010.1 643430 was supported
480 by two QTLs® identified in Venus x Bigtop progeny and named as ‘FLV 10-a and ‘FLV
481  10-b’ (Figure S7.D and Table S3). It's well documented that flavonoid biosynthesis is a
482 complex pathway, transcriptionally regulated by members of Myb and bHLH families®.
483  Although no Myb encoding gene was found in our analysis, a highly up-regulated bHLH-
484 TF was inferred and may be consdered as a promising candidate gene involved in
485  flavonoid regulation.

486  Anthocyanins constitute an important group of plant pigments belonging to the flavonoid
487  family. Ther differential accumulation in peach results in the distinctive fruit and flesh
488  color®®. Although there is strong evidence that their biosynthesis is mainly regulated by a
489  Myb10 transcription factor on LG3, many anthocyanin-related QTLs were identified on
490 LG4, LG5, and LG6>**%, Our analysis detected a single lead marker on chr 5 accounting
491  for ~53% of the PVE. Thus, ‘SNC_034013.1_12838635' may be a preferential target for an
492  effective marker assisted selection. It was delineated on both downstream and upstream
493 sides by (QANT)®, (QATCYN.ZC)* and (qPSC5)*. When genotyped with the 9K array™,
494  no associated markers were detected on LG5. Remarkably, our polymorphic marker was
495  physically falling in the exonic region of Prupe.5G134900, a gene encoding a B3 domain-
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496  containing transcription factor. Although the functional relevance of this prime gene
497  requires further validation, we hypothesize that the genetic control of anthocyanins may be
498  driven by B3 DNA-binding protein. Curiously, for both anthocyanins and flavonoids, a B3
499  family transcription was selected as candidate gene (respectively Prupe.5G134900 and
500 Prupe.6G041000). This may be explained by the fact that anthocyanins are a class of water-
501 solubleflavonoids. Thus, it's plausible to hypothesize that genes involved in flavonoids and

502  anthocyaninsregulation are in coordination.

503 Sor bitol

504  Sugar content is one of the most important quality traits perceived by the consumers. The
505  sweetness intensity depends on the overall sugar amount brought by sucrose, glucose,
506 fructose and sorbitol. These first three sugar types were discarded from our analysis as they
507 didn't meet the heritability cutoff. Regarding the sorbitol, association signatures were found
508 inchr 1 (~27.06 Mbp), chr 2 (~3.68 Mbp), chr 6 (~28.34 Mbp) and chr 8 (~18.84 Mbp).
509  Genetic mapping has been extensively carried out to identify key QTLs responsible for
510  sorbitol biosynthesis. A reliable QTL (qSOR_1) was mapped on the upper region of LG1,
511 nearly 17.5 Mb upstream of our associated marker (Figure S10.D). Compared to the 9K
512  association study’®, no significant association signal was detected on LG1 (Table S3). On
513  chr 2, we were able to find an adjacent QTL supporting the accuracy of our results®.
514  Indeed, qSOR_2 was positioned at ~1.2 Mbp from our marker SNC_034010.1_3682553.
515

516  Finaly, this work depicts ddRAD-seq genotyping as an efficient approach for SNPs
517  detection and association studies. Akin to the 9K SNP array, ddRAD-seq yielded valuable
518  markers strongly supported by stable QTLs. However, while SNP arrays are engineered to
519  specifically include polymorphic loci from genomic regions of interest and focus on
520  harboring SNPs known to be linked to commercially important traits, ddRAD-seq samples
521  the genome randomly, without prior knowledge of target regions. For this reason, ddRAD-

522 seq might be a better fit for analyses concerned with unexplored biological processes.

523  Concisely, we successfully used ddRAD-seg-derived SNPs to identify genomic regions and
524  genes influencing major fruit-related traits in peaches. The inferred associated SNPs
525 appeared to be reliable as they often explained a fairly high percentage of the total
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526  phenotypic variance. The survey of candidate genes for these relevant polymorphic sites
527 rendered plenty of genes implicated in various processes. Genes harboring significant
528  markers may be considered as preferential targets for peach breeding. However, due to the
529 complexity of the examined traits, future functional validation would provide additional
530 hintsto support the breeding efforts.

531 Material and Methods

532  Plant material and phenotypic evaluation

533 A total of 90 peach and nectarine accessions were used for double digest restriction-site
534  associated sequencing (ddRAD-seq) and subsequent GWAS analysis. The germplasm panel
535 comprises 73 landraces and 17 modern breeding lines originating from Spain, United
536  States, France, Italy, New Zealand, and South Africa. All genotypes were grown under
537 Mediterranean soil conditions at the Experimental Station of Aula Dei (CSIC) located at
538  Zaragoza, Spain (41.7245 °N, 0.8118 °W) and analyzed during three fruiting seasons
539  (2008-2010). Information about plant accessions is summarized in Table S1.

540 The phenotypic data previously reported by™® were re-analyzed in the present study.
541  Briefly, 16 traits were evaluated by randomly harvesting 20 fruits from each cultivar at the
542  commercial maturity during three years. Traits were split into two categories. Agronomic
543  featuresincluded harvest date (HvD; Julian days), fruit weight (FW; grams), flesh firmness
544  (FF, Newton), soluble solids content (SSC; °Brix), titratable acidity (TA; grams malic
545  acid/100 g flesh weight) and ripening index (RI; SSC/TA). Besides, biochemical variables
546  comprised vitamin C (Vit C; mg of ascorbic acid/100 g flesh weight), total phenolics (Phen;
547 mg of galic acid equivalents100 g flesh weight), contents of flavonoid (Flv; catechin
548  equivaentd100 g flesh weight) and anthocyanin (ACNSs; cyanidin-3-glucoside/kg flesh
549  weight), sucrose (Suc; g/kg flesh weight), glucose (Glu; g/kg flesh weight), fructose (Fruc;
550 g/kg flesh weight), sorbitol (SRB; g/kg flesh weight), and total sugars (TS; g/kg flesh
551  weight) and relative antioxidant capacity (RAC; ug TE/g flesh weight).

552 Variance components and broad sense heritability (H?) were estimated using the variability
553 R package v0.1.0. Only traits with H?> > 0.5 were considered for association analysis.
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554  Distribution of averaged phenotypic data was checked in R using Shapiro-Wilk test. Non-
555  normal distributions were transformed using bestNormalize package (v1.8.3)*.

556  DNA extraction and enzyme evaluation

557  Genomic DNA was extracted from leaves using the DNeasy Plant Mini Kit (Qiagen,
558  Dusseldorf, Germany) following the manufacturer’ s recommendations. DNA concentration
559 and quality were checked using PicoGreen®dye and measured in a fluorospectrometer.
560  Whole-genome genotyping was carried out using ddRAD-seq approach by combining low
561 and high frequency cutter to digest DNA; respectively Pst1 and Mbol as described in peach
562 by’ This enzyme pair yielded the highest number of loci with a size range between 300
563 and 400 bp and prevented repetitive region sampling. Selected loci are those having the
564  sticky ends of both enzymes™.

565 ddRAD libraries preparation and sequencing

566 DNA libraries were constructed at the Genomic Unit at IABiMo INTA-CONICET
567  (Argentina) following®>* recommendations. Shortly, digested DNA with Pstl/Mbol pair
568 were gel excised, eluted then ligated to barcoded adapters specific to each sample. Ligated
569  fragments from 24 samples were subsequently pooled together and were PCR amplified
570  with indexed primersto tag each pool. Finaly, paired-end reads (250 bp) were generated on
571  an lllumina NovaSeq 6000 instrument at CIMMY T, Mexico. The raw sequencing data was
572  deposited in the European Nucleotide Archive (ENA) under the BioProject PRIEB62784.

573  Data processng and alignment

574 Raw reads were de-multiplexed and trimmed using the process-radtag module from
575 STACKS suite (v2.59)>. After quality assessment, paired-end reads were mapped to
576  Prunus persica reference genome v2 (GCF_000346465.2, retrieved from NCBI RefSeq™
577  using BWA-mem (v0.7.17)>. Redundant reads known as PCR duplicates were expurgated
578  from downstream analysis as described by?’. The resultant de-duplicated files were sorted
579  and indexed using SAMtools™ to be ready for variant calling.

580 Variant discovery pipeline
581  Variant calling was conducted in a single-sample mode testing the performance of three
582 variant calers: BCFtools (v1.7)*°, Freebayes (v1.0.0)*’ and GATK-HaplotypeCaller

20


https://doi.org/10.1101/2023.07.31.551252
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.31.551252; this version posted August 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

583 (v4.2.3.0)%°. Raw SNPs underwent standard quality filtering based on mapping quality (MQ
584 > 40), variant quality (QUAL < 30) and depth of reads (DP > 5) to remove artifactual calls.
585  Consequently, clean SNPs from each calling method were merged by position and by
586 reference/dternative aleles into multi-sample VCF files. SNPs resulting from the
587 intersection of multi-samples VCFs were considered as highly accurate calls and were
588  inspected to remove multi-allelic variants and those assigned to scaffolds. Then, they were
589 filtered by call rate > 80% and residual missing genotypes were imputed with beagle's
590  default settings (v4.1)60. The imputation accuracy was evaluated in Tassel (v5.0)* by
591  masking 1% of the genotype and calculating the error rate. SNPs with (MAF > 0.05) were
592 sdlected as a fina cal set to determine the population structure and marker-trait
593  associations. SNP identifiers were created by concatenating their assigned chromosome and
594  their base pair position (eg: SNC_034014.1 7012470).

595 Linkage disequilibrium and population structure

596  Intra-chromosomal LD was calculated using Plink (v1.9)>°, as a measure of Pearson
597  correlation coefficient (r’) between marker-pairs. For each chromosome, LD distribution
598  was plotted against its physical distance (Mbp). The LD decay curve was estimated as the
599  average of r® variation across 100 kbp bins and was fitted in R program. LD decay was
600 defined by setting r’=0.25 as a threshold. LD decay extent was defined as the physical
601  genomic distance at which the r* decreased to half of its maximum value. Polymorphic sites
602  showing strong LD were pruned in Plink by delimiting a window of 10 SNPs, removing
603 one of the SNPs pair with r> > 0.25 and then shifting the window 5 SNPs forward
604  repeatedly. Genetic distance and kinship matrix between pairs of genotypes were computed
605  using the centered identity-by-state method implemented in Tassel.

606  LD-pruned SNPs were selected to infer the population stratification of the GWAS panel
607 using two complementary approaches. First, the Bayesian clustering algorithm
608  implemented in fastSTRUCTURE (v1.04)* was tested on predefined K subgroups ranging
609 from 1to 10. The optimal K value was estimated based on the lowest cross validation error.
610  Then, principal component analysis was computed with SmartPCA (v1.1.0) R-package®.
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611  Genome wide association study

612  For association mapping, seven statistical models, ranging from single to multi-locus, were
613 simultaneously tested in GAPIT (v3.1.0)% Single locus models include general linear
614 modd (GLM), mixed linear model (MLM), compressed MLM (CMLM), and settlement of
615 MLMs under progressively exclusive relationship (SUPER). Multi-locus algorithms
616  comprise multiple loci mixed linear model (MLMM), fixed and random model circulating
617  probability unification (FarmCPU), and Bayesian-information and linkage-disequilibrium
618 iteratively nested keyway (Blink). Except for GLM, where no genotype relatedness was
619 involved, population structure and kinship were both fitted as covariates in al models.
620  Indeed, the first four PCA components and kinship were introduced respectively as fixed
621  and random effects to reduce the false positives. The statistical model best fitting the data
622  was chosen based on the quantile-quantile plot and the number of significant markers.
623  Significantly associated markers were shortlisted based on the Bonferroni correction (-
624  10010(0.05)/13045 = 5.42) and Manhattan plots were generated accordingly using CMplot
625  package (v4.2.0)%. Statistically significant SNPs explaining at least 10% of the phenotypic
626  variance (%PVE) were considered as most promising predictions and used for LD block
627 analysis. Moreover, markers accounting for the largest proportion of phenotypic variance
628  are hereinafter referred as ‘lead SNPS'.

629  Annotation of SNP effectsand identification of favorable alleles

630  First, genomic coordinates of SNPs were used to query Ensembl Plants REST services in
631  order to obtain annotations of their effect on neighbor genomic features. In particular we
632 used the Ensembl Variant Effect Predictor (VEP)* and a modification of recipe R8%.

633  Then, alldlic effect of significant SNP loci on trait variation was estimated through pairwise
634 comparisons between the phenotypic values of the different genotypes: homozygous
635 reference (0/0), heterozygous (0/1) and homozygous alternative (1/1). An allele is defined
636  asfavorable when a significant increase of the phenotypic value was observed between the
637  homozygous reference and the remaining genotypes. Pairwise comparisons were run using
638 the Games-Howell test and P-values were corrected for multiple testing using the FDR
639  method. Results were visualized using ggstatsplot R-package (v0.9.1)%°.
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640 LD-block analysisand identification of candidate genes

641  Significant SNPs were examined to identify candidate genes. Initialy, it was considered
642  whether polymorphisms would be localized in genic regions. Thereby, SNPs were mapped
643  based on their physical position to Prunus persica genome (GCF_000346465.2). SNP-
644  anchored genes were called ‘prime candidates. Strong candidate genes were shortlisted
645  when meeting three criteria: falling within the LD-block region harboring the significant
646  SNPs, being functionally related to the trait of interest and being differentially expressed in
647  fruit tissue. Expression information was retrieved from a recent study by® which defined
648 modules of co-expressed genes across different peach tissues and under various
649  experimental conditions. Differentially expressed genes were those outlined in fruit

650  experiments, particularly under cold storage and chilling injury.

651  LD-blocks were identified within 250 kbp windows upstream and downstream the lead

652  dites. Block boundaries were delimited using a solid spine partitioning approach from

653  LDBlockShow tool®®. A block is defined as a group of SNPs that are in strong LD (D’ >

654  0.7) with the first and last marker in the same block. A D’ value of 0 denotes complete
655 linkage equilibrium, which implies frequent pairwise recombination between markers.
656  Conversely, a D’ value of 1 indicates a complete linkage disequilibrium. Note that D’ and
657  r? are common measures of non-random association between two or more loci; while D’
658  refers to the co-inheritance of two alleles, r? considers the allele frequency to distinguish
659  between common and rare. Identified LD blocks were therefore scanned for candidate

660  genesvia NCBI genome data viewer®,

661 QTLsreview for fruit quality traitsin peach

662  To benchmark the accuracy of our results, an exhaustive bibliographic review of previously
663  reported QTLs mapped in the same linkage group as the associated markers was done. In a
664  practical term, if an associated SNP is located nearby or within a QTL interval, then it's
665  considered as highly accurate and likely segregate with the observed trait. In case that the
666  QTL boundaries are not defined as physical intervals (in bp), we used the nearest or the co-
667 localizing markers as reference. Herein, we refer to the nearest marker as the closest one
668  with a maximum of 5 cM from the QTL hotspot while the co-localizing marker is the one
669 mapped within the QTL boundaries. Moreover, we calculated the physical distance
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670  separating our predicted associated markers from the QTLs. Finally, we compared these
671 distances with a previous study using the same phenotypic data and peach material,
672  athough genotyped using the 9K SNP array™.

673  Dataavailability

674 Raw sequence data and final variant call file (vcf) have been deposited in the European
675  Nucleotide Archive (ENA) under the BioProject PRIEB62784 (data will be released at the
676  publication date). Source code and documentation can be accessed a
677  https://github.com/najlaksouri/GWAS-Workflow.
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875

876  Figurelegends

877 Figurel. (A): Broad sense heritability estimates and (B): phenotypic correlation among 16
878  peach agronomical and fruit quality traits. Dashed horizontal line corresponds to heritability
879  threshold (H® = 0.5). Correlation between traits was estimated using Pearson correlation.
880  Significant positive and negative correlations are displayed in red and blue respectively (P
881 < 0.05). Color intensity and size of the circles are proportional to the correlation
882  coefficients. Abbreviations are as follows. harvest date (HvD), fruit weight (FW), flesh
883  firmness (FF), soluble solids content (SSC), titratable acidity (TA), ripening index (RI),
884  content of vitamin C (Vit C), total phenolics (Phen), anthocyanins (ACNSs), sucrose (Suc),
885  glucose (Glu), fructose (Fruc), sorbitol (SRB) total sugars (TS) and relative antioxidant
886  capacity (RAC).

887  Figure 2. SNPs density plot and intra-chromosomique linkage disequilibrium decay. (A):
888 SNPs density across the eight peach chromosomes. The horizontal axis shows the
889  chromosome length in (Mbp) and the different colors reveal the SNP density per window of
890 1 Mbp. Underlined numbers correspond to the total number of polymorphic sites per
891 chromosome. The asterisks highlight the putative position of centromeres predicted as
892 follows: Chr 1=NC_034009.1: (=21 Mbp), Chr 2=NC_034010.1: (~8 Mbp), Chr 3
893 =NC_034011.1: (~12 Mbp), Chr 4=NC_034012.1: (~24 Mbp), Chr 5=NC_034013.1: (~7
894 Mbp), Chr 6=NC_034014.1: (~15 Mbp), Chr 7=NC_034015.1: (~7 Mbp) and Chr
895 8=NC_034015.1: (~10 Mbp). (B): chromosome wide LD decay of r* (y-axis) over the
896 physical distance in Mbp (x-axis). Each colored line represents a smoothed r2 for all
897 marker pairs on each chromosome. The horizontal dashed red line indicates a cut-off
898  r’=0.25.

899 Figure 3. Q-Qplot comparison between the GWAS models implemented in GAPIT:
900 General Linear Modd (GLM), Mixed Linear Model (MLM), Compressed MLM (CMLM),
901  Settlement of MLM under Progressively Exclusive Relationship (SUPER), Multiple Loci
902 Mixed Linear Mode (MLMM), Fixed and random mode Circulating Probability

30


https://doi.org/10.1101/2023.07.31.551252
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.31.551252; this version posted August 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

903  Unification (FarmCPU) and Bayesian-information and Linkage-disequilibrium Iteratively
904 nested keyway (BLINK). Note that MLM and CMLM models are overlaid. For each SNP,
905 the expected -logyo transformed P-value (x-axis) is plotted against the -logso the observed
906  P-value (y-axis). The red dashed diagonal line corresponds to the expected Q-Q trendline
907 under the null hypothesis (no association with the phenotype). Larger size dots refer to
908  SNPs statistically associated with a trait. For clarity, only phenotypic traits with significant
909  associations were represented.

910 Figure 4. Genome Wide Association and LD block analysis for harvest date (HvD). (A):
911  Circular Manhattan plot and association signals based on Blink model. Black dashed
912  circular line corresponds to the Bonferroni adjusted threshold (-logio(P)=5.42). Red and
913 large size dots correspond to statistically associated SNPs. Degradation from blue to red
914 indicates the SNP density per 1 Mbp window across peach chromosomes. (B): Locus-
915  gpecific Manhattan plot (upper panel) and LD heatmap (bottom panel) within 250 Kbp on
916 either side of the lead SNP (SNC 034013.1 13023165). The prime candidate gene is
917  represented as a blue box which in this case contains a single coding exon, where blue
918  fragment refers to the exon. Pairwise LD measurements are displayed as D’ values with a
919  color transition from yellow to red. (C): Boxplot depicting allelic effect of significant SNP
920 on trait variation. Herein we highlight the SNP commonly affected Harvest date and fruit
921  firmness. Mean value for each genotype is indicated by red circle and ** indicates
922  dgignificant pairwise comparison calculated by Games Howel test (P < 0.05). (D): Genomic
923  didribution of significant ddRAD-derived SNPs (red), reviewed QTLs in the literature
924  (blue) and 9K array derived SNPs (green).

925  Figure 5. Genome Wide Association and LD block analysis for fruit weight (FW). (A):
926  Circular Manhattan plot and association signals based on Blink model. Black dashed
927  circular line corresponds to the Bonferroni adjusted threshold (-logio(P)=5.42). Red and
928 large size dots correspond to statistically associated SNPs. Degradation from blue to red
929 indicates the SNP density per 1 Mbp window across peach chromosomes. (B): Locus-
930 gpecific Manhattan plot (upper panel) and LD heatmap (bottom panel) within 250 Kbp on
931  ether side of the lead SNP. Pairwise LD measurements are displayed as D’ values with a
932  color transition from yellow to red. (C): Boxplot depicting allelic effect of lead SNP on trait
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933 variation. Mean value for each genotype is indicated by red circle and ** indicates
934  gignificant pairwise comparisons calculated by Games Howel test (P < 0.05). (D): Genomic
935  distribution of significant ddRAD-derived SNPs (red) and reviewed QTLs in the literature
936  (blue).

937  Figure 6. Genome Wide Association and LD block analysis for flesh firmness (FF). (A):
938  Circular Manhattan plot and association signals based on Blink model. Black dashed
939  circular line corresponds to the Bonferroni adjusted threshold (-logio(P)=5.42). Red and
940 large size dots correspond to statistically associated SNPs. Degradation from blue to red
941 indicates the SNP density per 1 Mbp window across peach chromosomes. (B): Locus-
942  specific Manhattan plot (upper panel) and LD heatmap (bottom panel) within 250 Kbp on
943  ether side of the lead SNP. Pairwise LD measurements are displayed as D’ values with a
944  color transition from yellow to red. (C): Boxplot depicting allelic effect of lead SNP on trait
945  variation. Mean value for each genotype is indicated by red circle and ** indicates
946  significant pairwise comparisons calculated by Games Howel test (P < 0.05). (D): Genomic
947  distribution of significant ddRAD-derived SNPs (red) and reviewed QTLs in the literature
948  (blue)

949
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950
951

952

953

Tables
Table 1. SNPs count and filtering steps.

Applied filters

Retained SNPs

Clean multi-samples SNPs from GATK-HaplotypeCaller

Clean multi-samples SNPs from Freebayes
Clean multi-samples SNPs from BCFtools
Intersected set

Removing scaffold SNPs

Removing multi-allelic sites

Missing call rate < 20%

Minor Allele Frecuency > 0.05

233,535
166,080
148,998
56,430
56,647
56,430
26,188
13,045
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954 Table 2. Information on significantly associated SNP markers with fruit-related traits in

955  Prunuspersica. Alleles are shown on the forward strand as reference/alternate.

Traits SNP identifier Alldes Chr Position %PVE SNP location
[effect]

SNC_034012.1 10916234 GIT 4 10,916,234 10.7 intergenic

SNC_034012.1 14096987 A/C 4 14,096,987 245 intronic
HvD SNC_034013.1 13023165 T/A 5 13,023,165 30.0 exonic
SNC_034014.1 7012470 AIT 6 7,012,470 2.8 intergenic

SNC_034016.1_18841611 A/G 8 18,841,611 10.2 intergenic

SNC_034011.1 26371177 T/A 3 26,371,177 16.9 exonic
FW  SNC_034014.1_ 1805059 AlG 6 1805059 220 intergenic

SNC_034016.1 16407694 A/C 8 16,407,694 18.7 exonic

FF  SNC_034014.1 7012470 AIT 6 7012470 339 intergenic

SNC 034010.1 643430  T/C 2 643430 357  intergenic

FLVs exonic
SNC 034014.1 3066620 GIT 6 3,066,620 145
[missense]
exonic
ACNs SNC 034013.1 12838635 GIT 5 12,838,635 529
[ missenseg]
exonic
SNC 034009.1 27061825 T/C 1 27,061,825 9.0
[ missense]
SRB  SNC _034010.1 3682553 G/IC 2 3,682,553 11.8 intronic
SNC 034014.1 28343678 G/A 6 28,343,678 104 intronic

SNC_034016.1_18841643 G/A 8 18,841,643 14.0 intergenic
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956  Variant in bold refers to ‘lead SNP, explaining the highest proportion of phenotypic
957  variance (PVE). Chromosome (Chr), Harvest date (HvD), fruit weight (FW), flesh firmness
958  (FF), and contents of flavonoids (FLV's), anthocyanins (ACNs) and sorbitol (SRB).
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