

1 **ddRAD-seq-derived SNPs reveal novel association signatures for fruit-related traits in**
2 **peach**

3 **Running title: ddRAD-seq approach infers association signals in peach**

4 Najla Ksouri¹, Gerardo Sánchez², Carolina Font i Forcada³, Bruno Contreras-Moreira^{4*},
5 Yolanda Gogorcena^{1*}

6 ¹Group of Genomics of Fruit Trees and Grapevine, Department of Pomology, Estación
7 Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas, Avenida de
8 Montaña 1005, E50059 Zaragoza, Spain.

9 ²Biotechnology Lab, Estación Experimental Agropecuaria (EEA) San Pedro, INTA, Ruta
10 N°9 km 170, B2930 San Pedro, Argentina.

11 ³Department of Pomology, Estación Experimental de Aula Dei-Consejo Superior de
12 Investigaciones Científicas, Avenida de Montaña 1005, E50059 Zaragoza, Spain.

13 ⁴Laboratory of Computational and Structural Biology, Department of Genetics and Plant
14 Production, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones
15 Científicas, Avenida de Montaña 1005, E50059 Zaragoza, Spain.

16 *Senior authors

17 Emails:

18 Najla Ksouri: nksouri@eead.csic.es Tel: +34 976 716132

19 Gerardo Sánchez: sanchez.gerardo@inta.gob.ar Tel: +54 93329542117

20 Carolina Font i Forcada: carolffont@gmail.com Tel: +34 673329049

21 Bruno Contreras-Moreira*: bcontreras@eead.csic.es Tel: +34 976716089

22 Yolanda Gogorcena*: aoiz@eead.csic.es Tel: +34 976 716133

23 **Abstract**

24 Breeding for new peach cultivars with enhanced traits is a prime target in breeding
25 programs. In this study, we used a discovery panel of 90 peach accessions in order to
26 dissect the genetic architecture of 16 fruit-related traits. ddRAD-seq genotyping and the
27 intersection between three variant callers yielded 13,045 high-confidence SNPs. These
28 markers were subjected to an exhaustive association analysis by testing up to seven GWAS
29 models. Blink was selected as the most adjusted, simultaneously balancing false positive
30 and negative associations. Totally, we identified 16 association signals for six traits
31 showing high broad-sense heritability: harvest date, fruit weight, flesh firmness, contents of
32 flavonoids, anthocyanins and sorbitol. By assessing the allelic effect of significant markers
33 on phenotypic attributes, nine SNP alleles were denoted favorable. A promising marker
34 (SNC_034014.1_7012470) was found to be simultaneously associated with harvest date
35 and fruit firmness conferring a positive allelic effect on both traits. We anticipate that this
36 marker could be used to improve firmness in late harvested cultivars. Candidate causal
37 genes were shortlisted when fulfilling the following criteria: i) position within the linkage
38 disequilibrium block, ii) functional annotation and iii) expression pattern. A bibliographic
39 review of previously reported QTLs mapping nearby the associated markers allowed us to
40 benchmark the accuracy of our approach. Despite the moderate germplasm size, ddRAD-
41 seq allowed us to produce an accurate representation of peach's genome resulting in SNP
42 markers suitable for empirical association studies. Together with candidate genes, they lay
43 the foundation for further genetic dissection of peach key traits.

44 **Key words:** lead SNP, prime candidate genes, haplotype blocks, fruit-related traits, linkage
45 disequilibrium, *Prunus persica*

46 **Background**

47 Peach is one of the most economically valued fleshy fruits worldwide (FAO,
48 <http://faostat.fao.org>). The advances in the peach industry largely rely on fruit quality
49 improvement in response to the market and consumers' demands. The term quality may
50 include all agronomical aspects and chemical compounds such as fruit size, firmness, sugar
51 and acid concentration, etc. Some of those characteristics are thought to be monogenic,

52 controlled by a single gene (fruit shape, hairiness, flesh color, texture)¹⁻³ while others are
53 polygenic, such as sugar content, fruit firmness, antioxidant concentration⁴.

54 Breeding for polygenic quantitative traits is far from being a straightforward task. Thus,
55 insights on genetic drivers controlling these traits and their inheritance are required to
56 bridge the phenotype-genotype gap^{3,5}. For instance, the development of molecular markers
57 linked to desirable traits would considerably speed up the selection of superior plant
58 varieties through marker-assisted selection (MAS)⁶. Genome-wide association studies
59 (GWAS) have also revolutionized the breeding process by detecting the genetic loci
60 underlying trait variations at a relatively high resolution. This approach has been
61 successfully applied in many breeding programs. For instance, GWAS have provided
62 insight into fruit-related traits such as skin color in apple⁷ and fruit firmness in sweet
63 cherry⁸. The power and prediction accuracy of GWAS critically depend on various
64 considerations, including phenotypic data quality, experimental sample size, linkage
65 disequilibrium (LD) between genetic variants and population structure. If not adjusted
66 properly, these factors may lead to spurious associations as well as masking the true ones.
67 Another key factor while performing GWAS is the density and chromosome distribution of
68 markers/SNPs along the reference genome.

69 Generally, genotyping methods fall into three categories; whole genome resequencing,
70 reduced representation sequencing, and SNP arrays^{□□}⁹. Whole genome resequencing
71 returns the highest number of SNP calls if sequencing depth is sufficient, which is
72 expensive for large genomes. For this reason, SNP arrays are widely used, reducing the cost
73 and enabling the detection of thousands of SNPs in a single assay⁹. In peach, commercially
74 available arrays IPSC peach 9K¹⁰ and IPSC peach 18K¹¹ have been used to explore the
75 genetic diversity and to assist the breeding process^{1,12}. Despite their utility, the major
76 drawback of SNP genotyping arrays consists in their ascertainment bias¹³. In other words,
77 they narrow the discovery of novel variants other than those detected in the discovery panel
78 and used to build the respective array. This might distort subsequent genetic inferences.
79 Additionally, efficient SNP probes require a well-assembled reference genome and their
80 design and further optimization can be time consuming.

81 With the massive progress of high-throughput technologies, reduced representation
82 sequencing such as restriction-associated DNA (RAD) sequencing and its derivative
83 (ddRADseq) emerged to overcome both cost and ascertainment bias¹⁴. Double digest
84 restriction-site associated DNA (ddRADseq) relies on the use of a pair of restriction
85 enzymes to limit the sequencing effort to a subset of evenly distributed loci in the
86 genome¹⁴. Moreover, by picking the best enzyme combination, repetitive DNA can be less
87 targeted, thereby reducing the computational burden associated with aligning genomes with
88 highly repetitive segments.

89 Unlike other genotyping methods, prior genomic information is strictly not required for
90 ddRADseq¹⁴. Nevertheless, as shown in this work, it is most powerful when combined with
91 a reference genome sequence. From a technical standpoint, a common shortcoming of
92 ddRADseq is the high rate of missing calls which can be straightforwardly handled through
93 genotype imputation.

94 Herein, we report the application of ddRADseq genotyping to identify high confidence
95 SNPs in a discovery panel of 90 *Prunus persica* accessions. Consequently, GWAS was
96 carried out to identify genomic loci associated with 16 fruit traits. To optimize the analysis
97 and to overcome the limitations arising from the size of our peach germplasm, we
98 considered the following aspects: 1) peach accessions were geographically distant in order
99 to maximize the genetic variance, 2) SNPs were called using three variant detectors
100 (BCFtools, Freebayes and GATK) and only those resulting from the intersection were
101 retained for subsequent analysis, and 3) several statistical models were assessed to control
102 the confounding effects.

103 Genotype-to-phenotype associations for agronomic and fruit-related traits have been widely
104 tested in peach using different genotyping methods like SSRs¹⁵, 9K SNP array^{1,4,16}, 18K
105 SNP array^{3,12} and high-throughput resequencing technology¹⁷. However, to the best of our
106 knowledge this is the first report characterizing the genetic architecture of peach traits using
107 ddRADseq-derived SNPs. In this study, we propose best practices for GWAS analysis
108 mainly relying on a comparative approach for SNPs calling and statistical model
109 assessment. Therefore, we demonstrate the utility of ddRAD-based genotyping in unveiling
110 desirable alleles and genomic regions putatively responsible for trait variation. By

111 contrasting our findings with those previously reported using the peach 9K SNP array¹⁶ we
112 confirm the accuracy of our approach.

113 **Results**

114 **Phenotypic analysis and heritability**

115 Broad sense heritability was estimated over three consecutive years and the results denote
116 that most of the traits were highly heritable (**Figure 1.A**). Hence, their phenotypic
117 variability among the individuals was mainly driven by the genetic effects. However,
118 contents of glucose, fructose, sucrose and total sugars (TS) were found to be lowly heritable
119 traits ($H^2 < 0.5$), denoting that their variability may be mostly due to the environmental
120 factors. These traits were therefore left out of the association analyses. Furthermore, normal
121 distribution fit tests conducted on averaged phenotypic measures, revealed that six out of 16
122 traits were found to be normally distributed (flesh firmness, soluble solids content (SSC),
123 ripening index, vitamin C, relative antioxidant capacity (RAC) and glucose). Source code,
124 documentation and detailed results can be accessed at
125 <https://github.com/najlaksouri/GWAS-Workflow>. The remaining ones, skewed either
126 positively or negatively, were transformed accordingly. Likewise, the phenotypic
127 correlation was estimated and significant interactions between agronomical and fruit quality
128 traits were observed (**Figure 1.B**). For instance, harvest date (HvD) had the highest
129 heritability estimates ($H^2=0.94$) and exhibited strong positive correlations with flesh
130 firmness, sugar contents measured as (SSC, TS and sorbitol) and antioxidant activity
131 measured as (RAC, flavonoids and phenols). As expected, moderate positive interaction
132 was also reported between the HvD and fruit weight as well as between total and individual
133 sugars. Moreover, a strong positive correlation was also observed between total phenolics
134 and flavonoids. Indeed, flavonoids are the largest group of naturally occurring phenolic
135 compounds in plants. Both compounds showed a significant positive interaction with
136 (RAC) suggesting that they could be used as a good indicator of antioxidant properties in
137 peaches.

138 **SNP genotyping**

139 To construct an informative SNP panel, polymorphic sites were called in individual sample
140 mode using three different algorithms. Raw calls were subjected to standardized quality
141 thresholds in order to mitigate the effect of sequencing and/or alignment flaws. Post-filtered
142 calls from each pipeline were merged together into multi-samples format (**Table 1**).
143 According to our results, GATK-HaplotypeCaller (HC) outperformed both Freebayes and
144 BCFTools in terms of computational time and sensitivity yielding a total of 233,535 SNP
145 calls (see repository <https://github.com/najlaksouri/GWAS-Workflow>). Freebayes ranked
146 second, followed by BCFTools, with 166,080 and 148,998 SNPs, respectively. For a robust
147 variant detection, the intersection between multi-sample sets was computed. About 32% of
148 SNPs were found to be commonly shared by the above-stated tools. Multi-allelic and
149 scaffold variants were excluded and additional filters (missing call rate and MAF) were
150 applied (**Table 1**). Finally, a set of 13,045 SNPs was kept for subsequent analysis.

151 Using VEP tool, polymorphic sites were found to be distributed along upstream (21%),
152 downstream (9%), intronic (26%) and intergenic (8%) regions (**Figure S1**). Low
153 proportions of SNPs were tagged as 3' UTR and 5' UTR variants. Within coding regions,
154 11% of SNPs were defined as synonymous while 13% were annotated as missense variants.

155 **SNP distribution and LD decay**

156 The distribution of polymorphic sites was calculated within adjacent windows of 1 Mbp
157 and provided a genome-wide coverage estimate along the eight peach chromosomes. As
158 illustrated in **Figure 2.A**, markers were unevenly partitioned throughout the genome with
159 the highest number of mapped SNPs on chromosome 2 (4,440) and the lowest on
160 chromosome 5 (1,768). Interestingly, SNPs accumulated within the short arms of
161 chromosomes 2 and 4. In contrast, large gaps were observed towards the telomere of the
162 long arm of chromosome 2. Similarly, several blank regions were located along
163 chromosome 1. Gaps highlighted with asterisks correspond to predicted centromeric
164 regions¹⁸.

165 To determine the extent of LD decay in the diversity panel, we estimated the pairwise LD
166 coefficient (r^2) at chromosomal level. LD decay was estimated for each chromosome by
167 estimating the intersection of $r^2=0.25$ with the physical distance (**Figure 2.B** and **Figure**

168 S2). We found that LD dropped at short distance, ranging from 250 to 500 kbp along all
169 chromosomes, with the exception of chromosome 5 (ca. 4.7 Mbp). After LD pruning, a
170 total of 1,959 unlinked SNPs was kept for population structure and kinship estimations.

171 **Population structure**

172 PCA analysis separated the germplasm panel into 4 sub-populations based on the genetic
173 origin (landrace vs modern breeding line) and fruit type (peach vs nectarine) (**Figure S3**).
174 Clade 1 on the top left corner, grouped exclusively modern breeding lines of peach and
175 nectarine. This group seems to be driven by the geographical origin as most of the
176 accessions were originated from North America (**Table S1**). Clade 2 represents a diverse
177 genetic entity gathering both landrace and breed peach varieties. Genotypes within this
178 clade were originated from Spain and North America suggesting the presence of higher
179 admixture that could arise due to the exchange of the germplasm material. In contrast,
180 clades 3 and 4 contained only landrace peach accessions mostly from different regions of
181 Spain, Europe and South Africa. A neighbor joining (NJ) tree also identified four clear
182 clusters, as illustrated in **Figure S4**. Comparable results were obtained from
183 fastSTRUCTURE and are provided in the GitHub repository.

184 **Critical evaluation of GWAS models**

185 Genome wide association studies may be susceptible to bias in the presence of
186 measurement errors. False positive and negative associations arising from population
187 structure or/and family relatedness may lead to erroneous conclusions. The examination of
188 Q-Q plots can be used as a straight visual inspection to determine the appropriate statistical
189 method controlling the confounding effects. In fact, Q-Q plots illustrate the distribution of
190 markers under the null hypothesis, by plotting the observed $-\log_{10} P$ -values (y-axis) versus
191 the expected $-\log_{10} P$ -values (x-axis). If a sharp diagonal line is observed then the null
192 hypothesis is respected and no significant associations are reported. However, an upper
193 deviated tail from the diagonal line would likely indicate true associations. Upward
194 inflation close to the line's origin indicates suspicious false positives while downward
195 deflated tail suggests false negatives.

196 We empirically evaluated the adjustment of seven models to our data and in **Figure 3**, we
197 plot their Q-Q behavior for significantly associated traits. Despite yielding statistically

198 significant associations, represented as bigger dots, both single locus models GLM and
199 SUPER exhibited prominent inflation beyond the expected null line. This deviation starting
200 close to the origin indicates false positive predictions due to confounding effects
201 (population stratification or genotype relatedness). MLM and CMLM multi-locus models
202 showed matching *P*-value distributions, therefore their Q-Q plots were overlaid. Except for
203 harvest date, where the null hypothesis cannot be rejected with neither inflated nor deflated
204 *P*-values, MLM and CMLM unveiled downshifted line tails when assessed with the rest of
205 traits. Such a result may indicate that these tests were able to reduce false positive
206 associations, but likely yielded false negative ones. Another complex model (MLMM) was
207 found to follow the null hypothesis with both harvest date and flavonoids; nonetheless a
208 slightly downward tail was discerned for fruit weight and sorbitol content. Although being
209 the best-fitting model yielding marker-trait associations with harvest date and flavonoids,
210 FarmCPU did not show the same statistical power with other traits. Finally, the observed *P*-
211 values produced by Blink (green color) were lying on the diagonal line with clear deviated
212 tails toward the y-axis for all six aforementioned traits. All in all, Blink seems to be the best
213 calibrated model, appropriately controlling false positive and false negative effects. For
214 these reasons, we consider Blink as the most suitable model, best adjusted with all
215 phenotypic data and from here on the GWAS results are based on it.

216 **Marker-trait associations and identification of candidate genes**

217 GWAS analysis was conducted on phenotypic traits with moderate to high heritability (H^2
218 > 0.5). Consequently, contents of glucose, fructose, sucrose and total sugars were discarded
219 from the subsequent analysis. To sum it up, among the remaining 12 traits, only six were
220 found to be potentially influenced by polymorphic markers. Sixteen marker-trait
221 association peaks were scattered throughout all chromosomes except chr 7 (**Table 2**). In the
222 following sections we will discuss the results for each of these traits, namely harvest date,
223 fruit weight, flesh firmness, and contents of flavonoids, anthocyanins, and sorbitol. For ease
224 of interpretation, in the following paragraphs we summarize the lead SNPs and their
225 corresponding LD blocks. The annotation of 250 kbp regions centering the peak SNPs
226 resulted in a list of candidate causal genes provided in **Table S2**.

227 **Harvest date (HvD)**

228 The GWAS analysis resulted in five SNPs meeting the Bonferroni-adjusted threshold
229 (**Figure 4**). Two SNPs were located on chr 4 and tagged as (SNC_034012.1_10916234,
230 G/T) and (SNC_034012.1_14096987, A/C). Their allelic effect is summarized in **Figure**
231 **S5**, where it can be seen that the first one correlates with delayed harvest and the second
232 one with early one. Another associated marker was located on chr 5
233 (SNC_034013.1_13023165, T/A). Although covering the highest portion of %PVE, no
234 significant allelic effect was observed (**Table 2**). This lead SNP was mapped within the
235 first exon of *Prupe.5G138500*, a gene encoding a germin-like protein. One more significant
236 site was identified on chr 6 and labeled as (SNC_034014.1_7012470, A/T). Allelic effect
237 on phenotypic variation highlighted that both heterozygous and homozygous genotypes
238 carrying the alternate allele (T) were lately harvested with respectively 6 and 13-days of
239 delay (**Figure 4.C**). Similarly, the intergenic SNP located on chr 8
240 (SNC_034016.1_18841611, A/G), showed approximately 20-days delay in harvest date
241 with heterozygous accessions (**Figure S5**).

242 LD block analysis revealed various candidate genes, including cell wall modification
243 (*Prupe.8G197700*: galacturonosyltransferase and *Prupe.8G199700*: cell division control
244 protein), cytochrome P450 enzymes (*Prupe.8G196800*, *Prupe.8G196900*, *Prupe.8G197100*
245 and *Prupe.8G197300*), UV-photoreceptor (*Prupe.4G185200*) and ethylene-responsive
246 transcription factor (*Prupe.8G198700*).

247 **Fruit weight (FW)**

248 Significant marker-trait associations were detected on three chromosomes: chr 3
249 (SNC_034011.1_26371177, T/A), chr 6 (SNC_034014.1_1805059, A/G) and chr 8
250 (SNC_034016.1_16407694, A/C). The explained variance oscillated between 17 and 22%,
251 with SNC_034014.1_1805059 tagged as the lead intergenic marker (**Table 2**). The allelic
252 effect of this lead marker (A/G) was found to be unfavorable, with the allele G associated
253 with weight loss (~22 grams) in homozygous accessions (**Figure 5.C**). A similar negative
254 effect was observed with the SNP on chr 3 (T/A), with a significant reduction in fruit
255 weight of 53g. Only marker mapped on chr 8 (A/C) was found to have a positive effect in
256 heterozygous (**Figure S6**). Based on the LD block results, the lead SNP fell within the

257 fourth block, a small interval (84 bp) overlapping no genes (**Figure 5.B**). Nonetheless, the
258 associated SNPs did overlap protein-coding genes. Among them, genes encoding β -
259 galactosidase (*Prupe.3G298200*), α -galactosyltransferase (*Prupe.3G298800*), thymidylate
260 kinase (*Prupe.3G301400*) and transcription factors (GTE8: *Prupe.3G301300* and trihelix
261 GT-4: *Prupe.3G300500*) (**Table S2**).

262 **Flesh Firmness (FF)**

263 A single intergenic marker (SNC_034014.1_7012470; A/T) detected on chr 6 was
264 statistically linked to flesh firmness and explained 33.9% of the total phenotypic variance
265 (**Table 2**). This polymorphism showed a significant increase in the fruit firmness in both
266 heterozygous and alternate homozygous genotypes which underlined the favorable effect of
267 the alternative allele (T) on fruit firmness (**Figure 6.C**). It's noteworthy to mention that this
268 is the only marker simultaneously associated with two different traits (HvD and FF).
269 Moreover, peach accessions carrying the aforementioned allele (either homozygous or
270 heterozygous), were denoted late-harvested and firm peach accessions. Such a result may
271 justify the high correlation existing between both traits (**Figure 1.B**).

272 By examining 250 kbp upstream and downstream the lead marker, it was found to reside in
273 block 3, which makes it a relevant region to seek for candidate firmness-related genes. On
274 the basis of their functional annotation, six genes were selected as potential candidates,
275 including *Prupe.6G100500* encoding an E3 ubiquitin-protein ligase, *Prupe.6G101100*
276 corresponding to vegetative cell wall protein, *Prupe.6G101600* annotated as aquaporin
277 PIP2 and *Prupe.6G102300* encoding homeobox-leucine zipper transcription factor (**Table**
278 **S2**).

279 **Flavonoids (Flvs)**

280 The Manhattan plot displayed two peaks statistically associated with flavonoids content
281 (**Figure S7.A**). The first peak was identified within the intergenic region of chr 2 and
282 named as (SNC_034010.1_643430, T/C). The alternative allele (C) was marked as
283 favorable for heterozygous (TC) and homozygous alternate (CC) genotypes since they
284 showed approximately two-fold increase in the flavonoids content (**Figure S7.C**). The
285 second associated SNP (SNC_034014.1_3066620; G/T) was located on chr 6 and
286 physically mapped on the first exon of *Prupe.6G041500*; a candidate gene encoding a non-

287 specific lipid-transfer protein-like (**Table S2**). The average flavonoids content in alternative
288 homozygous peach accessions (TT) was significantly enhanced compared to the reference
289 homozygous individuals (GG) (**Figure S8**). Thus, the T allele can be considered as a
290 favorable one. Based on LD block results, we annotated a total of 14 genes (**Table S2**).
291 According to their biological function and tissue-specific expression, we narrowed the list
292 to a few promising ones, including two genes encoding transcription factors
293 (*Prupe.2G009100*, bHLH and *Prupe.6G041400*, bZIP).

294 **Anthocyanins (ACNs)**

295 Regarding the anthocyanins content, we detected a single peak signal on chr 5 exceeding
296 the threshold line (**Figure S9.A**). This locus tagged as (SNC_034013.1_12838635; G/T)
297 falls within exon 2 of *Prupe.5G134900*, encoding a B3 domain-containing transcription
298 factor. Thus, *Prupe.5G134900* was considered as a prime candidate gene. The identified
299 marker explained a large portion of the variation (53%), and was found to exert an
300 unfavorable effect on anthocyanins content (**Figure S9.C**). Indeed, pairwise comparisons of
301 SNP allelic effect showed a significantly lower anthocyanins content in the homozygous
302 alternate individuals (TT) compared to the reference homozygous (GG). Screening for
303 genes residing within LD block resulted in three further candidate genes involved in
304 different biological functions (*Prupe.5G134200*, *Prupe.5G134800* and *Prupe.5G135200*)
305 (**Table S2**).

306 **Sorbitol (SRB)**

307 Four significant association signals dispersed on different chromosomes were predicted to
308 affect the sorbitol content (**Table 2** and **Figure S10**). On chr 1, an intergenic SNP
309 (SNC_034009.1_2706825; T/C) explained the lowest proportion of phenotypic variation.
310 The SNP on chr 2 (SNC_034010.1_3682553; G/C), in the third intron of a gene encoding a
311 flowering time control protein (*Prupe.2G0303400*), explained 12% of the PVE. Similarly,
312 (SNC_034014.1_28343678; G/A) was located on chr 6 and mapped on the intronic region
313 of *Prupe.6G320000*, a gene encoding a serine/arginine rich factor. Both *Prupe.2G0303400*
314 and *Prupe.6G320000* are suggested as plausible sorbitol-related genes. The lead SNP
315 explaining the highest PVE (14%) was identified in an intergenic region of chr 8
316 (SNC_034016.1_18841643; G/A).

317 With the exception of (SNC_034014.1_28343678) the remaining loci were observed to
318 have desirable effect on sorbitol content (**Figure S11**). We identified 26 genes distributed
319 in 250 kbp on either side of each associated SNP. Among them, some were discovered to
320 be over-expressed in the fruit ($\text{Log}_2\text{FC} > \square 3 \square$), including genes encoding heavy metal-
321 associated isoprenylated proteins (*Prupe.2G033600*, *Prupe.2G033700* and
322 *Prupe.6G321400*), pectinesterases (*Prupe.6G318500*), exonucleases (*Prupe.6G316100*),
323 dormancy-associated proteins (*Prupe.6G319600*), cell cycle checkpoint control proteins
324 (*Prupe.6G321300*) and the E3 ubiquitin-protein ligase RNF4 (*Prupe.8G199600*). A cluster
325 of four cytochrome P450 encoding genes was also identified. This plethora of genes may
326 shed light on several key processes that are subject to influence the sorbitol biosynthesis.

327 **Discussion**

328 **Performance of variant callers**

329 SNPs discovery in plant genomes has been a widely used strategy for developing molecular
330 markers useful for MAS, genomic selection, phylogenetic analysis, etc. In order to detect
331 and track these genetic variations, we performed a SNP discovery pipeline on paired-end
332 reads mapped to a diploid genome using BCFtools, Freebayes, and GATK-
333 HaplotypeCaller. SNP calling is known to be error prone. Spurious variants may have
334 several sources; errors associated with sample processing (library preparation, PCR
335 amplification), sequencing, as well as, computational analysis¹⁹. To remove likely false
336 positive variants, best practices and carefully chosen cut-offs are needed. In our analysis, a
337 SNP site was kept when passing the following filters: mapping and call quality, read depth,
338 as well as call rate and MAF. Though either calling tool can be adapted, we observed a
339 certain inconsistency in the number of high-quality SNPs revealed by each tool. Notably,
340 GATK-HC exhibited the highest sensitivity in SNPs calling, followed by Freebayes then
341 BCFtools. The outperformance of GATK-HC is actually not surprising as it heavily relies
342 on local *de-novo* assembly of haplotypes in active regions²⁰. In other terms and unlike the
343 rest of tools, whenever GATK encounters regions with substantial evidence of variation
344 relative to the reference, it discards the existing mapping information and reassembles the
345 read mappings. Our results are in line with²¹ concluding that in *Arabidopsis thaliana*,
346 GATK-HC was found to be more accurate compared to BCFtools. Additionally, GATK-

347 HC had the lowest proportion of false positives compared to both Freebayes and
348 BCFtools²². On the other hand, the variation in the number of detected SNPs may be partly
349 due to the underlying algorithms. Indeed, GATK-HC and Freebayes are Bayesian variant
350 detectors while BCFtools mpileup uses Hidden Markov Models. Although having an
351 extensive format requirement (e.g: read group specified in the input header), GATK-HC
352 seems to be more precise dealing with ddRAD-seq mapped reads in peach. Nevertheless, to
353 further increase confidence, in this study we only considered SNPs called by all three
354 approaches.

355 **Statistical model selection**

356 Choosing a statistically reliable model is another fundamental pillar for a successful
357 GWAS. Population structure and genetic relatedness are confounding factors increasing the
358 rate of ambiguous associations and decreasing the statistical power. When ignored, they
359 lead to substantial inflation of *P*-values as highlighted in the GLM model (**Figure 3**). In
360 spite of including PCA components and kinship as covariates, SUPER model had also a
361 large number of false positives. This may be explained by the fact that both GLM and
362 SUPER are single-locus approaches failing to catch true associations when dissecting
363 complex traits. Comparable inflated *P*-values were observed in *Arabidopsis thaliana* when
364 testing flowering time, a polygenic trait, with the naïve model (GLM)²³. In contrast, two
365 other single-locus models, MLM and its compressed version (CMLM), were observed to
366 adjust for false positives at the cost of failing to find any significant marker. Similar results
367 were observed with MLMM, a multi-locus extension of MLM model (**Figure 3**). Overall,
368 we conclude that MLM-based methods are likely missing potentially important SNPs.

369 The inspection of Q-Q plots declared FarmCPU and Blink as the most sophisticated
370 algorithms yielding significant associations. Whereas FarmCPU returned significant
371 signatures with only two traits (HvD and Flvs), Blink consistently inferred associations
372 with six traits (HvD, FW, FF, Flvs, ACNs and SRB). FarmCPU and Blink have emerged to
373 prevent over-fitting and to control false positives simultaneously^{24,25}. FarmCPU employs
374 iteratively the fixed-effect model (FEM) and random effect model (REM) to eliminate
375 confounding factors. FEM contains testing markers, one at a time, and associated markers
376 as covariates to control false positives. To circumvent model over-fitting in FEM, the

377 associated markers are estimated in REM and are used to derive the kinship²⁴. Additionally,
378 FarmCPU relies on the binning approach, where the whole genome is equally divided into
379 bins and only the most significant marker is selected from each bin²⁴. Despite its promise,
380 this model is hampered by two major pitfalls: REM is computationally demanding and the
381 assumption of bins rarely occurs in practice. As a consequence, Blink was designed to
382 optimize the computational burden by substituting the REM with FEM through
383 approximating maximum likelihood using the Bayesian Information Criterion and by
384 increasing the statistical power by replacing the bin approach with the LD method²⁵.

385 Overall, Blink seems to be the well-suited model for our set of data, balancing false
386 positives and false negatives. This statement is underpinned by the GAPIT team, which
387 already stated that Blink is statistically more powerful than FarmCPU²⁶.

388 **Marker-trait association for the target traits**

389 Out of 16 studied traits, association mapping using ddRAD-derived-SNPs and Blink,
390 revealed association signals with six traits. Totally, 16 significant loci were inferred and
391 distributed as follows: harvest date (chr 4, 5, 6 and 8), fruit weight (chr 3, 6 and 8), flesh
392 firmness (chr 6), flavonoids (chr 2 and 6), anthocyanins (chr 5), and sorbitol (chr 1, 2, 6,
393 and 8). Promising candidate genes were selected when residing within the LD block
394 containing the significant loci, known to be related to the targeted trait and being over-
395 expressed in fruit tissue. Our results were further discussed in comparison with¹⁶ which
396 studied the same phenotypic data and germplasm material, but genotyped using the 9K SNP
397 array instead.

398 **Harvest date**

399 Peaches and nectarines are generally harvested at physiological maturity, then ripening off
400 the trees. Harvest date and maturity date are frequently used as synonyms and are expressed
401 in Julian days. HvD is defined as the day on which a certain percentage of peaches reach
402 maturity. Maturity date (MD) is defined as the interval of time from the first day of the
403 calendar year till the harvest date²⁷. In our study, five association signals for HvD were
404 highlighted. Two were inferred on chromosome 4 and the rest were distributed on
405 chromosomes 5, 6 and 8.

406 As established by^{28,29}, major QTLs controlling maturity date have been reported on linkage
407 groups LG4 and LG6 (**Table S3**). Particularly, a major QTL on LG4 referred to as qMD4.1
408 showed a pleiotropic effect on fruit weight and firmness^{28,30}. Interestingly, our marker
409 SNC_034012.1_10916234 mapped at (~10.91 Mbp), was overlapping the (qMD4.1_CA)
410 locus from C×A progeny spanning the interval between 10.87-12.09 Mbp³⁰. This same
411 QTL from W×By progeny (qMD4.1_WB) was found 65 kbp from our marker (**Figure**
412 **4.D**). In the same vein, SNC_034012.1_10916234 was delimited by one downstream (HD-
413 EJ-4)³¹ and two upstream quantitative loci (qP-MD4)³² and (qMD4_1)³³ mapped
414 respectively at 0.5, 5.3 and 1245 kbp from the SNP's coordinate (**Figure 4.D**). Likewise,
415 the second marker on chr 4 (SNC_034012.1_14096987) mapped at (~14.09 Mbp) was
416 found within the genomic region of strong confidence QTL (qMD4_2) spanning the
417 interval (11.20 - 14.10 Mbp)³⁴. Contrasting with associated SNP from the 9K assay¹⁶, our
418 markers seems to be more confident as they are located within the QTL boundaries which
419 supports their reliability. Altogether, we anticipate that the aforementioned SNPs on chr 4
420 could be integrated as promising markers for HvD breeding goals. As well, we conclude
421 that LG4 seems to be a chromosomal hotspot hosting a cluster of major QTLs associated
422 with the maturity date. QTLs influencing maturity date were also detected on LG4 in
423 peach-related species, for instance; sweet cherry³⁵. Therefore, we believe that this trait
424 could be controlled by orthologous loci within *Prunus* species.

425 Marker 'SNC_034013.1_13023165' mapped on chr 5 (~13.02 Mbp) was supported by an
426 adjacent locus (QTLMD5) spanning the region (14.38 - 17.64 Mbp)³⁶ and other distant
427 signals (qP-MD5 and qMD5)^{32,34}. Significant markers from 9K array¹⁶ were found to be
428 physically closer to the QTLs (**Figure 4.D** and **Table S3**). Finally, the significant SNP on
429 chr 6 'SNC_034014.1_7012470' was residing within two QTL intervals³⁶ QTLMD6.1 and
430 QTLMD6.1, supporting it. Similar findings were observed with 9K-associated markers.

431 Multiple candidate genes potentially influencing the harvest date were shortlisted (**Table**
432 **S2**). Most importantly, an ethylene-responsive transcription factor (*Prupe.8G198700*).
433 Ethylene-responsive elements are relevant in climacteric fruits and have been proposed as
434 candidate genes for fruit maturation date in different *Prunus* species^{31,37}. We also identified
435 a cell wall remodeling gene encoding galacturonosyltransferase. This finding is in

436 consonance with³⁷ defining a galacturonosyltransferase as a candidate gene for late
437 harvested cultivars.

438 **Fruit weight**

439 Fruit weight is a quantitative trait with great importance in peach breeding. Previous studies
440 in peach have divulged that FW is monitored by multiple QTLs distributed across all
441 chromosomes^{34,38-40}. Using GWAS, we identified a significant SNP on chr 3 (~26.37 Mbp)
442 located respectively at 4.07 and 7.27 Mbp downstream of two QTLs qFRW.ZC_3 and
443 qFRW.WB (**Figure 5, Table S3**). On chr 6, another significant marker was predicted at
444 (~1.80 Mbp). This marker was delimited in near proximity by two reliable QTLs
445 (qFRW.ZC_6)⁴⁰ and (qFW6.1)³⁴, situated respectively at 387 and 1,358 bp. On chr 8,
446 SNC_034016.1_16407694, was localized at (~6 Mbp) downstream of marker flanking QTL
447 (FW 10-b)³⁹. This is in contrast with¹⁶ where no associated loci were reported for this trait
448 (**Table S3**). Such results support the relevance of our findings in dissecting the genetic
449 control of complex fruit traits and shed light on the effectiveness of ddRAD-seq genotyping
450 on inferring *novel* association signatures.

451 Candidate genes prediction revealed two transcription factors, trihelix GT-4
452 (*Prupe.3G300500*) and GTE-8 (*Prupe.3G301300*). Transcriptional regulators are abundant
453 in plant genomes and they are implicated in various biological processes. Interestingly,
454 trihelix genes are known to be photo-responsive proteins⁴¹. It's well documented that light
455 exposure affects fruit size, shape and quality⁴². Thus, we speculate that trihelix TF may
456 regulate the fruit weight in peaches. Moreover, cell wall enzymes such as β -galactosidase,
457 α -galactosyltransferase may act as key components of cell wall turnover during stone fruit
458 growth⁴³. Finally, thymidylate kinase exhibited strong upregulation suggesting a possible
459 role in peach fruit development as validated in rice, barley and maize⁴⁴.

460 **Flesh firmness**

461 Firmness is a key textural indicator of peach quality and directly influences their shelf life.
462 In our study, we identified a single firmness related locus SNC_034014.1_7012470 on chr
463 6. In the same LG6, a firmness loss QTL (qP-FL5d6) was described (**Figure 6.D and Table**
464 **S3**). Another stable QTL (qP-FF6.1^m) was also detected over two years in related species,

465 particularly in sweet cherry³⁵. Using 9K inferred SNPs and MLM model¹⁶, no significant
466 association signals were found.

467 Four genes were selected as strong candidates encoding: ubiquitin-protein ligase
468 (*Prupe.6G100500*), vegetative cell protein (*Prupe.6G101100*), aquaporin PIP2
469 (*Prupe.6G101600*) homeobox-leucine zipper protein (*Prupe.6G102300*). E3 ligase genes
470 were found to be differentially expressed in either melting flesh or stony hard fruit during
471 the ripening⁴⁸. Aquaporins are transmembrane water transporters and water uptake within
472 fruit is highly related with fruit firmness⁴⁵. Thus, aquaporins could play a key role in
473 maintaining cell turgor in peach. Finally, homeobox-leucine zipper proteins were denoted
474 as potential biomarkers for the ripening process in peach⁴⁶.

475 **Flavonoid and anthocyanin contents**

476 Flavonoids are major polyphenol compounds playing a central role in fruit color and flavor.
477 Our analysis yielded two potential association signatures in chr 2 and 6. These results go
478 along with⁴⁷ affirming that the majority of lead SNPs linked with many flavonoid
479 metabolites in peach were located on chr 2. Herein, SNC_034010.1_643430 was supported
480 by two QTLs³⁹ identified in Venus × Bigtop progeny and named as ‘FLV 10-a’ and ‘FLV
481 10-b’ (**Figure S7.D** and **Table S3**). It’s well documented that flavonoid biosynthesis is a
482 complex pathway, transcriptionally regulated by members of Myb and bHLH families⁴⁸.
483 Although no Myb encoding gene was found in our analysis, a highly up-regulated bHLH-
484 TF was inferred and may be considered as a promising candidate gene involved in
485 flavonoid regulation.

486 Anthocyanins constitute an important group of plant pigments belonging to the flavonoid
487 family. Their differential accumulation in peach results in the distinctive fruit and flesh
488 color⁴⁸. Although there is strong evidence that their biosynthesis is mainly regulated by a
489 Myb10 transcription factor on LG3, many anthocyanin-related QTLs were identified on
490 LG4, LG5, and LG6^{34,39,40}. Our analysis detected a single lead marker on chr 5 accounting
491 for ~53% of the PVE. Thus, ‘SNC_034013.1_12838635’ may be a preferential target for an
492 effective marker assisted selection. It was delineated on both downstream and upstream
493 sides by (qANT)³⁹, (qATCYN.ZC)⁴⁰ and (qPSC5)³⁴. When genotyped with the 9K array¹⁶,
494 no associated markers were detected on LG5. Remarkably, our polymorphic marker was
495 physically falling in the exonic region of *Prupe.5G134900*, a gene encoding a B3 domain-

496 containing transcription factor. Although the functional relevance of this prime gene
497 requires further validation, we hypothesize that the genetic control of anthocyanins may be
498 driven by B3 DNA-binding protein. Curiously, for both anthocyanins and flavonoids, a B3
499 family transcription was selected as candidate gene (respectively *Prupe.5G134900* and
500 *Prupe.6G041000*). This may be explained by the fact that anthocyanins are a class of water-
501 soluble flavonoids. Thus, it's plausible to hypothesize that genes involved in flavonoids and
502 anthocyanins regulation are in coordination.

503 **Sorbitol**

504 Sugar content is one of the most important quality traits perceived by the consumers. The
505 sweetness intensity depends on the overall sugar amount brought by sucrose, glucose,
506 fructose and sorbitol. These first three sugar types were discarded from our analysis as they
507 didn't meet the heritability cutoff. Regarding the sorbitol, association signatures were found
508 in chr 1 (~27.06 Mbp), chr 2 (~3.68 Mbp), chr 6 (~28.34 Mbp) and chr 8 (~18.84 Mbp).
509 Genetic mapping has been extensively carried out to identify key QTLs responsible for
510 sorbitol biosynthesis. A reliable QTL (qSOR_1) was mapped on the upper region of LG1,
511 nearly 17.5 Mb upstream of our associated marker (**Figure S10.D**). Compared to the 9K
512 association study¹⁸, no significant association signal was detected on LG1 (**Table S3**). On
513 chr 2, we were able to find an adjacent QTL supporting the accuracy of our results⁴⁹.
514 Indeed, qSOR_2 was positioned at ~1.2 Mbp from our marker SNC_034010.1_3682553.

515

516 Finally, this work depicts ddRAD-seq genotyping as an efficient approach for SNPs
517 detection and association studies. Akin to the 9K SNP array, ddRAD-seq yielded valuable
518 markers strongly supported by stable QTLs. However, while SNP arrays are engineered to
519 specifically include polymorphic loci from genomic regions of interest and focus on
520 harboring SNPs known to be linked to commercially important traits, ddRAD-seq samples
521 the genome randomly, without prior knowledge of target regions. For this reason, ddRAD-
522 seq might be a better fit for analyses concerned with unexplored biological processes.

523 Concisely, we successfully used ddRAD-seq-derived SNPs to identify genomic regions and
524 genes influencing major fruit-related traits in peaches. The inferred associated SNPs
525 appeared to be reliable as they often explained a fairly high percentage of the total

526 phenotypic variance. The survey of candidate genes for these relevant polymorphic sites
527 rendered plenty of genes implicated in various processes. Genes harboring significant
528 markers may be considered as preferential targets for peach breeding. However, due to the
529 complexity of the examined traits, future functional validation would provide additional
530 hints to support the breeding efforts.

531 **Material and Methods**

532 **Plant material and phenotypic evaluation**

533 A total of 90 peach and nectarine accessions were used for double digest restriction-site
534 associated sequencing (ddRAD-seq) and subsequent GWAS analysis. The germplasm panel
535 comprises 73 landraces and 17 modern breeding lines originating from Spain, United
536 States, France, Italy, New Zealand, and South Africa. All genotypes were grown under
537 Mediterranean soil conditions at the Experimental Station of Aula Dei (CSIC) located at
538 Zaragoza, Spain (41.7245 °N, 0.8118 °W) and analyzed during three fruiting seasons
539 (2008-2010). Information about plant accessions is summarized in **Table S1**.

540 The phenotypic data previously reported by¹⁶ were re-analyzed in the present study.
541 Briefly, 16 traits were evaluated by randomly harvesting 20 fruits from each cultivar at the
542 commercial maturity during three years. Traits were split into two categories. Agronomic
543 features included harvest date (HvD; Julian days), fruit weight (FW; grams), flesh firmness
544 (FF; Newton), soluble solids content (SSC; °Brix), titratable acidity (TA; grams malic
545 acid/100 g flesh weight) and ripening index (RI; SSC/TA). Besides, biochemical variables
546 comprised vitamin C (Vit C; mg of ascorbic acid/100 g flesh weight), total phenolics (Phen;
547 mg of gallic acid equivalents/100 g flesh weight), contents of flavonoid (Flv; catechin
548 equivalents/100 g flesh weight) and anthocyanin (ACNs; cyanidin-3-glucoside/kg flesh
549 weight), sucrose (Suc; g/kg flesh weight), glucose (Glu; g/kg flesh weight), fructose (Fruc;
550 g/kg flesh weight), sorbitol (SRB; g/kg flesh weight), and total sugars (TS; g/kg flesh
551 weight) and relative antioxidant capacity (RAC; µg TE/g flesh weight).

552 Variance components and broad sense heritability (H^2) were estimated using the variability
553 R package v0.1.0. Only traits with $H^2 > 0.5$ were considered for association analysis.

554 Distribution of averaged phenotypic data was checked in R using Shapiro-Wilk test. Non-
555 normal distributions were transformed using bestNormalize package (v1.8.3)⁵⁰.

556 **DNA extraction and enzyme evaluation**

557 Genomic DNA was extracted from leaves using the DNeasy Plant Mini Kit (Qiagen,
558 Dusseldorf, Germany) following the manufacturer's recommendations. DNA concentration
559 and quality were checked using PicoGreen®dye and measured in a fluorospectrometer.
560 Whole-genome genotyping was carried out using ddRAD-seq approach by combining low
561 and high frequency cutter to digest DNA; respectively *PstI* and *MboI* as described in peach
562 by⁵¹. This enzyme pair yielded the highest number of loci with a size range between 300
563 and 400 bp and prevented repetitive region sampling. Selected loci are those having the
564 sticky ends of both enzymes⁵².

565 **ddRAD libraries preparation and sequencing**

566 DNA libraries were constructed at the Genomic Unit at IABiMo INTA-CONICET
567 (Argentina) following^{51,52} recommendations. Shortly, digested DNA with *PstI/MboI* pair
568 were gel excised, eluted then ligated to barcoded adapters specific to each sample. Ligated
569 fragments from 24 samples were subsequently pooled together and were PCR amplified
570 with indexed primers to tag each pool. Finally, paired-end reads (250 bp) were generated on
571 an Illumina NovaSeq 6000 instrument at CIMMYT, Mexico. The raw sequencing data was
572 deposited in the European Nucleotide Archive (ENA) under the BioProject PRJEB62784.

573 **Data processing and alignment**

574 Raw reads were de-multiplexed and trimmed using the process-ratdtag module from
575 STACKS suite (v2.59)⁵³. After quality assessment, paired-end reads were mapped to
576 *Prunus persica* reference genome v2 (GCF_000346465.2, retrieved from NCBI RefSeq⁵⁴
577 using BWA-mem (v0.7.17)⁵⁵. Redundant reads known as PCR duplicates were expurgated
578 from downstream analysis as described by²². The resultant de-duplicated files were sorted
579 and indexed using SAMtools⁵⁶ to be ready for variant calling.

580 **Variant discovery pipeline**

581 Variant calling was conducted in a single-sample mode testing the performance of three
582 variant callers: BCFtools (v1.7)⁵⁶, Freebayes (v1.0.0)⁵⁷ and GATK-HaplotypeCaller

583 (v4.2.3.0)²⁰. Raw SNPs underwent standard quality filtering based on mapping quality (MQ
584 > 40), variant quality (QUAL < 30) and depth of reads (DP \geq 5) to remove artifactual calls.
585 Consequently, clean SNPs from each calling method were merged by position and by
586 reference/alternative alleles into multi-sample VCF files. SNPs resulting from the
587 intersection of multi-samples VCFs were considered as highly accurate calls and were
588 inspected to remove multi-allelic variants and those assigned to scaffolds. Then, they were
589 filtered by call rate > 80% and residual missing genotypes were imputed with beagle's
590 default settings (v4.1)⁶⁰. The imputation accuracy was evaluated in Tassel (v5.0)⁵⁸ by
591 masking 1% of the genotype and calculating the error rate. SNPs with (MAF > 0.05) were
592 selected as a final call set to determine the population structure and marker-trait
593 associations. SNP identifiers were created by concatenating their assigned chromosome and
594 their base pair position (eg: SNC_034014.1_7012470).

595 **Linkage disequilibrium and population structure**

596 Intra-chromosomal LD was calculated using Plink (v1.9)⁵⁹, as a measure of *Pearson*
597 correlation coefficient (r^2) between marker-pairs. For each chromosome, LD distribution
598 was plotted against its physical distance (Mbp). The LD decay curve was estimated as the
599 average of r^2 variation across 100 kbp bins and was fitted in R program. LD decay was
600 defined by setting $r^2=0.25$ as a threshold. LD decay extent was defined as the physical
601 genomic distance at which the r^2 decreased to half of its maximum value. Polymorphic sites
602 showing strong LD were pruned in Plink by delimiting a window of 10 SNPs, removing
603 one of the SNPs pair with $r^2 > 0.25$ and then shifting the window 5 SNPs forward
604 repeatedly. Genetic distance and kinship matrix between pairs of genotypes were computed
605 using the centered identity-by-state method implemented in Tassel.

606 LD-pruned SNPs were selected to infer the population stratification of the GWAS panel
607 using two complementary approaches. First, the Bayesian clustering algorithm
608 implemented in fastSTRUCTURE (v1.04)⁶⁰ was tested on predefined K subgroups ranging
609 from 1 to 10. The optimal K value was estimated based on the lowest cross validation error.
610 Then, principal component analysis was computed with SmartPCA (v1.1.0) R-package⁶¹.

611 **Genome wide association study**

612 For association mapping, seven statistical models, ranging from single to multi-locus, were
613 simultaneously tested in GAPIT (v3.1.0)⁶² Single locus models include general linear
614 model (GLM), mixed linear model (MLM), compressed MLM (CMLM), and settlement of
615 MLMs under progressively exclusive relationship (SUPER). Multi-locus algorithms
616 comprise multiple loci mixed linear model (MLMM), fixed and random model circulating
617 probability unification (FarmCPU), and Bayesian-information and linkage-disequilibrium
618 iteratively nested keyway (Blink). Except for GLM, where no genotype relatedness was
619 involved, population structure and kinship were both fitted as covariates in all models.
620 Indeed, the first four PCA components and kinship were introduced respectively as fixed
621 and random effects to reduce the false positives. The statistical model best fitting the data
622 was chosen based on the quantile-quantile plot and the number of significant markers.
623 Significantly associated markers were shortlisted based on the Bonferroni correction (-
624 $\log_{10}(0.05)/13045 = 5.42$) and Manhattan plots were generated accordingly using CMplot
625 package (v4.2.0)⁶³. Statistically significant SNPs explaining at least 10% of the phenotypic
626 variance (%PVE) were considered as most promising predictions and used for LD block
627 analysis. Moreover, markers accounting for the largest proportion of phenotypic variance
628 are hereinafter referred as ‘lead SNPs’.

629 **Annotation of SNP effects and identification of favorable alleles**

630 First, genomic coordinates of SNPs were used to query Ensembl Plants REST services in
631 order to obtain annotations of their effect on neighbor genomic features. In particular we
632 used the Ensembl Variant Effect Predictor (VEP)⁶⁴ and a modification of recipe R8⁶⁵.

633 Then, allelic effect of significant SNP loci on trait variation was estimated through pairwise
634 comparisons between the phenotypic values of the different genotypes: homozygous
635 reference (0/0), heterozygous (0/1) and homozygous alternative (1/1). An allele is defined
636 as favorable when a significant increase of the phenotypic value was observed between the
637 homozygous reference and the remaining genotypes. Pairwise comparisons were run using
638 the Games-Howell test and *P*-values were corrected for multiple testing using the FDR
639 method. Results were visualized using ggstatsplot R-package (v0.9.1)⁶⁶.

640 **LD-block analysis and identification of candidate genes**

641 Significant SNPs were examined to identify candidate genes. Initially, it was considered
642 whether polymorphisms would be localized in genic regions. Thereby, SNPs were mapped
643 based on their physical position to *Prunus persica* genome (GCF_000346465.2). SNP-
644 anchored genes were called ‘prime candidates’. Strong candidate genes were shortlisted
645 when meeting three criteria: falling within the LD-block region harboring the significant
646 SNPs, being functionally related to the trait of interest and being differentially expressed in
647 fruit tissue. Expression information was retrieved from a recent study by⁶⁷ which defined
648 modules of co-expressed genes across different peach tissues and under various
649 experimental conditions. Differentially expressed genes were those outlined in fruit
650 experiments, particularly under cold storage and chilling injury.

651 LD-blocks were identified within 250 kbp windows upstream and downstream the lead
652 sites. Block boundaries were delimited using a solid spine partitioning approach from
653 LDBlockShow tool⁶⁸. A block is defined as a group of SNPs that are in strong LD ($D' \geq$
654 0.7) with the first and last marker in the same block. A D' value of 0 denotes complete
655 linkage equilibrium, which implies frequent pairwise recombination between markers.
656 Conversely, a D' value of 1 indicates a complete linkage disequilibrium. Note that D' and
657 r^2 are common measures of non-random association between two or more loci; while D'
658 refers to the co-inheritance of two alleles, r^2 considers the allele frequency to distinguish
659 between common and rare. Identified LD blocks were therefore scanned for candidate
660 genes via NCBI genome data viewer⁶⁹.

661 **QTLs review for fruit quality traits in peach**

662 To benchmark the accuracy of our results, an exhaustive bibliographic review of previously
663 reported QTLs mapped in the same linkage group as the associated markers was done. In a
664 practical term, if an associated SNP is located nearby or within a QTL interval, then it's
665 considered as highly accurate and likely segregate with the observed trait. In case that the
666 QTL boundaries are not defined as physical intervals (in bp), we used the nearest or the co-
667 localizing markers as reference. Herein, we refer to the nearest marker as the closest one
668 with a maximum of 5 cM from the QTL hotspot while the co-localizing marker is the one
669 mapped within the QTL boundaries. Moreover, we calculated the physical distance

670 separating our predicted associated markers from the QTLs. Finally, we compared these
671 distances with a previous study using the same phenotypic data and peach material,
672 although genotyped using the 9K SNP array¹⁶.

673 **Data availability**

674 Raw sequence data and final variant call file (vcf) have been deposited in the European
675 Nucleotide Archive (ENA) under the BioProject PRJEB62784 (data will be released at the
676 publication date). Source code and documentation can be accessed at
677 <https://github.com/najlaksouri/GWAS-Workflow>.

678 **Funding and Acknowledgments**

679 This work was funded by Spanish Research Agency [grants AGL2014-52063-R,
680 AGL2017-83358-R MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making
681 Europe”] and the Government of Aragón [grants A09_20R, A09_23R, A10_20R], which
682 were co-financed with FEDER funds and the CSIC [grant 2020AEP119]. N.K. was funded
683 with a pre-doctoral contract awarded by the Government of Aragón (2018-2023) and C.F-i-
684 F. by a JAE-Pre fellowship from CSIC (2008-2013).

685 The authors wish to thank of personal of Genomic Unit at IABiMo INTA-CONICET
686 (Argentina), in particular to A.F. Puebla for their technical assistance and for providing lab
687 facilities; to R. Giménez, S. Segura, E. Sierra for their technical lab assistance and plant
688 management in the field; and to M.A. Moreno for providing plant material.

689 **Conflict of interests**

690 The authors declare no conflict of interest.

691 **Contributions**

692 Y.G., and B.C-M. conceived the project and its components. C.F-i-F. collected the samples,
693 extracted DNA and performed the phenotyping. G.S helped to process genotyping. N.K
694 performed the bioinformatic analysis. Y.G., and B.C-M. assisted the analysis and discussed

695 the results. N.K wrote the manuscript. Y.G., and B.C-M. reviewed and edited the text. All
696 authors read and approved the article.

697 **References**

- 698 1. Micheletti, D. *et al.* Whole-genome analysis of diversity and SNP-major gene
699 association in peach germplasm. *PLoS One* **10**, 1–19 (2015).
- 700 2. Gogorcena, Y., Sánchez, G., Moreno-Vázquez, S., Pérez, S. & Ksouri, N. Genomic-
701 based breeding for climate-smart peach varieties. in *Genome designing of climate-
702 smart fruit crops* (ed. Kole, C.) 291–351 (Springer-Nature, 2020).
703 doi:https://doi.org/10.1007/978-3-319-97946-5_9.
- 704 3. Cirilli, M. *et al.* Genetic and phenotypic analyses reveal major quantitative loci
705 associated to fruit size and shape traits in a non-flat peach collection (*P. persica* L.
706 Batsch). *Hortic. Res.* **8**, 1–17 (2021).
- 707 4. Da Silva Linge, C. *et al.* Multi-locus genome-wide association studies reveal fruit
708 quality hotspots in peach genome. *Front. Plant Sci.* **12**, 1–18 (2021).
- 709 5. Aranzana, M. J. *et al.* *Prunus* genetics and applications after *de novo* genome
710 sequencing: achievements and prospects. *Hortic. Res.* **6**, 1–25 at
711 <https://doi.org/10.1038/s41438-019-0140-8> (2019).
- 712 6. De Mori, G. & Cipriani, G. Marker-assisted selection in breeding for fruit trait
713 improvement: a review. *Int. J. Mol. Sci.* **24**, 1–39 (2023).
- 714 7. Kumar, S. *et al.* GWAS provides new insights into the genetic mechanisms of
715 phytochemicals production and red skin colour in apple. *Hortic. Res.* **9**, 1–10 (2022).
- 716 8. Holušová, K. *et al.* High-resolution genome-wide association study of a large Czech
717 collection of sweet cherry (*Prunus avium* L.) on fruit maturity and quality traits.
718 *Hortic. Res.* **10**, 1–15 (2023).
- 719 9. Pavan, S. *et al.* Recommendations for choosing the genotyping method and best
720 practices for quality control in crop genome-wide association studies. *Front. Genet.*
721 **11**, (2020).
- 722 10. Verde, I. *et al.* Development and evaluation of a 9K SNP array for peach by
723 internationally coordinated SNP detection and validation in breeding germplasm.
724 *PLoS One* **7**, e35668 (2012).
- 725 11. Thurow, L. B., Gasic, K., Bassols Raseira, M. do C., Bonow, S. & Marques Castro,
726 C. Genome-wide SNP discovery through genotyping by sequencing, population
727 structure, and linkage disequilibrium in Brazilian peach breeding germplasm. *Tree
728 Genet. Genomes* **16**, 1–14 (2020).
- 729 12. Mas-Gómez, J., Cantín, C. M., Moreno, M. Á. & Martínez-García, P. J. Genetic

730 diversity and genome-wide association study of morphological and quality traits in
731 peach using two Spanish peach germplasm collections. *Front. Plant Sci.* **13**, 1–14
732 (2022).

733 13. Geibel, J. *et al.* How array design creates SNP ascertainment bias. *PLoS One* **16**, 1–
734 23 (2021).

735 14. Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double
736 digest RADseq: An inexpensive method for *de novo* SNP discovery and genotyping
737 in model and non-model species. *PLoS One* **7**, 1–11 (2012).

738 15. Font i Forcada, C., Oraguzie, N., Igartua, E., Moreno, M. Á. & Gogorcena, Y.
739 Population structure and marker-trait associations for pomological traits in peach and
740 nectarine cultivars. *Tree Genet. Genomes* **9**, 331–349 (2013).

741 16. Font i. Forcada, C., Guajardo, V., Chin-Wo, S. R. & Moreno, M. Á. Association
742 mapping analysis for fruit quality traits in *Prunus persica* using SNP markers. *Front.
743 Plant Sci.* **9**, 1–12 (2019).

744 17. Cao, K. *et al.* Genome-wide association study of 12 agronomic traits in peach. *Nat.
745 Commun.* **7**, 1–10 (2016).

746 18. Verde, I. *et al.* The high-quality draft genome of peach (*Prunus persica*) identifies
747 unique patterns of genetic diversity, domestication and genome evolution. *Nat.
748 Genet.* **45**, 487–494 (2013).

749 19. Olson, N. D. *et al.* Best practices for evaluating single nucleotide variant calling
750 methods for microbial genomics. *Front. Genet.* **6**, 1–15 (2015).

751 20. Van der Auwera, G. A. *et al.* From fastq data to high-confidence variant calls: The
752 genome analysis toolkit best practices pipeline. *Current Protocols in Bioinformatics*
753 (2013).

754 21. Schilbert, H. M., Rempel, A. & Pucker, B. Comparison of read mapping and variant
755 calling tools for the analysis of plant NGS data. *Plants* **9**, 1–14 (2020).

756 22. Ksouri, N. *et al.* ddRAD-seq variant calling in peach and the effect of removing PCR
757 duplicates. *Acta Hortic.* **1352**, 405–412 (2022).

758 23. Atwell, S. *et al.* Genome-wide association study of 107 phenotypes in *Arabidopsis
759 thaliana* inbred lines. *Nature* **465**, 627–631 (2010).

760 24. Liu, X., Huang, M., Fan, B., Buckler, E. S. & Zhang, Z. Iterative usage of fixed and
761 random effect models for powerful and efficient genome-wide association studies.
762 *PLoS Genet.* **12**, 1–24 (2016).

763 25. Huang, M., Liu, X., Zhou, Y., Summers, R. M. & Zhang, Z. BLINK: A package for
764 the next level of genome-wide association studies with both individuals and markers
765 in the millions. *Gigascience* **8**, 1–12 (2019).

766 26. Wang, J., Tang, Y. & Zhang, Z. Performing genome-wide association studies with
767 multiple models using GAPIT. in *Genome-Wide Association Studies* (eds.
768 Torkamaneh, D. & Belzile, F.) 199–217 (Springer US, 2022). doi:10.1007/978-1-
769 0716-2237-7_13.

770 27. Veerappan, K., Natarajan, S., Chung, H. & Park, J. Molecular insights of fruit
771 quality traits in peaches, *Prunus persica*. *Plants* **10**, 1–14 (2021).

772 28. Eduardo, I. et al. QTL analysis of fruit quality traits in two peach intraspecific
773 populations and importance of maturity date pleiotropic effect. *Tree Genet. Genomes*
774 **7**, 323–335 (2011).

775 29. Dirlewanger, E. et al. Comparison of the genetic determinism of two key
776 phenological traits, flowering and maturity dates, in three *Prunus* species: Peach,
777 apricot and sweet cherry. *Heredity* **109**, 280–292 (2012).

778 30. Pirona, R. et al. Fine mapping and identification of a candidate gene for a major
779 locus controlling maturity date in peach. *BMC Plant Biol.* **13**, 1–13 (2013).

780 31. Romeu, J. F. et al. Quantitative trait loci affecting reproductive phenology in peach.
781 *BMC Plant Biol.* **14**, 1–16 (2014).

782 32. Serra, O. et al. Genetic analysis of the slow-melting flesh character in peach. *Tree
783 Genet. Genomes* **13**, 1–13 (2017).

784 33. Kalluri, N., Eduardo, I. & Arús, P. Comparative QTL analysis in peach ‘Earlygold’
785 F2 and backcross progenies. *Sci. Hortic.* **293**, 1–8 (2022).

786 34. Hernández Mora, J. R. et al. Integrated QTL detection for key breeding traits in
787 multiple peach progenies. *BMC Genomics* **18**, 1–15 (2017).

788 35. Calle, A. & Wünsch, A. Multiple-population QTL mapping of maturity and fruit-
789 quality traits reveals LG4 region as a breeding target in sweet cherry (*Prunus avium*
790 L.). *Hortic. Res.* **7**, 1–13 (2020).

791 36. Nuñez-Lillo, G. et al. High-density genetic map and QTL analysis of soluble solid
792 content, maturity date, and mealiness in peach using genotyping by sequencing. *Sci.
793 Hortic.* **257**, 1–11 (2019).

794 37. Núñez-Lillo, G. et al. Transcriptome and gene regulatory network analyses reveal
795 new transcription factors in mature fruit associated with harvest date in *Prunus
796 persica*. *Plants* **11**, 1–17 (2022).

797 38. Da Silva Linge, C. et al. Genetic dissection of fruit weight and size in an F2 peach
798 (*Prunus persica* (L.) Batsch) progeny. *Mol. Breed.* **35**, 1–19 (2015).

799 39. Zeballos, J. L. et al. Mapping QTLs associated with fruit quality traits in peach
800 [*Prunus persica* (L.) Batsch] using SNP maps. *Tree Genet. Genomes* **12**, 1–7 (2016).

801 40. Abdelghafar, A., Da Silva Linge, C., Okie, W. R. & Gasic, K. Mapping QTLs for

802 phytochemical compounds and fruit quality in peach. *Mol. Breed.* **40**, 1–18 (2020).

803 41. Kaplan-Levy, R. N., Brewer, P. B., Quon, T. & Smyth, D. R. The trihelix family of
804 transcription factors - light, stress and development. *Trends Plant Sci.* **17**, 163–171
805 (2012).

806 42. Reale, L. *et al.* The influence of light on olive (*Olea europaea* L.) fruit development
807 is cultivar dependent. *Front. Plant Sci.* **10**, 1–10 (2019).

808 43. Canton, M. *et al.* Metabolism of stone fruits: reciprocal contribution between
809 primary metabolism and cell wall. *Front. Plant Sci.* **11**, 1–10 (2020).

810 44. Zhu, L. *et al.* A shortest-path-based method for the analysis and prediction of fruit-
811 related genes in *Arabidopsis thaliana*. *PLoS One* **11**, 1–14 (2016).

812 45. Quirante-Moya, F., Martinez-Alonso, A., Lopez-Zaplana, A., Bárzana, G. &
813 Carvajal, M. Water relations after Ca, B and Si application determine fruit physical
814 quality in relation to aquaporins in *Prunus*. *Sci. Hortic.* **293**, 1–14 (2022).

815 46. Nilo-Poyanco, R., Moraga, C., Benedetto, G., Orellana, A. & Almeida, A. M.
816 Shotgun proteomics of peach fruit reveals major metabolic pathways associated to
817 ripening. *BMC Genomics* **22**, 1–29 (2021).

818 47. Cao, K. *et al.* Combined nature and human selections reshaped peach fruit
819 metabolome. *Genome Biol.* **23**, 1–25 (2022).

820 48. Wang, J. *et al.* Two MYB and three bHLH family genes participate in anthocyanin
821 accumulation in the flesh of peach fruit treated with glucose, sucrose, sorbitol, and
822 fructose *in vitro*. *Plants* **11**, 1–14 (2022).

823 49. Desnoues, E. *et al.* Dynamic QTLs for sugars and enzyme activities provide an
824 overview of genetic control of sugar metabolism during peach fruit development. *J.
825 Exp. Bot.* **67**, 3419–3431 (2016).

826 50. Peterson, R. A. Finding optimal normalizing transformations via bestNormalize.
827 *Contrib. Res. J.* **13**, 310–329 (2021).

828 51. Aballay, M. M., Aguirre, N. C., Filippi, C. V., Valentini, G. H. & Sánchez, G. Fine-
829 tuning the performance of ddRAD-seq in the peach genome. *Sci. Rep.* **11**, 1–13
830 (2021).

831 52. Aguirre, N. C. *et al.* Optimizing ddRADseq in non-model species: A case study in
832 *Eucalyptus dunnii* Maiden. *Agronomy* **9**, 1–21 (2019).

833 53. Rochette, N. C., Rivera-Colón, A. G. & Catchen, J. M. Stacks 2: Analytical methods
834 for paired-end sequencing improve RADseq-based population genomics. *Mol. Ecol.*
835 **28**, 4737–4754 (2019).

836 54. O’Leary, N. A. *et al.* Reference sequence (RefSeq) database at NCBI: Current status,
837 taxonomic expansion, and functional annotation. *Nucleic Acids Res.* **44**, D733–D745

838 (2016).

839 55. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler
840 transform. *Bioinformatics* **25**, 1754–1760 (2009).

841 56. Danecek, P. *et al.* Twelve years of SAMtools and BCFtools. *Gigascience* **10**, 1–4
842 (2021).

843 57. Garrison, E. & Marth, G. Haplotype-based variant detection from short-read
844 sequencing. *ArXiv* **1207**, 1–5 (2012).

845 58. Bradbury, P. J. *et al.* TASSEL: Software for association mapping of complex traits
846 in diverse samples. *Bioinformatics* **23**, 2633–2635 (2007).

847 59. Purcell, S. *et al.* PLINK: A tool set for whole-genome association and population-
848 based linkage analyses. *Am. J. Hum. Genet.* **81**, 559–575 (2007).

849 60. Raj, A., Stephens, M. & Pritchard, J. K. FastSTRUCTURE: Variational inference of
850 population structure in large SNP data sets. *Genetics* **197**, 573–589 (2014).

851 61. Herrando-Pérez, S., Tobler, R. & Huber, C. D. Smartsnp, an R package for fast
852 multivariate analyses of big genomic data. *Methods Ecol. Evol.* **12**, 2084–2093
853 (2021).

854 62. Wang, J. & Zhang, Z. GAPIT Version 3: Boosting power and accuracy for genomic
855 association and prediction. *Genomics, Proteomics Bioinformatics.* **19**, 629–640
856 (2021).

857 63. Yin, L. *et al.* rMVP: A memory-efficient, visualization-enhanced, and parallel-
858 accelerated tool for genome-wide association study. *Genomics, Proteomics
859 Bioinformatics.* **19**, 619–628 (2021).

860 64. McLaren, W. *et al.* The Ensembl Variant Effect Predictor. *Genome Biol.* **17**, 1–14
861 (2016).

862 65. Contreras-Moreira, B. *et al.* Scripting analyses of genomes in Ensembl Plants. In:
863 Edwards, D. (eds) *Plant Bioinformatics. Methods in Molecular Biology* (ed.
864 Edwards, D.), **2443**. 27-55 (New York, NY, 2022). https://doi.org/10.1007/978-1-0716-2067-0_2 65.

866 66. Patil, I. Visualizations with statistical details: The ‘ggstatsplot’ approach. *J. Open
867 Source Softw.* **6**, 1–5 (2021).

868 67. Ksouri, N. *et al.* Tuning promoter boundaries improves regulatory motif discovery in
869 nonmodel plants: the peach example. *Plant Physiol.* **185**, 1242–1258 (2021).

870 68. Dong, S. S. *et al.* LDBlockShow: A fast and convenient tool for visualizing linkage
871 disequilibrium and haplotype blocks based on variant call format files. *Briefings in
872 Bioinformatics.* 1–6 (2020) doi:10.1093/bib/bbaa227.

873 69. Rangwala, S. H. *et al.* Accessing NCBI data using the NCBI sequence viewer and

874 genome data viewer (GDV). *Genome Res.* **31**, 159–169 (2021).

875

876 **Figure legends**

877 **Figure 1. (A):** Broad sense heritability estimates and **(B):** phenotypic correlation among 16
878 peach agronomical and fruit quality traits. Dashed horizontal line corresponds to heritability
879 threshold ($H^2 = 0.5$). Correlation between traits was estimated using *Pearson* correlation.
880 Significant positive and negative correlations are displayed in red and blue respectively (P
881 < 0.05). Color intensity and size of the circles are proportional to the correlation
882 coefficients. Abbreviations are as follows: harvest date (HvD), fruit weight (FW), flesh
883 firmness (FF), soluble solids content (SSC), titratable acidity (TA), ripening index (RI),
884 content of vitamin C (Vit C), total phenolics (Phen), anthocyanins (ACNs), sucrose (Suc),
885 glucose (Glu), fructose (Fruc), sorbitol (SRB) total sugars (TS) and relative antioxidant
886 capacity (RAC).

887 **Figure 2.** SNPs density plot and intra-chromosomal linkage disequilibrium decay. **(A):**
888 SNPs density across the eight peach chromosomes. The horizontal axis shows the
889 chromosome length in (Mbp) and the different colors reveal the SNP density per window of
890 1 Mbp. Underlined numbers correspond to the total number of polymorphic sites per
891 chromosome. The asterisks highlight the putative position of centromeres predicted as
892 follows: Chr 1=NC_034009.1: (~21 Mbp), Chr 2=NC_034010.1: (~8 Mbp), Chr 3
893 =NC_034011.1: (~12 Mbp), Chr 4=NC_034012.1: (~24 Mbp), Chr 5=NC_034013.1: (~7
894 Mbp), Chr 6=NC_034014.1: (~15 Mbp), Chr 7=NC_034015.1: (~7 Mbp) and Chr
895 8=NC_034015.1: (~10 Mbp). **(B):** chromosome wide LD decay of r^2 (y-axis) over the
896 physical distance in Mbp (x-axis). Each colored line represents a smoothed r^2 for all
897 marker pairs on each chromosome. The horizontal dashed red line indicates a cut-off
898 $r^2=0.25$.

899 **Figure 3.** Q-Qplot comparison between the GWAS models implemented in GAPIT:
900 General Linear Model (GLM), Mixed Linear Model (MLM), Compressed MLM (CMLM),
901 Settlement of MLM under Progressively Exclusive Relationship (SUPER), Multiple Loci
902 Mixed Linear Model (MLMM), Fixed and random model Circulating Probability

903 Unification (FarmCPU) and Bayesian-information and Linkage-disequilibrium Iteratively
904 nested keyway (BLINK). Note that MLM and CMLM models are overlaid. For each SNP,
905 the expected $-\log_{10}$ transformed *P*-value (x-axis) is plotted against the $-\log_{10}$ the observed
906 *P*-value (y-axis). The red dashed diagonal line corresponds to the expected Q-Q trendline
907 under the null hypothesis (no association with the phenotype). Larger size dots refer to
908 SNPs statistically associated with a trait. For clarity, only phenotypic traits with significant
909 associations were represented.

910 **Figure 4.** Genome Wide Association and LD block analysis for harvest date (HvD). **(A):**
911 Circular Manhattan plot and association signals based on Blink model. Black dashed
912 circular line corresponds to the Bonferroni adjusted threshold ($-\log_{10}(P)=5.42$). Red and
913 large size dots correspond to statistically associated SNPs. Degradation from blue to red
914 indicates the SNP density per 1 Mbp window across peach chromosomes. **(B):** Locus-
915 specific Manhattan plot (upper panel) and LD heatmap (bottom panel) within 250 Kbp on
916 either side of the lead SNP (SNC_034013.1_13023165). The prime candidate gene is
917 represented as a blue box which in this case contains a single coding exon, where blue
918 fragment refers to the exon. Pairwise LD measurements are displayed as D' values with a
919 color transition from yellow to red. **(C):** Boxplot depicting allelic effect of significant SNP
920 on trait variation. Herein we highlight the SNP commonly affected Harvest date and fruit
921 firmness. Mean value for each genotype is indicated by red circle and ** indicates
922 significant pairwise comparison calculated by Games Howell test ($P \leq 0.05$). **(D):** Genomic
923 distribution of significant ddRAD-derived SNPs (red), reviewed QTLs in the literature
924 (blue) and 9K array derived SNPs (green).

925 **Figure 5.** Genome Wide Association and LD block analysis for fruit weight (FW). **(A):**
926 Circular Manhattan plot and association signals based on Blink model. Black dashed
927 circular line corresponds to the Bonferroni adjusted threshold ($-\log_{10}(P)=5.42$). Red and
928 large size dots correspond to statistically associated SNPs. Degradation from blue to red
929 indicates the SNP density per 1 Mbp window across peach chromosomes. **(B):** Locus-
930 specific Manhattan plot (upper panel) and LD heatmap (bottom panel) within 250 Kbp on
931 either side of the lead SNP. Pairwise LD measurements are displayed as D' values with a
932 color transition from yellow to red. **(C):** Boxplot depicting allelic effect of lead SNP on trait

933 variation. Mean value for each genotype is indicated by red circle and ** indicates
934 significant pairwise comparisons calculated by Games Howel test ($P \leq 0.05$). (D): Genomic
935 distribution of significant ddRAD-derived SNPs (red) and reviewed QTLs in the literature
936 (blue).

937 **Figure 6.** Genome Wide Association and LD block analysis for flesh firmness (FF). (A):
938 Circular Manhattan plot and association signals based on Blink model. Black dashed
939 circular line corresponds to the Bonferroni adjusted threshold ($-\log_{10}(P)=5.42$). Red and
940 large size dots correspond to statistically associated SNPs. Degradation from blue to red
941 indicates the SNP density per 1 Mbp window across peach chromosomes. (B): Locus-
942 specific Manhattan plot (upper panel) and LD heatmap (bottom panel) within 250 Kbp on
943 either side of the lead SNP. Pairwise LD measurements are displayed as D' values with a
944 color transition from yellow to red. (C): Boxplot depicting allelic effect of lead SNP on trait
945 variation. Mean value for each genotype is indicated by red circle and ** indicates
946 significant pairwise comparisons calculated by Games Howel test ($P \leq 0.05$). (D): Genomic
947 distribution of significant ddRAD-derived SNPs (red) and reviewed QTLs in the literature
948 (blue)

949

950 **Tables**

951 **Table 1.** SNPs count and filtering steps.

Applied filters	Retained SNPs
Clean multi-samples SNPs from GATK-HaplotypeCaller	233,535
Clean multi-samples SNPs from Freebayes	166,080
Clean multi-samples SNPs from BCFtools	148,998
Intersected set	56,430
Removing scaffold SNPs	56,647
Removing multi-allelic sites	56,430
Missing call rate < 20%	26,188
Minor Allele Frequency > 0.05	13,045

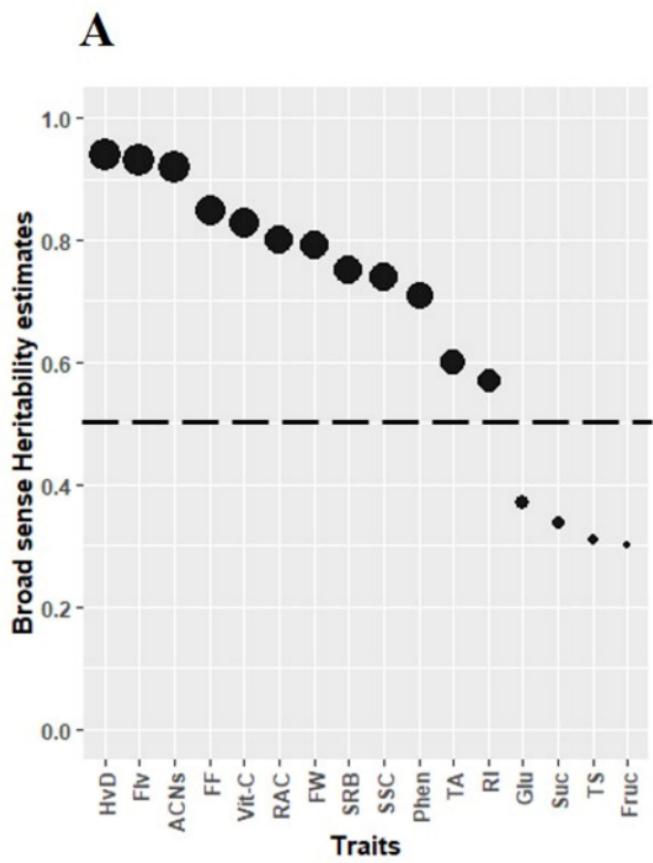
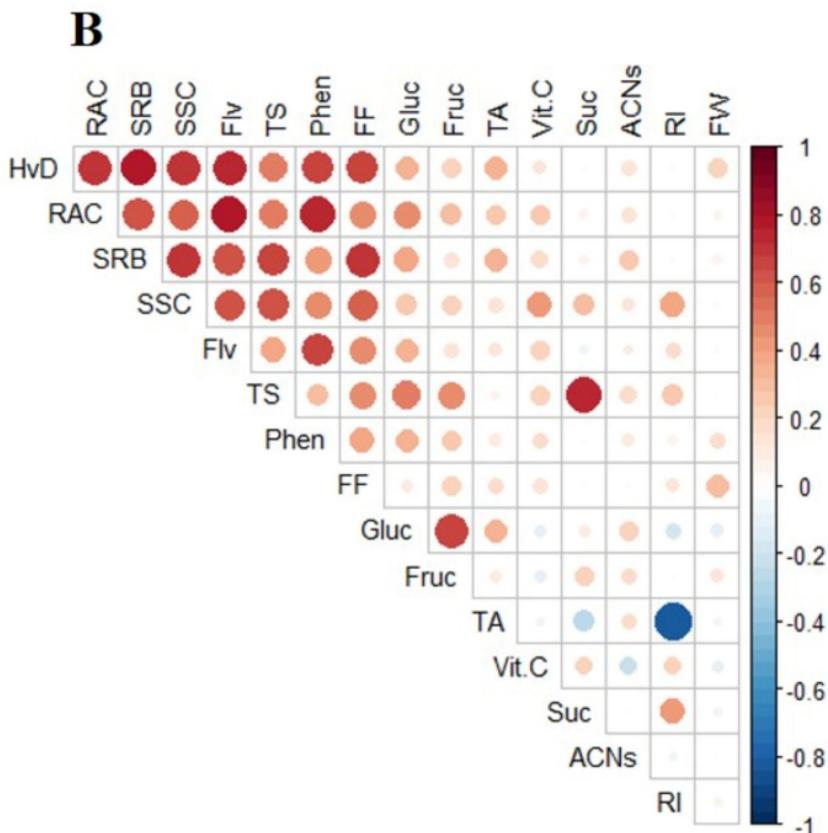
952

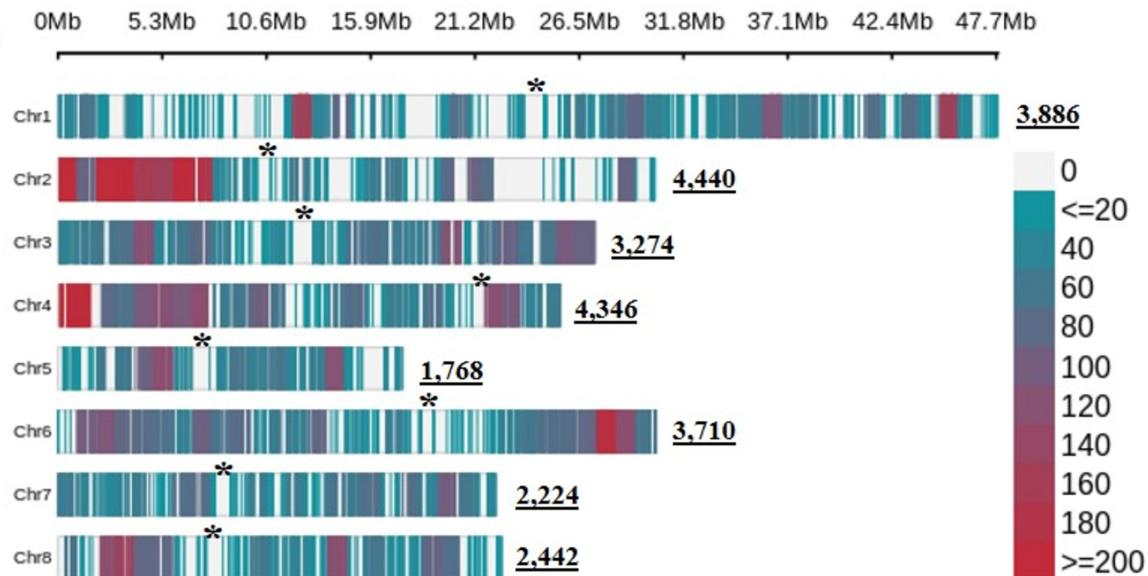
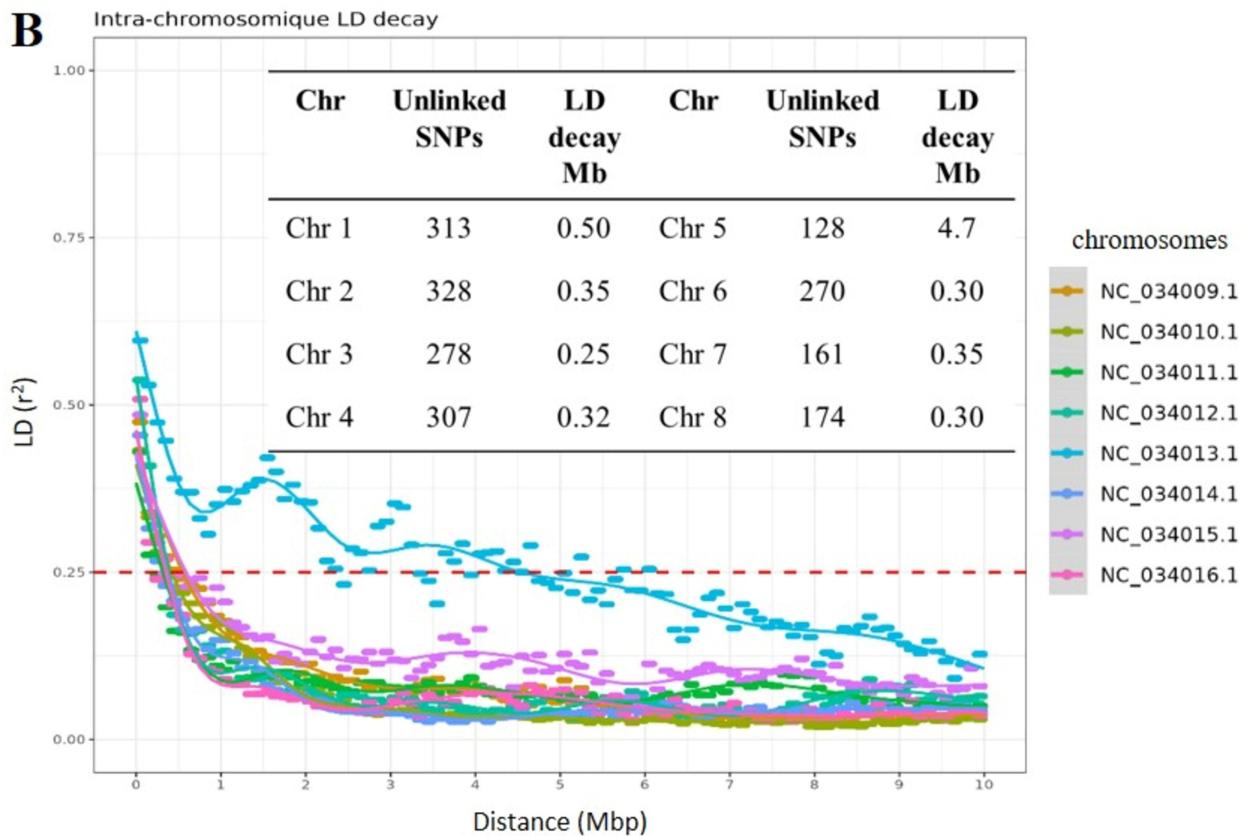
953

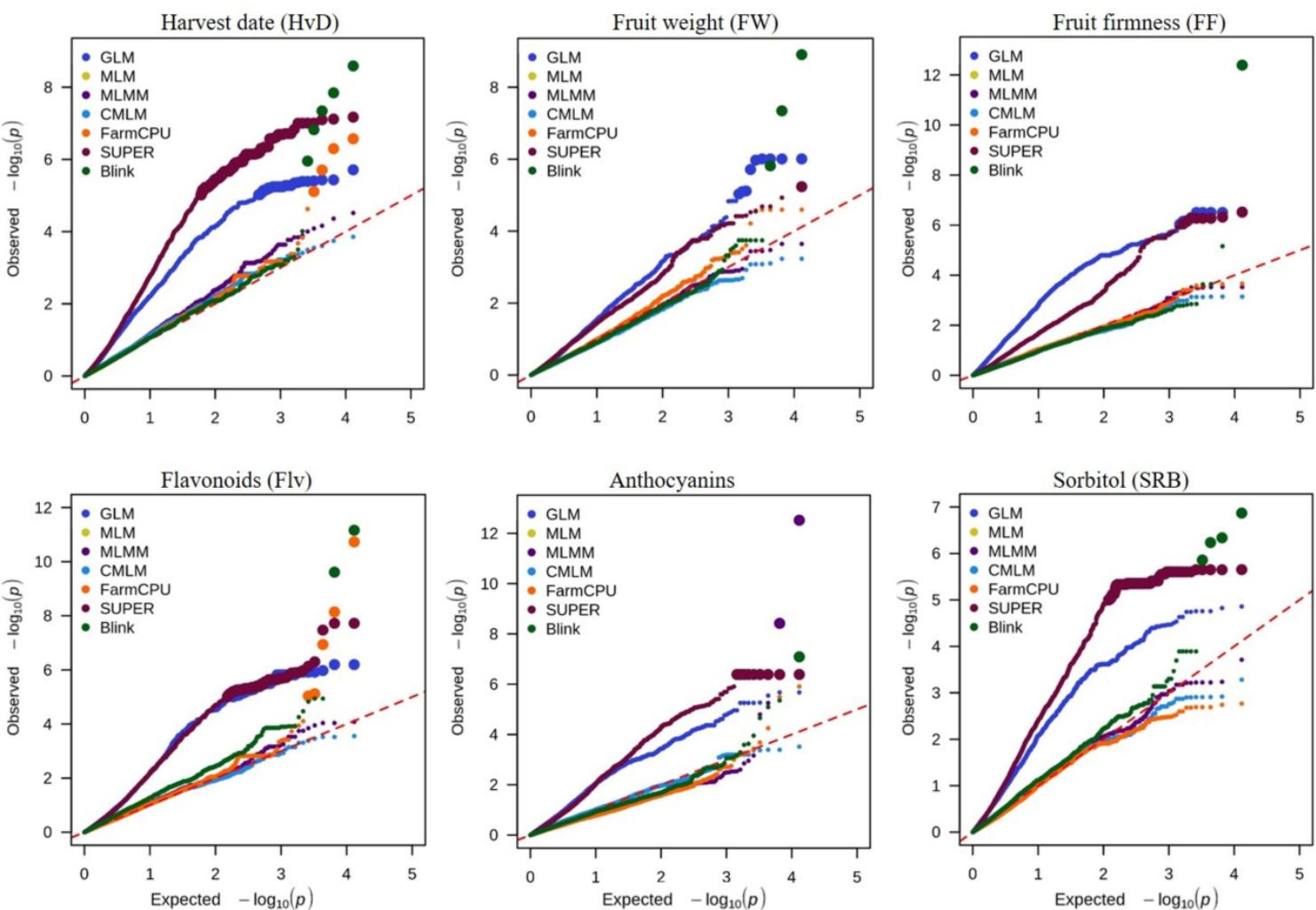
954 **Table 2.** Information on significantly associated SNP markers with fruit-related traits in
 955 *Prunus persica*. Alleles are shown on the forward strand as reference/alternate.

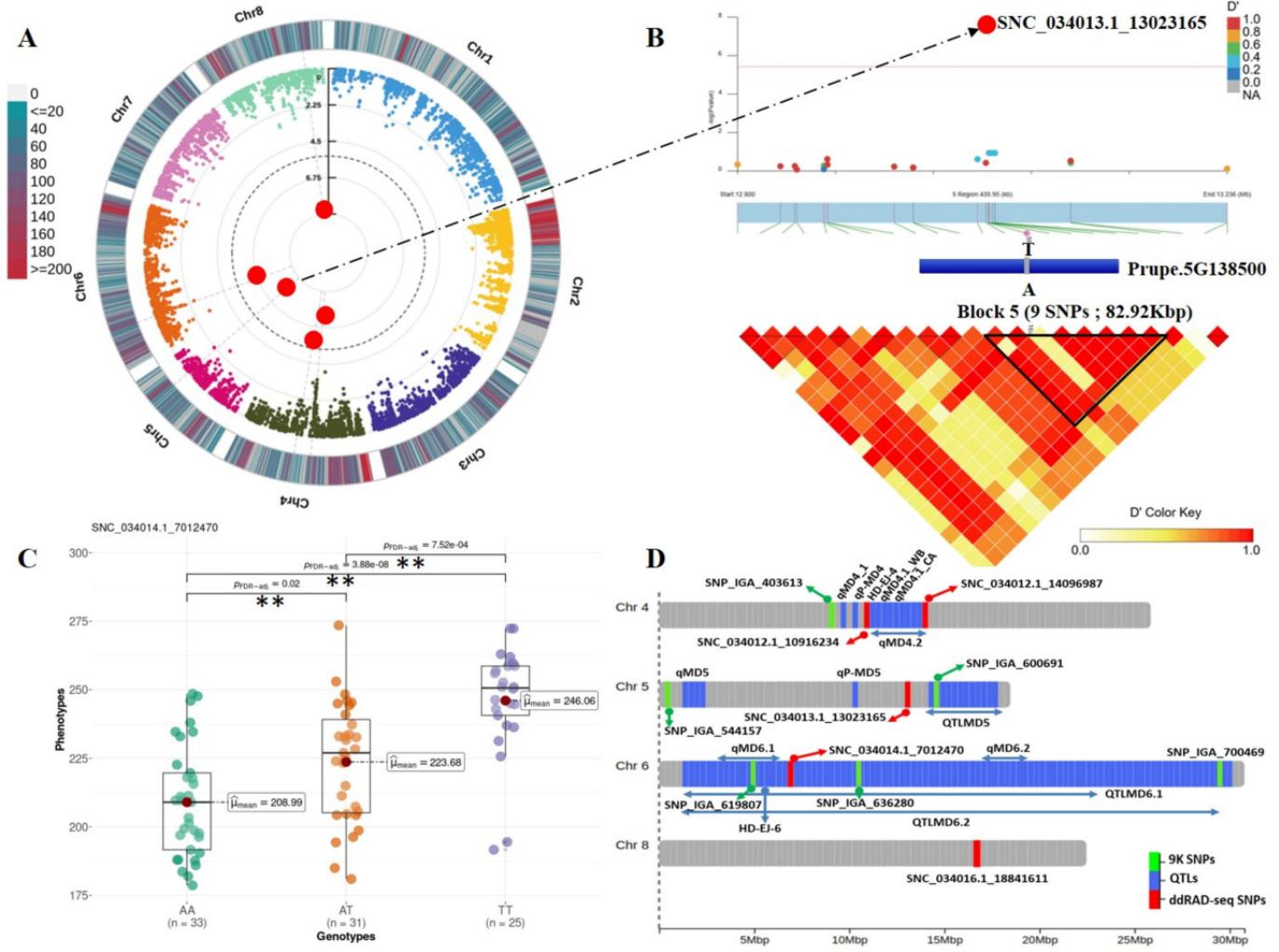
Traits	SNP identifier	Alleles	Chr	Position	%PVE	SNP location	
						[effect]	
	SNC_034012.1_10916234	G/T	4	10,916,234	10.7		intergenic
	SNC_034012.1_14096987	A/C	4	14,096,987	24.5		intronic
HvD	SNC_034013.1_13023165	T/A	5	13,023,165	30.0		exonic
	SNC_034014.1_7012470	A/T	6	7,012,470	2.8		intergenic
	SNC_034016.1_18841611	A/G	8	18,841,611	10.2		intergenic
	SNC_034011.1_26371177	T/A	3	26,371,177	16.9		exonic
FW	SNC_034014.1_1805059	A/G	6	1,805,059	22.0		intergenic
	SNC_034016.1_16407694	A/C	8	16,407,694	18.7		exonic
FF	SNC_034014.1_7012470	A/T	6	7,012,470	33.9		intergenic
	SNC_034010.1_643430	T/C	2	643,430	35.7		intergenic
FLVs							exonic
	SNC_034014.1_3066620	G/T	6	3,066,620	14.5		[missense]
ACNs	SNC_034013.1_12838635	G/T	5	12,838,635	52.9		exonic
							[missense]
	SNC_034009.1_27061825	T/C	1	27,061,825	9.0		exonic
							[missense]
SRB	SNC_034010.1_3682553	G/C	2	3,682,553	11.8		intronic
	SNC_034014.1_28343678	G/A	6	28,343,678	10.4		intronic
	SNC_034016.1_18841643	G/A	8	18,841,643	14.0		intergenic

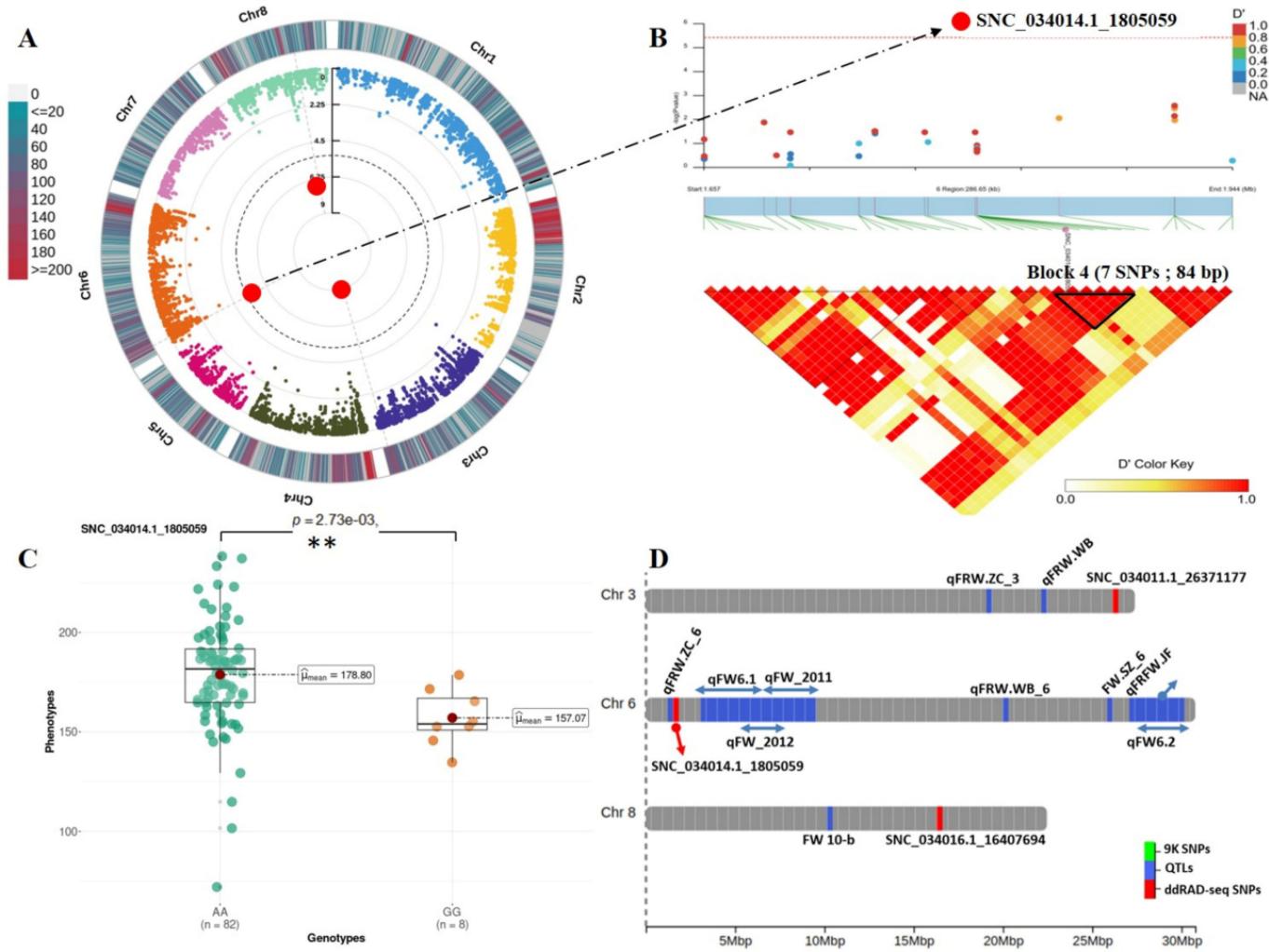
956 Variant in bold refers to 'lead SNP', explaining the highest proportion of phenotypic
957 variance (PVE). Chromosome (Chr), Harvest date (HvD), fruit weight (FW), flesh firmness
958 (FF), and contents of flavonoids (FLVs), anthocyanins (ACNs) and sorbitol (SRB).

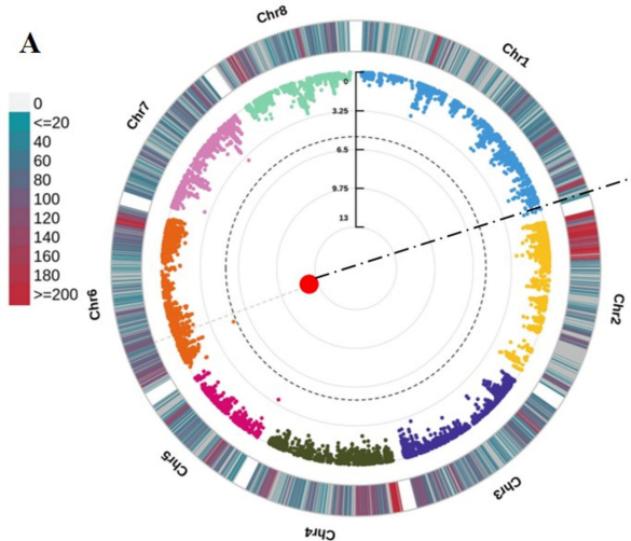
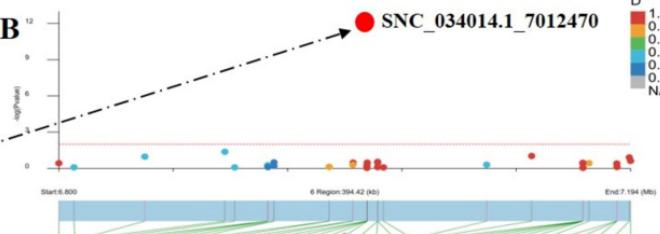
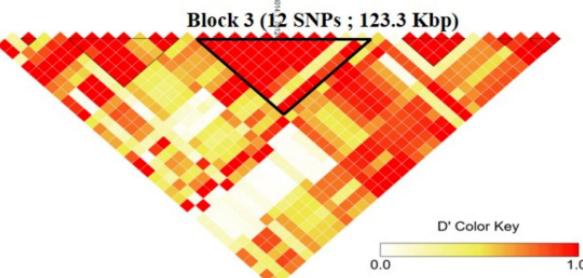
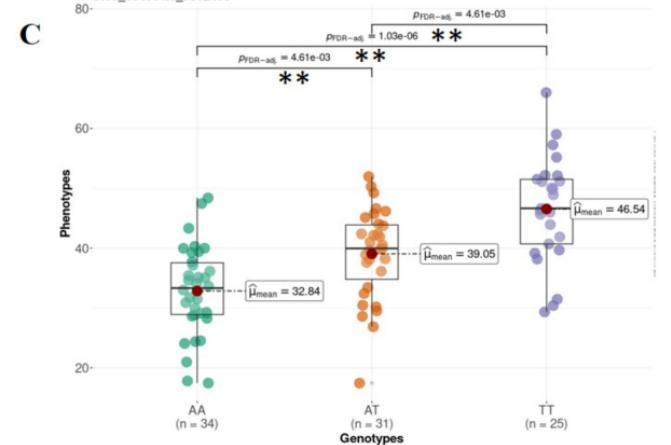
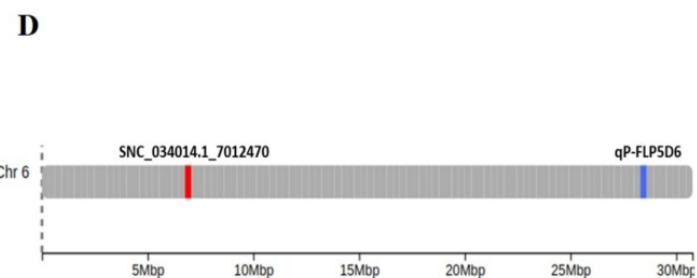


A**B**









- 9K SNPs
- QTLs
- ddRAD-seq SNPs