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Abstract 23 

Breeding for new peach cultivars with enhanced traits is a prime target in breeding 24 

programs. In this study, we used a discovery panel of 90 peach accessions in order to 25 

dissect the genetic architecture of 16 fruit-related traits. ddRAD-seq genotyping and the 26 

intersection between three variant callers yielded 13,045 high-confidence SNPs. These 27 

markers were subjected to an exhaustive association analysis by testing up to seven GWAS 28 

models. Blink was selected as the most adjusted, simultaneously balancing false positive 29 

and negative associations. Totally, we identified 16 association signals for six traits 30 

showing high broad-sense heritability: harvest date, fruit weight, flesh firmness, contents of 31 

flavonoids, anthocyanins and sorbitol. By assessing the allelic effect of significant markers 32 

on phenotypic attributes, nine SNP alleles were denoted favorable. A promising marker 33 

(SNC_034014.1_7012470) was found to be simultaneously associated with harvest date 34 

and fruit firmness conferring a positive allelic effect on both traits. We anticipate that this 35 

marker could be used to improve firmness in late harvested cultivars. Candidate causal 36 

genes were shortlisted when fulfilling the following criteria: i) position within the linkage 37 

disequilibrium block, ii) functional annotation and iii) expression pattern. A bibliographic 38 

review of previously reported QTLs mapping nearby the associated markers allowed us to 39 

benchmark the accuracy of our approach. Despite the moderate germplasm size, ddRAD-40 

seq allowed us to produce an accurate representation of peach’s genome resulting in SNP 41 

markers suitable for empirical association studies. Together with candidate genes, they lay 42 

the foundation for further genetic dissection of peach key traits. 43 

Key words: lead SNP, prime candidate genes, haplotype blocks, fruit-related traits, linkage 44 

disequilibrium, Prunus persica  45 

Background 46 

Peach is one of the most economically valued fleshy fruits worldwide (FAO, 47 

http://faostat.fao.org). The advances in the peach industry largely rely on fruit quality 48 

improvement in response to the market and consumers’ demands. The term quality may 49 

include all agronomical aspects and chemical compounds such as fruit size, firmness, sugar 50 

and acid concentration, etc. Some of those characteristics are thought to be monogenic, 51 
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controlled by a single gene (fruit shape, hairiness, flesh color, texture)1–3 while others are 52 

polygenic, such as sugar content, fruit firmness, antioxidant concentration4. 53 

Breeding for polygenic quantitative traits is far from being a straightforward task. Thus, 54 

insights on genetic drivers controlling these traits and their inheritance are required to 55 

bridge the phenotype-genotype gap3,5. For instance, the development of molecular markers 56 

linked to desirable traits would considerably speed up the selection of superior plant 57 

varieties through marker-assisted selection (MAS)6. Genome-wide association studies 58 

(GWAS) have also revolutionized the breeding process by detecting the genetic loci 59 

underlying trait variations at a relatively high resolution. This approach has been 60 

successfully applied in many breeding programs. For instance, GWAS have provided 61 

insight into fruit-related traits such as skin color in apple7 and fruit firmness in sweet 62 

cherry8. The power and prediction accuracy of GWAS critically depend on various 63 

considerations, including phenotypic data quality, experimental sample size, linkage 64 

disequilibrium (LD) between genetic variants and population structure. If not adjusted 65 

properly, these factors may lead to spurious associations as well as masking the true ones. 66 

Another key factor while performing GWAS is the density and chromosome distribution of 67 

markers/SNPs along the reference genome. 68 

Generally, genotyping methods fall into three categories; whole genome resequencing, 69 

reduced representation sequencing, and SNP arrays��9. Whole genome resequencing 70 

returns the highest number of SNP calls if sequencing depth is sufficient, which is 71 

expensive for large genomes. For this reason, SNP arrays are widely used, reducing the cost 72 

and enabling the detection of thousands of SNPs in a single assay9. In peach, commercially 73 

available arrays IPSC peach 9K10 and IPSC peach 18K11 have been used to explore the 74 

genetic diversity and to assist the breeding process1,12. Despite their utility, the major 75 

drawback of SNP genotyping arrays consists in their ascertainment bias13. In other words, 76 

they narrow the discovery of novel variants other than those detected in the discovery panel 77 

and used to build the respective array. This might distort subsequent genetic inferences. 78 

Additionally, efficient SNP probes require a well-assembled reference genome and their 79 

design and further optimization can be time consuming.  80 
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With the massive progress of high-throughput technologies, reduced representation 81 

sequencing such as restriction-associated DNA (RAD) sequencing and its derivative 82 

(ddRADseq) emerged to overcome both cost and ascertainment bias14. Double digest 83 

restriction-site associated DNA (ddRADseq) relies on the use of a pair of restriction 84 

enzymes to limit the sequencing effort to a subset of evenly distributed loci in the 85 

genome14. Moreover, by picking the best enzyme combination, repetitive DNA can be less 86 

targeted, thereby reducing the computational burden associated with aligning genomes with 87 

highly repetitive segments.  88 

Unlike other genotyping methods, prior genomic information is strictly not required for 89 

ddRADseq14. Nevertheless, as shown in this work, it is most powerful when combined with 90 

a reference genome sequence. From a technical standpoint, a common shortcoming of 91 

ddRADseq is the high rate of missing calls which can be straightforwardly handled through 92 

genotype imputation. 93 

Herein, we report the application of ddRADseq genotyping to identify high confidence 94 

SNPs in a discovery panel of 90 Prunus persica accessions. Consequently, GWAS was 95 

carried out to identify genomic loci associated with 16 fruit traits. To optimize the analysis 96 

and to overcome the limitations arising from the size of our peach germplasm, we 97 

considered the following aspects: 1) peach accessions were geographically distant in order 98 

to maximize the genetic variance, 2) SNPs were called using three variant detectors 99 

(BCFtools, Freebayes and GATK) and only those resulting from the intersection were 100 

retained for subsequent analysis, and 3) several statistical models were assessed to control 101 

the confounding effects. 102 

Genotype-to-phenotype associations for agronomic and fruit-related traits have been widely 103 

tested in peach using different genotyping methods like SSRs15, 9K SNP array1,4,16, 18K 104 

SNP array3,12 and high-throughput resequencing technology17. However, to the best of our 105 

knowledge this is the first report characterizing the genetic architecture of peach traits using 106 

ddRADseq-derived SNPs. In this study, we propose best practices for GWAS analysis 107 

mainly relying on a comparative approach for SNPs calling and statistical model 108 

assessment. Therefore, we demonstrate the utility of ddRAD-based genotyping in unveiling 109 

desirable alleles and genomic regions putatively responsible for trait variation. By 110 
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contrasting our findings with those previously reported using the peach 9K SNP array16 we 111 

confirm the accuracy of our approach. 112 

Results  113 

Phenotypic analysis and heritability 114 

Broad sense heritability was estimated over three consecutive years and the results denote 115 

that most of the traits were highly heritable (Figure 1.A). Hence, their phenotypic 116 

variability among the individuals was mainly driven by the genetic effects. However, 117 

contents of glucose, fructose, sucrose and total sugars (TS) were found to be lowly heritable 118 

traits (H2 < 0.5), denoting that their variability may be mostly due to the environmental 119 

factors. These traits were therefore left out of the association analyses. Furthermore, normal 120 

distribution fit tests conducted on averaged phenotypic measures, revealed that six out of 16 121 

traits were found to be normally distributed (flesh firmness, soluble solids content (SSC), 122 

ripening index, vitamin C, relative antioxidant capacity (RAC) and glucose). Source code, 123 

documentation and detailed results can be accessed at 124 

https://github.com/najlaksouri/GWAS-Workflow. The remaining ones, skewed either 125 

positively or negatively, were transformed accordingly. Likewise, the phenotypic 126 

correlation was estimated and significant interactions between agronomical and fruit quality 127 

traits were observed (Figure 1.B). For instance, harvest date (HvD) had the highest 128 

heritability estimates (H2=0.94) and exhibited strong positive correlations with flesh 129 

firmness, sugar contents measured as (SSC, TS and sorbitol) and antioxidant activity 130 

measured as (RAC, flavonoids and phenols). As expected, moderate positive interaction 131 

was also reported between the HvD and fruit weight as well as between total and individual 132 

sugars. Moreover, a strong positive correlation was also observed between total phenolics 133 

and flavonoids. Indeed, flavonoids are the largest group of naturally occurring phenolic 134 

compounds in plants. Both compounds showed a significant positive interaction with 135 

(RAC) suggesting that they could be used as a good indicator of antioxidant properties in 136 

peaches. 137 
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SNP genotyping  138 

To construct an informative SNP panel, polymorphic sites were called in individual sample 139 

mode using three different algorithms. Raw calls were subjected to standardized quality 140 

thresholds in order to mitigate the effect of sequencing and/or alignment flaws. Post-filtered 141 

calls from each pipeline were merged together into multi-samples format (Table 1). 142 

According to our results, GATK-HaplotypeCaller (HC) outperformed both Freebayes and 143 

BCFTools in terms of computational time and sensitivity yielding a total of 233,535 SNP 144 

calls (see repository https://github.com/najlaksouri/GWAS-Workflow). Freebayes ranked 145 

second, followed by BCFTools, with 166,080 and 148,998 SNPs, respectively. For a robust 146 

variant detection, the intersection between multi-sample sets was computed. About 32% of 147 

SNPs were found to be commonly shared by the above-stated tools. Multi-allelic and 148 

scaffold variants were excluded and additional filters (missing call rate and MAF) were 149 

applied (Table 1).  Finally, a set of 13,045 SNPs was kept for subsequent analysis.  150 

Using VEP tool, polymorphic sites were found to be distributed along upstream (21%), 151 

downstream (9%), intronic (26%) and intergenic (8%) regions (Figure S1). Low 152 

proportions of SNPs were tagged as 3’ UTR and 5’ UTR variants. Within coding regions, 153 

11% of SNPs were defined as synonymous while 13% were annotated as missense variants. 154 

SNP distribution and LD decay 155 

The distribution of polymorphic sites was calculated within adjacent windows of 1 Mbp 156 

and provided a genome-wide coverage estimate along the eight peach chromosomes. As 157 

illustrated in Figure 2.A, markers were unevenly partitioned throughout the genome with 158 

the highest number of mapped SNPs on chromosome 2 (4,440) and the lowest on 159 

chromosome 5 (1,768). Interestingly, SNPs accumulated within the short arms of 160 

chromosomes 2 and 4. In contrast, large gaps were observed towards the telomere of the 161 

long arm of chromosome 2. Similarly, several blank regions were located along 162 

chromosome 1. Gaps highlighted with asterisks correspond to predicted centromeric 163 

regions18.  164 

To determine the extent of LD decay in the diversity panel, we estimated the pairwise LD 165 

coefficient (r2) at chromosomic level. LD decay was estimated for each chromosome by 166 

estimating the intersection of r2=0.25 with the physical distance (Figure 2.B and Figure 167 
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S2). We found that LD dropped at short distance, ranging from 250 to 500 kbp along all 168 

chromosomes, with the exception of chromosome 5 (ca. 4.7 Mbp). After LD pruning, a 169 

total of 1,959 unlinked SNPs was kept for population structure and kinship estimations. 170 

Population structure 171 

PCA analysis separated the germplasm panel into 4 sub-populations based on the genetic 172 

origin (landrace vs modern breeding line) and fruit type (peach vs nectarine) (Figure S3). 173 

Clade 1 on the top left corner, grouped exclusively modern breeding lines of peach and 174 

nectarine. This group seems to be driven by the geographical origin as most of the 175 

accessions were originated from North America (Table S1). Clade 2 represents a diverse 176 

genetic entity gathering both landrace and breed peach varieties. Genotypes within this 177 

clade were originated from Spain and North America suggesting the presence of higher 178 

admixture that could arise due to the exchange of the germplasm material. In contrast, 179 

clades 3 and 4 contained only landrace peach accessions mostly from different regions of 180 

Spain, Europe and South Africa. A neighbor joining (NJ) tree also identified four clear 181 

clusters, as illustrated in Figure S4. Comparable results were obtained from 182 

fastSTRUCTURE and are provided in the GitHub repository. 183 

Critical evaluation of GWAS models 184 

Genome wide association studies may be susceptible to bias in the presence of 185 

measurement errors. False positive and negative associations arising from population 186 

structure or/and family relatedness may lead to erroneous conclusions. The examination of 187 

Q-Q plots can be used as a straight visual inspection to determine the appropriate statistical 188 

method controlling the confounding effects. In fact, Q-Q plots illustrate the distribution of 189 

markers under the null hypothesis, by plotting the observed -log10 P-values (y-axis) versus 190 

the expected -log10 P-values (x-axis). If a sharp diagonal line is observed then the null 191 

hypothesis is respected and no significant associations are reported. However, an upper 192 

deviated tail from the diagonal line would likely indicate true associations. Upward 193 

inflation close to the line’s origin indicates suspicious false positives while downward 194 

deflated tail suggests false negatives. 195 

We empirically evaluated the adjustment of seven models to our data and in Figure 3, we 196 

plot their Q-Q behavior for significantly associated traits. Despite yielding statistically 197 
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significant associations, represented as bigger dots, both single locus models GLM and 198 

SUPER exhibited prominent inflation beyond the expected null line. This deviation starting 199 

close to the origin indicates false positive predictions due to confounding effects 200 

(population stratification or genotype relatedness). MLM and CMLM multi-locus models 201 

showed matching P-value distributions, therefore their Q-Q plots were overlaid. Except for 202 

harvest date, where the null hypothesis cannot be rejected with neither inflated nor deflated 203 

P-values, MLM and CMLM unveiled downshifted line tails when assessed with the rest of 204 

traits. Such a result may indicate that these tests were able to reduce false positive 205 

associations, but likely yielded false negative ones. Another complex model (MLMM) was 206 

found to follow the null hypothesis with both harvest date and flavonoids; nonetheless a 207 

slightly downward tail was discerned for fruit weight and sorbitol content. Although being 208 

the best-fitting model yielding marker-trait associations with harvest date and flavonoids, 209 

FarmCPU did not show the same statistical power with other traits. Finally, the observed P-210 

values produced by Blink (green color) were lying on the diagonal line with clear deviated 211 

tails toward the y-axis for all six aforementioned traits. All in all, Blink seems to be the best 212 

calibrated model, appropriately controlling false positive and false negative effects. For 213 

these reasons, we consider Blink as the most suitable model, best adjusted with all 214 

phenotypic data and from here on the GWAS results are based on it. 215 

Marker-trait associations and identification of candidate genes 216 

GWAS analysis was conducted on phenotypic traits with moderate to high heritability (H2 217 

> 0.5). Consequently, contents of glucose, fructose, sucrose and total sugars were discarded 218 

from the subsequent analysis. To sum it up, among the remaining 12 traits, only six were 219 

found to be potentially influenced by polymorphic markers. Sixteen marker-trait 220 

association peaks were scattered throughout all chromosomes except chr 7 (Table 2). In the 221 

following sections we will discuss the results for each of these traits, namely harvest date, 222 

fruit weight, flesh firmness, and contents of flavonoids, anthocyanins, and sorbitol. For ease 223 

of interpretation, in the following paragraphs we summarize the lead SNPs and their 224 

corresponding LD blocks. The annotation of 250 kbp regions centering the peak SNPs 225 

resulted in a list of candidate causal genes provided in Table S2. 226 
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Harvest date (HvD) 227 

 The GWAS analysis resulted in five SNPs meeting the Bonferroni-adjusted threshold 228 

(Figure 4). Two SNPs were located on chr 4 and tagged as (SNC_034012.1_10916234, 229 

G/T) and (SNC_034012.1_14096987, A/C). Their allelic effect is summarized in Figure 230 

S5, where it can be seen that the first one correlates with delayed harvest and the second 231 

one with early one. Another associated marker was located on chr 5 232 

(SNC_034013.1_13023165, T/A). Although covering the highest portion of %PVE, no 233 

significant allelic effect was observed (Table 2). This lead SNP was mapped within the 234 

first exon of Prupe.5G138500, a gene encoding a germin-like protein. One more significant 235 

site was identified on chr 6 and labeled as (SNC_034014.1_7012470, A/T). Allelic effect 236 

on phenotypic variation highlighted that both heterozygous and homozygous genotypes 237 

carrying the alternate allele (T) were lately harvested with respectively 6 and 13-days of 238 

delay (Figure 4.C). Similarly, the intergenic SNP located on chr 8 239 

(SNC_034016.1_18841611, A/G), showed approximately 20-days delay in harvest date 240 

with heterozygous accessions (Figure S5).  241 

LD block analysis revealed various candidate genes, including cell wall modification 242 

(Prupe.8G197700: galacturonosyltransferase and Prupe.8G199700: cell division control 243 

protein), cytochrome P450 enzymes (Prupe.8G196800, Prupe.8G196900, Prupe.8G197100 244 

and Prupe.8G197300), UV-photoreceptor (Prupe.4G185200) and ethylene-responsive 245 

transcription factor (Prupe.8G198700).  246 

Fruit weight (FW) 247 

Significant marker-trait associations were detected on three chromosomes: chr 3 248 

(SNC_034011.1_26371177, T/A), chr 6 (SNC_034014.1_1805059, A/G) and chr 8 249 

(SNC_034016.1_16407694, A/C). The explained variance oscillated between 17 and 22%, 250 

with SNC_034014.1_1805059 tagged as the lead intergenic marker (Table 2). The allelic 251 

effect of this lead marker (A/G) was found to be unfavorable, with the allele G associated 252 

with weight loss (~22 grams) in homozygous accessions (Figure 5.C). A similar negative 253 

effect was observed with the SNP on chr 3 (T/A), with a significant reduction in fruit 254 

weight of 53g. Only marker mapped on chr 8 (A/C) was found to have a positive effect in 255 

heterozygous (Figure S6). Based on the LD block results, the lead SNP fell within the 256 
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fourth block, a small interval (84 bp) overlapping no genes (Figure 5.B). Nonetheless, the 257 

associated SNPs did overlap protein-coding genes. Among them, genes encoding β-258 

galactosidase (Prupe.3G298200), α-galactosyltransferase (Prupe.3G298800), thymidylate 259 

kinase (Prupe.3G301400) and transcription factors (GTE8: Prupe.3G301300 and trihelix 260 

GT-4: Prupe.3G300500) (Table S2). 261 

Flesh Firmness (FF) 262 

A single intergenic marker (SNC_034014.1_7012470; A/T) detected on chr 6 was 263 

statistically linked to flesh firmness and explained 33.9% of the total phenotypic variance 264 

(Table 2). This polymorphism showed a significant increase in the fruit firmness in both 265 

heterozygous and alternate homozygous genotypes which underlined the favorable effect of 266 

the alternative allele (T) on fruit firmness (Figure 6.C). It’s noteworthy to mention that this 267 

is the only marker simultaneously associated with two different traits (HvD and FF). 268 

Moreover, peach accessions carrying the aforementioned allele (either homozygous or 269 

heterozygous), were denoted late-harvested and firm peach accessions. Such a result may 270 

justify the high correlation existing between both traits (Figure 1.B).  271 

By examining 250 kbp upstream and downstream the lead marker, it was found to reside in 272 

block 3, which makes it a relevant region to seek for candidate firmness-related genes. On 273 

the basis of their functional annotation, six genes were selected as potential candidates, 274 

including Prupe.6G100500 encoding an E3 ubiquitin-protein ligase, Prupe.6G101100 275 

corresponding to vegetative cell wall protein, Prupe.6G101600 annotated as aquaporin 276 

PIP2 and Prupe.6G102300 encoding homeobox-leucine zipper transcription factor (Table 277 

S2). 278 

Flavonoids (Flvs)  279 

The Manhattan plot displayed two peaks statistically associated with flavonoids content 280 

(Figure S7.A). The first peak was identified within the intergenic region of chr 2 and 281 

named as (SNC_034010.1_643430, T/C). The alternative allele (C) was marked as 282 

favorable for heterozygous (TC) and homozygous alternate (CC) genotypes since they 283 

showed approximately two-fold increase in the flavonoids content (Figure S7.C). The 284 

second associated SNP (SNC_034014.1_3066620; G/T) was located on chr 6 and 285 

physically mapped on the first exon of Prupe.6G041500; a candidate gene encoding a non-286 
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specific lipid-transfer protein-like (Table S2). The average flavonoids content in alternative 287 

homozygous peach accessions (TT) was significantly enhanced compared to the reference 288 

homozygous individuals (GG) (Figure S8). Thus, the T allele can be considered as a 289 

favorable one. Based on LD block results, we annotated a total of 14 genes (Table S2). 290 

According to their biological function and tissue-specific expression, we narrowed the list 291 

to a few promising ones, including two genes encoding transcription factors 292 

(Prupe.2G009100, bHLH and Prupe.6G041400, bZIP). 293 

Anthocyanins (ACNs) 294 

Regarding the anthocyanins content, we detected a single peak signal on chr 5 exceeding 295 

the threshold line (Figure S9.A). This locus tagged as (SNC_034013.1_12838635; G/T) 296 

falls within exon 2 of Prupe.5G134900, encoding a B3 domain-containing transcription 297 

factor. Thus, Prupe.5G134900 was considered as a prime candidate gene. The identified 298 

marker explained a large portion of the variation (53%), and was found to exert an 299 

unfavorable effect on anthocyanins content (Figure S9.C). Indeed, pairwise comparisons of 300 

SNP allelic effect showed a significantly lower anthocyanins content in the homozygous 301 

alternate individuals (TT) compared to the reference homozygous (GG). Screening for 302 

genes residing within LD block resulted in three further candidate genes involved in 303 

different biological functions (Prupe.5G134200, Prupe.5G134800 and Prupe.5G135200) 304 

(Table S2). 305 

Sorbitol (SRB) 306 

Four significant association signals dispersed on different chromosomes were predicted to 307 

affect the sorbitol content (Table 2 and Figure S10). On chr 1, an intergenic SNP 308 

(SNC_034009.1_2706825; T/C) explained the lowest proportion of phenotypic variation.  309 

The SNP on chr 2 (SNC_034010.1_3682553; G/C), in the third intron of a gene encoding a 310 

flowering time control protein (Prupe.2G0303400), explained 12% of the PVE. Similarly, 311 

(SNC_034014.1_28343678; G/A) was located on chr 6 and mapped on the intronic region 312 

of Prupe.6G320000, a gene encoding a serine/arginine rich factor. Both Prupe.2G0303400 313 

and Prupe.6G320000 are suggested as plausible sorbitol-related genes. The lead SNP 314 

explaining the highest PVE (14%) was identified in an intergenic region of chr 8 315 

(SNC_034016.1_18841643; G/A).  316 
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With the exception of (SNC_034014.1_28343678) the remaining loci were observed to 317 

have desirable effect on sorbitol content (Figure S11). We identified 26 genes distributed 318 

in 250 kbp on either side of each associated SNP. Among them, some were discovered to 319 

be over-expressed in the fruit (Log2FC > �3�), including genes encoding heavy metal-320 

associated isoprenylated proteins (Prupe.2G033600, Prupe.2G033700 and 321 

Prupe.6G321400), pectinesterases (Prupe.6G318500), exonucleases (Prupe.6G316100), 322 

dormancy-associated proteins (Prupe.6G319600), cell cycle checkpoint control proteins 323 

(Prupe.6G321300) and the E3 ubiquitin-protein ligase RNF4 (Prupe.8G199600). A cluster 324 

of four cytochrome P450 encoding genes was also identified. This plethora of genes may 325 

shed light on several key processes that are subject to influence the sorbitol biosynthesis. 326 

Discussion 327 

Performance of variant callers 328 

SNPs discovery in plant genomes has been a widely used strategy for developing molecular 329 

markers useful for MAS, genomic selection, phylogenetic analysis, etc. In order to detect 330 

and track these genetic variations, we performed a SNP discovery pipeline on paired-end 331 

reads mapped to a diploid genome using BCFtools, Freebayes, and GATK-332 

HaplotypeCaller. SNP calling is known to be error prone. Spurious variants may have 333 

several sources; errors associated with sample processing (library preparation, PCR 334 

amplification), sequencing, as well as, computational analysis19. To remove likely false 335 

positive variants, best practices and carefully chosen cut-offs are needed. In our analysis, a 336 

SNP site was kept when passing the following filters: mapping and call quality, read depth, 337 

as well as call rate and MAF. Though either calling tool can be adapted, we observed a 338 

certain inconsistency in the number of high-quality SNPs revealed by each tool. Notably, 339 

GATK-HC exhibited the highest sensitivity in SNPs calling, followed by Freebayes then 340 

BCFtools. The outperformance of GATK-HC is actually not surprising as it heavily relies 341 

on local de-novo assembly of haplotypes in active regions20. In other terms and unlike the 342 

rest of tools, whenever GATK encounters regions with substantial evidence of variation 343 

relative to the reference, it discards the existing mapping information and reassembles the 344 

read mappings. Our results are in line with21 concluding that in Arabidopsis thaliana, 345 

GATK-HC was found to be more accurate compared to BCFtools. Additionally, GATK-346 
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HC had the lowest proportion of false positives compared to both Freebayes and 347 

BCFtools22. On the other hand, the variation in the number of detected SNPs may be partly 348 

due to the underlying algorithms. Indeed, GATK-HC and Freebayes are Bayesian variant 349 

detectors while BCFtools mpileup uses Hidden Markov Models. Although having an 350 

extensive format requirement (e.g: read group specified in the input header), GATK-HC 351 

seems to be more precise dealing with ddRAD-seq mapped reads in peach. Nevertheless, to 352 

further increase confidence, in this study we only considered SNPs called by all three 353 

approaches. 354 

Statistical model selection 355 

Choosing a statistically reliable model is another fundamental pillar for a successful 356 

GWAS. Population structure and genetic relatedness are confounding factors increasing the 357 

rate of ambiguous associations and decreasing the statistical power. When ignored, they 358 

lead to substantial inflation of P-values as highlighted in the GLM model (Figure 3). In 359 

spite of including PCA components and kinship as covariates, SUPER model had also a 360 

large number of false positives. This may be explained by the fact that both GLM and 361 

SUPER are single-locus approaches failing to catch true associations when dissecting 362 

complex traits. Comparable inflated P-values were observed in Arabidopsis thaliana when 363 

testing flowering time, a polygenic trait, with the naïve model (GLM)23. In contrast, two 364 

other single-locus models, MLM and its compressed version (CMLM), were observed to 365 

adjust for false positives at the cost of failing to find any significant marker. Similar results 366 

were observed with MLMM, a multi-locus extension of MLM model (Figure 3). Overall, 367 

we conclude that MLM-based methods are likely missing potentially important SNPs.   368 

The inspection of Q-Q plots declared FarmCPU and Blink as the most sophisticated 369 

algorithms yielding significant associations. Whereas FarmCPU returned significant 370 

signatures with only two traits (HvD and Flvs), Blink consistently inferred associations 371 

with six traits (HvD, FW, FF, Flvs, ACNs and SRB). FarmCPU and Blink have emerged to 372 

prevent over-fitting and to control false positives simultaneously24,25. FarmCPU employs 373 

iteratively the fixed-effect model (FEM) and random effect model (REM) to eliminate 374 

confounding factors. FEM contains testing markers, one at a time, and associated markers 375 

as covariates to control false positives. To circumvent model over-fitting in FEM, the 376 
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associated markers are estimated in REM and are used to derive the kinship24. Additionally, 377 

FarmCPU relies on the binning approach, where the whole genome is equally divided into 378 

bins and only the most significant marker is selected from each bin24. Despite its promise, 379 

this model is hampered by two major pitfalls: REM is computationally demanding and the 380 

assumption of bins rarely occurs in practice. As a consequence, Blink was designed to 381 

optimize the computational burden by substituting the REM with FEM through 382 

approximating maximum likelihood using the Bayesian Information Criterion and by 383 

increasing the statistical power by replacing the bin approach with the LD method25. 384 

Overall, Blink seems to be the well-suited model for our set of data, balancing false 385 

positives and false negatives. This statement is underpinned by the GAPIT team, which 386 

already stated that Blink is statistically more powerful than FarmCPU26. 387 

Marker-trait association for the target traits 388 

Out of 16 studied traits, association mapping using ddRAD-derived-SNPs and Blink, 389 

revealed association signals with six traits. Totally, 16 significant loci were inferred and 390 

distributed as follows: harvest date (chr 4, 5, 6 and 8), fruit weight (chr 3, 6 and 8), flesh 391 

firmness (chr 6), flavonoids (chr 2 and 6), anthocyanins (chr 5), and sorbitol (chr 1, 2, 6, 392 

and 8). Promising candidate genes were selected when residing within the LD block 393 

containing the significant loci, known to be related to the targeted trait and being over-394 

expressed in fruit tissue. Our results were further discussed in comparison with16 which 395 

studied the same phenotypic data and germplasm material, but genotyped using the 9K SNP 396 

array instead. 397 

Harvest date  398 

Peaches and nectarines are generally harvested at physiological maturity, then ripening off 399 

the trees. Harvest date and maturity date are frequently used as synonyms and are expressed 400 

in Julian days. HvD is defined as the day on which a certain percentage of peaches reach 401 

maturity. Maturity date (MD) is defined as the interval of time from the first day of the 402 

calendar year till the harvest date27. In our study, five association signals for HvD were 403 

highlighted. Two were inferred on chromosome 4 and the rest were distributed on 404 

chromosomes 5, 6 and 8. 405 
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As established by28,29, major QTLs controlling maturity date have been reported on linkage 406 

groups LG4 and LG6 (Table S3). Particularly, a major QTL on LG4 referred to as qMD4.1 407 

showed a pleiotropic effect on fruit weight and firmness28,30. Interestingly, our marker 408 

SNC_034012.1_10916234 mapped at (~10.91 Mbp), was overlapping the (qMD4.1_CA) 409 

locus from C×A progeny spanning the interval between 10.87-12.09 Mbp30. This same 410 

QTL from W×By progeny (qMD4.1_WB) was found 65 kbp from our marker (Figure 411 

4.D). In the same vein, SNC_034012.1_10916234 was delimited by one downstream (HD-412 

EJ-4)31 and two upstream quantitative loci (qP-MD4)32 and (qMD4_1)33 mapped 413 

respectively at 0.5, 5.3 and 1245 kbp from the SNP’s coordinate (Figure 4.D). Likewise, 414 

the second marker on chr 4 (SNC_034012.1_14096987) mapped at (~14.09 Mbp) was 415 

found within the genomic region of strong confidence QTL (qMD4_2) spanning the 416 

interval (11.20 - 14.10 Mbp)34. Contrasting with associated SNP from the 9K assay16, our 417 

markers seems to be more confident as they are located within the QTL boundaries which 418 

supports their reliability. Altogether, we anticipate that the aforementioned SNPs on chr 4 419 

could be integrated as promising markers for HvD breeding goals. As well, we conclude 420 

that LG4 seems to be a chromosomal hotspot hosting a cluster of major QTLs associated 421 

with the maturity date. QTLs influencing maturity date were also detected on LG4 in 422 

peach-related species, for instance; sweet cherry35. Therefore, we believe that this trait 423 

could be controlled by orthologous loci within Prunus species.  424 

Marker ‘SNC_034013.1_13023165’ mapped on chr 5 (~13.02 Mbp) was supported by an 425 

adjacent locus (QTLMD5) spanning the region (14.38 - 17.64 Mbp)36 and other distant 426 

signals (qP-MD5 and qMD5)32,34. Significant markers from 9K array16 were found to be 427 

physically closer to the QTLs (Figure 4.D and Table S3). Finally, the significant SNP on 428 

chr 6 ‘SNC_034014.1_7012470’ was residing within two QTL intervals36 QTLMD6.1 and 429 

QTLMD6.1, supporting it. Similar findings were observed with 9K-associated markers. 430 

Multiple candidate genes potentially influencing the harvest date were shortlisted (Table 431 

S2). Most importantly, an ethylene-responsive transcription factor (Prupe.8G198700). 432 

Ethylene-responsive elements are relevant in climacteric fruits and have been proposed as 433 

candidate genes for fruit maturation date in different Prunus species31,37. We also identified 434 

a cell wall remodeling gene encoding galacturonosyltransferase. This finding is in 435 
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consonance with37 defining a galacturonosyltransferase as a candidate gene for late 436 

harvested cultivars. 437 

Fruit weight 438 

Fruit weight is a quantitative trait with great importance in peach breeding. Previous studies 439 

in peach have divulged that FW is monitored by multiple QTLs distributed across all 440 

chromosomes34,38–40. Using GWAS, we identified a significant SNP on chr 3 (~26.37 Mbp) 441 

located respectively at 4.07 and 7.27 Mbp downstream of two QTLs qFRW.ZC_3 and 442 

qFRW.WB (Figure 5, Table S3). On chr 6, another significant marker was predicted at 443 

(~1.80 Mbp). This marker was delimited in near proximity by two reliable QTLs 444 

(qFRW.ZC_6)40 and (qFW6.1)34, situated respectively at 387 and 1,358 bp. On chr 8, 445 

SNC_034016.1_16407694, was localized at (~6 Mbp) downstream of marker flanking QTL 446 

(FW 10-b)39. This is in contrast with16 where no associated loci were reported for this trait 447 

(Table S3). Such results support the relevance of our findings in dissecting the genetic 448 

control of complex fruit traits and shed light on the effectiveness of ddRAD-seq genotyping 449 

on inferring novel association signatures. 450 

Candidate genes prediction revealed two transcription factors, trihelix GT-4 451 

(Prupe.3G300500) and GTE-8 (Prupe.3G301300). Transcriptional regulators are abundant 452 

in plant genomes and they are implicated in various biological processes. Interestingly, 453 

trihelix genes are known to be photo-responsive proteins41. It’s well documented that light 454 

exposure affects fruit size, shape and quality42. Thus, we speculate that trihelix TF may 455 

regulate the fruit weight in peaches. Moreover, cell wall enzymes such as β-galactosidase, 456 

α-galactosyltransferase may act as key components of cell wall turnover during stone fruit 457 

growth43. Finally, thymidylate kinase exhibited strong upregulation suggesting a possible 458 

role in peach fruit development as validated in rice, barley and maize44. 459 

Flesh firmness 460 

Firmness is a key textural indicator of peach quality and directly influences their shelf life. 461 

In our study, we identified a single firmness related locus SNC_034014.1_7012470 on chr 462 

6. In the same LG6, a firmness loss QTL (qP-FL5d6) was described (Figure 6.D and Table 463 

S3). Another stable QTL (qP-FF6.1m) was also detected over two years in related species, 464 
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particularly in sweet cherry35. Using 9K inferred SNPs and MLM model16, no significant 465 

association signals were found. 466 

Four genes were selected as strong candidates encoding: ubiquitin-protein ligase 467 

(Prupe.6G100500), vegetative cell protein (Prupe.6G101100), aquaporin PIP2 468 

(Prupe.6G101600) homeobox-leucine zipper protein (Prupe.6G102300). E3 ligase genes 469 

were found to be differentially expressed in either melting flesh or stony hard fruit during 470 

the ripening48. Aquaporins are transmembrane water transporters and water uptake within 471 

fruit is highly related with fruit firmness45. Thus, aquaporins could play a key role in 472 

maintaining cell turgor in peach. Finally, homeobox-leucine zipper proteins were denoted 473 

as potential biomarkers for the ripening process in peach46. 474 

Flavonoid and anthocyanin contents 475 

Flavonoids are major polyphenol compounds playing a central role in fruit color and flavor. 476 

Our analysis yielded two potential association signatures in chr 2 and 6. These results go 477 

along with47 affirming that the majority of lead SNPs linked with many flavonoid 478 

metabolites in peach were located on chr 2. Herein, SNC_034010.1_643430 was supported 479 

by two QTLs39 identified in Venus × Bigtop progeny and named as ‘FLV 10-a’ and ‘FLV 480 

10-b’ (Figure S7.D and Table S3). It’s well documented that flavonoid biosynthesis is a 481 

complex pathway, transcriptionally regulated by members of Myb and bHLH families48. 482 

Although no Myb encoding gene was found in our analysis, a highly up-regulated bHLH-483 

TF was inferred and may be considered as a promising candidate gene involved in 484 

flavonoid regulation. 485 

Anthocyanins constitute an important group of plant pigments belonging to the flavonoid 486 

family. Their differential accumulation in peach results in the distinctive fruit and flesh 487 

color48. Although there is strong evidence that their biosynthesis is mainly regulated by a 488 

Myb10 transcription factor on LG3, many anthocyanin-related QTLs were identified on 489 

LG4, LG5, and LG634,39,40. Our analysis detected a single lead marker on chr 5 accounting 490 

for ~53% of the PVE. Thus, ‘SNC_034013.1_12838635’ may be a preferential target for an 491 

effective marker assisted selection. It was delineated on both downstream and upstream 492 

sides by (qANT)39, (qATCYN.ZC)40 and (qPSC5)34. When genotyped with the 9K array16, 493 

no associated markers were detected on LG5. Remarkably, our polymorphic marker was 494 

physically falling in the exonic region of Prupe.5G134900, a gene encoding a B3 domain-495 
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containing transcription factor. Although the functional relevance of this prime gene 496 

requires further validation, we hypothesize that the genetic control of anthocyanins may be 497 

driven by B3 DNA-binding protein. Curiously, for both anthocyanins and flavonoids, a B3 498 

family transcription was selected as candidate gene (respectively Prupe.5G134900 and 499 

Prupe.6G041000). This may be explained by the fact that anthocyanins are a class of water-500 

soluble flavonoids. Thus, it's plausible to hypothesize that genes involved in flavonoids and 501 

anthocyanins regulation are in coordination.  502 

Sorbitol 503 

Sugar content is one of the most important quality traits perceived by the consumers. The 504 

sweetness intensity depends on the overall sugar amount brought by sucrose, glucose, 505 

fructose and sorbitol. These first three sugar types were discarded from our analysis as they 506 

didn’t meet the heritability cutoff. Regarding the sorbitol, association signatures were found 507 

in chr 1 (~27.06 Mbp), chr 2 (~3.68 Mbp), chr 6 (~28.34 Mbp) and chr 8 (~18.84 Mbp). 508 

Genetic mapping has been extensively carried out to identify key QTLs responsible for 509 

sorbitol biosynthesis. A reliable QTL (qSOR_1) was mapped on the upper region of LG1, 510 

nearly 17.5 Mb upstream of our associated marker (Figure S10.D). Compared to the 9K 511 

association study18, no significant association signal was detected on LG1 (Table S3). On 512 

chr 2, we were able to find an adjacent QTL supporting the accuracy of our results49. 513 

Indeed, qSOR_2 was positioned at ~1.2 Mbp from our marker SNC_034010.1_3682553. 514 

 515 

Finally, this work depicts ddRAD-seq genotyping as an efficient approach for SNPs 516 

detection and association studies. Akin to the 9K SNP array, ddRAD-seq yielded valuable 517 

markers strongly supported by stable QTLs. However, while SNP arrays are engineered to 518 

specifically include polymorphic loci from genomic regions of interest and focus on 519 

harboring SNPs known to be linked to commercially important traits, ddRAD-seq samples 520 

the genome randomly, without prior knowledge of target regions. For this reason, ddRAD-521 

seq might be a better fit for analyses concerned with unexplored biological processes. 522 

Concisely, we successfully used ddRAD-seq-derived SNPs to identify genomic regions and 523 

genes influencing major fruit-related traits in peaches. The inferred associated SNPs 524 

appeared to be reliable as they often explained a fairly high percentage of the total 525 
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phenotypic variance. The survey of candidate genes for these relevant polymorphic sites 526 

rendered plenty of genes implicated in various processes. Genes harboring significant 527 

markers may be considered as preferential targets for peach breeding. However, due to the 528 

complexity of the examined traits, future functional validation would provide additional 529 

hints to support the breeding efforts. 530 

Material and Methods 531 

Plant material and phenotypic evaluation 532 

A total of 90 peach and nectarine accessions were used for double digest restriction-site 533 

associated sequencing (ddRAD-seq) and subsequent GWAS analysis. The germplasm panel 534 

comprises 73 landraces and 17 modern breeding lines originating from Spain, United 535 

States, France, Italy, New Zealand, and South Africa. All genotypes were grown under 536 

Mediterranean soil conditions at the Experimental Station of Aula Dei (CSIC) located at 537 

Zaragoza, Spain (41.7245 °N, 0.8118 °W) and analyzed during three fruiting seasons 538 

(2008-2010). Information about plant accessions is summarized in Table S1.  539 

The phenotypic data previously reported by16 were re-analyzed in the present study. 540 

Briefly, 16 traits were evaluated by randomly harvesting 20 fruits from each cultivar at the 541 

commercial maturity during three years. Traits were split into two categories. Agronomic 542 

features included harvest date (HvD; Julian days), fruit weight (FW; grams), flesh firmness 543 

(FF; Newton), soluble solids content (SSC; °Brix), titratable acidity (TA; grams malic 544 

acid/100 g flesh weight) and ripening index (RI; SSC/TA). Besides, biochemical variables 545 

comprised vitamin C (Vit C; mg of ascorbic acid/100 g flesh weight), total phenolics (Phen; 546 

mg of gallic acid equivalents/100 g flesh weight), contents of flavonoid (Flv; catechin 547 

equivalents/100 g flesh weight) and anthocyanin (ACNs; cyanidin-3-glucoside/kg flesh 548 

weight), sucrose (Suc; g/kg flesh weight), glucose (Glu; g/kg flesh weight), fructose (Fruc; 549 

g/kg flesh weight), sorbitol (SRB; g/kg flesh weight), and total sugars (TS; g/kg flesh 550 

weight) and relative antioxidant capacity (RAC; μg TE/g flesh weight). 551 

Variance components and broad sense heritability (H2) were estimated using the variability 552 

R package v0.1.0. Only traits with H2 > 0.5 were considered for association analysis. 553 
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Distribution of averaged phenotypic data was checked in R using Shapiro-Wilk test. Non-554 

normal distributions were transformed using bestNormalize package (v1.8.3)50. 555 

DNA extraction and enzyme evaluation 556 

Genomic DNA was extracted from leaves using the DNeasy Plant Mini Kit (Qiagen, 557 

Dusseldorf, Germany) following the manufacturer’s recommendations. DNA concentration 558 

and quality were checked using PicoGreen®dye and measured in a fluorospectrometer. 559 

Whole-genome genotyping was carried out using ddRAD-seq approach by combining low 560 

and high frequency cutter to digest DNA; respectively Pst1 and Mbol as described in peach 561 

by51. This enzyme pair yielded the highest number of loci with a size range between 300 562 

and 400 bp and prevented repetitive region sampling. Selected loci are those having the 563 

sticky ends of both enzymes52. 564 

ddRAD libraries preparation and sequencing 565 

DNA libraries were constructed at the Genomic Unit at IABiMo INTA-CONICET 566 

(Argentina) following51,52 recommendations. Shortly, digested DNA with Pst1/Mbol pair 567 

were gel excised, eluted then ligated to barcoded adapters specific to each sample. Ligated 568 

fragments from 24 samples were subsequently pooled together and were PCR amplified 569 

with indexed primers to tag each pool. Finally, paired-end reads (250 bp) were generated on 570 

an Illumina NovaSeq 6000 instrument at CIMMYT, Mexico. The raw sequencing data was 571 

deposited in the European Nucleotide Archive (ENA) under the BioProject PRJEB62784.  572 

Data processing and alignment 573 

Raw reads were de-multiplexed and trimmed using the process-radtag module from 574 

STACKS suite (v2.59)53. After quality assessment, paired-end reads were mapped to 575 

Prunus persica reference genome v2 (GCF_000346465.2, retrieved from NCBI RefSeq54 576 

using BWA-mem (v0.7.17)55. Redundant reads known as PCR duplicates were expurgated 577 

from downstream analysis as described by22. The resultant de-duplicated files were sorted 578 

and indexed using SAMtools56 to be ready for variant calling. 579 

Variant discovery pipeline 580 

Variant calling was conducted in a single-sample mode testing the performance of three 581 

variant callers: BCFtools (v1.7)56, Freebayes (v1.0.0)57 and GATK-HaplotypeCaller 582 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2023. ; https://doi.org/10.1101/2023.07.31.551252doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.31.551252
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

(v4.2.3.0)20. Raw SNPs underwent standard quality filtering based on mapping quality (MQ 583 

> 40), variant quality (QUAL < 30) and depth of reads (DP ≥ 5) to remove artifactual calls. 584 

Consequently, clean SNPs from each calling method were merged by position and by 585 

reference/alternative alleles into multi-sample VCF files. SNPs resulting from the 586 

intersection of multi-samples VCFs were considered as highly accurate calls and were 587 

inspected to remove multi-allelic variants and those assigned to scaffolds. Then, they were 588 

filtered by call rate > 80% and residual missing genotypes were imputed with beagle’s 589 

default settings (v4.1)60. The imputation accuracy was evaluated in Tassel (v5.0)58 by 590 

masking 1% of the genotype and calculating the error rate. SNPs with (MAF > 0.05) were 591 

selected as a final call set to determine the population structure and marker-trait 592 

associations. SNP identifiers were created by concatenating their assigned chromosome and 593 

their base pair position (eg: SNC_034014.1_7012470). 594 

Linkage disequilibrium and population structure  595 

Intra-chromosomal LD was calculated using Plink (v1.9)59, as a measure of Pearson 596 

correlation coefficient (r2) between marker-pairs. For each chromosome, LD distribution 597 

was plotted against its physical distance (Mbp). The LD decay curve was estimated as the 598 

average of r2 variation across 100 kbp bins and was fitted in R program. LD decay was 599 

defined by setting r2=0.25 as a threshold. LD decay extent was defined as the physical 600 

genomic distance at which the r2 decreased to half of its maximum value. Polymorphic sites 601 

showing strong LD were pruned in Plink by delimiting a window of 10 SNPs, removing 602 

one of the SNPs pair with r2 > 0.25 and then shifting the window 5 SNPs forward 603 

repeatedly. Genetic distance and kinship matrix between pairs of genotypes were computed 604 

using the centered identity-by-state method implemented in Tassel. 605 

LD-pruned SNPs were selected to infer the population stratification of the GWAS panel 606 

using two complementary approaches. First, the Bayesian clustering algorithm 607 

implemented in fastSTRUCTURE (v1.04)60 was tested on predefined K subgroups ranging 608 

from 1 to 10. The optimal K value was estimated based on the lowest cross validation error. 609 

Then, principal component analysis was computed with SmartPCA (v1.1.0) R-package61. 610 
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Genome wide association study 611 

For association mapping, seven statistical models, ranging from single to multi-locus, were 612 

simultaneously tested in GAPIT (v3.1.0)62 Single locus models include general linear 613 

model (GLM), mixed linear model (MLM), compressed MLM (CMLM), and settlement of 614 

MLMs under progressively exclusive relationship (SUPER). Multi-locus algorithms 615 

comprise multiple loci mixed linear model (MLMM), fixed and random model circulating 616 

probability unification (FarmCPU), and Bayesian-information and linkage-disequilibrium 617 

iteratively nested keyway (Blink). Except for GLM, where no genotype relatedness was 618 

involved, population structure and kinship were both fitted as covariates in all models. 619 

Indeed, the first four PCA components and kinship were introduced respectively as fixed 620 

and random effects to reduce the false positives. The statistical model best fitting the data 621 

was chosen based on the quantile-quantile plot and the number of significant markers. 622 

Significantly associated markers were shortlisted based on the Bonferroni correction (-623 

log10(0.05)/13045 = 5.42) and Manhattan plots were generated accordingly using CMplot 624 

package (v4.2.0)63. Statistically significant SNPs explaining at least 10% of the phenotypic 625 

variance (%PVE) were considered as most promising predictions and used for LD block 626 

analysis. Moreover, markers accounting for the largest proportion of phenotypic variance 627 

are hereinafter referred as ‘lead SNPs’. 628 

Annotation of SNP effects and identification of favorable alleles  629 

First, genomic coordinates of SNPs were used to query Ensembl Plants REST services in 630 

order to obtain annotations of their effect on neighbor genomic features. In particular we 631 

used the Ensembl Variant Effect Predictor (VEP)64 and a modification of recipe R865. 632 

Then, allelic effect of significant SNP loci on trait variation was estimated through pairwise 633 

comparisons between the phenotypic values of the different genotypes: homozygous 634 

reference (0/0), heterozygous (0/1) and homozygous alternative (1/1). An allele is defined 635 

as favorable when a significant increase of the phenotypic value was observed between the 636 

homozygous reference and the remaining genotypes. Pairwise comparisons were run using 637 

the Games-Howell test and P-values were corrected for multiple testing using the FDR 638 

method. Results were visualized using ggstatsplot R-package (v0.9.1)66. 639 
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LD-block analysis and identification of candidate genes  640 

Significant SNPs were examined to identify candidate genes. Initially, it was considered 641 

whether polymorphisms would be localized in genic regions. Thereby, SNPs were mapped 642 

based on their physical position to Prunus persica genome (GCF_000346465.2). SNP-643 

anchored genes were called ‘prime candidates’. Strong candidate genes were shortlisted 644 

when meeting three criteria: falling within the LD-block region harboring the significant 645 

SNPs, being functionally related to the trait of interest and being differentially expressed in 646 

fruit tissue.  Expression information was retrieved from a recent study by67 which defined 647 

modules of co-expressed genes across different peach tissues and under various 648 

experimental conditions. Differentially expressed genes were those outlined in fruit 649 

experiments, particularly under cold storage and chilling injury. 650 

LD-blocks were identified within 250 kbp windows upstream and downstream the lead 651 

sites. Block boundaries were delimited using a solid spine partitioning approach from 652 

LDBlockShow tool68
. A block is defined as a group of SNPs that are in strong LD (D’ ≥ 653 

0.7) with the first and last marker in the same block. A D’ value of 0 denotes complete 654 

linkage equilibrium, which implies frequent pairwise recombination between markers. 655 

Conversely, a D’ value of 1 indicates a complete linkage disequilibrium. Note that D’ and 656 

r2 are common measures of non-random association between two or more loci; while D’ 657 

refers to the co-inheritance of two alleles, r2 considers the allele frequency to distinguish 658 

between common and rare. Identified LD blocks were therefore scanned for candidate 659 

genes via NCBI genome data viewer69. 660 

QTLs review for fruit quality traits in peach  661 

To benchmark the accuracy of our results, an exhaustive bibliographic review of previously 662 

reported QTLs mapped in the same linkage group as the associated markers was done. In a 663 

practical term, if an associated SNP is located nearby or within a QTL interval, then it’s 664 

considered as highly accurate and likely segregate with the observed trait. In case that the 665 

QTL boundaries are not defined as physical intervals (in bp), we used the nearest or the co-666 

localizing markers as reference. Herein, we refer to the nearest marker as the closest one 667 

with a maximum of 5 cM from the QTL hotspot while the co-localizing marker is the one 668 

mapped within the QTL boundaries. Moreover, we calculated the physical distance 669 
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separating our predicted associated markers from the QTLs. Finally, we compared these 670 

distances with a previous study using the same phenotypic data and peach material, 671 

although genotyped using the 9K SNP array16. 672 

Data availability 673 

Raw sequence data and final variant call file (vcf) have been deposited in the European 674 

Nucleotide Archive (ENA) under the BioProject PRJEB62784 (data will be released at the 675 

publication date). Source code and documentation can be accessed at 676 

https://github.com/najlaksouri/GWAS-Workflow. 677 
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 875 

 Figure legends 876 

Figure 1. (A): Broad sense heritability estimates and (B): phenotypic correlation among 16 877 

peach agronomical and fruit quality traits. Dashed horizontal line corresponds to heritability 878 

threshold (H2 = 0.5). Correlation between traits was estimated using Pearson correlation. 879 

Significant positive and negative correlations are displayed in red and blue respectively (P 880 

< 0.05). Color intensity and size of the circles are proportional to the correlation 881 

coefficients. Abbreviations are as follows: harvest date (HvD), fruit weight (FW), flesh 882 

firmness (FF), soluble solids content (SSC), titratable acidity (TA), ripening index (RI), 883 

content of vitamin C (Vit C), total phenolics (Phen), anthocyanins (ACNs), sucrose (Suc), 884 

glucose (Glu), fructose (Fruc), sorbitol (SRB) total sugars (TS) and relative antioxidant 885 

capacity (RAC). 886 

Figure 2. SNPs density plot and intra-chromosomique linkage disequilibrium decay. (A): 887 

SNPs density across the eight peach chromosomes. The horizontal axis shows the 888 

chromosome length in (Mbp) and the different colors reveal the SNP density per window of 889 

1 Mbp. Underlined numbers correspond to the total number of polymorphic sites per 890 

chromosome. The asterisks highlight the putative position of centromeres predicted as 891 

follows: Chr 1=NC_034009.1: (~21 Mbp), Chr 2=NC_034010.1: (~8 Mbp), Chr 3 892 

=NC_034011.1: (~12 Mbp), Chr 4=NC_034012.1: (~24 Mbp), Chr 5=NC_034013.1: (~7 893 

Mbp), Chr 6=NC_034014.1: (~15 Mbp), Chr 7=NC_034015.1: (~7 Mbp) and Chr 894 

8=NC_034015.1: (~10 Mbp). (B): chromosome wide LD decay of r2 (y-axis) over the 895 

physical distance in Mbp (x-axis). Each colored line represents a smoothed r2 for all 896 

marker pairs on each chromosome. The horizontal dashed red line indicates a cut-off 897 

r2=0.25. 898 

Figure 3. Q-Qplot comparison between the GWAS models implemented in GAPIT:  899 

General Linear Model (GLM), Mixed Linear Model (MLM), Compressed MLM (CMLM), 900 

Settlement of MLM under Progressively Exclusive Relationship (SUPER), Multiple Loci 901 

Mixed Linear Model (MLMM), Fixed and random model Circulating Probability 902 
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Unification (FarmCPU) and Bayesian-information and Linkage-disequilibrium Iteratively 903 

nested keyway (BLINK). Note that MLM and CMLM models are overlaid. For each SNP, 904 

the expected -log10 transformed P-value (x-axis) is plotted against the -log10 the observed 905 

P-value (y-axis). The red dashed diagonal line corresponds to the expected Q-Q trendline 906 

under the null hypothesis (no association with the phenotype). Larger size dots refer to 907 

SNPs statistically associated with a trait. For clarity, only phenotypic traits with significant 908 

associations were represented. 909 

Figure 4. Genome Wide Association and LD block analysis for harvest date (HvD). (A): 910 

Circular Manhattan plot and association signals based on Blink model. Black dashed 911 

circular line corresponds to the Bonferroni adjusted threshold (-log10(P)=5.42). Red and 912 

large size dots correspond to statistically associated SNPs. Degradation from blue to red 913 

indicates the SNP density per 1 Mbp window across peach chromosomes. (B): Locus-914 

specific Manhattan plot (upper panel) and LD heatmap (bottom panel) within 250 Kbp on 915 

either side of the lead SNP (SNC_034013.1_13023165). The prime candidate gene is 916 

represented as a blue box which in this case contains a single coding exon, where blue 917 

fragment refers to the exon. Pairwise LD measurements are displayed as D’ values with a 918 

color transition from yellow to red. (C): Boxplot depicting allelic effect of significant SNP 919 

on trait variation. Herein we highlight the SNP commonly affected Harvest date and fruit 920 

firmness. Mean value for each genotype is indicated by red circle and ** indicates 921 

significant pairwise comparison calculated by Games Howel test (P ≤ 0.05). (D): Genomic 922 

distribution of significant ddRAD-derived SNPs (red), reviewed QTLs in the literature 923 

(blue) and 9K array derived SNPs (green). 924 

Figure 5. Genome Wide Association and LD block analysis for fruit weight (FW). (A): 925 

Circular Manhattan plot and association signals based on Blink model. Black dashed 926 

circular line corresponds to the Bonferroni adjusted threshold (-log10(P)=5.42). Red and 927 

large size dots correspond to statistically associated SNPs. Degradation from blue to red 928 

indicates the SNP density per 1 Mbp window across peach chromosomes. (B): Locus-929 

specific Manhattan plot (upper panel) and LD heatmap (bottom panel) within 250 Kbp on 930 

either side of the lead SNP. Pairwise LD measurements are displayed as D’ values with a 931 

color transition from yellow to red. (C): Boxplot depicting allelic effect of lead SNP on trait 932 
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variation. Mean value for each genotype is indicated by red circle and ** indicates 933 

significant pairwise comparisons calculated by Games Howel test (P ≤ 0.05). (D): Genomic 934 

distribution of significant ddRAD-derived SNPs (red) and reviewed QTLs in the literature 935 

(blue). 936 

Figure 6. Genome Wide Association and LD block analysis for flesh firmness (FF). (A): 937 

Circular Manhattan plot and association signals based on Blink model. Black dashed 938 

circular line corresponds to the Bonferroni adjusted threshold (-log10(P)=5.42). Red and 939 

large size dots correspond to statistically associated SNPs. Degradation from blue to red 940 

indicates the SNP density per 1 Mbp window across peach chromosomes. (B): Locus-941 

specific Manhattan plot (upper panel) and LD heatmap (bottom panel) within 250 Kbp on 942 

either side of the lead SNP. Pairwise LD measurements are displayed as D’ values with a 943 

color transition from yellow to red. (C): Boxplot depicting allelic effect of lead SNP on trait 944 

variation. Mean value for each genotype is indicated by red circle and ** indicates 945 

significant pairwise comparisons calculated by Games Howel test (P ≤ 0.05). (D): Genomic 946 

distribution of significant ddRAD-derived SNPs (red) and reviewed QTLs in the literature 947 

(blue) 948 

  949 
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Tables  950 

Table 1. SNPs count and filtering steps. 951 

Applied filters Retained SNPs 

Clean multi-samples SNPs from GATK-HaplotypeCaller 233,535 

Clean multi-samples SNPs from Freebayes 166,080 

Clean multi-samples SNPs from BCFtools 148,998 

Intersected set 56,430 

Removing scaffold SNPs 56,647 

Removing multi-allelic sites 56,430 

Missing call rate < 20% 26,188 

Minor Allele Frecuency > 0.05 13,045 

 952 

  953 
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Table 2. Information on significantly associated SNP markers with fruit-related traits in 954 

Prunus persica. Alleles are shown on the forward strand as reference/alternate. 955 

Traits  SNP identifier Alleles Chr  Position  %PVE SNP location 

[effect] 

HvD 

SNC_034012.1_10916234 G/T 4 10,916,234 10.7 intergenic 

SNC_034012.1_14096987 A/C 4 14,096,987 24.5 intronic 

SNC_034013.1_13023165 T/A 5 13,023,165 30.0 exonic 

SNC_034014.1_7012470 A/T 6 7,012,470 2.8 intergenic 

SNC_034016.1_18841611 A/G 8 18,841,611 10.2 intergenic 

FW 

SNC_034011.1_26371177 T/A 3 26,371,177 16.9 exonic 

SNC_034014.1_1805059 A/G 6 1,805,059 22.0 intergenic 

SNC_034016.1_16407694 A/C 8 16,407,694 18.7 exonic 

FF SNC_034014.1_7012470 A/T 6 7,012,470 33.9 intergenic 

FLVs 

SNC_034010.1_643430 T/C 2 643,430 35.7 intergenic 

SNC_034014.1_3066620 G/T 6 3,066,620 14.5 
exonic 

[missense]  

ACNs SNC_034013.1_12838635 G/T 5 12,838,635 52.9 
exonic 

[missense] 

SRB 

SNC_034009.1_27061825 T/C 1 27,061,825 9.0 
exonic 

[missense] 

SNC_034010.1_3682553 G/C 2 3,682,553 11.8 intronic 

SNC_034014.1_28343678 G/A 6 28,343,678 10.4 intronic 

SNC_034016.1_18841643 G/A 8 18,841,643 14.0 intergenic 
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Variant in bold refers to ‘lead SNP’, explaining the highest proportion of phenotypic 956 

variance (PVE). Chromosome (Chr), Harvest date (HvD), fruit weight (FW), flesh firmness 957 

(FF), and contents of flavonoids (FLVs), anthocyanins (ACNs) and sorbitol (SRB). 958 
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