

Manuscript main text

1 **An essential protease, FtsH, influences daptomycin resistance acquisition in**
2 ***Enterococcus faecalis***

3 Zeus Jaren Nair^{1,2,3,4}, Iris Hanxing Gao^{2,4}, Aslam Firras^{2,4}, Kelvin Kian Long Chong^{2,3}, Pei Yi
4 Choo^{2,4}, Kevin Pethe^{1,2,5,6}, Kimberly A. Kline^{1,2,4,7*}

5 ¹Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance
6 Interdisciplinary Research Group, Singapore

7 ²Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological
8 University, Singapore

9 ³Interdisciplinary Graduate Programme, Graduate College, Nanyang Technological
10 University, Singapore

11 ⁴School of Biological Sciences, Nanyang Technological University, Singapore

12 ⁵Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore

13 ⁶National Centre for Infectious Diseases (NCID), Singapore

14 ⁷Department of Microbiology and Molecular Medicine, University of Geneva, Geneva,
15 Switzerland

16 *Corresponding author. Email: kimberly.kline@unige.ch

Manuscript main text

17 This PDF file includes:

18 Main text

19 Figures 1 to 6

20 Tables 1 to 2

21 Data availability statement

22 Whole genome sequence files are available on NCBI, Sequence Read Archive (SRA)
23 (Accession: PRJNA830756). RNA sequencing files are available on NCBI, Gene Expression
24 Omnibus (GEO) (Accession: GSE201323) and SRA (Accession: PRJNA830869).

25 Funding statement

26 This work was supported by the National Research Foundation and Ministry of Education
27 Singapore under its Research Centre of Excellence Programme, as well as by the Singapore
28 Ministry of Education under its Tier 1 program (MOE2017-T1-001-269) and the National
29 Medical Research Council Open Fund (MOH-000645), both awarded to K.A.K and
30 transferred to K.P.

31 Conflict of interest disclosure

32 There is no conflict of interest to disclose.

Manuscript main text

33 **Summary**

34 Daptomycin is a last-line antibiotic commonly used to treat vancomycin resistant
35 Enterococci, but resistance evolves rapidly and further restricts already limited treatment
36 options. While genetic determinants associated with clinical daptomycin resistance (DAP^R)
37 have been described, information on factors affecting the speed of DAP^R acquisition is
38 limited. The multiple peptide resistance factor (MprF), a phosphatidylglycerol modifying
39 enzyme involved in cationic antimicrobial resistance, is linked to DAP^R in pathogens such as
40 methicillin-resistant *Staphylococcus aureus*. Since *Enterococcus faecalis* encodes two
41 paralogs of *mprF* and clinical DAP^R mutations do not map to *mprF*, we hypothesized that
42 functional redundancy between the paralogs prevents *mprF*-mediated resistance and masks
43 other evolutionary pathways to DAP^R. Here we performed *in vitro* evolution to DAP^R in *mprF*
44 mutant background. We discovered that the absence of *mprF* results in slowed DAP^R
45 evolution and is associated with inactivating mutations in *ftsH* resulting in the depletion of the
46 chaperone repressor HrcA. We also report that *ftsH* is essential in the parental, but not in the
47 $\Delta mprF$ strain where FtsH depletion results in growth impairment in the parental strain, a
48 phenotype associated with reduced glycolysis and reduced ability for metabolic reduction.
49 This presents FtsH and HrcA as enticing targets for developing anti-resistance strategies.

50 **Keywords**

51 Daptomycin resistance, multiple peptide resistance factor (*mprF*), *ftsH*, *Enterococcus*
52 *faecalis*, chaperones, *hrcA*

Manuscript main text

53 **Introduction**

54 *Enterococci* are a major healthcare concern due to their association with hospital acquired
55 infections (HAIs). *Enterococci* accounted for 14% of all HAIs in the USA from 2011-14 and
56 10% of HAIs in Europe in 2010, where *Enterococcus faecalis* comprise the majority of
57 enterococcal HAIs, contributing up to 64.7% globally from 1997-2016 (Weiner et al., 2016,
58 Zarb et al., 2012, Pfaffer et al., 2019). *Enterococci* cause a variety of infections including
59 catheter associated infections (CAUTI), endocarditis, peritonitis, colitis, diabetic foot ulcers,
60 surgical site infections (Edmond et al., 1999, Hidron et al., 2008, Murdoch et al., 2009,
61 Patterson et al., 1995, Weiner et al., 2016). Many of these infections are biofilm-associated,
62 rendering them inherently more tolerant to antibiotics and difficult to treat (Ch'ng et al.,
63 2019).

64 An additional challenge in treating Enterococcal infections is their intrinsic and acquired
65 resistance to antimicrobials, including last line drugs such as vancomycin (Hollenbeck and
66 Rice, 2012, Miller et al., 2014). For example, infections caused by vancomycin resistant
67 *Enterococci* (VRE) are associated with increased mortality rates, lengthened hospital stays,
68 and higher treatment and infection control costs (Reinseth et al., 2020, Miller et al., 2020,
69 Carmeli et al., 2002, Prematunge et al., 2016, Mascini and Bonten, 2005, Song et al., 2003).
70 Treatment of VRE infections typically involves the use of antibiotics of last resort such as
71 linezolid and daptomycin (Patel and Gallagher, 2015). Daptomycin (DAP) is a lipopeptide
72 antibiotic with broad activity against Gram-positive bacteria. It is positively charged when
73 complexed with its calcium cofactor and targets the negatively charged bacterial membrane
74 wherein it oligomerizes to cause membrane disruption, ion leakage, and eventual cell death
75 (Steenbergen et al., 2005, Taylor and Palmer, 2016). Though DAP is typically effective in
76 treating VRE infections, VRE can also acquire daptomycin resistance (DAP^R), further
77 reducing the already limited treatment options (Munita et al., 2014, Shoemaker et al., 2006,
78 Arias and Murray, 2012, Kelesidis et al., 2011, Munoz-Price et al., 2005, Miller et al., 2020).
79 While the rate of resistance of DAP in *Enterococci* is still relatively low at 0.1% for *E. faecalis*
80 and 9% for *E. faecium*, DAP^R co-occurrence with VRE have been reported in several meta-
81 analyses in Australia and New Zealand from 2007-18, where 15% of vancomycin resistant *E.*
82 *faecium* are DAP^R, and globally from 2003-10, 93.3% of Enterococcal DAP^R were VRE (Li et
83 al., 2021, Kelesidis et al., 2011, Dadashi et al., 2021).
84 Given the clinical importance of DAP as a therapeutic and the emerging threat of resistance,
85 enterococcal DAP^R associated mutations and resistance mechanisms have been
86 characterized. Diverse genetic changes have been associated with DAP^R in both clinical
87 isolates and *in vitro* settings. In vancomycin-resistant *E. faecalis* DAP^R patient isolates,

Manuscript main text

88 mutations were identified in *liaF* (the negative regulator of the LiaFSR three-component
89 system), *gdpD* (glycerophosphodiesterase) and *cls* (cardiolipin synthase), and similar
90 mutations in all three genes were recapitulated in *in vitro* evolution of DAP-sensitive isolates
91 to DAP^R (Palmer et al., 2011, Arias et al., 2011, Miller et al., 2013). Additionally, *in vitro*
92 evolution also revealed DAP^R-associated mutations not observed in clinical isolates such as
93 in genes related to oxidative stress response (*gsh*, *yybT*, *selA*) and drug efflux (*mdpA*) (Miller
94 et al., 2013). Similarly, mutations in *cls* and *liaFSR* have also been associated with DAP^R in
95 *E. faecium* from both *in vivo* clinical isolates and *in vitro* evolution of DAP-sensitive strains to
96 DAP^R (Tran et al., 2013a, Sinel et al., 2016, Wang et al., 2018, Li et al., 2022). Mutations in
97 *liaF* as well as in *yvB* (a putative LiaFSR target) in DAP^R strains suggest involvement of
98 LiaFSR mediated membrane stress sensing (Arias et al., 2011, Miller et al., 2013). DAP^R-
99 associated mutations in *gdpD* and *cls*, decreased levels of phosphatidylglycerol (PG) and
100 increased glycerophosphoryl-diglucosyldiacylglycerol (GPDGDAG), together with increased
101 membrane rigidity and diversion of daptomycin away from the septum in DAP^R strains
102 suggest that DAP^R is mediated through membrane remodeling (Arias et al., 2011, Mishra et
103 al., 2012, Rashid et al., 2017, Tran et al., 2013b). Further investigation showed that LiaFSR
104 is indeed one of the key systems that senses antimicrobials and initiates membrane
105 remodeling to confer antibiotic resistance in *E. faecalis* (Khan et al., 2019). Taken together,
106 these mutations suggest common DAP^R mechanisms among Enterococci involving
107 antimicrobial stress sensing and membrane remodeling.

108 Despite the current advances in understanding DAP^R resistance mechanisms, information
109 on factors that influence the rate of DAP^R acquisition is scarce. A complete understanding of
110 DAP^R both in terms of factors directly affecting resistance, as well as factors that influence
111 the speed and likelihood of progression towards resistance are equally important in the
112 pursuit of anti-resistance strategies to mitigate potential widespread resistance in future.

113 DAP^R has been similarly well-studied in *Staphylococcus aureus*, where DAP^R is associated
114 with *mprF* gain of function mutations and increased expression (Ernst et al., 2018, Mishra et
115 al., 2009, Sabat et al., 2018, Sulaiman and Lam, 2021). Multiple peptide resistance factor
116 (MprF) is a membrane bound enzyme that aminoacylates phosphatidylglycerol (PG) in the
117 inner leaflet of the membrane and flips it to the outer leaflet, resulting in a reduction in the
118 overall negative charge of the membrane and giving rise to electrostatic repulsion of cationic
119 antimicrobials (Bao et al., 2012, Rashid et al., 2016, Ernst and Peschel, 2011). MprF
120 mutations have not been reported in association with enterococcal DAP^R. While there is only
121 one *mprF* gene in the *S. aureus* genome, *E. faecalis* and *E. faecium* encode two paralogs—
122 MprF1 and MprF2 – where MprF2 appears to be the major contributor to PG aminoacylation
123 in *E. faecalis* (Bao et al., 2012, Rashid et al., 2023). We have also reported that *mprF* is

Manuscript main text

124 closely tied to global lipidome regulation and cell physiology, and the absence of *mpfR*
125 significantly alters membrane lipid composition resulting in altered membrane fluidity,
126 reduced secretion and increased dependence on exogenous fatty acids (Rashid et al.,
127 2023). Given its daptomycin protective effects, we hypothesized that *MprF* redundancy
128 afforded by its two encoding orthologues may mask additional daptomycin resistance events
129 that occur during *in vitro* and *in vivo* evolution of *E. faecalis* to DAP^R.

130 To investigate this possibility, we conducted *in vitro* evolution to DAP^R in *mpfR* mutant
131 backgrounds and discovered DAP^R-associated mutations in several genes not previously
132 associated with DAP^R, including *ftsH*. *FtsH* is a conserved protease, and DAP^R-associated
133 mutations were only enriched in a $\Delta mprF1 \Delta mprF2$ background. Our data show that *ftsH* is
134 essential in parental *E. faecalis* but not in the $\Delta mprF1 \Delta mprF2$ strain where its inactivation
135 contributes to slowed evolution to DAP^R. We found that *FtsH* indirectly affects levels of *HrcA*
136 (the repressor of chaperone operons), which in turn influences the speed of DAP^R evolution.
137 These findings provide evidence for a role of *FtsH* activity and *HrcA* in influencing DAP^R
138 acquisition.

Manuscript main text

139 **Results**

140 **Mutations in *ftsH* are enriched in $\Delta mprF1$ $\Delta mprF2$ during *in vitro* evolution to DAP^R**

141 Since MprF activity contributes to DAP^R in *S. aureus*, we investigated the contribution of the
142 *E. faecalis* *mprF* paralogs to DAP^R (Ernst et al., 2018, Mishra et al., 2009, Sabat et al.,
143 2018). While the *E. faecalis* OG1RF strain used in this study is DAP-sensitive (MIC of 4 – 8
144 µg/mL DAP), the loss of *mprF* makes it hypersensitive to DAP, reducing MIC by 2-4 fold in
145 $\Delta mprF2$ and 4-fold in $\Delta mprF1$ $\Delta mprF2$ (**table 1**). Hence, we hypothesized that the DAP-
146 protective activity of MprF may mask resistance associated mutations not previously
147 detected in DAP^R clinical isolates and *in vitro* evolution studies.

148 To test this hypothesis, we performed *in vitro* evolution to DAP^R in *mprF* single and double
149 mutants. Strains were first grown with DAP concentrations at 0.5X, 1X and 2X their
150 respective MIC. The highest DAP concentration in which cultures grew was defined as the
151 highest growth permissive concentration (HGPC) for the first round. In the following round,
152 cultures were grown at 0.5X, 1X and 2X of the preceding day's HGPC. This was done
153 successively until an endpoint HGPC of 512 µg/mL DAP was achieved (**figure 1A**). Using
154 this approach, we were able to track the progression to DAP^R over time by recording the
155 HGPC values. We observed that wild type and $\Delta mprF1$ reached the endpoint HGPC at
156 similar rates and times, whereas $\Delta mprF2$ and $\Delta mprF1$ $\Delta mprF2$ progressed more slowly
157 (**figure 1B**). While $\Delta mprF2$ and $\Delta mprF1$ $\Delta mprF2$ reached endpoint resistance at similar
158 times, $\Delta mprF1$ $\Delta mprF2$ displayed slower evolution in the initial phases from day 1 to 15 as
159 compared to $\Delta mprF2$. This can be explained in part due to the lower mutation rate measured
160 for $\Delta mprF1$ $\Delta mprF2$ of 6.10×10^{-9} as compared to 3.80×10^{-8} for wild type, whereas $\Delta mprF2$
161 was more similar to wild type (**figure 1C**).

162 Clonal isolates were collected daily throughout evolution and sequenced to identify
163 resistance-associated mutations in each genetic background (**figure 1D, supplementary**
164 **excel file S1A, B**). Mutations in cardiolipin synthase genes (*cls1*, *cls2*), previously implicated
165 in *E. faecalis* DAP^R (Arias et al., 2011, Miller et al., 2013), emerged during the intermediate
166 stages of evolution (DAP HGPC of 16-64 µg/mL) in all genetic backgrounds. We did not
167 observe mutations in genes encoding the LiaFSR three-component system as described
168 previously in DAP^R strains (Arias et al., 2011, Miller et al., 2013); however, mutations in the
169 gene encoding LiaX – a antimicrobial sensing component for LiaFSR (Arias et al., 2011,
170 Khan et al., 2019, Miller et al., 2013, Reyes et al., 2015) arose at a similar intermediate time
171 in all genetic backgrounds except $\Delta mprF1$ $\Delta mprF2$ (**figure 1D**). Mutations in *liaX* has
172 recently been detected in DAP^R *E. faecalis* clinical isolates, but to our knowledge has yet to
173 be detected in *in vitro* evolution screens (Ota et al., 2021). Mutations in genes encoding a

Manuscript main text

174 predicted membrane protein (RS07740) and predicted HD domain protein (RS09725) were
175 observed at intermediate and later stages of evolution (DAP HGPC > 64 μ g/mL),
176 respectively, and in the wild type and $\Delta mprF1$ background. Additionally, mutation in a
177 predicted AI-2E family transporter (RS02330) was also observed at later stages of evolution
178 (DAP HGPC \leq 256 μ g/mL) only in the $\Delta mprF1$ $\Delta mprF2$ background. Interestingly, mutations
179 in *ftsH* were only observed in the $\Delta mprF1$ $\Delta mprF2$ background, during the earliest stages of
180 evolution (DAP HGPC \leq 16 μ g/mL) (**figure 1D**). *FtsH* is a conserved ATP-dependent zinc-
181 metalloprotease and is membrane bound and hexameric in nature (Langklotz et al., 2012,
182 Bieniossek et al., 2006). The cellular processes that *FtsH* influences are diverse across
183 different organisms and depends largely on the substrates that it targets (Deuerling et al.,
184 1997, Okuno and Ogura, 2013, Yepes et al., 2012, Kamal et al., 2019). *FtsH* was chosen for
185 further investigation due to the intriguing phenomenon where mutations only occur in the
186 $\Delta mprF1$ $\Delta mprF2$ background. The mutations in the other genes were not investigated in
187 detail as their functions in DAP^R are either already known in the case of *c/s*, and *liaX* or
188 protein identity and detailed functions are not well defined in the case of the remaining genes
189 RS07740, RS02330 and RS09725.

190 **FtsH is essential in the wild type but not $\Delta mprF1$ $\Delta mprF2$**

191 Many of the DAP^R-associated *ftsH* mutations encode point mutations clustered within the
192 ATP-binding site of the AAA+ domain or result in a G37X nonsense mutation near the N-
193 terminal region of *ftsH*, suggesting that these mutations likely result in a loss of function
194 (**figure 2A**). To determine the contribution of *ftsH* mutations in DAP^R evolution, the
195 *ftsH*(G37X) loss-of-function truncate was chosen for introduction into the wild type and
196 $\Delta mprF1$ $\Delta mprF2$ backgrounds on a plasmid using a constitutive sortase A promoter
197 (pGCP123-P_{srtA}) (**figure 2A**). Since *FtsH* forms homohexamers, we expected that
198 *FtsH*(G37X) would assemble with native, chromosomally encoded *FtsH*, causing dominant
199 negative dysfunction of the enzyme complex (Langklotz et al., 2012, Liu et al., 2022, Niwa et
200 al., 2002). Indeed, expression of *ftsH*(G37X) resulted in slowed growth in wild type, but not
201 $\Delta mprF1$ $\Delta mprF2$ mutant cells (**figure 2B**). Within the wild type *ftsH*(G37X) expressing strain,
202 log phase absorbance values were more variable than for the control strains (**figure 2B**). We
203 also noticed that small and large colony variants were only present in the wild type
204 *ftsH*(G37X) expressing strain and subsequent analysis revealed loss of or reduced
205 *ftsH*(G37X) insert sizes within the large colony variants but not the small colony variants
206 (**figure 2C**). These results suggest that *FtsH* loss of function (*FtsH*-LoF) is not tolerated in
207 the wild type strain, but is permissible in $\Delta mprF1$ $\Delta mprF2$. To confirm this, a proteolytically
208 inactive *ftsH* variant – *ftsH*(H456Y) in which the conserved zincin motif within the protease
209 active site was mutated as described by others – was constructed and placed under nisin

Manuscript main text

210 inducible expression in a plasmid (pMSP3535-P_{nisA}) (Arends et al., 2016, Bieniossek et al.,
211 2006) (**figure 2A**). As predicted, induction of 6his-*ftsH*(H456Y) in the wild type background
212 resulted in slowed growth while expression of 6his-*ftsH* showed similar growth as the empty
213 vector control. Moreover, attempts to introduce the *ftsH*(G37X) mutation into the
214 chromosome were unsuccessful in the wild type background, but was possible in $\Delta mprF1$
215 $\Delta mprF2$ (data not shown). Taken together, these data show that *ftsH* is essential in a wild
216 type background and its LoF is tolerated only in a $\Delta mprF1$ $\Delta mprF2$ genetic background.

217 **FtsH-LoF leads to metabolic impairments**

218 To understand why an FtsH-LoF mutation caused a growth defect only in the wild type
219 genetic background, we examined the viability of cells constitutively expressing *ftsH*(G37X)
220 or inducibly expressing *ftsH*(H456Y). We observed similar proportions of propidium iodide
221 (PI) stained cells in both populations, suggesting that membrane permeability is not affected
222 by FtsH-LoF (**figure S1A**). We also observed an increase in cell chaining upon FtsH-LoF in
223 the wild type (**figure S1B**).

224 To gain further insight into FtsH-dependent growth defects, we performed RNA sequencing
225 following induced expression of either 6his-*ftsH* or 6his-*ftsH*(H456Y). However, we did not
226 observe any obvious expression differences in genes that would explain this phenomenon
227 (**supplementary excel file S1C**). Despite the lack of insight from the transcriptomics data,
228 we reasoned that the viability is unlikely to be affected since we observed no differences in
229 PI staining and considered whether the slowed growth could be driven by altered
230 metabolism. We therefore assessed the ability of the FtsH-LoF strains to reduce the
231 resazurin dye to a fluorescent product using the Alamar blue assay as an indicator of
232 electron flow in the membrane. We observed a decrease in fluorescence of the reduced
233 resazurin dye in the wild type strain constitutively expressing *ftsH*(G37X) suggesting
234 impairment in reductive metabolic activity (**figure 3A**). This decrease was not observed
235 following inducible expression of *ftsH*(H456Y), which could be due to differences in
236 expression levels or due to added metabolic stress from the presence of nisin used for
237 induction.

238 We next considered the possibility that a shift in dominant cell metabolic pathways might
239 explain the reduced metabolic activity. We performed Agilent Seahorse real-time cell
240 metabolic analysis of extracellular acidification rates (ECAR) as an indirect measure of
241 glycolysis, and oxygen consumption rate (OCR) as an indirect measure of oxidative
242 phosphorylation in mid log phase cultures of wild type and $\Delta mprF1$ $\Delta mprF2$ expressing both
243 constitutive and induced expression of inactive *ftsH* variants. FtsH-LoF correlated with
244 reduced ECAR indicating reduced media acidification following expression of inactive *ftsH*

Manuscript main text

245 variants (**figure 3B**). This was observed for both constitutive and inducible expression of
246 FtsH inactive variants, and in both the wild type and $\Delta mprF1 \Delta mprF2$. Hence, these data
247 indicate a generalized decrease in ability to acidify the media under FtsH-LoF (**figure 3B**).
248 The Seahorse OCR measurements were also largely similar across all strains indicating
249 similar oxidative phosphorylation rates (**figure S2A**). FtsH-LoF also did not result in any
250 significant changes in quantified ATP levels (**figure S2B**). Overall, these findings suggest
251 that reduced growth of wild type cells expressing FtsH-LoF could be caused by reduced
252 ability for metabolic reduction. Although the mechanism behind this phenomenon is unclear,
253 we can rule out the contribution of oxidative phosphorylation and ATP production since they
254 are similar across all strains.

255 **Speed of evolution to DAP^R is slowed under FtsH-LoF**

256 Given that *ftsH* mutations were observed early in the slowed evolution of $\Delta mprF1 \Delta mprF2$
257 toward DAP^R, we reasoned that these FtsH-LoF mutations might either be the reason for the
258 slowed evolution or could be priming $\Delta mprF1 \Delta mprF2$ to acquire other DAP^R associated
259 mutations in the later stages (**figure 1**). Thus, the *ftsH*(G37X) mutation was introduced into
260 the genome of $\Delta mprF1 \Delta mprF2$ for further investigation. As several days of passaging were
261 carried out in low concentrations of DAP to encourage homologous recombination and
262 retention of the *ftsH*(G37X) mutation in $\Delta mprF1 \Delta mprF2$, a parallel culture of $\Delta mprF1$
263 $\Delta mprF2$ was passaged under the same conditions to serve as a control strain for
264 comparisons in subsequent assays. This strain will be referred to henceforth as $\Delta mprF1$
265 $\Delta mprF2$ passage control. $\Delta mprF1 \Delta mprF2$ *ftsH*(G37X) and $\Delta mprF1 \Delta mprF2$ passage
266 control were subjected to *in vitro* evolution to DAP^R where we observed that $\Delta mprF1$
267 $\Delta mprF2$ *ftsH*(G37X) evolved at a slower speed than $\Delta mprF1 \Delta mprF2$, where under FtsH-
268 LoF, the HGPC values were lower than the passage control at almost all time points and an
269 additional 5 days was required to reach endpoint HGPC (**figure 4**). This slower evolution is
270 consistent with a one log lower mutation rate and 2-fold lower DAP MIC in $\Delta mprF1 \Delta mprF2$
271 *ftsH*(G37X) as compared to $\Delta mprF1 \Delta mprF2$ passage control (**figure 4, table 1**).

272 **Proteomic investigation of FtsH-LoF reveals *hrcA* as a key driver of slowed evolution**

273 To determine the mechanisms underlying the slowed evolution and growth phenotypes
274 following introduction of *ftsH*(G37X) to the *mprF* mutant background, we investigated the
275 proteomic consequence of FtsH-LoF in the wild type background, by conducting peptide
276 mass spectrometry on the whole cell lysates and membrane fractions of wild type
277 pMSP3535-6his-*ftsH* and wild type pMSP3535-6his-*ftsH*(H456Y) following overnight
278 induction with nisin. Proteomic changes common between the whole cell lysates and
279 membrane were shortlisted, and proteomic changes that could be explained by

Manuscript main text

280 transcriptomic differences were filtered out (**table 2**). From this short list, we identified
281 several proteins that were depleted following FtsH-LoF (**table 2**), which may be explained by
282 compensatory activity of other proteases such as the Clp protease which was
283 transcriptionally induced when FtsH was non-functional (Log_2FC for *c/pP* = 1.63; *c/pE* = 1.34;
284 *c/pB* = 1.24, *c/pC* = 1.15) (**supplementary excel file S1C**). Of the four proteins that
285 accumulated in the FtsH-LoF strain (**table 2**), ArcB and a putative amidase (RS02510) were
286 verified to be substrates of FtsH by assessing protein stability and FtsH-dependent
287 degradation under FtsH-LoF (**figure S3**).

288 We hypothesized that the accumulation or depletion of these proteins might explain the
289 slowed growth observed from FtsH-LoF in the wild type. We examined each of the depleted
290 proteins either with transposon mutants (*yckE*::Tn, *lutA*::Tn, *gelE*::Tn, *trePP*::Tn, *carB*::Tn,
291 *cryZ*::Tn, *hrcA*::Tn) (Kristich et al., 2008) or by CRISPRi silencing of genes for depleted
292 proteins that were not available in the transposon library (*lysS* and *pyrB*) (Afonina et al.,
293 2020). To mimic accumulation of proteins, *arcB*, RS08610, *c/s1* and RS02510 were cloned
294 into a nisin inducible plasmid for induced overexpression. This panel of mutants was
295 assayed for growth and we observed that *trePP*::Tn, *lysS* silencing, and overexpression of
296 RS02510 resulted in slowed growth, indicating that these gene products could be
297 contributing to the growth defect observed in a wild type genetic background with FtsH-LoF
298 (**figure S4A-F**).

299 We next subjected the same panel of transposon mutants to *in vitro* evolution to DAP^R to
300 determine their contribution to the slowed evolution in $\Delta mprF1 \Delta mprF2 ftsH(G37X)$. However,
301 in the initial evolution assay all strains had a similar profile as wild type where the HGPC of
302 every strain was saturated at the assay's upper selection limit (2X HGPC) for most of the
303 assay making it hard to distinguish any difference between the strains (data not shown). To
304 overcome this limitation, evolution was performed at an expanded DAP selection range of
305 0.5X, 1X, 2X, 4X, 8X HGPC instead. We observed that only *hrcA*::Tn was significantly
306 associated with slowed evolution (**figure 5A**). However, when we calculated mutations rates,
307 we found that *hcrA*::Tn was similar to wild type (**figure 5A**). Of the remaining transposon
308 mutants, most displayed similar evolution profiles as the wild type (**figure S5**). The slight delay
309 observed for *lutA*::Tn (lactate utilization protein) was due to a single outlier that evolved much
310 slower than the rest (**figure S5A**). Evolution of CRISPRi and overexpression mutants was not
311 possible, due to plasmid insert loss during evolution despite maintenance of antibiotic
312 selection pressure (data not shown). Hence, *hrcA* appears to play a major contributing role
313 towards the slowed evolution in FtsH-LoF.

314

Manuscript main text

315 **Chaperones downstream of the *hrcA* regulon alter evolution speeds**

316 HrcA is a transcriptional repressor of chaperone operons – *hrcA-grpE-dnaK-dnaJ* and
317 *groES-groEL* – where it binds the conserved controlling inverted repeat of chaperone
318 expression (CIRCE) element upstream of these operons (Schumann, 2016) (**figure 5B**).
319 From transcriptomic data of FtsH-LoF in the wild type background, we indeed observed
320 upregulation of *grpE*, *dnaK* and *groEL* (Log_2FC of 1.13, 1.53, 1.58 respectively) in concert
321 with the depletion of HrcA (**supplementary excel file S1C**). Hence, we reasoned that the
322 depletion of HrcA could relieve transcriptional repression of these downstream chaperones,
323 which could be contributing to the altered DAP^R evolution speeds. *dnaJ::Tn*, ΔdnaK and
324 *groEL::Tn* were subjected to *in vitro* evolution using the same expanded DAP selection
325 range as HGPC saturation at the upper limit of the assay occurred as described above (data
326 not shown). We hypothesized that under FtsH-LoF, reduction of the repressor HrcA would
327 result in upregulation of chaperones resulting in slowed evolution. Conversely, we expect
328 that the loss of chaperone activity will result in a quickened evolution process.

329 However, unexpectedly, *groEL::Tn* displayed similar evolution profiles as the wild type strain,
330 while evolution of *dnaJ::Tn* and ΔdnaK were slowed (**figure 5C**). This slowed evolution could
331 be due in part to the slightly lowered mutation rate and 2-fold reduction in DAP MIC of
332 *dnaJ::Tn* and ΔdnaK (**figure 5C, table 1**). Although we did not further investigate *grpE* and
333 *groES*, we can expect evolution speeds to be similar to mutants of *dnaK* and *dnaJ*, and
334 *groEL* respectively, since GrpE functions as a co-chaperone together with DnaK and DnaJ,
335 while GroES and GroEL are co-chaperones that function together in the same complex
336 (Harrison, 2003, Hayer-Hartl et al., 2016). While the *hrcA*-regulated chaperones that we
337 tested displayed opposing phenotypes to what was expected, we speculate that their
338 combined effects together with other HrcA-regulated genes result in the observed slowed
339 evolution in loss of *hrcA*.

Manuscript main text

340 **Discussion**

341 Treatment of Enterococcal infections has become increasingly challenging with the rise of
342 antimicrobial resistance, including resistance to daptomycin which is one of the drugs of last
343 resort used to treat drug resistant infections such as vancomycin resistant Enterococci (Patel
344 and Gallagher, 2015). With *E. faecalis* contributing to the majority of Enterococcal infections,
345 there is increasing interest to elucidate the factors driving DAP^R in this species (Pfaller et al.,
346 2019). Through a combination of *in vitro* evolution assays and sequencing of DAP^R isolates,
347 previous efforts have revealed membrane remodeling, antimicrobial stress sensing, oxidative
348 stress response, and drug efflux to contribute to DAP^R (Arias et al., 2011, Miller et al., 2013,
349 Khan et al., 2019, Mishra et al., 2012, Tran et al., 2013b, Tran et al., 2015).

350 However, less focus has been placed on factors affecting the speed of antibiotic resistance
351 evolution, especially in the case of DAP^R where slowing resistance acquisition could inform
352 anti-resistance strategies. Factors that broadly affect the propensity to evolve resistance to
353 antibiotics have been well described. These factors influence antibiotic resistance evolution
354 through DNA-repair machinery and stress response pathways, including the DNA-damage
355 associated SOS-response, error-prone DNA polymerases, sigma factors, and the DNA
356 translocase Mfd (Merrikh and Kohli, 2020, Ragheb et al., 2019, Al Mamun et al., 2012,
357 Boshoff et al., 2003, Erill et al., 2007). Additionally, chaperones also provide buffering
358 capacity for the fitness cost of resistance mutations affecting protein stability (Fay et al.,
359 2021, Aguilar-Rodríguez et al., 2016). Other than these general factors, there are others that
360 specifically influence evolution to DAP^R. Recently, *liaFSR* was reported to affect the speed of
361 DAP^R evolution in *E. faecium*, where deletion of *liaR* significantly slows evolution suggesting
362 that LiaFSR activation is the dominant pathway to DAP^R in *E. faecium* (Prater et al., 2021). A
363 synergistic effect of DAP with another antibiotic has also been reported to delay DAP^R
364 acquisition where the co-administration of DAP with fosfomycin in *S. aureus* delayed the
365 evolution to DAP^R (Mishra et al., 2022). While some information on factors affecting
366 evolution to DAP^R exist, there is still limited mechanistic understanding at a genetic level for
367 DAP^R acquisition in *Enterococci*.

368 Apart from the few well described mechanisms of DAP^R in *E. faecalis*, here we report that
369 the multiple peptide resistance factor (MprF) also plays some role in DAP^R where the loss of
370 *mprF2* hypersensitizes the already DAP-sensitive OG1RF strain by further decreasing DAP
371 MIC. Through *in vitro* evolution of the *mprF* mutants to DAP^R to uncover novel mutations that
372 might be otherwise masked by *mprF* activity, we discovered that evolution was slowed
373 considerably in $\Delta mprF1 \Delta mprF2$. Apart from this, by utilizing mutants of *mprF* we unmasked

Manuscript main text

374 loss of function mutations (LoF) in *ftsH* observed only within the $\Delta mprF1$ $\Delta mprF2$ genetic
375 background early in evolution (**figure 1D, 2A**).

376 The effect of chaperones on accelerating protein evolution is well documented and is likely
377 the reason for the observed slowed evolution in their absence. The DnaK chaperone can
378 provide mutational robustness by buffering deleterious mutations that affect protein structure
379 and function, and has been described to buffer the fitness cost of mutations associated with
380 rifampicin resistance in *Mycobacteria* (Fay et al., 2021, Aguilar-Rodríguez et al., 2016). A
381 similar mechanism might be at play in *E. faecalis* such that loss of *dnaK* leads to slowed
382 resistance evolution due to reduced ability to buffer mutations that affect protein stability.
383 DnaK has also been implicated in central metabolism and carbon source utilization in *E. coli*
384 (Anglès et al., 2017). This could similarly be the case for *E. faecalis*, since we observed
385 metabolic changes in terms of altered ability for extracellular acidification and metabolic
386 reduction in the FtsH-LoF mutants where chaperones are upregulated (**figure 3**,
387 **supplementary excel file S1C**). DnaK and its co-chaperone DnaJ might also be essential in
388 relieving *E. faecalis* of metabolic constraints that might be introduced by mutations
389 accumulated through evolution.

390 Under FtsH-LoF, the resulting depletion of HrcA results in slowed evolution to DAP^R. With
391 HrcA being a chaperone operon repressor, it is expected that its depletion results in
392 upregulation of downstream chaperones that contribute to this slowed evolution. Conversely,
393 we would expect that disruption of these chaperones would enhance evolution instead.
394 Unexpectedly, we instead observed slowed evolution when chaperones DnaK and DnaJ
395 were disrupted. Hence at present, we do not yet fully understand how the depletion of HrcA
396 enhances DAP^R evolution. One possibility is that by using the reductive approach in deleting
397 or disrupting individual chaperones, we are only probing their individual contribution to
398 resistance evolution which may not reflect the FtsH-LoF environment where multiple
399 chaperones are upregulated under HrcA depletion. Furthermore, given that chaperones are
400 canonically known to promote evolution by stabilizing deleterious mutations in proteins, it is
401 unlikely that they are the sole reason behind the slowed evolution under HrcA depletion. It is
402 more likely that the involvement of chaperones in combination with other *E. faecalis* genes
403 regulated by HrcA together result in the slowed evolution under HrcA depletion, which is a
404 topic for further investigation.

405 Additionally, HrcA depletion is unlikely to be the sole reason for the observed slowed
406 evolution under FtsH-LoF since $\Delta mprF1$ $\Delta mprF2$ *ftsH*(G37X) displayed lower mutation rates
407 and this was not observed for *hrcA*::Tn. It is possible that the other accumulated proteins
408 under FtsH-LoF might also play a role in slowing evolution, but we were unable to

Manuscript main text

409 investigate further due to plasmid stability limitations in mimicking overexpression during *in*
410 *vitro* evolution (**table 2**). Additionally, with FtsH-LoF, there is a consequent decrease in
411 HrcA, suggesting compensatory activation or upregulation of other proteases such as Clp
412 that result in HrcA depletion. Another open question is the identity of these compensatory
413 proteases that are responsible for HrcA depletion in FtsH-LoF. Nonetheless, our study
414 provides evidence of the involvement of *ftsH* and *hrcA* in *E. faecalis* DAP^R evolution that has
415 not been previously described and presents them as potential targets for means of
416 influencing evolution rates and anti-resistance strategies. We also provide evidence of an
417 alternative route to DAP^R involving protein quality control and chaperone regulation, apart
418 from the well described routes involving antimicrobial stress sensing and membrane
419 remodeling.

420 Our study also revealed that FtsH is essential in the wild type background but is dispensable
421 in $\Delta mprF1 \Delta mprF2$. Several proteins that were depleted or accumulated under FtsH-LoF
422 could explain the reason for the slowed growth in the wild type, namely the depletion of
423 TrePP, LysS and accumulation of a putative amidase (RS02510). Since TrePP is a glycosyl
424 hydrolase responsible for the hydrolysis of glycosidic bonds, particularly that of trehalose-6-
425 phosphate, and lysine-tRNA ligase is responsible for the ligation of lysine to tRNA, it is
426 possible that reduced ability to break down complex sugars and produce essential lysine-
427 tRNA could be contributing to the growth defect. Furthermore, the absence of MprF that
428 utilizes lysine-tRNA as a substrate in $\Delta mprF1 \Delta mprF2$ could reduce the pressure of a limited
429 lysine-tRNA pool allowing for normal growth under FtsH-LoF. Related to the growth defect,
430 the accumulation of the putative amidase (RS02510) could also be contributing to the
431 slowed growth, especially since amidases tend to play roles in cell division where they
432 hydrolyze crosslinked peptidoglycan to allow for septation, dysregulation of this putative
433 amidase could have similar effects (Vollmer et al., 2008, Do et al., 2020). Apart from growth
434 related observations, FtsH-LoF in the wild type also resulted in a significant increase in cell
435 chaining which could be mediated by the depletion of gelatinase E (GelE) under FtsH-LoF.
436 Since gelatinases act to cleave autolysin to process it into its active form, the reduction in
437 gelatinase E likely results in reduced autolysin activity resulting in dysfunctional cell division
438 and increased cell chaining (Stinemetz et al., 2017). Furthermore, we have also shown that
439 ArcB and RS02510 are substrates of FtsH, providing the first identification of FtsH
440 substrates in *E. faecalis*. Therefore, while *ftsH* loss is tolerated in $\Delta mprF1 \Delta mprF2$, it is
441 essential in the wild type, where its loss leads to a growth defect driven by altered
442 metabolism and altered cell division.

443 The reason behind the synthetic viability of FtsH-LoF in $\Delta mprF1 \Delta mprF2$ is still not fully
444 understood. Given the altered lipidomic and metabolic landscape of $\Delta mprF1 \Delta mprF2$

Manuscript main text

445 (Rashid et al., 2023), it is possible that this would provide a permissive environment to offset
446 the deleterious effects of FtsH-LoF. This could be mediated through glycosyl hydrolase
447 (TrePP), where its disruption causes growth defects in the wild type and is depleted in FtsH-
448 LoF. However, TrePP is transcriptionally up-regulated in $\Delta mprF1 \Delta mprF2$, possibility
449 compensating for the TrePP loss under FtsH-LoF (Rashid et al., 2023). While not known to
450 affect growth, transcriptional and proteomic expression of *mprF2* was also increased in
451 FtsH-LoF ($\text{Log}_2\text{FC } mprF2 = 0.54$, $\text{MprF2} = 2.59$), which could be off-set by *mprF2* deletion in
452 $\Delta mprF1 \Delta mprF2$. While the picture is not yet complete, these findings hint towards an
453 altered metabolic environment within $\Delta mprF1 \Delta mprF2$, which is an avenue for future
454 investigation.

455 Taken together, we have demonstrated that FtsH is essential in wild type *E. faecalis*, but
456 loss of function is permissible in $\Delta mprF1 \Delta mprF2$ which slows DAP^R evolution through the
457 indirect depletion of HrcA and subsequent changes in regulatory flux of the downstream
458 chaperone operons (**figure 6**). Under FtsH-LoF in the wild type background, the ability for
459 metabolic reduction and extracellular acidification is reduced along with FtsH-LoF associated
460 changes in TrePP, LysS and amidase levels resulting in growth impairment. Whereas in
461 FtsH-LoF in $\Delta mprF1 \Delta mprF2$, growth is not affected, instead, HrcA is indirectly depleted by
462 compensatory action of other proteases. While the loss of HrcA results in slowed evolution,
463 the contribution of downstream genes in the regulon, *dnaK* and *dnaJ* does not fully explain
464 the cause. It is likely that there is more complex higher order regulation present involving
465 other genes that results in a net decrease in evolution speeds. This study provides the first
466 major characterization of FtsH both in terms of its substrates and its functional role in *E.*
467 *faecalis* involving growth and metabolism, as well as the previously undescribed involvement
468 in antibiotic resistance and resistance acquisition. The possibility of manipulating DAP^R
469 evolution by targeting FtsH, HrcA and chaperone presents an enticing opportunity for their
470 utility as both a research tool and as possible candidates for development of anti-resistance
471 strategies. This is especially the case for FtsH where its essentiality further highlights its
472 potential as a therapeutic target.

473

Manuscript main text

474 **Experimental procedures**

475 Strains, growth conditions, growth kinetics, live/dead staining, RNA sequencing and cloning
476 methods are detailed in **supplementary text**.

477 ***In vitro* evolution of *E. faecalis* to daptomycin resistance**

478 The protocol was adapted from a previously published *in vitro* evolution experiment done in
479 *E. faecalis* V583 (Palmer et al., 2011). For each strain, multiple parallel lines of evolution
480 experiment were performed. First, 100X dilutions of overnight bacterial cultures of each
481 strain were made in BHI supplemented with 1.25 mM calcium chloride (Sigma, USA) (50 mg
482 L⁻¹ Ca²⁺) containing daptomycin (DAP) (Gold Biotechnology, USA) concentrations of 1X MIC,
483 2X MIC and 4X MIC, and incubated at 37 °C in static conditions for 22 to 26 hrs. Cultures of
484 every evolution line were examined for visible bacterial growth. Bacterial cultures at the
485 highest growth-permissive concentrations (HGPCs) are diluted 100X into fresh DAP-
486 containing medium at 0.5X, 1X and 2X HGPC. This was repeated until HGPC of 512 µg mL⁻¹
487 was achieved. Bacterial cultures were then passaged in plain BHI broth for 3 days to obtain
488 stable mutants. Isolates were glycerol stocked each day in 25 % v/v glycerol. Refer to
489 **supplementary figure S6** for the schematic of the *in vitro* evolution workflow. In instances
490 where evolution profiles of the tested strains are consistently at the 2X HGCP and are
491 saturated at the upper HGPC limit of the assay, an expanded range of 0.5X, 1X, 2X, 4X and
492 8X HGCP is used for selection instead.

493 **Whole genome sequencing**

494 Whole genome sequencing was conducted on the glycerol stocked isolates from the wild
495 type, Δ mp r F1, Δ mp r F2 and Δ mp r F1 Δ mp r F2 backgrounds. Genomic DNA was extracted
496 from overnight bacterial cultures using PureLink Genomic DNA Mini Kit (Thermo Fisher
497 Scientific). Library preparation using MiSeq v3 and whole genome sequencing using MiSeq
498 was done by the sequencing facility of Singapore Centre of Life Science Engineering
499 (SCELSE, Singapore). Data was analyzed using CLC Genomics Workbench 8.0. The
500 complete OG1RF reference genome (NC_017316) from NCBI database was used for
501 mapping and annotation. The threshold variant frequency was set as 35 %. Non-
502 synonymous mutations within coding regions were filtered for. All structural variations were
503 manually confirmed on the mapping track.

504 **Minimal inhibitory concentration (MIC) by microplate dilution**

505 Stationary phase cultures to be tested were grown until mid-log phase and normalized to
506 OD₆₀₀ of 0.7. MIC assays were performed in a 96-well plate as described previously
507 (Wiegand et al., 2008), with the following modifications. Antibiotics were diluted in BHI media

Manuscript main text

508 supplemented with 1.25 mM calcium chloride (50 mg L⁻¹ Ca²⁺), in 2-fold dilutions, from 256.0
509 µg mL⁻¹ to 0.5 µg mL⁻¹ of daptomycin. Cultures with daptomycin were incubated for 16-18 hrs
510 at 37 °C in static conditions before assessing for growth in the wells to estimate the MIC.

511 **RNA sequencing**

512 Sequencing of RNA was done from wild type pMSP3535-6his-*ftsH*(H456Y) and wild type
513 pMSP3535-*ftsH*(H456Y). Detailed methods are described in the **supplementary text** file.

514 **FtsH proteomic analysis**

515 Wild type pMSP3535-6his-*ftsH*(H456Y) and wild type pMSP3535-*ftsH*(H456Y) strains were
516 grown to mid-log phase and induced for expression of their respective plasmids' gene
517 constructs with 125 ng mL⁻¹ of nisin for 16-18 hrs at 37 °C in static conditions and cell pellets
518 were harvested. The membrane fraction was isolated from the harvested pellets as previously
519 described, resuspended with 100 µL of 50 mM Tris-HCl, pH 8.0, and boiled with 33.3 µL of
520 NuPAGE® LDS Sample Buffer (4X) (Thermofisher, USA) and 10 µL of 1 M DTT (Maddalo et
521 al., 2011). Samples were then run on SDS-PAGE on a 4-12 % NuPAGE® Bis-Tris mini gel in
522 a XCell SureLock® Mini-Cell filled with MES SDS running buffer (Invitrogen, USA) until
523 samples just entered the gel. Gels were then silver-stained by fixing with 50 % v/v methanol
524 and 5 % v/v acetic acid solution, sensitizing with 0.02 % w/v sodium thiosulfate solution, silver-
525 stained with 0.1 % w/v silver nitrate and 3 % v/v formalin solution and developed using 2 %
526 w/v sodium carbonate and 1.5 % v/v formalin solution. The concentrated protein band of each
527 lane was excised and stored in Eppendorf tubes filled with water. Samples were then sent to
528 the Taplin Mass Spectrometry Facility, Harvard Medical School, Boston, Massachusetts, USA
529 for peptide mass spectrometry and proteomic analysis. Peptide counts were normalized using
530 tweeDEseq (TMM normalization) and statistics were done using Reproducibility-Optimized
531 Test Statistic (ROTS) (Esnaola et al., 2013, Suomi et al., 2017).

532 **Mutation rate assay (Luria-Delbrück fluctuation assay)**

533 Overnight stationary phase cultures were diluted 10,000X in 40 mL of BHI supplemented with
534 1.25 mM calcium chloride (50 mg L⁻¹ Ca²⁺). 100 µL of diluted culture was then added into each
535 well of a 96-well microtiter plate, sealed and incubated at 37 °C in static conditions for 16-18
536 hrs. 24 wells from the plate were pooled followed by serial dilution and plating on non-selective
537 BHI agar plate for CFU enumeration. This determines the average cell number (N). Whole
538 volumes (100 µL) of each of the 72 wells/cultures were then transferred into wells of a 24-well
539 microtiter plate containing 900 µL BHI supplemented with 1.25 mM calcium chloride and
540 daptomycin (dilution was taken into account such that final daptomycin concentration is 3X
541 MIC). Plates were incubated at 37 °C in static conditions and observed for growth visually by

Manuscript main text

542 the presence of turbid wells for up to 7 days. The fraction of wells/cultures with zero growth
543 indicating zero mutant cells is defined as p_0 . The expected number of mutation events per
544 culture (m) is calculated as, $m = -\ln(p_0)$. The mutation rate (μ) is calculated as: $\mu = \frac{m}{N}$.

545 **Alamar blue assay**

546 Overnight cultures were normalized to OD₆₀₀ 0.5 in PBS and diluted 1:10. The ability to reduce
547 the resazurin dye was measured using the AlamarBlue™ HS cell viability reagent
548 (Thermoscientific, USA) according to the manufacturer's instructions.

549 **Seahorse assay**

550 Mid-log phase cultures were washed once and normalized to OD₆₀₀ 0.7 in BHI. Cultures were
551 then added to a Cell-Tak™ Cell and Tissue Adhesive (Corning, USA) coated XF96 cell culture
552 microplate (Agilent, USA). Sterile media was added as blanks for background measurement.
553 Microplate wells were coated with 25 μ L of 22.4 μ g mL⁻¹ Cell-Tak™ prior to use according to
554 the manufacturer's instructions. Plates were then centrifuged at 6,000 x g for 15 mins to allow
555 for cells to adhere to the bottom of the plate. A XFe96 sensor cartridge that has been soaked
556 in calibration solution according to the manufacturer's instruction was first loaded into the
557 Seahorse XFe96 Analyzer (Agilent, USA) for instrument calibration, followed by the microplate
558 containing the adhered cultures. Cultures were then measured for their oxygen consumption
559 rate (OCR) and extracellular acidification rate (ECAR) for 120 mins at the following cycle
560 settings: Mix – 2 mins 30 s, Wait – 0 mins, Measure – 4 mins, no injection.

561 **Data availability**

562 Whole genome sequence files are available on NCBI, Sequence Read Archive (SRA)
563 (Accession: PRJNA830756). RNA sequencing files are available on NCBI, Gene Expression
564 Omnibus (GEO) (Accession: GSE201323) and SRA (Accession: PRJNA830869).

Manuscript main text

565 **Acknowledgements**

566 We thank Cristina Colomer-Winter for critical reading of the manuscript and Swaine Chen for
567 important scientific input over the course of this project. We would like to thank Ekaterina
568 Sviriaeva from Lee Kong Chian School of Medicine, Nanyang Technological University for
569 access, training, and the initial consumables for the Seahorse XFe96 Analyzer. We would
570 also like to thank Ross Tomaino from Taplin Mass Spectrometry Facility, Harvard Medical
571 School, Boston, Massachusetts for providing support for peptide mass spectrometry. We
572 also extend our appreciation to Gary Dunny from University of Minnesota Medical School for
573 providing the *E. faecalis* OG1RF transposon library, for which several mutants were used in
574 our assays. We also thank Kline lab member Qingyan Chen, for her assistance with
575 constructing wild type pMSP3535-P_{nisA}-cls1.

576 This work was supported by the National Research Foundation and Ministry of Education
577 Singapore under its Research Centre of Excellence Programme, as well as by the Singapore
578 Ministry of Education under its Tier 1 program (MOE2017-T1-001-269) and the National
579 Medical Research Council Open Fund (MOH-000645), both awarded to K.A.K and
580 transferred to K.P.

581 **Author contributions**

582 Conceptualization: ZJN, IHG, KAK

583 Formal analysis: ZJN, IHG, AF, KKLC

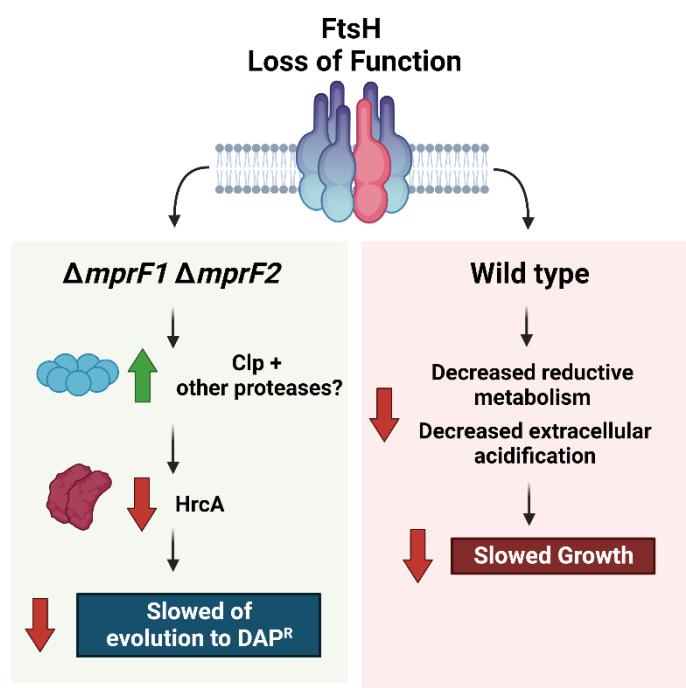
584 Funding acquisition: KAK

585 Investigation: ZJN, IHG, AF, KKLC, PYC

586 Methodology: ZJN, IHG, AF, KKLC, PYC

587 Project administration: ZJN, KAK

588 Supervision: ZJN, KP, KAK


589 Writing – original draft: ZJN, KAK

590 Writing – review & editing: ZJN, IHG, AF, KKLC, PYC, KP, KAK

591

Manuscript main text

592 **Graphical Abstract**

593

594 **Abbreviated Summary**

595 FtsH, a conserved protease, influences daptomycin resistance evolution rates in
596 *Enterococcus faecalis* by indirectly affecting the availability of the chaperone repressor HrcA.
597 FtsH is also essential in the wild type genetic background where its loss of function results in
598 altered metabolism in terms of decreased extracellular acidification and ability for metabolic
599 reduction resulting in slowed growth. However, FtsH loss is well tolerated in the multiple
600 peptide resistance factor (MprF) mutant $\Delta mprF1 \Delta mprF2$.

Manuscript main text

601 **References**

602

603 AFONINA, I., ONG, J., CHUA, J., LU, T. & KLINE, K. A. 2020. Multiplex CRISPRi System
604 Enables the Study of Stage-Specific Biofilm Genetic Requirements in *Enterococcus*
605 *faecalis*. *mBio*, 11, e01101-20.

606 AGUILAR-RODRÍGUEZ, J., SABATER-MUÑOZ, B., MONTAGUD-MARTÍNEZ, R.,
607 BERLANGA, V., ALVAREZ-PONCE, D., WAGNER, A. & FARES, M. A. 2016. The
608 Molecular Chaperone DnaK Is a Source of Mutational Robustness. *Genome Biol*
609 *Evol*, 8, 2979-2991.

610 AL MAMUN, A. A., LOMBARDO, M. J., SHEE, C., LISEWSKI, A. M., GONZALEZ, C., LIN,
611 D., NEHRING, R. B., SAINT-RUF, C., GIBSON, J. L., FRISCH, R. L., LICHTARGE,
612 O., HASTINGS, P. J. & ROSENBERG, S. M. 2012. Identity and function of a large
613 gene network underlying mutagenic repair of DNA breaks. *Science*, 338, 1344-8.

614 ANGLÈS, F., CASTANIÉ-CORNÉT, M.-P., SLAMA, N., DINCLAUX, M., CIRINESI, A.-M.,
615 PORTAIS, J.-C., LÉTISSE, F. & GENEVAUX, P. 2017. Multilevel interaction of the
616 DnaK/DnaJ(HSP70/HSP40) stress-responsive chaperone machine with the central
617 metabolism. *Scientific reports*, 7, 41341-41341.

618 ARENDTS, J., THOMANEK, N., KUHLMANN, K., MARCUS, K. & NARBERHAUS, F. 2016. In
619 vivo trapping of FtsH substrates by label-free quantitative proteomics.
620 *PROTEOMICS*, 16, 3161-3172.

621 ARIAS, C. A. & MURRAY, B. E. 2012. The rise of the *Enterococcus*: beyond vancomycin
622 resistance. *Nature reviews. Microbiology*, 10, 266-278.

623 ARIAS, C. A., PANESSO, D., MCGRATH, D. M., QIN, X., MOJICA, M. F., MILLER, C.,
624 DIAZ, L., TRAN, T. T., RINCON, S., BARBU, E. M., REYES, J., ROH, J. H., LOBOS,
625 E., SODERGREN, E., PASQUALINI, R., ARAP, W., QUINN, J. P., SHAMOO, Y.,
626 MURRAY, B. E. & WEINSTOCK, G. M. 2011. Genetic basis for in vivo daptomycin
627 resistance in enterococci. *N Engl J Med*, 365, 892-900.

628 BAO, Y., SAKINC, T., LAVERDE, D., WOBSER, D., BENACHOUR, A., THEILACKER, C.,
629 HARTKE, A. & HUEBNER, J. 2012. Role of mprF1 and mprF2 in the pathogenicity of
630 *Enterococcus faecalis*. *PLoS One*, 7, e38458.

Manuscript main text

631 BIENIOSSEK, C., SCHALCH, T., BUMANN, M., MEISTER, M., MEIER, R. & BAUMANN, U.
632 2006. The molecular architecture of the metalloprotease FtsH. *Proceedings of the*
633 *National Academy of Sciences of the United States of America*, 103, 3066-3071.

634 BOSHOFF, H. I. M., REED, M. B., BARRY, C. E. & MIZRAHI, V. 2003. DnaE2 Polymerase
635 Contributes to In Vivo Survival and the Emergence of Drug Resistance in
636 *Mycobacterium tuberculosis*. *Cell*, 113, 183-193.

637 CARMELI, Y., ELIOPoulos, G., MOZAFFARI, E. & SAMORE, M. 2002. Health and
638 economic outcomes of vancomycin-resistant enterococci. *Arch Intern Med*, 162,
639 2223-8.

640 CH'NG, J.-H., CHONG, K. K. L., LAM, L. N., WONG, J. J. & KLINE, K. A. 2019. Biofilm-
641 associated infection by enterococci. *Nature Reviews Microbiology*, 17, 82-94.

642 DADASHI, M., SHARIFIAN, P., BOSTANSHIRIN, N., HAJIKHANI, B., BOSTANGHADIRI,
643 N., KHOSRAVI-DEHAGHI, N., VAN BELKUM, A. & DARBAN-SAROKHALIL, D.
644 2021. The Global Prevalence of Daptomycin, Tigecycline, and Linezolid-Resistant
645 *Enterococcus faecalis* and *Enterococcus faecium* Strains From Human Clinical
646 Samples: A Systematic Review and Meta-Analysis. *Front Med (Lausanne)*, 8,
647 720647.

648 DEUERLING, E., MOGK, A., RICHTER, C., PURUCKER, M. & SCHUMANN, W. 1997. The
649 *ftsH* gene of *Bacillus subtilis* is involved in major cellular processes such as
650 sporulation, stress adaptation and secretion. *Mol Microbiol*, 23, 921-33.

651 DO, T., SCHAEFER, K., SANTIAGO, A. G., COE, K. A., FERNANDES, P. B., KAHNE, D.,
652 PINHO, M. G. & WALKER, S. 2020. *Staphylococcus aureus* cell growth and division
653 are regulated by an amidase that trims peptides from uncrosslinked peptidoglycan.
654 *Nature microbiology*, 5, 291-303.

655 EDMOND, M. B., WALLACE, S. E., MCCLISH, D. K., PFALLER, M. A., JONES, R. N. &
656 WENZEL, R. P. 1999. Nosocomial Bloodstream Infections in United States Hospitals:
657 A Three-Year Analysis. *Clinical Infectious Diseases*, 29, 239-244.

658 ERILL, I., CAMPOY, S. & BARBÉ, J. 2007. Aeons of distress: an evolutionary perspective
659 on the bacterial SOS response. *FEMS Microbiology Reviews*, 31, 637-656.

Manuscript main text

660 ERNST, C. M. & PESCHEL, A. 2011. Broad-spectrum antimicrobial peptide resistance by
661 MprF-mediated aminoacylation and flipping of phospholipids. *Molecular Microbiology*,
662 80, 290-299.

663 ERNST, C. M., SLAVETINSKY, C. J., KUHN, S., HAUSER, J. N., NEGA, M., MISHRA, N.
664 N., GEKELER, C., BAYER, A. S. & PESCHEL, A. 2018. Gain-of-Function Mutations
665 in the Phospholipid Flippase MprF Confer Specific Daptomycin Resistance. *mBio*, 9,
666 e01659-18.

667 ESNAOLA, M., PUIG, P., GONZALEZ, D., CASTELO, R. & GONZALEZ, J. R. 2013. A
668 flexible count data model to fit the wide diversity of expression profiles arising from
669 extensively replicated RNA-seq experiments. *BMC Bioinformatics*, 14, 254.

670 FAY, A., PHILIP, J., SAHA, P., HENDRICKSON, R. C., GLICKMAN, M. S. & BURNS-
671 HUANG, K. 2021. The DnaK Chaperone System Buffers the Fitness Cost of
672 Antibiotic Resistance Mutations in Mycobacteria. *mBio*, 12, e00123-21.

673 HARRISON, C. 2003. GrpE, a nucleotide exchange factor for DnaK. *Cell stress &*
674 *chaperones*, 8, 218-224.

675 HAYER-HARTL, M., BRACHER, A. & HARTL, F. U. 2016. The GroEL–GroES
676 Chaperonin Machine: A Nano-Cage for Protein Folding. *Trends in Biochemical
677 Sciences*, 41, 62-76.

678 HIDRON, A. I., EDWARDS, J. R., PATEL, J., HORAN, T. C., SIEVERT, D. M., POLLOCK,
679 D. A. & FRIDKIN, S. K. 2008. NHSN annual update: antimicrobial-resistant
680 pathogens associated with healthcare-associated infections: annual summary of data
681 reported to the National Healthcare Safety Network at the Centers for Disease
682 Control and Prevention, 2006-2007. *Infect Control Hosp Epidemiol*, 29, 996-1011.

683 HOLLENBECK, B. L. & RICE, L. B. 2012. Intrinsic and acquired resistance mechanisms in
684 *enterococcus*. *Virulence*, 3, 421-569.

685 KAMAL, S. M., RYBTKE, M. L., NIMTZ, M., SPERLEIN, S., GISKE, C., TRČEK, J.,
686 DESCHAMPS, J., BRIANDET, R., DINI, L., JÄNSCH, L., TOLKER-NIELSEN, T.,
687 LEE, C. & RÖMLING, U. 2019. Two FtsH Proteases Contribute to Fitness and
688 Adaptation of *Pseudomonas aeruginosa* Clone C Strains. *Frontiers in Microbiology*,
689 10.

Manuscript main text

690 KELESIDIS, T., HUMPHRIES, R., USLAN, D. Z. & PEGUES, D. A. 2011. Daptomycin
691 nonsusceptible enterococci: an emerging challenge for clinicians. *Clin Infect Dis*, 52,
692 228-34.

693 KHAN, A., DAVLIEVA, M., PANESSO, D., RINCON, S., MILLER, W. R., DIAZ, L., REYES,
694 J., CRUZ, M. R., PEMBERTON, O., NGUYEN, A. H., SIEGEL, S. D., PLANET, P. J.,
695 NARECHANIA, A., LATORRE, M., RIOS, R., SINGH, K. V., TON-TATH, H.,
696 GARSIN, D. A., TRAN, T. T., SHAMOO, Y. & ARIAS, C. A. 2019. Antimicrobial
697 sensing coupled with cell membrane remodeling mediates antibiotic resistance and
698 virulence in *Enterococcus faecalis*. *Proceedings of the National Academy of*
699 *Sciences*, 116, 26925.

700 KRISTICH, C. J., NGUYEN, V. T., LE, T., BARNES, A. M., GRINDLE, S. & DUNNY, G. M.
701 2008. Development and use of an efficient system for random mariner transposon
702 mutagenesis to identify novel genetic determinants of biofilm formation in the core
703 *Enterococcus faecalis* genome. *Appl Environ Microbiol*, 74, 3377-86.

704 LANGKLOTZ, S., BAUMANN, U. & NARBERHAUS, F. 2012. Structure and function of the
705 bacterial AAA protease FtsH. *Biochimica et Biophysica Acta (BBA) - Molecular Cell*
706 *Research*, 1823, 40-48.

707 LI, L., HIGGS, C., TURNER, A. M., NONG, Y., GORRIE, C. L., SHERRY, N. L., DYET, K.
708 H., SEEMANN, T., WILLIAMSON, D. A., STINEAR, T. P., HOWDEN, B. P. &
709 CARTER, G. P. 2021. Daptomycin Resistance Occurs Predominantly in vanA-Type
710 Vancomycin-Resistant *Enterococcus faecium* in Australasia and Is Associated With
711 Heterogeneous and Novel Mutations. *Front Microbiol*, 12, 749935.

712 LI, W., HU, J., LI, L., ZHANG, M., CUI, Q., MA, Y., SU, H., ZHANG, X., XU, H. & WANG, M.
713 2022. New Mutations in *cls* Lead to Daptomycin Resistance in a Clinical
714 Vancomycin- and Daptomycin-Resistant *Enterococcus faecium* Strain. *Frontiers in*
715 *Microbiology*, 13.

716 LIU, W., SCHOOONEN, M., WANG, T., MCSWEENEY, S. & LIU, Q. 2022. Cryo-EM structure
717 of transmembrane AAA+ protease FtsH in the ADP state. *Communications Biology*,
718 5, 257.

719 MADDALO, G., CHOYANEC, P., STENBERG-BRUZELL, F., NIELSEN, H. V., JENSEN-
720 SEAMAN, M. I., ILAG, L. L., KLINE, K. A. & DALEY, D. O. 2011. A reference map of
721 the membrane proteome of *Enterococcus faecalis*. *Proteomics*, 11, 3935-41.

Manuscript main text

722 MASCINI, E. M. & BONTEN, M. J. M. 2005. Vancomycin-resistant enterococci:
723 consequences for therapy and infection control. *Clinical Microbiology and Infection*,
724 11, 43-56.

725 MERRIKH, H. & KOHLI, R. M. 2020. Targeting evolution to inhibit antibiotic resistance. *The
726 FEBS Journal*, 287, 4341-4353.

727 MILLER, C., KONG, J., TRAN, T. T., ARIAS, C. A., SAXER, G. & SHAMOO, Y. 2013.
728 Adaptation of *Enterococcus faecalis* to daptomycin reveals an ordered progression to
729 resistance. *Antimicrobial agents and chemotherapy*, 57, 5373-5383.

730 MILLER, W. R., MUNITA, J. M. & ARIAS, C. A. 2014. Mechanisms of antibiotic resistance in
731 enterococci. *Expert Review of Anti-infective Therapy*, 12, 1221-1236.

732 MILLER, W. R., MURRAY, B. E., RICE, L. B. & ARIAS, C. A. 2020. Resistance in
733 Vancomycin-Resistant Enterococci. *Infect Dis Clin North Am*, 34, 751-771.

734 MISHRA, N. N., BAYER, A. S., TRAN, T. T., SHAMOO, Y., MILEYKOVSAYA, E.,
735 DOWHAN, W., GUAN, Z. & ARIAS, C. A. 2012. Daptomycin Resistance in
736 Enterococci Is Associated with Distinct Alterations of Cell Membrane Phospholipid
737 Content. *PLOS ONE*, 7, e43958.

738 MISHRA, N. N., LEW, C., ABDELHADY, W., LAPITAN, C. K., PROCTOR, R. A., ROSE, W.
739 E. & BAYER, A. S. 2022. Synergy Mechanisms of Daptomycin-Fosfomycin
740 Combinations in Daptomycin-Susceptible and -Resistant Methicillin-Resistant
741 *Staphylococcus aureus*: In Vitro, Ex Vivo, and In Vivo Metrics. *Antimicrob Agents
742 Chemother*, 66, e0164921.

743 MISHRA, N. N., YANG, S.-J., SAWA, A., RUBIO, A., NAST, C. C., YEAMAN, M. R. &
744 BAYER, A. S. 2009. Analysis of cell membrane characteristics of in vitro-selected
745 daptomycin-resistant strains of methicillin-resistant *Staphylococcus aureus*.
746 *Antimicrobial agents and chemotherapy*, 53, 2312-2318.

747 MUNITA, J. M., MURRAY, B. E. & ARIAS, C. A. 2014. Daptomycin for the treatment of
748 bacteraemia due to vancomycin-resistant enterococci. *International journal of
749 antimicrobial agents*, 44, 387-395.

750 MUÑOZ-PRICE, L. S., LOLANS, K. & QUINN, J. P. 2005. Emergence of Resistance to
751 Daptomycin during Treatment of Vancomycin-Resistant *Enterococcus faecalis*
752 Infection. *Clinical Infectious Diseases*, 41, 565-566.

Manuscript main text

753 MURDOCH, D. R., COREY, G. R., HOEN, B., MIRO, J. M., FOWLER, V. G., JR., BAYER,
754 A. S., KARCHMER, A. W., OLAISON, L., PAPPAS, P. A., MOREILLON, P.,
755 CHAMBERS, S. T., CHU, V. H., FALCO, V., HOLLAND, D. J., JONES, P., KLEIN, J.
756 L., RAYMOND, N. J., READ, K. M., TRIPODI, M. F., UTILI, R., WANG, A., WOODS,
757 C. W. & CABELL, C. H. 2009. Clinical presentation, etiology, and outcome of
758 infective endocarditis in the 21st century: the International Collaboration on
759 Endocarditis-Prospective Cohort Study. *Arch Intern Med*, 169, 463-73.

760 NIWA, H., TSUCHIYA, D., MAKYIO, H., YOSHIDA, M. & MORIKAWA, K. 2002. Hexameric
761 Ring Structure of the ATPase Domain of the Membrane-Integrated Metalloprotease
762 FtsH from *Thermus thermophilus* HB8. *Structure*, 10, 1415-1424.

763 OKUNO, T. & OGURA, T. 2013. FtsH protease-mediated regulation of various cellular
764 functions. *Subcell Biochem*, 66, 53-69.

765 OTA, Y., FURUHASHI, K., HAYASHI, W., HIRAI, N., ISHIKAWA, J., NAGURA, O.,
766 YAMANAKA, K., KATAHASHI, K., AOKI, K., NAGANO, N. & MAEKAWA, M. 2021.
767 Daptomycin resistant *Enterococcus faecalis* has a mutation in liaX, which encodes a
768 surface protein that inhibits the LiaFSR systems and cell membrane remodeling.
769 *Journal of Infection and Chemotherapy*, 27, 90-93.

770 PALMER, K. L., DANIEL, A., HARDY, C., SILVERMAN, J. & GILMORE, M. S. 2011. Genetic
771 basis for daptomycin resistance in enterococci. *Antimicrob Agents Chemother*, 55,
772 3345-56.

773 PATEL, R. & GALLAGHER, J. C. 2015. Vancomycin-resistant enterococcal bacteremia
774 pharmacotherapy. *The Annals of pharmacotherapy*, 49, 69-85.

775 PATTERSON, J. E., SWEENEY, A. H., SIMMS, M., CARLEY, N., MANGI, R., SABETTA, J.
776 & LYONS, R. W. 1995. An analysis of 110 serious enterococcal infections.
777 Epidemiology, antibiotic susceptibility, and outcome. *Medicine (Baltimore)*, 74, 191-
778 200.

779 PFALLER, M. A., CORMICAN, M., FLAMM, R. K., MENDES, R. E. & JONES, R. N. 2019.
780 Temporal and Geographic Variation in Antimicrobial Susceptibility and Resistance
781 Patterns of Enterococci: Results From the SENTRY Antimicrobial Surveillance
782 Program, 1997-2016. *Open forum infectious diseases*, 6, S54-S62.

783 PRATER, A. G., MEHTA, H. H., BEABOUT, K., SUPANDY, A., MILLER, W. R., TRAN, T. T.,
784 ARIAS, C. A. & SHAMOO, Y. 2021. Daptomycin Resistance in *Enterococcus faecium*

Manuscript main text

785 Can Be Delayed by Disruption of the LiaFSR Stress Response Pathway.
786 *Antimicrobial Agents and Chemotherapy*, 65, e01317-20.

787 PREMATUNGE, C., MACDOUGALL, C., JOHNSTONE, J., ADOMAKO, K., LAM, F.,
788 ROBERTSON, J. & GARBER, G. 2016. VRE and VSE Bacteremia Outcomes in the
789 Era of Effective VRE Therapy: A Systematic Review and Meta-analysis. *Infect*
790 *Control Hosp Epidemiol*, 37, 26-35.

791 RAGHEB, M. N., THOMASON, M. K., HSU, C., NUGENT, P., GAGE, J., SAMADPOUR, A.
792 N., KARIISA, A., MERRIKH, C. N., MILLER, S. I., SHERMAN, D. R. & MERRIKH, H.
793 2019. Inhibiting the Evolution of Antibiotic Resistance. *Molecular Cell*, 73, 157-
794 165.e5.

795 RASHID, R., CAZENAVE-GASSIOT, A., GAO, I. H., NAIR, Z. J., KUMAR, J. K., GAO, L.,
796 KLINE, K. A. & WENK, M. R. 2017. Comprehensive analysis of phospholipids and
797 glycolipids in the opportunistic pathogen *Enterococcus faecalis*. *PLOS ONE*, 12,
798 e0175886.

799 RASHID, R., NAIR, Z. J., CHIA, D. M. H., CHONG, K. K. L., GASSIOT, A. C., MORLEY, S.
800 A., ALLEN, D. K., CHEN, S. L., CHNG, S. S., WENK, M. R. & KLINE, K. A. 2023.
801 Depleting Cationic Lipids Involved in Antimicrobial Resistance Drives Adaptive Lipid
802 Remodeling in *Enterococcus faecalis*. *mBio*, 14, e03073-22.

803 RASHID, R., VELEBA, M. & KLINE, K. A. 2016. Focal Targeting of the Bacterial Envelope by
804 Antimicrobial Peptides. *Frontiers in Cell and Developmental Biology*, 4.

805 REINSETH, I. S., OVCHINNIKOV, K. V., TØNNESEN, H. H., CARLSEN, H. & DIEP, D. B.
806 2020. The Increasing Issue of Vancomycin-Resistant Enterococci and the Bacteriocin
807 Solution. *Probiotics and Antimicrobial Proteins*, 12, 1203-1217.

808 REYES, J., PANESSO, D., TRAN, T. T., MISHRA, N. N., CRUZ, M. R., MUNITA, J. M.,
809 SINGH, K. V., YEAMAN, M. R., MURRAY, B. E., SHAMOO, Y., GARSIN, D.,
810 BAYER, A. S. & ARIAS, C. A. 2015. A *liaR* deletion restores susceptibility to
811 daptomycin and antimicrobial peptides in multidrug-resistant *Enterococcus faecalis*. *J*
812 *Infect Dis*, 211, 1317-25.

813 SABAT, A. J., TINELLI, M., GRUNDMANN, H., AKKERBOOM, V., MONACO, M., DEL
814 GROSSO, M., ERRICO, G., PANTOSTI, A. & FRIEDRICH, A. W. 2018. Daptomycin
815 Resistant *Staphylococcus aureus* Clinical Strain With Novel Non-synonymous

Manuscript main text

816 Mutations in the mprF and vraS Genes: A New Insight Into Daptomycin Resistance.
817 *Frontiers in microbiology*, 9, 2705-2705.

818 SCHUMANN, W. 2016. Regulation of bacterial heat shock stimulons. *Cell Stress*
819 *Chaperones*, 21, 959-968.

820 SHOEMAKER, D. M., SIMOU, J. & ROLAND, W. E. 2006. A review of daptomycin for
821 injection (Cubicin) in the treatment of complicated skin and skin structure infections.
822 *Therapeutics and clinical risk management*, 2, 169-174.

823 SINEL, C., COSQUER, T., AUZOU, M., GOUX, D., GIARD, J.-C. & CATTOIR, V. 2016.
824 Sequential steps of daptomycin resistance in *Enterococcus faecium* and reversion to
825 hypersusceptibility through IS-mediated inactivation of the liaFSR operon. *Journal of*
826 *Antimicrobial Chemotherapy*, 71, 2793-2797.

827 SONG, X., SRINIVASAN, A., PLAUT, D. & PERL, T. M. 2003. Effect of nosocomial
828 vancomycin-resistant enterococcal bacteremia on mortality, length of stay, and costs.
829 *Infect Control Hosp Epidemiol*, 24, 251-6.

830 STEENBERGEN, J. N., ALDER, J., THORNE, G. M. & TALLY, F. P. 2005. Daptomycin: a
831 lipopeptide antibiotic for the treatment of serious Gram-positive infections. *J*
832 *Antimicrob Chemother*, 55, 283-8.

833 STINEMETZ, E. K., GAO, P., PINKSTON, K. L., MONTEALEGRE, M. C., MURRAY, B. E. &
834 HARVEY, B. R. 2017. Processing of the major autolysin of *E. faecalis*, AtlA, by the
835 zinc-metalloprotease, GelE, impacts AtlA septal localization and cell separation. *PloS*
836 *one*, 12, e0186706-e0186706.

837 SULAIMAN, J. E. & LAM, H. 2021. Novel Daptomycin Tolerance and Resistance Mutations
838 in Methicillin-Resistant *Staphylococcus aureus* from Adaptive Laboratory Evolution.
839 *mSphere*, 6, e0069221.

840 SUOMI, T., SEYEDNASROLLAH, F., JAAKKOLA, M. K., FAUX, T. & ELO, L. L. 2017.
841 ROTs: An R package for reproducibility-optimized statistical testing. *PLOS*
842 *Computational Biology*, 13, e1005562.

843 TAYLOR, S. D. & PALMER, M. 2016. The action mechanism of daptomycin. *Bioorganic &*
844 *Medicinal Chemistry*, 24, 6253-6268.

Manuscript main text

845 TRAN, T. T., MUNITA, J. M. & ARIAS, C. A. 2015. Mechanisms of drug resistance:
846 daptomycin resistance. *Ann N Y Acad Sci*, 1354, 32-53.

847 TRAN, T. T., PANESSO, D., GAO, H., ROH, J. H., MUNITA, J. M., REYES, J., DIAZ, L.,
848 LOBOS, E. A., SHAMOO, Y., MISHRA, N. N., BAYER, A. S., MURRAY, B. E.,
849 WEINSTOCK, G. M. & ARIAS, C. A. 2013a. Whole-Genome Analysis of a
850 Daptomycin-Susceptible *Enterococcus faecium* Strain and Its Daptomycin-Resistant
851 Variant Arising during Therapy. *Antimicrobial Agents and Chemotherapy*, 57, 261-
852 268.

853 TRAN, T. T., PANESSO, D., MISHRA, N. N., MILEYKOVSAYA, E., GUAN, Z., MUNITA, J.
854 M., REYES, J., DIAZ, L., WEINSTOCK, G. M., MURRAY, B. E., SHAMOO, Y.,
855 DOWHAN, W., BAYER, A. S. & ARIAS, C. A. 2013b. Daptomycin-resistant
856 *Enterococcus faecalis* diverts the antibiotic molecule from the division septum and
857 remodels cell membrane phospholipids. *MBio*, 4.

858 VOLLMER, W., JORIS, B., CHARLIER, P. & FOSTER, S. 2008. Bacterial peptidoglycan
859 (murein) hydrolases. *FEMS Microbiol Rev*, 32, 259-86.

860 WANG, G., YU, F., LIN, H., MURUGESAN, K., HUANG, W., HOSS, A. G., DHAND, A., LEE,
861 L. Y., ZHUGE, J., YIN, C., MONTECALVO, M., DIMITROVA, N. & FALLON, J. T.
862 2018. Evolution and mutations predisposing to daptomycin resistance in vancomycin-
863 resistant *Enterococcus faecium* ST736 strains. *PLOS ONE*, 13, e0209785.

864 WEINER, L. M., WEBB, A. K., LIMBAGO, B., DUDECK, M. A., PATEL, J., KALLEN, A. J.,
865 EDWARDS, J. R. & SIEVERT, D. M. 2016. Antimicrobial-Resistant Pathogens
866 Associated With Healthcare-Associated Infections: Summary of Data Reported to the
867 National Healthcare Safety Network at the Centers for Disease Control and
868 Prevention, 2011-2014. *Infect Control Hosp Epidemiol*, 37, 1288-1301.

869 WIEGAND, I., HILPERT, K. & HANCOCK, R. E. 2008. Agar and broth dilution methods to
870 determine the minimal inhibitory concentration (MIC) of antimicrobial substances. *Nat
871 Protoc*, 3, 163-75.

872 YEPES, A., SCHNEIDER, J., MIELICH, B., KOCH, G., GARCÍA-BETANCUR, J. C.,
873 RAMAMURTHI, K. S., VLAMAKIS, H. & LÓPEZ, D. 2012. The biofilm formation
874 defect of a *Bacillus subtilis* flotillin-defective mutant involves the protease FtsH. *Mol
875 Microbiol*, 86, 457-71.

Manuscript main text

876 ZARB, P., COIGNARD, B., GRISKEVICIENE, J., MULLER, A., VANKERCKHOVEN, V.,
877 WEIST, K., GOOSSENS, M. M., VAERENBERG, S., HOPKINS, S., CATTRY, B.,
878 MONNET, D. L., GOOSSENS, H., SUETENS, C., NATIONAL CONTACT POINTS
879 FOR THE ECDC PILOT POINT PREVALENCE SURVEY, C. & HOSPITAL
880 CONTACT POINTS FOR THE ECDC PILOT POINT PREVALENCE SURVEY, C.
881 2012. The European Centre for Disease Prevention and Control (ECDC) pilot point
882 prevalence survey of healthcare-associated infections and antimicrobial use.
883 *Eurosurveillance*, 17, 20316.

884

885

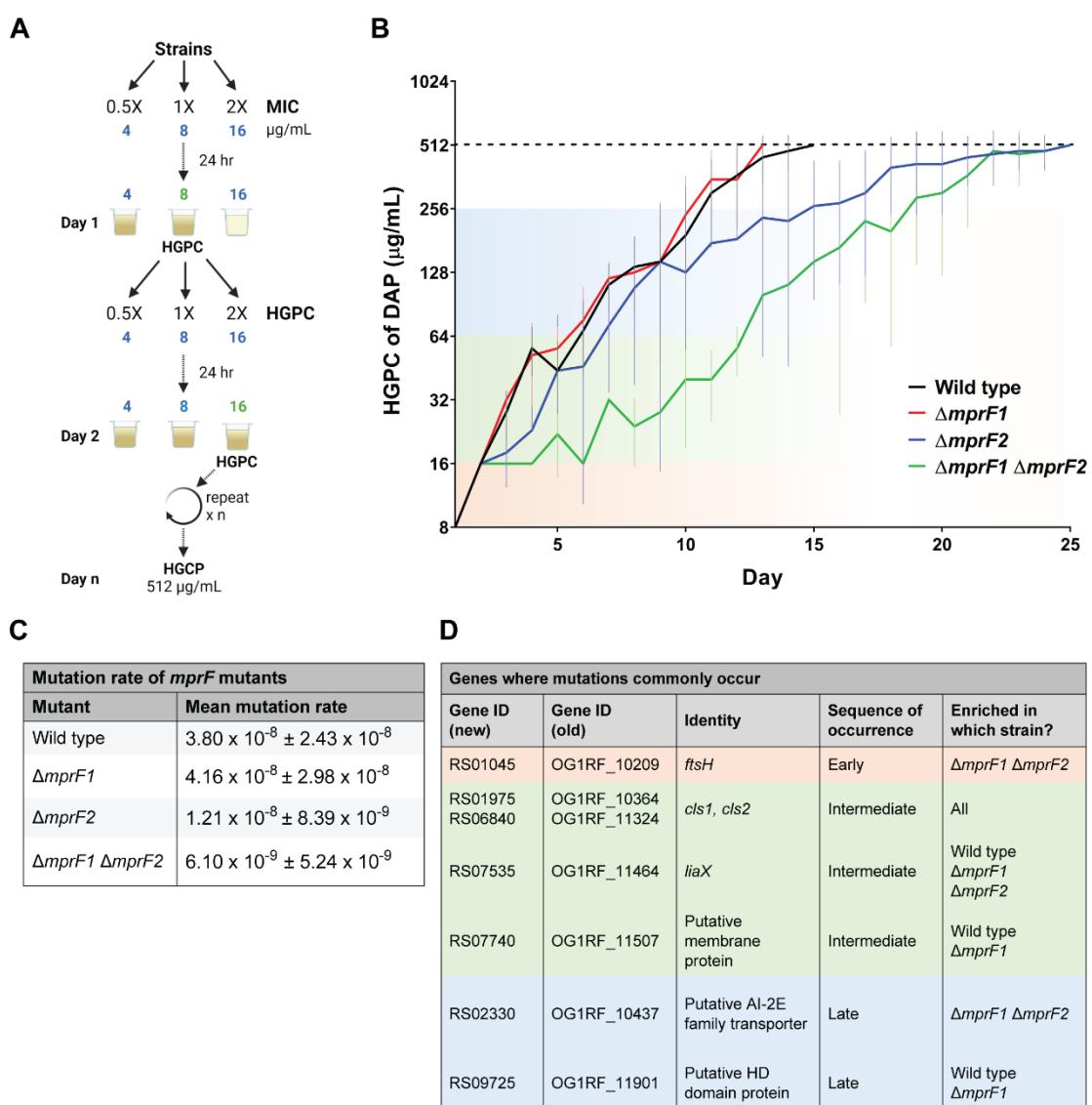
Manuscript main text

886 **Tables**

Table 1. Daptomycin Minimal Inhibitory Concentrations (MICs)	
Strain	MIC in BHI (μg/mL)
Wild type <i>E. faecalis</i> (OG1RF)	4 – 8
$\Delta mprF1$	4 – 8
$\Delta mprF2$	2 – 4
$\Delta mprF1 \Delta mprF2$	2
$\Delta mprF1 \Delta mprF2$ passage control	16
$\Delta mprF1 \Delta mprF2 ftsH(G37X)$	8
<i>trePP</i> ::Tn	4
<i>gelE</i> ::Tn	4
<i>yckE</i> ::Tn	4
<i>cryZ</i> ::Tn	4
<i>hrcA</i> ::Tn	2
<i>lutA</i> ::Tn	4
<i>carB</i> ::Tn	4
<i>dnaJ</i> ::Tn	4
<i>groEL</i> ::Tn	8
$\Delta dnaK$	4

887

Manuscript main text


Table 2. Proteomic changes in FtsH-LoF (wild type p6his-FtsH(H456Y))[†]

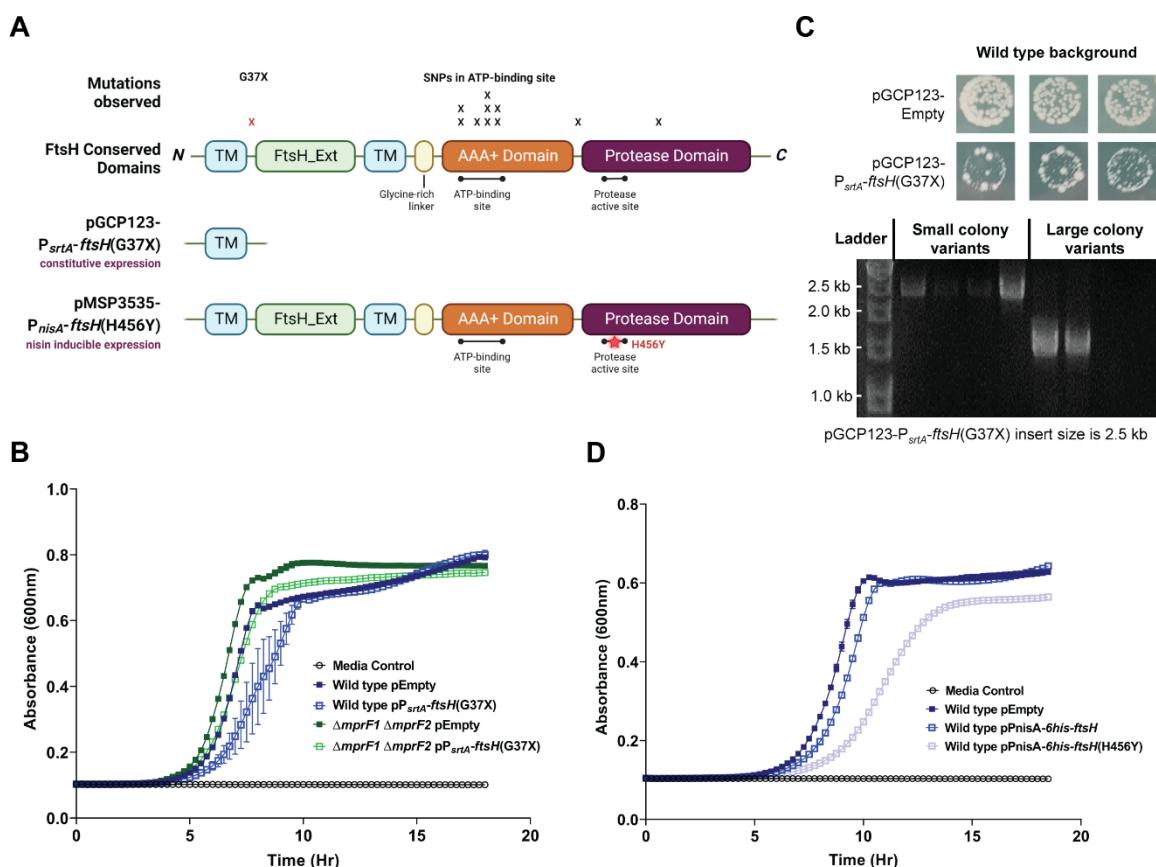
Depleted Proteins				
Gene	Gene Number (new; old ID)	Identity	Proteomic $\log_2\text{FC}$	RNAseq $\log_2\text{FC}$
<i>yckE</i>	RS05275; OG1RF_11014	beta-glucosidase	-2.77	-
<i>lysS</i>	RS01060; OG1RF_10212	lysine-tRNA ligase	-2.69	-
<i>pyrB</i>	RS07365; OG1RF_11430	aspartate carbamoyltransferase	-2.54	-
<i>lutA</i>	RS04635; OG1RF_10886	putative lactate utilization Fe-S protein; homologous to <i>B. subtilis</i> <i>lutA</i>	-2.01	1.22
<i>gelE</i>	RS07835; OG1RF_11526	gelatinase E	-1.95	-
<i>trePP</i>	RS12410; OG1RF_12425	glycosyl hydrolase	-1.86	-
<i>carB</i>	RS07350; OG1RF_11427	carbamoyl-phosphate synthase large subunit	-1.69	0.67
<i>cryZ</i>	RS07135; OG1RF_11383	putative NADPH:quinone reductase	-1.67	-
<i>hrcA</i>	RS05580; OG1RF_11076	heat-inducible transcription repressor HrcA	-1.56	-
Accumulated Proteins				
Gene	Gene Number (new; old ID)	Identity	Proteomic $\log_2\text{FC}$	RNAseq $\log_2\text{FC}$
<i>arcB</i>	RS00500; OG1RF_10100	ornithine carbamoyltransferase	2.53	-0.89
RS08610	RS08610; OG1RF_11679	metal ABC transporter substrate-binding protein	1.14	-1.59
<i>cls1</i>	RS01975; OG1RF_10364	cardiolipin synthase 1	2.46	-
RS02510	RS02510; OG1RF_10473	amidase	2.36	-

888 [†] Proteomic changes that are not correlated to transcriptomic differences are displayed. Short list of
 889 proteomic changes which are common across membrane fractions and whole cell lysates. Refer to
 890 **supplementary excel file S1D, E** for full list of proteomic changes in membrane fractions and whole
 891 cell lysates respectively. Refer to **supplementary excel file S1C** for RNAseq data that was used to
 892 filter proteomic changes that were correlated with transcriptomic expression changes.

Manuscript main text

893 **Figures & figure legends**

894

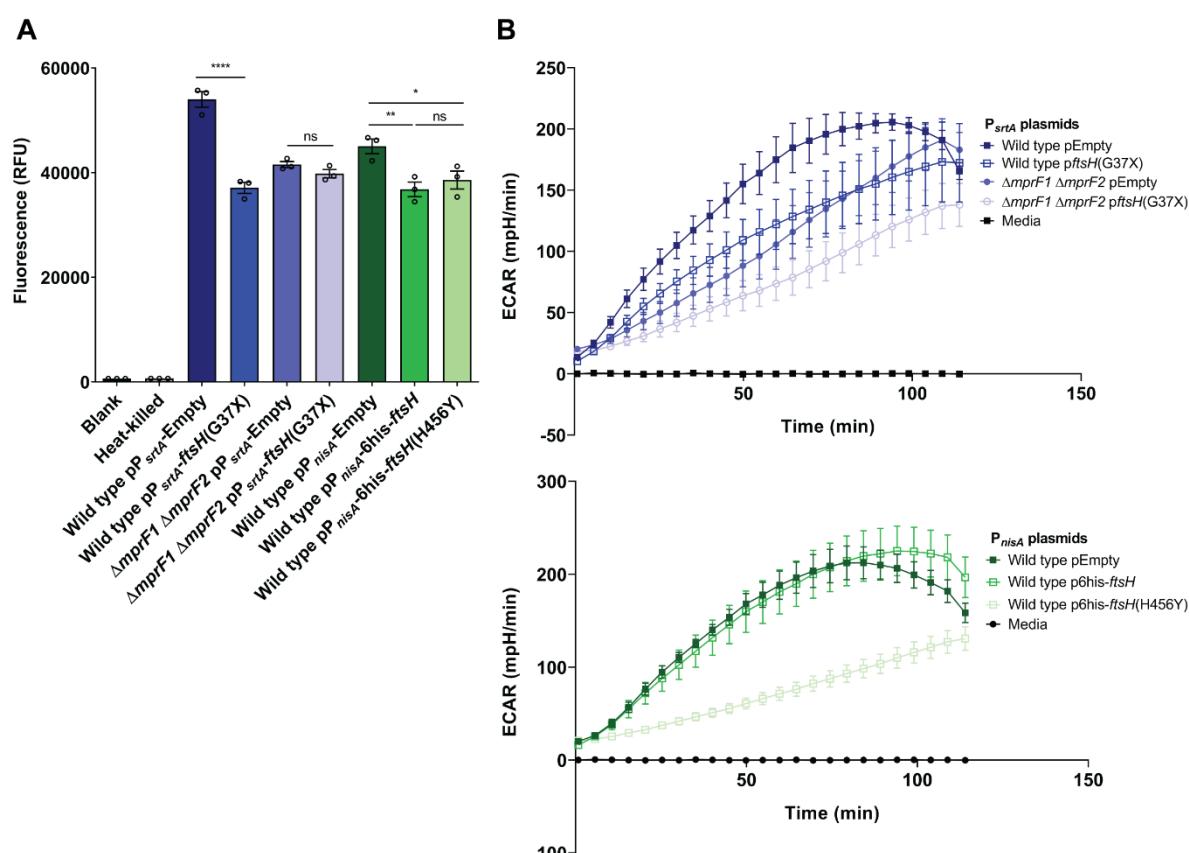

Early, $\leq 16 \mu\text{g/mL}$; Intermediate, $\leq 64 \mu\text{g/mL}$; Late, $\leq 256 \mu\text{g/mL}$

895 **Figure 1. *In vitro* evolution of *mprF* mutants to DAP^R reveal novel mutations. (A)** Workflow for *in vitro* evolution. Strains to be evolved were first grown in media supplemented with 0.5X, 1X or 2X their 896 respective DAP MIC (e.g., 4, 8, 16 µg/mL) for 24 hours. The highest concentration of DAP that 897 allowed for growth is termed the highest growth permissive concentration (HGPC) (e.g., 8 µg/mL). In 898 the following passage, the HGPC culture was subcultured at 0.5X, 1X, 2X the HGPC of DAP (e.g., 4, 899 8, 16 µg/mL). This is repeated continually until an endpoint HGPC of 512 µg/mL of DAP was 900 achieved. **(B)** The mean HGPC of daptomycin over time for each strain is plotted against time. Error 901 bars indicate standard deviation from 8 parallel lines of evolution. **(C)** Mean mutation rate with 902 standard deviation of *mprF* mutants assayed by the Luria-Delbrück fluctuation assay from 3 903 independent experiments. **(D)** Whole genome sequencing across evolution reveals an ordered 904 progression of acquired mutations, with enrichment of some mutants in specific mutant backgrounds. 905 The sequence of occurrence of mutations is based of DAP HGPC where the mutation first occurred 906

Manuscript main text

907 (early, $\leq 16 \mu\text{g/mL}$; intermediate, $\leq 64 \mu\text{g/mL}$; Late, $\leq 256 \mu\text{g/mL}$). Detailed information of all mutations
908 observed are displayed relative to sequence of occurrence in evolution in **supplementary excel file**
909 **S1A**, and relative to number of observed occurrences per gene in **supplementary excel file S1B**.

Manuscript main text

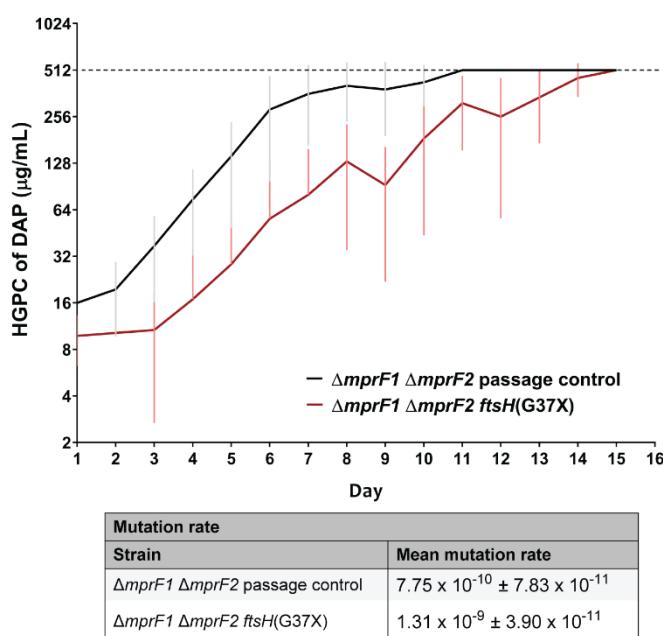


910

911 **Figure 2. Mutations in *ftsH* are conditionally permissible in $\Delta mprF1 \Delta mprF2$.** (A) Map of single
 912 nucleotide polymorphism (SNP) mutations frequently observed in *ftsH* through evolution overlaid on
 913 where they occur with reference to conserved domains of FtsH. Diagrams showing the *ftsH* variants
 914 expressed – truncated FtsH(G37X) under constitutive expression (P_{srtA}) or full length but
 915 proteolytically inactive FtsH(H456Y) under nisin inducible expression (P_{nisA}). Created with
 916 BioRender.com. (B) Growth curves of wild type and $\Delta mprF1 \Delta mprF2$ with *ftsH*(G37X) expression. (C)
 917 *ftsH*(G37X) expression results in small and large colony variants in the wild type, where large colony
 918 variants show reduced/absent inserts within the expression vector. (D) Growth curves of the wild type
 919 with induced expression of either active *ftsH* or proteolytically inactive *ftsH*(H456Y).

Manuscript main text

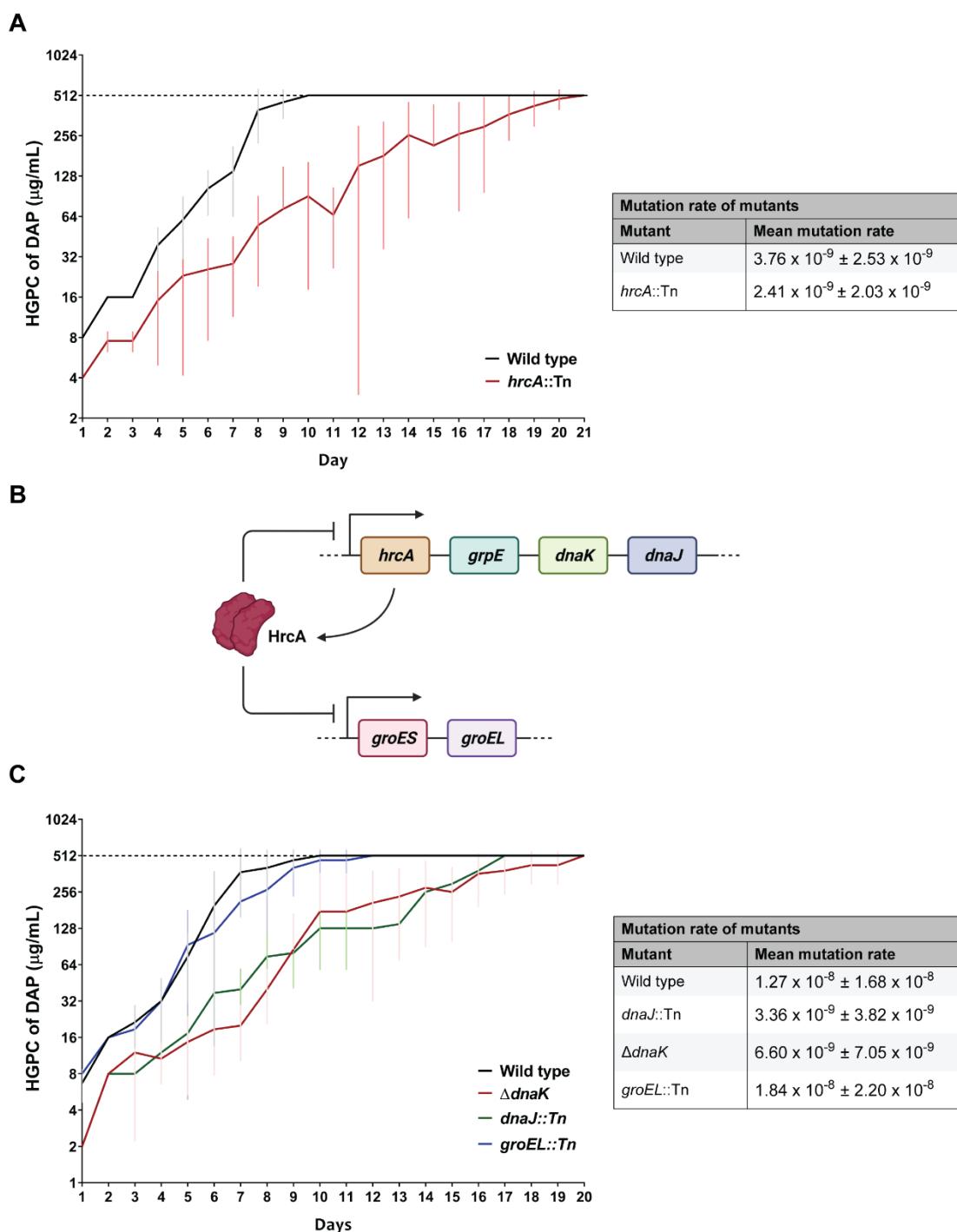
920



921

922 **Figure 3. FtsH loss of function (FtsH-LoF) leads to metabolic changes. (A)** Alamar blue assay
923 measuring reductive metabolism of the FtsH-LoF strains. Larger relative fluorescence units (RFU)
924 values indicate higher activity of metabolic reduction. Error bars represent the standard error of mean
925 from 3 biological replicates. Tukey's test for ANOVA. *, p<0.05; ****, p<0.0001. **(B)** Extracellular
926 acidification rate (ECAR) quantified from *ftsH* loss of function strains using the Agilent Seahorse
927 assay as an indirect measure of glycolysis. Error bars represent the standard error of mean from 4
928 biological replicates. Constructs in pP_{nisA} plasmids are under a nisin inducible promoter induced with
929 25 ng/mL nisin.

930

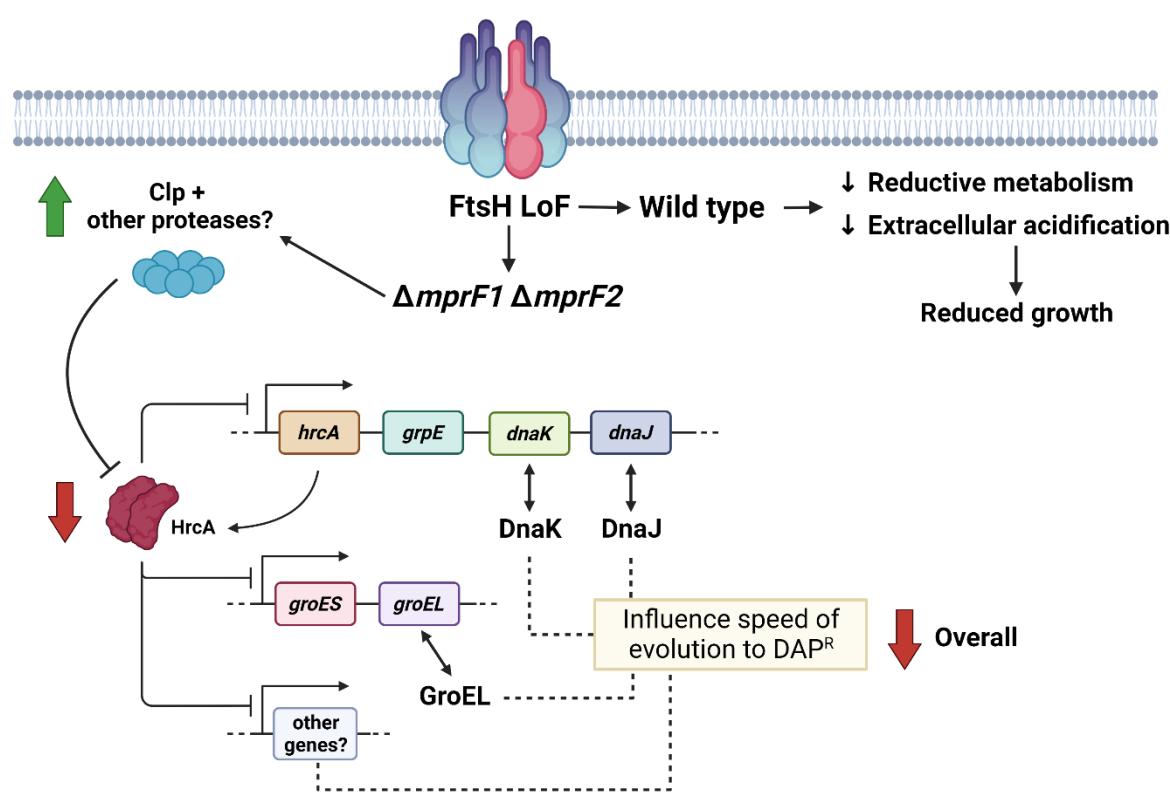

Manuscript main text

931

932 **Figure 4. FtsH-LoF slows speed of evolution to DAP^R and decreases basal mutation rates in**
933 **the $\Delta mprF1 \Delta mprF2$.** Mean highest growth permissive concentration (HGPC) of DAP across time
934 from in vitro evolution of $\Delta mprF1 \Delta mprF2 ftsH(\text{G37X})$ and $\Delta mprF1 \Delta mprF2$ passage control to DAP^R
935 of HGPC of 512 $\mu\text{g/mL}$ DAP. Error bars indicate standard deviation from 9 parallel lines of evolution.
936 Mean mutation rate assayed by the Luria-Delbrück fluctuation assay from 3 biological replicates
937 where mean mutation rate is displayed together with standard deviation.

Manuscript main text

938


939 **Figure 5. Disruption of HrcA and its target regulatory chaperones alters speed of DAP^R**
940 **acquisition.** Mean highest growth permissive concentration (HGPC) of DAP across time from *in vitro*
941 evolution to DAP^R (HGPC of 512 µg/mL DAP) for (A) *hrcA*::Tn, and (C) chaperone mutants – $\Delta dnaK$,
942 *dnaJ*::Tn, *groEL*::Tn. Error bars indicate standard deviation from 9 parallel lines of evolution for (A)
943 and 6 parallel lines of evolution for (C). Evolution was performed using an expanded antibiotic
944 selection range of 0.5X, 1X, 2X, 4X, 8X HGPC instead. Mean mutation rate on the right side of each
945 graph assayed by the Luria-Delbrück fluctuation assay from 3 biological replicates where mean
946 mutation rate is displayed together with standard deviation. (B) Model of the HrcA regulon, where

Manuscript main text

947 HrcA negatively regulates the *hrcA-grpE-dnaK-dnaJ* and *groES-groEL* operons. Created with
948 BioRender.com.

Manuscript main text

949

950

951 **Figure 6. Model of FtsH's influence on speed of DAP^R evolution and reduced growth in the**
952 **wildtype.** FtsH loss of function (LoF) indirectly leads to an increase in the Clp protease. This along
953 with other proteases likely results in depletion of HrcA which relieves repression of the chaperone
954 operons (*hrcA-grpE-dnaK-dnaJ* and *groES-groEL*). Further investigation revealed that *dnaK*, *dnaj*
955 influence the speed of DAP^R evolution. This combined with the extended regulatory effects of *hrcA* on
956 other genes likely results in an overall combined effect of decreased evolution speed. FtsH-LoF also
957 results in metabolic changes such as decreased ability for acidification and reductive metabolism that
958 could be partly responsible for the reduced growth in the wild type. Created with BioRender.com.