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2 

Abstract 30 

Background: Endolithic niches offer an ultimate refuge, supplying buffered conditions for 31 

microorganisms that dwell inside rock airspaces. Yet, survival and growth strategies of 32 

Antarctic endolithic microbes residing in Earths’ driest and coldest desert remains virtually 33 

unknown.  34 

 35 

Results: From 109 endolithic microbiomes, 4,539 metagenome-assembled genomes were 36 

generated, 49.3% of which were novel candidate bacterial species. We present evidence that 37 

trace gas oxidation and atmospheric chemosynthesis may be the prevalent strategies supporting 38 

metabolic activity and persistence of these ecosystems at the fringe of life and the limits of 39 

habitability. 40 

 41 

Conclusions: These results represent the foundation to untangle adaptability at the edge of 42 

sustainability on Earth and on other dry Earth-like planetary bodies such as Mars.  43 

  44 
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3 

Main  45 

Permanently ice-free areas cover less than 1% of the Antarctic continent1 and include the 46 

coldest, driest and the most oligotrophic environments of Earth. Even so, Antarctic rocks are 47 

unexplored and isolated ecosystems that support highly diverse microbial communities; in such 48 

regions, highly adapted life forms subjected to a combination of poly-stresses still perpetuate2,3. 49 

Endolithic niches offer an ultimate refuge, supplying buffered conditions for microorganisms 50 

that dwell inside rock airspaces4.  51 

Endolithic communities constitute simple food webs of varying complexity. Lichen-associated 52 

or free-living chlorophycean algae and Cyanobacteria function as primary producers, whilst 53 

fungi and more heterotrophic bacteria and support key ecosystem services such as nutrient 54 

cycling, rock weathering, and proto-soil formation5,6. Recent scientific studies considerably 55 

advanced our understanding of endolithic microbial biodiversity, environmental preferences, 56 

and extraordinary resistance to multiple stresses5,7–9. However, despite a number of studies 57 

being conducted at the community level, we still lack the most basic knowledge of how 58 

Antarctic endoliths survive the challenging conditions. A comprehensive genome catalog is the 59 

necessary first step to clarify the metabolic features and capabilities of these microorganisms 60 

and to elucidate how they survive such harsh conditions. Learning more about life under the 61 

extreme conditions is critical towards defining the fringe of habitability on Earth10. 62 

 63 

To address this knowledge gap, we conducted a field survey including 109 endolithically 64 

colonized rocks, covering a wide plethora of regions and environments found in ice-free 65 

Antarctica, which includes a broad range of geo-environmental (e.g. altitudinal gradient, 66 

different rock typologies) and geographical distributions (i.e. Antarctic Peninsula, Northern 67 

Victoria Land, and McMurdo Dry Valleys; Figure 1a-c; Supplementary Table S1). We herein 68 

present the first Antarctic Rock Genomes Catalog (ARGC), which is the most comprehensive 69 

resource of bacterial metagenome-assembled genomes (MAGs) from terrestrial Antarctica to 70 

date. 71 

 72 

Following quality filtering (see Online Methods), 2,636 high-quality (HQ with ≥90% 73 

completeness and <5% contamination) and 1,903 medium-quality (MQ with ≥50% 74 

completeness and <10% contamination) bacterial MAGs were classified (Figure 1d; 75 

Supplementary Table S2, Supplementary Figures S1-5). The ARGC provides a complete 76 

picture of sandstone microbiomes across Antarctica, as revealed by the accumulation curves, 77 
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which indicate that most species were retrieved; whilst, diversity in granite require further 78 

elucidation (Supplementary Figure S5). MAGs were then grouped at 95% average nucleotide 79 

identity (ANI) into 2,278 species-level bacterial operational taxonomic units (OTUs) (Figure 80 

1e, f), 8.6 times more than previously reported8. All the OTUs can be assigned to known phyla, 81 

while 2,277, 2,262, 2,164 (95%), and 1,433 (63%) to known classes, orders, families and 82 

genera, respectively. Notably, 98.3% of species-level OTUs were distinct from the Genome 83 

Taxonomy Database (GTDB) reference genomes, representing 2,239 new candidate species 84 

(Figure 1e; Supplementary Table S3). On a phyla level, Actinobacteriota and Proteobacteria 85 

were dominant, with many new genomes of Acidobacteriota, Chloroflexota, and Bacteroidota 86 

also uncovered. Actinomycetia and Thermoleophilia, Alphaproteobacteria, and Chloroflexia 87 

classes were the most abundant and recurrent in the dataset (Figure 1g, Supplementary Figure 88 

S6; Supplementary Tables S4, S5). The dominant orders were Mycobacteriales (38%), 89 

Actinomycetales (15%), Solirubrobacterales (14%), Acetobacterales (12%), and 90 

Thermomicrobiales (7%)  (Supplementary Table S6, S7).  91 
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 92 
Figure 1. a-c, Map of Antarctica (a) and sampling sites (Victoria Land, b; Peninsula, c) (red dots). d, 93 
Number of MAGs and their quality-based classification. e, Upper bar plot: number of unclassified 94 
OTUs. Bottom bar plot: number of species, genera, families, orders, classes and phyla. f, Phylogenetic 95 
tree of the 2,278 OTUs built from the multiple sequence alignment of 120 GTDB marker genes. Barplot 96 
in the outer circle indicates the number of samples in which each OTUs was found. g, Phylum-level 97 
Mash Screen multiplicity for each sample, indicating sequence coverage. Horizontal lines represent the 98 
median values. The occupancy value indicates the percentage of samples that contains the underlying 99 
phylum. h, Number of OTUs as a function of the number of rock samples. 100 
 101 

 102 

To predict metabolic competencies, we retrieved 16,830,059 protein coding sequences (CDS) 103 

based on Prodigal analysis (see Methods). These CDS were dereplicated into 9,632,227, 104 

6,997,885, 4,538,534 protein clusters using MMseqs2 with identity thresholds of 95%, 80% 105 

and 50% respectively. Moreover, 50% protein cluster representatives were searched against the 106 

UniProt Reference Clusters11 (UniRef, see Methods); since only 52.4% of the proteins 107 

displayed at least one match within the database, this resource should lay the foundation for 108 

future Antarctic terrestrial catalog. 109 
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During functional analysis, we focused on two widespread survival and growth strategies that 110 

allow microbiomes to persevere in extreme, oligotrophic environments; autotrophic 111 

metabolism, particularly trace gas chemosynthesis, and cold resistance adaptations. In cold 112 

edaphic deserts, energy generation through trace gas oxidation supports both microbial 113 

persistence and growth, with increased carbon fixation activity observed with aridity12–14. 114 

However, the significance of this strategy to endolithic microbiomes where photosynthetic 115 

microorganisms are more prevalent is questionable15.  116 

High-affinity [NiFe]-hydrogenase genes, including forms 1h, 1l, 1m and 2a, are widely 117 

represented in our dataset, occurring in 41.1% of all dereplicated MAGs, including Ca. 118 

Dormibacterota (88.9%), Eremiobacterota (80.2%), Actinobacteriota (59.1%), 119 

Gemmatimonadota (57.1%), Chloroflexota (53.0%), Acidobacteriota (43.9%), 120 

Verrucomicrobiota (25.8%), Planctomycetota (13.4%), Cyanobacteria (7.5%), Bacteroidota 121 

(7.3%), Proteobacteria (6.1%), and Armatimonadota (4.8%) (Figure 2).  The oxidation of trace 122 

levels of hydrogen gas plays a key role for persistence in dormant state and is a wide- spread 123 

ability in both Bacteria and Archaea in terrestrial and marine ecosystems16,17. The same strategy 124 

may be therefore crucial to support endolithic microbiomes whose active metabolism is, as 125 

average, limited to 1,000 h per year only18. 126 

Autotrophic metabolisms are vital under such strict oligotrophic conditions and were indeed 127 

pervasive amongst the bacterial MAGs uncovered. Specifically, representatives from 7 of the 128 

15 phyla presented signatures for carbon fixation. Phototrophic metabolism, mostly largely 129 

present in Cyanobacteria, is based on photolysis and requires water to take place. Evidence 130 

presented here suggests that trace gas oxidation may produce enough energy to not only support 131 

persistence but also to fuel the CBB cycle in a subset of the residing bacterial taxa, through the 132 

process of atmospheric chemosynthesis. This process is limited to cold soil deserts, while 133 

scarce to no carbon fixation activity has been observed yet in other environments14,19. Here we 134 

provide first-time evidence that atmospheric chemosynthesis could be extended to endolithic 135 

populations and may be a key adaptation for Carbon organization under highly dry conditions, 136 

with this process also proposed to be water-producing20. High-affinity [NiFe]-hydrogenases 137 

co-occurred alongside light-independent RuBisCO (1E/D)  in 72.2% of Ca. Dormibacterota, 138 

62.3% of Eremiobacterota, 20.6% of Actinobacteriota, 8.8% of Chloroflexota, 2.9% of 139 

Gemmatimonadota and 2.5% of Proteobacteria MAGs (Supplementary Figure S7), with 140 

RuBisCO form IE dominant accounting for 92.7% of those detected. These genetic indicators 141 
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suggest that atmospheric chemosynthesis, as a fundamental process for primary production in 142 

hyper-arid cold environments, may be extended beyond soils to endolithic niches. RuBisCO 143 

form ID, showing a CO2 high affinity, is better adapted to a higher O2/CO2 ratio and requires 144 

less energetic or nutrient investment to attain high carboxylation rates; this finding suggests 145 

that, although uncommon, other RuBisCO forms may play a role in this chemoautotrophic 146 

process21. We propose that the plethora of RuBisCO forms found, displaying various 147 

efficiency, specificities, and affinities, enables the community to modulate its activity shifting 148 

from dormant to active state; this is paramount to adapt and exploit extreme and fluctuating 149 

microenvironments.  150 

 151 

 152 

Figure 2. Maximum likelihood phylogenetic tree of [NiFe]-hydrogenase gene sequences obtained from 153 

our MAGs (n = 2433), with reference sequences obtained from the HydB and previous phylogenetic 154 

analysis. Branches and reference gene labels are colored according to the group of [NiFe]-hydrogenase. 155 

Bootstrap values >90% are depicted as filled circles on branches, with size reflecting value, and 1000 156 

ultrafast bootstrap iterations applied. The phyla of the originating MAGs assembled in this study are 157 

displayed in a color-coded outer ring. In cases where RuBisCO large subunit gene/s co-occurred within 158 

these genomes, the proportion of forms present is indicated by external pie charts. 159 
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Aerobic respiration was predominant among endolithic MAGs (Supplementary Table S8; 160 

Figure 3); yet, the ability to use alternative e- acceptors via formate dehydrogenase, were 161 

limited to rare phyla, particularly in Thermoanaerobaculia, which was composed of one single 162 

family of anaerobic bacteria.  The presence of additional chemosynthetic pathways, alternative 163 

to atmospheric chemosynthesis, using e- donors via Arsenate reductase were also found in a 164 

few (7) phyla, particularly abundant in Bacilli. This plethora of abilities to exploit various e- 165 

donors or acceptors increase the possibility of adaptability and survival of the whole 166 

community. 167 

 168 

Lastly, below-freezing temperatures are a main challenge to life that can influence metabolic 169 

activity; reaching temperatures as low as -89°C, Antarctica is the coldest continent on the 170 

planet. We found that Antarctic endolithic bacteria encompass an innate adaptive capacity to 171 

cope with life in the persistent cold and the associated stresses. In fact, well-established genes 172 

involved in cold adaptation such as anti-freezing proteins (AFPs; e.g. 05934, K03522, K02959, 173 

K02386, K01993, K01934, K00658, K00627, K00324) were ubiquitous in all rock typologies 174 

and across all sampled areas (Supplementary Figure S8). This highlights the pivotal role of 175 

cold adaptation for survival at temperatures below 0°C22,23.  176 

 177 
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Figure 3. Metabolic potential of the species-level OTUs in Antarctic endolithic communities. The 178 
squared green cells represent the proportion of HQ OTUs in each class estimated to encode a particular 179 
metabolism. The analysis includes 1503 HQ OTUs partitioned in 37 classes and 15 phyla (blue 180 
rectangles), encompassing 30 key metabolisms partitioned in 9 categories (orange rectangles). NiFe-re 181 
and NiFe-ox indicates NiFe hydrogenases involved in H2 production (groups 3 and 4) H2 oxidation 182 
(groups 1 and 2a) respectively. 183 

 184 

Conclusions 185 

Our study provides novel insights on the diversity of endolithic bacterial taxa thriving in the 186 

prohibitive conditions of Antarctica, and further identified survival strategies supporting their 187 

endurance at the limit of habitability. This resource represents the largest effort to date to 188 

capture the breadth of bacterial genomic diversity from Antarctic rocks. For the first time, we 189 

also unearthed the key and targeted adaptation strategies that allow microbes to spread and 190 

perpetuate in the harshest ecosystems. These results represent the foundation to untangle 191 

adaptability at the edge of sustainability on Earth and on other dry Earth-like planetary bodies 192 

such as Mars. This is also critical to inform us on the fate of microbial life in a warming and 193 

drying world. 194 
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