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Abstract 
 
Meta-omics has become commonplace in the study of microbial eukaryotes. The 
explosion of available data has inspired large-scale analyses, including species or 
taxonomic group distribution mapping, gene catalog construction, and inference on the 
functional roles and activities of microbial eukaryotes in situ. However, genome and 
transcriptome databases are prone to misannotation biases, and meta-omic inventories 
may have no recoverable taxonomic annotation for more than half of assembled contigs 
or predicted proteins. Direct mapping solely to organisms of interest might introduce a 
problematic misattribution bias, while full databases can annotate any cataloged 
organism but may be imbalanced between taxa. Here, we explore the potential pitfalls 
of common approaches to taxonomic annotation of protistan meta-omic datasets. We 
argue that ongoing curation of genetic resources is critical in accurately annotating 
protists in situ in meta-omic datasets. Moreover, we propose that precise taxonomic 
annotation of meta-omic data is a clustering problem rather than a feasible alignment 
problem. We show that taxonomic membership of sequence clusters demonstrates 
more accurate estimated community composition than returning exact sequence labels, 
and overlap between clusters can address database shortcomings. Clustering 
approaches can be applied to diverse environments while continuing to exploit the 
wealth of annotation data collated in databases, and database selection and evaluation 
is a critical part of correctly annotating protistan taxonomy in environmental datasets. 
We re-analyze three environmental datasets at three levels of taxonomic hierarchy in 
order to illustrate the critical importance of both database completeness and curation in 
enabling accurate environmental interpretation. 
 
Main 
 

Protists (microbial eukaryotes) are ubiquitous and essential organisms that 
provide multifarious ecosystem services, ranging from interactions with other microbes 
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to impact on global biogeochemical cycles1–5. Protists have complex ecosystem roles 
and morphology, and often bridge seemingly disparate scales of interactions, which 
makes them difficult to visually differentiate yet critical to census for a complete 
understanding of ecosystem ecology1,3,4.   

Molecular surveys of microbial communities have allowed researchers to 
characterize taxonomic diversity without microscopy or imaging. Computational 
approaches are used to assess the taxonomic composition of metagenomic or 
metatranscriptomic samples. These may include k-mer profiling of raw reads6–8, direct 
recruitment of raw reads from the meta-omic (community-level) sequencing sample to a 
reference or set of references of interest (e.g. genome, transcriptome, metagenome-
assembled genome (MAG), or single-amplified genome (SAG))9–12, identification and 
recovery of well-known marker genes (e.g., 18S rRNA) from meta-omic raw reads or 
from assembled contigs, followed by phylogenetic alignment and within-sample 
quantification13–16, or sequence search of assembled contigs to a database, using 
match quality and percentage identity cutoffs to assign best-available level of 
confidence to taxonomic annotation of genes17–21. Computational approaches to assign 
taxonomic identities range in the scale over which they can be applied (Supplementary 
Figure 1). 
 
Term/Concept Context Definition 

k-mer profiling Assessing the 
taxonomy of raw 
sequencing reads 

Tools like Kraken 7 that operate directly on raw 
sequencing reads to estimate taxonomic breakdown of a 

community meta-omic sample. 

Sequence 
alignment 

Assessing the 
taxonomy of raw 

sequencing reads or 
assembled contigs 

Arranging assembled sequences or reads alongside 
reference transcriptomes or genomes to identify what the 

assembled sequence/read is most similar to. 

Read recruitment 
to references 

Assessing the 
taxonomy of raw 
sequencing reads 

Mapping raw reads directly to reference transcriptomes or 
genomes without breaking them down into k-mers. The 

proportion of reads recruited to each reference represents 
the taxonomic breakdown of the sample. Recruitment 

may be done just to a few references of interest or to the 
entire available database. 

Assembly Creating contigs from 
raw read sequences 

Using an assembly algorithm to construct contiguous 
sequences from short raw reads. Unlike raw reads, these 
sequences can be functionally annotated and biologically 

interpreted. 

Lowest Common 
Ancestor (LCA) 

Assessing the 
taxonomy of raw 

sequencing reads or 
assembled contigs 

An algorithm used to decide taxonomy based on the most 
specific level of taxonomy shared between two conflicting 

potential taxonomic annotation sources. 

Clustering 
approaches 

Assessing the 
taxonomy of raw 

Instead of one-to-one sequence comparisons, creating 
clusters of sequences or raw reads in order to process a 
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sequencing reads or 
assembled contigs 

dataset and/or infer taxonomy 22–24. Clusters that contain 
only a single reference can be interpreted directly. 

tax-aliquots Assessing the 
taxonomy of 

assembled contigs 

A clustering method introduced in this study that 
combines clustering based on homology with kAAmer 

profiling. Resulting clusters can be set with a 
“permissive”, “intermediate”, or “stringent” threshold, 
corresponding to the internal distance of the clusters 

returned. 

non-self Characterizing 
taxonomic 

classification output 

A sequence search result wherein a “hit” sequence match 
is returned to a different sequence (other than the one 

being considered). This other sequence may or may not 
be a member of the same taxonomic group. 

taxonomically- 
coherent 

Characterizing 
taxonomic 

classification output 

A sequence cluster or set of sequence matches that only 
contains a single taxonomic label at the level of interest. 

taxonomically- 
ambiguous 

Characterizing 
taxonomic 

classification output 

A sequence cluster or set of sequence matches that may 
contain several taxonomic labels at the level of interest. 

 
Table 1. Summary of terms used in the paper to describe methods to annotate meta-
omic sequencing datasets. 
 

All annotation methods share a reliance on databases containing labeled 
sequences from past studies (“reference sequences”), some of which may carry study-
specific features. Environmental microeukaryote meta-omic studies often rely on 
annotations from transcriptomes of cultured representatives of protists12,25–28, and are 
therefore representative of conditions or treatments specific to an experiment. Though 
transcriptomes represent a fraction of the genome, they are more readily available than 
genomes due to the high time and monetary cost of sequencing the large repetitive and 
intergenic regions common to eukaryotes29. Because genetic data are often collected 
when cell densities and expression levels are high, expression profiles may be most 
similar to when the microorganism is dominant and abundant in the field. Moreover, 
reference datasets that include different cell life cycle stages and environmental 
conditions would be ideal to link taxonomic identity to functional role but are not always 
available30. 
 

Here, we highlight three vignettes that span three scales of taxonomic hierarchy 
(genus, family, and phylum) and explore how database-informed taxonomic annotation 
of assembled predicted proteins may be impacted by database composition. We then 
apply a two-stage clustering technique that includes unsupervised clustering to each of 
these data vignettes to demonstrate how such a method may maximize accurate 
classification of sequences at all three taxonomic scales even as databases grow. We 
propose that clustering is essential for understanding the limit of our ability to 
taxonomically annotate de novo assembled sequences. Our method re-poses 
taxonomic annotation as a clustering problem and can be used to improve 
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characterization of community composition at multiple levels of taxonomy, even if a 
complete database is unavailable. 
 

 
 
Figure 2. Effect of different species-level references on the success of genus-level 
identification of Phaeocystis. A: Abundance of metagenomic proteins in each ocean 
basin coassembled from the Tara Oceans dataset annotated to be Phaeocystis by a 
combined database of the colony-forming references (left in each group; purple), a 
combined database of the free-living references (middle in each group; pink), a 
combined database of all Phaeocystis references (right in each group; black). Each 
group of bars represents either the large or the small size fraction samples. B: 
Phylogenetic tree of Phaeocystis references and genomic and transcriptomic outgroups. 
The bars to the right of the tree show the total number of orthogroups in each species 
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that are a, pink or lavender: shared by other members of the same ecotype (colony-
former or free-liver), b, maroon: shared among multiple Phaeocystis species regardless 
of ecotype, or c, white: present only within one species. C: Percentage of sequences 
from the coassembly from the Southern Ocean Tara Oceans samples annotated to be 
Phaeocystis by any of the databases that were annotated as Phaeocystis using (top 
group of two bars) a combined reference database containing all of the free-living 
Phaeocystis references, (middle group of bars) a combined reference database 
containing all of the colony-forming Phaeocystis references, (bottom group of bars) a 
combined reference database containing all Phaeocystis references. The top bar in 
each group (brown) corresponds to the smallest Tara Oceans size fraction, while the 
bottom bar in each group (blue) corresponds to the largest Tara Oceans size fraction. 
D: Identical to Panel C, but for the Tara Oceans samples from the Mediterranean Sea. 
 
Genus: Genetic differentiation between species complicates accurate identification of 
genus-level community composition 
 Species in the haptophyte genus Phaeocystis are genetically related, yet have 
distinctive geographic distributions and morphologies. Phaeocystis antarctica, P. 
globosa, and P. pouchetii are often cold-adapted and form colonies and large blooms at 
high latitudes (“colony-formers”), while P. cordata and P. jahnii are found at mid-
latitudes and do not form colonies (“free-livers”)31–34. We re-analyzed Tara Oceans 
metagenomic samples from the Mediterranean Sea and the Southern Ocean, 
assembling contigs and then annotating using standard lowest common ancestor (LCA) 
algorithm against three modified MMETSP and MarRef databases containing: 1) all 
Phaeocystis references (both colony-formers and free-livers), 2) only the colony-
formers, and 3) only the free-livers; all databases contained non-Phaeocystis taxa. 
Given that all three databases contain Phaeocystis representatives to the genus level, 
our expectation was that all three databases would differentiate Phaeocystis at the 
genus level. In the Southern Ocean where large blooms of P. antarctica are observed, 
79.0% of the total Phaeocystis sequences identified with a combined database were 
identified using the colony-former database, whereas only 11.3% of the Phaeocystis 
sequences were identified using the free-liver database (Figure 2). In the Mediterranean 
Sea where free-livers dominate, 58.8% of Phaeocystis sequences were identified using 
the free-liver database as compared to 39.9% with the colony-former database (Figure 
2). This implies that the presence of biogeographically distinct species ecotypes in our 
databases complicated reliable identification of expected taxa - ecotypes that have not 
been added to the database may be entirely missed. 
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Figure 3. The effect of database composition on annotation of diatoms. A: Community 
composition of diatoms in Narragansett Bay based on light microscopy counts (top) 
compared to their metatranscriptomic activity (bottom). Lineage-conflicted refers to 
predicted proteins that were annotated as belonging to class Bacillariophyta, but had a 
conflict at the family level. “Other” refers to diatom families with associated TPM of less 
than 1,000. Circles (top) indicate cells per L (right y-axis). B: Mean percentage identity 
of non-self hits meeting a minimum bitscore value threshold (>=50) for diatom families 
represented in the MMETSP. The bars to the right of the plot indicate the total number 
of transcriptomes contained in the MMETSP for each family.  
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Family: Database imbalance limits phylogenetic resolution in closely-related diatom 
taxa 

Taxonomic annotations can also yield unpredicted results within a taxonomic 
group. When a large number of reference sequences belong to one family, but none or 
only a few references belong to another, this imbalanced database representation may 
alter annotation recovery unexpectedly. We explored this phenomenon using 
metatranscriptomic data from a 2012 survey26 paired with associated microscopic cell 
counts (University of Rhode Island Long-Term Plankton Time Series; 
https://web.uri.edu/gso/research/plankton/data/). We focus our analysis on diatoms, a 
group that is well-represented in reference databases (266 transcriptomes in MMETSP), 
but has uneven representation across families (Anderson-Darling Test against uniform 
distribution: An=70.221; p=1.3e-5). The diatom Dactyliosolen fragilissimus (family 
Rhizosoleniaceae) constituted over 38-60% of the cells counted using light microscopy 
in 3 of 4 sampled weeks (Figure 3A). However, it was not consistently identified in the 
metatranscriptomes (<1% of species-level annotations)26,35, despite the observed 
species being present in the reference database (Marine Microbial Eukaryote 
Transcriptome Sequencing Project (MMETSP)27,29,36. Four other Rhizosoleniaceae are 
also included in the MMETSP database29, yet the family constituted just 0.5-4.3% of 
family-level annotations and 0.1-0.7% of total sequence abundance. By contrast, the 
diatom family Skeletonemataceae represented as much as 95% of microscopy counts 
in one sample, and given the availability of isolates from Narragansett Bay in the 
database, it was well-annotated in the metatranscriptomes (Figure 3A). Cerataulina 
pelagica (family Hemiaulaceae) was also abundant in the microscopy data. 
Counterintuitively, while not present within the MMETSP database, contigs in the 
metatranscriptome were consistently annotated as belonging to Hemiaulaceae using a 
single related reference (Eucampia antarctica; Figure 3A). The outcomes of low 
database taxonomic resolution were incongruent between taxa: though both missing 
taxa of Hemiaulaceae and Rhizosoleniaceae had a member of the same family 
available in the database (Figure 3B), only Hemiaulaceae yielded annotations at the 
expected taxonomic resolution. Critically, this implies that taxonomic coverage alone 
often does not lead to accurate phylogenetic labels. 
 
Phylum: Broad-rank absence from databases leads to inaccurate community 
composition estimates 
Sequence representation across major lineages in the eukaryotic tree of life is 
variable1,37. We explored the impact of removing one eukaryotic lineage from a 
reference database on the predicted taxonomy of metatranscriptomes. Data from the 
North Atlantic along a transect from Woods Hole Oceanographic Institution (WHOI) to 
the Bermuda Atlantic Time Series (BATS) station (“BATS transect”) were annotated 
using a database lacking radiolarians (phylum Retaria). This left 42,736 putative 
radiolarian proteins unannotated and 46,283 annotated as different phyla across diverse 
lineages (Figure 4A-C). Adding radiolarians (see Online Methods) to the database 
impacted not only the total sequences labeled but also changed assigned annotations 
of existing taxa, highlighting how database incompleteness impairs community 
interpretation via both missing and incorrect annotations. Further, of 1,021,229 (8.6%) 
ORFs that were annotated at the domain–but not the phylum–level (“lineage-
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conflicted”), 95.8% were assigned a functional annotation, a higher rate than likelihood 
of functional annotation among all ORFs (45.8%). This suggests that highly conserved 
proteins will be left out of lineage-specific analysis because they tend to be 
taxonomically ambiguous (Figure 4D). 
 

 
Figure 4. Effect of removing Radiolarian sequences from the database on the 
annotation of metatranscriptomic samples from the North Atlantic Ocean. A: Map of the 
BATS transect colored by the distance of each sample from the shore in kilometers. B: 
Fraction of annotated scaled abundance of proteins that changed annotation before and 
after the radiolarian sequences were added, grouped by depth. C: Among sequences 
that changed annotations, comparison of their annotation without radiolarian sequences 
(left axis) to with radiolarian sequences (right axis). In both cases the database 
contained the MMETSP and MarRef2 databases. While the majority category of 
putative Radiolarian sequences was those previously unannotated at the phylum level, 
some were previously classified as other phyla. Some phylum-level annotations were 
lost due to conflicts with added radiolarian sequences. D: Comparison of the number of 
proteins that were taxonomically annotated (“Annotated”), taxonomically unannotated 
(“Unannotated”), or had conflicting taxonomy (“Conflicted”) according to whether they 
were also functionally annotated. 
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Figure 5. Schematic diagram of the tax-aliquots two-stage clustering workflow. The 
workflow is intended to be used alongside the LCA algorithm to detect ambiguity in 
taxonomic assignment and identify possible taxonomic annotations of sequences which 
cannot be annotated using the short alignment method. By assessing similarity using 
subsequence patterns over the entire sequence length, tax-aliquots can also identify 
discrepancies in the taxonomic annotation selected by alignment and the LCA 
algorithm. 
 
tax-aliquots: Towards accurate taxonomic classification and interpretable annotations 
using homology-based clustering and kAAmer overlap 

Combining database curation and unsupervised approaches can improve the 
accuracy of sequence classification for assembled sequences from meta-omic datasets. 
Unsupervised approaches have been developed to specifically combat inadequate 
reference database coverage38,39. However, these approaches tend to rely on 
classifying highly dissimilar fragments (e.g., separating at the domain level between 
eukaryotes and prokaryotes) due to genetic overlap among the more taxonomically 
closely-related sequences. We posit that leveraging large eukaryotic databases, 
preprocessing the database to reduce problem size and taxonomic overlap, and then 
training an unsupervised model can improve interpretability of community assessment. 
Here we leverage clustering tools for a two-stage method of taxonomic assignment, an 
approach we have named “tax-aliquots: Assigning Lineage to Queries Over Two Steps”. 
Proteins are first clustered according to their homology, and then hierarchically using 
the kAAmer (subsequences of amino acids) content of the proteins in the homology-
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based cluster. The advantages of this method are twofold: we reduce the computational 
complexity of kAAmer matching40, which is an effective tool to distinguish taxonomic 
groups41, and we ensure that assignment is also constrained by sequence alignment. 
We tested three distance thresholds for tax-aliquots in the second clustering stage: a 
permissive, intermediate, and stringent strategy (see Methods). Similar to the percent 
identity cutoffs used to make decisions about taxonomic level in the Least Common 
Ancestor (LCA) approach, the distance threshold determines how small the distance 
between sequences needs to be in order for them to fall into the same cluster. Unlike 
the LCA approach, all labels are retained in each cluster once they meet the cutoff 
(Supplementary Figures 13 and 14). 

We applied our clustering method to each of the three vignettes discussed above 
to explore the advantages of using tax-aliquots (Figure 6). In the Tara dataset, the tax-
aliquots algorithm expands the number of sequences that can be linked to the genus 
Phaeocystis by 47% when a matching species or strain reference is unavailable. 
100,879 total Phaeocystis sequences were identified by the original BLAST-LCA search 
containing the full database, while only 11,822 of those sequences were also annotated 
as Phaeocystis using BLAST-LCA with the database containing only free-living 
Phaeocystis references. 6,320 additional Phaeocystis sequences fell into tax-aliquots 
clusters that contain sequences from free-living Phaeocystis references. Of these, 2,550 
sequences fell into clusters with Phaeocystis only (meaning that they were 
“taxonomically-coherent” for Phaeocystis), and the related haptophyte genus Pavlova 
was only the additional member of 84.5% of the remaining clusters. Using the colony-
forming database, 5,762 sequences annotated as Phaeocystis using the combined 
database, but not by the colony-forming database using BLAST-LCA, fell into 
taxonomically-coherent Phaeocystis clusters (a 6.7% increase in annotated 
sequences).  

In the Narragansett Bay dataset, the increase in sequences that could be 
annotated within five families using tax-aliquots, but were unannotated by BLAST-LCA, 
was a more modest 1.3%. However, the tax-aliquots algorithm offers an explanation for 
the discrepancy between the metatranscriptomes and the light microscopy in the 
Narragansett Bay dataset: family Hemiaulaceae annotations appear less robust to 
stringent clustering and are possibly overannotated (Supplementary Figures 13 and 14). 
Depending on how strictly taxonomy was assigned with tax-aliquots, results had 
markedly different relative composition of sequences associated with these three main 
diatom families (Supplementary Figure 11). Further, the tax-aliquots approach 
represents a powerful technique to expand understanding of unknown sequences in 
collaboration with alignment-based searches. As an example, of the 2,942,183 
sequences found in clusters containing references from one of the three diatom 
families, 1,046,573 were unannotated at the family level by BLAST-LCA, and 69,275 of 
those sequences were unannotated at the domain level. Among the sequences 
unannotated at least at the family level, 526,897 fell into permissive tax-aliquots 
clusters, including 121,748 that fell into clusters containing a single family.  
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Figure 6. Diagnostic capacity of the tax-aliquots algorithm to refine taxonomic group 
prediction. All clustering results shown in this figure were found using the intermediate 
strategy. A: In the Southern Ocean surface water assembly from Tara Oceans, the tax-
aliquots algorithm identifies sequences that the BLAST-LCA approach does not. These 
sequences may be Phaeocystis or a closely-related haptophyte. Most sequences in 
coherent Phaeocystis clusters not identified by the BLAST-LCA approach were 
unannotated by BLAST-LCA, not misannotated. B: Comparison of tax-aliquots clusters 
containing the three families of diatoms considered in vignette 2 (family-level). These 
clusters overlap and do not constitute an additive community. Cluster sizes demonstrate 
that a large number of sequences are found in taxonomically-incoherent clusters that 
include 1) tax-aliquots clusters containing the family of interest and any other member of 
the class Bacillariophyta, 2) tax-aliquots clusters containing members outside of class 
Bacillariophyta but within phylum Ochrophyta, or 3) tax-aliquots clusters that contain 
multiple phyla. Coherent clusters contain only the family of interest. C: Tax-aliquots 
clusters from the BATS dataset, excluding sequences that were not captured by the first 
clustering step. Many sequences from the BATS dataset are taxonomically-ambiguous 
per tax-aliquots, indicative of higher sample diversity and greater divergence from the 
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database sequences, but haptophyte sequences are most likely to be found in coherent 
clusters. Eukaryote tax-aliquots clusters contain only eukaryotic sequences. 

 
The tax-aliquots method reveals that even after radiolarians were added to the 

database, the reference database is insufficient to accurately annotate taxonomy in 
diverse samples. Using the annotation strategies mentioned here, the BATS dataset 
continued to have a low number of successful taxonomic annotations for sequences 
that co-clustered with Retaria. Tax-aliquots revealed that few putative radiolarian 
sequences correspond to taxonomically unambiguous clusters, even though a similar 
number of putative radiolarian sequences fell into Retaria taxonomic clusters 
(Supplementary Figure 12). Retaria also has far fewer taxonomically-coherent clusters 
than dominant phyla from the same sample (e.g., Haptophyta, Supplementary Figures 
13 and 14). The majority of ambiguous radiolarian sequences fell into clusters that also 
contained dinoflagellates and foraminifera (Supplementary Figure 12), a problem we 
also noticed when adjusting the database and using the DIAMOND/BLAST and LCA 
approach. This observation is likely due to database incompleteness and high 
taxonomic overlap between adjacent taxa (Supplementary Figure 12). Sequences that 
were affected by the database change were more likely to be ambiguously labeled by 
tax-aliquots. For example, of 3,025 sequences that were annotated as Ochrophyta 
before but not after adding in Retaria, only 3% were in coherent tax-aliquots clusters 
(93), as compared to 10.7% overall (35,694 of 333,210 Ochrophyta proteins). Because 
tax-aliquots reflects taxonomic ambiguity in the outcome of clustering, misinterpretation 
is less likely.  
 
Discussion 

The growth of databases and the development of complementary computational 
analysis approaches has enabled taxonomic predictions for community assessment in 
meta-omics. The overall size of available databases has expanded dramatically since 
the first environmental metagenome, fueled by the growing availability of genomes and 
new sequencing technology that can be deployed straight from the lab (e.g., Nanopore 
sequencing42–44), and the curation of resources from transcriptomes19,27,29,36,45–47 and 
metagenome-assembled genomes9 for eukaryotes10–12,48. Improved sampling and 
sequence curation have accelerated the development of annotation approaches that 
can accurately assess the whole community, leveraging databases of predicted genes 
or full contigs for taxonomic classification beyond the use of marker gene alignments.  

Database curation plays a critical role in how sequences are taxonomically 
annotated, and how taxonomic identity is linked to functional role. Researchers need to 
be cognizant that all database mapping is selective: bias inherently exists in all 
taxonomic mapping, as only a selection of organisms have been isolated, subsequently 
sequenced, and added to reference databases. Because microeukaryotes have high 
average genetic differentiation49, much of our ability to annotate diversity hinges on 
tradeoffs inherent to building appropriate databases. The annotation of Radiolaria in the 
BATS transect was only made possible by the addition of Radiolarian references 
present only in the EukProt and EukZoo databases37,47, as no Radiolaria are present in 
the MMETSP29. Further, after applying the tax-aliquots approach, it became clear that 
database completeness still limits precise annotation. Hence, it is likely that other 
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understudied microeukaryotic lineages are present in the North Atlantic dataset and 
other meta-omic datasets. Further, these missing references can completely change the 
interpretation of relative community composition, even to the point of reshaping 
predicted taxonomic affiliations outside of the missing group that was added.  

However, database expansion is not always the solution. We found that more 
than half of sequences within major phyla (e.g. Bacillariophyta) lack non-self hits to 
another sequence of the same family (Table 1; Supplementary Figure 6). Because non-
self, same-family hits appeared to be limited to a maximum value regardless of the 
number of available family-level relatives in the database (Supplementary Figure 6), this 
observation is unlikely to be solely a consequence of database incompleteness. In 
some cases, the sequences lacking family overlap might be spurious, and in other 
cases sequences may constitute valuable variability that could enable understanding of 
population dynamics in protists50,51. The importance of database completeness and 
expansion is made clear by the effect of the presence or absence of particular species 
in the Phaeocystis database mapped against the Tara Oceans samples. The addition of 
genomes and transcriptomes at genus resolution did not necessarily increase our ability 
to identify a different species from that genus using typical annotation approaches. 
Further, when it comes to protein matching, percentage identity within a high-scoring 
alignment is frequently an unreliable indicator of phylogenetic relatedness.  

The future of taxonomic classification in multi-omic studies must balance the 
growing availability of database sequences with computational approaches to decipher 
their origins. Approaches that have been available since the early days of 
metagenomics, like Naïve Bayes classification52,53, deep learning, and topic modeling 
have become less popular in recent literature in favor of more direct comparisons to 
databases, which are more interpretable but also minimally predictive54–56. The 
unbalanced (with respect to taxonomic distribution across the tree) number of available 
references for different phyla and orders necessitates pre-processing and careful model 
training (Supplementary Figure 2). Training models or selecting thresholds using a 
phylogeny-aware approach also takes into account the patterns in sequence overlap 
that differentiate microorganisms (e.g., what defines distinct species at the sequence-
level for one family may be different for another family). In more remote environments 
such as the deep sea, in which a smaller proportion of sequences are expected to have 
complete database counterparts, using a generative and flexible approach such as topic 
modeling or global hierarchical clustering (instead of a homology search) may be 
warranted.  

Accurate taxonomic annotation of environmental sequences is a dynamic 
problem, which has evolved with both algorithms and the increasing size of databases. 
Here, we propose a hybrid approach that is meant to complement alignment and LCA-
based approaches and to identify gaps in annotation accuracy. “Tax-aliquots” combines 
alignment-based estimation using large databases with computed kAAmer similarity 
over the entire sequence. Our hybrid approach is also equipped to maximize future 
improvement as reference databases grow. Using an unsupervised method and a 
clustering approach reduces bias associated with particularly rare taxonomic groups for 
which only a single database representative might be available. Because all sequence 
matches are treated equally, multiple repeated hits are not weighted more heavily, 
allowing for the identification of annotation challenges. Taken together, our vignettes 
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and the output of tax-aliquots illustrate the importance of critically evaluating the 
completeness and composition of the database selected. Tax-aliquots and other 
algorithms are essential tools to increase annotation accuracy and avoid the pitfalls of 
incomplete databases. Tax-aliquots provides an approach to target taxa that require 
expanded database coverage to be identified. We encourage applying the open-source 
tax-aliquots workflow to challenging datasets with low rates of taxonomic annotation, 
and to databases themselves to identify indistinguishable overlaps between groups and 
make taxonomic assignment of diverse microbial eukaryotes more interpretable. Critical 
reassessment of datasets and evaluation of methods is a vital step towards linking 
taxonomic variability to functional potential in in situ communities of ecologically-
essential protists.  

 
Code availability 
Code for running the tax-aliquots clustering can be accessed at 
https://github.com/akrinos/tax-aliquots 
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Online Methods 

In order to evaluate and select a sequence identity cutoff for use in taxonomic 
classification, we performed a bidirectional DIAMOND search57 of the MMETSP 
database using the blastp algorithm58. We used a cutoff of hits with bitscore of at least 
50, and processed hits according to their percentage identity. We removed self-hits to 
the same sequence, and then recorded the percentage of sequences within each 
taxonomic family that had (a) hits to other sequences in the same taxonomic family and 
(b) hits to other sequences in different taxonomic families using eight different 
percentage identity cutoffs (30,40,50,60,65,70,80, and 90). We compared each of these 
percentages to the total number of transcriptomes associated with each family within 
the MMETSP. The results from this bidirectional search were used for the diatom family 
best hits displayed in Figure 1D and for the diatom family mean percentage identity 
results in Figure 3B. A similar bidirectional search which also included additional 
Radiolarian references was used to generate Supplementary Figure 2E, and the same 
bidirectional search among the Phaeocystis references above was used to generate 
Supplementary Figure 2F. We tested the uniformity of the counts of each diatom family 
in the MMETSP using the Anderson-Darling test against the uniform distribution 
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generated with a count bound of zero to 10 greater than the maximum observed per-
family count using the goftest package (version 1.2-3) in R59. 
 
Genus Scale: Tara Oceans metagenomes 

Metagenomic samples from the global ocean were retrieved from the Tara 
Oceans project60. Assemblies were previously generated in Alexander et al. (2021)12, 
with input sequencing reads grouped by ocean basin, depth, and size fraction; in brief, 
assemblies were generated by the MEGAHIT assembler61 after trimming with the 
Trimmomatic software62. Protein prediction was performed with Prodigal39,63. The 
taxonomic identity of predicted proteins was obtained using EUKulele v2.0.319, first 
using a combined database containing the MMETSP27,29,36, MarRef64, and additional 
Phaeocystis references, including the genome resources for Phaeocystis antarctica and 
Phaeocystis globosa65,66 available from the IMG/M (Integrated Microbial Genomes & 
Microbiomes) database (Phaant1 and Phaglo1, respectively), Phaeocystis cordata, 
Phaeocystis jahnii, and Phaeocystis globosa transcriptome resources67–69, and a 
Phaeocystis pouchetii transcriptome (Mars Brisbin et al. in prep). The contigs 
associated with the proteins identified to the genus Phaeocystis were quantified against 
the raw reads using the CoverM software in contig mode (v0.6.2; 
https://github.com/wwood/CoverM; coverm contig --min-covered-fraction 0). 

Subsequently, separate EUKulele databases were created that contained the 
MMETSP27,29,36 with all genus Phaeocystis references removed, the MarRef64 database, 
and one of the ten distinct Phaeocystis genome or transcriptome references, inclusive 
of species Phaeocystis antarctica, Phaeocystis globosa, Phaeocystis pouchetii, 
Phaeocystis jahnii, Phaeocystis cordata, and Phaeocystis rex. A third set of EUKulele 
databases was created which contained the MMETSP27,29,36 with all genus Phaeocystis 
references removed, the MarRef64 database, and all of either the colony-forming 
Phaeocystis species or the free-living Phaeocystis species (Phaeocystis cordata, 
Phaeocystis jahnii, and Phaeocystis rex). Each Tara Oceans assembly was annotated 
with each of these databases.  

A phylogenetic tree for the Phaeocystis references was constructed by 
conducting orthologous group clustering against all Phaeocystis references, a selection 
of Emiliania huxleyi transcriptome assemblies from the MMETSP (MMETSP0994, 
MMETSP0995, MMETSP0996, MMETSP0997, MMETSP1006, MMETSP1007, 
MMETSP1008, MMETSP1009, MMETSP1150, MMETSP1151, MMETSP1152, 
MMETSP1153, MMETSP1154, MMETSP1156, MMETSP1157), Gephyrocapsa 
oceanica transcriptome assemblies from the MMETSP (MMETSP1363, MMETSP1364, 
MMETSP1365, MMETSP1366), Isochrysis galbana transcriptome assemblies from the 
MMETSP (MMETSP0943, MMETSP00595), and three reference genomes from the 
JGI’s IMG/M (Integrated Microbial Genomes & Microbiomes) database65,66 - 
Chrysochromulina tobinii (Chrsp), Oxytricha trifallax (Oxytri1), and Guinardia theta 
(Guith1). Orthologous groups were created from proteins from all references using 
OrthoFinder (v2.5.4)70, and orthologous groups containing a single protein from all of 
the Phaeocystis references were used to create an alignment and phylogenetic tree. 
This amounted to 40 total single-copy genes shared across references which were used 
to build the alignment. The MAFFT tool was used for multiple sequence alignment of 
each of the concatenated lists of single-copy genes (one file per gene containing all 
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gene versions across organisms in the alignment; version 7.508), followed by the 
removal of possible spurious sequences using trimAl71 (version 1.4.rev15), and then a 
secondary multiple sequence alignment using Clustal-Omega72. Sequences in the 
alignment were adjusted to standardize their trimmed lengths, and the subsequent 
alignments were concatenated and trimmed once more with trimAl. FastTree (version 
2.1.11) was used to build the phylogenetic tree73. 
 
Family Scale: metatranscriptomes from Narragansett Bay 

The metatranscriptome assembly and annotation process for the 
metatranscriptomic samples from Narragansett Bay is described in full in Krinos et al. 
(2023)35. In brief, raw reads were trimmed and quality-assessed, and then assembled in 
parallel using the eukrhythmic pipeline35. Taxonomic annotations were assigned using 
the EUKulele tool74 using a combined database containing the MMETSP and MarRef2 
sequences29.  
 
Phylum Scale: metatranscriptomes from a transect between WHOI and BATS 

Samples from the transect between Woods Hole Oceanographic Institution 
(WHOI) and the Bermuda Atlantic Time Series (BATS) stations were assembled and 
post-processed as described in Cohen et al. (2023; in prep). EUKulele74 was used for 
the BLAST-LCA search against these sequences, first using the MarRef and MMETSP 
database29 and then adding all radiolarian references available in the EukProt and 
EukZoo databases37,47. These organisms included Sticholonche zanclea (EP00491), 
Amphilonche elongata (EP00492), Phyllostaurus siculus (EP00493), Astrolonche 
serrata (EP00494), Collozoum sp. 1 RS2012 (EP00495), Lithomelissa setosa 
(EP00496), and Spongosphaera streptacantha (EP00497). 
 
Hybrid partially-supervised clustering workflow 

A very permissive protein clustering is performed using DIAMOND DeepClust23, 
followed by taxonomic profiling using hierarchical clustering on a matrix formed in 
parallel by calculating kAAmer overlap between sequences present in the cluster. This 
enables exact kAAmer overlap to be computed efficiently, and does not taxonomically 
annotate sequences for which an alignment is based on sequence coverage of <20-
50% of the protein. Unlike other LCA-based approaches where ancestry is computed 
using the aligned fragment, this method profiles the short kAAmers over the entire 
length of the proteins which were originally clustered together on the basis of a short 
and potentially low sequence similarity alignment. This allows sequences with promising 
homology, even with low percentage identity, to be clustered based on consistency in 
sequence content over the entire protein length. 
 We ran DIAMOND DeepClust23 against the predicted proteins from the MMETSP 
and MarRef2 databases29 using a 50% coverage threshold for the shorter sequence in 
the alignment and no minimum percentage identity. First, kAAmers were identified in 
parallel separately for each cluster. We used the pyahocorasick package, which 
implements the Aho-Corasick algorithm for efficient string matching75,76. After counting 
all kAAmers of length 4 using this approach and the Automaton utility from 
pyahocorasick, we computed similarity between each sequence in the protein cluster 
according to the formula: 
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𝐷!,# =
min&𝑛$%%&'()(𝑖), 𝑛$%%&'()(𝑖), − 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠(𝑖, 𝑗)

min&𝑛$%%&'()(𝑖), 𝑛$%%&'()(𝑗),	
		 

 Where 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠(𝑖, 𝑗)	is the number of intersecting kAAmers between 
proteins sequences 𝑖 and	𝑗 and min&𝑛$%%&'()(𝑖), 𝑛$%%&'()(𝑖), is the minimum number of 
kAAmers found in each of the two protein sequences, which is used to scale the raw 
number of intersections. These distance numbers were used for the downstream 
hierarchical clustering steps, which were conducted using the fcluster function from 
SciPy77. 

We linked original sequences from the database to revised taxonomic 
annotations according to the taxonomic coherence of the cluster to which it was 
assigned using the two-part algorithm. We created a new taxonomy string dictionary 
which takes into account the taxonomic ambiguity of sequences according to their 
kAAmer overlap. Then, we applied this new taxonomy string to best hits from the 
Narragansett Bay (Family Scale) and BATS (Phylum Scale) datasets which were 
originally annotated using the MarRef2 and MMETSP database proteins and using a 
kAAmer length of 3. The stringent approach used a distance threshold of 0.2, the 
intermediate a threshold of 0.5, and the permissive approach used a distance threshold 
of 0.8. 

Figures were generated in R (version 4.1) and in Python (version 3.10.1) using 
the ggplot2 software, ggridges package, ggUpSeT package, ggmaps package, and 
ggalluvial package78–83. 
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