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Abstract

Meta-omics has become commonplace in the study of microbial eukaryotes. The
explosion of available data has inspired large-scale analyses, including species or
taxonomic group distribution mapping, gene catalog construction, and inference on the
functional roles and activities of microbial eukaryotes in situ. However, genome and
transcriptome databases are prone to misannotation biases, and meta-omic inventories
may have no recoverable taxonomic annotation for more than half of assembled contigs
or predicted proteins. Direct mapping solely to organisms of interest might introduce a
problematic misattribution bias, while full databases can annotate any cataloged
organism but may be imbalanced between taxa. Here, we explore the potential pitfalls
of common approaches to taxonomic annotation of protistan meta-omic datasets. We
argue that ongoing curation of genetic resources is critical in accurately annotating
protists in situ in meta-omic datasets. Moreover, we propose that precise taxonomic
annotation of meta-omic data is a clustering problem rather than a feasible alignment
problem. We show that taxonomic membership of sequence clusters demonstrates
more accurate estimated community composition than returning exact sequence labels,
and overlap between clusters can address database shortcomings. Clustering
approaches can be applied to diverse environments while continuing to exploit the
wealth of annotation data collated in databases, and database selection and evaluation
is a critical part of correctly annotating protistan taxonomy in environmental datasets.
We re-analyze three environmental datasets at three levels of taxonomic hierarchy in
order to illustrate the critical importance of both database completeness and curation in
enabling accurate environmental interpretation.

Main

Protists (microbial eukaryotes) are ubiquitous and essential organisms that
provide multifarious ecosystem services, ranging from interactions with other microbes
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to impact on global biogeochemical cycles'-°. Protists have complex ecosystem roles
and morphology, and often bridge seemingly disparate scales of interactions, which
makes them difficult to visually differentiate yet critical to census for a complete
understanding of ecosystem ecology’34.

Molecular surveys of microbial communities have allowed researchers to
characterize taxonomic diversity without microscopy or imaging. Computational
approaches are used to assess the taxonomic composition of metagenomic or
metatranscriptomic samples. These may include k-mer profiling of raw reads®-8, direct
recruitment of raw reads from the meta-omic (community-level) sequencing sample to a
reference or set of references of interest (e.g. genome, transcriptome, metagenome-
assembled genome (MAG), or single-amplified genome (SAG))%-"?, identification and
recovery of well-known marker genes (e.g., 18S rRNA) from meta-omic raw reads or
from assembled contigs, followed by phylogenetic alignment and within-sample
quantification’®-"6, or sequence search of assembled contigs to a database, using
match quality and percentage identity cutoffs to assign best-available level of
confidence to taxonomic annotation of genes'~2'. Computational approaches to assign
taxonomic identities range in the scale over which they can be applied (Supplementary

Figure 1).

Term/Concept

Context

Definition

k-mer profiling

Assessing the
taxonomy of raw
sequencing reads

Tools like Kraken 7 that operate directly on raw
sequencing reads to estimate taxonomic breakdown of a
community meta-omic sample.

Sequence
alignment

Assessing the
taxonomy of raw
sequencing reads or
assembled contigs

Arranging assembled sequences or reads alongside
reference transcriptomes or genomes to identify what the
assembled sequence/read is most similar to.

Read recruitment
to references

Assessing the
taxonomy of raw
sequencing reads

Mapping raw reads directly to reference transcriptomes or
genomes without breaking them down into k-mers. The
proportion of reads recruited to each reference represents
the taxonomic breakdown of the sample. Recruitment
may be done just to a few references of interest or to the
entire available database.

Assembly

Creating contigs from
raw read sequences

Using an assembly algorithm to construct contiguous
sequences from short raw reads. Unlike raw reads, these
sequences can be functionally annotated and biologically

interpreted.

Lowest Common
Ancestor (LCA)

Assessing the
taxonomy of raw
sequencing reads or
assembled contigs

An algorithm used to decide taxonomy based on the most
specific level of taxonomy shared between two conflicting
potential taxonomic annotation sources.

Clustering
approaches

Assessing the
taxonomy of raw

Instead of one-to-one sequence comparisons, creating
clusters of sequences or raw reads in order to process a
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sequencing reads or
assembled contigs

dataset and/or infer taxonomy 2224, Clusters that contain
only a single reference can be interpreted directly.

tax-aliquots

Assessing the
taxonomy of
assembled contigs

A clustering method introduced in this study that
combines clustering based on homology with kAAmer
profiling. Resulting clusters can be set with a
“permissive”, “intermediate”, or “stringent” threshold,
corresponding to the internal distance of the clusters

returned.

non-self

Characterizing
taxonomic
classification output

A sequence search result wherein a “hit” sequence match
is returned to a different sequence (other than the one
being considered). This other sequence may or may not
be a member of the same taxonomic group.

taxonomically-
coherent

Characterizing
taxonomic
classification output

A sequence cluster or set of sequence matches that only
contains a single taxonomic label at the level of interest.

taxonomically-
ambiguous

Characterizing
taxonomic

A sequence cluster or set of sequence matches that may
contain several taxonomic labels at the level of interest.

classification output

Table 1. Summary of terms used in the paper to describe methods to annotate meta-
omic sequencing datasets.

All annotation methods share a reliance on databases containing labeled
sequences from past studies (“reference sequences”), some of which may carry study-
specific features. Environmental microeukaryote meta-omic studies often rely on
annotations from transcriptomes of cultured representatives of protists'22°-28 and are
therefore representative of conditions or treatments specific to an experiment. Though
transcriptomes represent a fraction of the genome, they are more readily available than
genomes due to the high time and monetary cost of sequencing the large repetitive and
intergenic regions common to eukaryotes?®. Because genetic data are often collected
when cell densities and expression levels are high, expression profiles may be most
similar to when the microorganism is dominant and abundant in the field. Moreover,
reference datasets that include different cell life cycle stages and environmental
conditions would be ideal to link taxonomic identity to functional role but are not always
available®°.

Here, we highlight three vignettes that span three scales of taxonomic hierarchy
(genus, family, and phylum) and explore how database-informed taxonomic annotation
of assembled predicted proteins may be impacted by database composition. We then
apply a two-stage clustering technique that includes unsupervised clustering to each of
these data vignettes to demonstrate how such a method may maximize accurate
classification of sequences at all three taxonomic scales even as databases grow. We
propose that clustering is essential for understanding the limit of our ability to
taxonomically annotate de novo assembled sequences. Our method re-poses
taxonomic annotation as a clustering problem and can be used to improve
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characterization of community composition at multiple levels of taxonomy, even if a
complete database is unavailable.
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Figure 2. Effect of different species-level references on the success of genus-level
identification of Phaeocystis. A: Abundance of metagenomic proteins in each ocean
basin coassembled from the Tara Oceans dataset annotated to be Phaeocystis by a
combined database of the colony-forming references (left in each group; purple), a
combined database of the free-living references (middle in each group; pink), a
combined database of all Phaeocystis references (right in each group; black). Each
group of bars represents either the large or the small size fraction samples. B:
Phylogenetic tree of Phaeocystis references and genomic and transcriptomic outgroups.
The bars to the right of the tree show the total number of orthogroups in each species
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that are a, pink or lavender: shared by other members of the same ecotype (colony-
former or free-liver), b, maroon: shared among multiple Phaeocystis species regardless
of ecotype, or c, white: present only within one species. C: Percentage of sequences
from the coassembly from the Southern Ocean Tara Oceans samples annotated to be
Phaeocystis by any of the databases that were annotated as Phaeocystis using (top
group of two bars) a combined reference database containing all of the free-living
Phaeocystis references, (middle group of bars) a combined reference database
containing all of the colony-forming Phaeocystis references, (bottom group of bars) a
combined reference database containing all Phaeocystis references. The top bar in
each group (brown) corresponds to the smallest Tara Oceans size fraction, while the
bottom bar in each group (blue) corresponds to the largest Tara Oceans size fraction.
D: Identical to Panel C, but for the Tara Oceans samples from the Mediterranean Sea.

Genus: Genetic differentiation between species complicates accurate identification of
genus-level community composition

Species in the haptophyte genus Phaeocystis are genetically related, yet have
distinctive geographic distributions and morphologies. Phaeocystis antarctica, P.
globosa, and P. pouchetii are often cold-adapted and form colonies and large blooms at
high latitudes (“colony-formers”), while P. cordata and P. jahnii are found at mid-
latitudes and do not form colonies (“free-livers”)3'-34. We re-analyzed Tara Oceans
metagenomic samples from the Mediterranean Sea and the Southern Ocean,
assembling contigs and then annotating using standard lowest common ancestor (LCA)
algorithm against three modified MMETSP and MarRef databases containing: 1) all
Phaeocystis references (both colony-formers and free-livers), 2) only the colony-
formers, and 3) only the free-livers; all databases contained non-Phaeocystis taxa.
Given that all three databases contain Phaeocystis representatives to the genus level,
our expectation was that all three databases would differentiate Phaeocystis at the
genus level. In the Southern Ocean where large blooms of P. antarctica are observed,
79.0% of the total Phaeocystis sequences identified with a combined database were
identified using the colony-former database, whereas only 11.3% of the Phaeocystis
sequences were identified using the free-liver database (Figure 2). In the Mediterranean
Sea where free-livers dominate, 58.8% of Phaeocystis sequences were identified using
the free-liver database as compared to 39.9% with the colony-former database (Figure
2). This implies that the presence of biogeographically distinct species ecotypes in our
databases complicated reliable identification of expected taxa - ecotypes that have not
been added to the database may be entirely missed.
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Figure 3. The effect of database composition on annotation of diatoms. A: Community
composition of diatoms in Narragansett Bay based on light microscopy counts (top)
compared to their metatranscriptomic activity (bottom). Lineage-conflicted refers to
predicted proteins that were annotated as belonging to class Bacillariophyta, but had a
conflict at the family level. “Other” refers to diatom families with associated TPM of less
than 1,000. Circles (top) indicate cells per L (right y-axis). B: Mean percentage identity
of non-self hits meeting a minimum bitscore value threshold (>=50) for diatom families
represented in the MMETSP. The bars to the right of the plot indicate the total number
of transcriptomes contained in the MMETSP for each family.
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Family: Database imbalance limits phylogenetic resolution in closely-related diatom
taxa

Taxonomic annotations can also yield unpredicted results within a taxonomic
group. When a large number of reference sequences belong to one family, but none or
only a few references belong to another, this imbalanced database representation may
alter annotation recovery unexpectedly. We explored this phenomenon using
metatranscriptomic data from a 2012 survey?® paired with associated microscopic cell
counts (University of Rhode Island Long-Term Plankton Time Series;
https://web.uri.edu/gso/research/plankton/data/). We focus our analysis on diatoms, a
group that is well-represented in reference databases (266 transcriptomes in MMETSP),
but has uneven representation across families (Anderson-Darling Test against uniform
distribution: An=70.221; p=1.3e-5). The diatom Dactyliosolen fragilissimus (family
Rhizosoleniaceae) constituted over 38-60% of the cells counted using light microscopy
in 3 of 4 sampled weeks (Figure 3A). However, it was not consistently identified in the
metatranscriptomes (<1% of species-level annotations)?%-3°, despite the observed
species being present in the reference database (Marine Microbial Eukaryote
Transcriptome Sequencing Project (MMETSP)?7:2%:36_ Four other Rhizosoleniaceae are
also included in the MMETSP database?®, yet the family constituted just 0.5-4.3% of
family-level annotations and 0.1-0.7% of total sequence abundance. By contrast, the
diatom family Skeletonemataceae represented as much as 95% of microscopy counts
in one sample, and given the availability of isolates from Narragansett Bay in the
database, it was well-annotated in the metatranscriptomes (Figure 3A). Cerataulina
pelagica (family Hemiaulaceae) was also abundant in the microscopy data.
Counterintuitively, while not present within the MMETSP database, contigs in the
metatranscriptome were consistently annotated as belonging to Hemiaulaceae using a
single related reference (Eucampia antarctica; Figure 3A). The outcomes of low
database taxonomic resolution were incongruent between taxa: though both missing
taxa of Hemiaulaceae and Rhizosoleniaceae had a member of the same family
available in the database (Figure 3B), only Hemiaulaceae yielded annotations at the
expected taxonomic resolution. Critically, this implies that taxonomic coverage alone
often does not lead to accurate phylogenetic labels.

Phylum: Broad-rank absence from databases leads to inaccurate community
composition estimates

Sequence representation across major lineages in the eukaryotic tree of life is
variable’3”. We explored the impact of removing one eukaryotic lineage from a
reference database on the predicted taxonomy of metatranscriptomes. Data from the
North Atlantic along a transect from Woods Hole Oceanographic Institution (WHOI) to
the Bermuda Atlantic Time Series (BATS) station (“BATS transect”) were annotated
using a database lacking radiolarians (phylum Retaria). This left 42,736 putative
radiolarian proteins unannotated and 46,283 annotated as different phyla across diverse
lineages (Figure 4A-C). Adding radiolarians (see Online Methods) to the database
impacted not only the total sequences labeled but also changed assigned annotations
of existing taxa, highlighting how database incompleteness impairs community
interpretation via both missing and incorrect annotations. Further, of 1,021,229 (8.6%)
ORFs that were annotated at the domain—but not the phylum—level (“lineage-
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conflicted”), 95.8% were assigned a functional annotation, a higher rate than likelihood
of functional annotation among all ORFs (45.8%). This suggests that highly conserved
proteins will be left out of lineage-specific analysis because they tend to be
taxonomically ambiguous (Figure 4D).
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Figure 4. Effect of removing Radiolarian sequences from the database on the
annotation of metatranscriptomic samples from the North Atlantic Ocean. A: Map of the
BATS transect colored by the distance of each sample from the shore in kilometers. B:
Fraction of annotated scaled abundance of proteins that changed annotation before and
after the radiolarian sequences were added, grouped by depth. C: Among sequences
that changed annotations, comparison of their annotation without radiolarian sequences
(left axis) to with radiolarian sequences (right axis). In both cases the database
contained the MMETSP and MarRef2 databases. While the maijority category of
putative Radiolarian sequences was those previously unannotated at the phylum level,
some were previously classified as other phyla. Some phylum-level annotations were
lost due to conflicts with added radiolarian sequences. D: Comparison of the number of
proteins that were taxonomically annotated (“Annotated”), taxonomically unannotated
(“Unannotated”), or had conflicting taxonomy (“Conflicted”) according to whether they
were also functionally annotated.
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Figure 5. Schematic diagram of the tax-aliquots two-stage clustering workflow. The
workflow is intended to be used alongside the LCA algorithm to detect ambiguity in
taxonomic assignment and identify possible taxonomic annotations of sequences which
cannot be annotated using the short alignment method. By assessing similarity using
subsequence patterns over the entire sequence length, tax-aliquots can also identify
discrepancies in the taxonomic annotation selected by alignment and the LCA
algorithm.

tax-aliquots: Towards accurate taxonomic classification and interpretable annotations
using homology-based clustering and kKAAmer overlap

Combining database curation and unsupervised approaches can improve the
accuracy of sequence classification for assembled sequences from meta-omic datasets.
Unsupervised approaches have been developed to specifically combat inadequate
reference database coverage3®3°. However, these approaches tend to rely on
classifying highly dissimilar fragments (e.g., separating at the domain level between
eukaryotes and prokaryotes) due to genetic overlap among the more taxonomically
closely-related sequences. We posit that leveraging large eukaryotic databases,
preprocessing the database to reduce problem size and taxonomic overlap, and then
training an unsupervised model can improve interpretability of community assessment.
Here we leverage clustering tools for a two-stage method of taxonomic assignment, an
approach we have named “tax-aliquots: Assigning Lineage to Queries Over Two Steps”.
Proteins are first clustered according to their homology, and then hierarchically using
the KAAmer (subsequences of amino acids) content of the proteins in the homology-
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based cluster. The advantages of this method are twofold: we reduce the computational
complexity of kAAmer matching*®, which is an effective tool to distinguish taxonomic
groups*!, and we ensure that assignment is also constrained by sequence alignment.
We tested three distance thresholds for tax-aliquots in the second clustering stage: a
permissive, intermediate, and stringent strategy (see Methods). Similar to the percent
identity cutoffs used to make decisions about taxonomic level in the Least Common
Ancestor (LCA) approach, the distance threshold determines how small the distance
between sequences needs to be in order for them to fall into the same cluster. Unlike
the LCA approach, all labels are retained in each cluster once they meet the cutoff
(Supplementary Figures 13 and 14).

We applied our clustering method to each of the three vignettes discussed above
to explore the advantages of using tax-aliquots (Figure 6). In the Tara dataset, the tax-
aliquots algorithm expands the number of sequences that can be linked to the genus
Phaeocystis by 47% when a matching species or strain reference is unavailable.
100,879 total Phaeocystis sequences were identified by the original BLAST-LCA search
containing the full database, while only 11,822 of those sequences were also annotated
as Phaeocystis using BLAST-LCA with the database containing only free-living
Phaeocystis references. 6,320 additional Phaeocystis sequences fell into tax-aliquots
clusters that contain sequences from free-living Phaeocystis references. Of these, 2,550
sequences fell into clusters with Phaeocystis only (meaning that they were
“taxonomically-coherent” for Phaeocystis), and the related haptophyte genus Paviova
was only the additional member of 84.5% of the remaining clusters. Using the colony-
forming database, 5,762 sequences annotated as Phaeocystis using the combined
database, but not by the colony-forming database using BLAST-LCA, fell into
taxonomically-coherent Phaeocystis clusters (a 6.7% increase in annotated
sequences).

In the Narragansett Bay dataset, the increase in sequences that could be
annotated within five families using tax-aliquots, but were unannotated by BLAST-LCA,
was a more modest 1.3%. However, the tax-aliquots algorithm offers an explanation for
the discrepancy between the metatranscriptomes and the light microscopy in the
Narragansett Bay dataset: family Hemiaulaceae annotations appear less robust to
stringent clustering and are possibly overannotated (Supplementary Figures 13 and 14).
Depending on how strictly taxonomy was assigned with tax-aliquots, results had
markedly different relative composition of sequences associated with these three main
diatom families (Supplementary Figure 11). Further, the tax-aliquots approach
represents a powerful technique to expand understanding of unknown sequences in
collaboration with alignment-based searches. As an example, of the 2,942,183
sequences found in clusters containing references from one of the three diatom
families, 1,046,573 were unannotated at the family level by BLAST-LCA, and 69,275 of
those sequences were unannotated at the domain level. Among the sequences
unannotated at least at the family level, 526,897 fell into permissive tax-aliquots
clusters, including 121,748 that fell into clusters containing a single family.
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Figure 6. Diagnostic capacity of the tax-aliquots algorithm to refine taxonomic group
prediction. All clustering results shown in this figure were found using the intermediate
strategy. A: In the Southern Ocean surface water assembly from Tara Oceans, the tax-
aliquots algorithm identifies sequences that the BLAST-LCA approach does not. These
sequences may be Phaeocystis or a closely-related haptophyte. Most sequences in
coherent Phaeocystis clusters not identified by the BLAST-LCA approach were
unannotated by BLAST-LCA, not misannotated. B: Comparison of tax-aliquots clusters
containing the three families of diatoms considered in vignette 2 (family-level). These
clusters overlap and do not constitute an additive community. Cluster sizes demonstrate
that a large number of sequences are found in taxonomically-incoherent clusters that
include 1) tax-aliquots clusters containing the family of interest and any other member of
the class Bacillariophyta, 2) tax-aliquots clusters containing members outside of class
Bacillariophyta but within phylum Ochrophyta, or 3) tax-aliquots clusters that contain
multiple phyla. Coherent clusters contain only the family of interest. C: Tax-aliquots
clusters from the BATS dataset, excluding sequences that were not captured by the first
clustering step. Many sequences from the BATS dataset are taxonomically-ambiguous
per tax-aliquots, indicative of higher sample diversity and greater divergence from the
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database sequences, but haptophyte sequences are most likely to be found in coherent
clusters. Eukaryote tax-aliquots clusters contain only eukaryotic sequences.

The tax-aliquots method reveals that even after radiolarians were added to the
database, the reference database is insufficient to accurately annotate taxonomy in
diverse samples. Using the annotation strategies mentioned here, the BATS dataset
continued to have a low number of successful taxonomic annotations for sequences
that co-clustered with Retaria. Tax-aliquots revealed that few putative radiolarian
sequences correspond to taxonomically unambiguous clusters, even though a similar
number of putative radiolarian sequences fell into Retaria taxonomic clusters
(Supplementary Figure 12). Retaria also has far fewer taxonomically-coherent clusters
than dominant phyla from the same sample (e.g., Haptophyta, Supplementary Figures
13 and 14). The majority of ambiguous radiolarian sequences fell into clusters that also
contained dinoflagellates and foraminifera (Supplementary Figure 12), a problem we
also noticed when adjusting the database and using the DIAMOND/BLAST and LCA
approach. This observation is likely due to database incompleteness and high
taxonomic overlap between adjacent taxa (Supplementary Figure 12). Sequences that
were affected by the database change were more likely to be ambiguously labeled by
tax-aliquots. For example, of 3,025 sequences that were annotated as Ochrophyta
before but not after adding in Retaria, only 3% were in coherent tax-aliquots clusters
(93), as compared to 10.7% overall (35,694 of 333,210 Ochrophyta proteins). Because
tax-aliquots reflects taxonomic ambiguity in the outcome of clustering, misinterpretation
is less likely.

Discussion

The growth of databases and the development of complementary computational
analysis approaches has enabled taxonomic predictions for community assessment in
meta-omics. The overall size of available databases has expanded dramatically since
the first environmental metagenome, fueled by the growing availability of genomes and
new sequencing technology that can be deployed straight from the lab (e.g., Nanopore
sequencing*?*4), and the curation of resources from transcriptomes'9:27:29.36.45-47 gnd
metagenome-assembled genomes?® for eukaryotes'®-248 Improved sampling and
sequence curation have accelerated the development of annotation approaches that
can accurately assess the whole community, leveraging databases of predicted genes
or full contigs for taxonomic classification beyond the use of marker gene alignments.

Database curation plays a critical role in how sequences are taxonomically
annotated, and how taxonomic identity is linked to functional role. Researchers need to
be cognizant that all database mapping is selective: bias inherently exists in all
taxonomic mapping, as only a selection of organisms have been isolated, subsequently
sequenced, and added to reference databases. Because microeukaryotes have high
average genetic differentiation*®, much of our ability to annotate diversity hinges on
tradeoffs inherent to building appropriate databases. The annotation of Radiolaria in the
BATS transect was only made possible by the addition of Radiolarian references
present only in the EukProt and EukZoo databases®’4’, as no Radiolaria are present in
the MMETSP?°. Further, after applying the tax-aliquots approach, it became clear that
database completeness still limits precise annotation. Hence, it is likely that other
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understudied microeukaryotic lineages are present in the North Atlantic dataset and
other meta-omic datasets. Further, these missing references can completely change the
interpretation of relative community composition, even to the point of reshaping
predicted taxonomic affiliations outside of the missing group that was added.

However, database expansion is not always the solution. We found that more
than half of sequences within major phyla (e.g. Bacillariophyta) lack non-self hits to
another sequence of the same family (Table 1; Supplementary Figure 6). Because non-
self, same-family hits appeared to be limited to a maximum value regardless of the
number of available family-level relatives in the database (Supplementary Figure 6), this
observation is unlikely to be solely a consequence of database incompleteness. In
some cases, the sequences lacking family overlap might be spurious, and in other
cases sequences may constitute valuable variability that could enable understanding of
population dynamics in protists®®5'. The importance of database completeness and
expansion is made clear by the effect of the presence or absence of particular species
in the Phaeocystis database mapped against the Tara Oceans samples. The addition of
genomes and transcriptomes at genus resolution did not necessarily increase our ability
to identify a different species from that genus using typical annotation approaches.
Further, when it comes to protein matching, percentage identity within a high-scoring
alignment is frequently an unreliable indicator of phylogenetic relatedness.

The future of taxonomic classification in multi-omic studies must balance the
growing availability of database sequences with computational approaches to decipher
their origins. Approaches that have been available since the early days of
metagenomics, like Naive Bayes classification®?53, deep learning, and topic modeling
have become less popular in recent literature in favor of more direct comparisons to
databases, which are more interpretable but also minimally predictive®*°6. The
unbalanced (with respect to taxonomic distribution across the tree) number of available
references for different phyla and orders necessitates pre-processing and careful model
training (Supplementary Figure 2). Training models or selecting thresholds using a
phylogeny-aware approach also takes into account the patterns in sequence overlap
that differentiate microorganisms (e.g., what defines distinct species at the sequence-
level for one family may be different for another family). In more remote environments
such as the deep sea, in which a smaller proportion of sequences are expected to have
complete database counterparts, using a generative and flexible approach such as topic
modeling or global hierarchical clustering (instead of a homology search) may be
warranted.

Accurate taxonomic annotation of environmental sequences is a dynamic
problem, which has evolved with both algorithms and the increasing size of databases.
Here, we propose a hybrid approach that is meant to complement alignment and LCA-
based approaches and to identify gaps in annotation accuracy. “Tax-aliquots” combines
alignment-based estimation using large databases with computed kAAmer similarity
over the entire sequence. Our hybrid approach is also equipped to maximize future
improvement as reference databases grow. Using an unsupervised method and a
clustering approach reduces bias associated with particularly rare taxonomic groups for
which only a single database representative might be available. Because all sequence
matches are treated equally, multiple repeated hits are not weighted more heavily,
allowing for the identification of annotation challenges. Taken together, our vignettes
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and the output of tax-aliquots illustrate the importance of critically evaluating the
completeness and composition of the database selected. Tax-aliquots and other
algorithms are essential tools to increase annotation accuracy and avoid the pitfalls of
incomplete databases. Tax-aliquots provides an approach to target taxa that require
expanded database coverage to be identified. We encourage applying the open-source
tax-aliquots workflow to challenging datasets with low rates of taxonomic annotation,
and to databases themselves to identify indistinguishable overlaps between groups and
make taxonomic assignment of diverse microbial eukaryotes more interpretable. Critical
reassessment of datasets and evaluation of methods is a vital step towards linking
taxonomic variability to functional potential in in situ communities of ecologically-
essential protists.

Code availability
Code for running the tax-aliquots clustering can be accessed at
https://github.com/akrinos/tax-aliquots
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Online Methods

In order to evaluate and select a sequence identity cutoff for use in taxonomic
classification, we performed a bidirectional DIAMOND search®’ of the MMETSP
database using the blastp algorithm®8. We used a cutoff of hits with bitscore of at least
50, and processed hits according to their percentage identity. We removed self-hits to
the same sequence, and then recorded the percentage of sequences within each
taxonomic family that had (a) hits to other sequences in the same taxonomic family and
(b) hits to other sequences in different taxonomic families using eight different
percentage identity cutoffs (30,40,50,60,65,70,80, and 90). We compared each of these
percentages to the total number of transcriptomes associated with each family within
the MMETSP. The results from this bidirectional search were used for the diatom family
best hits displayed in Figure 1D and for the diatom family mean percentage identity
results in Figure 3B. A similar bidirectional search which also included additional
Radiolarian references was used to generate Supplementary Figure 2E, and the same
bidirectional search among the Phaeocystis references above was used to generate
Supplementary Figure 2F. We tested the uniformity of the counts of each diatom family
in the MMETSP using the Anderson-Darling test against the uniform distribution
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generated with a count bound of zero to 10 greater than the maximum observed per-
family count using the goftest package (version 1.2-3) in R>°,

Genus Scale: Tara Oceans metagenomes

Metagenomic samples from the global ocean were retrieved from the Tara
Oceans project®?. Assemblies were previously generated in Alexander et al. (2021)?,
with input sequencing reads grouped by ocean basin, depth, and size fraction; in brief,
assemblies were generated by the MEGAHIT assembler®! after trimming with the
Trimmomatic software®2. Protein prediction was performed with Prodigal®®¢3. The
taxonomic identity of predicted proteins was obtained using EUKulele v2.0.3"9, first
using a combined database containing the MMETSP?72%:36 MarRef®, and additional
Phaeocystis references, including the genome resources for Phaeocystis antarctica and
Phaeocystis globosa®®%® available from the IMG/M (Integrated Microbial Genomes &
Microbiomes) database (Phaant1 and Phaglo1, respectively), Phaeocystis cordata,
Phaeocystis jahnii, and Phaeocystis globosa transcriptome resources®’-%°, and a
Phaeocystis pouchetii transcriptome (Mars Brisbin et al. in prep). The contigs
associated with the proteins identified to the genus Phaeocystis were quantified against
the raw reads using the CoverM software in contig mode (v0.6.2;
https://github.com/wwood/CoverM; coverm contig --min-covered-fraction 0).

Subsequently, separate EUKulele databases were created that contained the
MMETSP?7:2936 with all genus Phaeocystis references removed, the MarRef®* database,
and one of the ten distinct Phaeocystis genome or transcriptome references, inclusive
of species Phaeocystis antarctica, Phaeocystis globosa, Phaeocystis pouchetii,
Phaeocystis jahnii, Phaeocystis cordata, and Phaeocystis rex. A third set of EUKulele
databases was created which contained the MMETSP?72%36 with all genus Phaeocystis
references removed, the MarRef% database, and all of either the colony-forming
Phaeocystis species or the free-living Phaeocystis species (Phaeocystis cordata,
Phaeocystis jahnii, and Phaeocystis rex). Each Tara Oceans assembly was annotated
with each of these databases.

A phylogenetic tree for the Phaeocystis references was constructed by
conducting orthologous group clustering against all Phaeocystis references, a selection
of Emiliania huxleyi transcriptome assemblies from the MMETSP (MMETSP0994,
MMETSP0995, MMETSP0996, MMETSP0997, MMETSP1006, MMETSP1007,
MMETSP1008, MMETSP1009, MMETSP1150, MMETSP1151, MMETSP1152,
MMETSP1153, MMETSP1154, MMETSP1156, MMETSP1157), Gephyrocapsa
oceanica transcriptome assemblies from the MMETSP (MMETSP1363, MMETSP 1364,
MMETSP1365, MMETSP1366), Isochrysis galbana transcriptome assemblies from the
MMETSP (MMETSP0943, MMETSP00595), and three reference genomes from the
JGI's IMG/M (Integrated Microbial Genomes & Microbiomes) database®%:%6 -
Chrysochromulina tobinii (Chrsp), Oxytricha trifallax (Oxytri1), and Guinardia theta
(Guith1). Orthologous groups were created from proteins from all references using
OrthoFinder (v2.5.4)%, and orthologous groups containing a single protein from all of
the Phaeocystis references were used to create an alignment and phylogenetic tree.
This amounted to 40 total single-copy genes shared across references which were used
to build the alignment. The MAFFT tool was used for multiple sequence alignment of
each of the concatenated lists of single-copy genes (one file per gene containing all
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gene versions across organisms in the alignment; version 7.508), followed by the
removal of possible spurious sequences using trimAl’! (version 1.4.rev15), and then a
secondary multiple sequence alignment using Clustal-Omega’?. Sequences in the
alignment were adjusted to standardize their trimmed lengths, and the subsequent
alignments were concatenated and trimmed once more with trimAl. FastTree (version
2.1.11) was used to build the phylogenetic tree’3.

Family Scale: metatranscriptomes from Narragansett Bay

The metatranscriptome assembly and annotation process for the
metatranscriptomic samples from Narragansett Bay is described in full in Krinos et al.
(2023)%°. In brief, raw reads were trimmed and quality-assessed, and then assembled in
parallel using the eukrhythmic pipeline3®. Taxonomic annotations were assigned using
the EUKulele tool’* using a combined database containing the MMETSP and MarRef2
sequences?®.

Phylum Scale: metatranscriptomes from a transect between WHOI and BATS

Samples from the transect between Woods Hole Oceanographic Institution
(WHOI) and the Bermuda Atlantic Time Series (BATS) stations were assembled and
post-processed as described in Cohen et al. (2023; in prep). EUKulele’ was used for
the BLAST-LCA search against these sequences, first using the MarRef and MMETSP
database?® and then adding all radiolarian references available in the EukProt and
EukZoo databases®”4’. These organisms included Sticholonche zanclea (EP00491),
Amphilonche elongata (EP00492), Phyllostaurus siculus (EP00493), Astrolonche
serrata (EP00494), Collozoum sp. 1 RS2012 (EP00495), Lithomelissa setosa
(EP00496), and Spongosphaera streptacantha (EP00497).

Hybrid partially-supervised clustering workflow

A very permissive protein clustering is performed using DIAMOND DeepClust?3,
followed by taxonomic profiling using hierarchical clustering on a matrix formed in
parallel by calculating kKAAmer overlap between sequences present in the cluster. This
enables exact KAAmer overlap to be computed efficiently, and does not taxonomically
annotate sequences for which an alignment is based on sequence coverage of <20-
50% of the protein. Unlike other LCA-based approaches where ancestry is computed
using the aligned fragment, this method profiles the short KAAmers over the entire
length of the proteins which were originally clustered together on the basis of a short
and potentially low sequence similarity alignment. This allows sequences with promising
homology, even with low percentage identity, to be clustered based on consistency in
sequence content over the entire protein length.

We ran DIAMOND DeepClust?® against the predicted proteins from the MMETSP
and MarRef2 databases?® using a 50% coverage threshold for the shorter sequence in
the alignment and no minimum percentage identity. First, kAAmers were identified in
parallel separately for each cluster. We used the pyahocorasick package, which
implements the Aho-Corasick algorithm for efficient string matching”7¢. After counting
all kAAmers of length 4 using this approach and the Automaton utility from
pyahocorasick, we computed similarity between each sequence in the protein cluster
according to the formula:
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3 min(nyaamers (1), Nkaamers (i) — intersections(i, j)

v min(nkAAmers (i)» Nygaamers (]))

Where intersections(i, ) is the number of intersecting kAAmers between
proteins sequences i and j and min(nyamers (D), Nkaamers (@) is the minimum number of
kAAmers found in each of the two protein sequences, which is used to scale the raw
number of intersections. These distance numbers were used for the downstream
hierarchical clustering steps, which were conducted using the fcluster function from
SciPy’”.

We linked original sequences from the database to revised taxonomic
annotations according to the taxonomic coherence of the cluster to which it was
assigned using the two-part algorithm. We created a new taxonomy string dictionary
which takes into account the taxonomic ambiguity of sequences according to their
kAAmer overlap. Then, we applied this new taxonomy string to best hits from the
Narragansett Bay (Family Scale) and BATS (Phylum Scale) datasets which were
originally annotated using the MarRef2 and MMETSP database proteins and using a
kAAmer length of 3. The stringent approach used a distance threshold of 0.2, the
intermediate a threshold of 0.5, and the permissive approach used a distance threshold
of 0.8.

Figures were generated in R (version 4.1) and in Python (version 3.10.1) using
the ggplot2 software, ggridges package, ggUpSeT package, ggmaps package, and
ggalluvial package’®23.
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