

Quantifying the large-scale chromosome structural dynamics during the mitosis-to-G1 phase transition of cell cycle

Xiakun Chu¹, and Jin Wang^{1,2,*}

¹ Department of Chemistry

² Department of Physics and Astronomy

State University of New York at Stony Brook, Stony Brook, NY 11794, USA

* jin.wang.1@stonybrook.edu

July 30, 2023

1 Abstract

2 Cell cycle, essential for various cellular processes, is known to
3 be precisely regulated by the underlying gene network. Accu-
4 mulating evidence has revealed that the chromosome, which
5 serves as the scaffold for the gene expressions, undergoes
6 significant structural reorganizations during mitosis. Under-
7 standing the mechanism of the cell cycle from the molecu-
8 lar chromosome structural perspective remains a grand chal-
9 lenge. In this study, we applied an integrated approach using a
10 data-driven model combined with a nonequilibrium landscape-
11 switching model to investigate large-scale chromosome struc-
12 tural dynamics during the mitosis-to-G1 phase transition. We
13 generated 3D chromosome structural ensembles for the five
14 critical stages in the process. We observed that the chromo-
15 some structural expansion and adaptation of the structural as-
16 phericity do not occur synchronously. We attributed this asyn-
17 chronous adaptation behavior in the chromosome structural ge-
18 ometry to the unique unloading sequence of the two types of
19 condensins. Furthermore, we observed that the coherent mo-
20 tions between the chromosomal loci are primarily enhanced
21 within the topologically associating domains (TADs) as cells
22 progress to the G1 phase, suggesting that TADs can be con-
23 sidered as both structural and dynamical units for organizing
24 the 3D chromosome. Our analysis also reveals that the quan-
25 tified pathways of chromosome structural reorganizations dur-
26 ing the mitosis-to-G1 phase transition exhibit high stochastic-
27 ity at the single-cell level and show non-linear behaviors in
28 changing TADs and contacts formed at the long-range regions.
29 These features underscore the complex nature of the cell-cycle
30 processes. Our findings, which are consistent with the exper-
31 iments in many aspects, offer valuable insights into the large-
32 scale chromosome structural dynamics after mitosis and con-
33 tribute to the molecular-level understanding of the cell-cycle
34 process.

39 G2 phase, and the mitotic phase. The first three phases be-
40 long to the interphase, which occupies the majority of a cell's
41 time, while the last phase is related to the mitosis, involving
42 the division of a parent cell into two identical daughter cells.
43 Phase transitions in the cell cycle are precisely regulated by
44 the underlying gene network, ensuring accurate genome repli-
45 cation and segregation to daughter cells during efficient cell
46 cycle progression [2]. Currently, understanding the molecular
47 mechanism governing the cell cycle process remains a grand
48 challenge.

49 One of the most striking features of the cell cycle is the
50 dramatic morphological changes in chromosomes as cells
51 switch between interphase (decondensed structure) and the
52 mitotic phase (condensed structure) [3]. Over the past two
53 decades, rapid advancements in chromosome conformation
54 capture techniques, particularly Hi-C methods [4, 5], have en-
55 abled the quantitative analysis of the chromosome structures at
56 high spatial resolution. Hi-C measures the contact frequencies
57 between the two DNA segments in the chromosome, resulting
58 in a 2D contact map. Further examination of the Hi-C map can
59 provide valuable insights into chromosome architecture. For
60 example, Hi-C data from cells in the interphase often reveal
61 insulated square blocks of elevated interaction frequency cen-
62 tered along the diagonal. This feature suggests the formation
63 of topologically associating domains (TADs) [6, 7, 8, 9], where
64 more frequent contacts are found within these megabase-sized
65 domains than with neighboring regions. One functional ad-
66 vantage of TADs is to bring the distal enhancer and promoter
67 sequences into the physical proximity, facilitating the gene ex-
68 pressions [10, 11]. At a higher level (> 5 Mb), Hi-C data
69 display a plaid pattern, indicative of compartment formation
70 [4, 5]. Chromosome compartmentalization is associated with
71 the spatial segregation of gene-rich euchromatin and gene-poor
72 heterochromatin. The compartment pattern, which varies by
73 cell type, reflects structure-function regulation at long-range
74 regions in chromosomes [12].

75 Accumulating Hi-C data on cell-cycle processes have re-
76 vealed the disappearance of TADs and compartments during
77 mitosis [13, 14, 15, 16, 17, 18]. Experimental data, along with
78 theoretical models, consistently suggest cell-type-independent,
79 cylinder-like chromosome structures during the mitotic phase
80 [13, 15, 19], distinct from interphase chromosomes, which are
81 considered fractal globules [20]. Consequently, large-scale

35 1 Introduction

36 Cell cycle, a fundamental and vital process, is crucial for cel-
37 lular growth, proliferation, and development [1]. Cell cycle
38 consists of four major, distinct phases: G1 phase, S phase,

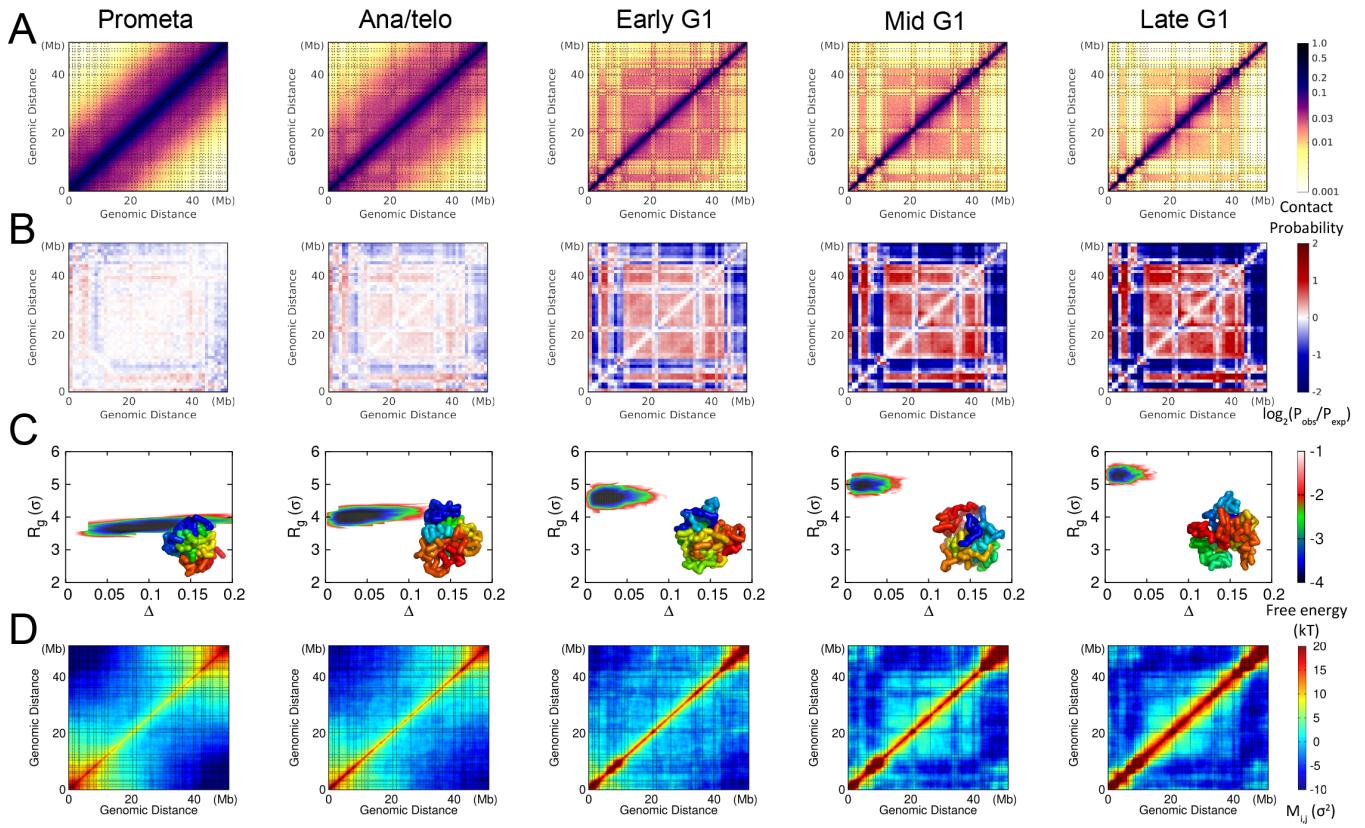
82 chromosome structural reorganizations should occur during
83 the cell cycle. Efforts have been made to perform time-course
84 Hi-C during mitotic [15] and mitotic exit processes [16], as
85 well as bulk Hi-C on highly purified, synchronous cell lines at
86 different cell cycle phases [13, 17, 18]. Despite the wealth of
87 Hi-C data, these experiments only offer a limited number of
88 measurements on the temporal scale, failing to provide a con-
89 tinuous picture of cell-cycle chromosome dynamics. More-
90 over, Hi-C data only provide 2D information, lacking the 3D
91 structure critical for understanding chromosome compaction
92 and decompaction during the cell cycle. Thus, a reliable ap-
93 proach to investigate 3D chromosome structural dynamics at
94 high spatial-temporal resolution is still needed.

95 We recently developed an integrated approach using a data-
96 driven molecular dynamics (MD) simulation approach com-
97 bined with a landscape-switching model, to study cell-cycle-
98 dependent chromosome compaction and decompaction [21].
99 The model established a connection between the interphase
100 and the mitotic phase, where Hi-C data are available, and gen-
101 erated continuous 3D chromosome structural evolution trajec-
102 tories for the transitions between these two phases. Our ap-
103 proach, which is based on a coarse-grained model, overcomes
104 the computational bottleneck for simulating the structural dy-
105 namics of the extremely long chromosome during the slow cel-
106 lular processes. Furthermore, the theoretical predictions led to
107 the consistent observations with the experiments in many as-
108 pects [13, 16], verifying the validity of the model. However,
109 the simplified treatment of the cell cycle process only as a two-
110 state transition between interphase and the mitotic phase has
111 inevitably constrained the precision of the results [22]. Specif-
112 ically, various pieces of evidence indicate that chromosome
113 structures undergo dynamic reorganization throughout the cell
114 cycle [17, 18, 15]. Therefore, conducting investigations while
115 considering the chromosomal structural variations within the
116 sub-phases of the cell cycle will be crucial in comprehending
117 the accurate nuclear functionality during this fundamental cel-
118 lular process.

119 In this study, we utilized Hi-C data from five critical stages
120 during the transition from mitosis to the G1 phase [17], to re-
121 fine the data-driven model and generate 3D chromosome struc-
122 tural ensembles at these five stages, correspondingly. We ob-
123 served variations in the chromosome structural geometry at
124 different stages from the prometaphase to G1 phase. These sig-
125 nificant findings provide us with valuable opportunities to sur-
126 vey the molecular-level processes involved in organizing the
127 3D chromosomes during the mitosis-to-G1 transition. We then
128 studied the transition between each pair of the adjacent cell
129 stages using the landscape-switching model. We found that the
130 coherent motions between chromosomal loci are enhanced in
131 TADs throughout the transition, suggesting that TADs can be
132 considered as both structural and dynamical units of chromo-
133 somes. We observed highly fluctuating chromosome structural
134 reorganization trajectories for individual simulations, demon-
135 strating that the chromosome dynamics are highly stochastic
136 at the single-cell level [23, 14, 24, 25, 26]. Further analysis
137 of quantified pathways revealed non-linear behavior in chang-
138 ing chromosome contact interactions during the mitosis-to-G1
139 transition. Notably, our results align well with the existing ex-
140 perimental evidence [15, 27], consolidating the validity of our
141 findings. Overall, our study offers significant insights into the

142 dynamics of large-scale chromosome structures after mitosis
143 and enhance our understanding of the cell-cycle process at the
144 molecular level.

2 Results


2.1 Chromosome structure reorganizations during the mitosis-to-G1 phase transition

148 Hi-C experiments have previously been conducted to in-
149 vestigate chromosomal structural reorganizations following
150 mitosis [17]. These studies utilized highly purified, syn-
151 chronous mouse erythroid cell populations at various stages:
152 prometaphase (Prometa), anaphase or telophase (Ana/telo),
153 early G1 phase (Early G1), mid G1 phase (Mid G1), and
154 late G1 phase (Late G1). This allowed for the examination
155 of chromosomal structures during critical stages in the transi-
156 tion from mitosis to G1 interphase (Figure 1A). At the Prometa
157 stage, chromosomes exhibit a cell-type-independent Hi-C pat-
158 tern, characterized by locally accumulated, non-specific con-
159 tacts along the diagonal. This suggests a highly condensed
160 structure, devoid of topologically associated domains (TADs)
161 and compartments (Figure 1B). As cells transition into the G1
162 phase, short-range contacts become insulated at specific sites,
163 while a plaid pattern gradually emerges at long-range regions,
164 ultimately leading to the establishment of TADs and compart-
165 ments.

166 We employed coarse-grained MD simulations combined
167 with a data-driven approach to construct the chromosome
168 structural ensembles at the Prometa, Ana/telo, Early G1, Mid
169 G1, and Late G1 stages. We focused on a long segment of
170 chromosome 1 (20.5–71.4 Mb) and modeled the chromosome
171 with a bead-on-a-string representation at a resolution of 100
172 kb. The data-driven approach, which used the Hi-C data as
173 restraints, was implemented through a maximum entropy prin-
174 ciple strategy [30, 31, 19]. Subsequently, individual MD sim-
175 ulations were performed for each of the five stages, resulting in
176 the generation of distinct chromosome structural ensembles.

177 Our coarse-grained MD simulations produced highly con-
178 sistent contact maps with experiments for all these five stages
179 (Figure S1-S5). The structures of the TADs and compartments,
180 which are often characterized by insulation score profiles [29]
181 and enhanced contact probabilities [4, 28], are also in excellent
182 agreement with the experiments. These features indicate that
183 our data-driven approach can faithfully recapitulate the experi-
184 mental observations based on the 2D contact maps. Further-
185 more, the coarse-grained MD simulations generated the 3D
186 chromosome structural ensembles, which can be used for ex-
187 amining the structural properties based on the Cartesian coor-
188 dinates of the chromosomal loci.

189 We calculated the geometrical quantities of the chromosome
190 structural ensembles at the Prometa, Ana/telo, Early G1, Mid
191 G1, and Late G1 stages, individually (Figure 1C). Here, we
192 used the radius of gyration R_g to describe the degree of chro-
193 mosome structural compaction, and aspheric quantity Δ to de-
194 scribe the degree of chromosome structural asphericity. A per-
195 fect sphere has $\Delta = 0$, and a deviation of Δ from 0 indicates the
196 aspheric degree of the chromosome. We found that chromo-
197 somes at the Prometa stage have the highest degree of struc-

Figure 1: Chromosome structural properties at the Prometa, Ana/telo, Early G1, Mid G1 and Late G1 stages. (A) Hi-C contact maps. The contact matrices were normalized, so that the adjacent chromosomal loci ($i, i \pm 1$) are always in contact ($P_{i,i \pm 1} = 1.0$). (B) Enhanced contact maps. The enhanced contact probability was calculated as the ratio of the observed contact probability (P_{obs}) over the expected contact probability (P_{exp}) [4, 28]. (C) Free energy landscapes of the chromosome structural ensembles projected onto the geometrical quantities. The chromosome structural ensembles were generated by maximum entropy principle coarse-grained MD simulations. The geometry of the chromosome is described by the radius of gyration R_g and the aspheric shape quantity Δ . σ is the length unit of the coarse-grained model. Representative chromosome structure is shown in each panel. (D) Correlated fluctuating motions of chromosomal loci in the chromosome structural ensembles, measured by $M_{i,j}$. The segment of chromosome 1 (20.5–71.4 Mb) was chosen in this study. The resolution of contact probability is 100 kb and each bead represents one 100 kb DNA segment in our coarse-grained model. The dashed lines in (A) and (D) indicate the TAD boundaries in the late G1 phase, identified by the method based on the insulation score profile [29].

tural compaction with the lowest R_g among these five stages. Furthermore, the mitotic chromosomes exhibit highly aspheric geometry, reminiscent of a cylinder-like shape. These structural features of chromosomes at the Prometa stage are in line with the previous experimental observations [13, 15]. As cells undergo the transition from mitosis to G1 phase, chromosomes gradually expand their structure (increasing R_g) and change to a sphere-like structural geometry (decreasing Δ towards 0). Interestingly, we found that although the chromosome structures are highly aspheric with a similar degree of compaction at the Prometa stage, the overall shape can be quite heterogeneous, demonstrated by a wide range of Δ . This further implies that the chromosome structural geometries are more diverse for different cells at the mitotic phase, compared to the ones at the interphase.

Chromosomes are highly flexible polymers. To investigate the structural flexibility of chromosomes at the five stages of cell transition from the mitosis to the G1 phase, we quantified the correlated fluctuating motions of chromosomal loci by calculating the fluctuation matrix (Figure 1D) [32, 33]:

$$M(i, j) = \langle \delta \vec{r}_i \cdot \delta \vec{r}_j \rangle,$$

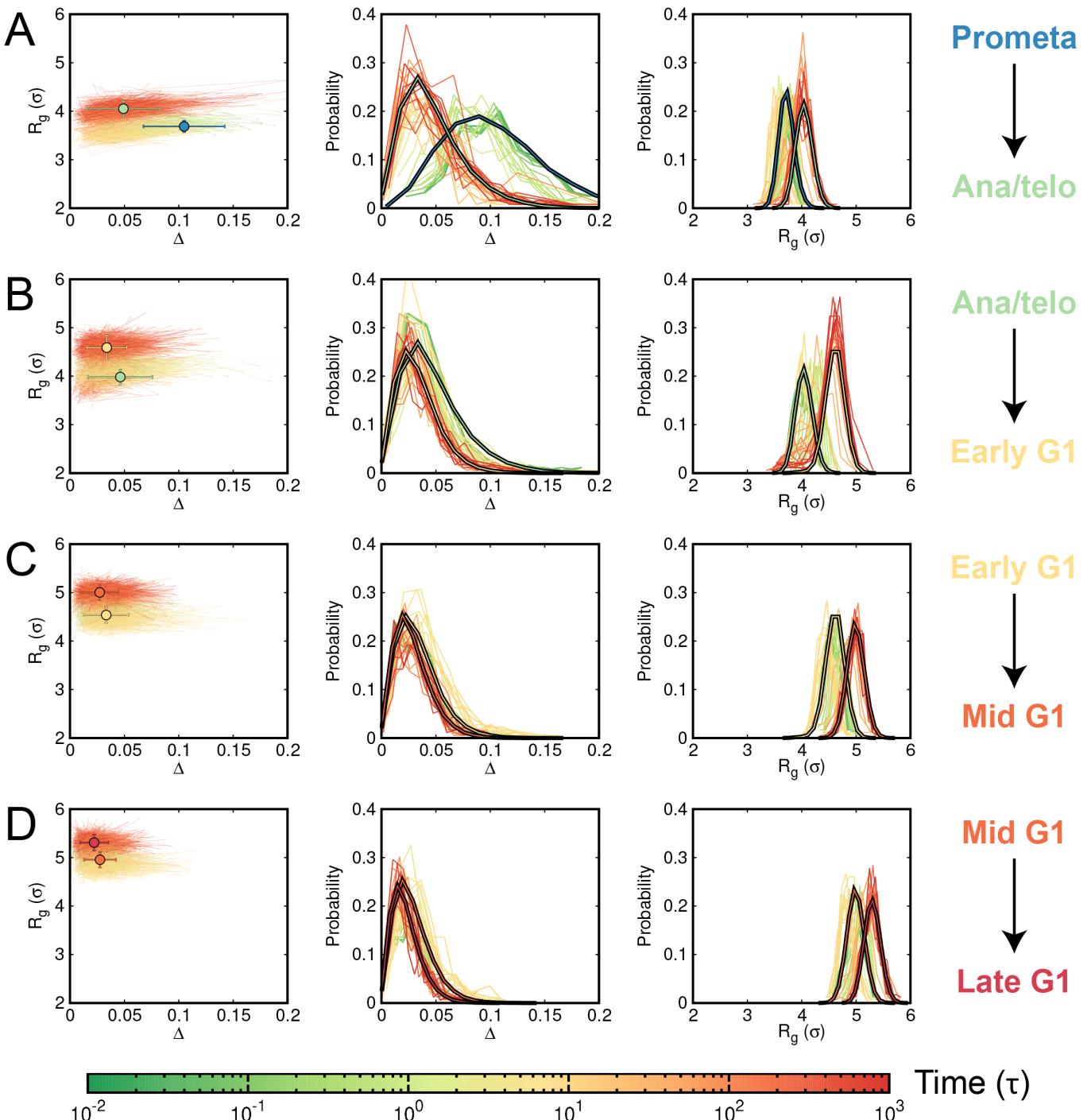
where $\delta \vec{r}_{i(j)} = \vec{r}_{i(j)} - \langle \vec{r}_{i(j)} \rangle$, $\vec{r}_{i(j)}$ is the coordinate of chromosomal locus i (j), and $\langle \vec{r}_{i(j)} \rangle$ is the corresponding average. The fluctuation matrix $M_{i,j}$ measures the correlation of spatial displacements between the chromosomal loci i and j with respect to their corresponding averages in the chromosome structural ensembles. The sign of $M_{i,j}$ indicates whether the motion between the chromosomal loci i and j is positively or negatively correlated.

At the Prometa stage, chromosomal loci are positively correlated only when they are sequentially close, particularly within the two termini of the chromosome. Meanwhile, the magnitude of motion correlation between chromosomal loci decreases as their genomic distance increases, but it may increase subsequently when the evolving chromosomal loci are separated far away in sequence (e.g., chromosomal loci from two termini of the chromosome). Progressing to the G1 phase enhances the positive correlation of motions between chromosomal loci at short-range regions, and the pattern $M_{i,j}$ at long-range regions roughly resembles that of the enhanced probability. At the Late G1 stage, $M_{i,j}$ exhibits a large positive value when chromosomal loci i and j are within the same TAD, suggesting that the motions within TADs are strongly correlated

235 in a positive manner. This indicates that TADs serve not only
236 as the structural units in forming the 3D architecture of the
237 chromosome, but also as the dynamic units in governing chromo-
238 some motions. Interestingly, we found that strengthening
239 the enhanced contact probability can lead to a weakening of
240 the correlation of motions between chromosomal loci at cer-
241 tain regions (e.g., 12.5–20.4 Mb and 36.3–39.8 Mb). This sug-
242 gests that strong compartmentalization in chromosomes does
243 not always result in strong correlated motions between chro-
244 mosomal loci. Overall, we found that the coherent motions
245 in chromosomes are weakest at the Prometa stage during the
246 transition from mitosis to interphase. When cells undergo the
247 transition to the Late G1 stage, the coherence of chromosome
248 dynamics is enhanced both within TAD structures and at long-
249 range regions.

250 2.2 Chromosome structural dynamics during 251 the mitosis-to-G1 phase transition

252 Hi-C experiments provided contact-based 2D information on
253 ensemble-averaged chromosome structure for cells at five dis-
254 crete stages during the transition from the mitosis to the G1
255 phase. Hi-C-based data-driven MD simulations generated 3D
256 chromosome structural ensembles and further formulated ex-
257 pressions for the effective energy landscapes, which govern the
258 structures and dynamics of chromosomes within one cell stage
259 during the transition. To bridge the gap between adjacent cell
260 stages, we employed the landscape-switching model to simu-
261 late the chromosome structural dynamics during the cell mi-
262 totic exit processes [21, 34, 35, 36, 37, 38]. The landscape-
263 switching model was applied between any two adjacent cell
264 stages during the transition by instantaneously switching the
265 effective energy landscape from one cell stage to another.
266 This switching implementation provides the energy excitation
267 necessary to drive the system for state transition, leading to
268 nonequilibrium dynamics. The model, which is consistent
269 with the nonequilibrium nature of cell-state transitions, has
270 been found effective in reproducing many aspects of the ex-
271 perimental observations on various cell-fate-decision-making
272 processes [21, 34, 35, 36, 37, 38].


273 The landscape-switching model generated chromosome
274 structural dynamical trajectories, enabling investigations of
275 continuous transition processes where only experimental Hi-C
276 data at the initial and final states are available (Figure S6–S9).
277 Additionally, one simulation represents the structural dynamics
278 for one chromosome, resembling the transition trajectory at
279 the single-cell level. To quantitatively describe the pathways,
280 we projected the trajectories onto the geometrical quantities of
281 chromosomes (R_g and Δ) (Figure 2). We found high stochastic-
282 ity for the transition from the chromosome structural perspec-
283 tive, as no dominant pathways can be identified. Notably, these
284 results are reminiscent of previous experimental observations,
285 where deterministic paths connecting different cell states with
286 significant fluctuations were characterized by single-cell Hi-C
287 techniques for studying cell-cycle processes [14].

288 Considering the stochasticity of the trajectory, we calculated
289 the evolution of the probability distribution of R_g and Δ during
290 the transitions between every two adjacent stages. The trajec-
291 tories clearly show that the geometrical quantities of chromo-

292 somes adapt by changing the average values and distribution
293 simultaneously during the transition. For instance, the most
294 significant changes in Δ during the mitosis-to-G1 phase transi-
295 tion occur at the transition from the Prometa to Ana/telo stage,
296 where the distribution of Δ gradually narrows down, accompa-
297 nied by shifting the median towards smaller values. Although
298 the asphericity of the chromosome structure largely adapts in
299 the Prometa to Ana/telo transition, the expansion of the chro-
300 mosome structure is not significant. The change in R_g reaches
301 the highest degree in the transition from the Ana/telo to Early
302 G1 stage, where only a minor change in Δ is observed. Adapt-
303 ing chromosome structural geometry in the progression of the
304 G1 phase is mostly related to the further expansion of the chro-
305 mosome structure, while the asphericity of the chromosome
306 structure remains almost unchanged. Overall, we observed
307 a significant adaptation of chromosome structural asphericity
308 within mitosis from the Prometa to Ana/telo stage, while the
309 expansion of the chromosome structure mostly occurs when
310 the cell enters the G1 phase. The asphericity of the chro-
311 mosome structure within the G1 phase is maintained while the
312 structure continuously expands as cells proceed to the next
313 stage of the G1 phase.

314 Our results indicate that the adaptation of the aspheric ge-
315 ometry and the structural expansion for chromosomes during
316 the transition from the mitosis to the G1 phase are not syn-
317 chronous. It has been well recognized that condensins play ma-
318 jor roles in chromosome condensation during the mitotic phase
319 [39, 40]. Numerous studies have revealed that two types of
320 condensins (condensin I and condensin II), which form loops
321 at different genomic distances [15], have distinct impacts on
322 shaping the overall structures of chromosomes [41, 42]. Gen-
323 erally, condensin II promotes the formation of the long-range
324 loops in the chromosome, while condensin I stabilizes and or-
325 ganizes the short-range loops, aiding in the lateral compaction
326 of the chromosome [43, 15, 44]. Recent experiments showed
327 that the absence of the condensin I during mitosis results in a
328 disorganized, thicker chromosome scaffold, corresponding to
329 low values of Δ . Conversely, without condensin II, chromo-
330 somes are unable to compact axially, leading to larger values
331 of R_g [42]. Therefore, our findings indicate a sequence of con-
332 densin disassembly in which condensin I is unloaded first (de-
333 creasing Δ), followed by unloading of condensin II (increasing
334 R_g) during the transition from the mitosis to the G1 phase. The
335 picture is consistent with the previous experimental observa-
336 tions, where in the telophase, condensin I is exported out of
337 the reassembling nucleus whereas condensin II remains in the
338 nucleus [45, 46].

339 To examine how the coherent motions between chromoso-
340 mal loci evolve, we calculated the difference in the fluctuation
341 matrix between the initial and final states during each transi-
342 tion (Figure 3). We observed that the changes in the coher-
343 ence of the chromosome structural dynamics exhibit very dif-
344 ferent trends at different transitions. At the beginning of the
345 transition from the Prometa to Ana/telo stage (10 τ), a notice-
346 able decrease and increase in structural correlation within and
347 between two termini of the chromosome were found, respec-
348 tively. Meanwhile, $M_{i,j}$ at the diagonal regions, which are re-
349 lated to TAD formations, remain largely unchanged. As the
350 cell continues to proceed to the Ana/telo stage (after 10 τ),
351 the structural correlations for the regions close in sequence en-

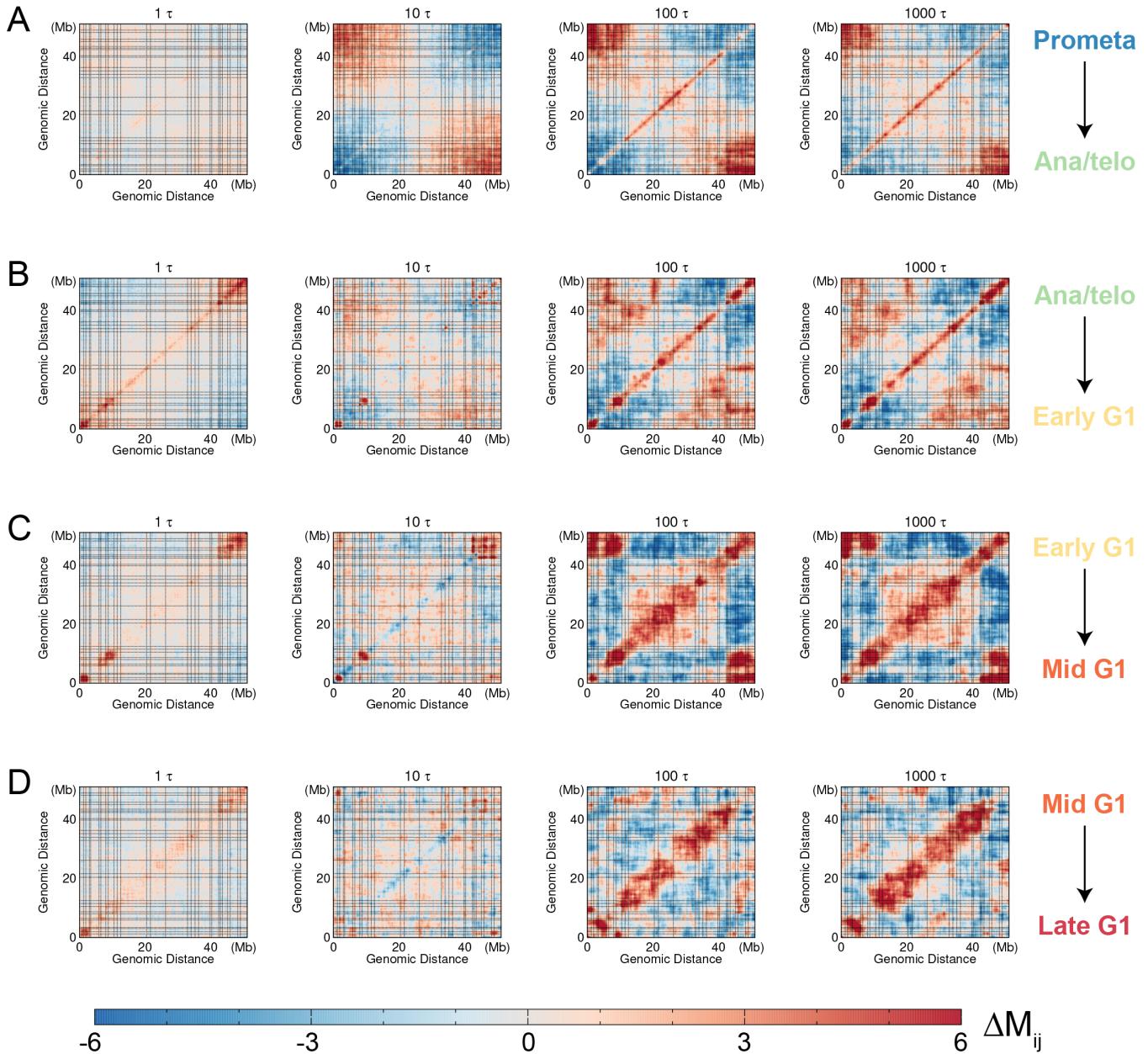
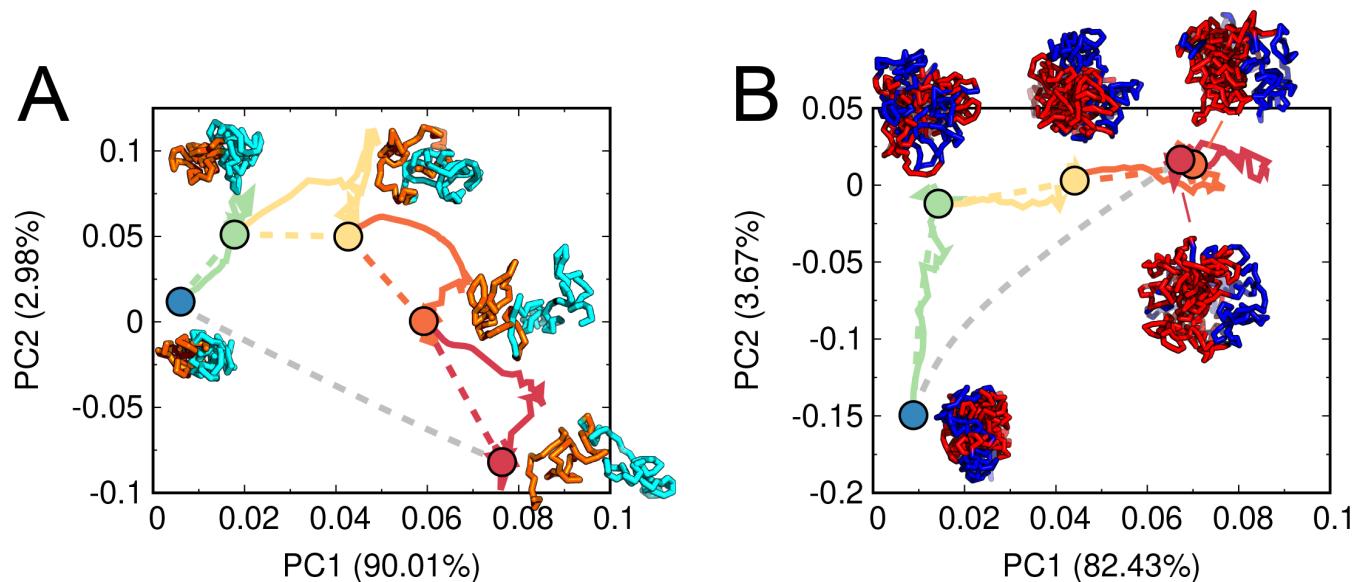


Figure 2: Geometrical properties of the chromosome structural ensembles during the transitions from mitosis to G1 phase, characterized by the radius of gyration (R_g) and the aspheric shape quantity (Δ). (A) Transition from the Prometa to Ana/telo stage. (Left) Individual pathways with average values at the initial (Prometa) and final (Ana/telo) states shown as circles. (Middle and Right) Evolution of the probability distribution of Δ and R_g during the transition, represented by bold lines corresponding to the initial (Prometa) and final (Ana/telo) states. (B) Transition from the Ana/telo to Early G1 stage. (C) Transition from the Early G1 to Mid G1 stage. (D) Transition from the Mid G1 to Late G1 stage.

hance. In the transition from the Ana/telo to Early G1 stage, a non-specific, wide range of regions with increasing $M_{i,j}$ was initially observed (10τ), followed by a more specific pattern with increasing $M_{i,j}$ at the local regions and between two termini of the chromosome at the late stage of mitosis ($t=1000 \tau$). After the cell enters the G1 phase, the increase in $M_{i,j}$ at the diagonal regions and between the two termini of the chromosome continues to be observed in the transition from the Early

G1 to Mid G1 stage. Intriguingly, we observed that two distant regions belonging to the same compartment also exhibit an increase in $M_{i,j}$, indicating a correlation of the chromosomal loci within the same compartment. The final transition to the late G1 stage leads to further enhancement of the coherent motions in the chromosome, primarily within the TADs. Therefore, we found that the correlation of chromosome structural dynamics within TADs is enhanced throughout the transition from

360
361
362
363
364
365
366
367


Figure 3: The difference in the fluctuation matrix between the chromosomal structural ensembles at the transition time t and the initial state for each transition. $\Delta M_{i,j} = M_{i,j}(t) - M_{i,j}(t = 0)$, where T represents 1τ , 10τ , 100τ , and 1000τ . (A) $\Delta M_{i,j}(t)$ for the transition from the Prometa to Ana/telo stage. (B) $\Delta M_{i,j}(t)$ for the transition from the Ana/telo to Early G1 stage. (C) $\Delta M_{i,j}(t)$ for the transition from the Early G1 to Mid G1 stage. (D) $\Delta M_{i,j}(t)$ for the transition from the Mid G1 to Late G1 stage. The dashed lines represent the TAD boundaries in the late G1 phase, as depicted in Figure 1.

368 the mitosis to the G1 phase. Since the boundaries of TADs
 369 have been found to be mostly established before entry to the
 370 G1 phase [17, 16, 22], the structural adaptations of TADs in
 371 the G1 phase are primarily related to strengthening the coher-
 372 ent motions within the domains, thus favoring their role as the
 373 basic unit for chromosome organizations.

374 2.3 Dynamics of TADs and compartments dur- 375 ing the mitosis-to-G1 phase transition

376 As TADs have been identified as the structural units of chromo-
 377 somes [47, 48, 49], we investigated the structural dynamics of
 378 TADs during the mitosis-to-G1 phase transition. We employed

379 the insulation score profile, initially introduced to character-
 380 ize TAD boundaries, to describe the structural formations of
 381 TADs. We conducted principal component analysis (PCA) on
 382 the evolution of the insulation score profile during each transi-
 383 tion between the five stages during the mitosis-to-G1 phase
 384 transition (Figure 4A). We observed that the insulation score
 385 profiles of chromosomes at these five stages are distinctly sep-
 386 arated, indicating structurally different TADs formed in these
 387 stages. This characteristic further suggests that TAD struc-
 388 tures adapt throughout the transition from the mitosis to the
 389 G1 phase. Interestingly, the pathways observed deviate con-
 390 siderably from those obtained through linear interpolation of
 391 the Hi-C maps between the initial and final states of the transi-

Figure 4: Quantified pathways of chromosome structural reorganizations during the transition from mitosis to G1 phase. (A) The quantified pathways (color solid lines) are shown in the PCA plot of the insulation score profiles projected onto the first two PCs. The color dashed lines indicate the pathways connected by the linear interpolation between the Hi-C data of the initial and final states for each transition. The grey dashed line indicate the pathways connected by the linear interpolation between the Hi-C data of the Prometa and Late G1 stage. Representative structures of two consecutive TADs (21.6–26.2 Mb and 26.3–32.9 Mb), respectively colored by orange and cyan, are shown for these five cell stages. (B) The same as (A), but the PCA plot is done for enhanced contact probability $\log_2(P_{obs}/P_{exp})$. Representative structures of the chromosome with the locus colored by its corresponding compartmental annotation (red for compartment A and blue for compartment B), are shown for these five cell stages.

392 sition. This implies that the landscape-switching model can
393 produce non-linear behavior for the evolution of chromosome
394 structure, potentially enabling the discovery of non-monotonic
395 chromosome structural changes captured by previous experi-
396 ments on cell-cycle processes [16].

397 To examine the evolution of long-range structural organi-
398 zation in chromosomes during the transition from the mitosis
399 to the G1 phase, we focused on the enhanced contact prob-
400 ability P_{obs}/P_{exp} , where P_{obs} and P_{exp} represent the observed
401 and expected contact probability at 1 Mb resolution [4, 28].
402 Generally, the first principal component (PC1) of P_{obs}/P_{exp} is
403 used to describe the compartment profile of a chromosome,
404 making P_{obs}/P_{exp} suitable for describing long-range chromo-
405 some structural formation. We performed a similar PCA anal-
406 ysis on the evolution of P_{obs}/P_{exp} during each transition (Fig-
407 ure 4B). We found that in the PCA plot, the Mid G1 and Late
408 G1 stages are very close to each other and far from the other
409 three distinct stages, suggesting that most long-range chromo-
410 some structural changes during the mitosis-to-G1 phase transi-
411 tion occur before the formation of the Mid G1 stage. Unlike
412 TADs, we observed strong overlap between the pathways ob-
413 tained from the landscape-switching model and the linear ex-
414 trapolation method for each transition, indicating linear behav-
415 ior for the evolution of chromosome structures at long-range
416 regions during each transition. However, the linear connec-
417 tion between the Prometa and Late G1 stages deviates signifi-
418

419 cantly from the pathways for the individual transitions within
420 the process. These findings suggest that non-linear behavior of
421 chromosome structural dynamics at long-range regions exists
422 for the entire cell mitotic exit process, even though long-range
423 contacts in chromosomes can be linearly interpolated by the
424 initial and final states for individual transitions.

3 Discussion and conclusions

425 In this work, we investigated the chromosome structural dy-
426 namics during the mitosis-to-G1 phase transition using MD
427 simulation approach with a combination of a data-driven
428 model and the nonequilibrium landscape-switching model. We
429 analyzed the chromosomal structural ensembles at five crit-
430 ical cell stages during the process, including prometaphase,
431 anaphase or telophase, early G1 phase, mid G1 phase, and late
432 G1 phase, as well as the transition pathways between adjacent
433 cell stages. Our analysis was based on the geometric properties
434 of chromosomal structures and the coherent motions between
435 loci within chromosomes. We observed considerable fluctua-
436 tions of the quantities in both the chromosomal structure en-
437 semble and transition pathways, highlighting the stochastic na-
438 ture of chromosomal structure and dynamics at the single-cell
439 level [23, 14, 24, 25, 26]. Nevertheless, chromosomes undergo
440 universal structural reorganizations, characterized by geomet-
441

441 rical expansion, adaptation in aspheric shape, and enhanced
442 coherent motions between chromosomal loci within the TADs
443 during the transition from the mitosis to the G1 phase. These
444 features suggest that chromosomal structural dynamics during
445 the mitosis-to-G1 phase transition are driven by a combination
446 of deterministic dynamics and stochastic effects, consistent
447 with previous experimental findings on single-cell, cell-
448 cycle-dependent Hi-C measurements [14].

449 Our results indicate that although chromosomes are highly
450 condensed at the Prometa stage with the slowest diffusion dy-
451 namics of the chromosomal loci within a single cell among the
452 five critical stages (Figure S1-S5), the degree of asphericity
453 of the structure appears to span a wide range. This implies
454 high geometrical variation for similarly compacted chromo-
455 somes (similar R_g) in different cells at the Prometa stage. Af-
456 ter mitosis, condensins dissociate from chromosomes, likely
457 with simultaneous loading of cohesins [50], which are respon-
458 sible for maintaining chromosome structure in the interphase
459 [51]. However, the order of condensin-unloading and cohesin-
460 loading during the transition from the mitosis to the G1 phase
461 remains unclear. Our research, which sheds light on the com-
462 plex dynamics of the chromosome structural geometry, may re-
463 veal insights into the molecular processes of the condensin un-
464 loading and cohesin loading after mitosis. A recent study used
465 time-course Hi-C, chromatin binding assays and immunoflu-
466 orescence experiments to identify an intermediate state for
467 the condensin-to-cohesin transition after mitosis [15]. In this
468 work, we further established that the unloading of condensin I
469 precedes that of condensin II. This observation is based on the
470 asynchronous changes of the chromosome structural geometry
471 in terms of asphericity and expansion. Our findings have made
472 a good contribution to the knowledge of the molecular-level
473 mechanism in the transition from the mitosis to the G1 phase.

474 By analyzing the coherent motions between chromosomal
475 loci at the Prometa stage, we found highly positively and neg-
476 atively correlated motions within and between the two termini
477 of the chromosome, respectively. This suggests that the spa-
478 tial motions of chromosomal loci at the Prometa stage are
479 primarily related to structural compaction and decompaction,
480 as these two termini move as individual wholes, in oppo-
481 site directions. During the transition to the G1 phase, the
482 compaction/decompaction motions at the chromosome termini
483 gradually weaken, and the positively correlated motions be-
484 tween chromosomal loci within each TAD are progressively
485 enhanced. In the G1 phase, the coherent motions between
486 long-range regions are largely correlated with compartment
487 formations. However, strong compartmentalization does not
488 always result in a strong correlation in structural dynamics,
489 leading to a decoupling relationship between the chromo-
490 some's structure and dynamics. Based on this observation, we
491 conclude that TADs, rather than compartments, can be consid-
492 ered as the fundamental units that encompass both the struc-
493 tural and dynamical aspects of chromosomes.

494 We quantified the chromosome structural reorganization
495 pathways of TAD formations and the enhanced probability
496 evolutions, which indicate the non-linear behavior of contact
497 interaction reorganization in chromosomes during the mitosis-
498 to-G1 phase transition. Notably, non-linear behaviors of chro-
499 mosome structure dynamics related to the mitosis process
500 have been widely observed in various experiments. For in-

501 stance, Abramo et al. applied time-course Hi-C techniques to
502 study the cell mitotic exit process and detected an intermediate
503 state, where chromosomes are free of condensins and cohesins
504 [16, 27]. They found that the chromosome contact interactions
505 at this particular intermediate state differed significantly from
506 the Hi-C data obtained using the interpolation-based method
507 with the initial and final cell states as inputs, demonstrating
508 non-linear behavior in modulating chromosome structures dur-
509 ing the mitosis-to-G1 phase transition. This intermediate state
510 was then successfully observed by our landscape-switching
511 model, which further characterized the non-monotonic transi-
512 tion from the mitotic phase to interphase based on the quan-
513 tified chromosome structural dynamical pathways [21]. Using
514 live cell fluorescence imaging experiments, Chu et al. captured
515 the shapes and sizes of chromosomes during mitosis at high
516 resolution in 3D space and time [52, 53, 54]. They observed
517 an interesting behavior that the sizes of chromosomes undergo
518 an increase-followed-by-decrease non-monotonic adaption be-
519 havior as the cell proceeds from the prophase to cytokinesis.
520 This is consistent with the results we obtained in our simula-
521 tion. Although it seems to be popular, the functional role of
522 this non-linear behavior in chromosome structural reorganiza-
523 tions after mitosis requires further investigations.

524 In summary, we investigated chromosomal structure ensem-
525 bles of five critical cell stages during the mitosis-to-G1 phase
526 transition. We quantified the pathways connecting each pair
527 of adjacent cell stages during the process from the chromoso-
528 mal structural perspective. Our model can be further improved
529 by explicitly considering molecular-level processes [55]. Our
530 landscape-switching model, which accounts for the nonequi-
531 librium nature of cell-state transitions, predicted non-linear be-
532 havior of chromosomal structural reorganizations. This pre-
533 diction provides valuable information for improving current
534 interpolation-based methods widely used in 4D genome re-
535 search [56, 57, 58].

4 Materials and Methods

4.1 Hi-C data processing

536 The Hi-C data for the murine erythroblastosis subline
537 G1E-ER4 cells, at different cell cycle phases including
538 prometaphase, anaphase, telophase, early G1 phase, mid
539 G1 phase, and late G1 phase, were downloaded from the
540 Gene Expression Omnibus database under accession number
541 GSE129997 [17]. To analyze the Hi-C data, we utilized the Hi-
542 C Pro software and followed the standard pipeline described by
543 Servant et al. [59]. Furthermore, the Hi-C data was normalized
544 using the iterative correction and eigenvector decomposition
545 (ICE) method proposed by Imakaev et al. [60]. The resolution
546 of the contact matrices was set to 100 kb. Our focus was on
547 a specific region of chromosome 1, spanning from 20.5 Mb to
548 549 71.4 Mb, which contained a total of 510 beads in our coarse-
550 grained beads-one-a-string model. To convert the Hi-C data
551 into a contact probability map suitable for molecular dynamics
552 (MD) simulations, we applied an additional normalization step
553 by assuming that the highest contact probability was formed by
554 neighboring beads with a value of $P_{i,j} = 1.0$, where i and j rep-
555 resent the chromosomal loci, and $j = i \pm 1$. This normalization

557 approach enabled us to obtain a contact probability map for
558 subsequent MD simulations.

559 4.2 Maximum entropy principle simulations

560 In our coarse-grained model, the structural and dynamical
561 properties of the chromosome are governed by both bonded
562 and non-bonded potentials. The neighboring chromosomal
563 loci, represented by coarse-grained beads i and $i \pm 1$, are con-
564 nected through pseudo bonds, as described by Rosa et al. [61].
565 To account for the stiffness of the chromosome chain, we
566 incorporated a linear-placement favored angle potential that
567 acts on three adjacent beads. For the non-bonded interac-
568 tions, we introduced soft-core repulsive forces between any
569 pair of beads. This approach emulates the effects of topoiso-
570 merase enzymes, which play a role in untangling DNA chains
571 [13, 31, 19]. Additionally, we included a spherical confine-
572 ment to mimic the volume fraction of the chromosome within
573 the cell nucleus at a 10%.

To incorporate the experimental Hi-C information into our coarse-grained chromosome model, we adopted a maximum entropy principle strategy, where the biasing potential should be in the linear form of the experimental observation [30]. Therefore, the overall potential $V(Stage)$ can be expressed as the sum of two components: $V_{Homopolymer}$ and $V_{Hi-C}(Stage)$. $V_{Homopolymer}$ represents the non-specific homopolymer potential, which solely includes the bonded and soft-core non-bonded terms. On the other hand, $V_{Hi-C}(Stage)$ is the biasing potential that incorporates the experimental Hi-C data specific to the particular cell "Stage". The expression for V_{Hi-C} is as follows:

$$V_{Hi-C} = \sum_{i,j} \alpha_{i,j} P_{i,j},$$

574 where $P_{i,j}$ denotes the contact probability between the chromo-
575 somal loci "i" and "j," and $\alpha_{i,j}$ acts as a prefactor governing the
576 strength of the biasing potential. The values of $\alpha_{i,j}$ are deter-
577 mined iteratively through multiple rounds of MD simulation,
578 aiming to minimize the discrepancy between the contact prob-
579 abilities obtained from the simulated chromosome ensembles
580 and the experimental data. For further details, please refer to
581 the previous studies [31, 19, 62].

582 4.3 Landscape-switching model

583 We simulated the chromosome structural dynamics during
584 the transition from mitosis to G1 phase using the landscape-
585 switching model developed in our previous works [21, 34, 35,
586 36, 37, 38]. In brief, the model involved three main steps. First,
587 we simulated the chromosome under the potential specific to
588 the initial stage, denoted as $V(Stage1)$. This potential was ob-
589 tained through maximum entropy principle simulations incor-
590 porating the experimental Hi-C data. Then, we implemented
591 a switching of the potential from the initial stage to the target
592 stage, represented as $V(Stage1) \rightarrow V(Stage2)$. This switching
593 process drives the system out-of-equilibrium. Finally, we sim-
594 ulated the chromosome under the new potential associated with
595 the target stage, denoted as $V(Stage2)$. The simulation allowed
596 the system to relax on the post-switching energy landscape.
597 The relaxation processes during this transition were collected
598 and represented as the structural dynamical trajectories of the

599 chromosome, capturing its conformational changes during the
600 cell-state transition.

601 To reduce the large number of chromosome structures gen-
602 erated by the maximum entropy principle simulations, we per-
603 formed structural clustering analysis on the ensembles. This
604 analysis aimed to identify a smaller set of representative struc-
605 tures that could serve as initial structures for the subsequent
606 landscape-switching MD simulations (Figure S1-S5). Within
607 each cluster, we selected two chromosome structures, but only
608 if the cluster's population exceeded 0.2% of the ensemble.
609 This selection process led to 170, 176, 176, 180, and 196 struc-
610 tures for the Prometa, Ana/telo, Early G1, Mid G1, and Late
611 G1 stages, respectively. Subsequently, we generated the cor-
612 responding number of simulation trajectories for each stage
613 transition, including the Prometa to Ana/telo stage, Ana/telo to
614 Early G1 stage, Early G1 to Mid G1 stage, and Mid G1 stage
615 to Late G1 stage. By employing this clustering and selection
616 approach, we effectively decreased the number of chromosome
617 structures at the specific cell stage, enabling us to focus on a re-
618 duced set of representative initial structures for the subsequent
619 landscape-switching simulations.

620 4.4 MD simulation protocols

621 We utilized Gromacs (version 4.5.7) software [63] with
622 PLUMED (version 2.5.0) [64], to conduct the MD simula-
623 tions. The simulations were performed using Langevin dynam-
624 ics with a friction coefficient of $10 \tau^{-1}$, where τ represents the
625 reduced time unit. In our simulations, the temperature was in
626 the energy unit by multiplying the Boltzmann constant and ϵ
627 is the reduced energy unit. Noteworthy, the temperature in the
628 simulations does not directly correspond to real-world values.
629 Instead, it represents the environmental scale that influences
630 the structural dynamics of the chromosome under the specified
631 potential [19]. The length was in the unit of σ , which repre-
632 sents the length of the pseudo bond in our model. Additionally,
633 we used a time step of 0.0005τ in the simulations to advance
634 the dynamics of the system.

635 During each iteration of the maximum entropy principle
636 simulations to calibrate $\alpha_{i,j}$, we conducted 100 independent
637 MD simulations starting from different initial chromosome
638 structures. Each simulation had a duration of 1000τ . To en-
639 hance sampling of the conformational space, we employed a
640 simulated annealing technique in these individual simulations.
641 Initially, the temperature was gradually reduced from 4ϵ to ϵ
642 over the first 250τ of the simulation. Subsequently, the tem-
643 perature was held constant at ϵ for the remaining time. The
644 second half of the trajectory, spanning from 500τ to 1000τ ,
645 was collected for the calculation of the simulated contact prob-
646 ability $P_{i,j}$.

647 4.5 Structural and geometrical quantities

648 To assess the formation of TADs, we employed the insulation
649 score introduced by Crane et al. [29]. Following the origi-
650 nal study, we utilized a sliding window size of 500×500 kb to
651 calculate the insulation score based on the contact map. The
652 minima on the insulation score profile were then evaluated and
653 identified as the boundaries of TADs [29]. To quantify the
654 level of interaction enhancement, we calculated the enhanced

655 contact probability, which was determined by dividing the ob-
 656 served contact probability P_{obs} by the expected contact proba-
 657 bility P_{exp} . The observed contact probability P_{obs} was obtained
 658 by summing the contact probabilities at a resolution of 100 kb
 659 within a 1 Mb region. On the other hand, the expected contact
 660 probability P_{exp} was calculated as the average contact proba-
 661 bility between chromosomal loci separated by a specified ge-
 662 nomic distance.

We used the radius of gyration R_g and aspheric quantity Δ to describe the geometry of the chromosome chain. These two quantities can be derived from the inertia tensor \mathbf{T} with the following expression:

$$\mathbf{T} = \begin{bmatrix} \mathbf{r}_x \mathbf{r}_x^T & \mathbf{r}_x \mathbf{r}_y^T & \mathbf{r}_x \mathbf{r}_z^T \\ \mathbf{r}_y \mathbf{r}_x^T & \mathbf{r}_y \mathbf{r}_y^T & \mathbf{r}_y \mathbf{r}_z^T \\ \mathbf{r}_z \mathbf{r}_x^T & \mathbf{r}_z \mathbf{r}_y^T & \mathbf{r}_z \mathbf{r}_z^T \end{bmatrix},$$

where \mathbf{r}_x , \mathbf{r}_y and \mathbf{r}_z are the row vectors for the spatial positions of the chromosomal loci shifted by the corresponding means. R_g is expressed as follows:

$$R_g = \sqrt{tr\mathbf{T}} = \sqrt{\sum_{k=1}^3 \lambda_k},$$

where λ_k ($k=1, 2$ and 3) are the eigenvalues of \mathbf{T} , corresponding to the squares of the extension length along the three principal axes. Δ is expressed as follows:

$$\Delta = \frac{3}{2} \frac{\sum_{k=1}^3 (\lambda_k - \langle \lambda \rangle)^2}{(tr\mathbf{T})^2}.$$

663 Acknowledgement

664 We acknowledge the support from the National Science Foundation
 665 PHY-76066. The authors would like to thank Stony Brook Research
 666 Computing and Cyberinfrastructure, and the Institute for Advanced
 667 Computational Science at Stony Brook University for access to the
 668 high-performance SeaWulf computing system, which was made pos-
 669 sible by a \$1.4M National Science Foundation grant (#1531492).

670 References

[1] John J Tyson and Bela Novak. Temporal organization of the cell cycle. *Current Biology*, 18(17):R759–R768, 2008.

[2] Paul Nurse. A long twentieth century of the cell cycle and beyond. *Cell*, 100(1):71–78, 2000.

[3] Jason R Swedlow and Tatsuya Hirano. The making of the mitotic chromosome: modern insights into classical questions. *Molecular cell*, 11(3):557–569, 2003.

[4] Erez Lieberman-Aiden, Nynke L Van Berkum, Louise Williams, Maxim Imakaev, Tobias Ragoczy, Agnes Telling, Ido Amit, Bryan R Lajoie, Peter J Sabo, Michael O Dorschner, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. *Science*, 326(5950):289–293, 2009.

[5] Suhas SP Rao, Miriam H Huntley, Neva C Durand, Elena K Stamenova, Ivan D Bochkov, James T Robinson, Adrian L Sanborn, Ido Machol, Arina D Omer, Eric S Lander, et al. A 3d map of the human genome at kilobase resolution reveals principles of chromatin looping. *Cell*, 159(7):1665–1680, 2014.

[6] Jesse R Dixon, Siddarth Selvaraj, Feng Yue, Audrey Kim, Yan Li, Yin Shen, Ming Hu, Jun S Liu, and Bing Ren. Topological domains in mammalian genomes identified by analysis of chromatin interactions. *Nature*, 485(7398):376, 2012.

[7] Tom Sexton, Eitan Yaffe, Ephraim Kenigsberg, Frédéric Bantignies, Benjamin Leblanc, Michael Hoichman, Hugues Parrinello, Amos Tanay, and Giacomo Cavalli. Three-dimensional folding and functional organization principles of the drosophila genome. *Cell*, 148(3):458–472, 2012.

[8] Chunhui Hou, Li Li, Zhaohui S Qin, and Victor G Corces. Gene density, transcription, and insulators contribute to the partition of the drosophila genome into physical domains. *Molecular cell*, 48(3):471–484, 2012.

[9] Elphège P Nora, Bryan R Lajoie, Edda G Schulz, Luca Giorgi, Ikuhiro Okamoto, Nicolas Servant, Tristan Piolot, Nynke L van Berkum, Johannes Meisig, John Sedat, et al. Spatial partitioning of the regulatory landscape of the x-inactivation centre. *Nature*, 485(7398):381, 2012.

[10] Giacomo Cavalli and Tom Misteli. Functional implications of genome topology. *Nature structural & molecular biology*, 20(3):290, 2013.

[11] Christian Lanctôt, Thierry Cheutin, Marion Cremer, Giacomo Cavalli, and Thomas Cremer. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. *Nature Reviews Genetics*, 8(2):104, 2007.

[12] Boyan Bonev and Giacomo Cavalli. Organization and function of the 3d genome. *Nature Reviews Genetics*, 17(11):661, 2016.

[13] Natalia Naumova, Maxim Imakaev, Geoffrey Fudenberg, Ye Zhan, Bryan R Lajoie, Leonid A Mirny, and Job Dekker. Organization of the mitotic chromosome. *Science*, 342(6161):948–953, 2013.

[14] Takashi Nagano, Yaniv Lubling, Csilla Várnai, Carmel Dudley, Wing Leung, Yael Baran, Netta Mendelson Cohen, Steven Wingett, Peter Fraser, and Amos Tanay. Cell-cycle dynamics of chromosomal organization at single-cell resolution. *Nature*, 547(7661):61, 2017.

[15] Johan H Gibcus, Kumiko Samejima, Anton Goloborodko, Itaru Samejima, Natalia Naumova, Johannes Nuebler, Masato T Kanemaki, Linfeng Xie, James R Paulson, William C Earnshaw, et al. A pathway for mitotic chromosome formation. *Science*, 359(6376):eaao6135, 2018.

[16] Kristin Abramo, Anne-Laure Valton, Sergey V Venev, Hakan Ozadam, A Nicole Fox, and Job Dekker. A chromosome folding intermediate at the condensin-to-cohesin transition during telophase. *NATURE CELL BIOLOGY*, 21(11):1393–1402, 2019.

[17] Haoyue Zhang, Daniel J Emerson, Thomas G Gilgenast, Katelyn R Titus, Yemin Lan, Peng Huang, Di Zhang, Hongxin Wang, Cheryl A Keller, Belinda Giardine, et al. Chromatin structure dynamics during the mitosis-to-g1 phase transition. *Nature*, 576(7785):158–162, 2019.

[18] Haoyue Zhang, Jessica Lam, Di Zhang, Yemin Lan, Marit W Vermunt, Cheryl A Keller, Belinda Giardine, Ross C Hardison, and Gerd A Blobel. Ctef and transcription influence chromatin structure re-configuration after mitosis. *Nature communications*, 12(1):5157, 2021.

745 [19] Bin Zhang and Peter G Wolynes. Shape transitions and chiral
746 symmetry breaking in the energy landscape of the mitotic chro-
747 mosome. *Physical review letters*, 116(24):248101, 2016.

748 [20] Leonid A Mirny. The fractal globule as a model of chromatin ar-
749 chitecture in the cell. *Chromosome research*, 19(1):37–51, 2011.

750 [21] Xiakun Chu and Jin Wang. Conformational state switching
751 and pathways of chromosome dynamics in cell cycle. *Applied
752 Physics Reviews*, 7(3):031403, 2020.

753 [22] Divyaa Srinivasan, Tarak Shisode, Jatin Shrinet, and Peter
754 Fraser. Chromosome organization through the cell cycle at a
755 glance. *Journal of Cell Science*, 135(10):jcs244004, 2022.

756 [23] Takashi Nagano, Yaniv Lubling, Tim J Stevens, Stefan Schoen-
757 felder, Eitan Yaffe, Wendy Dean, Ernest D Laue, Amos Tanay,
758 and Peter Fraser. Single-cell hi-c reveals cell-to-cell variability
759 in chromosome structure. *Nature*, 502(7469):59, 2013.

760 [24] Siyuan Wang, Jun-Han Su, Brian J Beliveau, Bogdan Bintu, Jef-
761 frey R Moffitt, Chao-ting Wu, and Xiaowei Zhuang. Spatial
762 organization of chromatin domains and compartments in single
763 chromosomes. *Science*, 353(6299):598–602, 2016.

764 [25] Tim J Stevens, David Lando, Srinjan Basu, Liam P Atkinson,
765 Yang Cao, Steven F Lee, Martin Leeb, Kai J Wohlfahrt, Wayne
766 Boucher, Aoife OShaughnessy-Kirwan, et al. 3d structures of
767 individual mammalian genomes studied by single-cell hi-c. *Nature*,
768 544(7648):59, 2017.

769 [26] Ilya M Flyamer, Johanna Gassler, Maxim Imakaev, Hugo B
770 Brandão, Sergey V Ulianov, Nezar Abdennur, Sergey V Razin,
771 Leonid A Mirny, and Kikuë Tachibana-Konwalski. Single-
772 nucleus hi-c reveals unique chromatin reorganization at oocyte-
773 to-zygote transition. *Nature*, 544(7648):110–114, 2017.

774 [27] Ning Qing Liu and Elzo de Wit. A transient absence of smc-
775 mediated loops after mitosis. *Nature cell biology*, 21(11):1303–
776 1304, 2019.

777 [28] Jesse R Dixon, Inkyung Jung, Siddarth Selvaraj, Yin Shen, Jes-
778 sica E Antosiewicz-Bourget, Ah Young Lee, Zhen Ye, Audrey
779 Kim, Nisha Rajagopal, Wei Xie, et al. Chromatin architec-
780 ture reorganization during stem cell differentiation. *Nature*,
781 518(7539):331, 2015.

782 [29] Emily Crane, Qian Bian, Rachel Patton McCord, Bryan R La-
783 joie, Bayly S Wheeler, Edward J Ralston, Satoru Uzawa, Job
784 Dekker, and Barbara J Meyer. Condensin-driven remodelling of
785 x chromosome topology during dosage compensation. *Nature*,
786 523(7559):240, 2015.

787 [30] Andrea Cesari, Sabine Reißer, and Giovanni Bussi. Using the
788 maximum entropy principle to combine simulations and solu-
789 tion experiments. *Computation*, 6(1):15, 2018.

790 [31] Bin Zhang and Peter G Wolynes. Topology, structures, and en-
791 ergy landscapes of human chromosomes. *Proceedings of the
792 National Academy of Sciences*, 112(19):6062–6067, 2015.

793 [32] Ivet Bahar, Ali Rana Atilgan, and Burak Erman. Direct evalua-
794 tion of thermal fluctuations in proteins using a single-parameter
795 harmonic potential. *Folding and Design*, 2(3):173–181, 1997.

796 [33] Xiakun Chu, Zucui Suo, and Jin Wang. Investigating the con-
797 formational dynamics of a y-family dna polymerase during its
798 folding and binding to dna and a nucleotide. *JACS Au*, 2(2):341–
799 356, 2021.

800 [34] Xiakun Chu and Jin Wang. Microscopic chromosomal structural
801 and dynamical origin of cell differentiation and reprogramming.
802 *Advanced Science*, 7(20):2001572, 2020.

803 [35] Xiakun Chu and Jin Wang. Deciphering the molecular mecha-
804 nism of the cancer formation by chromosome structural dynam-
805 ics. *PLoS Computational Biology*, 17(11):e1009596, 2021.

806 [36] Xiakun Chu and Jin Wang. Quantifying chromosome struc-
807 tural reorganizations during differentiation, reprogramming, and
808 transdifferentiation. *Physical Review Letters*, 129(6):068102,
809 2022.

810 [37] Xiakun Chu and Jin Wang. Dynamics and pathways of chro-
811 mosome structural organizations during cell transdifferentiation.
812 *JACS Au*, 2(1):116–127, 2021.

813 [38] Xiakun Chu and Jin Wang. Insights into the cell fate decision-
814 making processes from chromosome structural reorganizations.
815 *Biophysics Reviews*, 3(4):041402, 2022.

816 [39] Ana Losada and Tatsuya Hirano. Shaping the metaphase chro-
817 mosome: coordination of cohesion and condensation. *Bioes-
818 says*, 23(10):924–935, 2001.

819 [40] Frank Uhlmann. Smc complexes: from dna to chromosomes.
820 *Nature reviews Molecular cell biology*, 17(7):399, 2016.

821 [41] Takao Ono, Ana Losada, Michiko Hirano, Michael P Myers,
822 Andrew F Neuwald, and Tatsuya Hirano. Differential contri-
823 butions of condensin i and condensin ii to mitotic chromosome
824 architecture in vertebrate cells. *Cell*, 115(1):109–121, 2003.

825 [42] Lydia C Green, Paul Kalitsis, Tsz M Chang, Miri Cipetic, Ji Hun
826 Kim, Owen Marshall, Lynne Turnbull, Cynthia B Whitchurch,
827 Paola Vagnarelli, Kumiko Samejima, et al. Contrasting roles of
828 condensin i and condensin ii in mitotic chromosome formation.
829 *J Cell Sci*, 125(6):1591–1604, 2012.

830 [43] Marc Kschonsak and Christian H Haering. Shaping mitotic
831 chromosomes: From classical concepts to molecular mecha-
832 nisms. *BioEssays*, 37(7):755–766, 2015.

833 [44] Nike Walther, M Julius Hossain, Antonio Z Politi, Birgit Koch,
834 Moritz Kueblerbeck, Øyvind Ødegård-Fougner, Marko Lampe,
835 and Jan Ellenberg. A quantitative map of human condensins
836 provides new insights into mitotic chromosome architecture. *J
837 Cell Biol*, 217(7):2309–2328, 2018.

838 [45] Takao Ono, Yuda Fang, David L Spector, and Tatsuya Hirano.
839 Spatial and temporal regulation of condensins i and ii in mitotic
840 chromosome assembly in human cells. *Molecular biology of the
841 cell*, 15(7):3296–3308, 2004.

842 [46] Toru Hirota, Daniel Gerlich, Birgit Koch, Jan Ellenberg, and
843 Jan-Michael Peters. Distinct functions of condensin i and ii
844 in mitotic chromosome assembly. *Journal of cell science*,
845 117(26):6435–6445, 2004.

846 [47] David U Gorkin, Danny Leung, and Bing Ren. The 3d genome
847 in transcriptional regulation and pluripotency. *Cell stem cell*,
848 14(6):762–775, 2014.

849 [48] Benjamin D Pope, Tyrone Ryba, Vishnu Dileep, Feng Yue,
850 Weisheng Wu, Olgert Denas, Daniel L Vera, Yanli Wang,
851 R Scott Hansen, Theresa K Canfield, et al. Topologically asso-
852 ciating domains are stable units of replication-timing regulation.
853 *Nature*, 515(7527):402, 2014.

854 [49] Jesse R Dixon, David U Gorkin, and Bing Ren. Chromatin do-
855 mains: the unit of chromosome organization. *Molecular cell*,
856 62(5):668–680, 2016.

857 [50] Andrew J Wood, Aaron F Severson, and Barbara J Meyer. Con-
858 densin and cohesin complexity: the expanding repertoire of
859 functions. *Nature Reviews Genetics*, 11(6):391–404, 2010.

860 [51] Matthias Merkenschlager and Elphee P Nora. Ctcf and cohesin
861 in genome folding and transcriptional gene regulation. *Annual
862 review of genomics and human genetics*, 17:17–43, 2016.

863 [52] Lingluo Chu, Zhangyi Liang, Maria V Mukhina, Jay K Fisher,
864 John W Hutchinson, and Nancy E Kleckner. One-dimensional
865 spatial patterning along mitotic chromosomes: A mechanical

866 basis for macroscopic morphogenesis. *Proceedings of the Na-*
867 *tional Academy of Sciences*, 117(43):26749–26755, 2020.

868 [53] Lingluo Chu, Zhangyi Liang, Maria Mukhina, Jay Fisher, Na-
869 dine Vincenten, Zheng Zhang, John Hutchinson, Denise Zickler,
870 and Nancy Kleckner. The 3d topography of mitotic chromo-
871 somes. *Molecular cell*, 79(6):902–916, 2020.

872 [54] Lingluo Chu, Zheng Zhang, Maria Mukhina, Denise Zick-
873 ler, and Nancy Kleckner. Sister chromatids separate during
874 anaphase in a three-stage program as directed by interaxis
875 bridges. *Proceedings of the National Academy of Sciences*,
876 119(10):e2123363119, 2022.

877 [55] Chris A Brackey, Davide Marenduzzo, and Nick Gilbert. Mech-
878 anistic modeling of chromatin folding to understand function.
879 *Nature Methods*, 17(8):767–775, 2020.

880 [56] Soya Shinkai, Masaki Nakagawa, Takeshi Sugawara, Yuichi To-
881 gashi, Hiroshi Ochiai, Ryuichiro Nakato, Yuichi Taniguchi, and
882 Shuichi Onami. Phi-c: deciphering hi-c data into polymer dy-
883 namics. *NAR genomics and bioinformatics*, 2(2):lqaa020, 2020.

884 [57] Marco Di Stefano, Ralph Stadhouders, Irene Farabella, David
885 Castillo, François Serra, Thomas Graf, and Marc A Marti-
886 Renom. Transcriptional activation during cell reprogramming
887 correlates with the formation of 3d open chromatin hubs. *Na-
888 ture communications*, 11(1):2564, 2020.

889 [58] Max Highsmith and Jianlin Cheng. Four-dimensional chromo-
890 some structure prediction. *International Journal of Molecular
891 Sciences*, 22(18):9785, 2021.

892 [59] Nicolas Servant, Nelle Varoquaux, Bryan R Lajoie, Eric Viara,
893 Chong-Jian Chen, Jean-Philippe Vert, Edith Heard, Job Dekker,
894 and Emmanuel Barillot. Hic-pro: an optimized and flexible
895 pipeline for hi-c data processing. *Genome biology*, 16(1):259,
896 2015.

897 [60] Maxim Imakaev, Geoffrey Fudenberg, Rachel Patton McCord,
898 Natalia Naumova, Anton Goloborodko, Bryan R Lajoie, Job
899 Dekker, and Leonid A Mirny. Iterative correction of hi-c data
900 reveals hallmarks of chromosome organization. *Nature meth-
901 ods*, 9(10):999, 2012.

902 [61] Angelo Rosa and Ralf Everaers. Structure and dynamics
903 of interphase chromosomes. *PLoS computational biology*,
904 4(8):e1000153, 2008.

905 [62] Yifeng Qi, Alejandro Reyes, Sarah E Johnstone, Martin J Aryee,
906 Bradley E Bernstein, and Bin Zhang. Data-driven polymer
907 model for mechanistic exploration of diploid genome organi-
908 zation. *Biophysical Journal*, 119(9):1905–1916, 2020.

909 [63] Berk Hess, Carsten Kutzner, David Van Der Spoel, and Erik
910 Lindahl. Gromacs 4: algorithms for highly efficient, load-
911 balanced, and scalable molecular simulation. *Journal of chemi-
912 cal theory and computation*, 4(3):435–447, 2008.

913 [64] Gareth A Tribello, Massimiliano Bonomi, Davide Branduardi,
914 Carlo Camilloni, and Giovanni Bussi. Plumed 2: New feath-
915 ers for an old bird. *Computer Physics Communications*,
916 185(2):604–613, 2014.