

1 **An interbacterial lipase toxin with an unprecedented reverse**
2 **domain arrangement defines a new class of type VII**
3 **secretion system effector**

4

5

6 Stephen R. Garrett¹, Nicole Mietrach¹, Justin Deme², Alina Bitzer³, Yaping Yang¹, Fatima R.
7 Ulhuq¹, Dorothee Kretschmer³, Simon Heilbronner³, Terry K. Smith⁵, Susan M. Lea² and Tracy
8 Palmer¹

9

10 ¹ Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne,
11 NE2 4HH, UK.

12 ² Center for Structural Biology, Center for Cancer Research, National Cancer Institute, NIH,
13 Frederick, MD 21702.

14 ³ Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076
15 Tübingen, Germany.

16 ⁴ German Center for Infection Research (DZIF), partner site Tübingen.

17 ⁵ School of Biology, Biomedical Sciences Research Complex, University of St. Andrews, North
18 Haugh, St. Andrews, United Kingdom.

19

20 * To whom correspondence may be addressed. Email: tracy.palmer@newcastle.ac.uk

21

22

23 **Summary**

24 The type VII protein secretion system (T7SS) is found in many Gram-positive bacteria and in
25 pathogenic mycobacteria. All T7SS substrate proteins described to date share a common
26 helical domain architecture at the N-terminus that typically interacts with other helical partner
27 proteins, forming a composite signal sequence for targeting to the T7SS. The C-terminal
28 domains are functionally diverse and in Gram-positive bacteria such as *Staphylococcus*
29 *aureus* often specify toxic anti-bacterial activity. Here we describe the first example of a new
30 class of T7 substrate, TsIA, that has an unexpected reverse domain organisation. TsIA is
31 widely found across Bacillota including *Staphylococcus*, *Enterococcus* and *Listeria*. We show
32 that the *S. aureus* TsIA N-terminal domain is a phospholipase A with anti-staphylococcal
33 activity that is neutralised by the immunity lipoprotein TilA. Two small helical partner proteins,
34 TlaA1 and TlaA2 are essential for T7-dependent secretion of TsIA and at least one of these
35 interacts with the TsIA C-terminal domain to form a helical stack. Cryo-EM analysis of purified
36 TsIA complexes indicate that they share structural similarity with canonical T7 substrates. Our
37 findings suggest that the T7SS has the extraordinary feature of recognising a secretion signal
38 present at either end of a substrate.

39

40 **Introduction**

41 The ability to move proteins across biological membranes is a critical aspect of biology. The
42 Sec and Tat pathways are found throughout prokaryotes and mediate transport across the
43 cytoplasmic membrane. Targeting of globular proteins to either of these pathways is via a
44 signal peptide that is located at the substrate N-terminus^{1,2}. The type VII secretion system
45 (T7SS), present in the diderm mycobacteria and in monoderm Gram-positives also exports
46 proteins across the cytoplasmic membrane³. To date, all substrates of the T7SS share a
47 common architecture; the N-terminal domain forms a helix-turn-helix domain (often containing
48 a WXG or LXG motif), that is required for secretion and dimerization, with a C-terminal
49 functional domain of variable length⁴.

50

51 The T7SS in mycobacteria and in Bacillota, such as *Staphylococcus aureus*, are only distantly
52 related and have been designated T7SSa and T7SSb, respectively⁵. The T7SSa, also termed
53 ESX, can be found in up to five distinct copies in pathogenic mycobacteria. The ESX systems
54 are heavily linked to virulence, with at least three of these being critical for host interaction and
55 pathogenesis^{e,g,6-8}. By contrast, one of the primary roles of the T7SSb is interbacterial
56 competition⁹⁻¹¹. Regardless of biological function, all T7 systems depend on a membrane-
57 bound FtsK/SpolIIE family ATPase for activity. Termed EccC in the T7SSa, it forms a
58 hexameric pore at the centre of a 2.3 MDa complex. Other subunits of the T7SSa are EccB,
59 EccD, EccE and a periplasmically-located protease MycP^{3,12}. The T7SSb ATPase, EssC, also
60 forms hexamers, but interacts with a distinct set of partner proteins that differ in sequence and
61 structure from those of the T7SSa¹³⁻¹⁵.

62
63 The canonical T7SS substrates are proteins of the WXG100 family, comprising small helical
64 hairpins that form homo- or heterodimers^{16,17}. While these were originally identified as effector
65 proteins^{e,g,18}, it is becoming increasingly clear that at least some of them also serve as
66 stabilising and/or targeting factors for larger T7SS substrates, with which they are co-
67 secreted^{10,19,20,21}. The LXG proteins are large antibacterial toxins secreted by the T7SSb,
68 which form complexes with two or three WXG100-like partners. These small partners, which
69 have been designated Lap (LXG-associated α -helical protein) interact with the N-terminal
70 helical LXG domain and are predicted to form a helical stack^{19,20,21}. Larger substrates of the
71 T7SSa include the proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) proteins.
72 These proteins heterodimerise through their N-terminal α -helical domains which also stack to
73 form helical bundles²². Despite low sequence conservation between PE proteins and Laps
74 there is striking structural similarity between PE25 and LapC1 suggesting commonalities in
75 substrate organisation and targeting between the two types of T7SS¹⁹.

76

77 In this study we describe a completely novel family of T7SS substrates that show the reverse
78 structural organisation. We demonstrate that TsIA is a T7SS-secreted interbacterial toxin from
79 *S. aureus* which has a phospholipase domain at its N-terminus, and a helical C-terminal
80 domain. We identify TlaA1 and TlaA2 as Lap-like proteins that interact with the TsIA C-
81 terminus to mediate its secretion. This is the first example of a new class of T7SS effector
82 where the targeting domain is found at the opposite terminus and indicates that the T7SS has
83 the unusual property of secreting proteins in both N-to-C and C-to-N directions.

84

85 **Results**

86 **SAOUHSC_00406 (TsIA) is a T7SS substrate encoded at a conserved genetic locus.**

87 Previous proteomic analysis of culture supernatants from a *S. aureus* wild type and isogenic
88 *essC* mutant identified 17 proteins that showed greater than two-fold higher abundance in the
89 wild type secretome, including the T7-secreted DNase toxin EsaD, its Lap-related partner
90 EsxD and the LXG domain protein TspA²³. Several other candidates were eliminated as T7
91 substrates, either because they were known cytoplasmic proteins, or shown to be secreted
92 T7-independently. The singular exception was SAOUHSC_00406, which resulted in cell
93 leakage when it was overexpressed with a Myc tag, preventing any conclusion about its usual
94 subcellular location²³.

95

96 SAOUHSC_00406 is encoded on the *S. aureus* vSa α island, alongside *set* exotoxin genes,
97 two restriction endonucleases, and a variable cluster of DUF576-family tandem-like
98 lipoproteins²⁴. SAOUHSC_00406 is encoded at the 3' end of the DUF576 gene cluster and
99 precedes genes coding for two small helix-turn-helix proteins (Fig. 1a). Prior studies identified
100 a promoter directly upstream of the tandem lipoprotein gene, SAOUHSC_00405, and a
101 transcriptional terminator directly after the small helix-turn-helix protein encoding gene,
102 SAOUHSC_00408 indicating these genes are transcriptionally coupled^{24,25}. We noted that the
103 N-terminal region of SAOUHSC_00406 was polymorphic across different *S. aureus* strains
104 (Supplementary Fig. 1). Up to two further copies of this four gene locus can be found encoded

105 at other locations on the *S. aureus* chromosome (Fig. 1b). In commonly studied strains such
106 as USA300, RN6390 and COL, only one further SAOUHSC_00406 parologue is encoded,
107 SAOUHSC_02786, the gene for which carries a frame shift at codon 345 and it therefore does
108 not align with the final approximately 100 amino acids of SAOUHSC_00406 (Supplementary
109 Fig. 2a). However, in other strains such as ST398 the frameshift is absent, and the protein
110 aligns with SAOUHSC_00406 and with the third parologue, CO08_0212, along its entire length
111 (Supplementary Fig. 2b). This four gene cassette is also found in *Listeria* spp. and is
112 embedded within the T7SS locus of some *Enterococcus faecalis* strains (Fig. 1c), consistent
113 with a link to type VII secretion.

114

115 To determine whether SAOUHSC_00406 is secreted by the T7SS, we used a sensitive assay
116 based on Nanoluciferase binary technology (NanoBit^{26,27}; Fig. 1d). Fusing pep86, the small
117 fragment of nanoluciferase to EsxA, a T7SSb-secreted WXG100 protein that is a core
118 component of the machinery, allows extracellular EsxA to be detected by supplementing the
119 bacterial culture (Fig. 1e), or clarified supernatant (Supplementary Fig. 3a) with the large
120 nanoluciferase fragment, 11S. This reconstitutes enzyme activity and results in
121 bioluminescence, the level of which is dependent on a functional T7SS²⁸. We fused pep86 to
122 the N-terminus of SAOUHSC_00406 and produced it in the *S. aureus* USA300 wild type strain
123 and a Δ essC derivative. This resulted in only low levels of luminescence detected in the whole
124 cell culture or supernatant of either strain (Fig. 1e, Supplementary Fig. 3a). However, when
125 pep86-SAOUHSC_00406 was produced in tandem with SAOUHSC_00407 and
126 SAOUHSC_00408 the extracellular luminescent signal was much higher from the wild type
127 supernatant than the essC mutant. Control experiments indicated that the total cellular levels
128 of pep86-tagged SAOUHSC_00406 was similar in the two strains (Supplementary Fig. 3a,b),
129 and that levels of a cytoplasmic protein, TrxA, tagged with pep86 were barely detected in the
130 supernatant of either strain (Fig. 1e, Supplementary Fig. 3a). When either SAOUHSC_00407
131 or SAOUHSC_00408 were absent from the construct, secretion of pep86-SAOUHSC_00406

132 was drastically reduced, indicating that both proteins are required for the efficient secretion of
133 SAOUHSC_00406 by the T7SS (Fig 1e, Supplementary Fig. 3a).

134

135 Previous studies have shown that some small Lap partner proteins are co-secreted with their
136 cognate LXG toxin^{e.g.20} whereas others may be retained in the cytoplasm¹⁹. To determine
137 whether SAOUHSC_00407 or SAOUHSC_00408 are also secreted by the T7SS, pep86
138 fusions were constructed to each and co-produced alongside the other small partner and
139 SAOUHSC_00406. The extracellular luminescent signal from either of these constructs was
140 significantly higher in a strain where the T7SS was functional (Fig 1e; supplementary Fig. 3a)
141 and we conclude that both of these proteins are also secreted in a T7SS-dependent manner.

142

143 Taken together our results show that SAOUHSC_00406 is a novel T7SSb substrate and that
144 SAOUHSC_00407 and SAOUHSC_00408 enhance SAOUHSC_00406 secretion. Based on
145 these findings and other results presented below we have subsequently renamed
146 SAOUHSC_00406 and its homologues as the Tsl1 family of lipases, and the small partner
147 proteins as Tla1 and Tla2, respectively. As SAOUHSC_00406 appears to be highly conserved
148 at the vSa α island, we have named this TslA (Type VII secreted lipase A), with
149 SAOUHSC_00407 as TlaA1 and SAOUHSC_00408 as TlaA2. The TslA homologue encoded
150 at the LPLIII locus will be named TslB and at the LPLI locus as TslC.

151

152 **TlaA1 and TlaA2 interact with the C-terminal ‘LXG-like’ domain of TslA.**

153 TslA is predicted to have two domains (Fig. 2a). Analysis using Phyre2²⁹ suggests that the N-
154 terminus shares structural homology with a lipase from *Yarrowia lipolytica* (99.8% confidence
155 modelled to PDB entry 3O0D³⁰), while the C-terminal domain is predicted to be extensively α -
156 helical and share structural homology with EsxA from *Geobacillus thermodenitrificans* (89.2%
157 confidence modelled to PDB entry 3ZBH). It therefore structurally resembles other T7SS
158 substrates such as LXG proteins except that the domains show a reverse arrangement.

159
160 LXG domains are named after the conserved L-X-G motif found in the turn of the helix-turn-
161 helix domain. Interestingly, the structural model of TslA predicts L312 and G310 to form a
162 similar motif in the α -helical C-terminal LXG-like domain, however, this is formed by a G-X-L
163 in the primary sequence (Fig. 2b). Alignment of the TslA model with the Alphafold model of
164 *Streptococcus intermedius* LXG protein TelC, shows close positioning of the L and G residues
165 between the two proteins (Fig. 2b). To test whether this LXG-like motif is required for secretion
166 of TslA, amino acid substitutions at positions G310 and L312 were introduced into pep86-
167 tagged TslA, and the variant proteins produced alongside TlaA1 and TlaA2 in the split-
168 nanoluciferase assay. From this we observed that although G310S or G310A had no
169 detectable effect, the L312A substitution significantly impaired secretion of TslA (Fig. 1e).

170
171 Since LXG proteins interact with Lap partner proteins, we used Alphafold to indicate whether
172 TlaA1 and TlaA2 may directly interact with TslA. As shown in Fig. 2c, Alphafold strongly
173 predicted these two small proteins to bind to the helical LXG-like domain of TslA. To probe
174 this further we first undertook bacterial two hybrid analysis to examine interactions between
175 these proteins (Supplementary Fig. 4) which confirmed a likely interaction between TlaA2 and
176 the C-terminal domain of TslA. We next co-overproduced TlaA1 and TlaA2 alongside TslA_{CT}
177 that had been provided with a His tag. Following Ni²⁺-affinity purification and size exclusion
178 chromatography a complex of all three proteins could be isolated (Fig. 2d,e). We conclude
179 that TlaA1 and TlaA2 interact with the C-terminal domain of TslA and that these three proteins
180 are likely co-secreted as a complex by the T7SS.

181
182 **The N-terminal domain of TslA has phospholipase A1 and A2 activity.**
183 To determine if TslA has lipase activity, we overproduced and purified the full-length protein
184 and the lipase-like domain in isolation (Supplementary Fig. 5a-d) and incubated the protein
185 with the C12 fatty acid ester polyethylene glycol sorbitan monolaurate (Tween 20). Hydrolysis
186 of Tween 20 by lipases releases the fatty acid, which will precipitate in the presence of Ca²⁺,

187 measured by an increase in OD₅₀₀³¹. Both constructs showed lipase activity in this assay
188 (Supplementary Fig. 6e,f). Structural prediction of TsIA indicates the presence of a predicted
189 catalytic triad comprising Ser164, Asp224 and His251 (Fig. 2a, Supplementary Fig. 2b).
190 Individual substitutions of each of these residues completely abolished lipase activity in the
191 Tween 20 assay without affecting folding of the protein (Supplementary Fig. 5 g,h).

192
193 Phospholipases are also secreted by other bacterial secretion systems³²⁻³⁴. Four different
194 classes of type VI-secreted lipases, Tle1-4, have been characterised and all share the G-X-S-
195 X-G motif that is also found at the active site of TsIA. Tle1 and Tle2 are the best characterised
196 of the four classes and have been shown to have phospholipase A1 (PLA₁) activity^{34,35}. To
197 determine whether TsIA also has this activity we incubated the full-length protein or the
198 catalytically inactive variants with the PLA₁ substrate, PED-A1. Fig. 3a shows release of
199 fluorescence from this substrate catalysed by TsIA that is lost upon inactivation of the active
200 site. Activity was also observed against the PLA₂ substrate, PED6, suggesting that, similar to
201 Tle1³⁵, TsIA can cleave at either the *sn*-1 or *sn*-2 position (Fig. 3b). We conclude that TsIA has
202 phospholipase A activity.

203
204 **TsIA interacts tightly with an inhibitory protein, SAOUHSC_00405/TilA**
205 Bacterial secreted lipases often act as toxins targeting either eukaryotic hosts or the
206 membranes of other bacteria. Antibacterial lipases are coproduced with immunity proteins that
207 protect the producing bacteria from self-intoxication³⁴. The first gene of the four gene *tsIA*
208 cluster encodes a conserved DUF576-family lipoprotein. These proteins have been variously
209 named as Csa (conserved staphylococcal antigen) or Lpl (Lipoprotein-like) and are encoded
210 by multi-gene families found at four loci in *S. aureus* strains (Supplementary Fig. 6). They have
211 previously been linked to the invasion of host cell keratinocytes and potent immune stimulation
212 due to shedding from the *S. aureus* membrane^{e.g.36-38}. However, at three of these four loci,
213 TsIA homologues can also be encoded, and we wondered whether their primary role was as
214 TsIA immunity proteins. This is also supported by the finding that DUF576 proteins are

215 encoded in T7SS immunity islands³⁹ and they are found in highly variable copy number and
216 sequence across *S. aureus* strains similar to the highly variable immunity repertoires for EsaD
217 and TspA⁴⁰.

218

219 To probe this we first tested whether purified SAOUHSC_00405 lacking its signal sequence
220 (Supplementary Fig. 7) could interact with the lipase domain of TsIA. Although only weak
221 interaction could be detected by bacterial two hybrid analysis (Supplementary Fig. 4),
222 isothermal titration calorimetry indicated that SAOUHSC_00405 binds to the TsIA lipase
223 domain with a 1:1 stoichiometry and a Kd of 14.2 nM (Fig. 3c). When SAOUHSC_00405 was
224 titrated into the PLA₁ assay, TsIA activity was fully inhibited by addition of an equimolar amount
225 of SAOUHSC_00405 (Fig. 3d). We have subsequently renamed SAOUHSC_00405 as TilA
226 (Type VII Immunity against Lipase A).

227

228 We coproduced TilA without its signal sequence alongside TsIA, TlaA1 and TlaA2 and could
229 isolate a complex of all four proteins (Fig. 4a). Cryo-EM analysis of the purified complex
230 yielded a 7.3 Å volume (Fig. 4b,c). Rigid body fitting of the TilA-TsIA-TlaA1-TlaA2 AlphaFold
231 model into the cryo-EM map shows gross conformational agreement between the map and
232 model (Fig. 4b), though no density for TlaA1 was evident in the volume, indicating this subunit
233 may have dissociated from the complex during vitrification. Only partial C-terminal density for
234 TlaA2 was also observed. The three C-terminal TsIA and two TlaA2 α -helices match the helical
235 density of the cryo-EM volume and are apparent in 2D class averages (Fig. 4c) suggesting
236 the positioning of the α -helices are consistent between the AlphaFold model and cryo-EM
237 volume. In addition to the sample demonstrating preferred orientations in vitreous ice, it is
238 probable the particles suffered from conformational heterogeneity which precluded higher
239 resolution map reconstruction. Notably, the hinge region linking the globular N-terminal
240 domain and helical C-terminal domain of TsIA and interfacing residues are of lower confidence
241 in the AlphaFold model which may indicate a degree of motion between both domains.

242

243 **TsIA has antibacterial activity**

244 The results described above point to a role for TsIA as an antibacterial toxin. To confirm this,
245 we tested whether TsIA could self-intoxicate a *S. aureus* strain that lacks proteins of the TilA
246 family. A USA300 mutant deleted for all 18 chromosomal copies of *tilA*-related genes has been
247 constructed previously⁴¹. This strain (herein named USA300 *Δtil1*) does not express *tsIA* due
248 to deletion of the start codon and additionally lacks the coding sequence for
249 *SAOUHSC_02786/tsIB*. The *til1* strain harbouring an empty plasmid vector (pRAB11) grows
250 similarly to the wild type parent in TSB medium (Fig. 5a). However, although production of
251 plasmid-encoded TsIA alone did not affect either strain, co-production of TsIA alongside
252 secretion partners, TlaA1 and TlaA2, significantly slowed growth of the *til1* mutant (Fig. 5a).
253 This growth inhibition was dependent on a functional T7SS because an otherwise isogenic *til1*
254 strain lacking the T7SS core component, EssC, but co-producing TsIA-TlaA1-TlaA2 grew as
255 well as the control strains (Fig. 5a). This confirms that TsIA has extracellular toxicity and that
256 it requires the T7SS for its secretion.

257

258 To confirm that toxicity is due to phospholipase activity, the active site substitutions S164A,
259 D224A and H251A were individually introduced into TsIA in the TsIA-TlaA1-TlaA2 construct.
260 None of these variants were toxic (Fig. 5b) although they were produced to similar levels as
261 wild type TsIA (Supplementary Fig. 8). Moreover, reintroduction of a copy of TilA onto the
262 chromosome of the USA300 *Δtil1* strain was sufficient to protect the strain from TsIA toxicity
263 (Fig. 5c). We conclude that TsIA has anti-staphylococcal activity that is rescued by the TilA
264 immunity protein.

265

266 We next examined the membrane integrity of TsIA-intoxicated strains using 3,3'-
267 dipropylthiadicarbocyanine iodide (DiSC₃(5)) and Sytox green. DiSC₃(5) binds to
268 hyperpolarised membranes and is integrated into the bilayer, staining only cells that have a

269 membrane potential^{23,42}. Sytox green binds to DNA, acting as a marker of significant
270 membrane damage. Treatment of the wild type strain with melittin induces depolarisation and
271 DNA staining consistent with its action as a membrane-damaging antibiotic (Fig. 5c,d).
272 However, production of TsIA-TlaA1-TlaA2 in the same strain did not lead to any significant
273 membrane damage or loss of membrane potential (Fig. 5c,d). In contrast, when TsIA-TlaA1-
274 TlaA2 were produced in USA300 *Δtil1*, a substantial number of cells became depolarised and
275 those that did, were also stained by Sytox green (Fig. 5d,e; Supplementary Table 1),
276 consistent with the action of TsIA inducing membrane permeability.

277

278 To further characterise the membrane-damaging activity of TsIA, total lipid extracts were
279 prepared from USA300 and USA300 *Δtil1* producing TsIA-TlaA1-TlaA2, at two and six hours
280 post induction, and analysed by mass spectrometry lipidomics (Supplementary Fig. 9). When
281 compared to vector control, no degradation of lipids was observed in USA300 TsIA-TlaA1-
282 TlaA2 (Supplementary Fig. 9a,b). However, in the lipid analysis of USA300 *Δtil1* producing
283 TsIA-TlaA1-TlaA2 increasing acyl cleavage from phosphatidylglycerol (PG), the major
284 phospholipid in bacterial membranes, was clearly evident, shown by the increasing amounts
285 of both *lyso*-PG and free fatty acid at 2 and 6 hours post induction, respectively
286 (Supplementary Fig. 9c,d). Taken together, these findings are consistent with the biochemical
287 activity of TsIA described above, and we conclude that the cellular toxicity arises from
288 membrane damage and detrimental effects caused by the detergent-like effects of copious
289 amounts of either *lyso*-acyl phospholipids and/or the free fatty acid generated through the
290 action of TsIA.

291

292 **TsIA is not required for virulence in a mouse abscess infection model**

293 Previous studies have reported a role for the *S. aureus* T7SS in murine abscess models of
294 infection⁴³⁻⁴⁵. A strain lacking the *til1* cluster along with the *tsIA* cassette encoded on the vSa α
295 island of USA300 also led to a significant reduction in bacterial burden in a mouse skin-

296 infection model³⁷. We therefore investigated whether TsIA contributed to virulence of *S. aureus*
297 in the skin abscess model. As shown in Fig. 6, inactivation of the T7SS by deletion of *essC*
298 resulted in a strong reduction in bacterial burden compared with the wild type USA300 strain.
299 A strain lacking all *til1* genes was also less virulent than the wild type. However, no significant
300 difference in bacterial burden was observed between USA300 and USA300 Δ *tsIA*, suggesting
301 that TsIA plays no detectable role in virulence in the murine skin infection model (Fig. 6). We
302 therefore conclude that the major role of TsIA is in interbacterial competition.

303

304 **Discussion**

305 In this work we have identified TsIA as a new class of T7SS substrate protein. Previously, all
306 characterised substrates of the T7SSa and T7SSb have helical targeting domains at their N-
307 termini, often with C-terminal globular domains involved in nutrient uptake or having hydrolytic
308 activity^{9,10,46}. We show here that TsIA instead has a globular N-terminal domain with
309 phospholipase A activity, preceding the helical targeting domain at the C-terminus. TsIA lacks
310 any of the motifs, for example WXG, LXG, PE or PPE that are associated with other T7SS
311 substrates and would not be identified with algorithms that detect these. We anticipate that
312 there are other ‘reverse’ substrates yet to be uncovered, but that finding them may require
313 structure-based searches, for example to identify proteins with similar patterns of globular and
314 helical domains.

315

316 The LXG toxins of the T7SSb interact with two or three small helical partner proteins, termed
317 Laps, to form pre-secretion complexes and at least one of those Lap partners carries a C-
318 terminal F/YxxxD/E motif required for LXG protein secretion¹⁹. A similar C-terminal motif is
319 required for substrate secretion by the T7SSa and interacts with the EccC ATPase
320 component⁴⁷⁻⁴⁹. Similarly, TsIA requires two small helical partners, TlaA1 and TlaA2 for its
321 secretion, which bind to the helical TsIA C-terminus. However, there is no clear F/YxxxD/E or

322 D/ExxxF/Y motif at either terminus of TlaA1 or TlaA2 and further work would be needed to
323 dissect the features of these proteins required for targeting to the T7SSb.

324

325 Our results indicate that the primary function of TsIA is as an antibacterial toxin. Surprisingly,
326 however, despite being a phospholipase A, TsIA is only toxic when it is exported outside the
327 cell. This phenomenon has also been observed with the T6SS lipase substrate, Tle1, from *E.*
328 *coli*, and with the T7SS lipid II phosphatase substrate, TelC^{10,35}. TelC is dependent on Ca²⁺
329 ions for activity, as are many lipases including most previously characterised staphylococcal
330 enzymes^{10,50}. Calcium is abundant in the cell wall of staphylococci but is buffered in the
331 cytoplasm at low micromolar levels^{51,52} and we speculate that the concentration is too low to
332 support intracellular TsIA activity. In support of an extracellular activity for TsIA, *S. aureus* co-
333 produces an extracellular immunity lipoprotein, TilA for self-protection, which binds to TsIA
334 with a low nanomolar Kd.

335

336 The organisation of gene clusters encoding LXG toxins often share a similar arrangement,
337 with the Lap-encoding genes at the 5' end of the cluster and the immunity gene at the 3' end,
338 directly adjacent to the toxin domain-encoding region^{53,54}. It is striking that the entire *tsIA* locus
339 shows a reverse arrangement, with *lap*-like genes *tlaA1* and *tlaA2* at the 3' end and the
340 immunity gene at the 5' end of the cluster but retaining the positioning immediately adjacent
341 to the toxin domain. Another shared feature between TsIA and the other *S. aureus* T7SS toxins
342 is that the toxin domain is polymorphic across different *S. aureus* strains^{9,23}. This may explain
343 why multiple, non-identical copies of *tilA*-related genes are encoded at the *tsIA* locus, to
344 provide protection from TsIA sequence variants found in other strains. Moreover, *S. aureus*
345 strains can encode up to two further paralogues of the toxin, TsIB and TsIC, suggesting that
346 this phospholipase is a key component of the *S. aureus* T7SS toxin armoury. It was noted that
347 the *til1* immunity gene families are found in highly variable copy number, undergoing rapid
348 copy number diversification during passage *in vitro* and *in vivo*⁴¹. They also undergo sequence
349 shuffling by recombination across a highly conserved stretch of approximately 130 nucleotides

350 in the central regions of the genes²⁴. Similar features are also seen with immunity protein
351 genes for the EsaD toxin in *S. aureus* and the TelC toxin in *Streptococcus intermedius*^{40,51}.
352 Til1 copies are encoded in the immunity gene islands of human commensal staphylococci
353 such as *Staphylococcus warneri*³⁹ suggesting that TsIA-mediated interbacterial competition is
354 a likely feature of human skin and mucosal surfaces.

355

356 In conclusion, we have described the first example of a T7SS substrate with a reverse domain
357 arrangement, highlighting the unusual property of a prokaryotic cytoplasmic membrane
358 transport system with the ability to recognise targeting domains at either end of a protein. In
359 future it will be interesting to identify further examples that share this domain organisation and
360 to determine how such substrates are recognised by the T7SS machinery.

361

362 **Methods**

363 **Bacterial strains and growth conditions**

364 *S. aureus* strains used in this study are listed in Supplementary Table 2. *S. aureus* was grown
365 at 37°C, unless stated otherwise, on tryptic soy agar (TSA) or in tryptic soy broth (TSB) with
366 vigorous agitation. Where required, media was supplemented with 10 µg ml⁻¹ chloramphenicol
367 (Cml) for plasmid maintenance. Anhydrotetracycline (ATc) was used as counterselection for
368 allelic exchange with pIMAY and pTH100 derivatives (100 ng ml⁻¹) and to induce expression
369 from pRAB11 (500 ng ml⁻¹).

370

371 *E. coli* strains used in this study are listed in Supplementary Table 2. *E. coli* was grown at
372 37°C, unless otherwise stated, on lysogeny broth agar, or in lysogeny broth (LB) with vigorous
373 agitation. Where required, media was supplemented with ampicillin (Amp, 100 µg ml⁻¹),
374 kanamycin (Kan, 50 µg ml⁻¹) or Cml (25 µg ml⁻¹) for plasmid maintenance.

375

376 **Strain and plasmid construction**

377 Plasmids were constructed by restriction digest, Gibson assembly or by direct synthesis from
378 GenScript. Mutations in plasmids were introduced through Site-directed mutagenesis, by PCR
379 amplification and subsequent ligation by T4 ligase and Polynucleotide kinase. Plasmids used
380 in this study are described in Supplementary Table 3, with the primers used to construct them
381 listed in Supplementary Table 4.

382

383 Isogenic mutants were constructed by allelic exchange using pIMAY, pIMAY-Z or pTH100, as
384 described in publications⁵⁵⁻⁵⁷. For gene deletions, the upstream and downstream regions,
385 including the first codon and final six codons for the gene to be deleted, were amplified from
386 RN6390 genomic DNA. Cloning steps were carried out in *E. coli*, and following verification by
387 DNA sequencing, were introduced into *S. aureus* strains by electroporation. Chromosomal
388 deletion mutants were verified by amplification of the genomic region from isolated genomic
389 DNA (GeneElute Bacterial Genomic DNA Kit, Sigma Aldrich) and by whole genome
390 sequencing (MicrobesNG/Plasmidsaurus). To introduce a copy of *tilA* onto the chromosome,
391 plasmid pTH100 was modified to replace *gfp* with *tilA*, which was confirmed by sequencing of
392 the modified region. Chromosomal integration was performed as described⁵⁷.

393

394 **Split-nanoluciferase secretion assay**

395 The split-nanoluciferase secretion assay was performed essentially as described previously²⁸.
396 Briefly constructs encoding the pep86 small nanoluciferase fragment fused to proteins of
397 interest were assembled in pRAB11 (Supplementary Table 3) and introduced into *S. aureus*.
398 Strains were grown overnight and subcultured in fresh TSB containing Cml to a starting OD₆₀₀
399 = 0.1. Cells were grown at 37°C with shaking for 2 h before induction of pep86 fusion
400 production by addition of 500 ng ml⁻¹ ATc. Cells were grown for a further 2 h to an OD₆₀₀ = ~2.
401 Triplicate 100µl samples were withdrawn and taken as the 'whole cell culture'. To obtain the
402 cytoplasmic fraction, the equivalent of 1 ml of sample of OD₆₀₀ = 1 was withdrawn, in triplicate,

403 for each sample and pelleted by centrifugation. The top 100 μ l of supernatant following
404 pelleting was withdrawn and kept as the supernatant fraction. The cell pellet was suspended
405 in 1 ml TBS supplemented with 2 mg ml⁻¹ lysostaphin (ambi) and incubated at 37°C for 45 min.
406 The cell samples were then boiled for 10 min to fully lyse cells. Samples were cooled to room
407 temperature and serially diluted 1 in 2, in TBS, to 2⁻³. 100 μ l of each sample, in triplicate, were
408 aliquoted into a Greiner CELLSTAR® white 96-well plate. To this, 5 μ M 11S and 2 μ l furimazine
409 solution (Promega Cat. # N1610) were added and the luminescence read at 1 min intervals
410 for 10 min using the FLUOstar Omega using a gain value of 3,000. Data were analysed to find
411 the peak luminescence signal and this was used to visualize the data. A Two-way ANOVA
412 was performed to determine statistical significance.

413

414 **Bacterial two hybrid analysis**

415 Plasmids encoding T18 and T25 fusions were co-transformed into *E. coli* BTH101⁵⁸ and plated
416 on MacConkey agar supplemented with 1% maltose and the required antibiotics and cultured
417 at 30°C for 40 h. Two colonies were picked in duplicate and separately cultured in LB
418 containing Cml Amp overnight at 37°C. Subsequently, 5 μ l of these overnight cultures were
419 spotted on MacConkey agar supplemented with 1% maltose and the required antibiotics and
420 incubated for 40 h at 30°C, after which they were imaged.

421

422 **Bacterial growth curves to assess TsIA toxicity**

423 *S. aureus* strains harbouring plasmids of interest were grown overnight and subcultured into
424 35 ml fresh TSB containing Cml 10 μ g ml⁻¹ and supplemented with 5 mM CaCl₂, to an OD₆₀₀
425 of 0.1. Samples were taken at 0, 1 h and 2 h timepoints and OD₆₀₀ determined. After 2 h, all
426 cultures were supplemented with 500 ng ml⁻¹ ATc. Subsequent OD₆₀₀ readings were taken
427 every hour for a further 10 hours. Each OD₆₀₀ measurement was taken in triplicate for each
428 sample. Three biological replicates were performed for each experiment.

429

430 **Microscopy analysis**

431 *S. aureus* strains USA300 and USA300 Δ til1 harbouring pRAB11 or pRAB11_TsIA-TlaA1-
432 TlaA2 were grown overnight and subcultured to OD₆₀₀ 0.1 in fresh TSB containing Cml.
433 Cultures were grown for 2 h before addition of 500 ng ml⁻¹ ATc and were then incubated for a
434 further 1 h 50 min at 37°C with shaking. Cultures were diluted 1/3 in TSB and vortexed for 5
435 s. For strains harbouring the pRAB11 empty vector, two 200 μ l aliquots were transferred into
436 a 1.5 ml Eppendorf, while a single 200 μ l aliquot was taken for the same strains expressing
437 TsIA-TlaA1-TlaA2. Melittin was added to a final concentration of 10 μ M to one aliquot of
438 USA300 and USA300 Δ til1 pRAB11 cells (a positive control for cell lysis) and all aliquots were
439 incubated at 37°C for a further 5 min. To all samples, 2 μ M DiSC₃(5) and 200 nM Sytox green
440 were added and further incubated for 5 min. Following incubation, 1.5 μ l of each cell
441 suspension was spotted on a Teflon-coated multi-spot microscope slides (ThermoFisher)
442 covered in a thin 1% agarose pad, dried and coverslip applied. Microscopy was performed
443 using the Nikon Plan Apo 100 \times /1.40 NA Oil Ph3 objective, and a photometrics prime BSI
444 sCMOS camera. The CoolLed pE-4000 LED light source was used, with either a Chroma
445 49002 and 460 nm LED for Sytox green or a Semrock Cy5-4040C with 635 nm LED for
446 DiSC₃(5). Images were taken for five fields of view for each sample, for each of three biological
447 replicates.

448
449 Images were analysed in a semi-automated way using Fiji⁵⁹. All macros used are available at:
450 https://github.com/NCL-ImageAnalysis/General_Fiji_Macros. Images were cropped to ensure
451 even illumination across the field of view. The background fluorescence was determined by
452 measuring the mean fluorescence intensity of a number of empty regions within each field of
453 view and then subtracted from all pixels. Cells were identified using thresholding based upon
454 phase contrast using ImageJ default thresholding. Selection was limited to particles of size
455 between 0.423 μ M² and 2.11 μ M². Where two cells or a short chain were identified, these were
456 manually separated by a 0.13 μ M line. Large clusters of cells were excluded from the analysis,
457 as were images with poor focus. Between 2-5 images for each condition were used from each
458 of the 3 repeats. The fluorescence intensity of regions of interested was collected and collated

459 for each condition. Cells were split into either positive or negative groups based on
460 fluorescence intensity, with the fluorescence threshold based on the negative control. (e.g.
461 greater than 2000 au for Sytox green was defined as positive and less than 2000 au as
462 negative). The total in each group was enumerated and the percentage of cells that were
463 permeabilised based on Sytox green staining were calculated.

464

465 **Protein purification**

466 For all protein overexpression work, overnight cultures were used to inoculate LB medium at
467 a 1/100 dilution. Cultures were incubated at 37°C with shaking (200 rpm) until $OD_{600} \sim 0.5$, after
468 which they were supplemented with 1 mM isopropyl β -D-1-thiogalactopyranoside (or 0.2% *L*-
469 arabinose for expression of 11S). Cells were cultured for a further 2 - 4 hours depending on
470 the expression construct (see Supplementary Table 5) after which they were harvested by
471 centrifugation at 4,000 g washed with 1 X PBS and resuspended in the appropriate Buffer A
472 (see Supplementary Table 5) supplemented with a cComplete™ protease inhibitor cocktail
473 tablet. Cells were lysed by sonication, debris were pelleted by centrifugation at 50,000 g 4°C
474 for 30 min and the clarified supernatant was loaded onto the appropriate pre-equilibrated
475 affinity chromatography column (Supplementary Table 5). After sample application, the
476 column was washed with Buffer A until the A_{280nm} reached baseline, after which the protein
477 was eluted (see Supplementary Table 5 for elution buffers). The peak fraction was collected
478 and concentrated using a 10 kDa spin concentrator. The sample was further purified by size
479 exclusion chromatography (SEC) using Buffer B (see Supplementary Table 5 for column and
480 buffer details). The peak fractions following SEC were analyzed via SDS-Page and
481 concentrated for further use. For purification of the TlA-TsIA-TlA1-TlA2 complex this
482 involved a further step – here the cell lysate was first applied onto 1 ml HisTrap column, with
483 the peak fraction immediately applied to a StrepTrap column before the eluted fractions were
484 further purified by SEC. Protein mass spectrometry was carried out as a service by the
485 Metabolomics and Proteomics lab at the University of York.

486

487 The N-terminal His(6)tag was removed from purified TilA before the protein was used for
488 further analysis. To achieve this, the peak fractions following elution from the HisTrap column
489 were collected, pooled and TEV protease was applied to the sample in a 1:10 (w/w) ratio of
490 protease:protein. TEV cleavage was performed overnight in a dialysis bag, while dialysing the
491 sample in the appropriate Buffer A (Supplementary Table 5) at 4°C. The sample was
492 separated from the TEV protease, which contains a His(6)tag by using a HisTrap column. The
493 flow through, containing cleaved TilA, was collected and further purified by SEC.

494

495 **Protein electrophoresis and Western blotting**

496 Protein samples were prepared for SDS PAGE by diluting 1:1 with 2 X Laemmli buffer and
497 boiling for 10 min. Samples were microcentrifuged at full speed for 2 min before loading on a
498 4-20% SDS PAGE gel. Electrophoresis was carried out at 100 V for 10 min followed by 200 V
499 for 40 min. For visualisation of total protein, gels were stained with Coomassie instant blue.
500 For immunoblotting, proteins were transferred onto a nitrocellulose membrane using a Trans-
501 Blot (BioRad), with Whatman paper soaked in Transfer buffer, composed of 25 mM Tris, 192
502 mM glycine pH 8.3, 10% Methanol. Polyclonal antibodies against TsIA were raised in rabbits,
503 using purified TsIA-His and were used at 1/1000 dilution, alongside an HRP-linked goat anti-
504 rabbit secondary antibody (BioRad).

505

506 **Circular Dichroism**

507 Proteins of interest were diluted to 0.5 mg ml⁻¹ in 20 mM NaPO₄, pH 8.6 in a 0.2 mm Quartz-
508 Suprasil cuvette (Hellma, GmbH & Co) and absorbance between 190 and 250 nm measured
509 using a J-810 spectropolarimeter. Data was normalised by subtraction of the buffer spectrum
510 from the sample spectrum before conversion into standard units of $\Delta\epsilon$ (M⁻¹ cm⁻¹).

511

512 **Isothermal titration calorimetry**

513 Isothermal titration calorimetry (ITC) to measure interaction between TsIA and TilA was
514 performed in a buffer of 20 mM HEPES pH 7.5, 150 mM NaCl at 25°C using the Microcal

515 PEAQ-ITC system (Malvern Panalytical). The sample cell contained a 300 μ l volume of 30 μ M
516 TsIA. TiA at a starting concentration of 300 μ M was present in the injection syringe. There
517 was an initial injection of 0.4 μ l of TiA, followed by 18 further injections of 2 μ l with 60 s spacing
518 between, with stirring at 750 rpm. Results were analyzed using the Microcal PEAQ-ITC
519 analysis software.

520

521 **Cryo-EM sample preparation and data acquisition**

522 Four microliters of purified TiA-TsIA-TlaA1-TlaA2 complex at 0.5 mg ml⁻¹ in Buffer B
523 (Supplementary Table 5) was applied onto glow-discharged (60 s, 30 mA) 300 mesh R1.2/1.3
524 Au grids (Quantifoil). Grids were blotted for 3 s with blot force of +15 at 10°C and 100%
525 humidity, and plunge frozen in liquid ethane using a Vitrobot Mark IV (Thermo Fisher
526 Scientific).

527

528 Data were collected in counted mode in EER format on a CFEG-equipped Titan Krios G4
529 (Thermo Fisher Scientific) operating at 300 kV with a Selectris X imaging filter (Thermo Fisher
530 Scientific) with slit width of 10 e⁻V and Falcon 4 direct detection camera (Thermo Fisher
531 Scientific) at \times 165,000 magnification, with a physical pixel size of 0.693 \AA . Movies were
532 recorded at a dose rate of 12.8 e⁻/ \AA^2 /s and 3.98 s exposure for a total dose of 50.9 e⁻/ \AA^2 .

533

534 **Cryo-EM data processing and map fitting**

535 Patched motion correction, CTF parameter estimation, particle picking, extraction, and initial
536 2D classification were performed in SIMPLE 3.0⁶⁰. All downstream processing was carried out
537 in cryoSPARC v3.3.1⁶¹, including resolution estimation by Gold-standard Fourier shell
538 correlation (FSCs) using the 0.143 criterion.

539

540 A total of 1,448 movies were collected and 1,309,475 particles extracted from motion-
541 corrected micrographs then subjected to reference-free 2D classification in SIMPLE (k=300)
542 followed by two additional rounds of 2D classification in cryoSPARC (k=120) using a 120 \AA

543 diameter spherical mask. Based on the resulting 2D class averages it was evident that
544 particles suffered from preferred orientations. Particles were therefore selected from classes
545 corresponding to the most divergent views but also containing strong secondary structure
546 features. These 2D-cleaned particles (21,177) were subjected to multi-class *ab initio*
547 reconstructions (k=2) generating a poorly occupied (8,044 particles, 38% of total particles)
548 volume lacking the TsIA C-terminal domain and another more occupied volume (13,133
549 particles, 62% of total). Particles belonging to the latter volume were selected for non-uniform
550 refinement against their corresponding 30 Å lowpass-filtered volume, yielding a 7.3 Å map in
551 which helical structure was evident. Further extensive classification and particle rebalancing
552 in 2D and 3D space did not significantly improve map quality, indicating the sample likely also
553 suffered from significant conformational heterogeneity.

554

555 The TlIA-TsIA-TlA1-TlA2 alphafold model was rigid body fit into the cryo-EM volume using
556 the fitmap function in ChimeraX⁶². TlA1 was omitted from the model for clarity.

557

558 **Biochemical assays for lipase activity**

559 Lipase activity was determined by assessing the hydrolysis of Tween 20 measured through
560 CaCl₂-mediated precipitation of the released fatty acid. To 100 µl aliquots of 2% Tween 20 in
561 20 mM HEPES pH 7.5, 150 mM NaCl, 5 mM CaCl₂, protein of interest was added to a final
562 concentration of 5 µM. Assays were performed in Greiner CELLSTAR® 96 well plates at 30°C.
563 Plates were agitated for 30 s before measuring absorbance increase at 500 nm, using a
564 TECAN infinite nano M+ reader.

565

566 Phospholipase A₁ activity was assayed using the EnzChek™ Phospholipase A₁ Assay Kit
567 (Thermofisher), according to the manufacturer's protocol. Briefly, purified protein at the
568 concentrations indicated in the respective figure legends were diluted in the kit buffer, unless
569 otherwise stated in the figure legends. Lipid substrate mixtures were added at a 1:1 ratio (v/v)
570 to the protein solution. Assays were performed in a Greiner CELLSTAR® black 96-well plate.

571 Fluorescence emission at 515 nm was measured following excitation at 470 nm at 30°C using
572 a TECAN infinite nano M+ reader. To test for PLA₂ activity, 2 mM PED6 was used in place of
573 PED-A1, with all other components the same.

574

575 **Lipidomics**

576 *S. aureus* strains USA300 and USA300 *Δtil1* harbouring pRAB11 or pRAB11_TsIA-TlaA1-
577 TlaA2 were grown overnight and subcultured to a final OD₆₀₀ 0.1 into fresh TSB medium
578 containing Cml and supplemented with 5 mM CaCl₂. Cultures were grown at 37°C with shaking
579 for 2 hours after which they were supplemented with 500 ng ml⁻¹ ATc. At 2 h and 6 h post
580 supplementation, samples were withdrawn equivalent to 1 ml of OD₆₀₀ = 1. Cells were pelleted
581 by centrifugation (800 g, 10 min), resuspended in 100 µL 1 X PBS and transferred to a glass
582 tube and snap frozen. Total lipids from cells were extracted using the method of Bligh and
583 Dyer⁶³. Briefly, 375 µL of 2:1 (v/v) MeOH:CHCl₃ was added to the glass tube containing the
584 frozen cell pellet and vortexed. The sample was agitated vigorously for a further 10-15 min,
585 after which the sample was made biphasic by the addition of 125 µL of CHCl₃. The sample
586 was then vortexed and 125 µL of H₂O was added. The solution was vortexed again before
587 centrifugation at 1000 g at RT for 5 min. The lower phase was transferred to a new glass vial
588 and dried under nitrogen and stored at 4°C until analysis.

589

590 Organic phases were suspended in 2:1 (v/v) MeOH:CHCl₃ and high resolution mass
591 spectrometry data were acquired by electrospray ionization techniques using a Thermo
592 Scientific™ Exactive™ Orbitrap mass spectrometer. Phospholipid species annotations were
593 determined in reference to previous assignments⁶⁴ and the LIPID MAPS database.

594

595 **Murine skin and soft tissue infection model**

596 The murine infection model was performed as described previously^{65,66} with minor
597 modifications. Briefly, female C57BL/6JRccHsd mice (6 weeks) were obtained from Envigo.
598 To induce abscess formation, bacteria were mixed with equal volumes of dextran beads

599 (Cytodex-1 microcarriers; Sigma) prepared according to the manufacturer's instructions. For
600 each strain, 200 μ l volumes containing 5×10^4 colony forming units (c.f.u.) were injected
601 subcutaneously into the flanks (left/right) of the mice. After 48 h, mice were euthanized, each
602 abscess was excised, homogenized in 1 ml 1 X PBS (Gibco from Life Technologies) and c.f.u.
603 were enumerated on TSA (Becton Dickinson GmbH) plates. The two abscesses of each
604 mouse were regarded as independent experiments. A One-way ANOVA was performed to
605 determine statistical significance.

606

607 **Ethics**

608 Animal models were approved by the "Regierungspräsidium Tübingen" under the application
609 number IMIT01/20G.

610

611 **Bioinformatic analysis**

612 To identify homologues of TsIA, blastP was used against the RefSeq database⁶⁷. Accession
613 lists generated from these searches were submitted to the webFlaGs server to identify genetic
614 neighbourhoods⁶⁸ which were visualized using Clinker⁶⁹. ProgressiveMauve was used to align
615 whole genome shotgun sequencing results to the reference genome and to assess genetic
616 differences in strains⁷⁰.

617

618 Proteins with structural homology to TsIA were identified using Phyre2²⁹. AlphaFold models of
619 TsIA and TelC were obtained from the AlphaFold Protein Structure Database^{71,72}. AlphaFold
620 Colab was used to model TsIA in complex with TilA, TlaA1 and TlaA2^{71,73}. Structural models
621 were aligned using the cealign function in PyMOL V2.1.0⁷⁴ and rendered in Chimera X V1.4⁶².
622 Protein alignments were carried out using MUSCLE v3.8.1551⁷⁵ and visualised with boxshade
623 (<https://github.com/mdbaron42/pyBoxshade>).

624

625 All correspondence and requests for materials should be addressed to Tracy Palmer.

626 **Acknowledgements**

627 This study was supported by the Wellcome Trust (through Investigator Awards 10183/Z/15/Z
628 and 224151/Z/21/Z to TP), the Intramural Research Program of the NIH, NCI, Center for
629 Cancer Research (awarded to SL), the German Centre of Infection Research (DZIF) to SH
630 (TTU 08.708). NM holds a Walter Benjamin Fellowship (M2871/1-1), funded by the DFG
631 (German Research Foundation). Additionally, we acknowledge infrastructural funding by the
632 DFG in the frame of Germany's Excellence Strategy – EXC 2124 – 390838134 (SH). SG is
633 funded by the Newcastle-Liverpool-Durham BBSRC DTP2 Training Grant, project reference
634 number BB/M011186/1 and YY by the China Scholarship Council. We would like to thank Dr
635 James Grimshaw from the Newcastle University Image Analysis Unit for his advice and
636 guidance in analysis of our microscopy data. We thank Dr Helen Waller for her help in
637 performing circular dichroism.

638

639 **Author contributions** – S.G., N.M., S.H., T.K.S., S.M.L. and T.P. designed experiments.
640 S.G., N.M., J.D., A.B., Y.Y., F.R.U., D.K. and T.K.S carried out experimental work. S.G., N.M.
641 J.D., S.H., T.K.S., and T.P. undertook data analysis. T.P. wrote the manuscript and S.G. and
642 T.P. edited the manuscript. All authors have approved the final version.

643 **Main text figure legends**

644 **Fig. 1. SAOUHSC_00406 is encoded at a conserved gene cluster and secreted by the**
645 **T7SS.** a. SAOUHSC_00406/TsIA is encoded on the vSa α island, at a locus also known as the
646 LPL0 lipoprotein gene cluster. A variable number of SAOUHSC_00405/TilA homologues are
647 encoded upstream of this cluster across different *S. aureus* strains, in RN6390 there are two
648 (SAOUHSC_00402 and SAOUHSC_00404). b. Paralogues of SAOUHSC_00406/*tsIA* can be
649 found at a further two loci, LPLI and LPLIII, in a strain-dependent manner. Where strains do
650 not encode a parologue, the *tsIA1* (SAOUHSC_00407-like) and *tsIA2* (SAOUHSC_00408-like)
651 genes are also absent, but variable numbers of *til1* (SAOUHSC_00405-like) genes are
652 present. To date no SAOUHSC_00406 parologue is found at the LPLII locus which always
653 appears to encode a single, phylogenetically diverse Til1 protein²⁴ (see also Supplementary
654 Fig. 6). c. The four gene cassette is encoded in *Listeria grayi* and enterococcal genomes. d.
655 Schematic representation of the split nanoluciferase assay to detect T7SS-dependent
656 secretion. e. The pep86 fragment of nanoluciferase was fused to the indicated protein of
657 interest (denoted with an underline) and expressed from plasmid pRAB11 in strain USA300
658 or an otherwise isogenic *essC* mutant as described in the methods. To 100 μ l of whole cell
659 samples, 11S fragment of nanoluciferase and furimazine were added, and luminescence
660 readings taken over a 10 min time course. Peak readings are displayed in relative light units
661 (RLU) and error bars are \pm SD. Experiments were performed in triplicate, (n.s. p>0.05; ***
662 p<0.001; **** p<0.0001). Readings for supernatant and cytoplasmic fractions from these
663 samples are displayed in Supplementary Fig. 3a,b.

664

665 **Fig. 2. TsIA has ‘reverse’ LXG architecture but can interact with Lap-like proteins.** a.
666 Structural model of TsIA obtained from the Alphafold Database⁷². The N-terminus is indicated.
667 The inset shows the predicted active site. b. The LXG-like C-terminus of TsIA (maroon) aligned
668 with the *S. intermedius* LXG protein, TelC (obtained from the Alphafold Database and shown
669 in gold). The inset depicts the L-X-G motif of TelC (yellow) and the G-X-L motif of TsIA (red).

670 c. Model of the complex composed of TilA (blue), TsIA (maroon), TlaA1 (beige), TlaA2 (pale
671 blue) generated with AlphaFold Colab⁷³. The predicted alignment error for the model is
672 provided, with the sequence order being the same as the order listed above. d. Size exclusion
673 chromatogram of TsIA_{CT}-TlaA1-TlaA2 containing fractions that had been previously purified
674 by Ni-affinity chromatography. e. SDS PAGE analysis of the indicated peak fractions from d.

675

676 **Fig. 3. TsIA has phospholipase A₁ activity, which is inhibited by the immunity protein,**
677 **TilA.** a. and b. Purified TsIA and TsIA with point mutants in the active site were incubated with
678 a. the PLA₁ substrate PED-A1 or b. the PLA₂ substrate PED6. Fluorescence released upon
679 substrate hydrolysis was measured at 515 nm over the course of 1 h. Error bars are \pm SD. c.
680 Calorimetric titration of TsIA with TilA. (Upper) Raw data for the heat effect during titration.
681 (Lower) Binding isotherm. The best fit to the data gave $n = 0.88 \pm 0.01$ binding sites, $\Delta H = -$
682 20.5 ± 0.8 kcal mol⁻¹. d. Hydrolysis of PED-A1 mediated by TsIA alone or TsIA and TilA at the
683 indicated molar ratios.

684

685 **Fig. 4. TsIA forms a complex with TilA, TlaA1 and TlaA2.** a. Copurification of TilA, TsIA,
686 TlaA1 and TlaA2. (Left) SEC of the His-TilA-TsIA-TlaA1-Strep-TlaA2-Myc complex following
687 prior purification via HisTrap and StrepTrap affinity chromatography and (right) SDS PAGE
688 analysis of peak fractions a and b from SEC. Peak fraction b was used for cryo EM. b. 2D
689 class averages (left) and 7.3 Å cryo-EM volume of TilA-TsIA-TlaA2 complex (grey) with
690 AlphaFold model docked into density at low contour level (right). TilA, TsIA, and TlaA2 coloured
691 blue, maroon, and pale blue, respectively. c. Side view of C-terminal TsIA and TlaA2 α -helices
692 docked into the same cryo-EM volume but at higher contour level (top). 2D class average
693 demonstrating strong density for C-terminal TsIA and TlaA2 α -helices coloured by subunit
694 (bottom left) and slab view showing positioning of TsIA and TlaA2 α -helices into cryo-EM
695 density (bottom right). Residues corresponding to each α -helix are labelled.

696

697 **Fig. 5. TsIA causes membrane damage to *S. aureus* cells in the absence of *Til1* immunity**

698 **proteins, in a T7SS-dependent manner.** a-c the indicated strain and plasmid combinations

699 were cultured for 2 hours, after which 500 ng ml⁻¹ ATc was added to induce plasmid-encoded

700 gene expression. OD₆₀₀ readings, in triplicate, were taken manually every hour. The

701 experiment was repeated three times and each point is an average of 3 biological and 3

702 technical replicates. Error bars are \pm SD. d. USA300 and USA300 *Δtil1* harbouring pRAB11

703 or pRAB11 encoding TsIA-TlaA1-TlaA2 were cultured with ATc for 1 hr 50 min, after which an

704 aliquot of USA300/pRAB11 and USA300 *Δtil1*/pRAB11 were treated with 10 μ M melittin for 5

705 min. Subsequently all samples were stained with 200 nM Sytox green and 2 μ M DiSC₃(5),

706 spotted onto an agarose pad and imaged by fluorescence microscopy. Representative fields

707 of view, avoiding large clusters of cells are displayed. e. Fluorescence intensity of Sytox green

708 for individual cells from each group plotted on a log₁₀ axis. Note that due to signal saturation

709 in some fields, quantitative analysis could not be performed. Cells are therefore placed into

710 high and low groups based on negative control values, depicted by the dashed line. The

711 percentage of cells in each group with membrane damage is given in Supplementary Table 1.

712

713 **Fig. 6. TsIA does not play a significant role in virulence.** Skin abscesses were induced by

714 mixing 5 x 10⁴ cells of each indicated strain with an equal volume of cytodex beads and

715 inoculating into the flanks of mice. Abscesses were excised after 48 h, and c.f.u were

716 enumerated. One-way ANOVA was used to determine statistical significance (n.s. p>0.05; *

717 p<0.05; * p<0.05).

718 1. Tsirigotaki, A., De Geyter, J., Sostaric, N., Economou, A. & Karamanou, S. Protein
719 export through the bacterial Sec pathway. *Nat Rev Microbiol* **15**, 21-36 (2017).

720
721 2. Palmer, T. & Stansfeld, P.J. Targeting of proteins to the twin-arginine translocation
722 pathway. *Mol Microbiol* **113**, 861-871 (2020).

723
724 3. Bunduc, C.M. et al. Structure and dynamics of a mycobacterial type VII secretion
725 system. *Nature* **593**, 445-448 (2021).

726
727 4. Rivera-Calzada, A., Famelis, N., Llorca, O. & Geibel, S. Type VII secretion systems:
728 structure, functions and transport models. *Nat Rev Microbiol* **19**, 567-584 (2021).

729
730 5. Abdallah, A.M. et al. Type VII secretion--mycobacteria show the way. *Nat Rev
731 Microbiol* **5**, 883-891 (2007).

732
733 6. Pym, A.S. et al. Recombinant BCG exporting ESAT-6 confers enhanced protection
734 against tuberculosis. *Nat Med* **9**, 533-539 (2003).

735
736 7. Abdallah, A.M. et al. The ESX-5 secretion system of *Mycobacterium marinum*
737 modulates the macrophage response. *J Immunol* **181**, 7166-75 (2008).

738
739 8. Portal-Celhay, C. et al. *Mycobacterium tuberculosis* EsxH inhibits ESCRT-dependent
740 CD4(+) T-cell activation. *Nat Microbiol* **2**, 16232 (2016).

741
742 9. Cao, Z., Casabona, M.G., Kneuper, H., Chalmers, J.D. & Palmer, T. The type VII
743 secretion system of *Staphylococcus aureus* secretes a nuclease toxin that targets
744 competitor bacteria. *Nat Microbiol* **2**, 16183 (2016).

745
746 10. Whitney, J.C. et al. A broadly distributed toxin family mediates contact-dependent
747 antagonism between gram-positive bacteria. *Elife* **6**, e26938 (2017).

748
749 11. Kobayashi, K. Diverse LXG toxin and antitoxin systems specifically mediate
750 intraspecies competition in *Bacillus subtilis* biofilms. *PLoS Genet* **17**, e1009682 (2021).

751
752 12. Beckham, K.S.H. et al. Structure of the mycobacterial ESX-5 type VII secretion system
753 pore complex. *Sci Adv* **7**, eabg9923 (2021).

754
755 13. Zoltner, M. et al. EssC: domain structures inform on the elusive translocation channel
756 in the Type VII secretion system. *Biochem J* **473**, 1941-1952 (2016).

757
758 14. Klein, T.A. et al. Structure of the extracellular region of the bacterial type VIIb secretion
759 system subunit EsaA. *Structure* **29**, 177-185 e6 (2021).

760
761 15. Tassinari, M. et al. The antibacterial type VII secretion system of *Bacillus subtilis*:
762 structure and interactions of the pseudokinase YukC/EssB. *mBio* **13**, e0013422
763 (2022).

764
765 16. Renshaw, P.S. et al. Structure and function of the complex formed by the tuberculosis
766 virulence factors CFP-10 and ESAT-6. *EMBO J* **24**, 2491-2498 (2005).

767
768 17. Sundaramoorthy, R., Fyfe, P.K. & Hunter, W.N. Structure of *Staphylococcus aureus*
769 EsxA suggests a contribution to virulence by action as a transport chaperone and/or
770 adaptor protein. *J Mol Biol* **383**, 603-614 (2008).

771

772 18. de Jonge, M.I. et al. ESAT-6 from *Mycobacterium tuberculosis* dissociates from its
773 putative chaperone CFP-10 under acidic conditions and exhibits membrane-lysing
774 activity. *J Bacteriol* **189**, 6028-6034 (2007).

775

776 19. Klein, T.A. et al. Dual targeting factors are required for LXG toxin export by the bacterial
777 Type VIIb secretion system. *mBio* **13**, e0213722 (2022).

778

779 20. Yang, Y. et al. Three small partner proteins facilitate the type VII-dependent secretion
780 export of an antibacterial nuclease. *Biorxiv* <https://doi.org/10.1101/2023.04.01.535202>
781 (2023).

782

783 21. Klein, T.A. et al. Structure of a tripartite protein complex that targets toxins to the type
784 VII secretion system. *Biorxiv* <https://doi.org/10.1101/2023.07.21.550046> (2023).

785

786 22. Ekert, D.C. & Cox, J.S. Structure of a PE-PPE-EspG complex from *Mycobacterium*
787 *tuberculosis* reveals molecular specificity of ESX protein secretion. *Proc Natl Acad Sci*
788 *U S A* **111**, 14758-14763 (2014).

789

790 23. Ulhuq, F.R. et al. A membrane-depolarizing toxin substrate of the *Staphylococcus*
791 *aureus* type VII secretion system mediates intraspecies competition. *Proc Natl Acad*
792 *Sci U S A* **117**, 20836-20847 (2020).

793

794 24. Tsuru, T. & Kobayashi, I. Multiple genome comparison within a bacterial species
795 reveals a unit of evolution spanning two adjacent genes in a tandem paralog cluster.
796 *Mol Biol Evol* **25**, 2457-2473 (2008).

797

798 25. Mader, U. et al. *Staphylococcus aureus* Transcriptome Architecture: From Laboratory
799 to Infection-Mimicking Conditions. *PLoS Genet* **12**, e1005962 (2016).

800

801 26. Pereira, G.C. et al. A high-resolution luminescent assay for rapid and continuous
802 monitoring of protein translocation across biological membranes. *J Mol Biol* **431**, 1689-
803 1699 (2019).

804

805 27. Allen, W.J., Watkins, D.W., Dillingham, M.S. & Collinson, I. Refined measurement of
806 SecA-driven protein secretion reveals that translocation is indirectly coupled to ATP
807 turnover. *Proc Natl Acad Sci U S A* **117**, 31808-31816 (2020).

808

809 28. Yang, Y., Alcock, F., Kneuper, H. & Palmer, T. A high throughput assay to measure
810 Type VII secretion in *Staphylococcus aureus*. *Biorxiv*
811 <https://doi.org/10.1101/2023.06.03.543475> (2023).

812

813 29. Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N. & Sternberg, M.J.E. The Phyre2
814 web portal for protein modeling, prediction and analysis. *Nature Protocols* **10**, 845-858
815 (2015).

816

817 30. Bordes, F. et al. Exploring the conformational states and rearrangements of *Yarrowia*
818 *lipolytica* Lipase. *Biophys J* **99**, 2225-34 (2010).

819

820 31. von Tigerstrom, R.G. & Stelmaschuk, S. The use of Tween 20 in a sensitive
821 turbidimetric assay of lipolytic enzymes. *Can J Microbiol* **35**, 511-514 (1989).

822

823 32. Voulhoux, R. et al. Involvement of the twin-arginine translocation system in protein
824 secretion via the type II pathway. *EMBO J* **20**, 6735-6741 (2001).

825

826 33. da Mata Madeira, P.V. et al. Structural basis of lipid targeting and destruction by the
827 type V secretion system of *Pseudomonas aeruginosa*. *J Mol Biol* **428**, 1790-1803
828 (2016).

829 34. Russell, A.B. et al. Diverse type VI secretion phospholipases are functionally plastic
830 antibacterial effectors. *Nature* **496**, 508-512 (2013).

831 35. Flaugnatti, N. et al. A phospholipase A1 antibacterial Type VI secretion effector
832 interacts directly with the C-terminal domain of the VgrG spike protein for delivery. *Mol*
833 *Microbiol* **99**, 1099-1118 (2016).

834 36. Nguyen, M.T., Hanzelmann, D., Hartner, T., Peschel, A. & Gotz, F. Skin-specific
835 unsaturated fatty acids boost the *Staphylococcus aureus* innate immune response.
836 *Infect Immun* **84**, 205-215 (2016).

837 37. Nguyen, M.T. et al. The nuSaalpha specific lipoprotein like cluster (lpl) of *S. aureus*
838 USA300 contributes to immune stimulation and invasion in human cells. *PLoS Pathog*
839 **11**, e1004984 (2015).

840 38. Tribelli, P.M. et al. *Staphylococcus aureus* Lpl protein triggers human host cell invasion
841 via activation of Hsp90 receptor. *Cell Microbiol* **22**, e13111 (2020).

842 39. Bowman, L. & Palmer, T. The type VII secretion system of *Staphylococcus*. *Annu Rev*
843 *Microbiol* **75**, 471-494 (2021).

844 40. Garrett, S.R., Mariano, G., Dicks, J. & Palmer, T. Homologous recombination between
845 tandem paralogues drives evolution of a subset of type VII secretion system immunity
846 genes in firmicute bacteria. *Microb Genom* **8**, mgen000868 (2022).

847 41. Belikova, D., Jochim, A., Power, J., Holden, M.T.G. & Heilbronner, S. "Gene
848 accordions" cause genotypic and phenotypic heterogeneity in clonal populations of
849 *Staphylococcus aureus*. *Nat Commun* **11**, 3526 (2020).

850 42. Kepplinger, B. et al. Mode of action and heterologous expression of the natural product
851 antibiotic vancoresmycin. *ACS Chem Biol* **13**, 207-214 (2018).

852 43. Burts, M.L., Williams, W.A., DeBord, K. & Missiakas, D.M. EsxA and EsxB are secreted
853 by an ESAT-6-like system that is required for the pathogenesis of *Staphylococcus*
854 *aureus* infections. *Proc Natl Acad Sci U S A* **102**, 1169-1174 (2005).

855 44. Burts, M.L., DeDent, A.C. & Missiakas, D.M. EsaC substrate for the ESAT-6 secretion
856 pathway and its role in persistent infections of *Staphylococcus aureus*. *Mol Microbiol*
857 **69**, 736-746 (2008).

858 45. Wang, Y. et al. Role of the ESAT-6 secretion system in virulence of the emerging
859 community-associated *Staphylococcus aureus* lineage ST398. *Sci Rep* **6**, 25163
860 (2016).

861 46. Wang, Q. et al. PE/PPE proteins mediate nutrient transport across the outer membrane
862 of *Mycobacterium tuberculosis*. *Science* **367**, 1147-1151 (2020).

863 47. Champion, P.A., Stanley, S.A., Champion, M.M., Brown, E.J. & Cox, J.S. C-terminal
864 signal sequence promotes virulence factor secretion in *Mycobacterium tuberculosis*.
865 *Science* **313**, 1632-1636 (2006).

866 877 878 879 880

881 48. Rosenberg, O.S. et al. Substrates control multimerization and activation of the multi-
882 domain ATPase motor of type VII secretion. *Cell* **161**, 501-512 (2015).

883

884 49. Daleke, M.H. et al. General secretion signal for the mycobacterial type VII secretion
885 pathway. *Proc Natl Acad Sci U S A* **109**, 11342-11347 (2012).

886

887 50. Rosenstein, R. & Gotz, F. *Staphylococcal* lipases: biochemical and molecular
888 characterization. *Biochimie* **82**, 1005-1014 (2000).

889

890 51. Nava, A.R., Mauricio, N., Sanca, A.J. & Dominguez, D.C. Evidence of calcium
891 signaling and modulation of the LmrS multidrug resistant efflux pump activity by Ca²⁺
892 ions in *S. aureus*. *Front Microbiol* **11**, 573388 (2020).

893

894 52. Thomas, K.J., 3rd & Rice, C.V. Revised model of calcium and magnesium binding to
895 the bacterial cell wall. *Biometals* **27**, 1361-1370 (2014).

896

897 53. Klein, T.A., Pazos, M., Surette, M.G., Vollmer, W. & Whitney, J.C. Molecular basis for
898 immunity protein recognition of a type VII secretion system exported antibacterial toxin.
899 *J Mol Biol* **430**, 4344-4358 (2018).

900

901 54. Bowran, K. & Palmer, T. Extreme genetic diversity in the type VII secretion system of
902 *Listeria monocytogenes* suggests a role in bacterial antagonism. *Microbiology* **167**,
903 mic.0.001034 (2021).

904

905 55. Monk, I.R., Shah, I.M., Xu, M., Tan, M.W. & Foster, T.J. Transforming the
906 untransformable: application of direct transformation to manipulate genetically
907 *Staphylococcus aureus* and *Staphylococcus epidermidis*. *mBio* **3**, e00277-11 (2012).

908

909 56. Monk, I.R. & Stinear, T.P. From cloning to mutant in 5 days: rapid allelic exchange in
910 *Staphylococcus aureus*. *Access Microbiol* **3**, 000193 (2021).

911

912 57. de Jong, N.W., van der Horst, T., van Strijp, J.A. & Nijland, R. Fluorescent reporters
913 for markerless genomic integration in *Staphylococcus aureus*. *Sci Rep* **7**, 43889
914 (2017).

915

916 58. Karimova, G., Ullmann, A. & Ladant, D. A bacterial two-hybrid system that exploits a
917 cAMP signaling cascade in *Escherichia coli*. *Methods Enzymol* **328**, 59-73 (2000).

918

919 59. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. *Nat
920 Methods* **9**, 676-682 (2012).

921

922 60. Caesar, J. et al. SIMPLE 3.0. Stream single-particle cryo-EM analysis in real time. *J
923 Struct Biol X* **4**, 100040 (2020).

924

925 61. Punjani, A., Rubinstein, J.L., Fleet, D.J. & Brubaker, M.A. cryoSPARC: algorithms for
926 rapid unsupervised cryo-EM structure determination. *Nat Methods* **14**, 290-296 (2017).

927

928 62. Pettersen, E.F. et al. UCSF ChimeraX: Structure visualization for researchers,
929 educators, and developers. *Protein Sci* **30**, 70-82 (2021).

930

931 63. Bligh, E.G. & Dyer, W.J. A rapid method of total lipid extraction and purification. *Can J
932 Biochem Physiol* **37**, 911-917 (1959).

933

934 64. Young, S.A., Desbois, A.P., Coote, P.J. & Smith, T.K. Characterisation of
935 *Staphylococcus aureus* lipids by nanoelectrospray ionisation tandem mass
936 spectrometry (nESI-MS/MS). *Biorxiv* <https://doi.org/10.1101/593483> (2019).

937

938

939 65. Wanner, S. et al. Wall teichoic acids mediate increased virulence in *Staphylococcus*
940 *aureus*. *Nat Microbiol* **2**, 16257 (2017).

941

942 66. Portoles, M., Kiser, K.B., Bhasin, N., Chan, K.H. & Lee, J.C. *Staphylococcus aureus*
943 Cap5O has UDP-ManNAc dehydrogenase activity and is essential for capsule
944 expression. *Infect Immun* **69**, 917-923 (2001).

945

946 67. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment
947 search tool. *J Mol Biol* **215**, 403-410 (1990).

948

949 68. Saha, C.K., Sanches Pires, R., Brolin, H., Delannoy, M. & Atkinson, G.C. FlaGs and
950 webFlaGs: discovering novel biology through the analysis of gene neighbourhood
951 conservation. *Bioinformatics* **37**, 1312-1314 (2021).

952

953 69. Gilchrist, C.L.M. & Chooi, Y.H. Clinker & clustermap.js: Automatic generation of gene
954 cluster comparison figures. *Bioinformatics* **37**, 2473-2475 (2021).

955

956 70. Darling, A.C., Mau, B., Blattner, F.R. & Perna, N.T. Mauve: multiple alignment of
957 conserved genomic sequence with rearrangements. *Genome Res* **14**, 1394-1403
958 (2004).

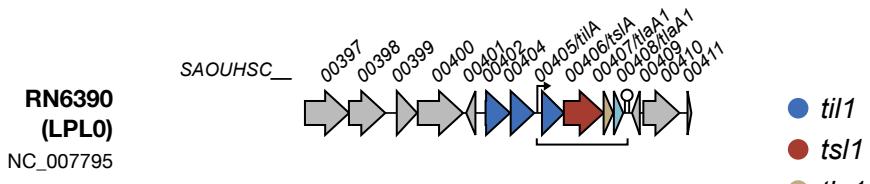
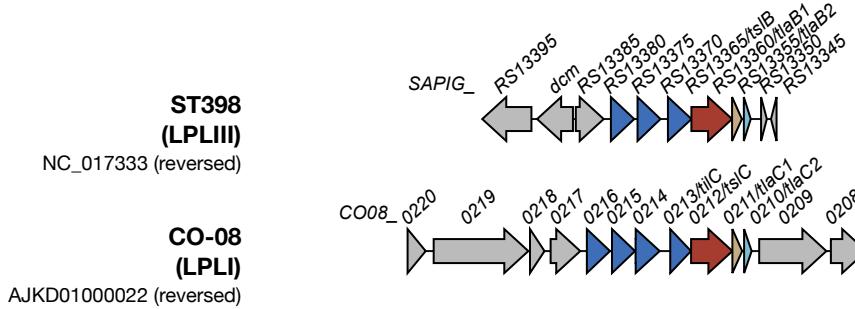
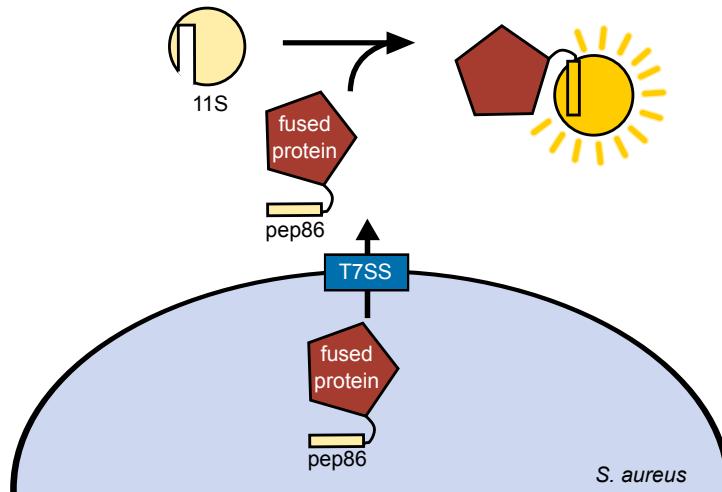
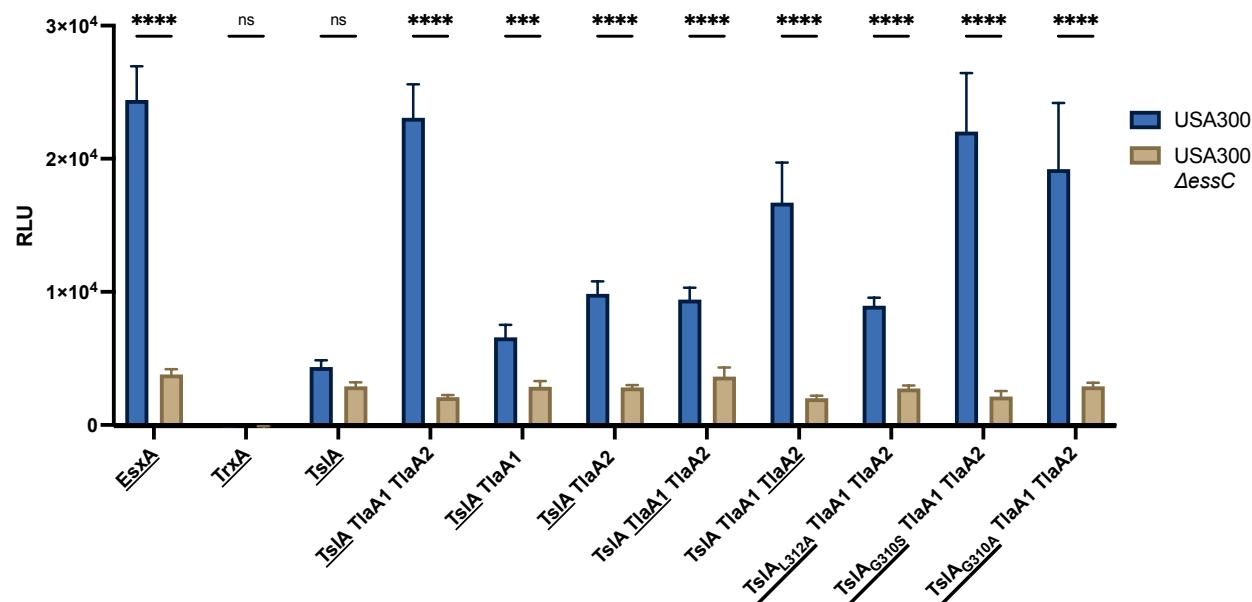
959

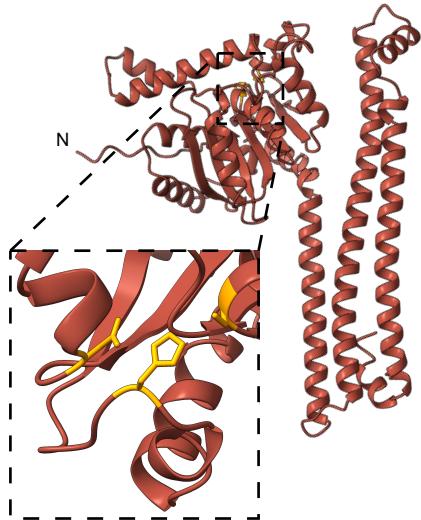
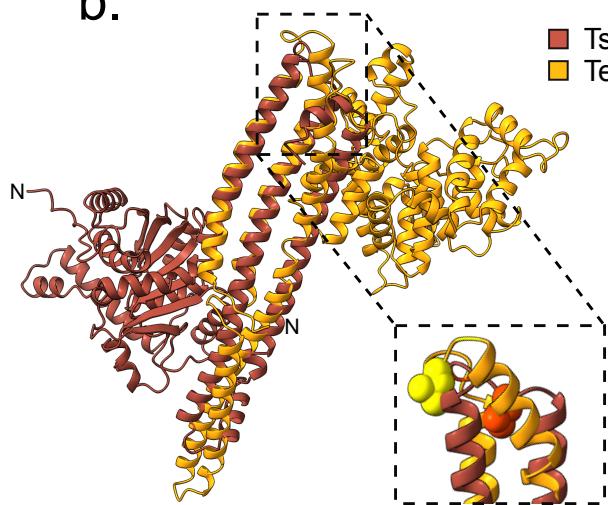
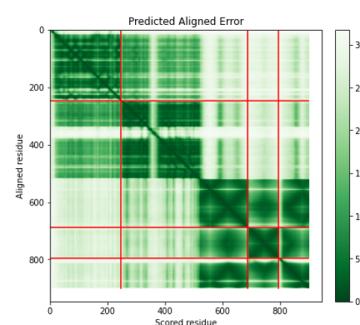
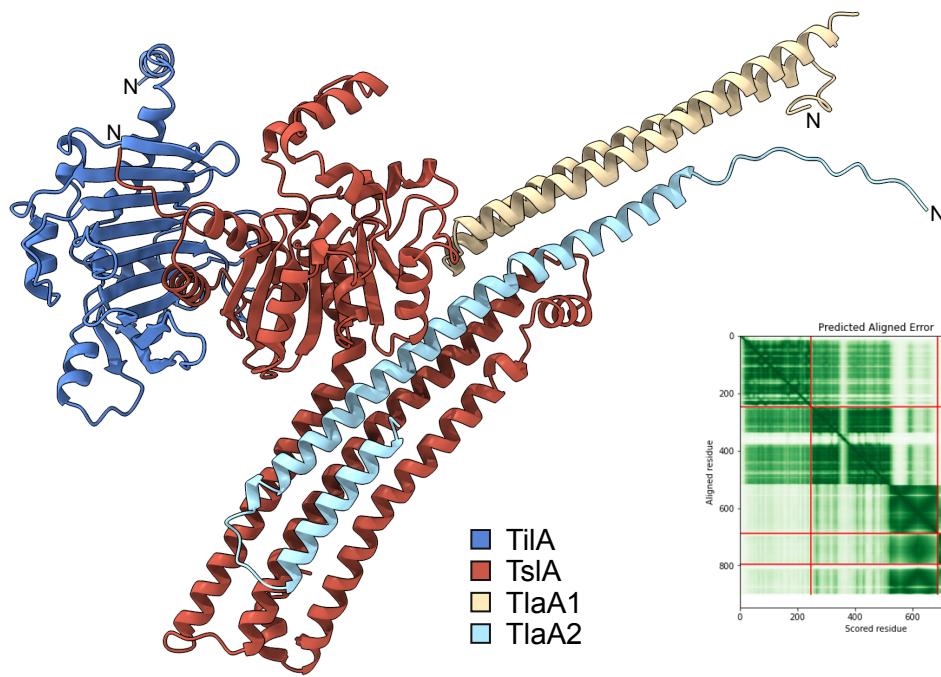
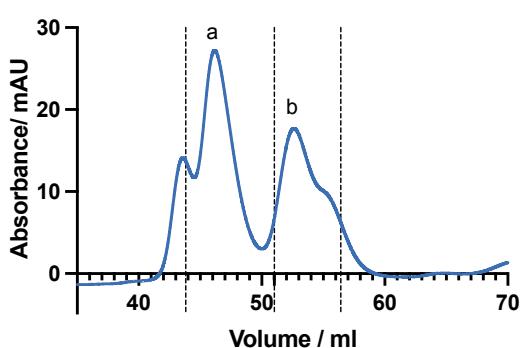
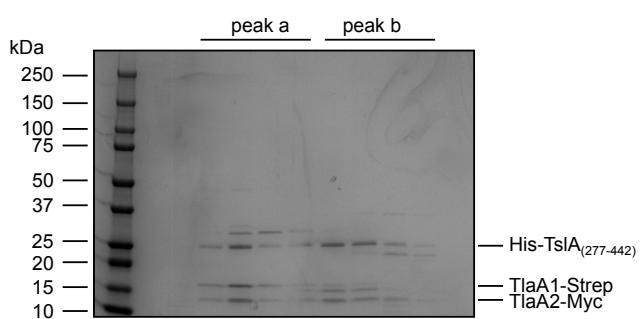
960 71. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. *Nature*
961 **596**, 583-589 (2021).

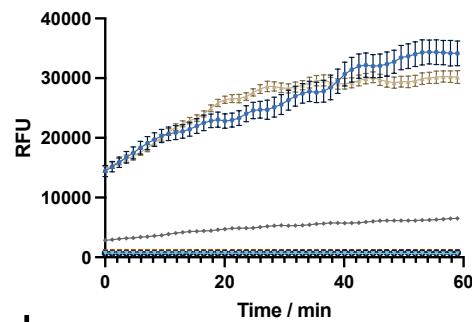
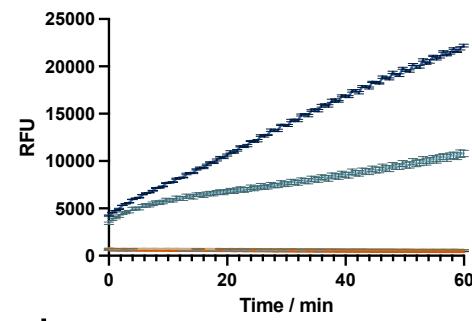
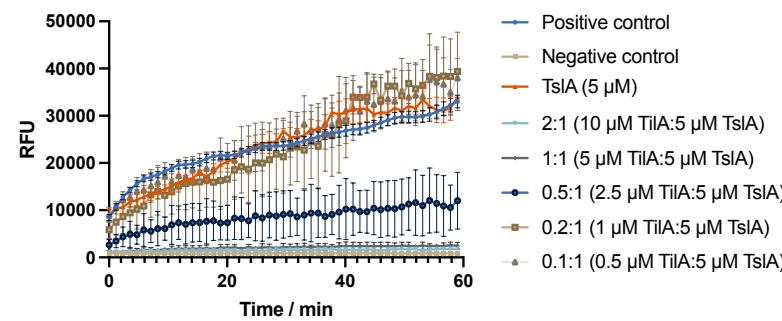
962

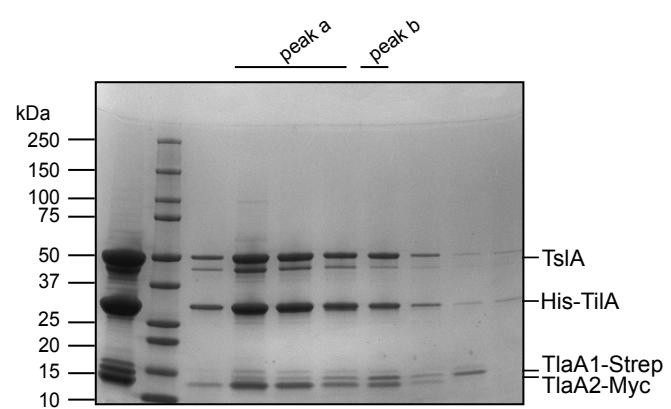
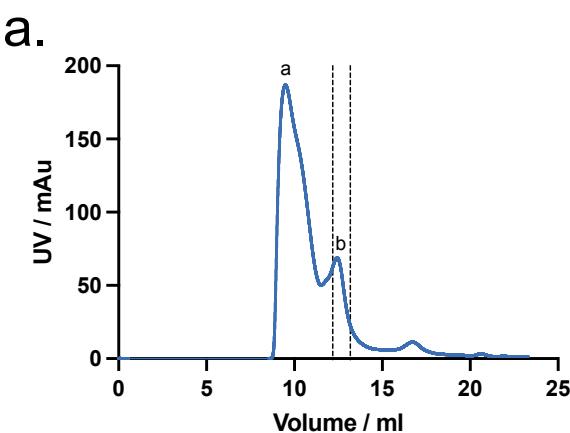
963 72. Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the
964 structural coverage of protein-sequence space with high-accuracy models. *Nucleic*
965 *Acids Res* **50**, D439-D444 (2022).

966

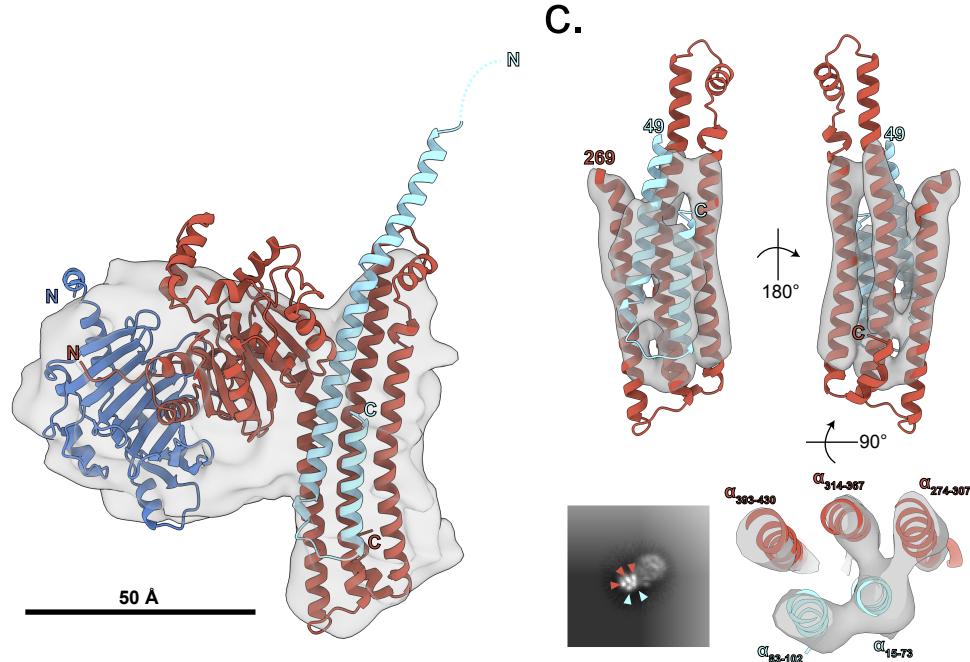
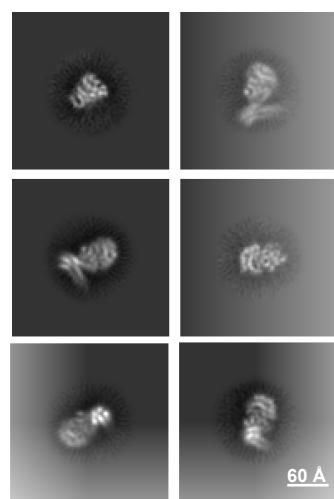




967 73. Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. *BioRxiv*
968 <https://doi.org/10.1101/2021.10.04.463034> (2022).







969

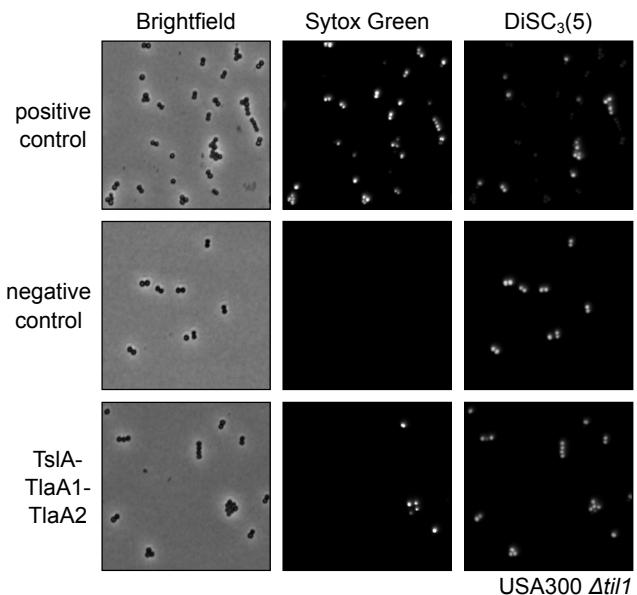
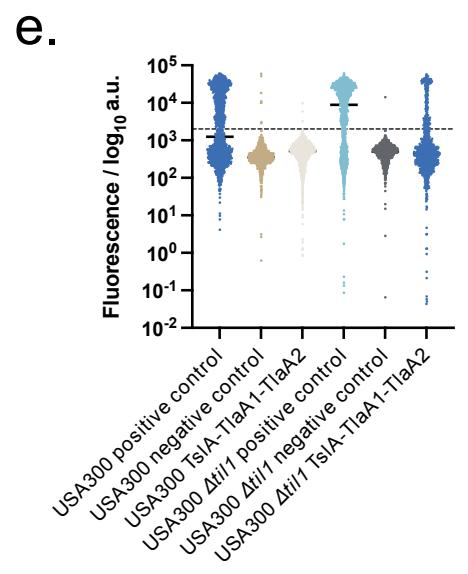
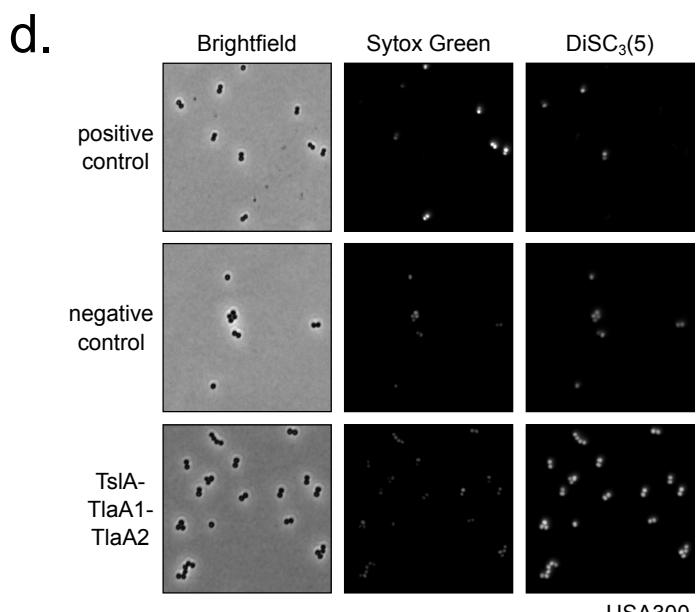
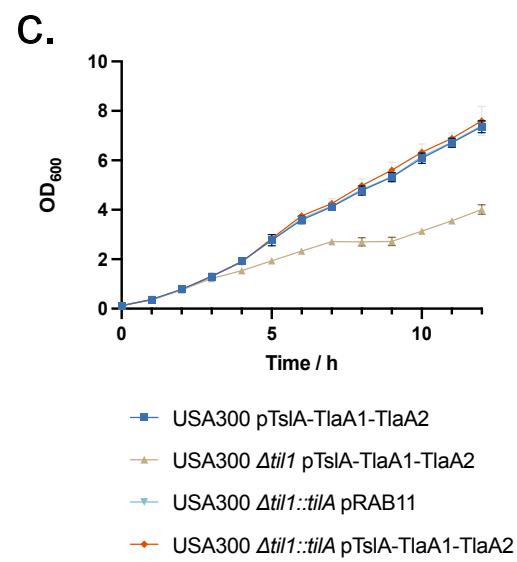
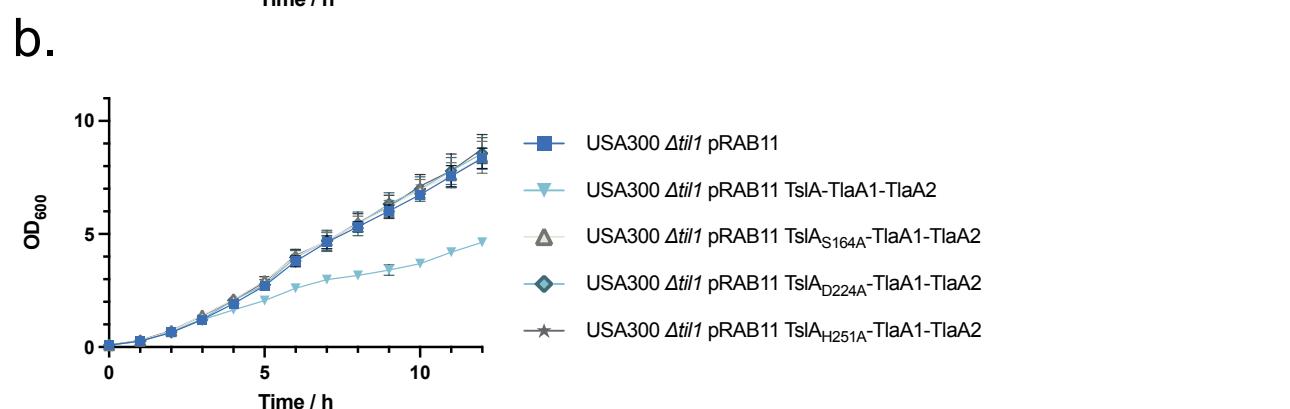
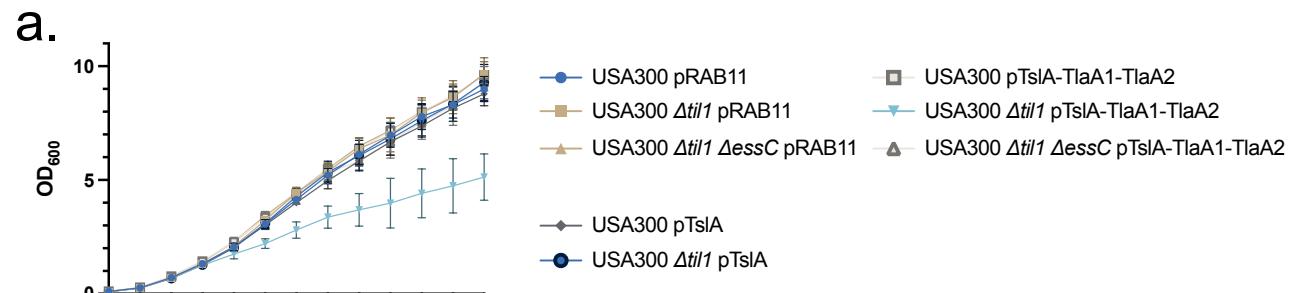



970 74. DeLano, W.L. Pymol: An open-source molecular graphics tool. . *CCP4 Newslett. protein*
971 *Crystallogr.* **40**, 82-92 (2002).

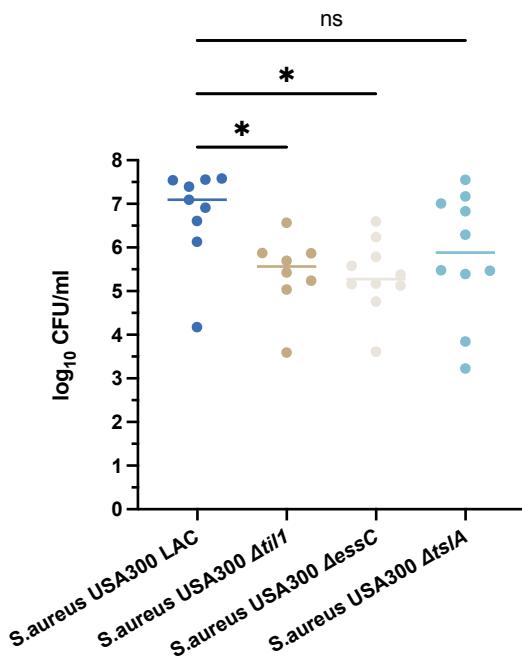


972

973 75. Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high
974 throughput. *Nucleic Acids Res* **32**, 1792-1797 (2004).



a.**b.****c.****d.****e.**

a.**b.****c.****d.****e.**







a.**c.****b.****d.**



b.

c.

