

1 **Bacterial pathogens deliver water/solute-permeable channels as a
2 virulence strategy**

3
4 Kinya Nomura^{1,2,†}, Felipe Andreazza^{1,†}, Jie Cheng^{3, †}, Ke Dong^{1,*}, Pei Zhou^{3,*}, and Sheng Yang
5 He^{1,2,*}

6

7 ¹ Department of Biology, Duke University, Durham, NC 27708, USA.

8 ² Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA.

9 ³ Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA.

10

11 *Correspondence to: Pei Zhou (Email: peizhou@biochem.duke.edu), Ke Dong (Email:
12 ke.dong@duke.edu) and Sheng Yang He (Email: shengyang.he@duke.edu).

13 †Authors contributed equally to this work.

14

15

16 **SUMMARY**

17
18 **Many animal and plant pathogenic bacteria utilize a type III secretion system to deliver**
19 **effector proteins into the host cell^{1,2}. Elucidation of how these effector proteins function in**
20 **the host cell is critical for understanding infectious diseases in animals and plants³⁻⁵. The**
21 **widely conserved AvrE/DspE-family effectors play a central role in the pathogenesis of**
22 **diverse phytopathogenic bacteria⁶. These conserved effectors are involved in the induction**
23 **of “water-soaking” and host cell death that are conducive to bacterial multiplication in**
24 **infected tissues. However, the exact biochemical functions of AvrE/DspE-family effectors**
25 **have been recalcitrant to mechanistic understanding for three decades. Here we show that**
26 **AvrE/DspE-family effectors fold into a β -barrel structure that resembles bacterial porins.**
27 **Expression of AvrE and DspE in *Xenopus* oocytes results in (i) inward and outward**
28 **currents, (ii) permeability to water and (iii) osmolarity-dependent oocyte swelling and**
29 **bursting. Liposome reconstitution confirmed that the DspE channel alone is sufficient to**
30 **allow the passage of small molecules such as fluorescein dye. Targeted screening of**
31 **chemical blockers based on the predicted pore size (15-20 Å) of the DspE channel identified**
32 **polyamidoamine (PAMAM) dendrimers as inhibitors of the DspE/AvrE channels.**
33 **Remarkably, PAMAMs broadly inhibit AvrE/DspE virulence activities in *Xenopus* oocytes**
34 **and during *Erwinia amylovora* and *Pseudomonas syringae* infections. Thus, we have**
35 **unraveled the enigmatic function of a centrally important family of bacterial effectors with**
36 **significant conceptual and practical implications in the study of bacterial pathogenesis.**

37
38 All AvrE/DspE-family effectors examined, including AvrE from *Pseudomonas syringae*, WtsE
39 from *Pantoea stewartii*, DspA/E (DspE hereinafter) from *Erwinia amylovora*, and DspE from
40 *Pectobacterium carotovorum*, are major virulence factors responsible for bacterial multiplication
41 and induction of major disease symptoms including water-soaking and host cell death during
42 infection⁶⁻¹⁹. AvrE/DspE-family effectors have been very challenging to study due to their
43 extremely large size (approximately 200 kDa), high toxicity to plant and yeast cells, and sharing
44 little sequence similarities to proteins of known function^{20,21}. Several AvrE/DspE-family
45 effectors were reported to interact with several plant proteins, including plant protein
46 phosphatase PP2A subunits, type one protein phosphatases (TOPPs) and receptor-like kinases²²⁻²⁵.
47 In addition, a yeast *cdc55* mutation affecting Cdc55-PP2A protein phosphatase activity was
48 found to suppress DspA/E-induced yeast growth arrest²¹. While these interactions associate
49 AvrE/DspE-family effectors to various host cellular processes, the fundamental question
50 regarding the actual biochemical function of AvrE/DspE-family effectors has remained elusive.

51
52 In this study, we performed AlphaFold2 analysis of the 3-D models of AvrE/DspE-family
53 proteins. Unexpectedly, AlphaFold2 predicts that this family of proteins fold into a porin-like β -
54 barrel structure. This surprising prediction prompted us to conduct a series of cryo-EM imaging-,
55 *Xenopus* oocyte-, liposome-, and *in planta* experiments. Our results show that AvrE/DspE-
56 family effectors are water/solute-permeable channels that can be blocked by polyamidoamine
57 (PAMAM) dendrimers. The unexpected discovery of the water/solute-permeable channel
58 function of AvrE/DspE-family effectors solves a decades-long puzzle regarding one of the most
59 important families of phytopathogenic type III effectors and marks a major advancement in
60 understanding bacterial pathogenesis.

61 **AlphaFold2 predication and cryo-EM imaging**

62 To gain functional insights into the AvrE/DspE family of bacterial effectors, we constructed their
63 predicted 3D models using the recently published AlphaFold2²⁶ based on the fast homology
64 search of MMseqs2²⁷. The predicted AlphaFold2 models of DspE from *E. amylovora*, DspE
65 from *P. carotovorum*, AvrE from *P. s. pv. tomato* (*Pst*) DC3000 and WtsE from *P. stewartia*
66 (Fig. 1 and Extended Data Fig. 1 & 2) all reveal an overall similar architecture resembling a
67 mushroom, with a prominent central β -barrel forming the stem, which is surrounded by a
68 globular N-terminal domain (*E. amylovora* DspE: K298-H672), a WD40 repeat domain (H673-
69 P912), and two perpendicularly arranged helix bundles (E998-T1222 and A1567-H1647) on the
70 top. The predicted domain arrangement is supported by our cryo-EM imaging of *E. amylovora*
71 DspE, where the 2D class averages clearly reveal an overall similar top view as the AlphaFold
72 model, with circularly arranged globular domains surrounding a central pore (Fig. 1a,b).

73 Further examination of the predicted *E. amylovora* DspE 3D model reveals that surface β -barrel
74 residues facing outside are enriched with hydrophobic amino acids (Fig. 1c), whereas inward-
75 facing pore residues are predominantly hydrophilic (Fig. 1d). The length of the lower portion of
76 the β -barrel stem covered by hydrophobic residues is estimated to be ~40 Å, roughly the
77 thickness of a cellular membrane. As AvrE has previously been reported to be membrane
78 anchored²⁰, the β -barrel stem of AvrE/DspE-family effectors likely inserts into the membrane
79 and functions as a channel, similar to that of bacterial porins²⁸. Such a mode of insertion is
80 distinct from pore-forming bacterial toxins, such as *staphylococcal* alpha-hemolysin and
81 *Clostridium perfringens* β -toxin, where the β -barrel is assembled through oligomerization of two
82 long β -strands^{29,30}.

83 **Expression of DspE and AvrE generates ionic currents in *Xenopus* oocytes**

84 The unexpected prediction that AvrE/DspE-family effectors are channel-forming proteins
85 prompted us to conduct experiments to test the hypothesis that AvrE and DspE may allow ion
86 conductance when expressed in *Xenopus* oocytes. As shown in the current-voltage relation (Fig.
87 2b,c), inward currents and outward currents at negative and positive test potentials, respectively,
88 were detected from oocytes injected with *dspE* or *avrE* cRNA. The reversal potentials for DspE
89 and AvrE channels are ca. -25 mV. The DspE currents were not affected by niflumic acid, which
90 blocks an endogenous Ca^{2+} -activated chloride channels³¹, or fipronil, which inhibits GABA-
91 gated Cl^- channels and glutamate-gated Cl^- channels³² (Extended Data Fig. 3a,b). Surface
92 biotinylation experiment with oocytes expressing DspE confirmed that this protein is anchored
93 across the oocyte membrane (Extended Data Fig. 4a).

94 We further characterized whole-cell currents from DspE-expressing oocytes by conducting ion
95 permeability experiments. Replacing extracellular sodium in ND96 recording solution (see
96 Methods) with potassium or other cations caused only minor variations on the magnitudes of
97 DspE currents (Extended Data Fig. 3c). Similarly, only minor variations in the magnitudes of
98 DspE currents were observed when extracellular chloride was replaced with various anions,
99 except for Na-MES (Extended Data Fig. 3d,e). When 50% or 100% of the NaCl was replaced by
100 Na-MES, progressively smaller outward currents were observed, and the reversal potential was
101 shifted to a less negative value (Extended Data Fig. 3e). However, the negative reversal potential
102 was not affected by replacement of other ions. These results suggest that Cl^- may play a major

103 role in carrying the outward current and that DspE channel appears to have some selectivity
104 toward anions including chloride. Future research is needed to comprehensively survey possible
105 ion selectivity of the DspE channel.

106 **DspE and AvrE induce swelling and bursting of *Xenopus* oocytes**

107 We noticed an interesting phenomenon during voltage-clamp current recording experiments:
108 many oocytes injected with *dspE* or *avrE* cRNA showed baseline swelling (Extended Data Fig.
109 5a), reminiscent of oocytes expressing plant aquaporins³³. This raised the possibility that AvrE
110 and DspE proteins may function like aquaporin channels to allow water to pass through cell
111 membranes along an osmotic gradient, assuming that the osmolarity of the oocyte bathing
112 medium (~200 mOsm) may be lower than that of the oocyte cytoplasm. To more directly test this
113 possibility, we adopted an oocyte swelling assay used for aquaporins and transferred oocytes
114 from 200 mOsm to 40 mOsm bathing medium to create a larger osmotic difference. Strikingly,
115 both DspE- and AvrE-expressing oocytes dramatically swelled (Fig. 2d) and eventually burst
116 (Supplementary Videos 1 and 2). We conducted further experiments to determine if plant cells
117 expressing AvrE would swell using our previously produced transgenic DEX::*avrE* plants²⁰. As
118 shown in Extended Data Fig. 5b,c, Arabidopsis leaf protoplasts expressing AvrE swelled to a
119 greater extent compared to control Arabidopsis leaf protoplasts which have endogenous
120 aquaporins. This provides further evidence that the AvrE channel has an ability to increase water
121 permeability *in planta*⁷⁻¹⁹.

122 **Size-dependent AvrE/DspE channel selectivity**

123 The predicted AvrE/DspE channels have a diameter of 15-20 Å, significantly larger than the size
124 of a water molecule or a simple ion. We hypothesized that, in addition to ions and water, the
125 AvrE/DspE channels may allow larger molecules to pass through. We conducted fluorescent dye
126 permeability assays to test if molecules smaller than the predicted pore size could pass through
127 the membrane, whereas molecules larger than the predicted pore size could not. Two fluorescent
128 molecules were tested: fluorescein (MW of 332 Da with an estimated maximum molecular
129 diameter of 7 Å) and green fluorescent protein (eGFP) (MW of 27 kDa with an estimated
130 minimum diameter of 30 Å). As shown in Fig. 2e, 2f, fluorescein entered oocytes expressing
131 DspE or AvrE, whereas eGFP could not, consistent with the predicted AvrE/DspE channel
132 diameter. Notably, liposome-based *in vitro* reconstitution of DspE was sufficient to cause time-
133 dependent release of carboxyfluorescein (MW of 376 Da) encapsulated within soybean
134 liposomes, whereas neither the buffer control nor the DspE^{Δβ-barrel} mutant, in which the majority
135 of β-barrel-forming sequences are deleted, displayed significant activity (Fig. 2g,h), suggesting
136 that no other protein is needed for baseline passage of small molecules through the DspE
137 channel. Similar to the oocyte experiment, although DspE readily induced carboxyfluorescein
138 dye release from liposomes (Fig. 2h), no time-dependent release of large molecules, such as
139 FITC-polysucrose 40 (MW of 30-50 kDa with an estimated diameter of 80 Å), was observed
140 (Extended Data Fig. 5d).

141 **Mutational analysis of the DspE channel**

143 We made several mutant derivatives of DspE to evaluate their functional consequences. As a
144 negative control, DspE^{Δβ-barrel} failed to induce water-soaking symptom in *N. benthamiana* leaves,
145 to conduct ion currents, to cause oocyte swelling, or to allow fluorescein release in liposome

146 assay (Fig. 2h; Extended Data Fig. 6). Similarly, triple mutation of three conserved hydrophobic,
147 outward-facing residues (L1776, L1777, L1778) of the predicted transmembrane region of DspE
148 (location indicated by the orange asterisk in Fig. 1c) also abolished the DspE activities (Extended
149 Data Fig. 6). Surface biotinylation of oocytes expressing DspE^{Δβ-barrel} and DspE^{L1776E/L1777E/L1778E}
150 showed that they are no longer accessible by surface biotinylation and therefore likely cannot
151 anchor across the membrane (Extended Data Fig. 4a). Finally, charge-reversal double mutations
152 at K1399 and K1401, two inward-facing residues of the β-barrel, (location indicated by the
153 purple asterisk in Fig. 1d, not conserved among AvrE-family members) partially abolished the
154 DspE activities (Extended Data Fig. 6). Due to the novel nature of the DspE channel, future
155 research is needed to comprehensively define inward-facing residues that are critical for the
156 DspE function.

157 PAMAMs G0 and G1 are inhibitors of DspE/AvrE channels

158 The discovery of AvrE and DspE functioning as channels offered an opportunity to identify
159 compounds whose molecular diameters could fit the predicted pores of AvrE/DspE channels and
160 might therefore block AvrE/DspE activities. We focused on a class of synthetic polyamidoamine
161 (PAMAM) dendrimers, which have programmable molecular diameters³⁴. For example,
162 PAMAM G0 has a diameter of 15 Å, whereas PAMAM G1 has a diameter of 22 Å
163 (<https://www.dendritech.com/pamam.html>). We found that the currents passing through the
164 DspE and AvrE channels were reduced by G1 in a dose-dependent manner, reaching 71% of
165 inhibition on DspE channel and 93% of inhibition on AvrE channel, respectively, at 10 mM of
166 G1 at 50 mV test pulse (Fig. 3a). Similar inhibition by G0 was observed on oocytes expressing
167 DspE, reaching 68% inhibition at 10 mM G0 at 50 mV test pulse (Extended Data Fig. 7a).

168 When G1 was added to the ND96 incubation buffer the baseline swelling over time was also
169 inhibited in a dose-dependent manner, reaching a maximum of 76% of inhibition for 5 mM of
170 G1 at 19 h after injection (Fig. 3c). Again, a similar effect was observed when this inhibitor was
171 tested on AvrE-expressing oocytes, with 89% of inhibition for 5 mM of G1 (Fig. 3d).

172 We also tested the effect of G1 on fluorescein uptake by oocytes expressing DspE, and found it
173 inhibited fluorescent dye uptake, reaching 79% inhibition by the end of the assay (Fig. 3e).
174 Finally, we tested G1 on purified DspE protein reconstituted in liposomes using the DspE-
175 dependent liposome dye release assay. We found that G1 dose-dependently inhibited the release
176 of fluorescein from the soybean liposomes after the addition of DspE (Fig. 3f). Fitting of the dye
177 release yielded an IC₅₀ value of 31 μM for G1 (Fig. 3g). Taken together, we have successfully
178 identified PAMAM G1 as an inhibitor of AvrE/DspE-family channels.

179 PAMAM G1 inhibits bacterial infection

180 The ability of PAMAM G1 to inhibit DspE and AvrE activities in oocytes and liposomes *in vitro*
181 raised the exciting possibility that we had identified a lead compound that could interfere with
182 the AvrE/DspE virulence function *in planta* during bacterial infection. We first tested this
183 possibility against the AvrE function during *P. syringae* infection. In many *P. syringae* strains,
184 AvrE is functionally redundant to another effector, HopM1^{11,13,19}. Mutation of either *avrE* or
185 *hopM1* alone does not strongly affect *Pst* DC3000 virulence, but the *avrE hopM1* double mutant
186 is severely impaired in virulence^{11,19}. Interestingly, while *avrE*-family effector genes are
187 conserved widely³⁵, *hopM1*-family genes and/or their secretion chaperon genes are subjected to

188 natural genetic mutations as in the case of the major pandemic bacterial pathogen *Pseudomonas*
189 *syringae* pv. *actinidiae*³⁶. We found that G1 effectively inhibited *Pst* DC3000 infection of
190 Arabidopsis in an AvrE-dependent manner (i.e., inhibition occurs in the *hopM1* deletion mutant,
191 which simulates natural mutations in the *hopM1* gene; Fig. 4a and 4b). Furthermore, inhibition of
192 AvrE function by PAMAM G1 was not associated with induction of the PR1 protein, a marker
193 for activation of salicylic acid-dependent immune responses in plants (Fig. 4c), or with negative
194 effects on plant appearance (Extended Data Fig. 7b) or seed production (Extended Data Fig. 7c).
195 Next, we tested PAMAM G1 against *Erwinia amylovora* infection. In *E. amylovora*, DspE plays
196 an essential role in causing the devastating fire blight diseases, as the *dspA/E* mutant is largely
197 nonpathogenic^{7,8}. Remarkably, we found that G1 completely inhibited *E. amylovora* infection of
198 highly susceptible pear fruits, phenocopying the *dspE* mutant of *E. amylovora*, an observation
199 consistent with DspE being an indispensable virulence effector (Fig. 4d).

200
201 It is well known that type III secretion systems and their effectors are only expressed and needed
202 for bacterial growth in host tissues, but not *in vitro*^{1,2}. In accordance with this, G1 did not inhibit
203 *E. amylovora* or *Pst* DC3000 growth *in vitro* (Extended Data Fig. 7d), providing further evidence
204 that PAMAM G1 is truly a AvrE/DspE-specific virulence inhibitor, not just a nonspecific
205 bactericidal antibiotic.

206
207 **DISCUSSION**
208

209 Since the initial report of AvrE in *P. syringae* almost three decades ago³⁷, the central importance
210 of AvrE/DspE-family effectors in diverse pathogenic bacterial species has attracted the attention
211 of researchers. Prior to this study, however, researchers largely pursued a working hypothesis
212 that, like most other type III effectors, AvrE/DspE-family effectors would target host proteins to
213 exert their virulence functions. Our finding that AvrE/DspE-family effectors could directly
214 function as water/solute-permeable channels in this study is therefore striking and unexpected.
215 We propose a new integrated model for the function of AvrE/DspE-family effectors (Extended
216 Data Fig. 8). The C-terminal halves of AvrE/DspE-family effectors act primarily as a novel class
217 of water/solute-permeable channels dedicated to creating osmotic/water potential perturbation
218 and a water/nutrient-rich apoplast in which bacteria multiply within the infected plant tissues.
219 Future research is needed to determine how AvrE/DspE-family channel activity, discovered in
220 this study, mediates water/solute/nutrient flows and apoplast osmolarity *in planta* to generate
221 macroscopic water-soaking, host cell death and defense suppression in the infected tissue, as
222 shown previously^{6,13,19,25,38,39}. We found that infiltrating the Arabidopsis leaf apoplast with water
223 (to simulate water-soaking) was sufficient to suppress flg22-induced callose deposition
224 (Extended Data Fig. 9a,b), suggesting that water-soaking and suppression of certain immune
225 responses (e.g., defense-associated callose deposition) are linked processes.

226
227 As large proteins with potentially many protein-interacting interfaces, AvrE/DspE-family
228 effectors can additionally engage host proteins, including plant protein phosphatase PP2A
229 subunits, type one protein phosphatases (TOPPs) and receptor-like kinases²²⁻²⁵, to impact aspects
230 of AvrE/DspE functions. It is striking that the AvrE/DspE channel inhibitor PAMAM G1 can
231 essentially phenocopy the *avrE/dspE* genetic mutations in abrogating all major virulence
232 phenotypes associated with AvrE and DspE, including water-soaking, tissue necrosis as well as
233 bacterial multiplication in infected tissues (Fig. 4). Therefore, future research should examine the

234 possibility that some of the identified AvrE/DspE/WtsE-interacting host proteins may act
235 through modulating AvrE-family channel properties and/or optimizing downstream pathogenic
236 outcomes of AvrE-family channel activities.

237
238 To our knowledge this is the first time that bacterial type III effectors have been shown to
239 directly function as pathogenic water/solute-permeable channels as a virulence mechanism. In
240 addition to unraveling the long-sought-after function of AvrE/DspE-family effectors, this study
241 identified a chemical inhibitor of AvrE/DspE channels that appears to be broadly effective in
242 reducing AvrE/DspE-mediated bacterial infections. As such, the discovery of the water/solute-
243 permeable channel function of AvrE/DspE-family effectors has broad implications in the study
244 of bacterial pathogenesis and bacterial disease control in plants.
245

246 REFERENCES

247
248 1. Galán, J. E. & Collmer, A. Type III secretion machines: bacterial devices for protein delivery
249 into host cells. *Science* **284**, 1322–1328 (1999)

250
251 2. Büttner, D. & He, S. Y. Type III protein secretion in plant pathogenic bacteria. *Plant Physiol.*
252 150, 1656–1664 (2009)

253
254 3. Lewis J. D., Guttman D. S. & Desveaux D. The targeting of plant cellular systems by injected
255 type III effector proteins. *Semin Cell Dev Biol.* **20**, 1055-1063 (2009)

256
257 4. D. Dou, D. & Zhou, J. M. Phytopathogen effectors subverting host immunity: different foes,
258 similar battleground. *Cell Host & Microbe* **12**, 484-495 (2012)

259
260 5. Toruño, T.Y., Stergiopoulos, I. & Coaker G. Plant-pathogen effectors: cellular probes
261 interfering with plant defenses in spatial and temporal manners. *Annu. Rev. Phytopathol.* **54**, 419-441 (2016)

263
264 6. Degrave, A., Siamer, S., Boureau, T. & Barny, M. A. The AvrE superfamily: ancestral type III
265 effectors involved in suppression of pathogen-associated molecular pattern-triggered immunity
266 *Mol. Plant Pathol.* **16**, 899-905 (2015)

267
268 7. Gaudriault, S., Malandrin, L., Paulin, J.P. & Barny, M.A. (1997). DspA, an essential
269 pathogenicity factor of *Erwinia amylovora* showing homology with AvrE of *Pseudomonas*
270 *syringae*, is secreted via the Hrp secretion pathway in a DspB-dependent way. *Mol. Microbiol.*
271 **26**, 1057–1069 (1997)

272
273 8. Bogdanove, A.J. et al. Homology and functional similarity of an hrp-linked pathogenicity
274 locus, *dspEF*, of *Erwinia amylovora* and the avirulence locus *avrE* of *Pseudomonas*
275 *syringae* pathovar tomato. *Proc. Natl. Acad. Sci. USA* **95**, 1325–1330 (1998)

276
277 9. Alfano, J.R. et al. The *Pseudomonas syringae* Hrp pathogenicity island has a tripartite mosaic
278 structure composed of a cluster of type III secretion genes bounded by exchangeable effector and
279 conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. *Proc. Natl
Acad. Sci. USA* **97**, 4856–4861 (2000)

280
281 10. Frederick, R.D. et al. Genetic organization of the *Pantoea stewartii* subsp. *stewartii* *hrp* gene
282 cluster and sequence analysis of the *hrpA*, *hrpC*, *hrpN*, and *wtsE* operons. *Mol Plant Microbe*
283 *Interact.* **14**, 1213–1222 (2001)

284
285 11. Badel, J.L., Shimizu, R., Oh, H.S. & Collmer, A. A *Pseudomonas syringae* pv. tomato
286 *avrEl/hopM1* mutant is severely reduced in growth and lesion formation in tomato. *Mol. Plant-*
287 *Microbe Interact.* **19**, 99–111 (2006)

288
289 12. Boureau, T. et al. (2006). DspA/E, a type III effector essential for *Erwinia amylovora*
290 pathogenicity and growth in planta, induces cell death in host apple and nonhost tobacco
291 plants. *Mol. Plant Microbe Interact.* **19**, 16–24 (2006)

292
293 13. DebRoy, S., Thilmony, R., Kwack, Y.B., Nomura, K. & He, S.Y. A family of conserved
294 bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis
295 in plants. *Proc. Natl Acad. Sci. USA* **101**, 9927–9932 (2004)

296
297 14. Degrave, A. et al. *Erwinia amylovora* type three-secreted proteins trigger cell death and
298 defense responses in *Arabidopsis thaliana*. *Mol. Plant Microbe Interact.* **21**, 1076–1086 (2008)

299
300 15. Ham, J.H., Majerczak, D.R., Arroyo-Rodriguez, A.S., Mackey, D.M. & Coplin, D.L. (2006).
301 WtsE, an AvrE-family effector protein from *Pantoea stewartii* subsp. *stewartii*, causes disease-
302 associated cell death in corn and requires a chaperone protein for stability. *Mol Plant Microbe*
303 *Interact.* **19**, 1092–1102 (2006)

304
305 16. Ham, J.H. et al. WtsE, an AvrE-family type III effector protein of *Pantoea stewartii* subsp.
306 *stewartii*, causes cell death in non-host plants. *Mol Plant Pathol.* **9**, 633–643 (2008).

307
308 17. Kim, H.S., Thammarat, P., Lommel, S.A., Hogan, C.S. & Charkowski, A.O. *Pectobacterium*
309 *carotovorum* elicits plant cell death with DspE/F but the *P. carotovorum* DspE does not suppress
310 callose or induce expression of plant genes early in plant-microbe interactions. *Mol Plant*
311 *Microbe Interact.* **24**, 773–786 (2011)

312
313 18. Hogan, C.S., Mole, B.M., Grant, S.R., Willis, D.K. & Charkowski, A.O. The type III
314 secreted effector DspE is required early in solanum tuberosum leaf infection by *Pectobacterium*
315 *carotovorum* to cause cell death, and requires Wx(3-6)D/E motifs. *PLoS One* **8**, e65534 (2013)

316
317 19. Xin, X. F. et al. Bacteria establish an aqueous living space in plants crucial for virulence.
318 *Nature* **539**, 524-529 (2016)

319
320 20. Xin, X.F. et al. *Pseudomonas syringae* effector avirulence protein E localizes to the host
321 plasma membrane and down-regulates the expression of the NONRACE-SPECIFIC DISEASE
322 RESISTANCE1/HARPIN-INDUCED1-LIKE13 gene required for antibacterial immunity in
323 *Arabidopsis*. *Plant Physiol.* **169**, 793–802 (2015)

324

325 21. Siamer, S. et al. Expression of the bacterial type III effector DspA/E in *Saccharomyces*
326 *cerevisiae* downregulates the sphingolipid biosynthetic pathway leading to growth-arrest. *J.*
327 *Biol. Chem.* **289**, 18466–77 (2014)

328

329 22. Meng, X., Bonasera, J.M., Kim, J.F., Nissinen, R.M., & Beer, S.V. Apple proteins that
330 interact with DspA/E, a pathogenicity effector of *Erwinia amylovora*, the fire blight
331 pathogen. *Mol Plant Microbe Interact.* **19**, 53–61 (2006)

332

333 23. Jin, L. et al. Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector
334 Proteins. *PLoS Path.* **12**, e1005609 (2016).

335

336 24. Xin, X. et al. *Pseudomonas syringae* effector AvrE associates with plant membrane
337 nanodomains and binds phosphatidylinositides *in vitro*. Preprint at bioRxiv
338 <https://doi.org/10.1101/2021.07.08.4516> (2021)

339

340 25. Hu, Z. et al. Bacterial effectors manipulate plant ABA signaling and stomatal movement for
341 creation of an aqueous apoplast. *Cell Host Microbe* **30**, 518-529.e6 (2022)

342

343 26. Jumper J. et al. (2021) Highly accurate protein structure prediction with AlphaFold. *Nature*
344 **596**, 583-589 (2021)

345

346 27. Mirdita M. et al. ColabFold: making protein folding accessible to all. *Nat Methods* **19**, 679-
347 682 (2022)

348

349 28. Nikaido H. Porins and specific diffusion channels in bacterial outer membranes. *J Biol Chem.*
350 **269**, 3905-3908 (1994)

351

352 29. Song, L. et al. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane
353 pore. *Science* **274**, 1859-66 (1996)

354

355 30. Bruggisser J. et al. Cryo-EM structure of the octameric pore of *Clostridium perfringens* β -
356 toxin. *EMBO Rep.* **23**, e54856 (2022)

357

358 31. Kuruma, A. & Hartzell, H. C. Dynamics of calcium regulation of chloride currents in
359 *Xenopus* oocytes. *Am J Physiol.* **276**, C161-175 (1999)

360

361 32. Narahashi, T., Zhao, X., Ikeda, T., Nagata, K. & Yeh, J. Z. Differential actions of
362 insecticides on target sites: basis for selective toxicity. *Hum Exp Toxicol.* **26**, 361-366 (2007)

363

364 33. Maurel C., Reizer, J., Schroeder, J. I. & Chrispeels M. J. The vacuolar membrane protein
365 gamma-TIP creates water specific channels in *Xenopus* oocytes. *EMBO J.* **12**, 2241-2247 (1993)

366

367 34. Tomalia, D. A., Naylor, A. M. & Goddard, W. A., III. Starburst Dendrimers: Molecular-
368 Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to
369 Macroscopic Matter. *Angew. Chem., Int. Ed. Engl.* **29**, 138-175 (1990)

370

371 35. Baltrus, D. A. et al. Dynamic evolution of pathogenicity revealed by sequencing and
372 comparative genomics of 19 *Pseudomonas syringae* isolates. *PLoS Path.* **7**, e1002132 (2011)

373

374 36. Jayaraman, J., Yoon, M., Applegate, E. R., Stroud, E. A. & Templeton, M. D. AvrE1 and
375 HopR1 from *Pseudomonas syringae* pv. *actinidiae* are additively required for full virulence on
376 kiwifruit. *Mol. Plant Pathol.* **21**, 1467-1480 (2020)

377

378 37. Lorang, J.M. & Keen, N.T. Characterization of *avrE* from *Pseudomonas syringae* pv.
379 tomato: a *hrp*-linked avirulence locus consisting of at least two transcriptional units. *Mol Plant*
380 *Microbe Interact.* **8**, 49–57 (1995)

381

382 38. Gentzel I. et al. Dynamic nutrient acquisition from a hydrated apoplast supports biotrophic
383 proliferation of a bacterial pathogen of maize. *Cell Host Microbe* **30**, 502-517.e4 (2022)

384

385 39. Roussin-Léveillé, C. et al. Evolutionarily conserved bacterial effectors hijack abscisic acid
386 signaling to induce an aqueous environment in the apoplast. *Cell Host Microbe.* **30**, 489-501.e4
387 (2022)

388

389 METHODS

391 Cloning, expression and purification of *E. amylovora* DspE and DspE^{Δβ-barrel} in *E. coli*

392 The *dspE* gene was PCR-amplified from the genomic DNA of *Erwinia amylovora* strain Ea273
393 and cloned into a modified *pET28a* vector (MilliporeSigma) as C-terminal fusion to maltose-
394 binding protein (MBP) containing a His₈ tag, a preScission protease cleavage site (PPX), and a
395 FLAG tag in the form of MBP-His₈-PPX-FLAG-DspE (herein after as MBP-DspE). Plasmid-
396 transformed BL21(DE3) *E. coli* cells were grown in Luria-Bertani (LB) medium at 37 °C until
397 OD_{600nm} reached 0.4-0.6, and were then induced with 0.1 mM IPTG and grown at 18 °C
398 overnight. Harvested cell pellets were resuspended in a lysis buffer containing 20 mM HEPES
399 (pH 7.5), 300 mM NaCl, and 2.5% glycerol, supplemented with cOmplete EDTA-free protease
400 inhibitor tablet (Roche) and DNase I, and lysed by French press. Following centrifugation at
401 20,000 rpm for 30 min at 4 °C to remove cell debris, the fusion protein was purified using
402 TALON® Cobalt resin (Takara Bio). Following extensive washing in a buffer containing 20 mM

403 HEPES (pH 7.5), 300 mM KCl, 2.5% glycerol, 1 mM ATP, 5 mM MgCl₂, and 10 mM
404 imidazole, the fusion protein was eluted in a buffer containing 20 mM HEPES (pH 7.5), 300 mM
405 NaCl, 2.5% glycerol and 250 mM imidazole, and was further purified on a Superose® 6 Increase
406 10/300 GL column (Cytiva Life Science) pre-equilibrated with a buffer containing 20 mM
407 HEPES (pH 7.5), 150 mM NaCl and 1 mM DTT at 4 °C. The protein fractions at the peak were
408 aliquoted and flash-frozen at -80 °C for storage.

409 The construct of DspE^{Δβ-barrel} (Δ1278-1566 + Δ1649-1813) was generated from the WT MBP-
410 DspE construct described above through infusion cloning. The mutant protein was purified by
411 following identical procedures as the WT protein.

412 Representative size exclusion chromatography profiles and SDS-PAGE gels of the purified
413 MBP-DspE and MBP-DspE^{Δβ-barrel} proteins are shown in Extended Data Fig. 10a,b.

414 Constructs of MBP-DspE and MBP-DspE^{Δβ-barrel} were made by the infusion cloning methods
415 using NEBuilder HiFi® DNA assembly kit (New England Biolabs) with the following primer
416 sets:

417

418 WT DspE:

419 *dspE*_forward_primer: GATGGAATTAAAATCACTGGAACTGAACACAAG
420 *dspE*_reverse_primer: GAAGGAAGGGCTGAAATGAAGAGCTAATTGATTAA
421 Vector_forward_primer: GAGCTAATTGATTAATACCTAGGCTGCTAAACAAAG
422 Vector_reverse_primer: TTCTGTTCCAGGGGCCCGATGGAATTAAAATC

423

424 DspE^{Δβ-barrel} (Δ1278-1566 + Δ1649-1813):

425 *dspE* forward_primer: CCTGGACAGTGCAGGAGCCGGTGACCAGCAA
426 *dspE* reverse_primer: AGGCTGCGGACAGCCACAGCGGAATAGCT
427 Vector_forward_primer: CACAGCGGAATAGCTCAGGCTAATCCGCAG
428 Vector_reverse_primer: GAATACGCTGTTGCCCTGGACAGTGCAGGAA

429

430 **Cryo-EM sample preparation and data collection and processing**

431

432 Cryo-EM grids were prepared using a Leica EM GP2 Automatic Plunge Freezer in a humidity-
433 controlled chamber operated at 10 °C and 85-90% relative humidity. Homemade Gold
434 Quantifoil® R1.2/1.3 300-mesh grids were glow-discharged using the PELCO easiGlow™ glow
435 discharge cleaning system (TED PELLA, INC) before sample application. During sample
436 freezing, a 3 µL sample of DspE (~1.1 mg/mL) was applied to freshly glow-discharged grids and
437 incubated on grids for 60 s before blotting with Whatman #1 filter paper (Whatman International
438 Ltd) for 2.8 s. The grids were then immediately plunge-frozen in liquid ethane and stored in
439 liquid nitrogen before data acquisition.

440

441 A total of 7,810 movies were recorded on an FEI Titan Krios electron microscope (Thermo
442 Fisher Scientific) operated at 300 kV equipped with a K3 direct electron detector (Gatan, Inc.)
443 operated in the counting mode. Movies were collected at a nominal magnification of 81,000x
444 using pixel size of 1.08 Å/pix with a defocus range from -2.4 µm to -0.8 µm using Latitude™ S
445 (Version 3.51.3719.0, Gatan, Inc.) automated image acquisition package. Each stack was

446 exposed for 2.8 s with an exposure time of 0.047 s per frame, resulting in 60 frames per stack.
447 The total dose was approximately 56.3 e⁻/Å² for each stack.
448

449 Movie alignment and contrast transfer function (CTF) estimation were performed with the patch
450 motion correction model and patch CTF estimation module in cryoSPARC⁴⁰. A total of 7,141
451 micrographs were selected from a total of 7,810 images based on the CTF fitting resolution using
452 a cutoff value of 4.0 Å. A total of ~2.4 M particles were picked using pre-trained TOPAZ⁴¹
453 models, of which ~167 K particles corresponding to full-length protein with high resolution
454 features were selected to generate 2D class averages. Cryo-EM samples of DspE so far showed a
455 severe orientation bias of the particles, which prevented high-resolution reconstruction of the
456 cryo-EM density maps.
457

458 **Cloning and *in vitro* transcription of *avrE* and *dspE* for oocyte experiments**

459
460 The *avrE* or *dspE* open reading frame (ORF) was amplified with the following primer sets:
461 *avrE* forward primer: TTGCCCGGGCGCCACCATGCAGTCACCATCGATCCACCGGA
462 (Kozak sequence underlined),
463 *avrE* reverse Primer: CCTCTAGATTAGCTTCAGTCGAACCCCTCT
464 *dspE* forward primer: TTGCCCGGGCGCCACCATGGAATTAAAATCACTGGGAACTG
465 (Kozak sequence underlined),
466 *dspE* reverse Primer: CCTCTAGATTAGCTTCATTCCAGGCCCTTCC
467 PCR-amplified *avrE* or *dspE* ORF (*SrfI-XbaI* fragment) was cloned into *pGH19*⁴² (digested with
468 *XmaI* and *XbaI*) to create *pGHavrE* or *pGHdspE*. To prepare cRNA for oocyte injection, *pGHavrE*
469 or *pGHdspE* was linearized with *NheI*, followed by *in vitro* transcription with T7
470 polymerase mMESSAGE mMACHINE® Kit (Ambion).
471

472 For mutational analysis of DspE, point or deletion mutants of *pGH-dspE* was obtained using Q5
473 Site-Directed Mutagenesis Kit (New England Biolabs) with following primer sets:
474

475 *pGH-dspE*^{Δβ-barrel} (i.e., Δ1278-1566 + Δ1649-1813)
476 Δ1278-1566 forward primer: GCGGAGCCGGTGACCAGCAACGATA
477 Δ1278-1566 reverse Primer: ACTGTCCAGGGACAACAGCGTATTG
478 Δ1649-1813 forward primer: GGAATAGCTCAGGCTAATCCGCAGG
479 Δ1649-1813 reverse Primer: GCTGTGGCTGTCCGCAGCCTGTTGA
480

481 *pGH-dspE*^{K1399E/K1401E}
482 K1399E+K1401E forward primer: CTGGAGTTTGAGCTGACAGAGGATGAG (underline
483 indicate mutation point)
484 K1399E+K1401E reverse Primer: GCTGTTTGTAGCGTTCTGCAGGGT
485

486 *pGH-dspE*^{L1776E/L1777E/L1778E}
487 L1776E+L1777E+L1778E forward primer: GAGGAAGAGGGGACGAGCAACAGCCTG
488 (underline indicate mutation point)
489 L1776E+L1777E+L1778E reverse Primer: CGCTGGGGTATTGAAGCCTTCGCTTTT
490

491 ***Xenopus laevis* oocyte preparation, injection and expression of DspE and AvrE**

492

493 Oocytes were purchased as ovary from Xenopus1 Co. (Dexter, MI). The ovary was treated with
494 0.55 mg/mL of collagenase B (0.191 U/mg) in calcium-free ND96 saline⁴³ (96 mM NaCl, 2 mM
495 KCl, 1 mM MgCl₂, 5 mM HEPES, and 2.5 mM Na-pyruvate, pH at 7.5) for 20 min while on a
496 nutating mixer at 21-22°C. Immediately after treatment, the enzymatic solution was rinsed off
497 from the ovary with ND96 bath saline (96 mM NaCl, 2 mM KCl, 1 mM MgCl₂, 1.8 mM CaCl₂,
498 5 mM HEPES, 2.5 mM Na-pyruvate, and 0.5 mM theophylline, pH at 7.5) several times and cell
499 clusters were spread on several 70 mm plastic culture dishes with ND96 bath saline for
500 temporary storage in an 18°C incubator. On the same day, the follicular cells and follicular
501 membrane covering mature oocytes (stages IV and V) were manually peeled off with fine
502 forceps and oocytes were kept in ND96 bath saline at 18°C until the time for cRNA injection.
503 cRNA was mixed with diethyl pyrocarbonate (DEPC)-treated water to defined concentrations
504 necessary to deliver desired amounts (ranging from 0.01 ng to 20 ng) of cRNA per oocyte when
505 injecting a volume of 27.6 nL. Injection was performed with a nanoinjector (Nanoject II,
506 Drummond Scientific Co. Broomall, PA) following the manufacturer's directions. DEPC-treated
507 water was injected in control oocytes. Oocytes were kept in a 6-well plastic culture plate at 18°C
508 to allow expression of proteins. Incubation solution was either control (ND96 bath saline), ND96
509 with inhibitor (PAMAM G0 or G1, niflumic acid, or fipronil), ND96 with 0.0005% fluorescein
510 or ND96 with 0.1% GFP protein.

511

512 Oocyte surface biotinylation assay

513

514 Oocytes were injected with 2 ng of wild-type or mutant *dspE* cRNA and incubated in bath ND96
515 saline for 15 h. Surface-exposed proteins were biotinylated and purified using the Pierce™ Cell
516 Surface Protein Biotinylation and Isolation Kit (ThermoFisher Scientific), following the
517 manufacturer's protocol with some modifications, as described by Yu et al. 2012⁴⁴. Five oocytes
518 were used per each treatment (with biotin, without biotin or total cell extract). Briefly, cells were
519 rinsed 3 times in OR2 buffer⁴⁴ before incubating in 2.5 mL of OR2 buffer for 10 min with or
520 without Sulfo-NHS-SS-Biotin in 6-well culture plates in a benchtop orbital shaker, set at 85 rpm
521 at room temperature. Oocytes for total cell extract were immediately saved at -80 °C, while
522 oocytes for biotinylation (with or without biotin) were rinsed 3 times in TRIS buffer⁴⁴ before
523 being placed in a 1.5 mL tube with 500 µL of lysis buffer containing 10 µL of Halt™ Protease
524 Inhibitor Cocktail (ThermoFisher Scientific). Lysis mix containing oocytes was homogenized by
525 passing thought a 20-gauge needle for 10 times, before incubation at 4 °C on a nutating mixer.
526 The remaining steps followed the kit manufacturer's protocol. Final samples were eluted with
527 200 µL elution buffer and mixed with 50 µL of 5×SDS sample buffer. In parallel, the five
528 oocytes saved for total cell extract were homogenized in 250 µL of 2×SDS sample buffer. For
529 equal loading, 25 µL of total extract or avidin pull down of biotinylated protein samples were
530 added to each lane for SDS-PAGE.

531

532 Two-electrode voltage clamp recordings

533

534 Oocytes were injected with 0.01 ng of wild-type or mutant *dspE* cRNA or with 0.1 ng of *avrE*
535 cRNA. AvrE seems less functional in oocytes than DspE. After ~15h of incubation in bath ND96
536 saline (96 mM NaCl, 2 mM KCl, 1 mM MgCl₂, 1.8 mM CaCl₂, 10 mM HEPES, pH at 7.5), each
537 oocyte was impaled by one voltage-sensing borosilicate microelectrode and one current-passing

538 borosilicate microelectrode with resistance of 0.5 ± 0.1 M Ω , while in 1 mL of an electrically
539 grounded ND96 recording saline (96 mM NaCl, 2 mM KCl, 1 mM MgCl₂, 1.8 mM CaCl₂, 10
540 mM HEPES, pH at 7.5). Note: In initial preliminary experiments, when oocytes were injected
541 with a high amount of *dspE/avrE* cRNA (e.g., 1 ng of *dspE* or 20 ng *avrE* cRNA/oocyte),
542 membrane potentials at 24 h had dropped close to zero mV (Extended Data Table 1) and current
543 conductance was very large (>50 μ A), a condition at which the TEVC equipment no longer
544 works properly. Thus, we lowered the cRNA input to 0.01 ng *dspE*/oocyte and 0.1 ng
545 *avrE*/oocyte and evaluation time to 15 h after injection, which yield resting potential similar to
546 that of oocytes injected with water control (Extended Data Table 1) and modest currents that
547 TEVC was able to record.

548
549 For ion replacement experiments, variations of ND96 were prepared by replacing the major salt
550 (i.e., 96 mM NaCl) with 96 mM of LiCl, KCl, RbCl, CsCl, Choline-Cl, NDMG-Cl (N-Methyl-D-
551 glucamine Hydrochloride), NaBr, NaI, NaClO₃, NaBrO₃ or Na-MES (4-
552 Morpholineethanesulfonic acid, sodium salt)^{45,46}. Currents were first recorded in ND96 recording
553 buffer. To replace ND96 with a new cation/anion, 10 mL of a new ND96 solution was slowly
554 added from one end of the recording chamber using a 10 mL plastic syringe with 18G needle,
555 while the original ND96 was washed out using a vacuum outflow 20G tube from the other end of
556 the chamber. The glass microelectrodes were half-filled with 1.5% agar containing 3M KCl. The
557 electrodes were connected to an oocyte clamp amplifier (OC-725C, Warner Instrument Corp.
558 Hamden, CT) by chlorinated silver wires. The bath clamp headstage was connected to bath saline
559 by two chlorinated silver wires inside a disposable polytetrafluoroethylene 18-gauge tubing filled
560 with 1.5% agar containing 3M KCl serving as agar-bridges. The oocyte clamp amplifier was
561 connected to a computer by an analog-digital interface (Digidata 1440A, Molecular Devices, San
562 Jose, CA). The command voltage protocols and data acquisition were performed in Clampex
563 10.7 (Molecular Devices, San Jose, CA). Oocytes were clamped to a desired potential using the
564 fast clamp mode with maximum clamp gain and current gain set to 0.1 V/uA. Signal for both
565 voltage and currents was recorded. Upon impaling an oocyte and before clamping it, both
566 electrodes are capable of measuring the resting potential of that oocyte. Oocytes were clamped at
567 their resting potential and test pulses of 100 ms toward more positive or more negative potentials
568 in 10 mV increments were applied. The resultant current was recorded and analyzed. Current
569 amplitude was determined at 10 to 20 ms of the test pulse, time at which there was the smallest
570 or no overlaps with membrane capacitance or Ca-dependent chloride currents from endogenous
571 oocyte channels⁴⁷. Since resting potential values across individual oocytes varied (likely due to
572 uncontrollable intrinsic differences in each oocyte, its size and in fine adjustment of electrode
573 position and resistant), the voltage-current relationship data was fit to a quadratic polynomial
574 regression (SigmaPlot 12.5 Systat Software Inc.) providing intermediate values and 95%
575 confidence intervals. This also allowed currents elicited by the test potentials on control oocytes
576 to be subtracted from the currents in treatment oocytes, so the resultant values represent only
577 DspE- or AvrE-mediated current flowing across the membrane. Comparison of the currents was
578 performed using a two-way ANOVA with Tukey's test, with significance set to a *P* value < 0.05 .

579
580 **Oocyte swelling assay**
581
582 Oocytes injected with 1 or 2 ng *dspE* or 20 ng *avrE* cRNA/oocyte were imaged using Motic
583 Images Plus 3.0 software connected to a Moticam X3 camera (Motic China Group Inc., China)

584 on a SHR Plan Apo 1X WD:60 magnification lens of a stereoscope (Nikon SMZ18 Nikon Corp.,
585 Japan). At 0.01 ng *dspE* or 0.1 ng *avrE* cRNA/oocyte that was used for TEVC recordings, no
586 baseline oocyte swelling was observed. Baseline swelling began to be observed at >0.1 ng *dspE*
587 or >10 ng *avrE* cRNA/oocyte. For baseline oocyte swelling, starting oocyte images were
588 recorded immediately after each injection, and then every 2 h to 4 h intervals for 24 h. Oocytes
589 were kept in bath saline of 200 mOsm with or without PAMAM inhibitors in the stereoscope
590 room at 18-19°C for the entire period. Each picture depicting 5 oocytes (replicates) was analyzed
591 with the Fiji software⁴⁸. Data are presented as absolute volume at a given evaluation time or as
592 change in volume in relation to the start point (immediately after cRNA injection). For
593 hypoosmotic-induced swelling, oocytes expressing DspE or AvrE were transferred into a 5-fold
594 diluted ND96 bath saline (40 mOsm) and were immediately imaged as described for baseline
595 swelling once every 20 s for 10-20 min or until oocytes injected with *dspE* or *avrE* started to
596 burst. Data are presented as change in volume in relation to the first picture in diluted saline.
597 Pictures were also arranged in sequence to create time-lapse movies showing oocyte swelling
598 and bursting. One-way ANOVA with Tukey's test was used for multiple comparisons within a
599 data set, with significance set to a *P* value < 0.05. For dataset with repeated measures over time,
600 as in the hypoosmotic-induced swelling assay, a two-way repeated measure ANOVA with
601 Dunnett's test was used instead, with significance also set to a *P* value < 0.05.

602

603 **Oocyte dye uptake assay**

604

605 Two hours after injection with 1 or 2 ng of *dspE* or 20 ng of *avrE* cRNA, oocytes were placed in
606 ND96 bath saline with or without 5 µg/mL fluorescein, 1 mg/mL GFP and/or 5 mM PAMAM
607 G1 inhibitor and incubated until evaluation time, as indicated in figure legends. Oocytes were
608 rinsed twice in ND96 bath saline and imaged as described above for oocyte swelling assay, with
609 a few exceptions: It was imaged at a 2× magnification with either a bright field or GFP-B filter.
610 In the Motic Images Plus software, the green channel gain was increased to improve green
611 fluorescence detection. While specific values of the green channel gain value varied across
612 different independent assays, all configurations were kept the same across all treatments within
613 the same experiment. Bright field and fluorescent images of each oocyte were stacked using the
614 Fiji software and the integrated density of fluorescence was measured within oocyte boundaries
615 and subtracted from the background, so data is presented as corrected total cell fluorescence (for
616 short: cell fluorescence). Two-way ANOVA, with Tukey's test, was used for multiple
617 comparisons within a dataset, with significance set to a *P* value < 0.05.

618

619 **eGFP purification**

620

621 For eGFP purification, *pET28-eGFP*⁴⁹ was transformed into *E. coli* Rosetta(DE3). eGFP
622 production was induced by adding 0.25 mM IPTG to LB bacterial culture for 4 h at 28 °C. eGFP
623 was purified from total cell lysate using Ni-NTA agarose beads in the extraction buffer (50 mM
624 Tris-Cl, pH 8.0, 250 mM NaCl, 5 % Glycerol, 0.1 mM PMSF). Before oocyte uptake test, buffer
625 was exchanged to ND96 bath saline using Amicon Ultra-4 Centrifugal Filter Units (Millipore
626 Sigma).

627

628 **Western blot analysis**

629

630 Five oocytes (15 mg) or 10 mg fresh plant leaf tissue was homogenized in 100 μ L of 2 \times SDS
631 sample buffer. After 10 min boiling, cell lysates were brief centrifuged and 10 μ L was loaded to
632 each lane of an SDS-PAGE gel. After separation, proteins were blotted onto a PVDF membrane.
633 AvrE, β -Actin, DspE, or PR1 was detected by anti-AvrE²⁰, anti-beta Actin [HRP] (GenScript),
634 anti-DspE⁵⁰, anti-PR1 antibody (a gift from Xinnian Dong), respectively.
635

636 **Liposome preparation and liposome dye release assay**

637
638 Soy Extract Lipids in chloroform were purchased from Avanti Polar Lipids and stored in glass
639 vials²⁴. The lipids dissolved in chloroform was evaporated under a stream of nitrogen until it
640 forms a thin lipid film and then dried in a vacuum desiccator chamber overnight. On the second
641 day, the lipid film was dissolved in a suspension buffer (HBS buffer: 20 mM HEPES, 300 mM
642 NaCl, pH 8.0) containing 50 mM 5(6)-carboxy-fluorescein (CF; Novabiochem[®]) or 50 mg/mL
643 Polysucrose 40-fluorescein isothiocyanate conjugate (FITC-polysucrose, MW of 30-50 kDa with
644 an estimated diameter of 80 \AA , Millipore Sigma). To solubilize lipids, the solution in the glass
645 vial was sonicated for 15 min first and then incubated in a 37 $^{\circ}$ C water bath for at least an hour.
646 Then the lipid solution was subjected to freeze-thaw cycles for 8 times, in which lipids were
647 frozen in liquid nitrogen for 5 min and then thawed in 37 $^{\circ}$ C water bath for 10 min, to reduce the
648 formation of multilamellar liposomes. To control the liposome size, liposomes were extruded
649 through a polycarbonate filter (200 nm, Whatman) 25 times using a mini extruder (Avanti Polar
650 Lipids) with Hamilton glass syringes. CF- or FITC-polysucrose-loaded liposomes were purified
651 by centrifugation at 41,000 rpm for 20 min in a TLA 100.3 rotor incorporating three sequential
652 wash steps. After the final wash, CF- or FITC-polysucrose-loaded liposomes were resuspended
653 in HBS buffer to make the final CF-loaded liposome concentration of 1 mg/mL and FITC-
654 polysucrose-loaded liposome concentration of 0.5 mg/mL⁵¹.
655

656 Release of the liposome contents was assessed using the self-quenching property and
657 fluorescence of CF and FITC-polysucrose. The HBS buffer composition in and outside the
658 liposome is the same (20mM HEPES, 300mM NaCl, pH8.0). Permeability induced by DspE was
659 evaluated by incubating 10 μ L DspE protein solution with 90 μ L carboxyfluorescein- or FITC-
660 polysucrose-loaded liposomes (0.25 μ g/ μ L). The fluorescence intensity was measured every 30 s
661 continuously for 2 hours after addition of the purified DspE protein (WT or mutant) to the
662 liposomes. Then 5 μ L of 20% Triton X-100 (Sigma-Aldrich) was added into the 100 μ L solution
663 to fully release the dye and its readings were measured for 20 min. The average reading of the
664 last three minutes was used for normalization (100% dye release). In the compound inhibition
665 assays, the buffer, DspE protein, and PAMAM G1 inhibitor, at a total volume of 10 μ L were first
666 mixed thoroughly with pipetting, then 90 μ L CF- or FITC-polysucrose-loaded liposomes were
667 added to make the total volume 100 μ L. The spectrofluorometric excitation and emission
668 parameters were set at the wavelengths of 485 and 510 nm for CF/FITC-polysucrose molecules.
669

670 The DspE protein stock solutions (2.5-25 μ M) contained 1 mM DTT. The liposome assays were
671 done at 0.05-0.15 μ M DspE concentrations with the final DTT concentration less than 0.02 mM.
672 The presence of DTT in the protein buffer did not affect the fluorescence of carboxyfluorescein
673 (Extended Data Fig. 5e). Similarly, the presence of PAMAN G1 at concentrations from 0.3 – 300
674 μ M did not affect the intrinsic fluorescence of carboxyfluorescein (Extended Data Fig. 7e).
675

676 **Bacterial media and plant growth**

677

678 Bacterial strains used are wild-type *Pseudomonas syringae* pv. *tomato* strain DC3000 and its
679 mutants: the ΔE mutant¹¹, ΔM mutant¹¹ and the ΔEM mutant¹¹ and wild-type *Erwinia amylovora*
680 strain Ea273 and its *dspE* mutant⁸. Bacteria were grown in low-salt Luria-Bertani (LB) medium
681 at 28°C. Antibiotic ampicillin, gentamicin, kanamycin, rifampicin or spectinomycin was added at
682 200, 10, 50, 100 or 50 $\mu\text{g}/\text{ml}$, respectively. *Arabidopsis thaliana* Col-0 and Col-0/*DEX::his-*
683 *avrE*²⁰ plants were grown in Redi-Earth potting soil (Sun Gro Horticulture) in air-circulating
684 growth chambers. Plants were grown under relative humidity set at 60%, temperature at 20°C,
685 light intensity at 100 $\mu\text{E}\cdot\text{m}^{-2}\cdot\text{s}$ and photoperiod at an 8 h light-16 h dark cycle. Four- to five-
686 week-old plants were used for bacterial disease assay. Immature pear fruits were gifts from
687 George Sundin at Michigan State University. *Nicotiana benthamiana* plants were grown in a
688 growth chamber with 12 hr light, 12 hr dark at 23°C day/21°C night, ~55% humidity and ~100
689 $\mu\text{mol}/\text{m}^2/\text{s}$ light intensity. Four- to six-week-old plants were used for transient expression assay.

690

691 **Bacterial disease assays**

692

693 Disease assays with immature pear fruits were performed as previously reported⁸. Pears were
694 surface-sterilized with 10% bleach for 5 min and rinsed in sterile water twice. Then, a small hole
695 was made in the pear using a 200 μL tip. Ten μL of 10³ CFU/mL Ea273 or the *dspE* mutant was
696 loaded into the hole. Inoculated pears were placed on a wet paper towel in a sterile box to
697 maintain high humidity at 28°C for 10 days. Disease assays with *Arabidopsis* plants were
698 performed as follows. *Arabidopsis* plant leaves were infiltrated with *Pst* DC3000, ΔE , ΔM or
699 ΔEM at 10⁶ CFU/ml with a needle-less syringe. After visible water soaking disappeared (within
700 1 h), plants were kept under high humidity (~99%) at 23°C. Bacteria population in leaves was
701 determined at day 3 post infiltration. Detached leaves were surface-sterilized in 75% ethanol for
702 30 s and rinsed in sterile water twice. Then, leaf discs (1 cm^2 in diameter) were punched out and
703 ground in 100 μL sterile water. Ten μL of each 10-fold serial diluted leaf extract was plated on
704 LB rifampicin and kept at 28°C for 24 h. Colony forming units (CFUs) were counted under
705 microscope before colonies started to coalesce and analyzed by GraphPad Prism software. Two-
706 way ANOVA with Tukey's test was used for multiple comparisons within a data set, with
707 significance set to a *P* value < 0.05. For inhibition assays, 50 nM PAMAM G1 was added to
708 bacterial suspension and co-inoculated into plants.

709

710 **AvrE/DspE sequence alignments**

711 Sequences of *E. amylovora* DspE, *P. carotovorum* DspE, *Pst* DC3000 AvrE and *P. stewartia*
712 WtsE are aligned using Clustal Omega⁵². Sequences are entries from uniprot
713 (<https://www.uniprot.org>) as listed below:

714

715 *Erwinia amylovora* Ea321 DspE: <https://www.uniprot.org/uniprotkb/O54581/entry>

716 *Pectobacterium carotovorum* Er18 DspE: <https://www.uniprot.org/uniprotkb/D5GSK5/entry>

717 *Pseudomonas syringae* pv. *tomato* DC3000 AvrE:

718 <https://www.uniprot.org/uniprotkb/Q887C9/entry>

719 *Pantoea stewartii* subsp. *stewartii* SS104 WtsE:

720 <https://www.uniprot.org/uniprotkb/Q9FCY7/entry>

721

722 **Transient expression of DspE in *Nicotiana benthamiana***

723

724 *dspE* and *dspE* mutant ORFs were PCR-amplified with *dspE* ORF forward primer
725 (TTGGGCCCATGGAATTAAAATCACTGGGAAGT, underline indicates *Apa*I site) and
726 *dspE* ORF reverse primer (TTTACTAGTTAGCTTCATTCCAGCCCTTC, underline
727 indicates *Spe*I site) and *pGH-dspE* or *pGH-dspE* mutant plasmids as template. PCR-amplified
728 *dspE* and *dspE* mutants ORF (*Apa*I-*Spe*I fragment) were cloned into the binary vector *pER8*⁵³ to
729 create *pER-dspE* and *pER-dspE* mutant constructs. All constructs were transformed into
730 *Agrobacterium tumefaciens* GV3101 for transient expression assay. 1x10⁸ CFU/mL of *A.*
731 *tumefaciens* GV3101 containing *pER8* empty vector, *pER-dspE* or *pER-dspE* mutant were
732 syringe-inoculated into leaves of *N. benthamiana* and kept at 22°C for 24 h before leaves were
733 painted with 90 µM estradiol. Eight hours later, leaf samples were collected for western blot.
734 Water-soaking/necrosis symptoms were recorded at 8 h and 24 h after estradiol treatment under
735 high humidity (>95%).

736

737 **Arabidopsis leaf protoplast swelling assay**

738

739 Leaf mesophyll protoplasts were isolated from 5 week-old Arabidopsis Col-0 and transgenic
740 Col-0/*DEX::his-avrE*²⁰ following the Tape Sandwich method⁵⁴. For swelling test, isolated
741 protoplasts were incubated in protoplast isolation medium (MMg), which contains 400 mM
742 mannitol (isosmotic), or in MMg containing 320 mM mannitol (hypoosmotic) for 1 h. Protoplast
743 images were taken using Leica DM500 microscope with ICC50W camera. Protoplast volumes
744 were analyzed with Image J software.

745

746 **Callose Staining**

747

748 Callose staining was performed as described previously¹³. Callose images were taken using a
749 Zeiss Axiophot D-7082 Photomicroscope. The number of callose depositions was determined
750 with Quantity One Colony Counting software (Bio-Rad).

751

752 **Statistical analysis**

753 Experimental sample size was chosen based on previously published literature to be sufficient
754 for statistical analyses. Three to four plants (biological replicates) per treatment and/or per
755 genotype were analysed per individual experiment. Two or more independent experiments were
756 performed for all assays. The following statistical analyses were employed: (1) one-way analysis
757 of variance (ANOVA) was used for multi-sample experiments with one variable, followed by
758 Tukey's honest significant difference (HSD) test for multi-comparisons; (2) two-way ANOVA
759 was employed for multi-variable analyses, followed either by Tukey's HSD test for multi-
760 comparisons or by Dunnett's test for comparison against a common control treatment; (3) two-
761 way repeated measure ANOVA was used for repeated measures over same experimental unit,
762 followed by Dunnett's test for comparison against a common control treatment; and (4)
763 Student's t-test was used to compare two sets of data. If normality of the residues and equality of
764 variances test failed, non-parametric alternatives ANOVA on Ranks or Mann-Whitney Rank
765 Sum Test was used instead. All statistical tests are described in the figure legends, methodology

766 and source data files. Graphic plots were generated by SigmaPlot 12.5 and show mean \pm SEM
767 and individual data points.

768

769 **Graphic design**

770 Images and cartoons were created or assembled in CorelDRAW v.22 (Corel Corp. Ottawa,
771 Canada). All graphics were first plotted on SigmaPlot 12.5 (Systat Software Inc. San Jose, CA)
772 and then further edited for color and arrangement in the figure panels in CorelDRAW v.22
773 (Corel Corp. Ottawa, Canada).

774

775 **METHODS REFERENCES**

776

777 40. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for
778 rapid unsupervised cryo-EM structure determination. *Nat. Methods* **14**, 290-296 (2017)

779

780 41. Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in
781 cryo-electron micrographs. *Nat Methods* **16**, 1153-1160 (2019)

782

783 42. Robertson, G. A., Warmke, J. M., & Ganetzky, B. Potassium currents expressed from
784 *Drosophila* and mouse eag cDNAs in *Xenopus* oocytes. *Neuropharmacol* **35**, 841-50 (1996)

785

786 43. Tan, J. et al. Identification of amino acid residues in the insect sodium channel critical for
787 pyrethroid binding. *Mol. Pharmacol.* **67**, 513-22 (2005)

788

789 44. Yu, Y. et al. Molecular mechanism of the assembly of an acid-sensing receptor ion channel
790 complex. *Nature Commun* **3**, 1252 (2012).

791

792 45. Byrt, C.S. et al. Non \square selective cation channel activity of aquaporin AtPIP2;1 regulated by
793 Ca^{2+} and pH. *Plant, Cell & Environ.* **40**, 802-815 (2017)

794

795 46. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane
796 channel. *Pro. Nat. Acad. Sci.* **100**, 13940-13945 (2003)

797

798 47. Kuruma, A. & Hartzell, H. C. Dynamics of calcium regulation of chloride currents in
Xenopus oocytes. *Am J Physiol.* **276**, C161-175 (1999)

799

800 48. Schindelin, J. et al. (2012) Fiji: an open-source platform for biological-image analysis. *Nat.*
Methods **9**, 676-82 (2012)

801

802 49. Huang, S., Zhu, S., Kumar, P. & MacMicking, J. D. A phase-separated nuclear GBPL circuit
803 controls immunity in plants. *Nature* **594**, 424-429 (2021)

804

805 50. Hu, W. et al. The Hrp pilus and extracellular proteins of *Erwinia amylovora*. *Acta Horti.* **489**,
806 315-319 (1999)

807

808 51. StGelais C. et al. Inhibition of hepatitis C virus P7 membrane channels in a liposome-based
809 assay system. *Antiviral Research.* **76**, 48–58 (2007)

810

811 52. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence
812 alignments using Clustal Omega. *Mol. Syst. Biol.* **7**, 539 (2011)

813

814 53. Zuo, J., Niu, Q. W. & Chua, N. An estrogen receptor-based transactivator XVE mediates
815 highly inducible gene expression in transgenic plants. *Plant J.* **24**, 265-273 (2000)

816

817 54. Wu, F. H. et al. Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation
818 method. *Plant Methods* **5**, 16 (2009)

819

820 **DATA AVAILABILITY:** Data needed to evaluate this paper are available in the main text and
821 Supplementary Information. Uncropped gel and blot source data are provided in Supplementary
822 Figures 1–3. Source data (with statistical analyses) for Figures 1–4 and Extended Data Figs. 1–
823 10 are provided with this paper. Gene and protein sequence data were obtained from uniprot
824 (<https://www.uniprot.org>).

825

826 **CODE AVAILABILITY:** No customized code was generated in this study. All bioinformatic
827 tools and software used in this study are cited in the text.

828

829 **ACKNOWLEDGEMENTS:** We sincerely thank the following colleagues for sharing
830 biological materials: Immature pear fruits were gifts from Dr. George Sundin at Michigan State
831 University. The Δ E mutant, Δ M mutant and the Δ EM mutant of *Pseudomonas syringae* pv.
832 tomato DC3000 were from Dr. Alan Collmer at Cornell University. *Erwinia amylovora* strain
833 273 and its *dspE* mutant from the late Prof. Steven Beer at Cornell University. We thank Duke
834 Phytotron for technical assistance. This work was supported by NIAID 1R01AI155441 (S.Y.H.),
835 Duke Science and Technology Initiative (K.D. and S.Y.H.), and NIGMS GM145026 (P.Z.).
836 S.Y.H. is an investigator at the Howard Hughes Medical Institute.

837

838 **AUTHOR CONTRIBUTIONS:** K.N., P.Z. and S.Y.H. conceived the project and designed the
839 initial experiments. K.N., F.A., J.C. and P.Z. performed most of the experiments. F.A. and K.N.
840 were involved in oocyte swelling and fluorescence dye uptake assays. P.Z. and J.C. were
841 involved in model building and liposome permeability assay. F.A. was involved in oocyte TEVC
842 assays. K.D., P.Z. and S.Y.H. supervised the project team. K.N., F.A., J.C., K.D., P.Z. and
843 S.Y.H. wrote the manuscript.

844

845 **COMPETING INTERESTS:** The authors declare no competing interests.

846

847 **ADDITIONAL INFORMATION:** Correspondence and requests for materials should be
848 addressed to Sheng Yang He (Email: shengyang.he@duke.edu), Pei Zhou (Email:
849 pei.zhou@duke.edu) and Ke Dong (ke.dong@duke.edu). Reprints and permissions information
850 is available at www.nature.com/reprints.

851

852 **FIGURES AND LEGENDS**

853
854 **Figure 1. Model and cryo-EM images of *E. amylovora* DspE.** **a**, 3D model of *E. amylovora*
855 DspE generated by AlphaFold2 using MMseqs2. DspE (residue 298-1838) is shown in the
856 cartoon model in rainbow colour, with N-terminus coloured in blue and C-terminus coloured in
857 red. **b**, Cryo-EM 2D class averages of DspE, revealing a circular arrangement of domains around
858 a pore. **c**, Surface representation of DspE. **d**, Sliced view of DspE. In panels c and d, residues
859 are coloured based on their hydrophobicity scale. The length of the proposed membrane-spanning β -
860 barrel stem is labeled. Orange and purple asterisks mark the approximate locations of the
861 L1776/L1777/L1778 hydrophobic cluster and K1399/K1401 basic cluster, respectively.

862
863 **Figure 2. DspE and AvrE activities in *Xenopus* oocytes and liposome.** **a**, Schematic of the
864 three oocyte assays. Left: two-electrode voltage clamp (TEVC) to test ion conductance. Middle:
865 Baseline and induced swelling/burst assay to test water conductance. Right: Dye uptake to test
866 conductance to molecules larger than single ions. **b,c**, DspE and AvrE induce ion currents in
867 TEVC assay. Mean \pm SEM (n=5) current values at different test pulses from oocytes expressing
868 DspE (0.01 ng cRNA/oocyte) or AvrE (0.1 ng cRNA/oocyte) were recorded. **d**, DspE (2 ng) and
869 AvrE (20 ng) induced fast oocyte swelling/burst at 24 h after cRNA injection when placed in a
870 low osmolarity (40 mOsm) solution. Mean \pm SEM (n=5) values of increased oocyte volume in
871 relation to its initial volume. **e,f**, Fluorescein/eGFP entry assays. Oocytes injected with 2 ng *dspE*
872 (e) or 20 ng *avrE* (f) cRNA, or injected with water were incubated for 20 h in bath saline with or
873 without fluorescein or eGFP. Values of fluorescence intensity were subtracted from the
874 background and are present as mean \pm SEM (n=5) corrected “total cell fluorescence”. **g**,
875 Schematic illustration of DspE-dependent release of carboxylfluorescein (CF) encapsulated
876 within a liposome. **h**, Fluorescence increased over time for CF-loaded liposome after addition of
877 DspE (blue) or buffer (grey). The result is a representative of 3 experimental replicates. Two-
878 way ANOVA (b,c,e,f) or two-way repeated measure ANOVA (d) values and exact P-values for
879 all comparisons are detailed in the Source Data files.

880
881 **Figure 3. Inhibition of DspE and AvrE channels in oocytes by polyamidoamine (PAMAM)**
882 **dendrimers G0 and G1.** Assay flowchart followed Fig. 1a, except with inhibitors added to the
883 bath saline. **a,b**, DspE- and AvrE-dependent currents were inhibited by G1. Solid lines represent
884 fit values across the entire voltage range, with dashed lines representing the lower and upper
885 95% confidence interval of a quadratic polynomial regression for each treatment after subtracting
886 control values. **c,d**, Baseline swelling of oocytes injected with 1 ng *dspE* (c) or 20 ng *avrE* (d)
887 cRNA was reduced in the presence of G1. Data shows mean \pm SEM (n=5) increase in volume
888 from the start point (at the time of injection) after subtracting control values. **e**, Inhibition of
889 fluorescein uptake. G1 reduced fluorescein entry into oocytes expressing DspE as evaluated 6 h
890 after injection with 1 ng *dspE*/oocyte. Data is presented as in Fig. 2e. **f**, DspE-mediated dye
891 release from liposome in the presence of increasing concentrations of G1. The result is a
892 representative of 3 experimental replicates. **g**, Dose-dependent inhibition of the liposome dye
893 release. IC₅₀: half maximal inhibitor concentration. Data shows mean \pm SEM (n=3 for 0.3, 1, 3,
894 and 300 μ M G1; n=4 for 10, 30, and 100 μ M G1). Experiments were independently performed
895 two times for a,b,e, four times for c,d, and seven times for f,g. Two-way ANOVA (e) or two-way
896 repeated measure ANOVA (c,d) values and exact P-values for all comparisons are detailed in the
897 Source Data files.

898

899 **Figure 4: Effect of PAMAM G1 on bacterial infections.** **a,b**, PAMAM G1 inhibits
900 *Pseudomonas syringae* pv. *tomato* (*Pst*) DC3000 multiplication in an AvrE-dependent manner.
901 1×10^6 CFU/mL of *Pst* DC3000, the *avrE hopM1* double mutant (ΔEM), the *avrE* single mutant
902 (ΔE) or the *hopM1* single mutant (ΔM) were syringe-inoculated into leaves of *Arabidopsis* wild-
903 type Col-0 plants, with or without 50 nM PAMAM G1. Bacteria populations (mean \pm SEM; n=3)
904 (a) in leaves were determined at day 3 post infiltration. Disease symptom picture (b) was taken at
905 day 4 post infiltration. **c**, PAMAM G1 does not induce PR1 protein expression in *Arabidopsis*.
906 *Arabidopsis* Col-0 leaves were syringe-infiltrated with 10 μ M PAMAM G1. Plants were kept
907 under high humidity (>95%) for 3 days at 23°C. PR1 protein in leaves was detected by an α -PR1
908 polyclonal antibody. 1 μ M flg22 and 100 μ M BTH are inducers of PR1 expression. Gel image
909 cropping is shown in Supplementary Information Fig. 2. **d**, PAMAM G1 inhibits fire blight
910 disease by *Erwinia amylovora* Ea273. Immature pear fruits were spot-inoculated (indicated by
911 arrows) with 10 μ L of 1×10^3 CFU/mL of Ea273 or the *dspE* mutant, with or without 10 μ M
912 PAMAM G1. Inoculated pears were placed on a wet paper towel in sterile box and incubate at
913 28°C for 10 days. Diseased pears show a dark, necrotic appearance. Experiments were performed
914 three times with similar results. Two-way ANOVA (a) values and exact P-values for all
915 comparisons are detailed in the Source Data files.

916

917 **EXTENDED DATA AND LEGENDS**

918

919 **Extended Data Table 1. Effects of DspE/AvrE expression on oocyte membrane resting potential.**

Evaluation time (h after injection)	Treatment	Oocyte resting potential (mV)	
		mean (n=5)	SEM
24	H ₂ O	-22.04	0.776
	DspE 2 ng/cell	-0.18	0.442
15	H ₂ O	-23.46	1.655
	DspE 0.01 ng/cell	-23.22	0.198
24	H ₂ O	-23.24	1.013
	AvrE 20 ng/cell	-0.1	0.325
15	H ₂ O	-16.72	0.527
	AvrE 0.1 ng/cell	-16.6	0.394

920 Experiments were independently performed three times with similar results. Exact P-values for all
921 comparisons are detailed in the Source Data files.

922

923 **Extended Data Figure 1. AlphaFold2 models of the AvrE/DspE-family effector proteins.**

924 The top-ranked models, predicted local distance difference test (pLDDT), and predicted aligned
925 error (PAE) of *E. amylovora* DspE, *P. carotovorum* DspE, *P. syringae* pv. tomato AvrE, and *P.*
926 *stewartii* WtsE are shown in panels **a**, **b**, **c**, and **d**, respectively. The models are predicted by
927 AlphaFold2 using MMseqs2 (ColabFold). For each protein, the N-terminal disordered loop with
928 low pLDDT scores is not shown, while the remaining residues are shown in Ca traces and
929 colored in rainbow, with the N-terminus in blue and C-terminus in red.

930

931 **Extended Data Figure 2. Sequence alignment of representative AvrE/DspE-family**
932 **effectors.** Sequences of *E. amylovora* DspE, *P. carotovorum* DspE, *Pst* DC3000 AvrE, and *P.*
933 *stewartii* WtsE are aligned using Clustal Omega⁴⁴. Domain regions are indicated above the
934 aligned sequences. Sequence identities between different protein pairs are labeled. The β -barrel
935 is formed with multiple helices and long loops inserted within the primary sequence of the β -
936 barrel. In *E. amylovora* DspE, the β -barrel starts from a small β -hairpin from K932-E956, which
937 is followed by a large insertion of multiple helices (including a vertical helix bundle) from E957-
938 D1276. The main β -barrel follows from S1277-G1813, though it is disrupted by several insertion
939 loops and helices, including T1403-E1430 (a helix-turn-helix motif), A1567-H1647 (a horizontal
940 helix bundle), N1662-P1712 (an insertion loop followed by a helix-turn-helix motif), and K1723-
941 N1753 (two antiparallel helices). The β -barrel is further appended with a C-terminal helix and an
942 extended loop (G1814-S1838). Mutated outward-facing residues (L1776, L1777, and L1778)
943 and inward-facing residues (K1399 and K1401) of the β -barrel are labeled in pink and blue,
944 respectively.

945

946 **Extended Data Figure 3. Characterization of DspE induced whole-cell currents. a,b,** DspE-
947 induced currents were not inhibited by niflumic acid or fipronil. Current values (mean \pm SEM;
948 n=5) at different test pulses from oocytes expressing DspE proteins were recorded once in ND96
949 recording buffer at 15 h after injection with 0.01 ng cRNA, and a second time after 10 min of
950 incubation with 100 μ M of each inhibitor. **c**, Cation replacement experiment. After 15 h of
951 incubation, cells were recorded in normal ND96 buffer, and then in a new recording solution
952 where sodium in ND96 was replaced with another cation (see details in the Methods section).

953 The data show mean \pm SEM (n=5) values at each test pulse for each cation after subtracting
954 currents from control cells. **d,e**, Anion replacement experiment. Same as presented in c, but with
955 chloride in ND96 being replaced by other elementary anions (d) the organic anion MES⁻ (e). In
956 e, either 100% or only 50% of the Cl⁻ was replaced by MES⁻. Experiments were independently
957 performed three (a,c,e) or two (b,d) times with similar results. Two-way ANOVA values and
958 exact P-values for all comparisons are detailed in the Source Data files.
959

960 **Extended Data Figure 4. Immunoblot detection of AvrE and DspE proteins expressed in**
961 **oocytes and in tobacco leaves and elution profile of MBP-DspE and MBP-DspE^{Δβ-barrel}**
962 **proteins. a**, Oocyte surface biotinylation assay of DspE. Two nanograms of wild-type or mutant
963 *dspE* cRNA was injected into oocytes, which were incubated in ND96 media at 18°C for 15 h
964 before being subjected to surface protein biotinylation assay (see Methods). Anti-β-Actin
965 antibody detect β-Actin, which is a cytoplasmic protein, serving as a negative control. **b,c,e,f**,
966 Detection of AvrE, DspE and/or mutant DspE proteins expressed in oocytes. Oocytes injected
967 with 1 ng (unless otherwise noted in the gel lane label) *avrE*, *dspE* or mutant *dspE* cRNA or H₂O
968 (control) were incubated in ND96 media at 18°C for 19 h before being subjected to SDS-PAGE
969 and immunoblot analysis. In **c**, oocytes were incubated in absence or in presence of 5 or 10 mM
970 of the inhibitor PAMAM G1. **d**, Detection of DspE proteins expressed in tobacco leaves. 1×10⁸
971 CFU/mL of *Agrobacterium tumefaciens* GV3101 containing *pER8* empty vector, *pER8-dspE* or
972 *pER8-dspE* mutants were syringe-inoculated into leaves of *Nicotiana benthamiana* and kept at
973 22°C for 24 h before leaves were painted with 90 μM estradiol to induce protein expression for 8
974 h before subjected to SDS-PAGE and immunoblotting. Asterisks in the *pER8* and DspE^{WT} lanes
975 indicate a faint nonspecific protein band. Because active DspE expressed much more poorly in
976 plant cells than mutant DspE proteins, mutant DspE samples were diluted 20 times with 2×SDS
977 sample buffer (See Supplementary Figure 1d). Experiments were independently performed two
978 times. See Supplementary Figure 1 for image cropping. **g,h**, Purified WT MBP-DspE (g) or
979 MBP-DspE^{Δβ-barrel} (h) was eluted on a Suprose 6 increase 10/300 GL column and was analyzed
980 on a SDS-PAGE gel. FPLC traces and gel images in g and h are representative of 3 experimental
981 replicates. See Supplementary Figure 3 for image cropping.
982

983 **Extended Data Figure 5. DspE activities in *Xenopus* oocytes, *Arabidopsis* and liposome. a**,
984 DspE and AvrE induced a baseline swelling of many oocytes in 200 mOsm bath saline. Oocytes
985 were imaged and measured at 24 h after 2 ng (*dspE*) or 20 ng (*avrE*) cRNA injection. Plot shows
986 mean \pm SEM (n=10) and individual replicate values for the increased oocyte volume in relation
987 to its initial volume. See Extended Data Figure 4e,f for immunoblotting of DspE and AvrE
988 proteins expressing in oocytes. **b**, Five-week-old *Arabidopsis* wild type Col-0 and transgenic
989 Col-0/*DEX::his-avrE* plants (basal expression without dexamethazone induction). **c**, Changes in
990 protoplast volume (mean \pm SEM; n=24) when isolated protoplasts were incubated in protoplast
991 incubation buffer containing 320 mM (low osmolarity) mannitol for 1 h compared to protoplast
992 incubation buffer containing normal 400 mM mannitol for 1 h before image capture and volume
993 analysis with Image J software. **d**, Liposome dye release assay using fluorescein isothiocyanate
994 conjugated polysucrose 40 (FITC-polysucrose 40) and carboxyfluorescein (CF). **e**, Normalized
995 liposome dye release (mean \pm SEM; n=3) after addition of triton. Raw fluorescence readings
996 were normalized to the buffer control samples. Experiments presented in this figure were
997 independently performed two times. One-way ANOVA on Ranks (a,e) or two-tailed student's *t*-
998 test (c) values and exact P-values for all comparisons are detailed in the Source Data files.

999

1000 **Extended Data Figure 6. Functional analysis of mutant DspE proteins in Xenopus oocytes**
1001 **and tobacco.** **a**, Effect of mutations on DspE-induced currents in oocytes. Mean \pm SEM (n=5)
1002 current values at different test pulses from oocytes expressing wild-type or mutant DspE proteins
1003 at 15 h after injection with 0.01 or 0.1 ng cRNA. Note: At 0.01 cRNA injection, all mutant DspE
1004 proteins did not induce currents. Next, 10-fold increase in mutant *dspE* cRNA (i.e., 0.1 ng) was
1005 injected into oocytes, revealing current induction by DspE^{K1399E/K1401E}, suggesting the
1006 K1399E/K1401E double mutations only partially affect ion conductance, consistent with results
1007 in panels b and c. **b**, Effect of mutations on DspE-induced baseline swelling in oocytes. Plots
1008 represent mean \pm SEM (n=6) and individual values of increased oocyte volume in relation to its
1009 initial volume 15 h after 1 ng cRNA injection. **c**, Water-soaking assay in tobacco leaves. 1x10⁸
1010 CFU/mL of *Agrobacterium tumefaciens* GV3101 containing *pER8* empty vector, *pER-dspE*,
1011 *pER-dspE* mutants were syringe-inoculated into leaves of *Nicotiana benthamiana* leaves
1012 (infiltration areas circled) and kept at 22°C for 24 h before leaves were painted with 90 μ M
1013 estradiol to induce DspE expression. Water-soaking symptom (dark-coloured appearance) was
1014 assessed at 8 h and 24 h after estradiol induction, showing a complete loss of water-soaking
1015 induction by DspE^{β-barrel} and DspE^{L1776E/L1777E/L1778E}, but only delayed water-soaking by
1016 DspE^{K1399E/K1401E}. Experiments were independently performed two times. Two- (a) or one- (b)
1017 way ANOVA values and exact P-values for all comparisons are detailed in the Source Data files.
1018

1019 **Extended Data Figure 7. Effects of PAMAM inhibitors on DspE activities in oocytes and**
1020 **liposome and on plant phenotypes and bacterial growth.** **a**, Inhibition of ion currents in
1021 oocytes. DspE-dependent currents were inhibited by G0 in a dose-dependent manner across all
1022 test pulses. Solid lines represent fit values across the entire voltage range, with dashed lines
1023 representing the lower and upper 95% confidence interval of a quadratic polynomial regression
1024 for each treatment after subtracting control values (n=5). **b,c**, PAMAM G1 does not affect plant
1025 growth or seed production of *Arabidopsis Col-0* plant. Five-week-old Col-0 plants were sprayed
1026 with 10 μ M PAMAM G1 every week until 12 weeks old. **b**, Picture of 8-week-old plants is
1027 shown here as an example. **c**, Seeds were collected at 15 weeks old. No obvious difference in
1028 plant appearance or seed production was observed. Data shown as mean \pm SEM (n=3). **d**,
1029 PAMAM G1 does not impact bacteria multiplication *in vitro* (in LB agar medium). Ea273 or *Pst*
1030 DC3000 cells in the logarithmic growth phase were spotted, at a 10-fold serial dilution (from left
1031 to right), on low-salt LB agar plates with or without 50 μ M PAMAM G1. Plates were kept at
1032 28°C for 2 days to visualize colonies. **e**, Normalized liposome dye release after addition of triton.
1033 Fluorescence readings of groups with increasing concentrations of G1 were normalized to the no
1034 compound controls and are shown as mean \pm SEM (n=6 for 0.3, 1, 3, and 300 μ M G1; n=8 for
1035 10, 30, and 100 μ M G1). Experiments were performed two (a) or three (b,c,d,e) times with
1036 similar results. Two-tailed student's *t*-test (c), One-way ANOVA on Ranks (e), and regression (a)
1037 values are detailed in the Source Data files.
1038

1039 **Extended Data Figure 8: A working model for the molecular actions of AvrE/DspE-family**
1040 **effectors in plants.** AvrE/DspE-family effectors act primarily as a novel class of water/solute-
1041 permeable channels dedicated to creating osmotic/water potential perturbation and a
1042 water/nutrient-rich apoplast, in which bacteria multiply within the infected plant tissues.
1043 AvrE/DspE-family effectors can additionally engage host proteins, including plant protein
1044 phosphatase PP2A subunits, type one protein phosphatases (TOPPs) and receptor-like kinases

1045 (RLKs), possibly to modulate AvrE/DspE-family channel properties or to optimize the
1046 pathogenic outcomes of AvrE/DspE-family channel activities, including water soaking, host cell
1047 death and defence suppression.

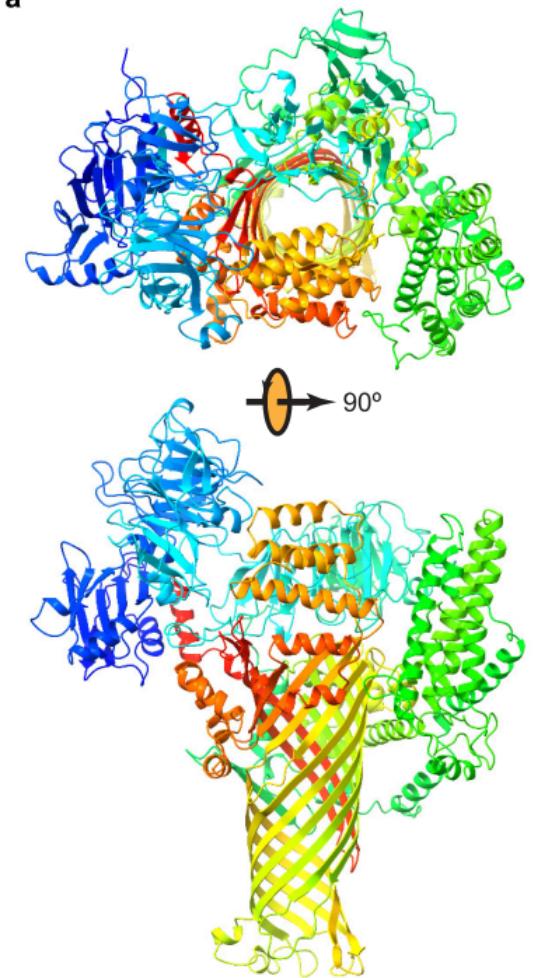
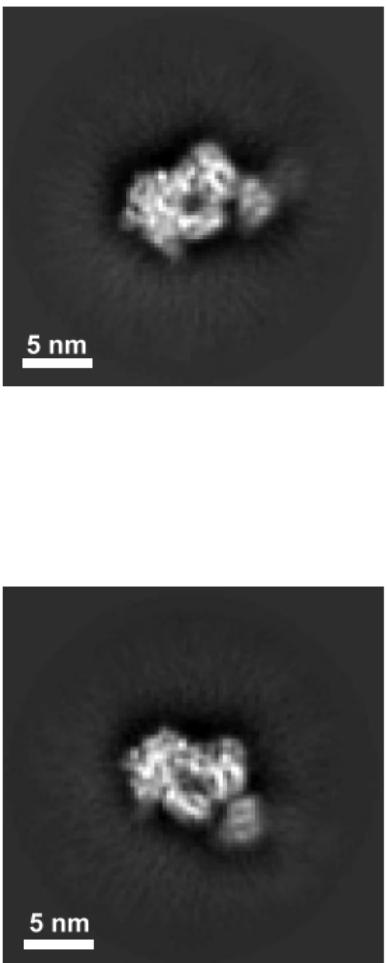
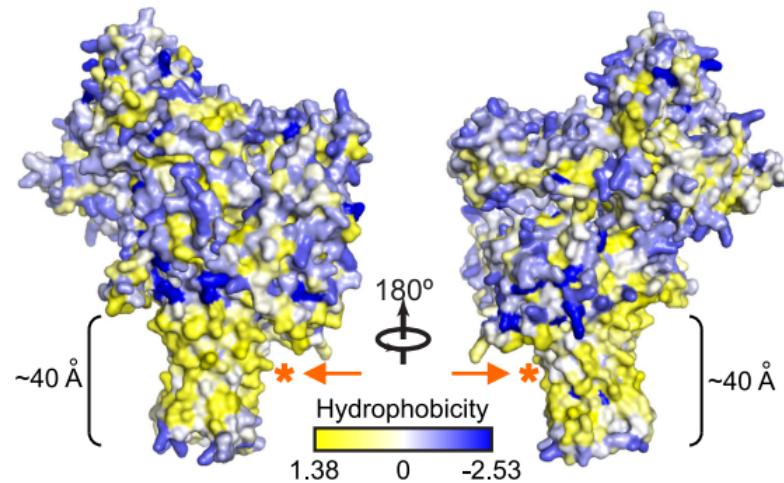
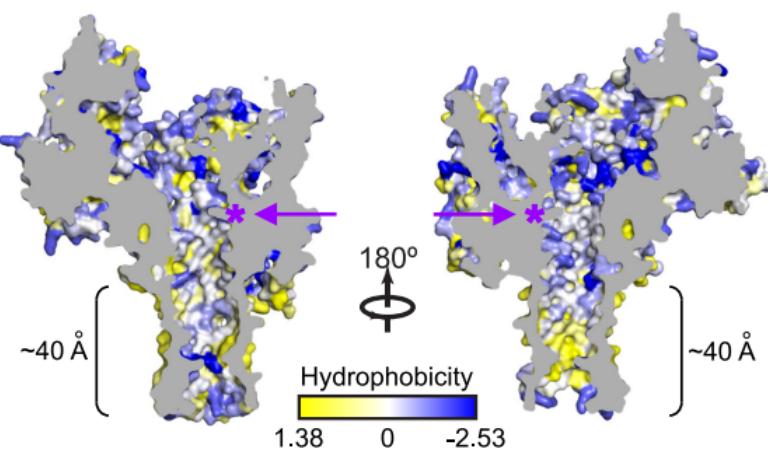
1048

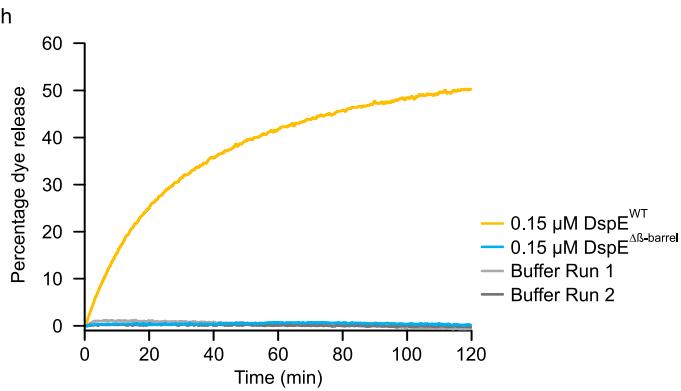
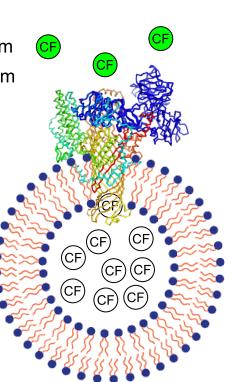
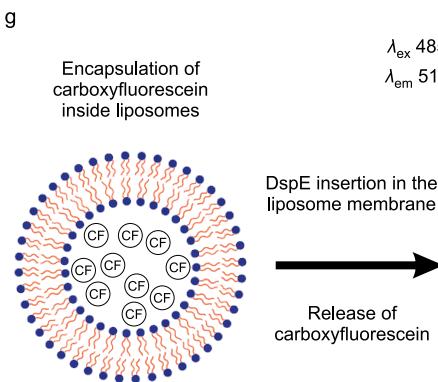
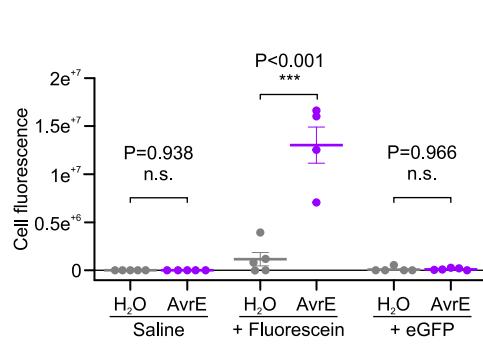
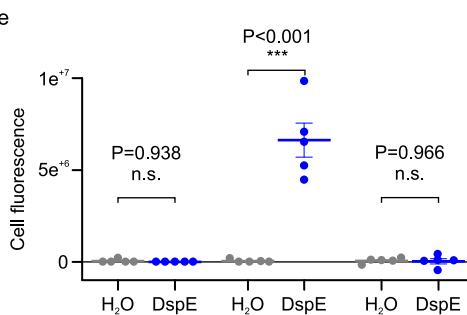
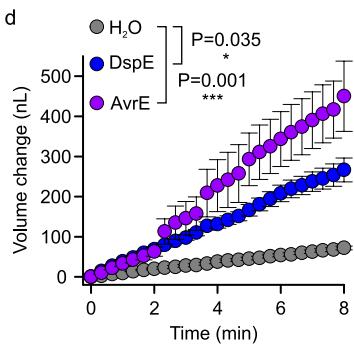
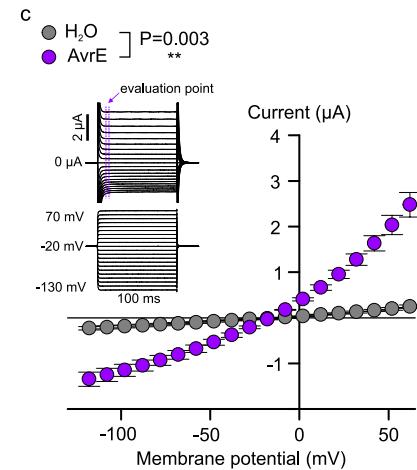
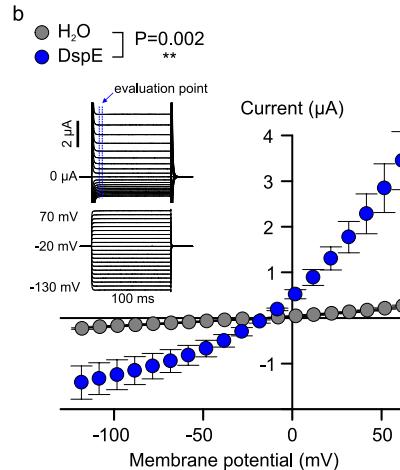
1049 **Extended Data Figure 9. Water infiltration is sufficient to dampen callose deposition in**
1050 **Arabidopsis leaves.** *Arabidopsis* Col-0 leaves were syringe-infiltrated with 1 μ M flg22 and
1051 immediately covered by a clear plastic dome to maintain infiltrated leaves water-soaked (“water-
1052 soaked”; spotty, darker appearance) or air-dried to let infiltrated leaves returned to pre-infiltration
1053 appearance (~1 h) and then covered by a clear plastic dome (“no water soaked”; uniform, lighter
1054 appearance). **a**, Leaf pictures and callose (bright dots) images were taken at 8 h post flg22
1055 infiltration. **b**, Quantification of callose deposition (mean \pm SEM; n=18). Experiments were
1056 performed three times with similar results. Two-tailed student’s *t*-test values are detailed in the
1057 Source Data files.

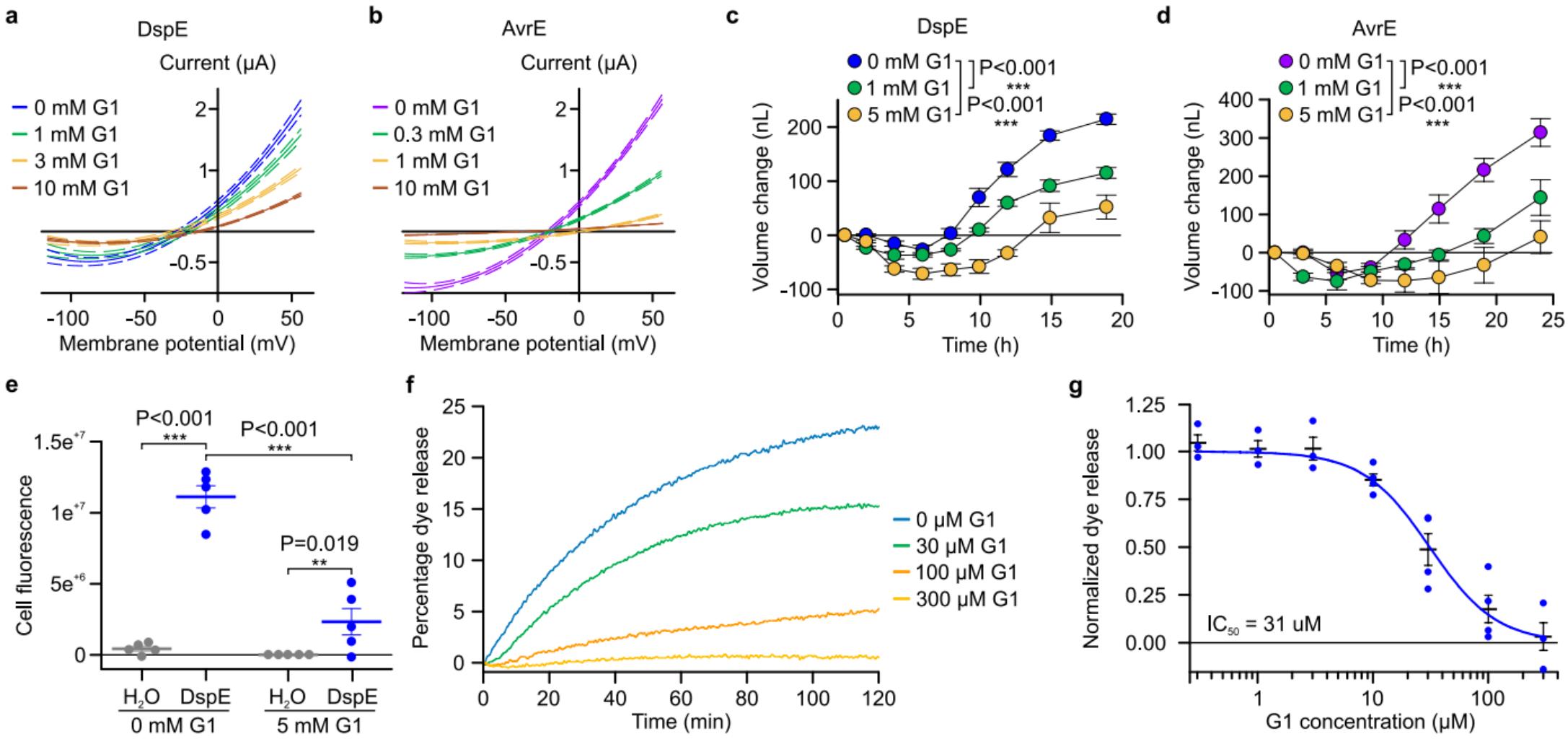
1058

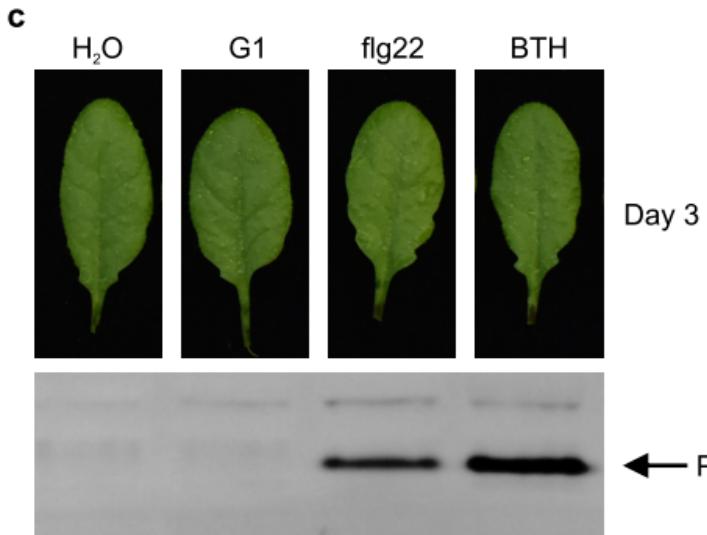
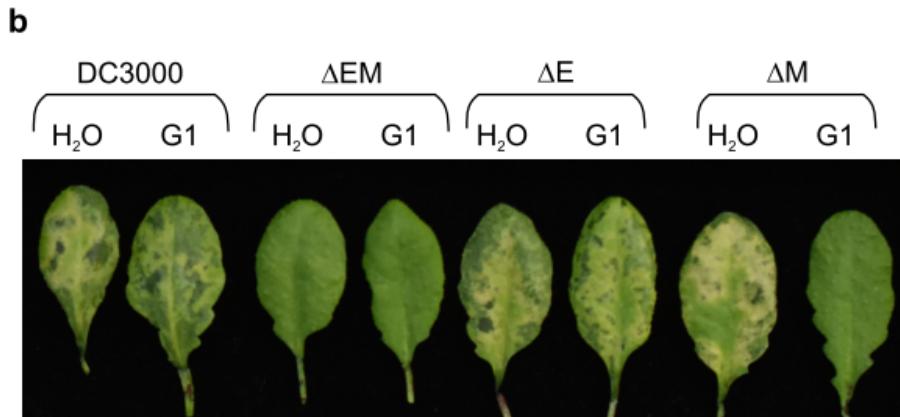
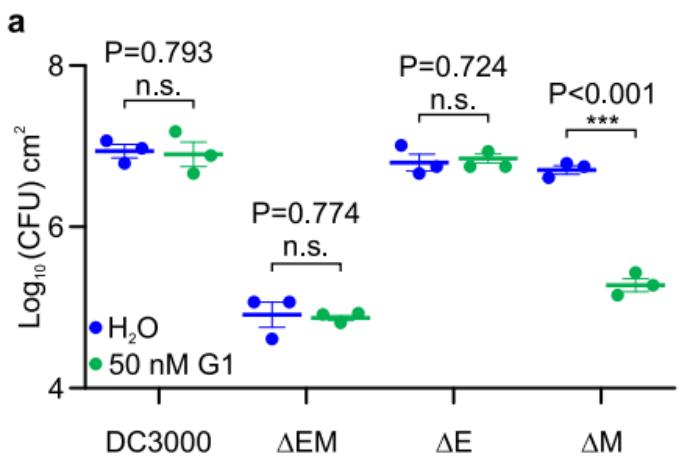
1059

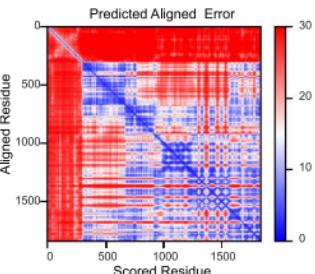
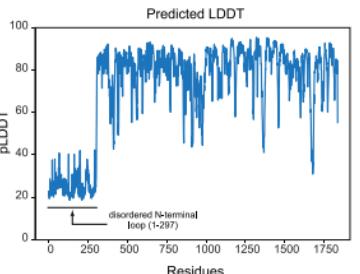
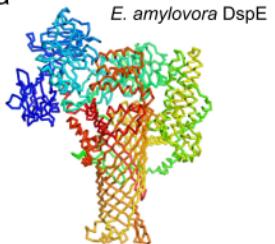
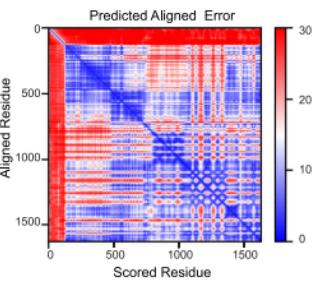
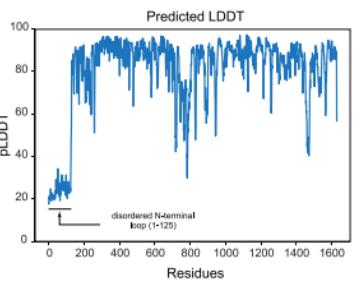
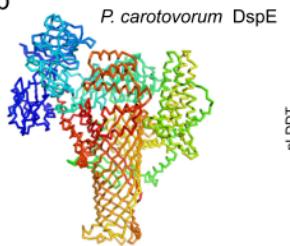
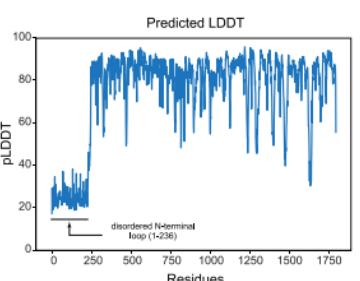
1060 **Supplementary Figure 1.** Whole gel images for Extended Data Fig. 4a-f. Dotted boxes
1061 show image cropping.

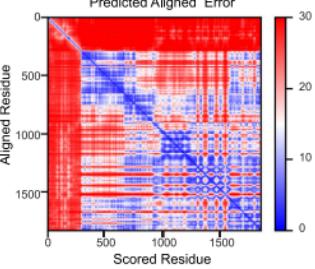
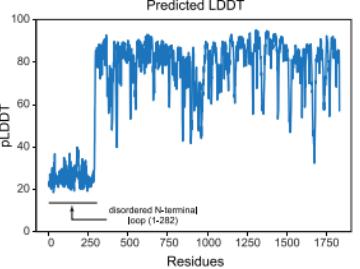
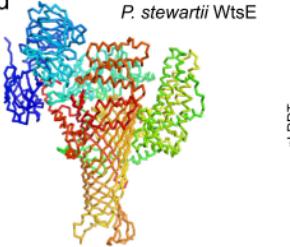




1062
1063 **Supplementary Figure 2.** Whole gel images for Fig. 4c. Dotted boxes show image cropping.









1064
1065 **Supplementary Figure 3.** Whole gel images for Extended Data Fig. 4g,h. Dotted boxes show
1066 image cropping.


1067
1068 **Supplementary Video 1. AvrE rapid swelling and burst assay in *Xenopus* oocytes.** After 20
1069 ng of cRNA was injected and time was allowed for the protein expression (24 h), oocytes were
1070 moved from a 200 mOsm saline solution to a 40 mOsm saline solution (5× dilution in ultrapure
1071 H₂O). Note that AvrE-expressing oocytes further increase in size until burst mainly through the
1072 cRNA injection site where the extracellular matrix layer surrounding the plasma membrane is
1073 weaker than the rest of the oocyte. Cells were imaged every 20s under a stereomicroscope (7.5×
1074 magnification), pictures were assembled in order, and the final time-lapse video is at 3.33Hz.
1075 Video was assembled in iMovie v10.3.4, Apple Inc.




1076
1077 **Supplementary Video 2. DspE rapid swelling and burst assay in *Xenopus* oocytes.** After 2
1078 ng of cRNA was injected and time was allowed for the protein expression (24 h), oocytes were
1079 moved from a 200 mOsm saline solution to a 40 mOsm saline solution (5× dilution in ultrapure
1080 H₂O). Note that DspE-expressing oocytes further increase in size until burst mainly through the
1081 cRNA injection site where the extracellular matrix layer surrounding the plasma membrane is
1082 weaker than the rest of the oocyte. Cells were imaged every 20s under a stereomicroscope (7.5×
1083 magnification), pictures were assembled in order, and the final time-lapse video is at 3.33Hz.
1084 Video was assembled in iMovie v10.3.4, Apple Inc.




1085

a**b****c****d**

a**b****c****d**

Domain Labels

N-terminal disordered loop

N-terminal domain

WD40 repeat domain

β -barrel

multiple helices including a vertical helix bundle

helix-turn-helix

horizontal helix bundle

loop-helix-turn-helix

antiparallel helices

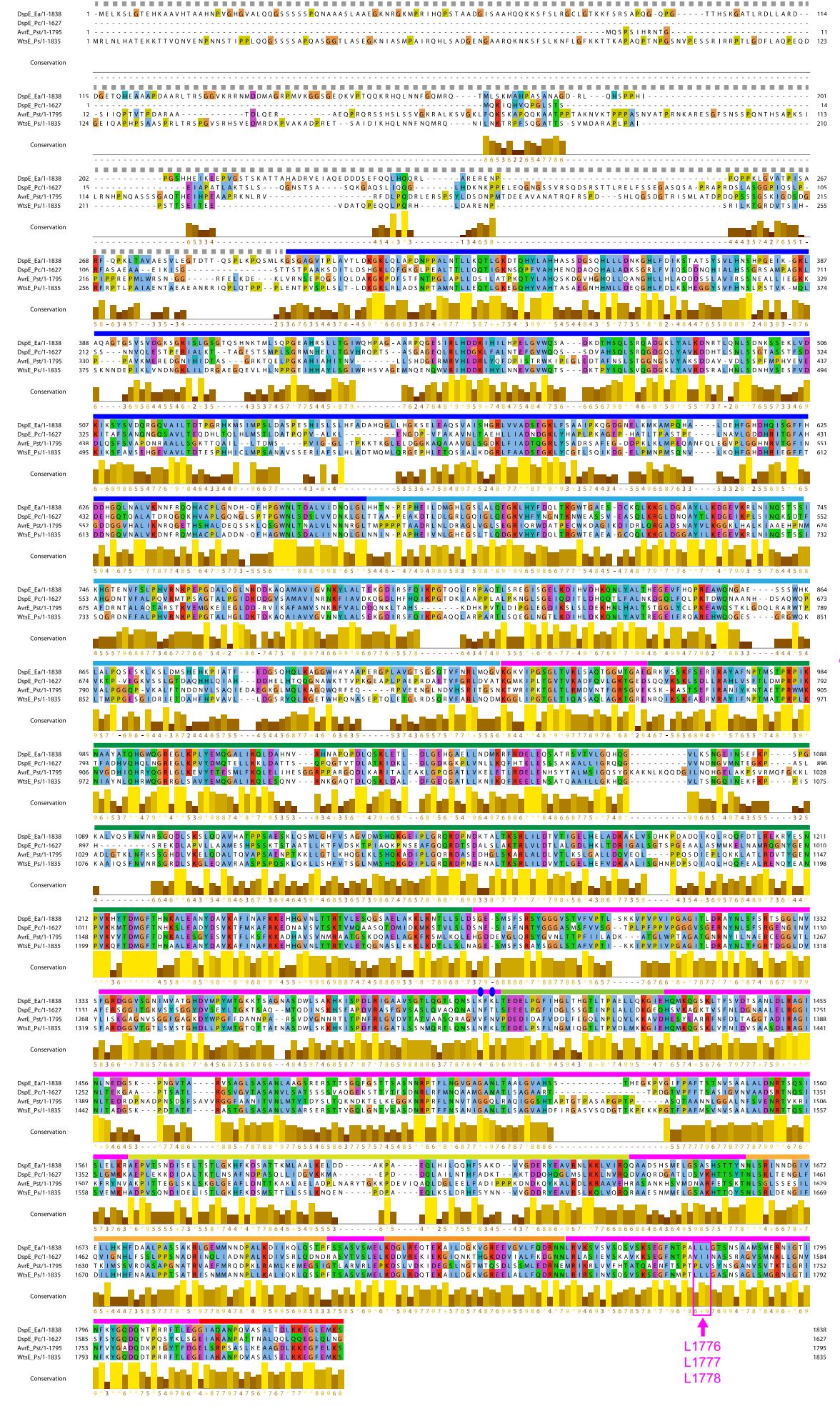
C-terminal helix and loop

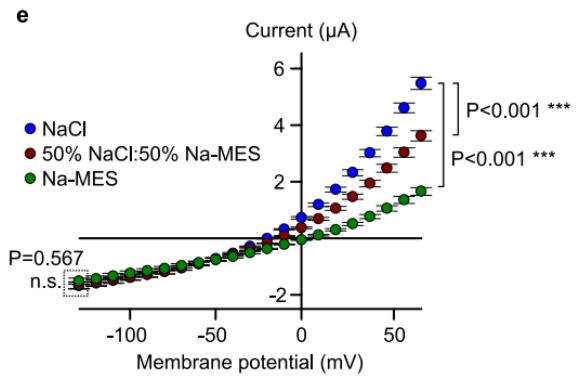
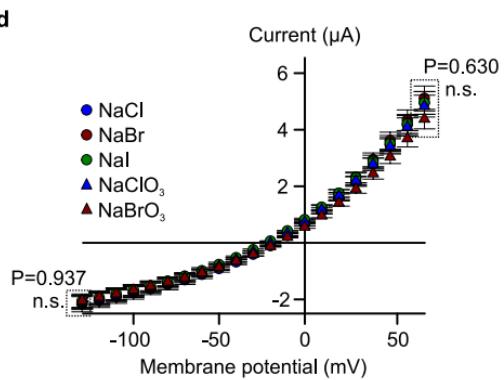
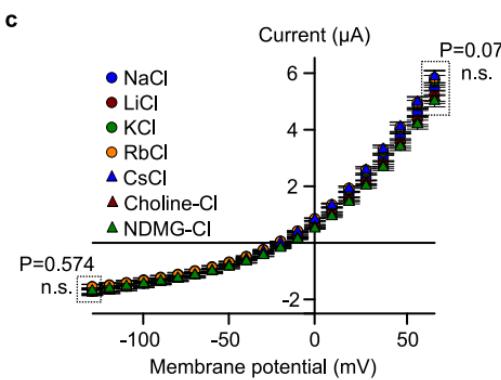
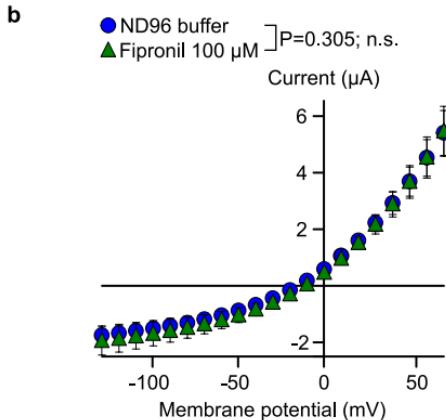
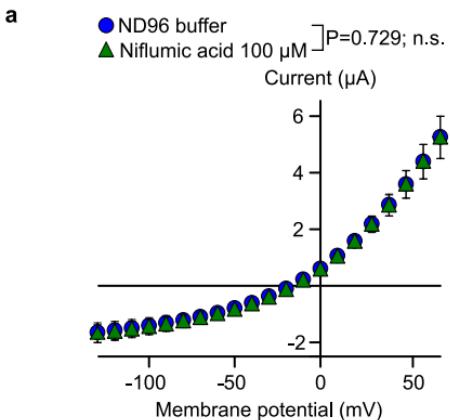
β -barrel insertions

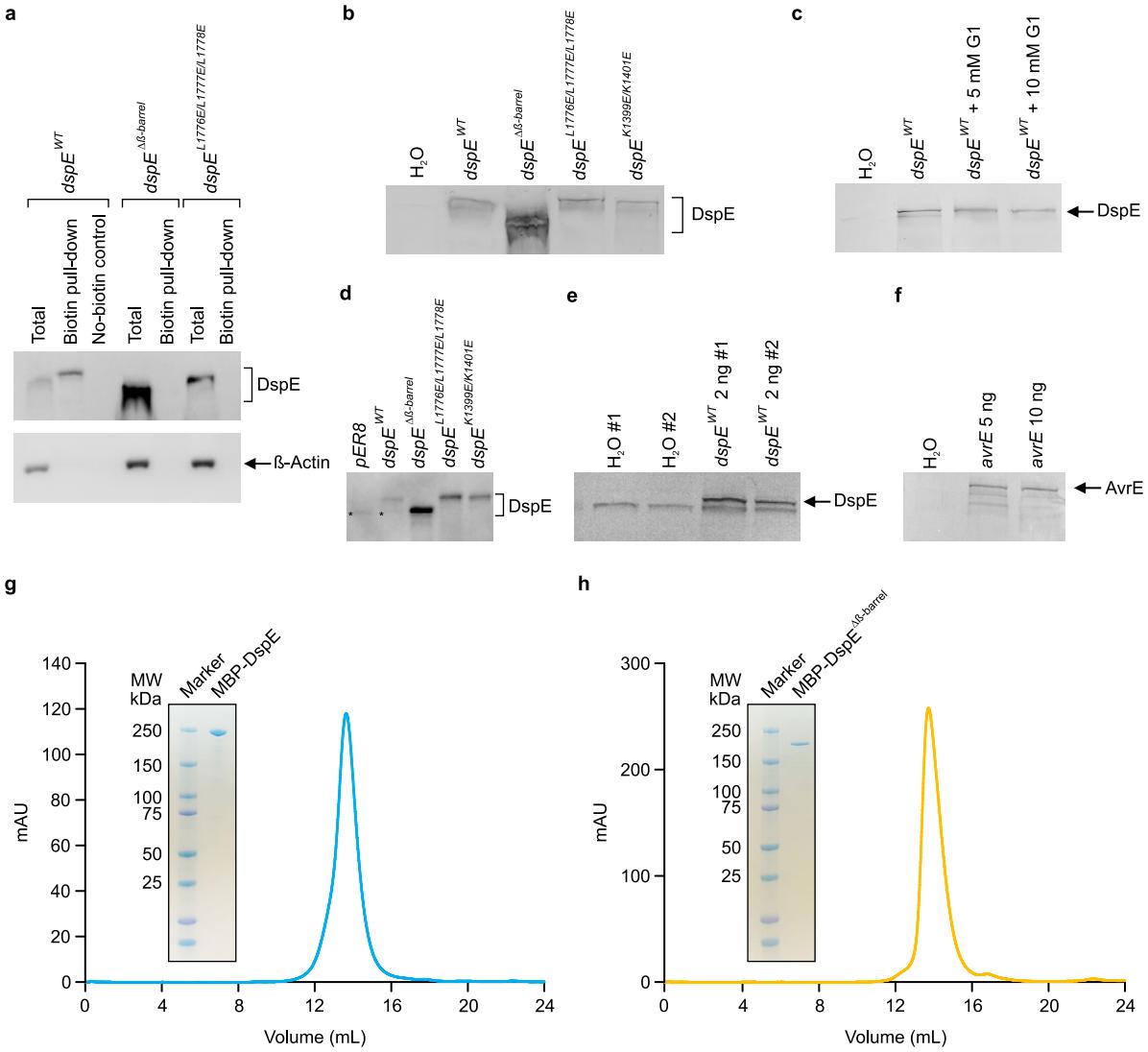
β -barrel and insertions

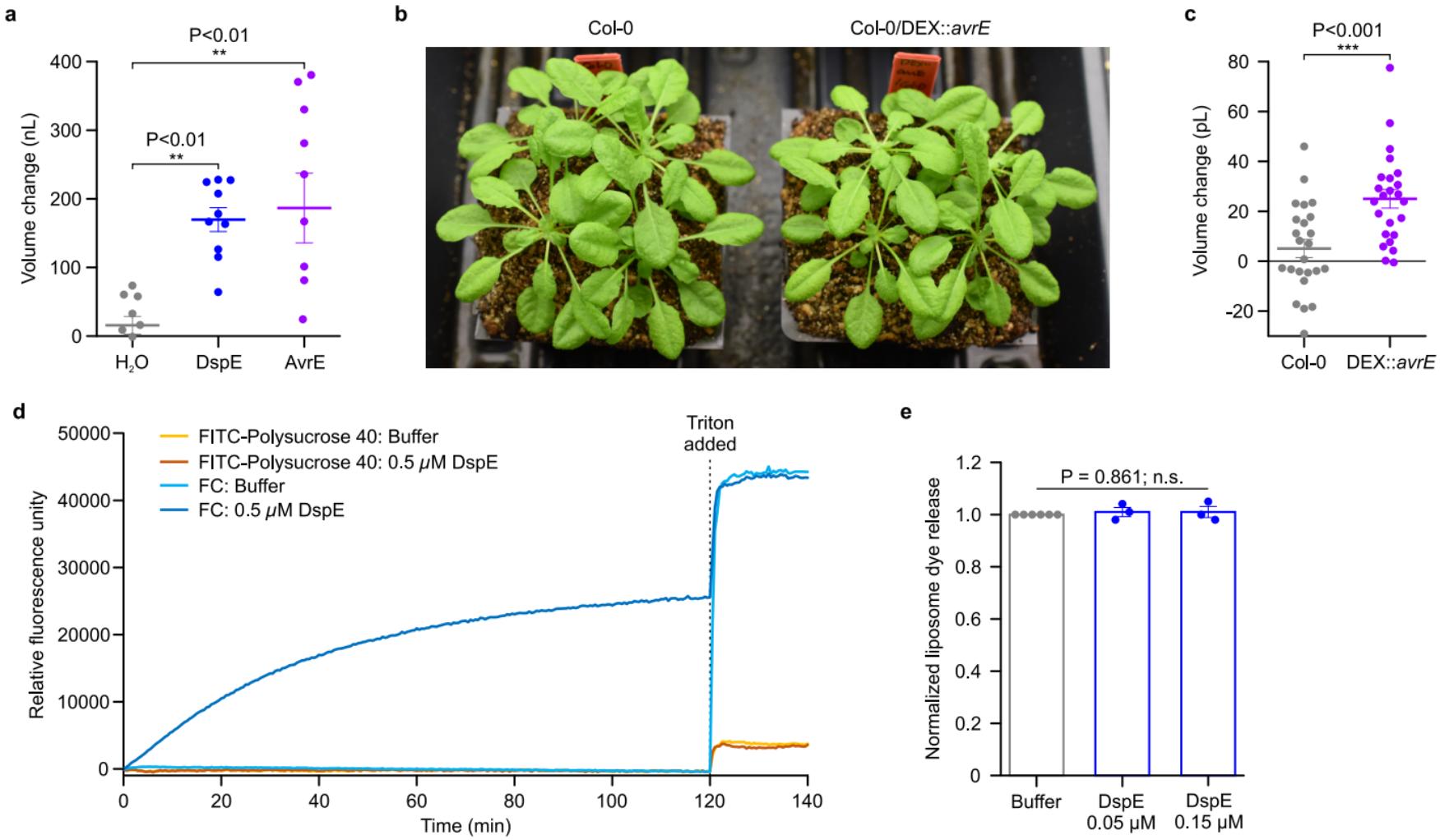
● K1399, K1401

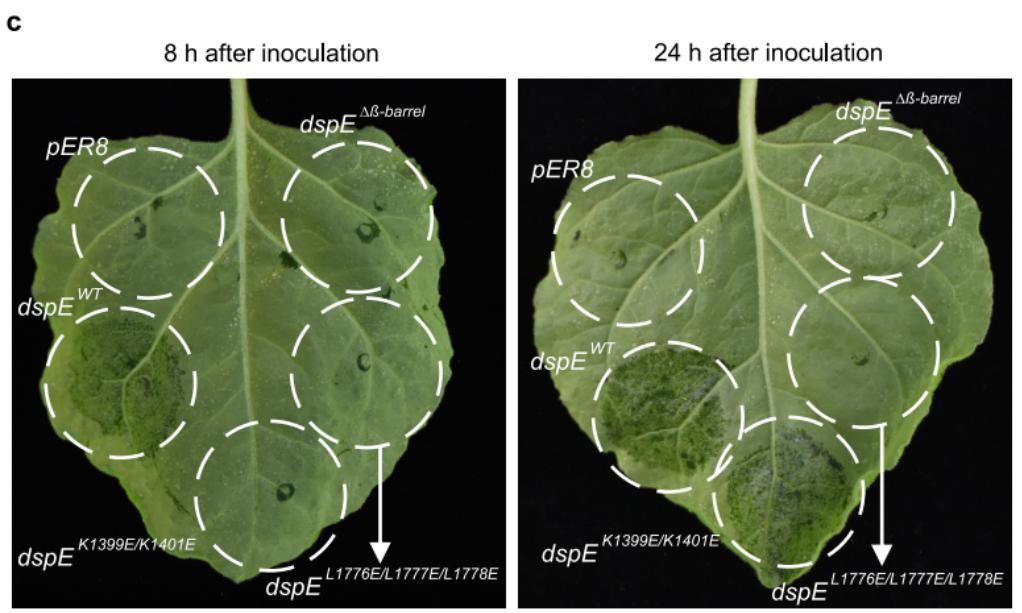
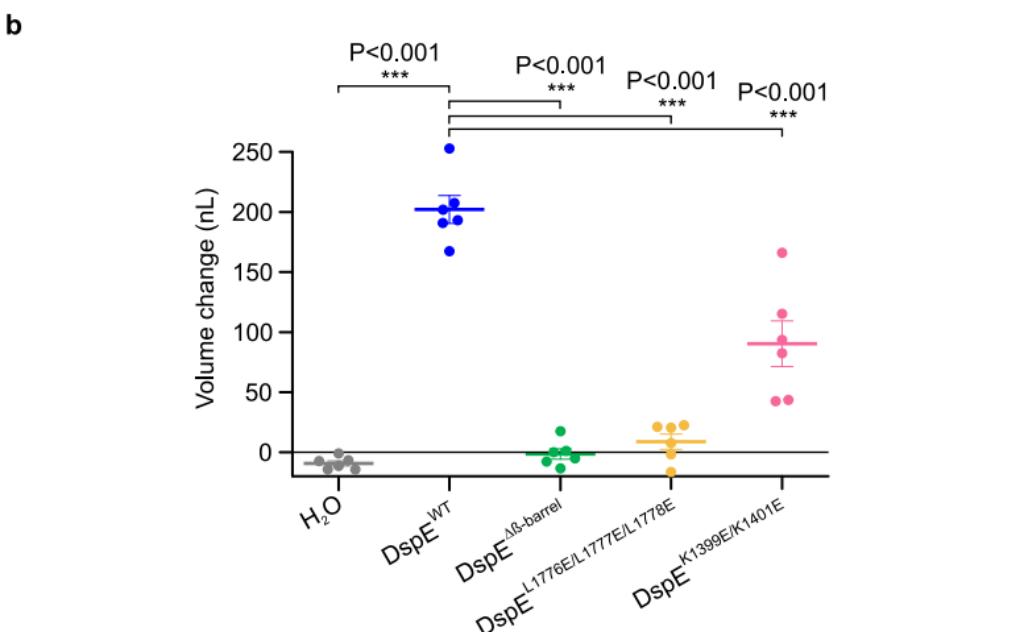
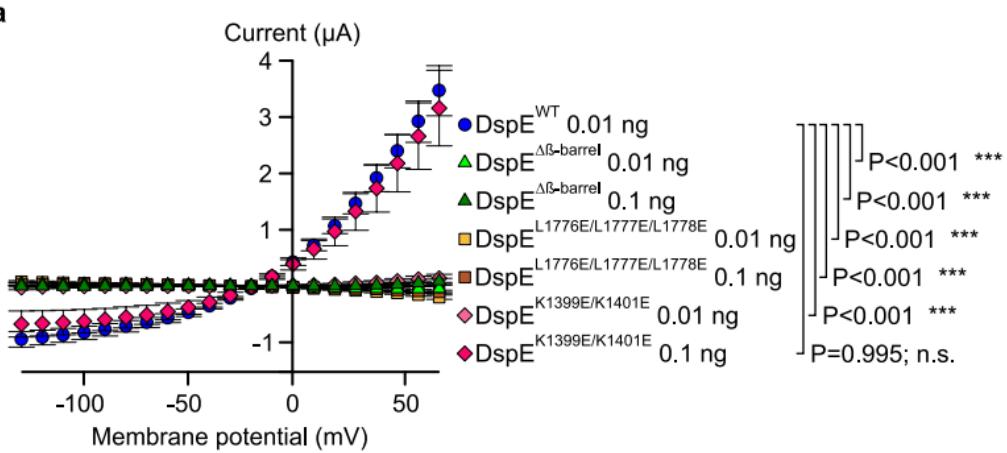
Sequence Identity

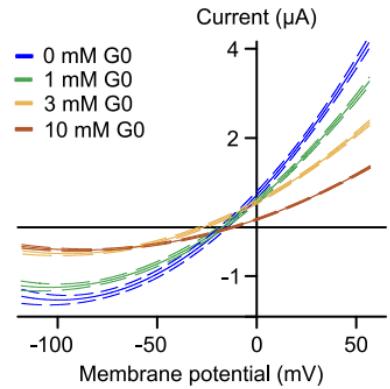
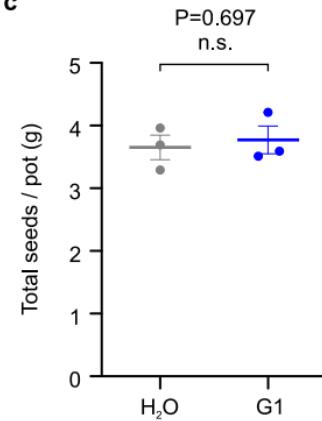
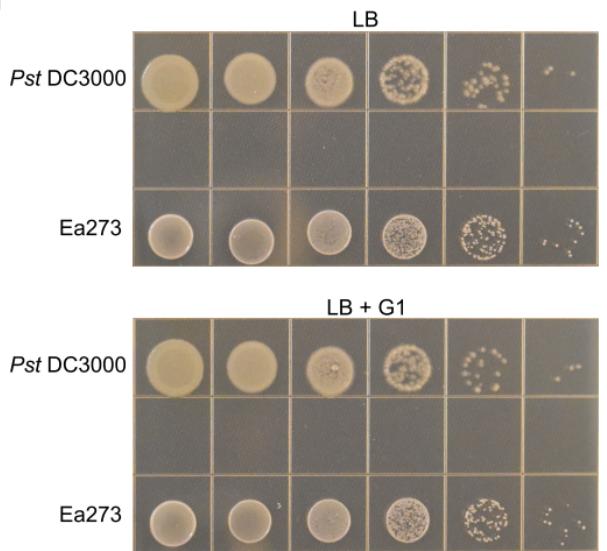
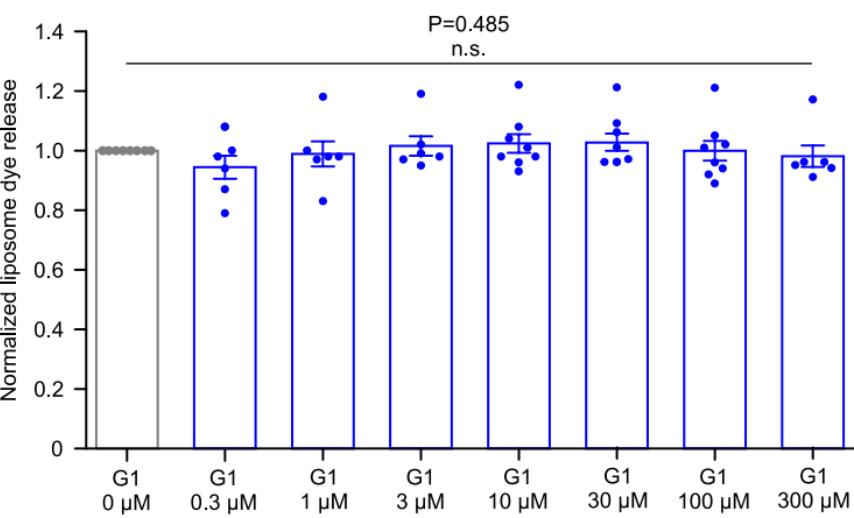

DspE_Ea

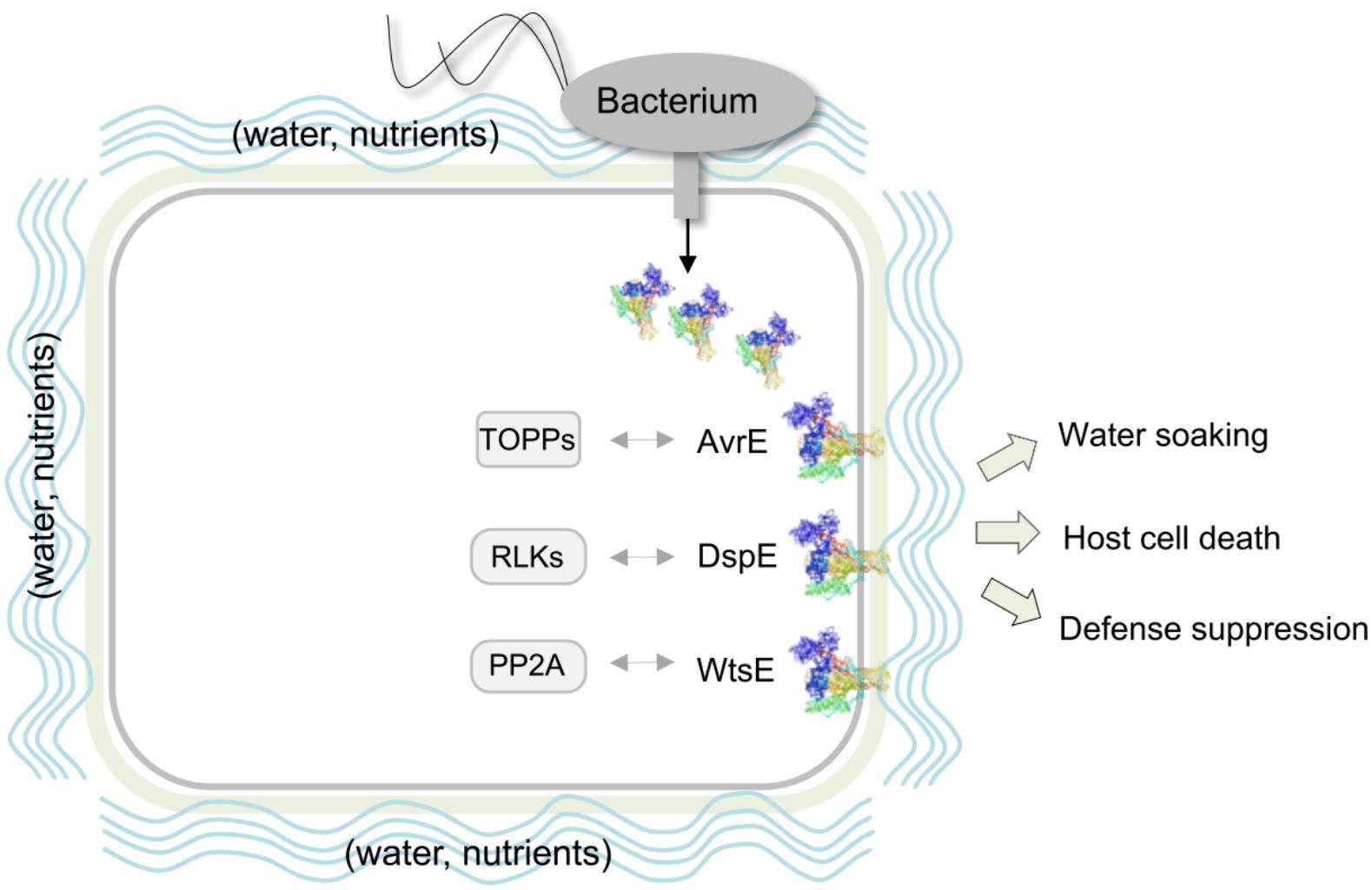





DspE_Ea 100%


DspE_Pc 39.8%

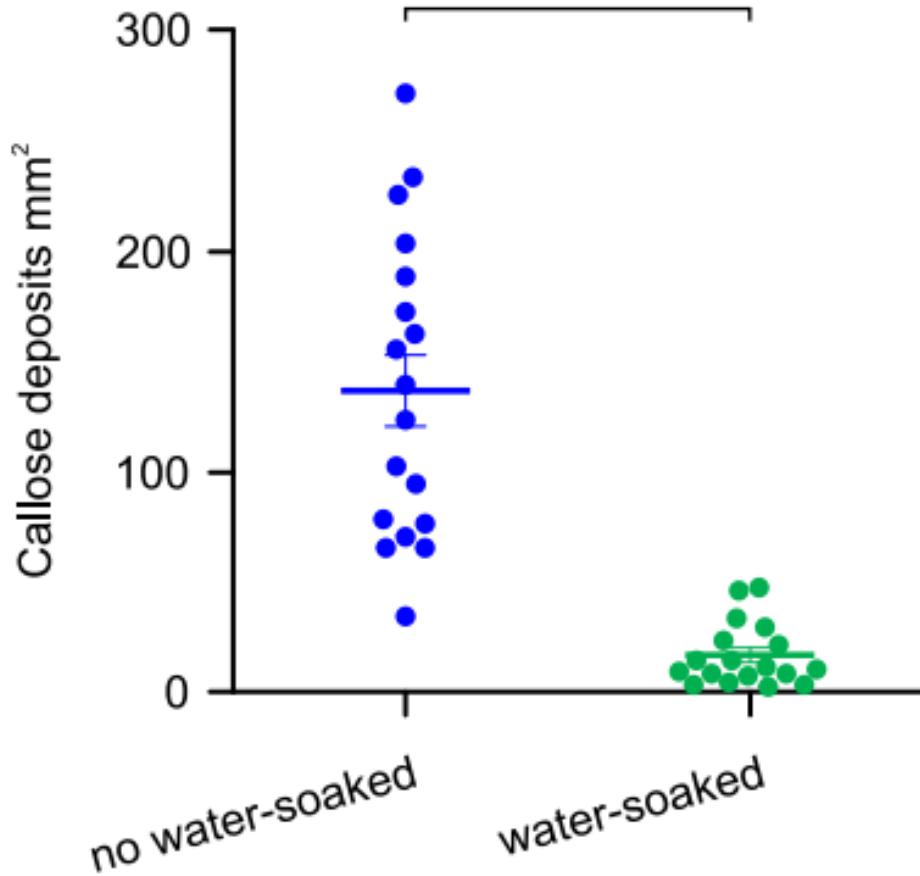

AvrE_Pst 29.7%




WtsE_Ps 60.2%



a**b****c****d****e**



a

no water-soaked

water-soaked

b $P<0.0001$
