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Abstract  13 

Background - Goal-directed movements involve integrating proprioceptive and visuo-motor information. 14 

Although the neural correlates of such information processing are known, the details of how sensory-15 

motor integration occurs are still largely unknown.  16 

Objective – The study aims to characterize movements with different sensory goals, by contrasting the 17 

neural activity involved in processing proprioceptive and visuo-motor information. To accomplish this, we 18 

have developed a new methodology that utilizes the irregularity of the instantaneous gamma frequency 19 

parameter for characterization.  20 

Approach - In this study, 8 essential tremor patients undergoing an awake deep brain stimulation (DBS) 21 

implantation surgery repetitively touched the clinician’s finger (forward visually-guided/FV movement) 22 

and then one’s own chin (backward proprioceptively-guided/BP movement). Neural electrocorticographic 23 

(ECoG) recordings from the motor (M1), somatosensory (S1), and posterior parietal cortex (PPC) were 24 

obtained and band-pass filtered in the gamma range (30-80Hz). The irregularity of the inter-event 25 

intervals (IEI; inverse of instantaneous gamma frequency) were examined as: 1) correlation between the 26 

amplitude and its proceeding IEI, and 2) auto-information of the IEI time series. We further explored the 27 

network connectivity after segmenting the FV and BP movements by periods of accelerating and 28 

decelerating forces, and applying the IEI parameter to transfer entropy methods.  29 

Results - Conceptualizing that the irregularity in IEI reflects active new information processing, we found 30 

the highest irregularity in M1 during BP movement, highest in PPC during FV movement, and the lowest 31 

during rest at all sites. Also, connectivity was the strongest from S1 to M1 and from S1 to PPC during FV 32 

movement with accelerating force and weakest during rest.  33 

Significance - We introduce a novel methodology that utilize the instantaneous gamma frequency (i.e., 34 

IEI) parameter in characterizing goal-oriented movements with different sensory goals, and demonstrate 35 

its use to inform the directional connectivity within the motor cortical network. This method successfully 36 

characterizes different movement types, while providing interpretations to the sensory-motor 37 

integration processes.  38 

 39 

Keywords:  40 

Goal-directed movement, reaching, instantaneous gamma frequency, entropy, motor network, 41 

electrocorticography (ECoG)  42 
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Introduction  43 

Reaching to press an elevator button (visual goal) and reaching to scratch one’s face (proprioceptive 44 

goal) are movements that involve different sensory-motor processes. Although both biomechanical 45 

movements engage the arm’s joints and end effector (the hand) to accomplish the end goal, the brain 46 

must process these movements differently, because each requires different sensory processes (1–3) and 47 

force dynamics (i.e., when to flex and extend the joint muscles) (4–7). For that reason, it is likely that 48 

these distinct movements would be differentiated physiologically at the cortical level. However, there is 49 

a lack of methodology of using the cortical electrophysiological signals to characterize and differentiate 50 

these movements that are guided by different sensory goals. 51 

A framework that explores the dynamics of goal-directed movements within the context of efferent 52 

and afferent streams of information flow is the internal forward models of action (e.g., principle of 53 

reafference (8), internal forward model (9,10)). In its current version, the model posits that when 54 

planning a movement, a motor command is sent down the spinal cord, and a duplicate motor command 55 

(termed efference copy) is sent to the posterior parietal cortex (PPC) to predict the afferent 56 

consequence of one’s self-generated movement, thus allowing for a faster and precise control. 57 

Nevertheless, the details of how sensory motor integration is made to execute the self-generated 58 

movement in the context of these models are still largely unknown. This is mainly because 59 

characterization of neural activities associated with various goal-directed movement have not been 60 

made dynamically, but instead commonly resorted to examining the grand-averaged epochs and applied 61 

assumptions of stationarity and linearity. In fact, conventional methods like the power spectrum fails to 62 

distinguish movements with different sensory goals (as shown in S1 Figure). Although such methods 63 

with simplifying assumptions help to reveal certain aspects of the motor network (e.g., decreased beta 64 

and increased gamma power during movement in (11–13)), we argue that utilizing a set of dynamical, 65 

nonstationary, and nonlinear analytical methods can capture the finer details that are hidden in the 66 

moment-to-moment variability (14), and therefore help to understand the mechanism behind sensory 67 

integration and movement planning.  68 

In this study, we aimed to characterize the neural activities associated with goal-directed 69 

movements that involve different sensory goals. Here, we had patients with essential tremor 70 

undergoing an awake deep brain stimulation (DBS) implantation surgery to perform a task of touching 71 

the clinician’s finger, and then one’s own chin repeatedly (Figure 1A). We conceptualize that the forward 72 

reaching movement of touching the clinician’s finger (visual goal) would require more visuo-motor (VM) 73 

information processing, and backward movements of touching one’s chin (proprioceptive goal) would 74 

require more proprioceptive information processing. During this, electrophysiological signals were 75 

obtained using electrocorticography (ECoG) at the motor (M1), somatosensory (S1), and PPC (Figure 1B).  76 
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    77 

 78 

Figure 1 Experiment setup and analytics overview  79 

A. Patient participant repeatedly performed a forward movement of touching the clinician’s finger, and then a backward 80 
movement of touching one’s own chin. B. ECoG strip was temporarily placed to cover the motor cortex (M1), somatosensory 81 
cortex (S1) and posterior parietal cortex (PPC). Channels were bipolar referenced to capture the local activity of the 82 
corresponding cortex. C. Representative participant’s electrophysiological signal at M1 (top) and its spectrogram (middle) and 83 
synchronized hand movement speed. D. Angular speed of the hand during forward visually-guided (FV; red) and backward 84 
proprioceptively-guided (BP; blue) movements, where time 0 is when the participant’s hand reaches the clinician’s finger. The 85 
pink horizontal line represents the time when the hand is applying accelerating force, and cyan line represents time when the 86 
hand is applying decelerating force. E. Electrophysiological time series data are gamma band filtered (30-80Hz), and the time 87 
between the maxima (denoted in red) is a parameter of the instantaneous gamma frequency. We refer to this as the inter-88 
event-interval (IEI). F. Plausible model of the motor network in the context of the forward model of motor control. In this study, 89 
we characterized the neural activities associated with different movement types using the irregularity of the dynamical IEI at 90 
M1, S1, PPC. We also demonstrated how the transfer entropy of dynamical IEI’s can be applied to inform the directional flow of 91 
information (denoted in orange arrows) during different movement types.  92 

To characterize the neural activities during movements with different sensory goals, we extracted 93 

the electrophysiological time series of when the participant performed a series of reaching tasks (Figure 94 

1C), and compiled approximately 40 instances per participant (M = 41.1; SD = 11.9) of making forward 95 

visually-guided (FV) movements (i.e., touching the clinician’s finger) and backward proprioceptively-96 

guided (BP) movements (i.e., touching one’s own chin) (Figure 1D). To further explore movements with 97 

different force dynamics, we also segmented these into times when the patient was accelerating force 98 

(i.e., when speed is increasing to its maximum) and when the patient was decelerating force (when 99 

speed is decreasing to zero). From the segmented dataset, we examined the instantaneous gamma 100 

frequency, which is quantified by taking the time between peaks within a gamma band filtered signal 101 

(termed inter-event-interval; IEI), as it is an inverse of the corresponding gamma frequency cycle (Figure 102 

1E). The use of this parameter was first introduced in rodent hippocampus signals (15), demonstrating 103 

that the instantaneous gamma frequency reflects a nonlinear interplay between neural excitation and 104 

inhibition of interneurons.  105 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2023. ; https://doi.org/10.1101/2023.07.28.551050doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.28.551050
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

Here, we compared the irregularity (i.e., less predictive) of the IEI during goal-oriented 106 

movements with a visual goal and a proprioceptive goal, and during a resting state, at the following 107 

cortical areas - M1, S1, PPC. Given that the gamma band power increases during movement (e.g., 108 

(11,12)), we hypothesize that active movement-related information processing would be characterized 109 

within the gamma frequency band, and that the magnitude of IEI irregularity would characterize the 110 

extent of such information processing. Specifically, we hypothesize the following (Figure 1F) - 1) M1 111 

serves a critical role in executing movements (16), but also in integrating proprioceptive information 112 

(17). Given the dual role of movement execution and proprioceptive information processing, we 113 

hypothesize that M1 would show more irregularity during proprioceptive goal-oriented movement (i.e., 114 

BP movement) than a visual one (i.e., FV movement). 2) Since the S1 serves an important role in 115 

processing cutaneous and proprioceptive information processing (18), and given its strong connection to 116 

M1 (19), we hypothesize that it would exhibit a similar pattern as M1, but with a larger difference in 117 

irregularity between proprioceptive (BP) and visuo-motor information (FV) processes.  3) PPC has been 118 

well known to integrate visuo-motor (VM) information (20–22) at the intersection of motor and visual 119 

cortices. For that reason, we hypothesize that higher irregularity would be found during a visual goal-120 

oriented movement (FV) than during a proprioceptive-goal oriented movement (BP). In addition, for 121 

exploratory purpose, we demonstrate the use of applying the IEI’s to transfer entropy (TE) metrics to 122 

understand the directional flow of information during goal-oriented movements (Figure 1F).  123 

Specifically, we show how the TE values vary across movements involving different sensory goals and 124 

force dynamics.  125 

We highlight that this is a novel computational method of using the instantaneous gamma 126 

frequency (i.e., dynamical IEI) parameter in human ECoG signals to characterize neural activities 127 

associated with movement types with different sensory goals and force dynamics. This is possible 128 

because we relax the conventional assumptions of stationarity and linearity, and instead harness the 129 

moment-to-moment fluctuations of electrophysiological signals. Note, compared to conventional 130 

machine-learning methods that characterize movements (e.g., (23–25) ), the strength of this novel 131 

approach is that it provides interpretations of neural activity, which we demonstrate with transfer 132 

entropy applications in this study.  133 

Materials and Methods  134 

Participants  135 

Eight patients with essential tremor (demographics in Table S1), undergoing a bilateral or 136 

unilateral implantation of deep brain stimulation (DBS) leads targeting the ventral-intermediate nucleus 137 

(ViM) of the thalamus, were included in this study. All participants provided written consent approved 138 

by the institutional review board at the University of California, Los Angeles.  139 

Behavioral Task  140 

 In a single block, each participant was lying on the surgical bed, and was asked to raise the hand 141 

and posture for 30 seconds. Then, the participant was asked to touch the clinicians’ finger located within 142 

an arm-length, and then to touch one’s own chin repeatedly 10 times in a self-paced manner (FV angular 143 

speed Mdn = 1.6 deg/s; BP angular speed Mdn = 1.8 deg/s; details in Figure 3A) (Figure 1A). 144 

Subsequently the participant rested for 30 seconds, then started another block. 6 participants 145 

performed 4 blocks, and 2 participants performed 5 blocks in total. The entire study took approximately 146 
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7 minutes (Figure 1C). From here on, we refer to the movement of touching the clinician’s finger as a 147 

forward visually-guided (FV) movement, as it requires a visual goal, and the movement of touching one’s 148 

own chin as a backward proprioceptively-guided (BP) movement, as it requires a proprioceptive goal.  149 

 Here, we assume that the FV movement prioritizes visuo-motor information processing over 150 

proprioception, as they require attention to the visual goal, and the BP movement prioritizes 151 

proprioceptive information, as they require attention to the proprioceptive goal. Hence, when we 152 

mention “more information is involved”, we are referring to the relative priority/attention to the 153 

corresponding sensory information.  154 

Surgery and data acquisition  155 

The recordings were made intraoperatively in an awake DBS surgery, during which an ECoG strip 156 

(8 channels with 1cm spacing; AdTech Medical, USA) was temporarily inserted subdurally via the burr 157 

hole made for DBS implantation for the purpose of research (26–28). For patients targeting the ventral 158 

intermediate (ViM) of the thalamus bilaterally, the ECoG strip was implanted through the right frontal 159 

burr hole; and for those targeting unilaterally, the ECoG strip was placed through the ipsilateral side of 160 

the burr hole. The burr hole was located at or approximately 1 cm anterior to the coronal suture (3 to 5 161 

cm anterior to the central sulcus), and the ECoG strip was inserted posteriorly to cover the central 162 

sulcus. After all DBS leads were implanted, a lateral/sagittal fluoroscopy image was acquired, which 163 

showed the location of the ECoG strip along with the DBS leads.  164 

For all participants, local field potentials (LFP) at the ViM of the thalamus (DBS target) and ECoG 165 

signals at the M1, S1, and PPC were recorded using a Matlab/Simulink software connected to an 166 

amplifier (g.Tec, g.USBamp 2.0). The signals were sampled at 4800Hz, and applied with a built-in 0.1Hz 167 

high band-pass and 60Hz notch filter. The ground and reference signals were obtained with a scalp 168 

needle inserted near the burr hole. For the purpose of this study, we analyzed the cortical signals 169 

obtained from the ECoG.  170 

The participants’ kinematic signals were acquired with 2 opal inertial measurement unit (IMU) 171 

movement sensors (APDM, USA), then registered and sampled at 128Hz with the Motion Studio 172 

software (APDM, USA). The sensors were strapped on the moving hand and wrist. Here, we examined 173 

the wrist sensor’s angular velocity (deg/s) to extract the timing of differing movements (S2 Figure). Note, 174 

for the purpose of extracting the timing, we chose the wrist sensor (as opposed to the hand), as it is less 175 

susceptible to tremor. To temporally co-register the electrophysiological and kinematic signals, we used 176 

an external synchronization equipment (APDM, USA) that sent a digital output trigger to the 177 

electrophysiological signal amplifier to indicate the timing of the start and end of recording.   178 

Analysis  179 

Preprocessing  180 

With the aim of analyzing the motor (M1), somatosensory (S1), and posterior parietal cortex 181 

(PPC), we needed to anatomically localize the ECoG strip that was temporarily inserted during the 182 

surgery. To do this, we combined the pre- and post-operative CT scans and co-registered to the 183 

preoperative structural MRI, along with the lateral fluoroscopy image that showed the ECoG strip and 184 

implanted DBS leads. This method is adopted from (29), and details are further elaborated in our prior 185 

publications (30,31). Based on the visualized localization (Figure 1B), we identified the 2 closest channels 186 
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that overlay the three cortical areas - M1, S1, and PPC - and bipolar-referenced those signals to capture 187 

the local activity in the three regions. 188 

 We visually inspected for electrical artefacts that showed clear evidence of artifact, based on an 189 

acute change in amplitude lasting more than 2 seconds, but did not find such segments. We also 190 

examined the power spectrum using the BOSC algorithm (32) at individual frequencies from 1 to 100Hz 191 

with 1Hz step width, and 6th order wavelets. The power time series were normalized by z-scoring each 192 

frequency over the entire recording (approximately 7 minutes) per cortical site (Figure 1C; S1 Figure). 193 

Here, we confirmed an increase in gamma power (>30Hz) during movement for all participants at the 194 

motor cortex, consistent with prior findings (e.g., (11,28)).   195 

  In order to segment data for the times when the participant is performing a forward visually-196 

guided (FV) movement, backward proprioceptively-guided (BP) movement, and at rest, we extracted the 197 

angular velocity of the wrist sensor, and computed the Euclidean norm to obtain a scalar angular speed.  198 

The angular speed profile informed us of when the participant reached the clinician’s finger, or one’s 199 

own chin, because the speed was near 0 (deg/s) at those times. These would define the timing of the 200 

start and end of either the FV or BP movement. The angular velocity along the z-axis informed us of the 201 

target that the participant has reached when the angular speed was near 0 (Figure 1D; S2 Figure). 202 

Specifically, the direction of the angular velocity along the z-axis at zero-crossing points would inform us 203 

of the target. If the angular velocity changes from negative to positive, it has reached the chin, and when 204 

it changes from positive to negative it has reached the clinician’s finger. For some patients, their hand 205 

hovered around the clinician’s finger during the FV movements to precisely reach the finger for about 1 206 

second or less. In these cases, we excluded those short moments of hovering, as this may be due to 207 

tremor and/or the clinician’s inadvertent moving (S2 Figure). To obtain the data during the resting 208 

period, we extracted the resting datasets (where angular speed is continuously near 0), and truncated 209 

the first 5 and last 5 seconds of the resting period within each block, to avoid any effect from movement 210 

preparation and/or change.  211 

 We separated the M1, S1, and PPC time series by movement types - FV movement, BP 212 

movement, resting - and then gamma band-pass filtered the signal (30-80Hz, 200th order zero-phase, 213 

transition width 0.2, FIR). From the band-passed signal, maxima were identified (Figure 2A), and the 214 

time between two sequential maxima were defined as the inter-event intervals (IEI). In the following 215 

sections of analytics, we introduce three novel analytics that utilize this IEI parameter to characterize 216 

the different types of goal-oriented movements.  217 
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 218 
Figure 2 Analytics pipeline  219 

A. ECoG signals were gamma band-pass filtered (30-80Hz) and the maxima were identified to compute the inter-event-interval 220 
(IEI). B. As a first set of analytics, IEI and its corresponding amplitudes were extracted. C. Correlation was computed for the 221 
paired dataset of IEI and amplitudes, for all movement types, per participant. D. We conceptualized that high correlation from 222 
C. exhibits a largely synchronized signal where the IEI and amplitude values are predictive. Conversely, low correlation would 223 
exhibit a more random irregular signal. E. As a second set of analytics, within 1-second time window, the IEIs were extracted 224 
and compiled (X), and this window was shifted by 5ms and again, IEIs were extracted and compiled (Xd). F. The PDF of X and Xd 225 
obtained from E. along with its JPDF were plotted, to compute the mutual information to characterize irregularity in the signal. 226 
We term this auto-information (AI). G. AI values were compiled and the means were extracted per movement types and per 227 
participant. H. As a last set of analytics, where we aim to see the directionality between M1, S1, and PPC, we created a binary 228 
spike train, where the maxima from A. are assigned 1, and the rest assigned as 0. I. Transfer entropy (TE) was computed pair-229 
wise to assess the directional connectivity between two cortical areas, with lags varying from 2.5ms to 75ms. J. Maximal TE 230 
value was extracted within the varying lag values, per movement type (by sensory goals and force dynamics), and per 231 
participant.  232 

Correlation between amplitude and IEI  233 

 Within a gamma band-pass filtered time series waveform, we identified a series of gamma 234 

cycles (i.e., valley with two maxima and one minimum in between) to extract the amplitude and IEI, 235 

where the amplitude is defined as the difference between the minimum and the subsequent maximum 236 

(Figure 2B). We compiled a set of paired data, comprised of amplitudes and the corresponding IEIs, and 237 

computed the correlation between the two (Figure 2C). For all participants, each movement types 238 

yielded approximately 2500 pairs of data to compute the correlation. Prior literature has shown positive 239 

correlation between the amplitude and IEIs within gamma cycles (15,33,34), and a recent study 240 

demonstrated how such positive correlation is expected in waveforms that contain a 1/f structure (34). 241 

Indeed, for all participants, statistically significant (p<0.01) positive correlation was found in all 242 

movement types within the range of 0.1 to 0.45 in all cortical areas.  243 

We aimed to compare the magnitude of correlation across different movement types, using a 244 

paired Wilcoxon signed-rank test across all 8 participants. Here, we assume that largely synchronized 245 

signals are highly correlated, and asynchronous signals are less correlated, and that low correlation 246 
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characterizes new information actively being processed (Figure 2D). Note, the gamma band power is not 247 

sufficient to differentiate and characterize the FV and BP movements, as shown in S1 Figure.  248 

Auto-information across IEIs  249 

 Another way to characterize movements with a visual goal and a proprioceptive goal, is to 250 

compute the mutual information (based on information theory; (35)) between two sequential time 251 

windows from a single time series. We refer to this as auto-information (AI) (conceptually similar to 252 

auto-correlation).  Specifically, we down-sampled the data from 4800Hz to 400Hz, and concatenated all 253 

trials within the same movement type into a single time series. These were then gamma band-pass 254 

filtered, yielding a series of IEI’s (Figure 2E). Per 1 second time window, these IEIs were plotted on a 255 

discrete probability distribution function (PDF) with a range spanning from 2 frames (5ms = 2 / 400hz) to 256 

14 frames (35ms = 14/400hz). This 1 second time window was then shifted forward by 2 frames (i.e., 257 

5ms), and IEI’s from this window were plotted again on a PDF. Then, with the same bin size of 1 frame 258 

(2.5ms), a joint PDF between these two time windows were plotted (Figure 2F). We chose to down-259 

sample the data to 400hz, because the minimum IEI was found to be 2.5ms based on the 4800hz gamma 260 

filtered data, and the duration of a single frame within a 400hz data equals 2.5ms. Also, we chose the 261 

time window length as 1 second, because this was the shortest time length to gather sufficient IEI 262 

datapoints  (approximately 100) to produce a meaningful frequency distribution. We chose the shift size 263 

of 2 frames (5ms) since this would be a short enough time shift to capture the changing IEIs (as the 264 

shortest IEI is 2.5ms). Given the obtained two single probability distributions, and the corresponding 265 

joint probability distribution, we computed the auto-information (i.e., mutual information) with the 266 

following formula (35):  267 

𝐼𝑋𝑌 = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌) 268 

=  𝐻(𝑋) − 𝐻(𝑋|𝑌) 269 

=  ∑ 𝑃𝑋𝑌(𝑥𝑖

𝑥𝑖,𝑦𝑗

, 𝑦𝑗) 𝑙𝑜𝑔2

𝑃𝑋𝑌(𝑥𝑖, 𝑦𝑗)

𝑃𝑋(𝑥𝑖)𝑃𝑌(𝑦𝑗)
                                 𝑤ℎ𝑒𝑟𝑒  270 

𝐻(𝑋) =  − ∑ 𝑃(𝑥𝑖)𝑙𝑜𝑔2𝑃(𝑥𝑖)

𝑥𝑖

 271 

𝐻(𝑋|𝑌) =  ∑ 𝑃𝑌(𝑦𝑗)𝐻(𝑋|𝑌 = 𝑦𝑗)

𝑦𝑗

 272 

=  − ∑ 𝑃𝑋𝑌(𝑥𝑖 , 𝑦𝑗)𝑙𝑜𝑔2

𝑃𝑋𝑌(𝑥𝑖, 𝑦𝑗)

𝑃𝑌(𝑦𝑗)
𝑥𝑖𝑦𝑗

 273 

 274 

Function 𝐻 is an entropy function, 𝑋 is the IEI variables from the first time window, 𝑌 is the IEI variables 275 

from the subsequent (shifted) time window, 𝑖 and 𝑗 are IEI bins ranging from 2 (frames) to 14 (frames). 276 

The details of this mathematical derivation in the context of neuroscience is well explained in (36). 277 

Overall, this AI metric represents a stochastic dependency between the two sets of variables 𝑋 and 𝑌. If 278 
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the stochasticity of the two sequential time windows were highly dependent on each other, they would 279 

yield a high AI value; and if the two were entirely independent, the AI value would equal 0.  280 

 We computed the AI (i.e., mutual information between the two sequential time windows shifted 281 

by 5ms), then shifted these two sets of windows by 10% (100ms) and computed the AI values again. This 282 

resulted with approximately 400 AI values per movement type for each participant. For comparison, we 283 

took the mean of these approximately 400 AI values (Figure 2G), then compared the means between the 284 

different movement types using a paired Wilcoxon signed-rank test across all 8 participants.   285 

Transfer entropy  286 

Lastly, we introduce how the instantaneous gamma frequency (i.e., dynamical IEI) can be 287 

applied to understand the directionality of pairwise informational flow within the three cortical areas 288 

(M1, S1, PPC) during different movement types. Note, for the purpose of exploration, we separated the 289 

datasets by sensory goals (i.e., FV, BP, rest), and further segmented them by force dynamics. That is, for 290 

each FV and BP movement, these were segmented by times when force was accelerating (time when 291 

angular speed changes from zero to its maximum) and when the force was decelerating (time when 292 

angular speed changes from its maximum to zero) (Figure 1D).  293 

With these segmented datasets, we created a binary spike train for each movement types, and 294 

computed the transfer entropy (TE) between each pair of cortical areas. Specifically, we down-sampled 295 

the data from 4800Hz to 400Hz, concatenated all trials within the same movement type into a single 296 

time series (amounting to approximately 45 seconds per movement type), then gamma band-pass 297 

filtered the data. Then we identified the indices when the peaks occurred, and created a binary spike 298 

train where the maxima indices were assigned the value 1, and the rest were set to 0 (Figure 2H). Per a 299 

single movement type time series data (with an approximate total length of 45 seconds), we found 300 

approximately 2500 spikes. These were then used to compute a set of delayed TE using the toolbox 301 

developed by (37), where the following formula was used to compute the transfer entropy of 𝐽 302 

preceding 𝐼 with 𝑑 delay :  303 

𝑇𝐸𝐽→𝐼(𝑑) =  ∑ 𝑝(𝑖𝑡+1, 𝑖𝑡 , 𝑗𝑡+1−𝑑)𝑙𝑜𝑔2

(𝑖𝑡+1|𝑖𝑡, 𝑗𝑡+1−𝑑)

𝑝(𝑖𝑡+1|𝑖𝑡)
 304 

𝐽and 𝐼 corresponds to 2 cortical areas, 𝑖𝑡 is the binary value at time 𝑡 (i.e., frame 𝑡), and 𝑑 is the delay 305 

period. This metric essentially measures how much prediction of 𝐼 is improved, when we know the past 306 

values of 𝐼 from 1 frame (2.5ms) ago and  𝐽 from 𝑑 frames ago, as opposed to knowing just 𝐼 from 1 307 

frame (2.5ms) ago (Figure 2I). Here, we examined the TE values at delay periods 1 to 30 frames (i.e., 308 

2.5ms to 75ms) in 1 frame (2.5ms) increment, and extracted the maximal TE value within such range of 309 

delay period (Figure 2J).  310 

 We compiled these maximal TE values per movement types, for each participant. We then 311 

compared across movement types using a paired Wilcoxon signed-rank test across all 8 participants for 312 

the following directions – M1 to PPC, S1 to PPC, and S1 to M1. 313 

Results  314 

 As a first step, we compared the mean angular speed of the hand during the forward visually-315 

guided (FV) (M = 1.94, n=8) and backward proprioceptively-guided (BP) (M = 1.89, n=8) movements, and 316 
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confirmed that they were not different (p=0.92) (Figure 3A). In addition, we examined the mean IEIs 317 

during the three movement types – FV, BP, Rest - and found the values to be highest during rest in all 318 

cortical areas (Figure 3B-D). Furthermore, IEIs were lowest during BP movement in M1, and lowest 319 

during FV movement in PPC. Although such findings may imply that the mean IEIs may be a sufficient 320 

metric to characterize the three movement types, we found the frequency histogram of the IEIs in M1 321 

and PPC to roughly exhibit a bimodal distribution (Figure 3E-F). Note, the Hartigan's dip significance test 322 

of the distributions’ unimodality had shown p-values ranging from 0.03 to 0.08. This bimodality is due to 323 

an artefact of applying the 60hz notch filter, which was an inevitable limitation to the study 324 

environment. For that reason, given the bimodality, we deem the mean IEI values to be a limiting metric 325 

for characterization, and thus rely on the dynamical changes in the IEIs to be more appropriate to 326 

characterize the different movement types.  327 

 328 

Figure 3 Mean angular speed and IEI  329 

A. Mean angular speed during forward visually-guided (FV) and backward proprioceptively-guided (BP) movements for 8 330 
participants. B. Mean IEI during FV and BP movement, and rest (R) for all 8 participants in M1, C. in S1, and D. in PPC. E. 331 
Frequency distribution of IEI’s from a representative participant during FV (top) and BP movement (middle) and rest (bottom) in 332 
M1, F. and in PPC. The distribution is slightly bimodal, indicating that the mean as a summary statistic is not optimal to 333 
characterize the differing movement types. *p<0.05, **p<0.01 334 

Low correlation of gamma cycle IEI and amplitudes characterize active 335 

new information processing  336 

 We correlated the amplitudes and corresponding IEIs per movement types (FV, BP, Rest) and 337 

per participant, and found a positive correlation in the range of 0.1 to 0.45 (all participant and 338 

movement type showed a significant correlation at p<0.01). We hypothesized that lower correlation 339 

(i.e., irregularity) in the amplitudes and IEIs would reflect active new information processing, such that 340 
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M1 and S1 would show the lowest correlation during BP movement (i.e., proprioceptive information) 341 

and PPC during FV movement (i.e., visuo-motor information); and that highest correlation (i.e., most 342 

regularity) would be found during resting state in all cortical areas.  343 

 Assuming more proprioceptive information processing occurs in M1, as hypothesized, M1 344 

showed a lower correlation during BP movement (M=0.31, n=8) than during FV movement (M=0.33, 345 

n=8) (p=0.04, paired Wilcoxon signed-rank test; Figure 4A). Also, assuming resting state to be associated 346 

with the least new information being processed, we found the resting state to exhibit the highest 347 

correlation (M=0.38, n=8). In S1, we did not find differences between FV (M=0.31, n=8) and BP (M=0.30, 348 

n=8, p=0.04) movements (p=0.3), but found the resting state (M=0.35, n=8, p=0.05) to exhibit higher 349 

correlation compared to FV (p=0.05) and BP (p=0.04) movements (Figure 4B). In the PPC, we did not find 350 

differences between movement types (FV vs. BP p=0.38; FV vs. Rest p=0.2; BP vs. Rest p=0.25). Overall, 351 

we find the resting state to have the highest correlation in all three cortical areas. This strengthens our 352 

hypothesis that irregularity in the gamma IEI is reflective of active new information processing. Note, we 353 

also visualized the gamma band filtered signals per movement type, but such patterns of correlations 354 

are not easily noticeable with the naked eye (Figure 4E). 355 

 356 

  357 

Figure 4. Irregularity of IEI represented by the correlation with its corresponding amplitude, and auto-information of IEI time 358 
series  359 

A. Correlation between IEI and amplitudes are compared for all 8 participants between forward visually-guided (FV), and 360 
backward proprioceptively-guided (BP) movements and rest (R) in M1, B. S1, and C. in PPC. Generally, we find the resting state 361 
to have highest correlation. D. In distinguishing the FV and BP movements, M1 shows the largest difference. E. The variation in 362 
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correlation across movement types are not easily visible by the naked eye. F. AI comparison for all 8 participants between 363 
forward visually-guided (FV), and backward proprioceptively-guided (BP) movements and rest (R) in M1, G. S1, and H. in PPC. I. 364 
FV and BP movements are most differentiable in M1 and PPC. *p<0.05, **p<0.01 365 

Low auto-information (AI) of gamma cycle IEIs characterize new 366 

information processing  367 

 As another way to characterize the irregularity in the signal to reflect new information 368 

processing, we computed a series of AI of the IEI stochasticity between two sequential 1s windows, that 369 

are shifted by 5ms. Low AI would indicate more irregularity in signals (i.e., more independence from the 370 

past) where new information is being processed, and high AI would imply a more regular signal (i.e., 371 

more dependence from the past). 372 

 In M1, assuming that BP movement would involve the most proprioceptive information to be 373 

processed, as hypothesized, BP movements showed the lowest AI (M=1.82, n=8), then the FV movement 374 

(M=1.90, n=8), and the highest AI value during resting state (M=2.07, n=8) (Figure 4F). On the other 375 

hand, in S1, the BP movement (M=1.86, n=8) did not show difference from FV movements (M=1.88, 376 

n=8), which is contrary to what we hypothesized (p=0.55). Still we found the highest AI during resting 377 

state (M=2.02, n=8) in S1, and resting state to be different from the two movement types (FV p<0.01; BP 378 

p=0.02) (Figure 4G). In PPC, assuming that FV movement would involve the most visuo-motor 379 

information to be processed, as hypothesized, FV movement showed the lowest AI (M=1.83, n=8), then 380 

the BP movement (M=1.87, n=8), and the highest AI during rest (M=1.93, n=8) (Figure 4H).  We also 381 

computed the AI of two 1s windows that are shifted by 20ms (not 5ms), and also found a similar pattern 382 

with statistical significance as well (S3 Figure).  383 

Dynamical IEI inform the directionality connectivity between M1, S1, 384 

and PPC during movement  385 

 For exploratory purpose, we demonstrate how the dynamical IEI parameter applied to transfer 386 

entropy methods can inform the directional interactions between M1, S1, and PPC. Generally, we found 387 

the lowest connectivity between the three cortical areas during rest, and this confirmed that the metrics 388 

extracted from these areas indeed characterized movement-related activities (Error! Reference source 389 

not found.Figure 5A-C). Here, we also found a stronger directional flow during FV than BP movements 390 

from S1 to PPC (p=0.01), and from S1 to M1 (p=0.08) (Figure 5Error! Reference source not found.D). 391 

When we further segmented the movements by force dynamics, we observed the strongest connectivity 392 

when force was accelerated than when decelerated (Figure 5Error! Reference source not found.E-G), 393 

and the difference was most pronounced during FV movements.  394 

 Also, given the conceptualization of a directional flow from M1 to PPC during movement to 395 

represent an efference copy (based on the internal forward model of movement (8–10)), we do observe 396 

higher TE values during FV (M=7e-4, n=8) and BP movement (M=6.7e-4, n=8) than during rest (M=3e-4, 397 

n=8) (Figure 5Error! Reference source not found.A). Although there was no difference between FV and 398 

BP movements (p=0.7), we do find difference when force is accelerated than when decelerated during 399 

FV (p<0.01).  400 

Lastly, we also examined other pairwise directional flow among the three cortical areas but did 401 

not find difference between the FV and BP movements (S4 Figure). However, when we further 402 
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segmented the movements by force dynamics, we generally find a stronger connectivity during 403 

accelerating FV than decelerating FV movements – specifically from M1 to PPC (p<0.01) and PPC to M1 404 

(p<0.01), from M1 to S1 (p=0.02), and from S1 to PPC (p<0.01) (S4 Figure). Such difference in force 405 

dynamics is muted during BP movements, and the only difference is found in the direction from M1 to 406 

S1 (p=0.02) (S4 Figure). We also examined the optimal lag values when TE was maximal for each 407 

participant, and found that the majority exhibited this lag to be at 2.5ms, and often at around 10ms (S5 408 

Figure). Overall, we find the connectivity between M1, S1, and PPC to be higher during movement than 409 

rest, higher during FV than BP movements, and higher during accelerating than decelerating 410 

movements.  411 

  412 

 413 

Figure 5. Directional connectivity of the dynamical IEI compared across movements with different sensory goals (top; A-D) 414 
and further segmented by force dynamics (bottom; E-G).  415 

A. Directional connectivity is assessed with transfer entropy from M1 to PPC, B. from S1 to PPC, and C. from S1 to M1. They all 416 
show lowest connectivity during rest, confirming that these represent movement-related interactions. D. The connectivity 417 
between S1 and PPC, and S1 and M1 is higher during FV than BP movements. E. Directional connectivity from M1 to PPC, F. 418 
from S1 to M1, and G. from S1 to M1, was examined by further segmenting movements by accelerating force (FV+, BP+) and 419 
decelerating force (FV-, BP-). Generally, connectivity is strongest when force is accelerated, and is most pronounced during FV 420 
movements. *p<0.05, **p<0.01, t p<0.1   421 

Discussion  422 

We demonstrate a novel methodology of characterizing goal-oriented movements with differing 423 

goal modality (i.e., visual versus proprioceptive goal), conceptualizing that the irregularity in IEI reflects 424 

active new information processing. We do this by harnessing the moment-to-moment variability in the 425 

gamma band-pass filtered ECoG signals, and thereby capturing the nonstationary and nonlinear 426 

features. We also show how the dynamical IEI changes can inform us of the directional connectivity by 427 

providing exploratory results. Specifically, we find the connectivity to be strongest during a visually 428 

guided goal-oriented movement (FV) with accelerating force (FV+), and weakest during rest. We also 429 
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show preliminary empirical evidence of an efference copy using this parameter, as we find a strong 430 

connectivity from M1 to PPC during movement.  431 

We emphasize that using a nonstationary parameter (i.e., gamma IEI) and its dynamical changes 432 

allow us to characterize the activity within a local cortical area, and can inform us of the interactions 433 

within the motor control network (i.e., M1, S1, PPC).  Conventional ways of capturing information 434 

processing entail searching for an increased oscillatory power, but these do not reflect the dynamical 435 

and nonstationary features of the brain signals. Indeed, we show that a conventional power spectrum 436 

method fails to differentiate the two movement types (FV and BP) (shown in S1 Figure). With prior 437 

knowledge on the role of M1 and S1 in regards to proprioceptive information processing, and PPC on 438 

visuo-motor processing, we demonstrate that the irregularity in gamma IEI reflects such local activation 439 

of information processing, and captures the finer differences in sensory processing. This is possible 440 

because we are reflecting the dynamical and nonstationary features of cortical activity, by relaxing the 441 

stationarity and linearity assumptions while harnessing the moment-to-moment variability of the 442 

oscillatory ECoG signal. Such attempts are absent in the conventional epoch-based analyses, because 443 

these methods involve averaging out the moment-to-moment variability with the general assumption 444 

that the cortical electrophysiological signal follows a stationary Gaussian distribution. We also highlight 445 

that our novel method provides a way to overcome the inherent difficulty in assessing the gamma band 446 

signal which has a low signal-to-noise ratio. This is possible because we are extracting large amounts of 447 

data, and thus increasing the statistical power. For instance, the moment-to-moment variability in the 448 

IEIs yield in the magnitudes of 3000 data points per 1-minute recordings (3000 data points = 1000ms / 449 

Average IEI 20ms * 60 seconds). For such a short amount of time, our method provides a large dataset 450 

to analyze and thus compensate for the low signal-to-noise ratio. This is indeed a large merit compared 451 

to common characterization methods like machine-learning, which require a very long time of data 452 

collection and training. Moreover, the interpretability of our method (e.g., demonstrated by directional 453 

connectivity) provides an added benefit compared to the common machine-learning methods, as these 454 

do not provide much knowledge on the interactions that occur within the cortical network.  455 

 We interpret the irregularity of the gamma IEI to reflect the relative attention of new 456 

information processing. In fact, when we hypothesize that BP movement would involve more 457 

proprioceptive information processing in the M1, we assume that given a limited capacity of attention, 458 

proprioceptive information would be weighted (attended to) more than the VM information, and that 459 

the irregularity in M1 would reflect such difference (Figure 6A). Because FV and BP movements require a 460 

similar linear trajectory of hand movement (but (38)), we assume that the proprioceptive information 461 

itself would be similar between the two movements. For that reason, the irregularity in M1 signal would 462 

not reflect the amount of proprioceptive information processing per se, but rather how much attention 463 

is devoted towards that information processing.  464 

 Still, we provide alternative interpretations for the observed differences.  One possibility is that 465 

the difference may reflect the level of physical effort to execute the two types of movement. This is 466 

because the FV movement required the participant to reach up against gravity, and BP movement to 467 

move towards gravity. This is a limitation of an intraoperative setting, where the awake patient had to 468 

lie supine, and was inevitably required to move up against gravity to reach a visual goal. If the difference 469 

in irregularity is due to such differing levels of physical effort, however, higher irregularity would mean 470 

involving less physical effort, as BP movements showed higher irregularity in M1 than FV movements. 471 
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However, the irregularity was found to be the lowest during rest, implying that the level of irregularity is 472 

not likely to depend on the level of physical effort (Figure 6A).  473 

 474 

 475 

Figure 6 . Schematic organization of the motor control network.  476 

A. Under the relative attention model (Attention), we conceptualize that the irregularity of M1 signal reflects the increased 477 
attention to proprioceptive information. We argue that higher irregularity in M1 during BP movement does not reflect a lower 478 
physical effort (Effort), because the irregularity is lowest during resting state and highest during BP movements, and physical 479 
effort is highest during FV movement. B. Stronger connectivity within the motor control network are found during FV 480 
movement (requiring more VM processing) than BP movement and the least connectivity during resting state. We also find 481 
stronger connectivity when force is accelerated than decelerated during both FV and BP movement. We speculate this level of 482 
connectivity to reflect an organization where the connections strengthen according to the developmental order of neuromotor 483 
control – where automatic functions develop first, and goal-oriented movements develop later, and movements exerting low-484 
level force develop first, and those exerting more force to develop later.     485 

Another possible reason for the difference in irregularity between FV and BP movements may 486 

simply be due to the different risks associated with the movement. That is, FV movement involves 487 

reaching for an external target and does not entail much risk to harm oneself, leading the movement to 488 

be more forceful. On the other hand, BP movement involves the risk of hitting oneself in the face, as this 489 

is moving against the natural momentum of gravity, and thus require more control and “braking” along 490 

the way. For that reason, the difference in irregularity may reflect the accelerating forces in movement, 491 

that is modulated by risks involved. However, when we compared the irregularity across movements 492 

involving different force dynamics (i.e., accelerated FV versus decelerated FV movement, accelerated BP 493 

versus decelerated BP movement, shown in S6 Figure), we did not see much difference. For that reason, 494 

we argue that the irregularity in gamma IEI would most likely reflect the general level of attention, 495 

rather than the force generated by the hand.  496 

In order to demonstrate the use of the dynamical Gamma IEI parameter, we provided 497 

exploratory results of the motor network’s cortical connectivity using transfer entropy methods. Here 498 

we found the strongest connectivity during accelerated FV movement and the least during the resting 499 

state. This implies that the motor network strengthens its connection when it exerts a higher level of 500 

neuromotor control. Here we assume that the FV movement involves the highest level of neuromotor 501 

control (14,39), as it integrates information from the external world along with its internal body (i.e., 502 

both visuo-motor and proprioceptive information processing), whereas the BP movement mainly 503 

processes information from within the internal body. We also assume that accelerated movement 504 

involves more control, as a higher level of force is exerted than when it is decelerating. It is possible that 505 

such varying connectivity strength reflects the order of neuromotor development, because we speculate 506 

that the motor network is weakly connected at birth, when simple autonomic activities are mainly 507 
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executed. As one matures and exerts more goal-directed movements that require a higher level of 508 

neuromotor control, the motor network would strengthen its connectivity (Figure 6B). Nevertheless, we 509 

caution that this varying level of connectivity strength may be due to the levels of physical effort. In fact, 510 

the stronger connectivity found during accelerated movements compared to decelerated movements 511 

support such reasoning. For that reason, in a follow up study, it will be helpful to have a control 512 

condition where a FV movement would not be physically effortful. This would be possible to do within a 513 

sitting environment, using an EEG or MEG.   514 

We also found stronger connectivity from M1 to PPC during movement compared to rest, which 515 

is a potential empirical evidence of an efference copy from the forward models of motor control (e.g., 516 

reafference-cancelling model (8), internal forward model (9)). These models postulate that predictive 517 

codes are sent from M1 to PPC to forecast the resulting sensations of self-generated movements, 518 

thereby provide a better control of one’s movement. In the past, a common empirical evidence of an 519 

efference copy has been sensory attenuation (40–42) during active self-generated movement compared 520 

to passive movement. Here, we provide a different angle of evidence, where we directly show a 521 

stronger informational flow from M1 to PPC during self-generated movements. Interestingly, such 522 

connectivity does not distinguish the two movement types – FV and BP - implying that the efference 523 

copy may be indifferent to sensory goal modality. On the other hand, we do find a stronger mutual 524 

connectivity between M1 and PPC during accelerated FV movement compared to decelerated FV 525 

movement. We speculate that the efference copy may not distinguish the finer differences in sensory 526 

processing, but may instead distinguish the force generated by the end-effector. This may be why we 527 

see the difference during movement versus non-movement.  528 

However, we warrant several limitations to these claims. The location of the PPC channel across 529 

participants were not consistent. Within the broad region of PPC, some participant’s PPC contacts were 530 

more superior (vs. inferior) and some were more posterior (vs. anterior). Given that the PPC has 531 

differing functional zones (22,43), among which includes postural information processing (44,45), it is 532 

indeed important to record from the precise functional region for reaching and consistently across 533 

participants. However, due to the limited timeframe during an awake DBS surgery, achieving a precise 534 

and consistent placement of the ECoG strip across patients entails clinical risk. Another limitation is that 535 

passive movements were not examined as a control condition. For that reason, it is possible that 536 

information flow from M1 to PPC is merely reflecting proprioceptive information processing that occurs 537 

during any movement, regardless of whether it is active or passive. If that is the case, this connectivity 538 

finding may not be a relevant evidence for an efference copy, but rather a simple explanation of how 539 

the brain detects movement. In a follow up study, it will be helpful to verify this by having a passive 540 

movement condition.  541 

As a last point of discussion, contrary to our hypothesis, we find M1 to be more active in 542 

proprioceptive information processing (i.e., show larger difference in irregularity between BP and FV 543 

movement) than the S1. We originally hypothesized that S1 would show a larger difference between the 544 

two movements, as we assumed S1 to reflect more active proprioceptive processing. Although we know 545 

that both M1 and S1 are involved in processing proprioceptive information, the results indicate that M1 546 

may be more active in processing such information than S1. We conjecture that since there’s a stronger 547 

flow of information from S1 to M1 during movement, perhaps S1 is a general receiving site for 548 

continuous bodily information, whereas M1 is where select information pertaining to movements are 549 
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processed. Due to its selectivity, perhaps this is why there is a larger differentiation between the two (FV 550 

and BP) movement types.  551 

We acknowledge that the small sample size of 8 participants and the clinical diagnosis of the 552 

sample (essential tremor) limits the generalizability of this study. These are factors inevitable to invasive 553 

recordings on human participants, as the population size that would undergo such invasive recording is 554 

small to begin with. However, we point out that a single data point summarized for each participant is 555 

based on a very large dataset (appx 2500 datapoints) from that person, and is thus a summary statistic 556 

with high statistical power on its own. Still, the data was obtained from essential tremor patients, who 557 

have impairment in movement, and we do not know how much of these can be generalized to the 558 

neurotypical population. To that end, it would be helpful to verify this with the neurotypical population 559 

using high density EEG in a follow-up study.   560 

In summary, we introduce a novel methodology that utilize the instantaneous gamma frequency 561 

(i.e., Gamma IEI) parameter in characterizing goal-oriented movements with different sensory modality, 562 

and demonstrate its application to reveal the directional connectivity within the motor cortical network. 563 

This was possible because we relaxed the stationarity and linearity assumption, and captured the 564 

dynamical changes by harnessing the moment-to-moment variability from the oscillatory cortical 565 

signals. Through this method, we demonstrate how the irregularity in the gamma IEI informs the state of 566 

active new information processing, and how applications to transfer entropy methods can inform the 567 

directional connectivity within the motor network.  568 
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Supporting Information  570 

S1 Table. Demographics   571 

PID Age Gender ECoG side Moving Hand Handedness 

P1 76 M R L Both 

P2 82 F R L R 

P3 48 M R L R 

P4 45 F L R R 

P5 75 M L R Both 

P6 73 F R L R 

P7 71 M R L R 

P8 63 M R L R 

  572 
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 573 

S1 Figure 574 

Oscillatory power does not differentiate between FV and BP movements in M1 and PPC. Power spectrum was computed per 575 
1-second, and normalized (z-score) across time for each frequency (1-100Hz) using the BOSC toolbox (32), and plotted after 576 
averaging the z-scores per frequency and per movement type (red- FV, forward visually-guided; blue- BP, backward 577 
proprioceptively guided; green-rest). A. Normalized power spectral difference between FV and BP movements (left), FV and 578 
rest (middle), BP and rest (right) in M1, and B. in PPC. Data show mean values  s.e.m. from nch = 8. Horizontal bars indicate 579 
significant differences using the Wilcoxen signed rank test for zero median (green- p<0.05, uncorrected; red-p<0.05/8 580 
Bonferroni corrected) C. Normalized power spectrum for each participant (P1-P8) in M1, and D. in PPC. Shaded area represents 581 
s.e.m. of the normalized z-score per frequency. Gamma band is generally increased during movement within M1, but do not 582 
distinguish between FV and BP movements, and gamma band power does not characterize movement in PPC, nor distinguish 583 
the FV and BP movements.   584 
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 585 

S2 Figure  586 

Kinematics during a representative participant’s reaching task. In order to distinguish FV and BP movements, angular speed 587 
(top) and angular velocity across z-axis (bottom) were examined together. The minima within angular speed (marked in blue 588 
and red) informed the time when the participant’s finger reached either the clinician’s finger or one’s own chin. The angular 589 
velocity zero-crossings informed of whether the goal was the finger or chin, such that when the value changed from negative to 590 
positive, this would indicate the chin; when the value changed from positive to negative, this indicated the finger reached the 591 
clinician’s finger.  592 
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 594 

S3 Figure  595 

A. For exploratory purpose, we examined the AI when the 2 time windows were shifted by 20 ms, instead of 5ms shown in 596 
Error! Reference source not found.. We see a similar pattern of results with statistical pattern for M1, B. S1, and C. PPC, and D. 597 
their differentiation between FV and BP movements. E. Because entropy is an important feature of AI and TE metrics, we also 598 
examined the general entropy measure in M1, F. S1, and G. PPC, and H. their differentiation between FV and BP movements. 599 
Generally, we find the resting state (R) to show lowest entropy (i.e., most predictive) and this is in line with what we show in 600 
the Results. However, entropy is higher (i.e., more irregular/surprise) during FV movement in M1, and lower in PPC during BP 601 
movements, which is in contrast to what we show in the Results section. We interpret that the entropy measure we show here 602 
reflects an aggregate IEI stochasticity, whereas the analytics we introduce reflect the dynamical changes in the IEI’s. For that 603 
reason, we consider a general entropy metric to be capturing something different, but is beyond the scope of this study.   604 
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 606 

 607 

S4 Figure  608 

A. We examined the TE’s of all directional combinatorial pairs of the three cortical areas, and did a pairwise signed rank test to 609 
compare FV and BP movements. With the exception of S1 to M1, and S1 to PPC, all other directional paired flow do not 610 
distinguish the two movement types – FV and BP. B. When we further compare between accelerated FV (FV+) and decelerated 611 
FV (FV-) movements, generally there is a stronger connectivity during FV+ than FV-. Specifically, we found a stronger mutual 612 
connectivity between M1 and PPC, from S1 to PPC, and from M1 to S1. C. When we compared between accelerated BP (BP+) 613 
and decelerated BP (BP-) movements, the difference in connectivity was muted than during FV movement, with only significant 614 
difference from M1 to S1. *p<0.05, **p<0.01.  615 
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 617 

S5 Figure  618 

A. Transfer entropy at delays varying from 2.5 to 30ms for each participant (P1-P8) for M1 to PPC, B. S1 to M1, and C. S1 to PPC. 619 
In general the peak TE values occur early at around 2.5ms, but occasionally occur at around 10ms.  620 
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 622 

  623 

S6 Figure  624 

Irregularity of Gamma IEI does not differ between movements with different force dynamics.  625 

A. Mean IEI (ms) does not differ between accelerated FV (FV+) and decelerated FV (FV-), and does not differ between 626 
accelerated BP (BP+) and decelerated BP (BP-). B. Correlation between the Gamma cycle IEI and amplitude does not differ 627 
between FV+ and FV-, and between BP+ and BP- in M1 (left), S1 (middle), and in PPC (right). C. Auto-information (AI) does not 628 
differ between FV+ and FV- in M1 (left), S1 (middle), and PPC (right).    629 
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