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Abstract

Background - Goal-directed movements involve integrating proprioceptive and visuo-motor information.
Although the neural correlates of such information processing are known, the details of how sensory-
motor integration occurs are still largely unknown.

Objective — The study aims to characterize movements with different sensory goals, by contrasting the
neural activity involved in processing proprioceptive and visuo-motor information. To accomplish this, we
have developed a new methodology that utilizes the irregularity of the instantaneous gamma frequency
parameter for characterization.

Approach - In this study, 8 essential tremor patients undergoing an awake deep brain stimulation (DBS)
implantation surgery repetitively touched the clinician’s finger (forward visually-guided/FV movement)
and then one’s own chin (backward proprioceptively-guided/BP movement). Neural electrocorticographic
(ECoG) recordings from the motor (M1), somatosensory (S1), and posterior parietal cortex (PPC) were
obtained and band-pass filtered in the gamma range (30-80Hz). The irregularity of the inter-event
intervals (IEl; inverse of instantaneous gamma frequency) were examined as: 1) correlation between the
amplitude and its proceeding IEl, and 2) auto-information of the IEIl time series. We further explored the
network connectivity after segmenting the FV and BP movements by periods of accelerating and
decelerating forces, and applying the IEI parameter to transfer entropy methods.

Results - Conceptualizing that the irregularity in IEl reflects active new information processing, we found
the highest irregularity in M1 during BP movement, highest in PPC during FV movement, and the lowest
during rest at all sites. Also, connectivity was the strongest from S1 to M1 and from S1 to PPC during FV

movement with accelerating force and weakest during rest.

Significance - We introduce a novel methodology that utilize the instantaneous gamma frequency (i.e.,
IEl) parameter in characterizing goal-oriented movements with different sensory goals, and demonstrate
its use to inform the directional connectivity within the motor cortical network. This method successfully
characterizes different movement types, while providing interpretations to the sensory-motor
integration processes.

Keywords:

Goal-directed movement, reaching, instantaneous gamma frequency, entropy, motor network,
electrocorticography (ECoG)
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Introduction

Reaching to press an elevator button (visual goal) and reaching to scratch one’s face (proprioceptive
goal) are movements that involve different sensory-motor processes. Although both biomechanical
movements engage the arm’s joints and end effector (the hand) to accomplish the end goal, the brain
must process these movements differently, because each requires different sensory processes (1-3) and
force dynamics (i.e., when to flex and extend the joint muscles) (4—7). For that reason, it is likely that
these distinct movements would be differentiated physiologically at the cortical level. However, there is
a lack of methodology of using the cortical electrophysiological signals to characterize and differentiate
these movements that are guided by different sensory goals.

A framework that explores the dynamics of goal-directed movements within the context of efferent
and afferent streams of information flow is the internal forward models of action (e.g., principle of
reafference (8), internal forward model (9,10)). In its current version, the model posits that when
planning a movement, a motor command is sent down the spinal cord, and a duplicate motor command
(termed efference copy) is sent to the posterior parietal cortex (PPC) to predict the afferent
consequence of one’s self-generated movement, thus allowing for a faster and precise control.
Nevertheless, the details of how sensory motor integration is made to execute the self-generated
movement in the context of these models are still largely unknown. This is mainly because
characterization of neural activities associated with various goal-directed movement have not been
made dynamically, but instead commonly resorted to examining the grand-averaged epochs and applied
assumptions of stationarity and linearity. In fact, conventional methods like the power spectrum fails to
distinguish movements with different sensory goals (as shown in S1 Figure). Although such methods
with simplifying assumptions help to reveal certain aspects of the motor network (e.g., decreased beta
and increased gamma power during movement in (11-13)), we argue that utilizing a set of dynamical,
nonstationary, and nonlinear analytical methods can capture the finer details that are hidden in the
moment-to-moment variability (14), and therefore help to understand the mechanism behind sensory
integration and movement planning.

In this study, we aimed to characterize the neural activities associated with goal-directed
movements that involve different sensory goals. Here, we had patients with essential tremor
undergoing an awake deep brain stimulation (DBS) implantation surgery to perform a task of touching
the clinician’s finger, and then one’s own chin repeatedly (Figure 1A). We conceptualize that the forward
reaching movement of touching the clinician’s finger (visual goal) would require more visuo-motor (VM)
information processing, and backward movements of touching one’s chin (proprioceptive goal) would
require more proprioceptive information processing. During this, electrophysiological signals were
obtained using electrocorticography (ECoG) at the motor (M1), somatosensory (S1), and PPC (Figure 1B).
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79 Figure 1 Experiment setup and analytics overview
80 A. Patient participant repeatedly performed a forward movement of touching the clinician’s finger, and then a backward
81 movement of touching one’s own chin. B. ECoG strip was temporarily placed to cover the motor cortex (M1), somatosensory
82 cortex (S1) and posterior parietal cortex (PPC). Channels were bipolar referenced to capture the local activity of the
83 corresponding cortex. C. Representative participant’s electrophysiological signal at M1 (top) and its spectrogram (middle) and
84 synchronized hand movement speed. D. Angular speed of the hand during forward visually-guided (FV; red) and backward
85 proprioceptively-guided (BP; blue) movements, where time 0 is when the participant’s hand reaches the clinician’s finger. The

86 pink horizontal line represents the time when the hand is applying accelerating force, and cyan line represents time when the
87 hand is applying decelerating force. E. Electrophysiological time series data are gamma band filtered (30-80Hz), and the time
88 between the maxima (denoted in red) is a parameter of the instantaneous gamma frequency. We refer to this as the inter-

89 event-interval (IEl). F. Plausible model of the motor network in the context of the forward model of motor control. In this study,
90 we characterized the neural activities associated with different movement types using the irregularity of the dynamical IEl at
91 M1, S1, PPC. We also demonstrated how the transfer entropy of dynamical IEI’s can be applied to inform the directional flow of
92 information (denoted in orange arrows) during different movement types.

93 To characterize the neural activities during movements with different sensory goals, we extracted

94  the electrophysiological time series of when the participant performed a series of reaching tasks (Figure
95 1C), and compiled approximately 40 instances per participant (M = 41.1; SD = 11.9) of making forward
96  visually-guided (FV) movements (i.e., touching the clinician’s finger) and backward proprioceptively-
97  guided (BP) movements (i.e., touching one’s own chin) (Figure 1D). To further explore movements with
98  different force dynamics, we also segmented these into times when the patient was accelerating force
99 (i.e., when speed is increasing to its maximum) and when the patient was decelerating force (when
100 speed is decreasing to zero). From the segmented dataset, we examined the instantaneous gamma
101  frequency, which is quantified by taking the time between peaks within a gamma band filtered signal
102 (termed inter-event-interval; IEl), as it is an inverse of the corresponding gamma frequency cycle (Figure
103 1E). The use of this parameter was first introduced in rodent hippocampus signals (15), demonstrating
104  that the instantaneous gamma frequency reflects a nonlinear interplay between neural excitation and
105 inhibition of interneurons.
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Here, we compared the irregularity (i.e., less predictive) of the IEI during goal-oriented
movements with a visual goal and a proprioceptive goal, and during a resting state, at the following
cortical areas - M1, S1, PPC. Given that the gamma band power increases during movement (e.g.,
(11,12)), we hypothesize that active movement-related information processing would be characterized
within the gamma frequency band, and that the magnitude of IEl irregularity would characterize the
extent of such information processing. Specifically, we hypothesize the following (Figure 1F) - 1) M1
serves a critical role in executing movements (16), but also in integrating proprioceptive information
(17). Given the dual role of movement execution and proprioceptive information processing, we
hypothesize that M1 would show more irregularity during proprioceptive goal-oriented movement (i.e.,
BP movement) than a visual one (i.e., FV movement). 2) Since the S1 serves an important role in
processing cutaneous and proprioceptive information processing (18), and given its strong connection to
M1 (19), we hypothesize that it would exhibit a similar pattern as M1, but with a larger difference in
irregularity between proprioceptive (BP) and visuo-motor information (FV) processes. 3) PPC has been
well known to integrate visuo-motor (VM) information (20—22) at the intersection of motor and visual
cortices. For that reason, we hypothesize that higher irregularity would be found during a visual goal-
oriented movement (FV) than during a proprioceptive-goal oriented movement (BP). In addition, for
exploratory purpose, we demonstrate the use of applying the IEl's to transfer entropy (TE) metrics to
understand the directional flow of information during goal-oriented movements (Figure 1F).
Specifically, we show how the TE values vary across movements involving different sensory goals and
force dynamics.

We highlight that this is a novel computational method of using the instantaneous gamma
frequency (i.e., dynamical IEI) parameter in human ECoG signals to characterize neural activities
associated with movement types with different sensory goals and force dynamics. This is possible
because we relax the conventional assumptions of stationarity and linearity, and instead harness the
moment-to-moment fluctuations of electrophysiological signals. Note, compared to conventional
machine-learning methods that characterize movements (e.g., (23-25) ), the strength of this novel
approach is that it provides interpretations of neural activity, which we demonstrate with transfer
entropy applications in this study.

Materials and Methods

Participants

Eight patients with essential tremor (demographics in Table S1), undergoing a bilateral or
unilateral implantation of deep brain stimulation (DBS) leads targeting the ventral-intermediate nucleus
(ViM) of the thalamus, were included in this study. All participants provided written consent approved
by the institutional review board at the University of California, Los Angeles.

Behavioral Task

In a single block, each participant was lying on the surgical bed, and was asked to raise the hand
and posture for 30 seconds. Then, the participant was asked to touch the clinicians’ finger located within
an arm-length, and then to touch one’s own chin repeatedly 10 times in a self-paced manner (FV angular
speed Mdn = 1.6 deg/s; BP angular speed Mdn = 1.8 deg/s; details in Figure 3A) (Figure 1A).
Subsequently the participant rested for 30 seconds, then started another block. 6 participants
performed 4 blocks, and 2 participants performed 5 blocks in total. The entire study took approximately

5
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147 7 minutes (Figure 1C). From here on, we refer to the movement of touching the clinician’s finger as a
148  forward visually-guided (FV) movement, as it requires a visual goal, and the movement of touching one’s
149  own chin as a backward proprioceptively-guided (BP) movement, as it requires a proprioceptive goal.

150 Here, we assume that the FV movement prioritizes visuo-motor information processing over
151 proprioception, as they require attention to the visual goal, and the BP movement prioritizes

152 proprioceptive information, as they require attention to the proprioceptive goal. Hence, when we
153 mention “more information is involved”, we are referring to the relative priority/attention to the
154  corresponding sensory information.

155  Surgery and data acquisition

156 The recordings were made intraoperatively in an awake DBS surgery, during which an ECoG strip
157 (8 channels with 1cm spacing; AdTech Medical, USA) was temporarily inserted subdurally via the burr
158 hole made for DBS implantation for the purpose of research (26-28). For patients targeting the ventral
159 intermediate (ViM) of the thalamus bilaterally, the ECoG strip was implanted through the right frontal
160  burr hole; and for those targeting unilaterally, the ECoG strip was placed through the ipsilateral side of
161 the burr hole. The burr hole was located at or approximately 1 cm anterior to the coronal suture (3to 5
162  cm anterior to the central sulcus), and the ECoG strip was inserted posteriorly to cover the central

163  sulcus. After all DBS leads were implanted, a lateral/sagittal fluoroscopy image was acquired, which

164 showed the location of the ECoG strip along with the DBS leads.

165 For all participants, local field potentials (LFP) at the ViM of the thalamus (DBS target) and ECoG
166 signals at the M1, S1, and PPC were recorded using a Matlab/Simulink software connected to an

167  amplifier (g.Tec, g.USBamp 2.0). The signals were sampled at 4800Hz, and applied with a built-in 0.1Hz
168 high band-pass and 60Hz notch filter. The ground and reference signals were obtained with a scalp

169 needle inserted near the burr hole. For the purpose of this study, we analyzed the cortical signals

170  obtained from the ECoG.

171 The participants’ kinematic signals were acquired with 2 opal inertial measurement unit (IMU)
172 movement sensors (APDM, USA), then registered and sampled at 128Hz with the Motion Studio

173  software (APDM, USA). The sensors were strapped on the moving hand and wrist. Here, we examined
174  the wrist sensor’s angular velocity (deg/s) to extract the timing of differing movements (S2 Figure). Note,
175  for the purpose of extracting the timing, we chose the wrist sensor (as opposed to the hand), as it is less
176  susceptible to tremor. To temporally co-register the electrophysiological and kinematic signals, we used
177  an external synchronization equipment (APDM, USA) that sent a digital output trigger to the

178  electrophysiological signal amplifier to indicate the timing of the start and end of recording.

179  Analysis

180  Preprocessing

181 With the aim of analyzing the motor (M1), somatosensory (S1), and posterior parietal cortex
182 (PPC), we needed to anatomically localize the ECoG strip that was temporarily inserted during the

183 surgery. To do this, we combined the pre- and post-operative CT scans and co-registered to the

184  preoperative structural MRI, along with the lateral fluoroscopy image that showed the ECoG strip and
185 implanted DBS leads. This method is adopted from (29), and details are further elaborated in our prior
186  publications (30,31). Based on the visualized localization (Figure 1B), we identified the 2 closest channels
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that overlay the three cortical areas - M1, S1, and PPC - and bipolar-referenced those signals to capture
the local activity in the three regions.

We visually inspected for electrical artefacts that showed clear evidence of artifact, based on an
acute change in amplitude lasting more than 2 seconds, but did not find such segments. We also
examined the power spectrum using the BOSC algorithm (32) at individual frequencies from 1 to 100Hz
with 1Hz step width, and 6 order wavelets. The power time series were normalized by z-scoring each
frequency over the entire recording (approximately 7 minutes) per cortical site (Figure 1C; S1 Figure).
Here, we confirmed an increase in gamma power (>30Hz) during movement for all participants at the
motor cortex, consistent with prior findings (e.g., (11,28)).

In order to segment data for the times when the participant is performing a forward visually-
guided (FV) movement, backward proprioceptively-guided (BP) movement, and at rest, we extracted the
angular velocity of the wrist sensor, and computed the Euclidean norm to obtain a scalar angular speed.
The angular speed profile informed us of when the participant reached the clinician’s finger, or one’s
own chin, because the speed was near 0 (deg/s) at those times. These would define the timing of the
start and end of either the FV or BP movement. The angular velocity along the z-axis informed us of the
target that the participant has reached when the angular speed was near 0 (Figure 1D; S2 Figure).
Specifically, the direction of the angular velocity along the z-axis at zero-crossing points would inform us
of the target. If the angular velocity changes from negative to positive, it has reached the chin, and when
it changes from positive to negative it has reached the clinician’s finger. For some patients, their hand
hovered around the clinician’s finger during the FV movements to precisely reach the finger for about 1
second or less. In these cases, we excluded those short moments of hovering, as this may be due to
tremor and/or the clinician’s inadvertent moving (S2 Figure). To obtain the data during the resting
period, we extracted the resting datasets (where angular speed is continuously near 0), and truncated
the first 5 and last 5 seconds of the resting period within each block, to avoid any effect from movement
preparation and/or change.

We separated the M1, S1, and PPC time series by movement types - FV movement, BP
movement, resting - and then gamma band-pass filtered the signal (30-80Hz, 200" order zero-phase,
transition width 0.2, FIR). From the band-passed signal, maxima were identified (Figure 2A), and the
time between two sequential maxima were defined as the inter-event intervals (IEl). In the following
sections of analytics, we introduce three novel analytics that utilize this IEl parameter to characterize
the different types of goal-oriented movements.
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Flgure 2 Analytics pipeline

A. ECoG signals were gamma band-pass filtered (30-80Hz) and the maxima were identified to compute the inter-event-interval
(IE1). B. As a first set of analytics, IEl and its corresponding amplitudes were extracted. C. Correlation was computed for the
paired dataset of IEl and amplitudes, for all movement types, per participant. D. We conceptualized that high correlation from
C. exhibits a largely synchronized signal where the IEI and amplitude values are predictive. Conversely, low correlation would
exhibit a more random irregular signal. E. As a second set of analytics, within 1-second time window, the IEls were extracted
and compiled (X), and this window was shifted by 5ms and again, IEIs were extracted and compiled (X4). F. The PDF of X and Xq4
obtained from E. along with its JPDF were plotted, to compute the mutual information to characterize irregularity in the signal.
We term this auto-information (Al). G. Al values were compiled and the means were extracted per movement types and per
participant. H. As a last set of analytics, where we aim to see the directionality between M1, S1, and PPC, we created a binary
spike train, where the maxima from A. are assigned 1, and the rest assigned as 0. I. Transfer entropy (TE) was computed pair-
wise to assess the directional connectivity between two cortical areas, with lags varying from 2.5ms to 75ms. J. Maximal TE
value was extracted within the varying lag values, per movement type (by sensory goals and force dynamics), and per
participant.

Correlation between amplitude and IEI

Within a gamma band-pass filtered time series waveform, we identified a series of gamma
cycles (i.e., valley with two maxima and one minimum in between) to extract the amplitude and IEI,
where the amplitude is defined as the difference between the minimum and the subsequent maximum
(Figure 2B). We compiled a set of paired data, comprised of amplitudes and the corresponding IEls, and
computed the correlation between the two (Figure 2C). For all participants, each movement types
yielded approximately 2500 pairs of data to compute the correlation. Prior literature has shown positive
correlation between the amplitude and IEls within gamma cycles (15,33,34), and a recent study
demonstrated how such positive correlation is expected in waveforms that contain a 1/f structure (34).
Indeed, for all participants, statistically significant (p<0.01) positive correlation was found in all
movement types within the range of 0.1 to 0.45 in all cortical areas.

We aimed to compare the magnitude of correlation across different movement types, using a
paired Wilcoxon signed-rank test across all 8 participants. Here, we assume that largely synchronized
signals are highly correlated, and asynchronous signals are less correlated, and that low correlation
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characterizes new information actively being processed (Figure 2D). Note, the gamma band power is not
sufficient to differentiate and characterize the FV and BP movements, as shown in S1 Figure.

Auto-information across IEls

Another way to characterize movements with a visual goal and a proprioceptive goal, is to
compute the mutual information (based on information theory; (35)) between two sequential time
windows from a single time series. We refer to this as auto-information (Al) (conceptually similar to
auto-correlation). Specifically, we down-sampled the data from 4800Hz to 400Hz, and concatenated all
trials within the same movement type into a single time series. These were then gamma band-pass
filtered, yielding a series of IEI's (Figure 2E). Per 1 second time window, these IEls were plotted on a
discrete probability distribution function (PDF) with a range spanning from 2 frames (5ms = 2 / 400hz) to
14 frames (35ms = 14/400hz). This 1 second time window was then shifted forward by 2 frames (i.e.,
5ms), and IEl's from this window were plotted again on a PDF. Then, with the same bin size of 1 frame
(2.5ms), a joint PDF between these two time windows were plotted (Figure 2F). We chose to down-
sample the data to 400hz, because the minimum IEl was found to be 2.5ms based on the 4800hz gamma
filtered data, and the duration of a single frame within a 400hz data equals 2.5ms. Also, we chose the
time window length as 1 second, because this was the shortest time length to gather sufficient IEl
datapoints (approximately 100) to produce a meaningful frequency distribution. We chose the shift size
of 2 frames (5ms) since this would be a short enough time shift to capture the changing IEls (as the
shortest IEl is 2.5ms). Given the obtained two single probability distributions, and the corresponding
joint probability distribution, we computed the auto-information (i.e., mutual information) with the
following formula (35):

Lyy = HX) + H(YY) — H(X,Y)

HX) - HX|Y)

ny(xi'Yj)

_ where
Py (x)Py(v;)

2 Pyy (x; 'Yj) log,

XiYj

HOO = = ) PGlogsP(x)

HX|Y) = Z Py(y))H(X|Y = y;)

Yij

PXY(xiij)

- Z Prr G yploga —p 003
J

Xi¥j

Function H is an entropy function, X is the IEl variables from the first time window, Y is the IEl variables
from the subsequent (shifted) time window, i and j are IEl bins ranging from 2 (frames) to 14 (frames).
The details of this mathematical derivation in the context of neuroscience is well explained in (36).
Overall, this Al metric represents a stochastic dependency between the two sets of variables X and Y. If
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the stochasticity of the two sequential time windows were highly dependent on each other, they would
yield a high Al value; and if the two were entirely independent, the Al value would equal 0.

We computed the Al (i.e., mutual information between the two sequential time windows shifted
by 5ms), then shifted these two sets of windows by 10% (100ms) and computed the Al values again. This
resulted with approximately 400 Al values per movement type for each participant. For comparison, we
took the mean of these approximately 400 Al values (Figure 2G), then compared the means between the
different movement types using a paired Wilcoxon signed-rank test across all 8 participants.

Transfer entropy

Lastly, we introduce how the instantaneous gamma frequency (i.e., dynamical IEl) can be
applied to understand the directionality of pairwise informational flow within the three cortical areas
(M1, S1, PPC) during different movement types. Note, for the purpose of exploration, we separated the
datasets by sensory goals (i.e., FV, BP, rest), and further segmented them by force dynamics. That is, for
each FV and BP movement, these were segmented by times when force was accelerating (time when
angular speed changes from zero to its maximum) and when the force was decelerating (time when
angular speed changes from its maximum to zero) (Figure 1D).

With these segmented datasets, we created a binary spike train for each movement types, and
computed the transfer entropy (TE) between each pair of cortical areas. Specifically, we down-sampled
the data from 4800Hz to 400Hz, concatenated all trials within the same movement type into a single
time series (amounting to approximately 45 seconds per movement type), then gamma band-pass
filtered the data. Then we identified the indices when the peaks occurred, and created a binary spike
train where the maxima indices were assigned the value 1, and the rest were set to 0 (Figure 2H). Per a
single movement type time series data (with an approximate total length of 45 seconds), we found
approximately 2500 spikes. These were then used to compute a set of delayed TE using the toolbox
developed by (37), where the following formula was used to compute the transfer entropy of |
preceding I with d delay :

(it+1 |it'jt+1—d)

TE]—V(d) - Zp(itﬂ’it’jtﬂ_d)logz p(ie1lic)

Jand I corresponds to 2 cortical areas, i; is the binary value at time t (i.e., frame t), and d is the delay
period. This metric essentially measures how much prediction of I is improved, when we know the past
values of I from 1 frame (2.5ms) ago and J from d frames ago, as opposed to knowing just I from 1
frame (2.5ms) ago (Figure 2l). Here, we examined the TE values at delay periods 1 to 30 frames (i.e.,
2.5ms to 75ms) in 1 frame (2.5ms) increment, and extracted the maximal TE value within such range of
delay period (Figure 2J).

We compiled these maximal TE values per movement types, for each participant. We then
compared across movement types using a paired Wilcoxon signed-rank test across all 8 participants for
the following directions — M1 to PPC, S1 to PPC, and S1 to M1.

Results
As a first step, we compared the mean angular speed of the hand during the forward visually-

guided (FV) (M = 1.94, n=8) and backward proprioceptively-guided (BP) (M = 1.89, n=8) movements, and
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confirmed that they were not different (p=0.92) (Figure 3A). In addition, we examined the mean IEls
during the three movement types — FV, BP, Rest - and found the values to be highest during rest in all
cortical areas (Figure 3B-D). Furthermore, IEls were lowest during BP movement in M1, and lowest
during FV movement in PPC. Although such findings may imply that the mean IEls may be a sufficient
metric to characterize the three movement types, we found the frequency histogram of the IEls in M1
and PPC to roughly exhibit a bimodal distribution (Figure 3E-F). Note, the Hartigan's dip significance test
of the distributions’ unimodality had shown p-values ranging from 0.03 to 0.08. This bimodality is due to
an artefact of applying the 60hz notch filter, which was an inevitable limitation to the study
environment. For that reason, given the bimodality, we deem the mean IEl values to be a limiting metric
for characterization, and thus rely on the dynamical changes in the IEls to be more appropriate to
characterize the different movement types.

A Mean Angular Speed M1 Mi FV
o [ L — 300
2
= T 9 z BP
3 9 —— £ § 300
o -
& = £ 0
5 bl 200 Resting
1 17
FV BP FV BP R 0
5 IEl{ms) 40
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) ¥* . iy ¥ ¥ " —
’ 2 = AT e
* %
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a n z BP
— w
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16
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Figure 3 Mean angular speed and IEI

A. Mean angular speed during forward visually-guided (FV) and backward proprioceptively-guided (BP) movements for 8
participants. B. Mean IEIl during FV and BP movement, and rest (R) for all 8 participants in M1, C. in S1, and D. in PPC. E.
Frequency distribution of IEI’s from a representative participant during FV (top) and BP movement (middle) and rest (bottom) in
M1, F. and in PPC. The distribution is slightly bimodal, indicating that the mean as a summary statistic is not optimal to
characterize the differing movement types. *p<0.05, **p<0.01

Low correlation of gamma cycle IEl and amplitudes characterize active

new information processing

We correlated the amplitudes and corresponding IEls per movement types (FV, BP, Rest) and
per participant, and found a positive correlation in the range of 0.1 to 0.45 (all participant and
movement type showed a significant correlation at p<0.01). We hypothesized that lower correlation
(i.e., irregularity) in the amplitudes and IEls would reflect active new information processing, such that
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M1 and S1 would show the lowest correlation during BP movement (i.e., proprioceptive information)
and PPC during FV movement (i.e., visuo-motor information); and that highest correlation (i.e., most
regularity) would be found during resting state in all cortical areas.

Assuming more proprioceptive information processing occurs in M1, as hypothesized, M1
showed a lower correlation during BP movement (M=0.31, n=8) than during FV movement (M=0.33,
n=8) (p=0.04, paired Wilcoxon signed-rank test; Figure 4A). Also, assuming resting state to be associated
with the least new information being processed, we found the resting state to exhibit the highest
correlation (M=0.38, n=8). In S1, we did not find differences between FV (M=0.31, n=8) and BP (M=0.30,
n=8, p=0.04) movements (p=0.3), but found the resting state (M=0.35, n=8, p=0.05) to exhibit higher
correlation compared to FV (p=0.05) and BP (p=0.04) movements (Figure 4B). In the PPC, we did not find
differences between movement types (FV vs. BP p=0.38; FV vs. Rest p=0.2; BP vs. Rest p=0.25). Overall,
we find the resting state to have the highest correlation in all three cortical areas. This strengthens our
hypothesis that irregularity in the gamma IEl is reflective of active new information processing. Note, we
also visualized the gamma band filtered signals per movement type, but such patterns of correlations
are not easily noticeable with the naked eye (Figure 4E).

B
A M1 51
05 - . T
. 04 .
E 14 = F G
8 2 0.3
ki 5 M1 §1
g 02 SN _
E 13 E i . s '_'H -
. i21 3_ __—-_—'-:"
0z 0 = <
Fv BP R v BP R
C D .
PPC correlation [FV-BP)
7 15 14
04 c 008 v BP R FV EP 2]
S 03 -] — H |
E . " PPC al [Fv-BP)
4 02 E |:| I:' T
E "‘-\_\_‘_‘_‘_\-‘-“_-_-_- o {| Q u e W {|.2 ®s _ e
o 01 e = - —
T a—
o 0.04 s =
Py BP R M1 51 PPC 4 |_‘_|
| ——
E PV [R=0.33) e 005 - I':I
Ar |'||'|r _\,lr.- _1I||L|'||'I, A A \""l,.l" W hh "_-""'I- 12 .
= AP WAty M|y v BF R Mi 51 PPC
=2 BF [R=0.25]
[
2
2%
i-z:l
g Resting (R=0.41)
g 4 ] .
[l
-20
0 Time (s} 1

Figure 4. Irregularity of IEl represented by the correlation with its corresponding amplitude, and auto-information of IEl time
series

A. Correlation between IEl and amplitudes are compared for all 8 participants between forward visually-guided (FV), and
backward proprioceptively-guided (BP) movements and rest (R) in M1, B. S1, and C. in PPC. Generally, we find the resting state
to have highest correlation. D. In distinguishing the FV and BP movements, M1 shows the largest difference. E. The variation in
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correlation across movement types are not easily visible by the naked eye. F. Al comparison for all 8 participants between
forward visually-guided (FV), and backward proprioceptively-guided (BP) movements and rest (R) in M1, G. S1, and H. in PPC. I.
FV and BP movements are most differentiable in M1 and PPC. *p<0.05, **p<0.01

Low auto-information (Al) of gamma cycle IEls characterize new

information processing

As another way to characterize the irregularity in the signal to reflect new information
processing, we computed a series of Al of the IEI stochasticity between two sequential 1s windows, that
are shifted by 5ms. Low Al would indicate more irregularity in signals (i.e., more independence from the
past) where new information is being processed, and high Al would imply a more regular signal (i.e.,
more dependence from the past).

In M1, assuming that BP movement would involve the most proprioceptive information to be
processed, as hypothesized, BP movements showed the lowest Al (M=1.82, n=8), then the FV movement
(M=1.90, n=8), and the highest Al value during resting state (M=2.07, n=8) (Figure 4F). On the other
hand, in S1, the BP movement (M=1.86, n=8) did not show difference from FV movements (M=1.88,
n=8), which is contrary to what we hypothesized (p=0.55). Still we found the highest Al during resting
state (M=2.02, n=8) in S1, and resting state to be different from the two movement types (FV p<0.01; BP
p=0.02) (Figure 4G). In PPC, assuming that FV movement would involve the most visuo-motor
information to be processed, as hypothesized, FV movement showed the lowest Al (M=1.83, n=8), then
the BP movement (M=1.87, n=8), and the highest Al during rest (M=1.93, n=8) (Figure 4H). We also
computed the Al of two 1s windows that are shifted by 20ms (not 5ms), and also found a similar pattern
with statistical significance as well (S3 Figure).

Dynamical IEl inform the directionality connectivity between M1, S1,

and PPC during movement

For exploratory purpose, we demonstrate how the dynamical IEl parameter applied to transfer
entropy methods can inform the directional interactions between M1, S1, and PPC. Generally, we found
the lowest connectivity between the three cortical areas during rest, and this confirmed that the metrics
extracted from these areas indeed characterized movement-related activities (Error! Reference source
not found.Figure 5A-C). Here, we also found a stronger directional flow during FV than BP movements
from S1 to PPC (p=0.01), and from S1 to M1 (p=0.08) (Figure 5Error! Reference source not found.D).
When we further segmented the movements by force dynamics, we observed the strongest connectivity
when force was accelerated than when decelerated (Figure 5Error! Reference source not found.E-G),
and the difference was most pronounced during FV movements.

Also, given the conceptualization of a directional flow from M1 to PPC during movement to
represent an efference copy (based on the internal forward model of movement (8—10)), we do observe
higher TE values during FV (M=7e™*, n=8) and BP movement (M=6.7e*, n=8) than during rest (M=3e™,
n=8) (Figure 5Error! Reference source not found.A). Although there was no difference between FV and
BP movements (p=0.7), we do find difference when force is accelerated than when decelerated during
FV (p<0.01).

Lastly, we also examined other pairwise directional flow among the three cortical areas but did
not find difference between the FV and BP movements (S4 Figure). However, when we further
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segmented the movements by force dynamics, we generally find a stronger connectivity during
accelerating FV than decelerating FV movements — specifically from M1 to PPC (p<0.01) and PPC to M1
(p<0.01), from M1 to S1 (p=0.02), and from S1 to PPC (p<0.01) (S4 Figure). Such difference in force
dynamics is muted during BP movements, and the only difference is found in the direction from M1 to
S1 (p=0.02) (S4 Figure). We also examined the optimal lag values when TE was maximal for each
participant, and found that the majority exhibited this lag to be at 2.5ms, and often at around 10ms (S5
Figure). Overall, we find the connectivity between M1, S1, and PPC to be higher during movement than
rest, higher during FV than BP movements, and higher during accelerating than decelerating
movements.
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Figure 5. Directional connectivity of the dynamical IEI compared across movements with different sensory goals (top; A-D)
and further segmented by force dynamics (bottom; E-G).

A. Directional connectivity is assessed with transfer entropy from M1 to PPC, B. from S1 to PPC, and C. from S1 to M1. They all
show lowest connectivity during rest, confirming that these represent movement-related interactions. D. The connectivity
between S1 and PPC, and S1 and M1 is higher during FV than BP movements. E. Directional connectivity from M1 to PPC, F.
from S1 to M1, and G. from S1 to M1, was examined by further segmenting movements by accelerating force (FV+, BP+) and
decelerating force (FV-, BP-). Generally, connectivity is strongest when force is accelerated, and is most pronounced during FV

movements. *p<0.05, **p<0.01, * p<0.1

Discussion

We demonstrate a novel methodology of characterizing goal-oriented movements with differing
goal modality (i.e., visual versus proprioceptive goal), conceptualizing that the irregularity in IEl reflects
active new information processing. We do this by harnessing the moment-to-moment variability in the
gamma band-pass filtered ECoG signals, and thereby capturing the nonstationary and nonlinear
features. We also show how the dynamical IEI changes can inform us of the directional connectivity by
providing exploratory results. Specifically, we find the connectivity to be strongest during a visually
guided goal-oriented movement (FV) with accelerating force (FV+), and weakest during rest. We also
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show preliminary empirical evidence of an efference copy using this parameter, as we find a strong
connectivity from M1 to PPC during movement.

We emphasize that using a nonstationary parameter (i.e., gamma IEl) and its dynamical changes
allow us to characterize the activity within a local cortical area, and can inform us of the interactions
within the motor control network (i.e., M1, S1, PPC). Conventional ways of capturing information
processing entail searching for an increased oscillatory power, but these do not reflect the dynamical
and nonstationary features of the brain signals. Indeed, we show that a conventional power spectrum
method fails to differentiate the two movement types (FV and BP) (shown in S1 Figure). With prior
knowledge on the role of M1 and S1 in regards to proprioceptive information processing, and PPC on
visuo-motor processing, we demonstrate that the irregularity in gamma IEl reflects such local activation
of information processing, and captures the finer differences in sensory processing. This is possible
because we are reflecting the dynamical and nonstationary features of cortical activity, by relaxing the
stationarity and linearity assumptions while harnessing the moment-to-moment variability of the
oscillatory ECoG signal. Such attempts are absent in the conventional epoch-based analyses, because
these methods involve averaging out the moment-to-moment variability with the general assumption
that the cortical electrophysiological signal follows a stationary Gaussian distribution. We also highlight
that our novel method provides a way to overcome the inherent difficulty in assessing the gamma band
signal which has a low signal-to-noise ratio. This is possible because we are extracting large amounts of
data, and thus increasing the statistical power. For instance, the moment-to-moment variability in the
IEIs yield in the magnitudes of 3000 data points per 1-minute recordings (3000 data points = 1000ms /
Average IEI 20ms * 60 seconds). For such a short amount of time, our method provides a large dataset
to analyze and thus compensate for the low signal-to-noise ratio. This is indeed a large merit compared
to common characterization methods like machine-learning, which require a very long time of data
collection and training. Moreover, the interpretability of our method (e.g., demonstrated by directional
connectivity) provides an added benefit compared to the common machine-learning methods, as these
do not provide much knowledge on the interactions that occur within the cortical network.

We interpret the irregularity of the gamma IEl to reflect the relative attention of new
information processing. In fact, when we hypothesize that BP movement would involve more
proprioceptive information processing in the M1, we assume that given a limited capacity of attention,
proprioceptive information would be weighted (attended to) more than the VM information, and that
the irregularity in M1 would reflect such difference (Figure 6A). Because FV and BP movements require a
similar linear trajectory of hand movement (but (38)), we assume that the proprioceptive information
itself would be similar between the two movements. For that reason, the irregularity in M1 signal would
not reflect the amount of proprioceptive information processing per se, but rather how much attention
is devoted towards that information processing.

Still, we provide alternative interpretations for the observed differences. One possibility is that
the difference may reflect the level of physical effort to execute the two types of movement. This is
because the FV movement required the participant to reach up against gravity, and BP movement to
move towards gravity. This is a limitation of an intraoperative setting, where the awake patient had to
lie supine, and was inevitably required to move up against gravity to reach a visual goal. If the difference
in irregularity is due to such differing levels of physical effort, however, higher irregularity would mean
involving less physical effort, as BP movements showed higher irregularity in M1 than FV movements.
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However, the irregularity was found to be the lowest during rest, implying that the level of irregularity is
not likely to depend on the level of physical effort (Figure 6A).

Attention Effort

Fv i ? g i . . Goal-oriented
Visuo-motor processing
BP VM P vMm [P Proprioceptive Processing Spontaneous
G@ Automatic
Resting _

Figure 6 . Schematic organization of the motor control network.

A. Under the relative attention model (Attention), we conceptualize that the irregularity of M1 signal reflects the increased
attention to proprioceptive information. We argue that higher irregularity in M1 during BP movement does not reflect a lower
physical effort (Effort), because the irregularity is lowest during resting state and highest during BP movements, and physical
effort is highest during FV movement. B. Stronger connectivity within the motor control network are found during FV
movement (requiring more VM processing) than BP movement and the least connectivity during resting state. We also find
stronger connectivity when force is accelerated than decelerated during both FV and BP movement. We speculate this level of
connectivity to reflect an organization where the connections strengthen according to the developmental order of neuromotor
control — where automatic functions develop first, and goal-oriented movements develop later, and movements exerting low-
level force develop first, and those exerting more force to develop later.

Another possible reason for the difference in irregularity between FV and BP movements may
simply be due to the different risks associated with the movement. That is, FV movement involves
reaching for an external target and does not entail much risk to harm oneself, leading the movement to
be more forceful. On the other hand, BP movement involves the risk of hitting oneself in the face, as this
is moving against the natural momentum of gravity, and thus require more control and “braking” along
the way. For that reason, the difference in irregularity may reflect the accelerating forces in movement,
that is modulated by risks involved. However, when we compared the irregularity across movements
involving different force dynamics (i.e., accelerated FV versus decelerated FV movement, accelerated BP
versus decelerated BP movement, shown in S6 Figure), we did not see much difference. For that reason,
we argue that the irregularity in gamma IEl would most likely reflect the general level of attention,
rather than the force generated by the hand.

In order to demonstrate the use of the dynamical Gamma IElI parameter, we provided
exploratory results of the motor network’s cortical connectivity using transfer entropy methods. Here
we found the strongest connectivity during accelerated FV movement and the least during the resting
state. This implies that the motor network strengthens its connection when it exerts a higher level of
neuromotor control. Here we assume that the FV movement involves the highest level of neuromotor
control (14,39), as it integrates information from the external world along with its internal body (i.e.,
both visuo-motor and proprioceptive information processing), whereas the BP movement mainly
processes information from within the internal body. We also assume that accelerated movement
involves more control, as a higher level of force is exerted than when it is decelerating. It is possible that
such varying connectivity strength reflects the order of neuromotor development, because we speculate
that the motor network is weakly connected at birth, when simple autonomic activities are mainly
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executed. As one matures and exerts more goal-directed movements that require a higher level of
neuromotor control, the motor network would strengthen its connectivity (Figure 6B). Nevertheless, we
caution that this varying level of connectivity strength may be due to the levels of physical effort. In fact,
the stronger connectivity found during accelerated movements compared to decelerated movements
support such reasoning. For that reason, in a follow up study, it will be helpful to have a control
condition where a FV movement would not be physically effortful. This would be possible to do within a
sitting environment, using an EEG or MEG.

We also found stronger connectivity from M1 to PPC during movement compared to rest, which
is a potential empirical evidence of an efference copy from the forward models of motor control (e.g.,
reafference-cancelling model (8), internal forward model (9)). These models postulate that predictive
codes are sent from M1 to PPC to forecast the resulting sensations of self-generated movements,
thereby provide a better control of one’s movement. In the past, a common empirical evidence of an
efference copy has been sensory attenuation (40-42) during active self-generated movement compared
to passive movement. Here, we provide a different angle of evidence, where we directly show a
stronger informational flow from M1 to PPC during self-generated movements. Interestingly, such
connectivity does not distinguish the two movement types — FV and BP - implying that the efference
copy may be indifferent to sensory goal modality. On the other hand, we do find a stronger mutual
connectivity between M1 and PPC during accelerated FV movement compared to decelerated FV
movement. We speculate that the efference copy may not distinguish the finer differences in sensory
processing, but may instead distinguish the force generated by the end-effector. This may be why we
see the difference during movement versus non-movement.

However, we warrant several limitations to these claims. The location of the PPC channel across
participants were not consistent. Within the broad region of PPC, some participant’s PPC contacts were
more superior (vs. inferior) and some were more posterior (vs. anterior). Given that the PPC has
differing functional zones (22,43), among which includes postural information processing (44,45), it is
indeed important to record from the precise functional region for reaching and consistently across
participants. However, due to the limited timeframe during an awake DBS surgery, achieving a precise
and consistent placement of the ECoG strip across patients entails clinical risk. Another limitation is that
passive movements were not examined as a control condition. For that reason, it is possible that
information flow from M1 to PPC is merely reflecting proprioceptive information processing that occurs
during any movement, regardless of whether it is active or passive. If that is the case, this connectivity
finding may not be a relevant evidence for an efference copy, but rather a simple explanation of how
the brain detects movement. In a follow up study, it will be helpful to verify this by having a passive
movement condition.

As a last point of discussion, contrary to our hypothesis, we find M1 to be more active in
proprioceptive information processing (i.e., show larger difference in irregularity between BP and FV
movement) than the S1. We originally hypothesized that S1 would show a larger difference between the
two movements, as we assumed S1 to reflect more active proprioceptive processing. Although we know
that both M1 and S1 are involved in processing proprioceptive information, the results indicate that M1
may be more active in processing such information than S1. We conjecture that since there’s a stronger
flow of information from S1 to M1 during movement, perhaps S1 is a general receiving site for
continuous bodily information, whereas M1 is where select information pertaining to movements are
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processed. Due to its selectivity, perhaps this is why there is a larger differentiation between the two (FV
and BP) movement types.

We acknowledge that the small sample size of 8 participants and the clinical diagnosis of the
sample (essential tremor) limits the generalizability of this study. These are factors inevitable to invasive
recordings on human participants, as the population size that would undergo such invasive recording is
small to begin with. However, we point out that a single data point summarized for each participant is
based on a very large dataset (appx 2500 datapoints) from that person, and is thus a summary statistic
with high statistical power on its own. Still, the data was obtained from essential tremor patients, who
have impairment in movement, and we do not know how much of these can be generalized to the
neurotypical population. To that end, it would be helpful to verify this with the neurotypical population
using high density EEG in a follow-up study.

In summary, we introduce a novel methodology that utilize the instantaneous gamma frequency
(i.e., Gamma IEl) parameter in characterizing goal-oriented movements with different sensory modality,
and demonstrate its application to reveal the directional connectivity within the motor cortical network.
This was possible because we relaxed the stationarity and linearity assumption, and captured the
dynamical changes by harnessing the moment-to-moment variability from the oscillatory cortical
signals. Through this method, we demonstrate how the irregularity in the gamma IEl informs the state of
active new information processing, and how applications to transfer entropy methods can inform the
directional connectivity within the motor network.
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s70 Supporting Information
571 S1 Table. Demographics

PID Age Gender ECoG side Moving Hand Handedness
P1 76 M R L Both

P2 82 F R L R

P3 48 M R L R

P4 45 F L R R

P5 75 M L R Both

P6 73 F R L R

P7 71 M R L R

P8 63 M R L R

572
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574 S1 Figure

575 Oscillatory power does not differentiate between FV and BP movements in M1 and PPC. Power spectrum was computed per
576 1-second, and normalized (z-score) across time for each frequency (1-100Hz) using the BOSC toolbox (32), and plotted after
577 averaging the z-scores per frequency and per movement type (red- FV, forward visually-guided; blue- BP, backward

578 proprioceptively guided; green-rest). A. Normalized power spectral difference between FV and BP movements (left), FV and
579 rest (middle), BP and rest (right) in M1, and B. in PPC. Data show mean values *+ s.e.m. from n¢, = 8. Horizontal bars indicate
580 significant differences using the Wilcoxen signed rank test for zero median (green- p<0.05, uncorrected; red-p<0.05/8

581 Bonferroni corrected) C. Normalized power spectrum for each participant (P1-P8) in M1, and D. in PPC. Shaded area represents
582 s.e.m. of the normalized z-score per frequency. Gamma band is generally increased during movement within M1, but do not
583 distinguish between FV and BP movements, and gamma band power does not characterize movement in PPC, nor distinguish

584 the FV and BP movements.
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Wrist movement during FV and BP motions
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S2 Figure

Kinematics during a representative participant’s reaching task. In order to distinguish FV and BP movements, angular speed
(top) and angular velocity across z-axis (bottom) were examined together. The minima within angular speed (marked in blue
and red) informed the time when the participant’s finger reached either the clinician’s finger or one’s own chin. The angular
velocity zero-crossings informed of whether the goal was the finger or chin, such that when the value changed from negative to
positive, this would indicate the chin; when the value changed from positive to negative, this indicated the finger reached the
clinician’s finger.
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595 S3 Figure

596 A. For exploratory purpose, we examined the Al when the 2 time windows were shifted by 20 ms, instead of 5ms shown in
597 Error! Reference source not found.. We see a similar pattern of results with statistical pattern for M1, B. S1, and C. PPC, and D.
598 their differentiation between FV and BP movements. E. Because entropy is an important feature of Al and TE metrics, we also
599 examined the general entropy measure in M1, F. S1, and G. PPC, and H. their differentiation between FV and BP movements.
600 Generally, we find the resting state (R) to show lowest entropy (i.e., most predictive) and this is in line with what we show in
601 the Results. However, entropy is higher (i.e., more irregular/surprise) during FV movement in M1, and lower in PPC during BP
602 movements, which is in contrast to what we show in the Results section. We interpret that the entropy measure we show here
603 reflects an aggregate IEl stochasticity, whereas the analytics we introduce reflect the dynamical changes in the IEl’s. For that
604 reason, we consider a general entropy metric to be capturing something different, but is beyond the scope of this study.
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A. We examined the TE’s of all directional combinatorial pairs of the three cortical areas, and did a pairwise signed rank test to
compare FV and BP movements. With the exception of S1 to M1, and S1 to PPC, all other directional paired flow do not
distinguish the two movement types — FV and BP. B. When we further compare between accelerated FV (FV+) and decelerated
FV (FV-) movements, generally there is a stronger connectivity during FV+ than FV-. Specifically, we found a stronger mutual
connectivity between M1 and PPC, from S1 to PPC, and from M1 to S1. C. When we compared between accelerated BP (BP+)
and decelerated BP (BP-) movements, the difference in connectivity was muted than during FV movement, with only significant
difference from M1 to S1. *p<0.05, **p<0.01.
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618 S5 Figure

619 A. Transfer entropy at delays varying from 2.5 to 30ms for each participant (P1-P8) for M1 to PPC, B. S1 to M1, and C. S1 to PPC.
620 In general the peak TE values occur early at around 2.5ms, but occasionally occur at around 10ms.
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624 S6 Figure
625 Irregularity of Gamma IEl does not differ between movements with different force dynamics.

626 A. Mean IEIl (ms) does not differ between accelerated FV (FV+) and decelerated FV (FV-), and does not differ between
627 accelerated BP (BP+) and decelerated BP (BP-). B. Correlation between the Gamma cycle IEl and amplitude does not differ
628 between FV+ and FV-, and between BP+ and BP- in M1 (left), S1 (middle), and in PPC (right). C. Auto-information (Al) does not

629 differ between FV+ and FV- in M1 (left), S1 (middle), and PPC (right).
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