

1 **A genetic screen to uncover molecular mechanisms underlying lipid
2 transfer protein function at membrane contact sites and
3 neurodegeneration.**

4

5

6

7

8

9

10

11

12

13 Shirish Mishra¹, Vaishnavi Manohar¹, Shabnam Chandel¹, Tejaswini Manoj¹, Subhodeep
14 Bhattacharya¹, Nidhi Hegde¹, Vaisaly R Nath^{1,2}, Harini Krishnan¹, Corinne Wendling³, Thomas
15 Di Mattia³, Arthur Martinet³, Prasanth Chimata¹, Fabien Alpy³ and Padinjat Raghu^{1*}

16

17 ¹National Centre for Biological Sciences-TIFR, GKVK Campus, Bangalore 560064

18 ² School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India

19 ³ Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch,
20 France

21 Corresponding author, E-mail: praghu@ncbs.res.in

22

23

24

25

26

27

28

29

30

31

32

33

34 **Abstract**

35 Lipid transfer proteins mediate the transfer of lipids between organelle membranes in
36 eukaryotes and loss of function in these has been linked to neurodegenerative disorders.
37 However, the mechanism by which loss of lipid transfer protein function leads to
38 neurodegeneration is not understood. In *Drosophila* photoreceptors, depletion of Retinal
39 Degeneration B (RDGB), a phosphatidylinositol transfer protein localized to endoplasmic
40 reticulum-plasma membrane contact sites leads to defective phototransduction and retinal
41 degeneration but the mechanism by which RDGB function is regulated and the process by
42 which loss of this activity leads to retinal degeneration is not understood. RDGB is localized
43 to membrane contact sites (MCS) and this depends in the interaction of its FFAT motif with
44 the ER integral protein VAP. To identify regulators of RDGB function *in vivo*, we depleted more
45 than 300 VAP interacting proteins and identified a set of 52 suppressors of *rdgB*. The
46 molecular identity of these suppressors indicates a role for novel lipids in regulating RDGB
47 function and for transcriptional and ubiquitination processes in mediating retinal degeneration
48 in *rdgB*. The human homologs of several of these molecules have been implicated in
49 neurodevelopmental diseases underscoring the importance of VAP mediated processes in
50 these disorders.

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69 **Introduction**

70 The maintenance of exact membrane lipid composition is important for providing distinct
71 identity to cellular organelles and thus support normal cellular physiology(Harayama and
72 Riezman, 2018). Various lipid species reach their specific organelle membrane either via
73 vesicular or non-vesicular transport. Proteins that shuttle lipids in a non-vesicular manner
74 across various compartments are known as lipid transfer proteins (LTPs). Each of these LTPs
75 transfer specific lipid species such as sterols, ceramides or phospholipids and in many cases
76 the LTPs are localized at very specific locations known as membrane contact sites (MCS). In
77 a eukaryotic cell, MCS are regions where two organelle membranes come very close at the
78 range of 10-30 nm but do not fuse (Prinz et al., 2020). Being the largest cellular organelle, the
79 endoplasmic reticulum (ER) forms MCS with the mitochondria, lysosomes, Golgi network, lipid
80 droplets and the plasma membrane (PM). MCS provide fast and efficient delivery of
81 metabolites between two membranes and could be permanent or induced (Wu et al., 2018);
82 this includes the exchange of lipids between organelle membranes to support ongoing cell
83 physiology (Cockcroft and Raghu, 2018). Growing evidence suggest an important role for LTP
84 function at MCS and LTPs in human neurological disorders (Peretti et al., 2020) (Fowler et al.,
85 2019) (Guillén-Samander and de Camilli, 2022). However, much remains to be discovered on
86 the regulation of LTP function at MCS.

87

88 MCS between the ER and the PM are important for regulating both plasma membrane lipid
89 composition and signalling functions. One of the best examples for the requirement of an LTP
90 at the ER-PM MCS is sensory transduction in *Drosophila* photoreceptors (Yadav et al., 2016).
91 Photoreceptors detect light through the G-protein coupled receptor (GPCR) rhodopsin (Rh),
92 leading to the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P₂] by G-protein
93 coupled phospholipase C (PLC) activity (Hardie and Raghu, 2001). As part of their ecology,
94 fly photoreceptors are exposed to light; in bright daylight they typically absorb ca. 10⁶ effective
95 photons/second resulting in extremely high PLC activity. Hence, fly photoreceptors provide an
96 excellent model system to study the turnover of PI(4,5)P₂ during PLC mediated cell signalling
97 (Raghu et al., 2012).

98

99 Given the low abundance of PI(4,5)P₂, replenishment of this lipid at the PM is necessary for
100 uninterrupted PLC signalling. Many enzymes and proteins participate in this process but a key
101 step is the transfer of lipids that are intermediates of the PI(4,5)P₂ cycle. One of the proteins
102 at this site is Retinal Degeneration B (RDGB), a large multi-domain protein with an N-terminal
103 phosphatidylinositol transfer protein (PITP) domain (Raghu et al., 2021). The PITP domain
104 belongs to the superfamily of LTPs. In the case of RDGB, its PITP domain can transfer

105 phosphatidylinositol (PI) and phosphatidic acid (PA) *in vitro* (Yadav et al., 2015a) a property
106 that is conserved in its mammalian ortholog, Nir2 (Kim et al., 2015)13. *rdgB* mutant flies
107 undergo light dependent retinal degeneration, a reduced ERG response and a reduced rate
108 of PI(4,5)P₂ resynthesis at the PM following PLC activation (Harris and Stark, 1977; Hotta and
109 Benzer, 1970; Yadav et al., 2015b)In photoreceptors, RDGB is localized at the ER-PM MCS
110 formed between the microvillar plasma membrane and the sub-microvillar cisternae (SMC), a
111 specialization of the smooth endoplasmic reticulum (Yadav et al., 2016)8. The localization of
112 RDGB at this MCS is critically dependent on its interaction with the ER integral membrane
113 protein VAP. This interaction is physiologically relevant as disruption of the protein-protein
114 interaction between RDGB and VAP in *Drosophila* photoreceptors results in mislocalization of
115 RDGB from this MCS, reduced the efficiency of PI(4,5)P₂ turnover and impacts the response
116 to light (Yadav et al., 2018)16. However, the mechanisms by which the activity of RDGB is
117 regulated by other proteins at the MCS in this *in vivo* model system remains to be discovered.
118 VAP proteins are involved in a range of interactions with proteins containing
119 FFAT/FFNT/Phospho-FFAT/non-FFAT motifs (Cabukusta et al., 2020; di Mattia et al., 2020;
120 Slee and Levine, 2019). Thus, it seems possible that other proteins involved in regulating
121 biochemical activity at this MCS might also be localized to the SMC via VAP interactions. The
122 identification and analysis of proteins engaged in VAP dependent interactions might help in
123 understanding the regulation of RDGB function. Importantly, VAP proteins have been
124 implicated in neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS),
125 Frontotemporal dementia (FTD), Alzheimer's disease (AD) and Parkinson's disease [reviewed
126 in (Dudás et al., 2021)].

127
128 In this study, we have carried out a proteomics screen to identify protein interactors of VAP-A
129 and VAP-B in mammalian cells and tested their function significance in the context of
130 neurodegeneration using the experimental paradigm of RDGB function in *Drosophila*
131 photoreceptors *in vivo*. The candidates so identified perform a wide range of sub-cellular
132 functions indicating an extensive network of biochemical processes that control the function
133 of RDGB in regulating lipid transfer during PLC signalling, thus maintaining the structural and
134 functional integrity of neurons.

135
136 **Results**

137 **Strategy of Proteomics screen**
138 To obtain a list of proteins interacting with VAPs, we performed pull-down experiments in
139 human cells. We produced, in *Escherichia coli*, and purified the MSP domain of human VAP-
140 A and VAP-B fused to C-terminal 6His tag (Fig 1A). As negative control, we used the

141 K94D/M96D and K87D/M89D mutants (herein named KD/MD mutants) of VAP-A and VAP-B,
142 respectively, that are unable to bind FFAT (two phenylalanine in an acidic tract) motifs ((Kaiser
143 et al., 2005; Wilhelm et al., 2017)21,22). Each recombinant protein was attached to a Ni²⁺-
144 NTA resin, and then incubated with protein extracts from HeLa cells. Bound proteins were
145 eluted and analyzed by SDS-PAGE followed by silver nitrate staining (Fig 1B) that showed
146 numerous differential bands between wild type (WT) and mutant VAP samples, suggesting
147 that many proteins are pulled down owing to VAP's ability to bind FFAT motifs. To verify the
148 pull-down efficiency, we performed Western blot using antibodies against two known VAP
149 partners, ORP1 and STARD3NL (Fig 1C) (Alpy et al., 2013; Rocha et al., 2009). ORP1 exists
150 as a long and a short isoform called ORP1L and ORP1S respectively, ORP1L being the only
151 one of the two to possess a FFAT motif. As expected, the ORP1L isoform was pulled down
152 by WT VAPs but not by mutant VAPs, and the ORP1S isoform was not precipitated (Fig. 1C).
153 Besides, STARD3NL co-precipitated with WT VAP-A and VAP-B and not with mutant VAPs,
154 while actin, used as a loading control, was not found in the eluted fractions (Fig. 1C). To
155 identify the proteins pulled down by VAPs, elutions were analyzed by tandem mass
156 spectrometry (MS/MS). To identify proteins pulled down according to their ability to interact
157 with VAPs in an FFAT-dependent manner, proteins were ranked based on their enrichment in
158 the WT over the KD/MD mutant VAP sample, and on their MS/MS score (Fig. 1D). This
159 strategy led to the identification of 403 proteins, 193 of which were pulled-down by both VAP-
160 A and VAP-B. Interestingly, many known partners of VAP-A and VAP-B, such as OSBP,
161 ORP1, ORP2, WDR44, VPS13A, VPS13D were identified (Fig. 1D). Using a position weight
162 matrix strategy, we looked for potential FFAT and Phospho-FFAT in the protein sequences;
163 sequences were attributed a score, with 0 corresponding to an ideal FFAT/Phospho-FFAT
164 sequence. Among the 403 proteins identified, 136 had a FFAT or Phospho-FFAT with a
165 significant score (between 0 and 2.5) (Sup Table S1). We used this list of 403 mammalian
166 proteins and identified their *Drosophila* orthologs using the DRSC integrative ortholog
167 prediction tool (DIOPT) (Hu et al., 2011) and the fly orthologs with the best score were
168 identified. Using this approach, we were able to identify Fly orthologs with more than 90%
169 coverage for 393 out of 403 mammalian proteins in the VAP interaction list (Sup. Table S2).
170

171 **Strategy of genetic screen**

172 To identify *in vivo* regulators of RDGB function at ER-PM contact sites, we utilized a
173 hypomorphic allele *rdgB*⁹ (Vihtelic et al., 1991). *rdgB*⁹ expresses a small amount of residual
174 RDGB protein that provides some function in contrast to the protein null allele *rdgB*². The FFAT
175 motif of RDGB interacts with the ER resident membrane protein dVAP-A to provide both
176 localization and function to RDGB (Yadav et al., 2018). FFAT motifs are found in many
177 proteins of varied biological functions and serve to localize them to ER contact sites through

178 a protein-protein interaction with VAP (Murphy and Levine, 2016). We reasoned that if several
179 proteins with an FFAT motif bind to VAP at the ER-PM interface, the lipid transfer function of
180 RDGB could be modulated by their presence at the ER-PM MCS (Figure 2A). Such proteins,
181 relevant to RDGB function could be identified by testing their ability to modify the phenotype
182 of the *rdgB* mutant.

183
184 *rdgB*⁹ shows retinal degeneration that is enhanced when flies are grown under illumination
185 (Harris and Stark, 1977; Stark et al. 1983). Under illumination, *rdgB*⁹ flies show severe retinal
186 degeneration by two days post eclosion making it difficult to score for modulation of this
187 phenotype by other gene products. To overcome this problem, we reared *rdgB*⁹ flies without
188 illumination, a condition under which the retinal degeneration still occurs but at a slower rate;
189 in dark reared *rdgB*⁹ flies it takes two days for the retinal degeneration to set in and by day
190 four complete retinal degeneration was seen (Figure 2B). Retinal degeneration was scored by
191 visualizing the deep pseudopupil (DPP) under a fluorescence stereomicroscope (Georgiev et
192 al., 2005)29. To visualize fluorescent pseudopupil, a protein fusion of Rhodopsin1 (Rh1) was
193 tagged with GFP, expressed under its own promoter, and recombined in *rdgB*⁹. Under these
194 conditions *rdgB*⁹ shows a clear fluorescent DPP on day 1 that is lost by day 4 with the
195 progression of retinal degeneration (Figure 2C i).

196
197 To identify molecules regulating RDGB function, we depleted their mRNA levels using
198 transgenic RNAi from publicly available collections (Dietzl et al., 2007; Perkins et al., 2015);
199 for 5 out of 393 fly genes there were no RNAi line available from public resources (Sup. Table
200 S2). The eye specific Rh1 promoter was used to restrict GAL4 expression and thus gene
201 depletion, in space to the outer six photoreceptors and in time to post 70 hrs pupal
202 development (Yadav et al., 2015). To validate the genetic screen, $G_{\alpha q}$ was downregulated in
203 the *rdgB*⁹ flies and the pseudopupil was scored after day 2 and 4. Knocking down $G_{\alpha q}$ in *rdgB*⁹
204 flies under Rh1 promoter showed partial suppression of retinal degeneration and hence
205 pseudopupil presence after day 4 in dark suggested the efficacy of the screening method
206 (Figure 2C ii).

207
208 Using this strategy, we depleted each of the 388 VAP interacting proteins via RNAi in the
209 *rdgB*⁹ sensitized background (Figure 2C iii, Sup. Table S2). The screen was performed such
210 that the phenotype arising from off targets could be minimized. We first used a single RNAi
211 line per gene of interest for the pseudopupil analysis and once a positive phenotype was
212 scored, the assay was repeated with a second independent RNAi line for the same gene. Only
213 those genes were finally tabulated where two independent lines per gene showed a positive

214 phenotype. To assay the enhancement of retinal degeneration, fly eyes were visualized on
215 day 2 while for suppression, fly eyes were checked on day 4. Any suppresser that showed
216 complete recovery of DPP was scored as a full rescue while others were designated as partial
217 suppressers.

218
219 Out of 388 genes, knockdown of 52 (two independent RNAi lines per gene) in *rdgB*⁹ showed
220 suppression of retinal degeneration (Figure 2D, Table 1); we designated these as *su(rdgB)*. In
221 this study, we did not identify any candidate that showed enhancement of degeneration when
222 depleted in *rdgB*⁹. Moreover, 15 genes where only a single RNAi line was available, when
223 tested, did not result in adult progeny (larval death/ pupae formed but no fly emerged). Based
224 on their Gene Ontology tags, the 52 *su(rdgB)* could be classified into several categories
225 (Figure 2E). Of these, the largest number of suppressers were from the class of RNA binding
226 and DNA/chromatin binding proteins. Examples of candidates with strong suppression
227 phenotypes are pleckstrin-homology (PH)-domain containing protein (CG9205),
228 phosphorylated adaptor for RNA export (PHAX), ceramide transfer protein (Cert), anaphase
229 promoting complex 7 protein (APC7) and laminin G domain containing protein Kon-tiki (Fig 2
230 Ciii). These findings indicate that the mechanisms underlying retinal degeneration in *rdgB*⁹
231 likely involve diverse sub-cellular processes.

232
233 **Identification of suppressors specific to *rdgB*⁹**
234 In principle, depletion of a gene product can suppress retinal degeneration in *rdgB*⁹ by one of
235 two mechanisms (i) by altering the underlying biochemical abnormality resulting from loss of
236 RDGB function, i.e. the trigger (ii) by downregulating downstream sub-cellular processes that
237 are part of the degenerative process, i.e the effectors. Genes in the first category, i.e the trigger
238 mechanism, might be expected to suppress only the degeneration of *rdgB*⁹ and no other retinal
239 degenerations whereas gene that are effectors of retinal degeneration might be expected to
240 suppress multiple retinal degeneration mutants.

241
242 To distinguish these two categories of genes we tested each of the 52 *su(rdgB)* for their ability
243 to block retinal degeneration in *norpA*^{p24} (Figure 3A, Sup. Table S3). *norpA* encodes for the
244 PLC and catalyzes the hydrolysis of PI(4,5)P₂ to DAG and IP₃. *norpA*^{p24} is a strong hypomorph
245 and show light dependent retinal degeneration (Pearn et al., 1996). Out of the 52 *su(rdgB)*, 13
246 genes partially suppressed light dependent retinal degeneration in *norpA*^{p24} suggesting that
247 they likely participate in the process of retinal degeneration (Figure 3B, 3C). Most genes in
248 this category belong to the class of RNA binding/processing and DNA/ Chromatin binding
249 (Figure 3C). The remaining 39 genes therefore likely represent unique suppressors of *rdgB*⁹
250 and therefore may participate specifically in the trigger mechanism.

251 **ERG screen to identify *su(rdgB)* that may regulate phototransduction.**

252 A direct test of the role of a candidate in regulating phototransduction will be its ability, when
253 depleted in an otherwise wild-type fly, to alter the electrical response to light. This can be
254 monitored using electroretinograms (ERG) that are extracellular recordings that measure the
255 electrical signal from the eye in response to a light stimulus (Vilinsky and Johnson, 2012). Any
256 deviation of ERG amplitude when compared with that from a wild-type fly will imply that the
257 interactor likely functions in the process of phototransduction. We downregulated each
258 *su(rdgB)* using the eye specific promoter, GMR-GAL4 in an otherwise wild type background
259 and measured ERG amplitudes. Out of 52 *su(rdgB)*, GMR driven knockdown (in both of two
260 independent RNAi lines) of five candidates (CG9205, *Yeti*, *APC7*, *Set*, *Cert*) showed a lower
261 ERG amplitude and in one candidate (CG3071) a higher ERG amplitude compared to control
262 flies (Figure 3D, Sup. Table S4). In the case of six additional *su(rdgB)*, depletion with GMR-
263 GAL4 resulted in a rough eye phenotype with the 1st RNAi line (Sup. Fig1A i). When an 2nd
264 independent RNAi line was used, four (*Ars2*, CG7483, *cmtr1* and *secs*) out of six candidates
265 showed lower ERG amplitude (Sup. Fig 1A iii). Rough eye phenotype after knocking down
266 *Rpl10Ab* and *Sf3b1* with multiple RNAi lines point towards involvement of these genes in the
267 eye development (Sup. Fig 1A ii).

268

269 **The spatial and temporal profile of *dcert* downregulation results in contrasting impact
270 on *rdgB*⁹ phenotypes**

271 We previously noted that downregulation of *dcert* in *rdgB*⁹ caused suppression of retinal
272 degeneration when expressed using the Rh1 promoter (Figure 4A i, ii) although, the
273 suppression in retinal degeneration was not sufficient to rescue ERG phenotype of *rdgB*⁹
274 (Figure 4B i, ii). We retested this genetic interaction using a germline mutant allele of *dcert*
275 (*dcert*¹)(Rao et al., 2007)34. Surprisingly, the double mutant *rdgB*⁹; *dcert*¹ showed enhancement
276 of retinal degeneration compared to *rdgB*⁹ (Figure 4C i, ii). We tested these findings by using
277 the same *dcert* RNAi line used in the screen (expressed using Rh1 Gal4) but this time with
278 whole body expression of the RNAi using Actin-GAL4 which expresses throughout
279 development beginning with embryogenesis. In *rdgB*⁹; *actin>dcert*^{RNAi} we found enhancement
280 of retinal degeneration such that by day 3 all photoreceptors except R7 were completely
281 degenerated (Figure 4D i, ii). These findings suggest that *dcert* depletion more broadly in the
282 fly across both space and time domains may have distinctive effects compared to a more
283 restricted expression in post-mitotic adult photoreceptors using Rh1 GAL4.

284

285

286

287 **Discussion**

288 Neurodegeneration is a complex disease involving multiple layers of cellular and molecular
289 process leading to the phenotype observed *in vivo*. Regardless of the part of the nervous
290 system that is affected, be it the central or peripheral, conceptually, the processes leading to
291 any neurodegeneration can be classified into two groups: (i) trigger steps- i.e those initial
292 molecular or biochemical changes that initiate the process of degeneration (ii) Effector steps-
293 i.e those steps that are subsequently part of the process that leads to loss of neuronal structure
294 and consequently function. Identifying the molecular processes involved in each of these
295 processes, is critical for developing strategies to manage neurodegenerative disorders. The
296 *Drosophila* eye has been used in several settings for modelling neurodegenerations (Bonini
297 and Fortini, 2003) such as those caused by repeat disorders such as Huntington's disease
298 and various ataxias, Alzheimer's disease as well as primary degenerative disorders of the
299 human retina (Xiong and Bellen, 2013). In the present study, we performed a genetic analysis
300 to uncover the mechanisms of retinal degeneration underlying mutants in *rdgB*, that encodes
301 a Class II PITP. Mutations in Class I PITP (PITP α) in mice result in a neurodegeneration
302 phenotype (Hamilton et al., 1997) and recently human patients carrying mutations in VPS13
303 have been reported with neurodegenerative disorders (Ugur et al., 2020). Thus, the findings of
304 our screen will inform on mechanisms of neurodegeneration.

305

306 To understand the cellular and molecular processes underlying retinal degeneration in *rdgB*,
307 we depleted selected molecules using RNAi and scoring for suppression of the retinal
308 degeneration. The candidates selected for screening were originally identified in a proteomic
309 screen for interactors of VAP-A and VAP-B in cultured mammalian cells; however, the
310 functional significance of their interaction with VAP was not known. Although previous studies
311 have identified many VAP-interacting proteins in mammalian cell culture models by protein
312 interaction studies, the functional relevance of these for *in vivo* function and
313 neurodegeneration remains unknown. Using our *in vivo* analysis, we were able to identify a
314 subset (52 out of 388) of these interactors in our proteomics screen that when depleted,
315 suppressed the retinal degeneration in *rdgB*⁹. This finding underscores the value of an *in vivo*
316 genetic screen in evaluating the functional effect of candidates identified *in vitro* to
317 understanding the mechanisms of neurodegeneration. The human homologs in 13 of the
318 *su(rdgB)* genes have previously been linked to human neurodevelopmental or
319 neurodegenerative disorders (Table 1) and a large proportion of the 52 *su(rdgB)* have human
320 homologs that show high expression in the human brain. Thus, the findings of this study could
321 provide important insights into the mechanisms of human brain disorders.

322

323 Since our primary screen for suppressors of *rdgB* would identify molecules involved in both
324 the trigger and effector steps of the degeneration process, it is essential to classify the
325 identified suppressors into these two categories. Since *rdgB* mutants are known to effect
326 photoreceptor physiology prior to the onset of retinal degeneration(Yadav et al., 2015), we
327 reasoned that suppressors which work at the level of the trigger might also affect the electrical
328 response to light, the physiological output of the photoreceptor. By this rationale, we found
329 that 6 out of 52 suppressors when depleted in an otherwise wild-type background led to an
330 altered electrical response to light; these suppressors are therefore likely to impact the
331 processes by which RDGB functions in phototransduction. Examples of these include
332 CG9205, Yeti, APC7, Set, Cert and CG3071. Two of these genes CG9205 (PH domain
333 containing) and Cert (ceramide transfer protein) encode proteins with either ion binding or lipid
334 transfer function and their ability to act as *su(rdgB)* may indicate a role for previous unidentified
335 lipids and lipid transfer at MCS in phototransduction. By contrast Set (subunit of INHT complex
336 that regulates histone acetylation), Yeti (a chromatin associated protein that interacts with the
337 Tip60 chromatin remodelling complex) and CG3071 (snoRNA that positively regulates
338 transcription by RNA polymerase 1) all likely exert their effect as *su(rdgB)* by modulating gene
339 expression; some of the genes so regulated may impact phototransduction. A transcriptome
340 analysis of *rdgB*⁹ photoreceptors may help identify the relevant genes and the manner in which
341 they regulate phototransduction.

342
343 To identify molecular mechanisms that regulate the effector steps of the degeneration process,
344 we determined which of the *su(rdgB)* could also suppress another retinal degeneration mutant,
345 *norpAP*²⁴. Such *su(rdgB)* will likely represent molecules that participate in common effector
346 steps of retinal degeneration shared by these two mutants. The 13 genes so identified
347 represent several different functional classes. Prominent among these classes are RNA
348 binding and DNA/chromatin binding proteins. Overall, a large percentage of *su(rdgB)* identified
349 in our screen were of the class of RNA processing (CG1677, CG1542, CG7971, Cmtr1,
350 Srrm234, Nop56, CG3071, Rpl10, Ars2, CG42458, SecS, CG9915, Sf3b1), RNA editing
351 (Tailor, Sas10), RNA export (Phax), and RNA helicases (CG14443, CG7483). Interestingly, a
352 role for RNA binding proteins such as ataxin-1 has been proposed in neuronal homeostasis
353 and neurodegenerative processes and our finding may reflect a more general role for RNA
354 binding/ homeostasis in neurodegenerative processes (Prashad and Gopal, 2021). A further
355 large group of *su(rdgB)* belong to those regulating transcription (XNP, Fne, Yeti, TFIIF β ,
356 TFIIE α , CG33017, Set, CG7839) and Sf3b1, Cmtr1, Rpl10Ab, TFIIF β and Sas10 were among
357 those candidates that additionally suppressed retinal degeneration in *norpA*²⁴. This finding
358 suggests that regulated transcription may be important for maintaining neuronal homeostasis;

359 this may be particularly significant since neurons are post-mitotic and transcriptional process
360 and RNA turnover may collectively be key mechanisms for maintaining cellular homeostasis.

361

362 A third class of *su(rdgB)* were subunits of the COP9 signalosome (CSN1a, CSN2, CSN3 and
363 CSN8 were identified in our screen). The COP9 signalosome acts as a signalling platform
364 regulating cellular ubiquitylation status. The COP9 signalosome has been shown to play a key
365 role in regulating *Drosophila* development through E3 ubiquitin ligases by deNEDDylation
366 (Freilich et al., 1999). In addition, two E3 ubiquitin ligases family members were also identified
367 in the genetic screen (i) APC7 which is a subunit of Anaphase promoting complex/Cyclosome
368 that comprise of seven other subunits and is required to modulate cyclins levels during cell
369 cycle (ii) CG32847, an uncharacterized gene belonging to the ‘Other RING domain ubiquitin
370 ligases’ family of proteins. Ubiquitination could regulate the structure and function of proteins
371 required for phototransduction; depletion of APC7 resulted in a reduction of the ERG amplitude
372 supporting this mechanism. Alternatively, it is possible that ubiquitination regulated protein
373 turnover may be part of the process of retinal degeneration. Interestingly, a key role for
374 ubiquitination has been described in the context of neurodegeneration (Schmidt et al., 2021).

375

376 Overall, our screen uncovers a role for multiple molecular processes regulated by VAP
377 interacting proteins that are required for maintaining lipid turnover and neuronal homeostasis
378 in photoreceptors. It is important to note that our screen focused on VAP interacting proteins
379 but there will also be non-VAP dependent processes that also contribute to lipid and neuronal
380 homeostasis in photoreceptors. Alternative genetic screens will be required to map their role
381 in photoreceptor maintenance. Collectively such studies will help advance our understanding
382 of neurodegeneration in the context of lipid transfer protein function.

383

384

385

386

387

388

389

390

391

392

393

394

395 **Materials and Methods**

396 **Protein pull-down and mass spectrometry analysis**

397 Recombinant protein expression in *E. coli* and purification using plasmids encoding the MSP
398 domain of VAP-A (8–212; WT and KD/MD mutant) and VAP-B (1–210; WT and KD/MD
399 mutant) was previously described (di Mattia et al., 2020)18. For protein pull-down, the affinity
400 resin was prepared by incubating 100 µg of recombinant protein with 20 µl of nickel beads
401 (PureProteome Nickel magnetic beads, Merck) in 50 mM Pull-Down Buffer PDB (Tris–HCl pH
402 7.4, 50 mM NaCl, 1 mM EDTA, 1% Triton X-100, 5 mM imidazole, Complete protease inhibitor
403 cocktail (Roche) and PhosSTOP (Roche)). The beads were then washed three times with the
404 same buffer. 8 × 10⁸ HeLa cells were washed with 5 ml of TBS and lysed with 1 ml of PDB.
405 After a 10-min incubation on ice, the protein extract was purified from cell debris by
406 centrifugation (10 min; 9,500 g; 4°C). The protein extract was mixed with protein-coupled
407 nickel beads and incubated for 2 h at 4°C under constant agitation. The beads were then
408 washed three times with PDB, and proteins were eluted with Laemmli buffer. Proteins were
409 precipitated with trichloroacetic acid and digested with Lys-C (Wako) and trypsin (Promega).
410 The peptides were then analysed using an Ultimate 3000 nano-RSLC (Thermo Scientific)
411 coupled in line with an Orbitrap ELITE (Thermo Scientific).

412 **SDS–PAGE, Western blot, and Coomassie blue staining**

413 SDS–PAGE and Western blot analysis were performed as previously described (Alpy et al.,
414 2005) using the following antibodies: rabbit anti-STARD3NL (1:1,000; pAbMENTHO-Ct-1545;
415 (Alpy et al., 2001)43, rabbit anti-ORP1 (1:1,000; Abcam; ab131165), and mouse anti-actin
416 (1:5,000; A1978 Merck). Coomassie blue staining was performed with PageBlue Protein
417 Staining Solution (Thermo Fisher Scientific).

418 ***In silico* identification of potential conventional and Phospho FFAT motifs**

419 The FFAT scoring algorithm used for Phospho-FFAT identification is based on the position
420 weight matrix from Di Mattia, et.al (Di Mattia et al., 2020). For conventional FFAT sequences,
421 the Phospho-FFAT matrix described in Di Mattia, et.al was modified in position 2 and 3 to
422 assign a score of 4 to F and Y, and a score of 0 to D and E. These algorithms assign
423 conventional and Phospho-FFAT scores to protein sequences. They are based on 19
424 continuous residues: six residues upstream, 7 residues forming the core and 6 residues
425 downstream. An ideal sequence scores zero.

426 **Fly culture and stocks**

427 Flies (*Drosophila melanogaster*) were reared on standard cornmeal, dextrose, yeast medium
428 at 25°C and 50% relative humidity in a constant-temperature laboratory incubator. There was
429 no internal illumination within the incubator and flies were subject to brief pulses of light only
430 when the incubator doors were opened. To study light-dependent degeneration flies were
431 exposed to light in an illuminated incubator at an intensity of 2000 lux. *rdgB*⁹, *P[w+,Rh1::GFP]*
432 ; *Rh1-Gal4*, *UAS-Dicer2* and *norpA*^{p24}; *Rh1-Gal4*, *UAS-Dicer2* were the strains used for the
433 genetic screens.

434 **Fluorescent deep pseudopupil analysis**

435 Pseudopupil analysis was carried out on flies after day 2 and day 4 post eclosion. Flies were
436 immobilized using a stream of carbon dioxide and fluorescent pseudopupil analysis was
437 carried out using an Olympus SZX12 stereomicroscope equipped with a fluorescent light
438 source and green fluorescent protein (GFP) optics. Images were recorded using an Olympus
439 digital camera.

440 **Optical neutralization**

441 Flies were immobilized by cooling on ice. They were decapitated using a sharp razor blade
442 and fixed on a glass slide using a drop of colourless nail varnish. The refractive index of the
443 cornea was neutralized using a drop of immersion oil ($n=1.516$ at 23°C); images were
444 observed using a 40x oil-immersion objective (Olympus, UPlanApo, 1.00 Iris) with antidromic
445 illumination (Franceschini and Kirschfeld, 1971). Images were collected on an Olympus BX-
446 41 upright microscope and recorded using an Olympus digital camera.

447 **Electroretinogram recordings**

448 Flies were anesthetized and immobilized at the end of a disposable pipette tip using a drop of
449 low melt wax. Recordings were done using glass microelectrodes filled with 0.8% w/v NaCl
450 solution. Voltage changes were recorded between the surface of the eye and an electrode
451 placed on the thorax. Following fixing and positioning, flies were dark adapted for 6 min. ERG
452 was recorded with 1 second flashes of green light stimulus. Stimulating light was delivered
453 from a LED light source within 5 mm of the fly's eye through a fibre optic guide. Calibrated
454 neutral density filters were used to vary the intensity of the light source. Voltage changes were
455 amplified using a DAM50 amplifier (WPI) and recorded using pCLAMP 10.2. Analysis of traces
456 was performed using Clampfit (Axon Laboratories).

457 **Acknowledgements**

458 This work was supported by the Department of Atomic Energy, Government of India, under
459 Project Identification No. RTI 4006, a Wellcome-DBT India Alliance Senior Fellowship to PR
460 (IA/S/14/2/501540) and a Wellcome-DBT India Alliance Early Career Fellowship to SM
461 (IA/E/17/1/503653). We thank the NCBS Imaging and Drosophila facilities for support. We
462 thank Catherine Tomasetto and the other members of the Molecular and Cellular Biology of
463 Breast Cancer team for helpful advice and discussions. We thank the IGBMC cell culture
464 facility and proteomics platform (Luc Negroni, Frank Ruffenach and Bastien Morlet) for their
465 excellent technical assistance. This work was supported by grants from the Agence Nationale
466 de la Recherche ANR (grant ANR-19-CE44-0003; <https://anr.fr/>); This work of the
467 Interdisciplinary Thematic Institute IMCBio, as part of the ITI 2021-2028 program of the
468 University of Strasbourg, CNRS and Inserm, was supported by IdEx Unistra (ANR-10-IDEX-
469 0002), and by SFRI-STRAT'US project (ANR 20-SFRI-0012) and EUR IMCBio (ANR-17-
470 EURE-0023) under the framework of the French Investments for the Future Program.

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

References

Alpy, F., Stoeckel, M.-E., Dierich, A., Escola, J.-M., Wendling, C., Chenard, M.-P., Vanier, M. T., Gruenberg, J., Tomasetto, C. and Rio, M.-C. (2001). The Steroidogenic Acute Regulatory Protein Homolog MLN64, a Late Endosomal Cholesterol-binding Protein. *Journal of Biological Chemistry* **276**, 4261–4269.

Alpy, F., Latchumanan, V. K., Kedinger, V., Janoshazi, A., Thiele, C., Wendling, C., Rio, M.-C. and Tomasetto, C. (2005). Functional Characterization of the MENTAL Domain. *Journal of Biological Chemistry* **280**, 17945–17952.

Alpy, F., Rousseau, A., Schwab, Y., Legueux, F., Stoll, I., Wendling, C., Spiegelhalter, C., Kessler, P., Mathelin, C., Rio, M.-C., et al. (2013). STARD3/STARD3NL and VAP make a novel molecular tether between late endosomes and the ER. *J Cell Sci.* 10.1242/jcs.139295

Bonini, N. M. and Fortini, M. E. (2003). Human neurodegenerative disease modelling using Drosophila. *Annu Rev Neurosci* **26**, 627–656.

Cabukusta, B., Berlin, I., van Elsland, D. M., Forkink, I., Spits, M., de Jong, A. W. M., Akkermans, J. J. L. L., Wijdeven, R. H. M., Janssen, G. M. C., van Veelen, P. A., et al. (2020). Human VAPome Analysis Reveals MOSPD1 and MOSPD3 as Membrane Contact Site Proteins Interacting with FFAT-Related FFNT Motifs. *Cell Rep* **33**, 10.1016/j.celrep.2020.108475

Cockcroft, S. and Raghu, P. (2018). Phospholipid transport protein function at organelle contact sites. *Curr Opin Cell Biol* **53**, 52–60.

Di Mattia, T., Martinet, A., Ikhlef, S., McEwen, A. G., Nominé, Y., Wendling, C., Poussin-Courmontagne, P., Voilquin, L., Eberling, P., Ruffenach, F., et al. (2020). FFAT motif phosphorylation controls formation and lipid transfer function of inter-organelle contacts. *EMBO J* **39**, 10.15252/embj.2019104369

Dietzl, G., Chen, D., Schnorrer, F., Su, K.-C., Barinova, Y., Fellner, M., Gasser, B., Kinsey, K., Oppel, S., Scheiblauer, S., et al. (2007). A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. *Nature* **448**, 151–156.

Dudás, E. F., Huynen, M. A., Lesk, A. M. and Pastore, A. (2021). Invisible leashes: The tethering VAPs from infectious diseases to neurodegeneration. *J Biol Chem* **296**, 10.1016/J.JBC.2021.100421

Fowler, P. C., Garcia-Pardo, M. E., Simpson, J. C. and O'Sullivan, N. C. (2019). NeurodegenERation: The Central Role for ER Contacts in Neuronal Function and Axonopathy, Lessons From Hereditary Spastic Paraplegias and Related Diseases. *Front Neurosci* **13**, 10.3389/fnins.2019.01051

Franceschini, N. and Kirschfeld, K. (1971). Etude optique in vivo des éléments photorécepteurs dans l'œil composé de Drosophila. *Kybernetik* **8**, 1–13.

Freilich, S., Oron, E., Kapp, Y., Nevo-Caspi, Y., Orgad, S., Segal, D. and Chamovitz, D. A. (1999). The COP9 signalosome is essential for development of Drosophila melanogaster. *Current Biology* **9**, 1187-S4.

Georgiev, P., Garcia-Murillas, I., Ulahannan, D., Hardie, R. C. and Raghu, P. (2005). Functional INAD complexes are required to mediate degeneration in photoreceptors of the Drosophila rdgA mutant. *J Cell Sci* **118**, 1373–1384.

Guillén-Samander, A. and De Camilli, P. (2022). Endoplasmic Reticulum Membrane Contact Sites, Lipid Transport, and Neurodegeneration. *Cold Spring Harb Perspect Biol* a041257. 10.1101/cshperspect.a041257

Hamilton, B. A., Smith, D. J., Mueller, K. L., Kerrebrock, A. W., Bronson, R. T., van Berkel, V., Daly, M. J., Kruglyak, L., Reeve, M. P., Nemhauser, J. L., et al. (1997). The vibrator Mutation Causes Neurodegeneration via Reduced Expression of PITPa: Positional Complementation Cloning and Extragenic Suppression. *Neuron* **18**, 711–722.

Harayama, T. and Riezman, H. (2018). Understanding the diversity of membrane lipid composition. *Nat Rev Mol Cell Biol* **19**, 281–296.

Hardie, R. and Raghu, P. (2001). Visual transduction in Drosophila. *Nature*. 413(6852) 186-93.

Harris, W. A. and Stark, W. S. (1977). Hereditary retinal degeneration in Drosophila melanogaster. A mutant defect associated with the phototransduction process. *J Gen. Physiol* **69**, 261–91.

Hotta, Y. and Benzer, S. (1970). Genetic dissection of the *Drosophila* nervous system by means of mosaics. *Proc Natl Acad Sci USA* **67**, 1156–63.

Hu, Y., Flockhart, I., Vinayagam, A., Bergwitz, C., Berger, B., Perrimon, N. and Mohr, S. E. (2011). An integrative approach to ortholog prediction for disease-focused and other functional studies. *BMC Bioinformatics* **12**, 357.

Kaiser, S. E., Brickner, J. H., Reilein, A. R., Fenn, T. D., Walter, P. and Brunger, A. T. (2005). Structural Basis of FFAT Motif-Mediated ER Targeting. *Structure* **13**, 1035–1045.

Kim, Y. J., Guzman-Hernandez, M. L., Wisniewski, E. and Balla, T. (2015). Phosphatidylinositol-Phosphatidic Acid Exchange by Nir2 at ER-PM Contact Sites Maintains Phosphoinositide Signaling Competence. *Dev Cell* **33**, 549–561.

Murphy, S. E. and Levine, T. P. (2016). VAP, a Versatile Access Point for the Endoplasmic Reticulum: Review and analysis of FFAT-like motifs in the VAPome. *Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids* **1861**, 952–961.

Oughtred, R., Stark, C., Breitkreutz, B. J., Rust, J., Boucher, L., Chang, C., Kolas, N., O'Donnell, L., Leung, G., McAdam, R., et al. (2019). The BioGRID interaction database: 2019 update. *Nucleic Acids Res* **47**, D529–D541.

Pearn, M. T., Randall, L. L., Shortridge, R. D., Burg, M. G. and Pak, W. L. (1996). Molecular, Biochemical, and Electrophysiological Characterization of *Drosophila* norpA Mutants. *Journal of Biological Chemistry* **271**, 4937–4945.

Peretti, D., Kim, S. H., Tufi, R. and Lev, S. (2020). Lipid Transfer Proteins and Membrane Contact Sites in Human Cancer. *Front Cell Dev Biol* **7**.10.3389/fcell.2019.00371.

Perkins, L. A., Holderbaum, L., Tao, R., Hu, Y., Sopko, R., McCall, K., Yang-Zhou, D., Flockhart, I., Binari, R., Shim, H.-S., et al. (2015). The Transgenic RNAi Project at Harvard Medical School: Resources and Validation. *Genetics* **201**, 843–852.

Prashad, S. and Gopal, P. P. (2021). RNA-binding proteins in neurological development and disease. *RNA Biol* **18**, 972–987.

Prinz, W. A., Toulmay, A. and Balla, T. (2020). The functional universe of membrane contact sites. *Nat Rev Mol Cell Biol* **21**, 7–24.

Raghu, P., Yadav, S. and Mallampati, N. B. N. (2012). Lipid signaling in *Drosophila* photoreceptors. *Biochim Biophys Acta Mol Cell Biol Lipids* **1821**, 1154–1165.

Raghu, P., Basak, B. and Krishnan, H. (2021). Emerging perspectives on multidomain phosphatidylinositol transfer proteins. *Biochim Biophys Acta Mol Cell Biol Lipids* **1866**.10.1016/j.bbaliip.2021.158984

Rao, R. P., Yuan, C., Allegood, J. C., Rawat, S. S., Edwards, M. B., Wang, X., Merrill, A. H., Acharya, U. and Acharya, J. K. (2007). Ceramide transfer protein function is essential for normal oxidative stress response and lifespan. *Proc. Natl. Acad. Sci. USA* **104**(27) 11364-9.

Rocha, N., Kuijl, C., van der Kant, R., Janssen, L., Houben, D., Janssen, H., Zwart, W. and Neefjes, J. (2009). Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7–RILP–p150Glued and late endosome positioning. *Journal of Cell Biology* **185**, 1209–1225.

Schmidt, M. F., Gan, Z. Y., Komander, D. and Dewson, G. (2021). Ubiquitin signalling in neurodegeneration: mechanisms and therapeutic opportunities. *Cell Death Differ* **28**, 570–590.

Slee, J. A. and Levine, T. P. (2019). Systematic Prediction of FFAT Motifs Across Eukaryote Proteomes Identifies Nucleolar and Eisosome Proteins With the Predicted Capacity to Form Bridges to the Endoplasmic Reticulum. *Contact* **2**, 251525641988313.

Stark, W. S., Chen, D.-M., Johnson, M. A. and Frayer, K. L. (1983). The *rdgB* Gene in *Drosophila*: retinal degeneration in different mutant alleles and inhibition of degeneration by *norpA*. *J. Insect. Physiol.* **29**(2): 123-131.

Ugur, B., Hancock-Cerutti, W., Leonzino, M. and De Camilli, P. (2020). Role of VPS13, a protein with similarity to ATG2, in physiology and disease. *Curr Opin Genet Dev* **65**, 61–68.

Vihtelic, T. S., Hyde, D. R. and O'Tousa, J. E. (1991). Isolation and characterization of the *Drosophila* retinal degeneration B (*rdgB*) gene. *Genetics* **127**, 761–768.

Vilinsky, I. and Johnson, K. G. (2012). Electoretinograms in *Drosophila*: A Robust and Genetically Accessible Electrophysiological System for the Undergraduate Laboratory. *J Undergrad Neurosci Educ.* **11**(1):A149-57. Epub 2012 Oct 15.

Wilhelm, L. P., Wendling, C., Védie, B., Kobayashi, T., Chenard, M., Tomasetto, C., Drin, G. and Alpy, F. (2017). STARD3 mediates endoplasmic reticulum-to-endosome cholesterol transport at membrane contact sites. *EMBO J* **36**, 1412–1433.

Wu, H., Carvalho, P. and Voeltz, G. K. (2018). Here, there, and everywhere: The importance of ER membrane contact sites. *Science* **361**. Aug 3;361(6401):eaan5835.doi: 10.1126/science.aan5835.

Xiong, B. and Bellen, H. J. (2013). Rhodopsin homeostasis and retinal degeneration: lessons from the fly. *Trends Neurosci* **36**, 652–660.

Yadav, S., Garner, K., Georgiev, P., Li, M., Gomez-Espinosa, E., Panda, A., Mathre, S., Okkenhaug, H., Cockcroft, S. and Raghu, P. (2015). RDGB α , a PtdIns-PtdOH transfer protein, regulates G-protein-coupled PtdIns(4,5)P₂ signalling during *Drosophila* phototransduction. *J Cell Sci* **128**, 3330–3344.

Yadav, S., Cockcroft, S. and Raghu, P. (2016). The *Drosophila* photoreceptor as a model system for studying signalling at membrane contact sites. *Biochem Soc Trans* **44**, 447–451.

Yadav, S., Thakur, R., Georgiev, P., Deivasigamani, S., Krishnan, H., Ratnaparkhi, G. and Raghu, P. (2018). RDGB α localization and function at membrane contact sites is regulated by FFAT-VAP interactions. *J Cell Sci* **131**. Jan 8;131(1):jcs207985.

629

630 **Figure legends**

631

632 **Figure 1: Identification of VAP-A and VAP-B binding partners.** (A) Coomassie
633 Blue staining of the recombinant WT and KD/MD mutant MSP domains of VAP-A and
634 VAP-B after SDS-PAGE. (B) Silver nitrate staining of proteins pulled down using WT
635 MSP domains of VAP-A and VAP-B, and the KD/MD mutant MSP domains, after
636 SDS-PAGE. (C) Western blot analysis of proteins pulled down using the WT and
637 mutant MSP domain of VAP-A and VAP-B. The input and pull-down fractions
638 correspond to HeLa cell total protein extract and bound proteins, respectively. *: non-
639 specific band. D: Venn diagram of proteins pulled-down by VAP-A and VAP-B (and
640 not by mutant VAP-A and VAP-B). A total of 403 proteins were pulled-down with either
641 VAP-A or VAP-B. 193 proteins were pulled-down with both VAP-A and VAP-B.

642

643 **Figure 2: Strategy of the genetic screen and hits found.** (A) Cartoon depicting
644 classes VAP interactors used in the present genetic screen. Depletion of a specific
645 VAP interactor is depicted with dotted line. Fly homologues were filtered using DIOPT
646 in Flybase (<http://flybase.org/>). (B) Genetic scheme used to find either enhancers or
647 suppressors of the retinal degeneration phenotype of *rdgB*⁹. (C) Pseudopupil imaging
648 (i) *rdgB*⁹ showed retinal degeneration by day four in dark when checked via deep
649 pseudopupil imaging. (ii) The degeneration was partially suppressed when levels of
650 G_{aq} were downregulated in *rdgB*⁹ on day four. (iii) Selected hits that showed
651 suppression of retinal degeneration in *rdgB*⁹ on day four. (D) Table showing the full list
652 of genes used in the screen and number of suppressor genes identified. (E) Positive
653 hits (suppressor genes) are divided in different categories depending on their cellular
654 functions. n=5 flies/RNAi line

655

656 **Figure 3: Genetic screen using *norpA*^{p24}.** (A) Scheme used to test for genetic
657 interaction of each of the 52 *su(rdgB)* with *norpA*^{p24} under illumination conditions
658 (Constant light 2000 Lux). (B) *norpA*^{p24} flies degenerate by day three under light
659 conditions and examples of *su(RDGB)* candidates that suppressed *norpA*^{p24} retinal
660 degeneration phenotype. n=5 flies/RNAi line (C) Complete list 13 genes with their
661 cellular functions that suppressed *norpA*^{p24} phenotype. **ERG screen.** (D) Out of 52
662 candidates, five *su(RDGB)* showed reduced (*CG9205*, *Yeti*, *apc7*, *set*, *dcert*) and one

663 (CG3071) showed higher ERG phenotype (traces and quantification shown) when
664 downregulated in an otherwise wild type background. Number of flies used for the
665 experimental set is mentioned along with the quantification. Scatter plots with mean \pm
666 SEM are shown. Statistical tests: Student's unpaired t-test.

667

668 **Figure 4: Spatial and temporal downregulation of *dcert* in *rdgB*⁹.** (A) Suppression
669 of retinal degeneration when RNAi lines were expressed using Rh1 enhancer. After
670 eclosion flies were kept in the dark and assayed either on day one or day three (i) On
671 day one there was no appreciable difference in two genotypes and rhabdomeres were
672 intact (ii) on day three whereas control shows retinal degeneration downregulation of
673 *dcert* in *rdgB*⁹ suppressed the retinal degeneration observed in *rdgB*⁹ control. (B)
674 When subjected to ERG analysis, downregulation of *dcert* using *Rh1-GAL4* in the
675 background of *rdgB*⁹ did not suppress the ERG phenotype (i) ERG trace (ii)
676 Quantification. n=6 flies, Scatter plots with mean \pm SEM are shown. Statistical tests:
677 Student's unpaired t-test. (C) Double mutant of *rdgB*⁹; *dcert*¹ showed enhancement of
678 retinal degeneration (i) (ii) By day one alone double mutant has severely enhanced
679 retinal degeneration phenotype when compared to *rdgB*⁹. (D) Enhancement of retinal
680 degeneration when *dcert* was downregulated with a whole-body Actin-Gal4 promoter
681 in the *rdgB*⁹ background (i) On day one rhabdomere loss is significant in the
682 experimental flies compared to control that worsens by day three and phenocopies the
683 retinal degeneration present in the double mutant.

684

685 **Table 1: List of *rdgB* interactors**

686 Summary of *Drosophila* *rdgB* genetic interactors identified in the screen. Gene name
687 and/or CG number in Flybase (www.flybase.org), Uniport (<https://www.uniprot.org/>)
688 accession number along with their GO functional annotation. For each gene the I.D of
689 RNAi lines from VDRC or TRiP library used are shown. Phenotypes scored following
690 depletion of each gene are represented under 'Suppression' column; '++' denoted
691 definite suppression while '+' denotes partial suppression. Human orthologue of each
692 *rdgB* interactor is identified. Known phenotypes associated with each human homolog
693 is denoted along with the online Mendelian Inheritance in Man (OMIM) identifier
694 number.

695

696 **Supplementary Figure 1** (A) Second category of *su(rdgB)* was variable in either
697 showing rough eye phenotype in 1st RNAi line and ERG defects in the 2nd independent
698 RNAi line. (ii) *rpl10Ab* and *sf3b1* are the only candidates that consistently showed
699 rough eye phenotype in two independent RNAi lines. (iii) ERG traces and
700 quantifications of rest of the *su(rdgB)* with their respective RNAi line mentioned.
701 Number of flies used for the experimental set is mentioned along with the
702 quantification. Scatter plots with mean + SEM are shown. Statistical tests: Student's
703 unpaired t-test.

704

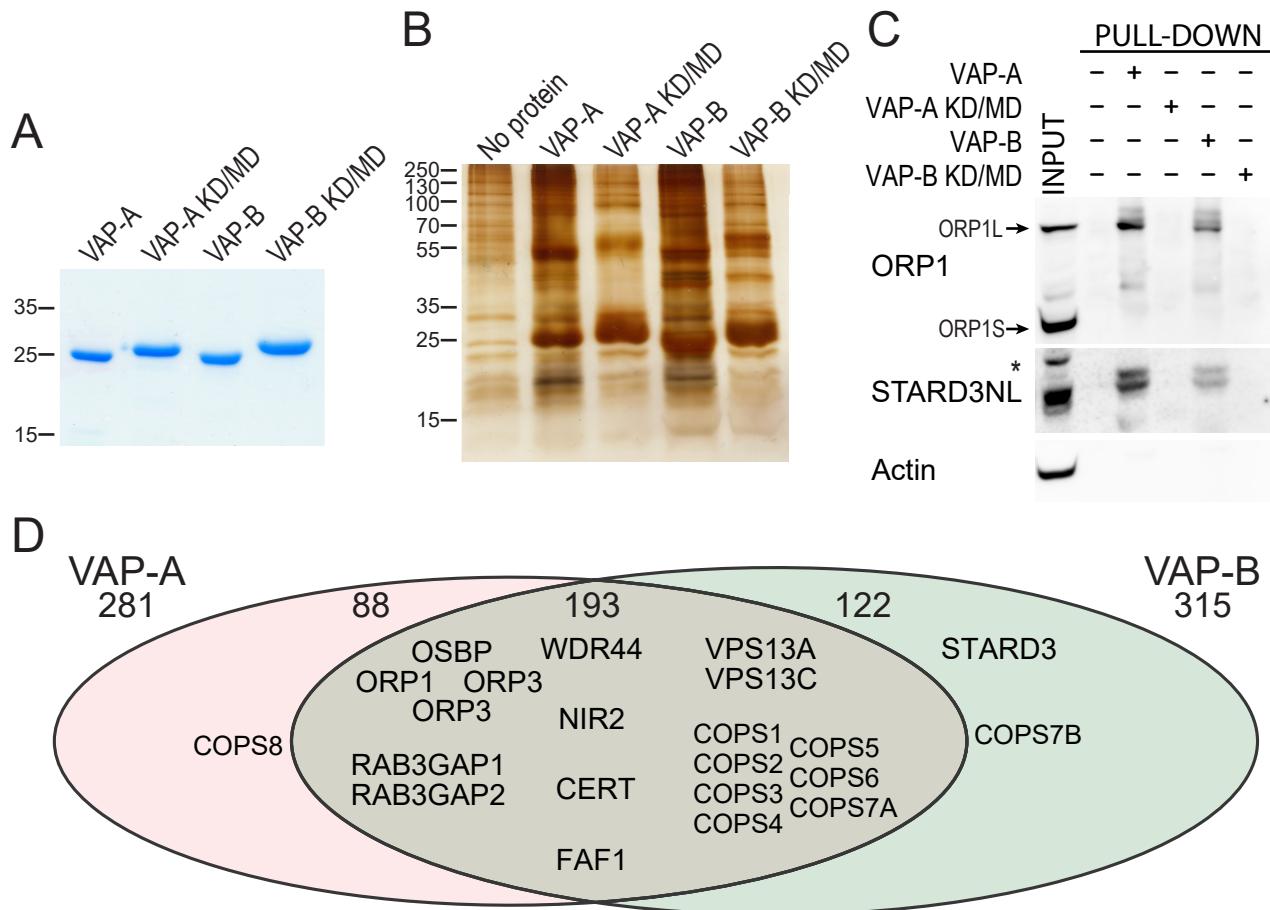
705 **Supplementary Table 1: List of VAP-A and VAP-B interacting proteins in an**
706 **FFAT dependent manner:** Proteins identified by MS/MS after VAP-A and VAP-B pull-
707 down. For each protein, the Uniprot ID, the name and the two best conventional FFAT
708 and Phospho-FFAT scores are indicated. The position and the sequence of potential
709 FFAT sequences are indicated. Proteins identified in VAP-A and VAP-B pull-down are
710 labeled with a green background, and proteins identified in BioGRID 4.4.223
711 (Oughtred et al., 2019) as VAP partners are labeled in cyan. FFAT scores are color-
712 coded with a scale from orange to blue (dark to light orange: 0-3, light to dark blue:
713 3.5->5). Acidic, phosphorylatable (S, T only), and aromatic (F, Y only) residues are
714 shown in red, green and blue.

715

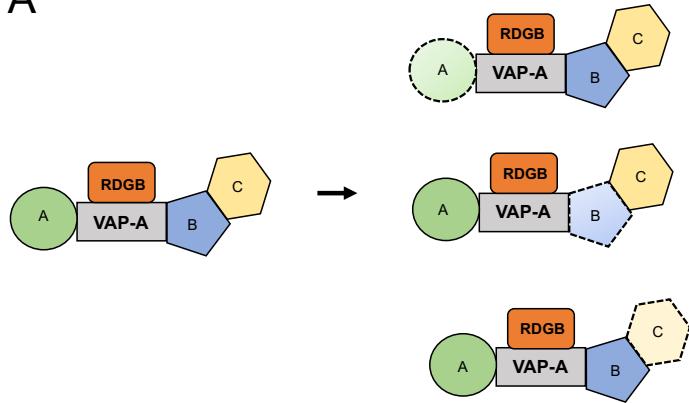
716 **Supplementary Table 2:** Total number of fly homologues/genes tested in the genetic
717 screen. The genetic cross used to generate progeny for screening is shown at the top
718 of the table. To perform this screen, we have used *rdgB*⁹ recombined with Gal4
719 cassette under Rhodopsin 1 (Rh1) promoter at the 1st chromosome (blue). This
720 parental line was used to cross with each RNAi line expressing dsRNA against the
721 specific fly gene (orange). Each fly gene is denoted with their specific CG number
722 (www.flybase.org). Highlighted in red were those genotypes whose RNAi lines were
723 not available. Highlighted in green were those genotypes where RNAi/genotype did
724 not yield any flies after the cross.

725

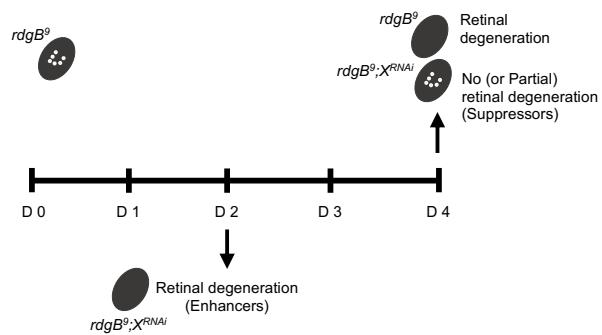
726 **Supplementary Table 3:** Table showing each 52 *su(rdgB)* with their respective RNAi
727 line tested for suppression in retinal degeneration in *norpA*^{p24}. The genetic cross used
728 to generate progeny for screening is shown at the top of the table. To perform this
729 screen we have used *norpA*^{p24} recombined with Gal4 cassette under Rhodopsin 1

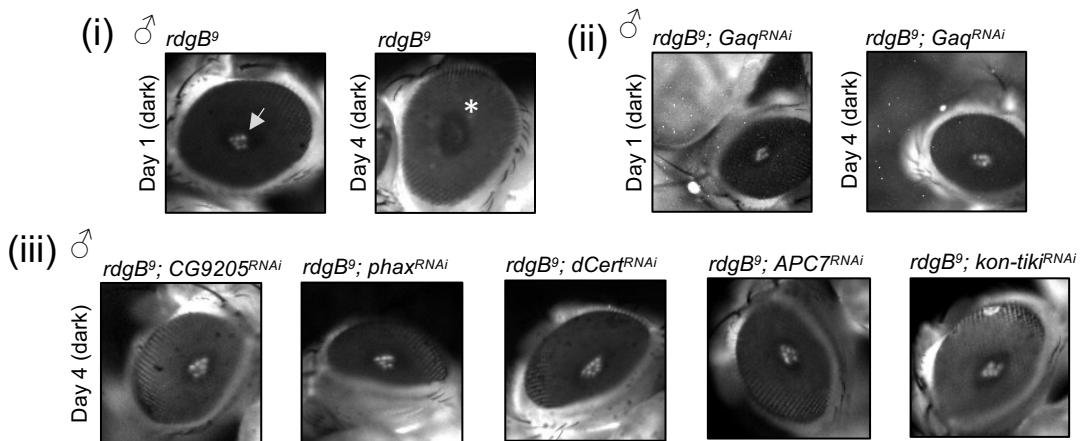

730 (Rh1) promoter at the 1st chromosome (green). This parental line was used to cross
731 with each RNAi line expressing dsRNA against the specific fly gene (orange). Each fly
732 gene is denoted with their specific CG number (www.flybase.org). KK/GD with a
733 specific identifier number denotes the RNAi library generated by Vienna Drosophila
734 Resource Centre (VDRC). Any suppression in retinal degeneration in *norpA^{P24}* by
735 downregulating the specific *su(rdgB)* under the Rh1 promoter is denoted by 'Yes'.
736
737

738 **Supplementary Table 4:** Table showing each 52 *su(rdgB)* with their respective RNAi
739 line tested for ERG/developmental phenotype when tested in an otherwise wild type
740 background under GMR-Gal4. Each gene is denoted by their specific CG number.
741 KK/GD denotes the RNAi library generated by Vienna Drosophila Resource Centre
742 (VDRC) while TRiP lines denote the RNAi library procured from Bloomington
743 Drosophila Resource Centre (BDSC). Where available Knockout (KO) lines were
744 used. Phenotypes scored are denoted under 'ERG' column.
745
746


747 **Supplementary Table 5:** Table showing each 52 *su(rdgB)* with their potential FFAT
748 motifs and their respective human homologue. For each human and fly protein, the
749 Uniprot ID, the two best conventional and Phospho-FFAT scores are indicated. The
750 position and the sequence of potential FFAT sequences are indicated. FFAT scores
751 are color-coded with a scale from orange to blue (dark to light orange: 0-3, light to dark
752 blue: 3.5->5). Acidic, phosphorylatable (S, T only), and aromatic (F, Y only) residues
753 are shown in red, green and blue.
754

755 **Supplementary Table 6:** The levels of mRNA and protein of the identified genetics
756 interactors of *rdgB* in brain. The data for mRNA expression and protein expression
757 has been obtained from human protein atlas database
758 (<https://www.proteinatlas.org/>) for the human homologues of the 52 genes reported as
759 genetic interactors of *rdgB*. For the mRNA expression, the consensus TPM values
760 from HPA in cerebral cortex and cerebellum (includes- HPA, gTEX and Fathom data)
761 has been mentioned in column 4 and 5. The protein expression of the genes
762 (mentioned as low, medium or high in HPA) has been shown for cerebral cortex and
763 cerebellum in column 2 and 3. HPA reports the protein expression in various cell types


764 of brain, however the region of the cerebral cortex and cerebellum with the highest
765 expression has been used to report the protein expression. The cells marked in
766 'yellow' denote lack of data availability while cells marked in 'blue' denote low/no
767 protein detected.


A

B

C

D

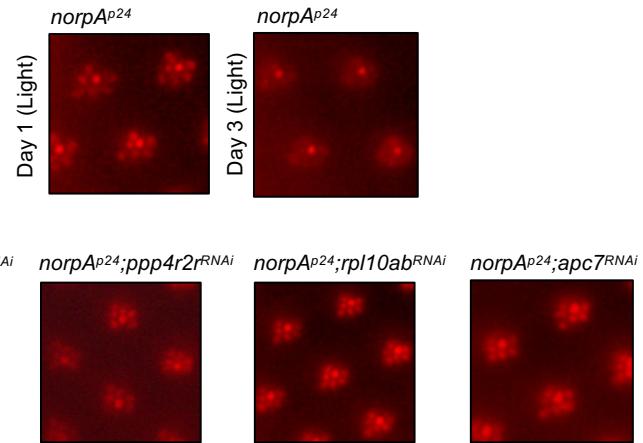
rdgB⁹, Rh1-GFP Rh1-GAL4 X UAS RNAi

Total genes tested	388
Suppressors	52
Enhancers	0
No effect	321
Lines did not yield progeny after cross	15

E

Protein binding	RNA binding	Protein phosphatase regulatory activity	Phosphatase
CG7961	CG8069	CG2890	CG9181
CG7843	CG42458	CG3825	GEF activity
CG13176	CG1677	COP9 signalosome	CG42665
CG1598	CG14443	CG42522	Transporters
CG10275	CG1542	CG4697	CG9825
CG33106	CG7971	CG18332	Importin
CG33208	CG9915	CG9556	CG4799
CG15224	CG13849	Ceramide transfer activity	PIP/Ion binding
CG9977	CG4396	CG7207	CG9205
	CG3071		CG17593
DNA/Chromatin binding		Anaphase promoting complex	Hippo pathway
CG4548	CG7283	CG14444	CG33967
CG8092	CG2807		CG11228
CG40218	CG6379	E3-Ligases	Heat shock protein
CG6538	CG1427	CG32847	CG2790
CG10415	CG1091		
CG33017	CG4202		
CG4299	CG7483		
CG7839			

Fig. 2

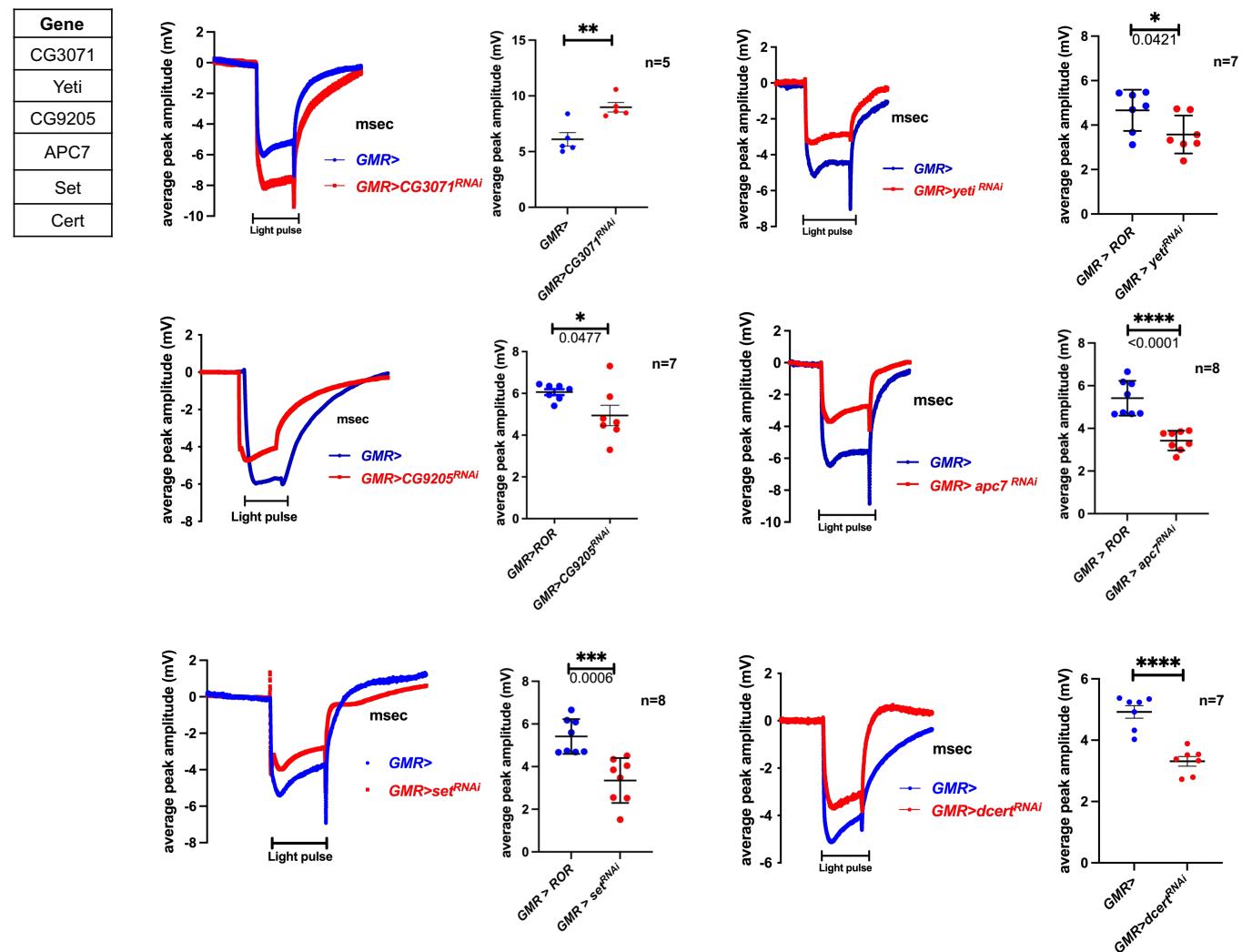

RNAi screen results for human orthologues of C. elegans genes										
Total genetic interactors	Primary accession number (UniProt)	1st RNAi line ID	Suppression	2nd RNAi line ID	Suppression	Function	Human orthologue	Associated phenotypes	OMIM Number	Link to OMIM
Score	Score	Score	Score	Score	Score	Score	Score	Score	Score	Score
CG8069	A1Z7P3	100778/KK	++	28189/GD	++	Phosphorylated adaptor for RNA export	PHAX		604924	View
CG4548	Q9GQN5	101568/KK	++	10618/GD	++	XNP/ Adenosinetriphosphatase	ATRX	Alpha-thalassemia/mental retardation syndrome	300032	View
CG7961	Q9W0B8	35305/GD	++	35306/GD	+	Coat Protein (coatomer) α	COP-A	Autoimmune interstitial lung, joint, and kidney disease	601924	View
CG7843	Q9V9K7	106344/KK	+	22574/GD	+	Arsenic resistance protein 2	SRRT (Isoform 5)		614469	View
CG42665	Q9VVC6	105885/KK	+	101144/KK	+	Ephexin	ARHGEF5	Breast cancer	600888	View
CG8092	A0A0B4KER0	28196/GD	+	TRIP 25971	+	relative of woc	POGZ (Isoform 5)	White-Sutton syndrome	614787	View
CG42458	Q7KU81	106608/KK	++	108072/KK	++	UN, mRNA binding	HNRNPC (Isoform 4)		164020	View
CG42522	Q7KTH8	TRIP 33370	++	No 2nd RNAi available		COP9 signalosome subunit 8	COPS8 (Isoform 2)		616011	View
CG1677	Q9W3R9	109697/KK	++	50195/GD	+	UN, Predicted to be involved in mRNA splicing, via spliceosome	ZC3H18 (Isoform 2)		Not applicable	View
CG14443	Q9W3Y5	105254/KK	++	17618/GD	++	UN, RNA helicase	DDX21		606357	View
CG1542	Q9V9Z9	104575/KK	++	39976/GD	++	UN, Predicted to be involved in rRNA processing and ribosomal large subunit biogenesis	EBNA1BP2		614443	View
CG9825	Q9W1Z1	105868/KK	++	1712/GD	++	UN, Solute carrier family 17 (SLC17) member	SLC17A7		605208	View
CG9205	Q9W0K9	107612/KK	+	29079/GD	++	UN, Oxysterol binding protein; PH domain	OSBPL11		606739	View
CG7971	A8JN12	101384/KK	++	34262/GD	+	UN, Predicted to be involved in RNA splicing	SRRM2	Intellectual developmental disorder, autosomal dominant 72	606032	View
CG4799	P52295	102627/KK	+	32466/GD	++	Pendulin	KPNA6		610563	View
CG9915	A8JV07	103731/KK	++	No 2nd RNAi available		UN, Predicted to be involved in poly(A)+ mRNA export from nucleus.	IWS1 (Isoform 2)		Not applicable	View
CG13849	Q95WY3	103738/KK	+	51775/GD	+	Nop56	NOP56	Spinocerebellar ataxia 36	614154	View
CG9181	Q9W0G1	108888/KK	++	37436/GD	++	Protein tyrosine phosphatase 61F	PTPN12	Colon cancer, somatic	600079	View
CG4396	Q9VYI0	101508/KK	+	48891/GD	+	found in neurons	ELAVL1		603466	View
CG33967	Q9VFG8	106507/KK	++	100765/KK	++	kibra	WWC1	Memory, enhanced, QTL	610533	View
CG13176	Q7JW27	39769/GD	++	24642/GD	++	washout	WASH6P		Not applicable	View
CG3071	Q9W4Z9	107206/KK	++	29589/GD	+	UN, Predicted to have snoRNA binding activity	UTP15		616194	View
CG1598	Q7JWD3	110555/KK	+	32391/GD	++	Unnamed/ Adenosinetriphosphatase	GET3	Cardiomyopathy, dilated, 2H	601913	View
CG40218	Q8SX12	102960/KK	++	No 2nd RNAi available		Yeti	CFDP1		608108	View
CG4697	Q9VJR9	34308/GD	++	34307/GD	++	COP9 signalosome subunit 1a	GPS1		601934	View
CG14444	Q9W3Y6	110729/KK	++	17622/GD	++	Anaphase Promoting Complex subunit 7	ANAPC7 (Isoform 2)	Ferguson-Bonni neurodevelopmental syndrome	606949	View

CG2890	Q9W2U4	105399/KK	++	25445/GD	++	Protein phosphatase 4 regulatory subunit 2-related protein	PPP4R2 (Isoform 3)	613822
CG7283	Q9VTP4	109345/KK	++	23459/GD	++	Ribosomal protein L10Ab	RPL10A	615660
CG2807	Q9VPR5	110091/KK	+	25162/GD	++	Splicing factor 3b subunit 1	SF3B1	Myelodysplastic syndrome, somatic
CG6538	P41900	110569/KK	+	12602/GD	+	Transcription factor TFIIF β	GTF2F2	189969
CG18332	Q8SYG2	101516/KK	+	12821/GD	++	COP9 signalosome subunit 3	COPS3	604665
CG6379	Q9W4N2	103723/KK	+	29611/GD	++	Unnamed/ Methyltransferase cap1	CMTR1	616189
CG1427	Q9VNE3	105727/KK	+	17456/GD	++	Sec synthetase	SEPSECS (Isoform 3)	Pontocerebellar hypoplasia type 2D
CG10275	Q9VJ82	106680/KK	++	37283/GD	++	kon-tiki	CSPG4	601172
CG2790	Q9W0X8	101619/KK	+	20903/GD	+	UN, The Heat Shock Protein 40 (Hsp40) family of co-chaperones	DNAJC21	Bone marrow failure syndrome 3
CG10415	O96880	100572/KK	+	12592/GD	+	Transcription factor II ϵ a	GTF2E1	189962
CG11228	Q8T0S6	104169/KK	++	7823/GD	+	Hippo	STK3	605030
CG1091	Q9VI58	107175/KK	+	16088/GD	++	Tailor, RNA uridylyltransferase	TUT1	610641
CG33106	Q9VCA8	103411/KK	++	33394/GD	+	mask, multiple ankyrin repeats single KH domain	ANKRD17 (Isoform 6)	Chopra-Amiel-Gordon syndrome
CG33208	Q86BA1	105837/KK	+	25371/GD	+	Mical, Molecule interacting with CasL	MICAL3	608882
CG15224	P08182	106845/KK	+	32377/GD	+	Casein kinase II β subunit	CSNK2B	Poirier-Bienvenu neurodevelopmental syndrome
CG17593	Q9VQR9	106469/KK	++	13029/GD	++	UN, Orthologous to human CCDC47 (coiled-coil domain containing 47)	CCDC47	Trichohepatoneurodevelopmental syndrome
CG33017	A1ZAC8	103968/KK	+	40022/GD	+	UN, The MADF-BESS domain transcription regulators	GPATCH8 (Isoform 2)	614396
CG4299	P53997	108987/KK	+	TRIP 77433	+	Set, encodes a subunit of the inhibitor of histone acetyltransferase (INHAT) complex	SET	Intellectual developmental disorder, autosomal dominant 58
CG7207	Q9Y128	103563/KK	++	27914/GD	+	ceramide transfer protein	CERT	Intellectual developmental disorder, autosomal dominant 34
CG4202	Q9I7W5	103352/KK	++	49946/GD	+	Something about silencing 10	UTP3	611614
CG9977	Q9VZX9	106749/KK	++	36193/GD	++	Adenosylhomocysteinase like 1	AHCYL1	607826
CG32847	Q8IQM1	104294/KK	++	48423/GD	++	UN, contains The RING (Really Interesting New Gene) finger domain	TRIM26	600830
CG7839	Q9VTE6	105979/KK	+	12691/GD	+	UN, Orthologous to human CEBPZ (CCAAT enhancer binding protein zeta).	CEBPZ	612828
CG7483	Q9VHS8	108580/KK	++	TRIP 32444	+	eIF4AIII, ATP-dependent RNA helicase	EIF4A3	Robin sequence with cleft mandible and limb anomalies
CG9556	Q94899	48044/GD	++	TRIP 28908	++	alien	COPS2	604508
CG3825	Q9W1E4	107545/KK	+	TRIP 33011	+	Protein phosphatase 1 regulatory subunit 15	PPP1R15B	Microcephaly, short stature, and impaired glucose metabolism 2

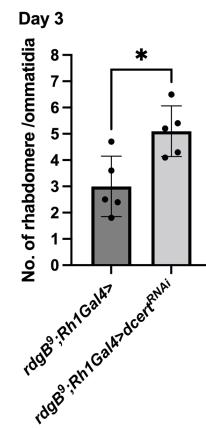
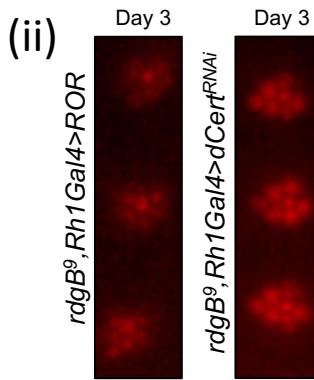
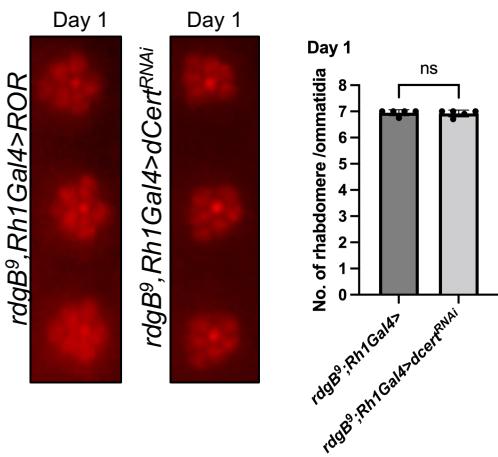
A

Total RNAi lines used	52
Suppressors	13
Enhancers	0
No effect	39

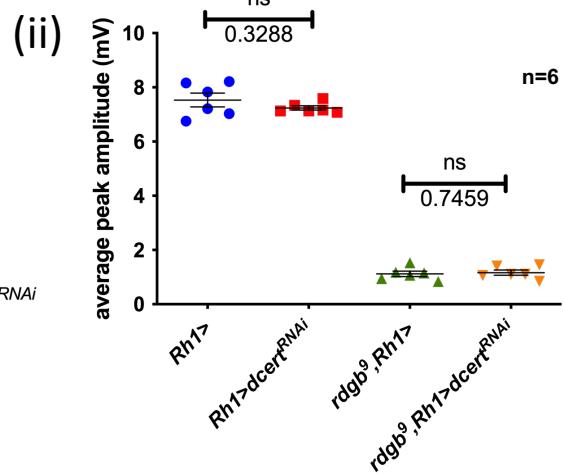
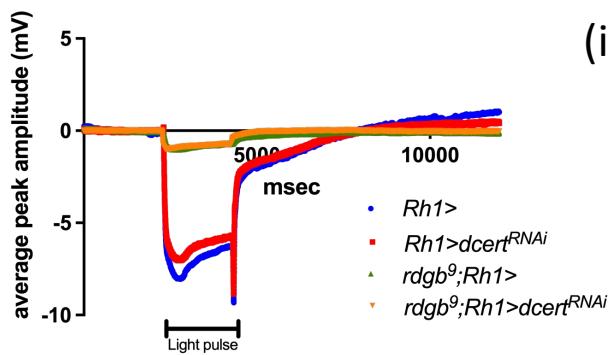
B

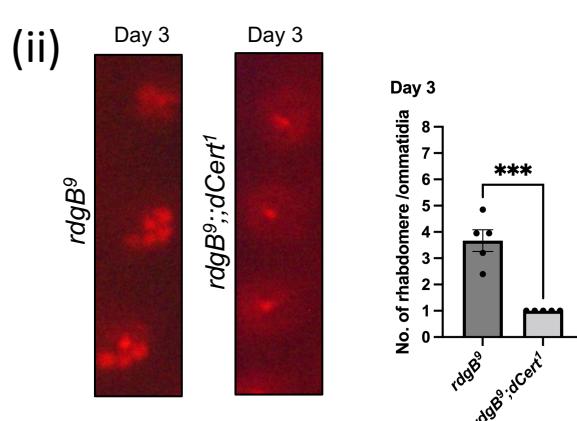
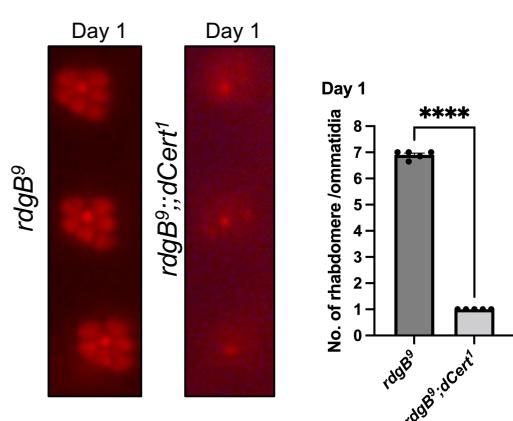


C




Protein binding	DNA/Chromatin binding	RNA binding	COP9 signalosome	Anaphase promoting complex	Protein phosphatase regulatory activity
CG7961	CG6538	CG7283	CG4697	CG18332	CG14444
CG1598	CG33017	CG6379			CG2890
CG10275		CG4202			

D



D GMR-GAL4 X UAS RNAi



A (i)

B (i)

C (i)

D (i)

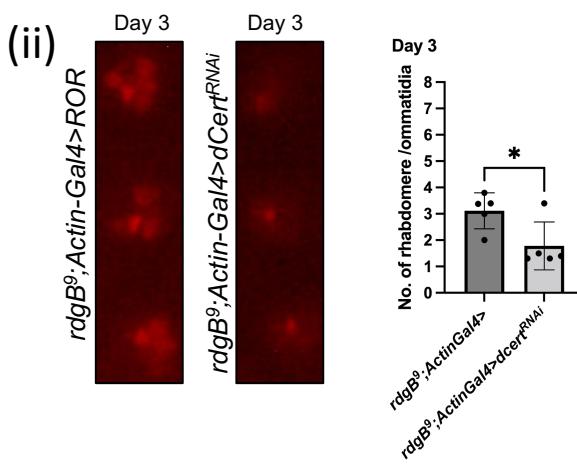
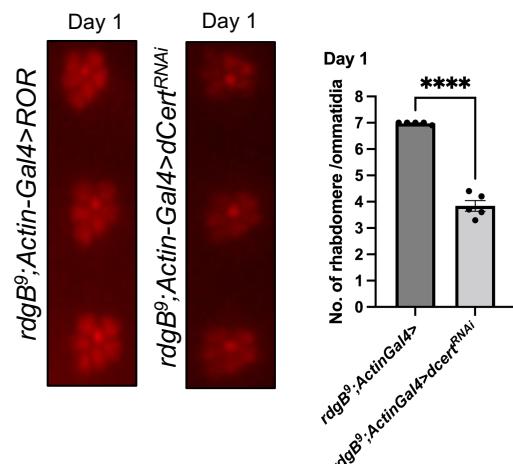



Fig. 4