

1 Dynamic simulations of feeding and respiration of the early 2 Cambrian periderm-bearing cnidarian polyps

3

4 Yiheng Zhang^{1, 2, 4}, Xing Wang^{3, 4, *}, Jian Han^{2, *} Juyue Xiao¹, Yuanyuan Yong², Chiyang Yu², Ning
5 Yue², Jie Sun², Kaiyue He², Wenjing Hao², Tao Zhang^{1, 2, *}, Bin Wang¹, Deng Wang², and
6 Xiaoguang Yang²

7

8 1. *School of Information Science & Technology, Northwest University, Xi'an 710069, China.*

9
10 2. *State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an 710069, China.*

11
12 3. *College of Life Science, Linyi University, Linyi 276000, China.*

13
14 4. *These authors contributed equally to this work.*

15 *Corresponding authors: Jian Han (elihanj@nwu.edu.cn); Tao Zhang
16 (zhangtao129@nwu.edu.cn) and Xing Wang (wx5432183@126.com)

17

18 Impact statement

19 To the best of our knowledge, our study is the first to simulate the feeding and respiration patterns
20 of *Quadruphyrgites* by introducing a dynamic fluid-structure coupling method, revealing the
21 relationship between the ancient medusozoans and modern jellyfish.

22

23 Abstract

24 Although fossil evidence suggests the existence of an early muscular system in the ancient
25 cnidarian jellyfish from the early Cambrian Kuanchuanpu biota (ca. 535 Ma), south China, the
26 mechanisms underlying the feeding and respiration of the early jellyfish are conjectural. Recently,
27 the polyp inside the periderm of olivoids was demonstrated to be a calyx-like structure, most
28 likely bearing short tentacles and bundles of coronal muscles at the edge of the calyx, thus
29 presumably contributing to feeding and respiration. Here, we simulate the contraction and
30 expansion of the microscopic periderm-bearing olivoid *Quadruphyrgites* via the fluid-structure
31 interaction computational fluid dynamics (CFD) method to investigate their feeding and
32 respiratory activities. The simulations show that the rate of water inhalation by the polyp
33 subumbrella is positively correlated with the rate of contraction and expansion of the coronal
34 muscles, consistent with the previous feeding and respiration hypothesis. The dynamic simulations
35 also show that the frequent inhalation/exhalation of water through the periderm polyp
36 expansion/contraction conducted by the muscular system of *Quadruphyrgites* most likely represents
37 the ancestral feeding and respiration patterns of Cambrian sedentary medusozoans that predated
38 the rhythmic jet-propelled swimming of the modern jellyfish. Most importantly for these
39 Cambrian microscopic sedentary medusozoans, the increase of body size and stronger capacity of
40 muscle contraction may have been indispensable in the stepwise evolution of active feeding and
41 subsequent swimming in a higher flow (or higher Reynolds number) environment.

42

43

44 **Introduction**

45 Cnidarians, such as medusozoans, corals, sea fans, and hydromedusae, are generally considered to
46 be a sister group of bilateral animals that live predominantly in the ocean. In general,
47 medusozoans have a two-stage life cycle, consisting of a swimming medusoid stage and a
48 sedentary polypoid stage. Swimming jellyfish rely on rhythmic contraction of the coronal muscles
49 and expansion of the mesoglea at the umbrella rim to swim in a “jet-like” manner in the water
50 column (Arai 1997; Brusca *et al.* 2016; Leclère & Röttinger 2016; Zapata *et al.* 2015). Because
51 both the ectoderm and endoderm of jellyfish are in direct contact with seawater, no specialised
52 respiratory organs are required to meet aerobic metabolic needs. Sedentary polyps rely on free,
53 extensible tentacles and can feed actively or passively (Ishi 2008).

54 Although the origin of the common ancestor of medusozoans was dated using the molecular
55 clock technique to the Cryogenian (Erwin *et al.* 2011), the earliest known medusozoan fossil
56 records were found in the Ediacaran. *Haootia quadriformis* from the Ediacaran Fermeuse
57 Formation (*ca.* 560 Ma), was suggested to be a stalked jellyfish based on external morphological
58 evidence and possible coronal muscles on its surface (Liu *et al.* 2014). By comparing periderm
59 morphology, several taxa of tetradial conulariids in the Ediacaran were also proposed to be more
60 closely related to modern scyphozoan polyps (Van Iten *et al.* 2006; Leme *et al.* 2022). All these
61 fossil types were suggested to be sedentary forms, with no definitive evidence of a free-swimming
62 lifestyle. The earliest known swimming jellyfish, *Yunnanoascus haikouensis* Hu *et al.* (2007),
63 from the early Cambrian Chengjiang biota (Stage 3, *ca.* 519 Ma) exhibits a typical tetrapodal
64 symmetry; eight sensory rods distributed around the umbrella rim, 16 pairs of elongated
65 retractable tentacles evenly spaced with rhopalias, and a less pronounced manubrium. This
66 configuration allows direct comparison with modern scyphozoans (Han *et al.* 2007; 2016) and
67 suggests that the origin of swimming jellyfish may have occurred much earlier.

68 Phosphatised microfossil medusozoans from the early Cambrian Kuanchuanpu biota (*ca.* 535
69 Ma) provide critical clues for investigating the origin and evolution of cnidarians and swimming
70 medusae. At least four families have been identified in the Kuanchuanpu biota, involving
71 Hexangulaconulariidae, Anabaritidae, Carinachitidae, and Olivooidae (Han *et al.* 2020). Of these,
72 the family Olivooidae includes the tetrapodal symmetrical *Quadruphyrgites* as well as multiple
73 pentapodal forms, such as *Olivoooides*, *Sinaster*, *Hanagyroia*, and other undetermined taxa (Li *et al.*
74 2007; Liu *et al.* 2014; Han *et al.* 2013, 2016; Dong *et al.* 2013, 2016; Wang *et al.* 2017, 2020).

75 As revealed by scanning electron microscopy (SEM), the hemi-globular shaped embryo of
76 *Olivoooides* (Figure 1), enclosed by an egg membrane, is equipped with very complex internal
77 structures at the prehatched embryonic stage, such as a manubrium in a relatively deep
78 subumbrella cavity, short tentacles, bundles of coronal muscles, paired gonad-like lamellae at
79 either side of the interradial septa, and many other sheet-like lamellae (Han *et al.* 2013; 2016;
80 Dong *et al.* 2013; Wang *et al.* 2017; 2020). Remarkably, the regular distribution of ring-like
81 fibrous structures on the surface of the umbrella of their prehatched embryos, which are densely
82 packed in bundles at the edge of the subumbrella and gradually become sparse towards the aboral
83 side, allows for a comparison with the coronal muscles of modern jellyfish (Han *et al.* 2020; Wang
84 *et al.* 2022).

85 In the hatched stages of development, the soft tissue of millimetre-scale olivoooids consists of
86 an upper calyx and basal stalk (Figure 1G), in a torch-like shape similar to that of the extant

87 medusozoan polyps (Wang *et al.* 2020; Steiner *et al.* 2014). Unfortunately, the internal structure of
88 polyps remains ambiguous. Considering their cubomedusa-type anatomy in the prehatched stage,
89 the hatched torch shaped olivoids appear to be a type of periderm-bearing polyp-shaped medusa
90 (Wang *et al.* 2020). As mentioned above, the rhythmic contraction and expansion of the coronal
91 muscles aided by the mesoglea leads to the consequent inhalation and discharge of water,
92 propelling modern jellyfish to swim through the water column, which in turn facilitates more
93 efficient tentacle feeding (Brusca *et al.* 2016). The presence of coronal muscles in early Cambrian
94 embryonic olivoids suggests that early medusozoans in the hatched/juvenile polypoid stage
95 probably used a similar muscular system to control the opening and closing of the subumbrella to
96 drive the water flow in and out, and to assist in feeding (Wang *et al.* 2022); however, the early
97 Cambrian polyp-shaped medusa most likely could not swim freely due to the external periderm.
98 The compromise of these two seemingly conflicting conditions led to the hypothesis on the
99 benthic origin of medusa swimming and feeding (Han *et al.* 2020; Wang *et al.* 2022). Specifically,
100 there may be a series of intermediate types (*i.e.*, stalked jellyfish) between sedentary polyps and
101 free-swimming medusae. These transitional types may have evolved divergently from sedentary
102 forms to free-swimming medusae through a series of morphological and structural innovations in
103 evolution, such as rhythmic contraction of the coronal muscles, loss or degradation of the
104 periderm, and increased thickness of the mesogleal layer (Han *et al.* 2020; Wang *et al.* 2022).

105 *Quadrapygites* (Figure 2A, B) are one of the most recognisable taxa in the olivoids from
106 the Kuanchuanpu biota (Fortunian Stage, early Cambrian). It has drawn much attention from
107 biologists and palaeontologists, given its tetra-radial symmetry comparable to that of modern
108 jellyfish (Liu *et al.* 2014; Dzik *et al.* 2017). The pagoda-shaped, thin, flexible periderm was
109 divisible into basal and an abapical sections. The abapical section showed an increasing number of
110 annular ridges as it grew. The surface of an annular ridge exhibits many irregular longitudinal
111 folds and fine striations (Yong *et al.* 2022). Similar to the type of pentaradial forms found in
112 olivoids (Steiner *et al.* 2014, Figures 10.3, 11.6, and 11.13), the twelve longitudinal apertural
113 lobes of *Quadrapygites* converge towards the central axis of the periderm and then extend
114 downwards, leaving a narrow, star-shaped but contractile channel, which is called the periderm
115 aperture (Figure 2B). The upper side of the polyp calyx was bound to the periderm aperture
116 (Figure 2C). The manubrium in the subumbrella cavity was conceived with a mouth at the top. A
117 ring of four pairs of short tentacles was possibly located close to the subumbrella margin, as
118 inferred from other contemporaneous tetraradial olivoid embryos (Figure 2D, Han *et al.* 2016b).
119 The varying heights and expansions of the peridermal aperture of *Quadrapygites* with the twelve
120 centripetal lobes (Figure 2A–C) indicate the peridermal aperture could move up and down along
121 the body axis, and expand centrifugally or contract centripetally, a behaviour that was undoubtedly
122 triggered by the interaction of circular and longitudinal muscles and the mesoglea of the polyp
123 inside the periderm. To date, there is no evidence to support that the tentacles of *Quadrapygites*
124 could protrude from the periderm to feed in the same way as modern scyphopolyps.

125 Modelling the living environment of macrofossils to verify their morphological and
126 functional roles is one of the most recent advances in paleobiology (Dynowski *et al.* 2016;
127 Darroch *et al.* 2017; Waters *et al.* 2017; Gibson *et al.* 2019; Rahman *et al.* 2020; Song *et al.* 2021).
128 Ediacara fossil assemblages with complex ecosystems consist of exceptionally preserved soft-
129 bodied eukaryotes of enigmatic morphology, which their affinities are mostly unresolved (Tarhan
130 *et al.*, 2018; Evans *et al.*, 2022). For example, computational fluid dynamics (CFD) methods were

131 used to simulate oral feeding in the Ediacaran *Tribrachidium heraldicum*, demonstrating that its
132 oral morphology was more oriented towards suspension filter feeding, providing evidence for late
133 Ediacaran ecosystem complexity (Rahman *et al.* 2015). Our recent findings suggest that fluid
134 simulation tools can also be used for microfossil morphological and functional studies (Liu *et al.*
135 2022). Additionally, compared with macrofossil fluid simulations, the boundary layer conditions
136 should be considered (Zhang *et al.* 2022). Although the swimming mechanism of modern jellyfish
137 has long been studied by biological modelling and the use of fluid simulations (Sahin *et.al.* 2009;
138 Gemmell *et al.* 2013; Gemmell *et al.* 2018), to the best of our knowledge, such methodologies
139 have hardly been applied to modelling the dynamic pattern of Cambrian sedentary polyps.

140 In the present study, we attempted to simulate both the contraction of the coronoid muscle of
141 the subumbrella and the expansion of the mesoglea layer of structurally simplified polyps of
142 *Quadruphyrgites* using a fluid-structure interaction CFD (Figure 2). Thus, we were able to
143 reconstruct and investigate the active dynamic pattern of *Quadruphyrgites*. It is also possible to
144 further probe into the autecology of more microscopic Cambrian sedentary periderm-bearing
145 polyps.

146

147 **Results**

148 *Flow velocity*

149 The velocity line profiles for the simulations with different expansion/contraction time ratios show
150 that the velocities in the contraction phase of the four sets of simulations had almost the same
151 trend with time (Table supplement 3). During the expansion phase, the maximum values of the
152 mouth flow velocity for all four sets of simulations increased as the expansion velocity increased,
153 with the maximum values occurring to the right of the centre of the time axis (Figure 4A–D). By
154 comparing the maximum values of the flow velocities at the sampling cut points in each
155 simulation (Figure 5), the accelerated expansion velocity lead to a more remarkable change in
156 flow velocity within the region of z from 2.05 to 2.15 mm than that within the region of $z>2.15$
157 mm. Since the flow velocity dropped to below 0.001 m/s, suggesting that the polyp subumbrella
158 had a reduced capacity to take in food from this region.

159 In all simulations, the general trend of the flow changed with different expansion/contraction
160 time ratios; however, only the maximum values of the flow velocities differed. We considered the
161 results of the simulation with an expansion/contraction time ratio of 3:1 as an example. The
162 subumbrella inside the polyp was in a resting state at 0 s (Figure 6A, B), the flow velocity in the
163 flow field was close to 0 m/s, and the opening of the subumbrella was in an expanded state. After
164 0 s, the subumbrella started to expand, and the external water flow was sucked in. Then, the
165 expansion velocity of the subumbrella gradually decreased with time until around 3 s, when the
166 flow velocity near the opening of the subumbrella became 0 m/s and the mouth shrank to a
167 minimum (Figure 6E, F). After 3 s, the subumbrella started to contract, accelerating the
168 contraction, and the opening of the subumbrella began to be restored. At approximately 3.5 s, the
169 contraction velocity of the mesoglea layer reached a maximum, and the flow velocity near the
170 opening of the subumbrella also reached a maximum during the contraction phase (Figure 6G, H).
171 At 4 s, the subumbrella stopped contracting, the opening of the subumbrella was restored to its
172 original state, and the flow velocity decreased to a minimum. At this point, the polyp completed
173 the expansion/contraction cycle.

174

175 **Vortex visualisation**

176 The visualisation of the intensity of the dimensionless vorticity around *Quadruphyrgites* during its
177 expansion and contraction phases is shown in Figure 7-animation supplement 1 (dynamic 2D
178 visualisation and 3D vortex reconstruction in Animation supplement 1 and 2, respectively). The
179 magnitude of vorticity of the colour scale bar was set to [-0.001,0.001] so that the magnitude was
180 appropriate for visualising vortex formation near the periderm. At approximately 0.1 s (Figure 7A),
181 the main vortex started to form near the peridermal aperture, and a secondary vortex, which
182 flowed in the opposite direction to the main vortex, also started to form in the middle portion of
183 the periderm. Both the main vortex and secondary vortex enlarged gradually over time. At
184 approximately 1 s, the lower secondary vortex was in contact with the bottom surface (Figure 7B),
185 and its morphology changed, manifesting itself as a flow from the middle of the periderm towards
186 the bottom surface. At approximately 2 s, the main vortex developed to the maximum visualisation
187 range (Figure 7C), at which time, due to an increase in the velocity of the water, a partial
188 microflow in the opposite direction of the vortex was also formed on the surface of the periderm.
189 After 2 s, the secondary vortex began to move up along the surface of the periderm to a position
190 close to the aperture. From 2.87–2.88 s (Figure 7D, E), the main vortex separated from the
191 periderm, and the secondary vortex moved to the original position of the main vortex at the
192 peridermal aperture, replacing it with the main vortex for the next stage of contraction at the end
193 of the expansion movement of the subumbrella at 3 s (Figure 7F).

194 After the onset of contraction, the newly formed main vortex pushed the expansion phase
195 vortex away from the peridermal aperture. The vortex development process in the contraction
196 phase follows a pattern similar to that in the expansion phase, with the vortex eventually
197 separating from the peridermal aperture at 3.9–4.0 s (Figure 7G, H), at which point the
198 expansion/contraction cycle was completed.

199 Because the contraction process took less time and the vortex enlarged faster than that in the
200 expansion phase, the shapes and maximum sizes of the newly formed main vortex and secondary
201 vortex differed, but the overall trend of alternating main vortex and secondary vortex formation
202 was maintained during the expansion-contraction-expansion movement of the subumbrella.

203

204 **Discussion**

205 **Expansion/contraction frequency and feeding and respiration efficiencies**

206 The simulations demonstrated the dynamic pattern of *Quadruphyrgites* during one cycle of
207 expansion and contraction and the visualisation of ambient water flow in its vicinity. A faster
208 expansion rate (*i.e.*, a shorter expansion-contraction cycle) leads to a relatively greater water
209 exchange and flow velocity formed near the subumbrella aperture. Subsequently, the tentacles will
210 have more opportunities to make contact with suspended food particles in fresh water inputted
211 from outside the periderm per unit of time. In this regard, compared with the stagnant condition,
212 the increased velocity of the water flowing into the periderm and then the subumbrella cavity will
213 improve the efficiency of food intake. In the subsequent contraction phase, the polyp expels water
214 from the subumbrella cavity at a high rate of movement.

215 During the contraction/expansion movement of the polyp, the vortices formed around the
216 periderm could slowly bring food particles close to the periderm aperture, where small food
217 particles were more likely to gather owing to the viscous force of the peridermal surface instead of
218 being transported away by the current. This combination of active and passive feeding could also

219 improve the feeding and gas exchange efficiencies of polyps. Notably, although the deeply
220 concave subumbrellar cavity of olivoids is equipped with short tentacles, it is unlikely that they
221 can protrude their short tentacles out of the periderm. Therefore, except for the random passive
222 flow of microscopic food particles, their main mode of food intake is likely suspension feeding
223 through active contraction by the ring muscles (Wang *et al.* 2022). The relatively high rate of
224 contraction of *Quadrupygites*/olivoids, if contracted frequently or rhythmically, helps the
225 four/five pairs of short tentacles capture relatively larger quantities of food particles in a short
226 period of time. In this regard, olivoids can be functionally considered as active suspension
227 feeders rather than conventional predators.

228 The feeding and excretory activities of marine benthic organisms are closely related to their
229 surrounding water as an appropriate flow velocity can increase feeding efficiency (Pratt 2008).
230 Active suspension feeders with the ability to move can actively avoid areas where currents are
231 unsuitable for survival and choose areas where food is abundant (Labarbera 1984). In contrast, in
232 sedentary forms, olivoids were unable to displace directionally and actively; therefore, their
233 feeding was more dependent on the surrounding environments. A suitable current environment is
234 conducive to the formation of eddies around the periderm to inhale food particles efficiently from
235 the space above the subumbrella aperture, whereas excessive current velocities may take away
236 large amounts of food particles.

237

238 ***Potential influence of current velocity on feeding patterns***

239 It has been suggested that microbenthos mostly inhabited in the low flow region above the sea
240 floor, also called the bottom boundary layer (Trowbridge & Lentz 2018). The flow velocity above
241 the *Quadrupygites* peridermal aperture showed that the maximum velocity ranged from 0.005–
242 0.0155 m/s depending on the rate of contraction and expansion (Figure 5). Such a flow velocity
243 magnitude indicated that polyps may live in relative low flow environment protected by the
244 viscous boundary layer, which enable them to maintain a relatively stable posture for feeding
245 activities in a lower ambient flow speed environment (Liu *et al.* 2022). Otherwise, inhaling food
246 from the ambient environment with a current velocity much higher than the inhaling velocity is
247 more difficult.

248 However, the protective ability of the viscous boundary layer is varied because of the
249 fluctuations of flow caused by oscillating current or uneven seafloor (Zhang *et al.* 2022).
250 Simultaneously, the current velocity (at a height of 2–2.5 mm) in the vicinity of the peridermal
251 aperture within the viscous boundary layer might be close to 0.03 m/s (Caldwell & Chriss 1979;
252 Wengrove & Foster 2014), about twice the maximum inhalation velocity of the polyp in the
253 simulations, especially in areas with frequent intertidal current velocity changes (Wengrove &
254 Foster 2014). Under these relatively high current velocities, food particles will be rapidly
255 transported, making it difficult for polyps to inhale them efficiently. Thus, it can be hypothesised
256 that the physiological activity of *Quadrupygites* relies on other potential environmental factors in
257 addition to the protectiveness of the viscous boundary layer. For example, the greater viscous
258 effect of rougher sediment surfaces or the enrichment of organisms in the area results in more
259 turbulence among the community, increasing the thickness of the boundary layer (Grant &
260 Madsen 1986), and simultaneously reducing the current velocity. A turbulent environment can
261 enhance the mixing of nutrients, thereby increasing the feeding efficiency (Denny 2014), but the

262 effectiveness requires further investigation. In addition, this type of inhalation feeding is
263 profoundly dependent on the surrounding environment and may be an important constraint in
264 survival.

265 The pattern of alternating ring-shaped main and secondary vortices formed during the
266 expansion and contraction of polyps (Figure 7) shares some similarities with those in modern
267 swimming medusae. Modern medusae swimming patterns can be divided into jet propulsion (jet
268 propulsive force is generated by the contraction of the circular muscle fibres) and jet-paddling
269 propulsion (the edge of the subumbrella can act as “paddles” to assist jet propulsion) (Dabiri *et al.*
270 2007). The dye visualisation on *Aurelia aurita* showed a ring-shaped starting vortex generated
271 during the swimming stroke (contraction), followed by a stopping vortex of opposite rotational
272 sense during the recovery stroke (expansion) (Dabiri *et al.* 2005). The vortex formed was
273 suggested to be related to both feeding and propulsion. Sahin *et al.* (2009) recovered the
274 swimming mode of hydromedusae *Sarsia tubulosa* (jet propulsion) and *Aequorea victoria* (jet-
275 paddling propulsion) using a CFD method and visualised the ring-shaped starting and stopping
276 vortices. The flow pattern of a vortex can be analysed to estimate the efficiency at which a jet
277 produces thrust (Sahin *et al.* 2009). Dabiri *et al.* (2005) suggested that the interaction between the
278 starting and stopping vortex functions to reduce the kinetic energy was lost during medusa
279 swimming, while Sahin *et al.* (2009) suggested that the formation of toroidal vortex rings in the
280 wake of medusa swimming does that. Gemmell *et al.* also suggested that the starting and stopping
281 vortices may be related to the passive energy recapture mechanism, which is supported by the fact
282 that *Aurelia aurita* is one of the most energetically efficient propulsors (Gemmell *et al.* 2013;
283 2017). Although the dynamic process of sedentary *Quadruphyrgites* is more or less similar to the jet
284 propulsion swimming of medusae, they may not stroke to move or swim concerning the external
285 periderm. The formed main and secondary vortices are presumed to improve the efficiency of
286 water flow in and out of the polyp cavity, hence influencing the feeding and respiration efficiency.
287 Furthermore, the contraction (or changeable diameter) of the subumbrella opening can bolster the
288 kinetic energy of expelled water and the vortex (Mohseni & Gharib 1998; Mohseni *et al.* 2001),
289 which may also help them gain extra feeding and respiration efficiency. However, jet propulsion is
290 significantly less efficient than jet-paddling propulsion swimming patterns, although the former
291 can produce relatively higher thrust and kinetic energy in most cases. Constrained by peridermal
292 structure, the *Quadruphyrgites* polyps were unable to expand and contract to a large magnitude as
293 modern medusae or hydrae do, thus their dynamic efficiency is considered to be rather limited,
294 although this cannot be calculated by using formulas for modern swimming animals (*e.g.*, net cost
295 of transport analysis proposed in Gemmell *et al.* 2013) due to their sedentary life and the
296 ambiguity of certain truly essential parameters (*e.g.*, net mass of polyps).

297

298 ***Functions of muscular system in post-embryonic olivoids***

299 Extant anthozoans, and possibly, medusozoan polyps (Arai, 1997), are exclusively passive
300 opportunists in feeding (Shick, 1991), minimising the energetic cost of obtaining food. In contrast,
301 jellyfish are undoubtedly active feeders (Arai, 1997). The earliest Cambrian medusozoan
302 olivoids, although encased in the periderm, may be able to switch between active and passive
303 feeding modes as modern benthic organisms. In an energetic tidal setting with a high
304 concentration of oxygen, despite the low flow due to the bottom boundary layer, olivoids can
305 presumably stay inside the periderm, waiting for the suspension of food particles transported by

306 the bimodal current or absorbing dissolved organic matter. Morpho-anatomical studies suggest
307 that the coronal muscles of the pentaradial symmetrical medusozoan embryos from the early
308 Cambrian Kuanchuanpu biota during the pre-hatching stage are perfectly comparable to those of
309 modern medusae, and it was further hypothesised that the contraction of the coronal muscles of
310 the soft tissue and the expansion of the mesoglea layer guided the opening of the periderm,
311 thereby facilitating animal feeding (Wang et al. 2022). Taken together with CFD simulation, it
312 suggested that Cambrian olivoids could also be active feeders and that they may have developed
313 some of the behavioural capabilities of swimming medusae.

314

315 ***Body size, Reynolds number, and swimming***

316 Previous studies have revealed that some Cambrian echinoderms may adopt a more favourable
317 posture in relation to the current to reduce drag or create a suitable recirculation environment to
318 improve feeding efficiency (Rahman et al. 2020). Olivoids were unable to do so because of their
319 sedentary life within a tetraradial symmetrical periderm. However, their periderm aperture will
320 stand upright or tilt at various angles. As polyps and their periderm became larger or taller, due to
321 growth or evolution, the upper portion of the periderm left the bottom boundary layer region
322 (Zhang et al. 2022) and encountered higher velocity currents. Therefore, larger polyps have to
323 develop a series of novel strategies to adhere to the seafloor by a holdfast and to access more
324 suspended food particles per unit time transported by higher velocity currents (Shick, 1991). One
325 of the strategies for periderm-dwelling medusozoans is to develop stronger coronal muscles to
326 achieve a greater contraction or expansion ability (*i.e.*, higher rate or larger magnitude for
327 contraction and expansion), so as to change the direction of flow to a greater extent. Alternatively,
328 they may have evolved many longer, extensible tentacles protruding from the periderm, which
329 should result in a larger periderm aperture even without a cover, similar to living scyphopolyps
330 (Jarms et al. 2002). Third, if the periderm largely degenerated, such as in living sea anemone or
331 cubozoan polyps (Straehler-Pohl 2017), the polyps could change their adhesive position.
332 Otherwise, they could develop a streamlined body to reduce drag and allow for more favourable
333 feeding gestures (Liu et al. 2022).

334 Furthermore, from the aspect of biological fluid mechanics, a low Reynolds number (Re)
335 swimming strategy can lead to a lower propulsion efficiency in modern propulsive swimming
336 animals, such as swimming medusae (Sahin et al. 2009). In certain cases, animals are unable to
337 move forward if the swimming Re is too low; this is called “the scallop theorem” (Robertson et al.
338 2019). Specifically, this implies the medusae may evolve to much larger sizes and still be able to
339 move through the surrounding fluid (Sahin et al. 2009). For modern scyphomedusae, such as
340 *Aurelia aurita*, an increase in body size (or bell diameter) allowed them to swim in a higher Re
341 manner (Feitl et al. 2009). Simultaneously, for millimetre-scale olivoids inhabiting the viscous
342 boundary layer region, both the dynamic Re (approximately 1; calculated from the results in this
343 study, see “Computational fluid dynamics”) and the environmental Re could be very low (due to
344 the higher fluid viscosity caused by enhanced mixing of sediments and lower flow), the limitation
345 to the efficiency of food inhalation and respiration through contraction and expansion may also be
346 significant. Thus, it is reasonable that both larger body size and stronger capacity of body
347 contraction of Cambrian polyps may have been indispensable toward the stepwise evolution of
348 active feeding, enabling them to live and subsequently swim in a higher flow (or higher Re)
349 environment.

350 Notably, from the earliest Cambrian to Cambrian Stage 3, the trend of increasing body size
351 was remarkable on a global scale (Zhuravlev & Wood 2020), although with some exceptions, *i.e.*,
352 the large, skeletonised conulariid-like *Paraconularia* found in the terminal Ediacaran Tamengo
353 Formation of Brazil (Leme *et al.* 2022). For example, in South China, millimetre-scale, sedentary
354 medusozoan polyps from the Cambrian Fortunian Stage to Stage 2, except for the tubulous
355 Anabaritidae without tube closure (Liu *et al.* 2017; Guo *et al.* 2020a, b; 2021), have small
356 peridermal apertures. For polyps living inside the periderm, access to food is relatively inefficient,
357 and food particles are limited in size by virtue of contraction and expansion of the peridermal
358 aperture and the coronal muscle-mesoglea layer. In contrast, centimetric polyp-type sedentary
359 tube-dwelling cnidarian fossils such as *Sphenothallus* (Li *et al.* 2004), *Cambrorhytium* (Conway
360 Morris *et al.* 2015), and *Byronia* (Zhu *et al.* 2000; Chang *et al.* 2018) from the mid- to late
361 Cambrian allow their tentacles to protrude completely out of the cone-shaped closureless tube. In
362 addition, the tube surface was much smoother, capable of reducing the drag-to-water flow. This
363 body structure, together with protruded tentacles, allowed for larger amounts and sizes of food to
364 be obtained, thus establishing the evolutionary foundation for the rise of polyp strobilation, the
365 emergence of saucer-like planula larvae, and the origin of swimming medusae. Changes in the
366 periderm/exoskeleton of Cambrian benthic medusozoans were also consistent with our hypothesis
367 regarding the interaction between animal body size and current velocity (or Reynolds number).

368 In summary, the simulation results illustrate that the rate of water intake near the periderm
369 aperture is directly related to the expansion rate of the mesoglea layer. Increasing the strength of
370 the expansion-contraction requires a highly concentrated and well-developed coronal muscle and
371 thicker mesoglea layer, which inevitably reduces the density of the polyp body. Hence, olivoid-
372 type feeding was most likely one of the prerequisite transitional forms for the rise of the jet-
373 propelled swimming style; in other words, rhythmic jet-propelled swimming is most likely a by-
374 product of occasional/frequent olivoid-type feeding of periderm-bearing sedentary medusozoans.
375 These inferences fit well with the appearance of centimetre-scale predatory swimming medusae
376 with rhopalias at the beginning of the Cambrian Stage 3 (Cartwright *et al.* 2007; Han *et al.* 2016a).

377 ***Perspectives for future work and improvements***

378 Previous palaeontological CFD simulations applied to extinct fossils have mostly used static
379 models of organisms and have mainly focused on the hydrodynamic efficiency of organisms in
380 water flowing at different velocities (Gutarra & Rahman 2022). This type of simulation has
381 potential for testing hypotheses in terms of an organism's functional and morphological
382 performance (Rahman 2017), providing assessment of and deep insights into the adaptability of
383 organisms to their environment from hydrodynamic perspectives. However, they did not involve
384 the dynamic effects of organisms on the ambient environment. Most previously simulated
385 palaeontological organisms were on the scale of millimetres to centimetres (Waters *et al.* 2017;
386 Gibson *et al.* 2019; Rahman *et al.* 2020; Song *et al.* 2021). The smaller size of *Quadrifyrgites*
387 indicated that they lived in a different current environment compared with larger or taller
388 organisms. For instance, the velocity gradient in the bottom boundary layer flow regime can lead
389 to higher ambient flow speeds with the increasing height of benthic organisms (Gibson *et al.*
390 2021). Therefore, lack of an ambient current environment may have an impact on the results.
391 However, adding an ambient current to the simulations can introduce more technical issues that
392 are too problematic to be addressed at this stage, such as poorer simulation convergency. In
393

394 addition, the dynamic effect of *Quadrappyrgites* on ambient water, which was the main focus of the
395 present study, needs to be investigated and visualised without the interference of current (as many
396 CFD simulations for modern jellyfish, *e.g.*, McHenry & Jed 2003; Gemmell *et al.* 2013; Sahin *et*
397 *al.* 2009 were conducted under hydrostatic conditions). Considering the two important points
398 stated above, the simulations here were conducted under a hydrostatic environment. We
399 emphasised that members of *Quadrappyrgites* were not configured to live in stagnant water
400 naturally, as discussed in a study by Liu *et al.* (2022). However, further investigations of the
401 impact of ambient currents on the feeding abilities of organisms may need to be performed by
402 designing a set of new insightful simulations.

403 Furthermore, it remains obscure whether *Quadrappyrgites* lived primarily in solitary or
404 gregarious modes. A benthic community with variable organism density can affect ambient water
405 conditions or the feeding capability of a single organism among it (Gibson *et al.* 2019; Liu *et al.*
406 2021). Remarkably, simulations of large gregarious communities are restricted here by the
407 computational resources and complexity of the model. Although simulating the gregarious benthic
408 communities generally involves modelling a multiple of organisms, which is beyond the present
409 computational capability, the results and data collected here could be used for further simulations
410 to achieve a better understanding of gregarious active feeding and respiration behaviours of the
411 co-existing small shelly fossils. One promising approach is building a simplified active feeding
412 model by reconstructing the flow velocity profile collected accordingly. Thus, it is possible to
413 further investigate the ecological characteristics of gregarious organisms and the effect of
414 community size on the adaptability of organisms living in the ambient environments.

415 It is also noteworthy that we omitted the possible effects of the polyp stalk of *Quadrappyrgites*
416 and other internal structures of the calyx on the water flowing in and out of the peridermal
417 aperture. The interaction between these internal structures and subumbrella contraction remains
418 unclear. To this end, we did not model the internal structure of the polyp. In addition, the
419 manubrium in the subumbrella cavity as well as the tentacles could act as a barrier to water flow in
420 and out. The true thickness of the mesoglea is also unknown because of diagenesis, which may
421 influence the exact magnitude of contraction and expansion. However, based on the fossil record,
422 the mesoglea would have been much thinner than that in modern medusae (Han *et al.* 2016).
423 Although the primary dynamic pattern of *Quadrappyrgites* could be much more subtle, the
424 simplified model required less computational resources and adequate restoration of the polyp body
425 plan. Our study will shed new light on the autecology of Cambrian micro-benthos using numerical
426 computational methods.

427

428 **Conclusions**

429 Our simulations of *Quadrappyrgites* show that the accelerated expansion of the polyp body can
430 improve active feeding efficiency and increase the range in the upper flow above the peridermal
431 aperture height. The contraction/expansion pattern of the polyp body and rough peridermal surface
432 helps the polyp to access food particles in the ambient environment of the periderm, thereby
433 enhancing the polyp's feeding and gas exchange efficiencies under relatively low flow velocity
434 conditions. Eventually, as body size and height of the Cambrian benthic medusozoans increase,
435 this mode of feeding will be replaced by more efficient feeding methods (*e.g.*, relying on free
436 tentacles). Our study has implications for understanding the feeding and respiration of olivoids
437 and other sedentary medusozoans completely dwelling in their periderm. Furthermore, our

438 findings provide valuable insights into the interactions between the evolution of animal body size,
439 an increased incidence of swimming behaviour in medusa, and the ambient environment during
440 the Cambrian explosion. This is also the first time a dynamic numerical simulation method has
441 been applied to a microfossil, demonstrating the further possibilities for utilising this approach in
442 palaeontological research.

443

444 **Material and methods**

445 *Geological setting and fossil pre-treatment*

446 Rock samples of olivoids were collected from the Shizhongguo and Zhangjiagou sections of the
447 Kuanchuanpu Formation, Shaanxi Province, China. The Shizhongguo section of the Kuanchuanpu
448 Formation in is an interbedded set of cherts, flint, and phosphatic tuffs and is approximately 60 m
449 thick. Overlying the Guojiaba Formation is a black carbonaceous shale and siltstone,
450 approximately 8 m thick, dominated by detrital dolomite. The Zhangjiagou in the Kuanchuanpu
451 Formation in section is a thickly bedded set of phosphorus limestone, approximately 22 m thick,
452 whereas the underlying Dengying Formation is dominated by massive, thickly-bedded, black
453 dolomite. Small shell fossil specimens were obtained from the *Anabarites-Protohertzina-*
454 *Arthrochities* biozone, which corresponds to the Cambrian Fortunian Stage (Qian 1977; 1999).

455 The rocks were smashed to a width of 2–3 cm, immersed in a 7–10% acetic acid solution to
456 decompose, and the residue was air-dried before the fossil samples were manually picked out
457 under a binocular microscope (Leica M20 stereoscopic microscope). SEM (FEI Quanta 400 FEG
458 scanning electron microscope) was used for the scanning photography.

459 The collected fossil data were modelled using Dragonfly 4.0 and high-resolution 3D models
460 were generated using Autodesk Maya 2018 and saved in the ‘.stl’ format. All fossil specimens and
461 model files were stored at the Shaanxi Key Laboratory of Early Life and Environments and
462 Department of Geology, Northwestern University.

463

464 *Three-dimensional modelling*

465 Simulations were carried out for *Quadruphygites* (Figure supplement 1A). The 3D model of
466 *Quadruphygites* (height: 2.0 mm, length: 0.6 mm, width: 0.6 mm) consists of two parts: an outer
467 pagoda-shaped periderm and a hollow bowl-shaped polyp (Figure 3A). The latter is functionally a
468 proxy of the polyp subumbrella without the manubrium, internal tissue of polyps, and basal stalk
469 (Figure 3B). The dynamic process of the simulated polyp was modelled by rhythmic contraction
470 and expansion of the subumbrella, and it was divided into contraction, expansion, and normal
471 resting phases. In the initial state, the subumbrella was about 0.7 mm in height and 0.1 mm in
472 diameter at its widest point. At this point, the umbrella muscle and mesoglea layer contracted, and
473 the size of the subumbrella opening was minimal. Subsequently, the umbrella expanded and
474 increased in size. Finally, the polyp subumbrella shrank and returned to its original shape.

475

476 *Computational fluid dynamics*

477 We used COMSOL Multiphysics v. 5.6 (<https://cn.comsol.com>) to carry out 3D simulations of
478 *Quadruphygites*. The computational domain consisted of a cuboid with a length, width, and height
479 of 20, 10, and 10 mm, respectively. The *Quadruphygites* model was placed at the centre of the
480 lower boundary of the cuboid domain in the direction of the peridermal aperture-apex from top to
481 bottom and was inserted vertically into the lower boundary approximately 0.18 mm (Figure

482 supplement 1B). The part below the lower boundary was then removed by Boolean operations
483 (Figure 3C). The mesh mainly consisted of the computational domain mesh and boundary layer
484 mesh applied to water-solid interacted boundaries (with a layer number of 2 and stretching factor
485 of 1.2) (Figure 3A). A free tetrahedral mesh was used to cover the entire simulation domain to
486 capture as much detail of the model as possible (Figure 3C, D). Each subdomain of the whole
487 simulation domain was meshed with specific levels of refinement (*i.e.*, varied maximum and
488 minimum element sizes were applied according to sizes of subdomains) to ensure a balance
489 between the accuracy and computational cost. Sensitivity tests were performed to determine the
490 optimal settings for the subsequent simulations (see “Mesh sensitivity analysis”).

491 The simulations used the hyper-elastic material model in the membrane node of solid
492 mechanics to define the structure of the umbrella surface of the *Quadrapygites* polyp inside the
493 periderm. The stalk and other internal structures of the calyx, such as the manubrium and tentacles
494 in the subumbrella cavity, were ignored in the simplified model of the *Quadrapygites* polyp in
495 this study. The subumbrella, with a circular muscle bundle and mesoglea, was replaced with an
496 elastic membrane. Considering that the physical parameters of the polyp umbrella were difficult to
497 obtain directly from preserved fossil material, we used the physical parameters of elastic rubber
498 instead (Odgen material model (Holzapfel 2002), specific parameters are listed in Table
499 supplement 1). As the dynamics of the polyp subumbrella were determined by a displacement
500 function and not by the material elasticity of the subumbrella itself, this alternative setting would
501 not have a significant effect on the locomotion of the polyp subumbrella. The boundary of the
502 simulated polyp apex was set as a fixed constraint boundary that supported the simulated polyp
503 subumbrella.

504 To define the contraction and expansion motion of the umbrella of the polyp using the
505 prescribed displacement method, a columnar coordinate system was established in advance with
506 parameters a , φ , and r , where a is the axis of the centre of rotation of the polyp, φ is the angle of
507 rotation, and r is the distance between the polyp surface and origin. To simplify the physics setup
508 and mathematical model, our simulation reduced the motion of the umbrella inside the polyp to
509 motion in the r -direction only, without considering its motion in the a -direction. For this reason,
510 the displacement of the contraction and expansion motion of the umbrella inside the simulated
511 polyp in the r -direction was defined by an interpolation function with height z as a variable (Table
512 supplement 1), and the function was fitted using the cubic spline method to ensure the smoothness
513 of the displacement process inside the simulated polyp.

514 The ratio of contraction to expansion times varies between different species and even within
515 the same individual in modern cnidarians, with generally short contraction times and relatively
516 long expansion times, as demonstrated by *Aurelia aurita* (McHenry & Jed 2003). Considering that
517 the muscle contraction capacity of the polyp subumbrella may differ from that of modern jellyfish,
518 the contraction time of the polyp in the simulation was fixed at 1 s. Four sets of experiments with
519 different contraction time duty cycles, or expansion/contraction time ratios, were conducted to
520 simulate the expansion and contraction of the polyp subumbrella: 1 s:1 s, 2 s:1 s, 3 s:1 s, and 4 s:1
521 s, respectively. All sets of simulated movements were implemented separately using the
522 corresponding smoothing functions. As the displacements of the subumbrella of the simulated polyp
523 only occurred in the r -direction, the displacement of the subumbrella of the simulated polyp
524 in the a -direction and φ -direction were prescribed as 0 to avoid unexpected twisting of the mesh
525 and to ensure convergence of the simulations.

526 In the fluid domain, the Reynolds number (approximately 0.96, less than 1) was calculated by
527 using the diameter of the opening of the simulated subumbrella at 0.003 mm within the polyp as
528 the characteristic size. In this case, viscous forces dominated the fluid domain, and the influence
529 of inertial forces was negligible (*i.e.*, the inertial term in the Navier-Stokes equations was equal to
530 zero); thus, the peristaltic flow model was chosen for all simulations. We assumed that the
531 tetraradial pagoda-shaped *Quadracyrtites* lived in environments with relatively low flow
532 velocities. To better visualise the effect of the dynamics of *Quadracyrtites* on the surrounding
533 environment, the simulated fluid domain was set as a hydrostatic environment. The top and
534 perimeter of the simulated domain were set as open boundaries to allow the flow of water in and
535 out without restrictions. In addition, the bottom boundary, umbrella surface, and peridermal
536 surface of the polyp in contact with the fluid were set as the no-slip boundaries. The density and
537 dynamic viscosity of water in the simulation were set to 1,000 kg/m³ and 0.001 Pa·s, respectively.

538 The simulations used a unidirectional structure to the fluid coupling method (*i.e.*, velocity
539 transmission to fluid) to couple fluid and solid fields. In addition, the moving mesh feature was
540 enabled, allowing for the subumbrella model inside the periderm to be deformed. Considering the
541 complexity and computational cost of the physical fields in the simulation domain, the governing
542 equations were solved using a time-dependent, non-linear, and fully coupled solver with a relative
543 tolerance of 0.005 and a time step of T=0.01 s for the final output.

544 To obtain flow velocity data above the peridermal aperture and determine the effective range
545 of the active expansion/contraction of *Quadracyrtites*, ten sampling cut points (Cut Point 3D)
546 were set above the peridermal aperture, ranging from z = 2.05 mm to z = 2.5 mm at the
547 coordinates of the simulated domain, with 0.05 mm between each cut point (Figure supplement
548 1B). The results were visualised as 2D cross sections along the centre of the rectangular
549 simulation domain. The simulation files were saved as ‘.mph’ files.

550

551 **Mesh sensitivity analysis**

552 For the sensitivity analysis, a mesh model (Figure 3) with an expansion/contraction time ratio
553 of 3:1 was used as the test model. Meshes with different levels of refinement were tested,
554 with the number of elements ranging from 75,781 to 1,009,782 (Table supplement 2). The
555 flow velocity values obtained from the cut points with different meshes on each timestep
556 were compared, and the average difference of each timestep was calculated. Results were
557 considered mesh independent when the difference ranged from 5–10% between those
558 obtained with the current mesh and the next most fine mesh. Finally, the mesh selected for
559 subsequent simulations contained 670,654 elements in total (see Table supplement 3 for
560 specific mesh parameters). The average error between the results obtained with such meshes
561 and those with a finer mesh was approximately 5.5% (Table supplement 2). Four additional
562 simulations for sensitivity analysis of the parameters of boundary layer mesh were also
563 conducted, including the layer number (5 and 8 layers, respectively) and thickness (controlled
564 by different thickness adjustment factor). Only the thickness of boundary layer mesh can
565 influence the maximum flow velocity of the contraction phase. However, the results of all the
566 four simulations were generally consistent (Table supplement 2).

567

568 **Acknowledgements**

569 We thank H.J. Gong, X. Liu, and M.R. Cheng (State Key Laboratory for Continental Dynamics,

570 Northwest University, Xi'an, China) for their assistance in both field and lab work.

571

572 **Data Availability Statement**

573 Supplementary data of this manuscript have been deposited in the general data repository figshare
574 (<https://doi.org/10.6084/m9.figshare.23282627.v3>). Simulation files have been deposited to Dryad
575 (<https://datadryad.org/stash/share/QGDSqLh8HOll7ofl6JWVrqM57Rp62ZPjvZU0AQQHwTY>).

576

577 **Funding**

578

Funder	Grant reference number	Author
Natural Science Foundation of China	Nos. 42372012, 41720104002, 41911530236	Jian Han
Strategic Priority Research Program of Chinese Academy of Sciences	No. XDB26000000	Jian Han
Ministry of Science and project of Ministry of Education of China	No. D17013	Jian Han
the Most Special Fund from the State Key Laboratory of Continental Dynamics, Northwest University, China	BJ11060	Jian Han
the National Key Research and Development Programme of China	2023YFF0803601	Jian Han
the High Level Talent Research Initiation Fund (Technology), Linyi University, China	Z6122059	Xing Wang
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication		

579

580 *Author contributions.* JH and XW designed the study work; XW and JH provided and interpreted
581 the fossil samples; YZ conducted the simulations; YZ, JH, XW and TZ completed the main text
582 with input from the other authors. All authors read and approved the final manuscript.

583

584 **Author ORCIDs**

585 Yiheng Zhang <http://orcid.org/0009-0002-2426-0838>

586 Xing Wang <http://orcid.org/0000-0002-1777-864X>

587 Jian Han <http://orcid.org/0000-0002-2134-4078>

588 Juyue Xiao <http://orcid.org/0009-0000-4014-5763>

589 Yuanyuan Yong <http://orcid.org/0009-0003-9718-9953>

590 Chiyang Yu <http://orcid.org/0009-0002-9620-0500>

591 Ning Yue <http://orcid.org/0000-0003-0775-9936>

592 Jie Sun <http://orcid.org/0009-0005-4870-9670>

593 Kaiyue He <http://orcid.org/0000-0002-1816-5298>

594 Wenjing Hao <http://orcid.org/0000-0002-0622-369X>

595 Tao Zhang <http://orcid.org/0000-0002-5622-0227>

596 Bin Wang <http://orcid.org/0000-0002-1589-8939>

597 Deng Wang <http://orcid.org/0000-0002-4464-9632>

598 Xiaoguang Yang <http://orcid.org/0000-0002-5941-9899>

599

600 References

601 Arai MN. 1997. A Functional Biology of Scyphozoa. Chapman & Hall, London

602 Caldwell DR, Chriss TM. 1979. The viscous sublayer at the sea floor. *Science* 205:1131–1132. doi:10.1126/science.205.4411.1131

604 Cartwright P, Halgedahl SL, Hendricks JR, Jarrard RD, Marques AC, Collins AG, Lieberman BS. 605 2007. Exceptionally preserved jellyfishes from the Middle Cambrian. *PLoS one* 2:e1121. doi: 606 10.1371/journal.pone.0001121

607 Chang S, Clausen S, Zhang L, Feng Q, Steiner M, Bottjer DJ, Zhang Y, Shi M. 2018. New 608 probable cnidarian fossils from the Lower Cambrian of the Three Gorges area, South China, 609 and their ecological implications. *Palaeogeography, Palaeoclimatology, Palaeoecology* 610 505:150–166. doi:10.1016/j.palaeo.2018.05.039

611 Conway Morris S, Selden PA, Gunther G, Jamison PG, Robison RA. 2015. New records of 612 Burgess Shale-type taxa from the middle Cambrian of Utah. *Journal of Paleontology* 89:411– 613 423. doi:10.1017/jpa.2015.26

614 Dabiri JO, Colin SP, Costello JH. 2007. Morphological diversity of medusan lineages constrained 615 by animal-fluid interactions. *Journal of Experimental Biology* 210:1868–1873. 616 doi:10.1242/jeb.003772

617 Dabiri JO, Colin SP, Costello JH, Gharib M. 2005. Flow patterns generated by oblate medusan 618 jellyfish: field measurements and laboratory analyses. *Journal of Experimental Biology* 208:1257–1265. doi:10.1242/jeb.01519

620 Darroch SA, Rahman IA, Gibson B, Racicot RA, Laflamme M. 2017. Inference of facultative 621 mobility in the enigmatic Ediacaran organism *Parvancorina*. *Biology Letters* 13:20170033. 622 doi:10.1098/rsbl.2017.0033

623 Denny M. 1988. Biology and the Mechanics of the Wave-swept Environment. Princeton 624 University Press.

625 Dong X, Cunningham JA, Bengtson S, Thomas CW, Liu J, Stampanoni M, Donoghue PC. 2013. 626 Embryos, polyps and medusae of the Early Cambrian scyphozoan *Olivooides*. *Proceedings of* 627 *the Royal Society B: Biological Sciences* 280:20130071. doi:10.1098/rspb.2013.0071

628 Dong X, Vargas K, Cunningham JA, Zhang H, Liu T, Chen F, Liu J, Bengtson S, Donoghue PC. 629 2016. Developmental biology of the early Cambrian cnidarian *Olivooides*. *Palaeontology* 630 59:387–407. doi:10.1111/pala.12231

631 Dynowski JF, Nebelsick JH, Klein A, Roth-Nebelsick A. 2016. Computational fluid dynamics 632 analysis of the fossil crinoid *Encriinus liliiformis* (Echinodermata: Crinoidea). *PLoS One* 633 11:e0156408. doi:10.1371/journal.pone.0156408

634 Dzik J, Baliński A, Sun Y. 2017. The origin of tetraradial symmetry in cnidarians. *Lethaia* 50:306– 635 321. doi:10.1111/let.12199

636 Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ. 2011. The Cambrian 637 conundrum: early divergence and later ecological success in the early history of animals. 638 *Science* 334:1091–1097. doi:10.1126/science.1206375

639 Evans SD, Tu C, Rizzo A, Surprenant RL, Boan PC, McCandless H, Marshall N, Xiao S, Droser 640 ML. 2022. Environmental drivers of the first major animal extinction across the Ediacaran

641 White Sea-Nama transition. Proc Natl Acad Sci USA 119:e2207475119.
642 doi:10.1073/pnas.2207475119

643 Feitl KE, Millett AF, Colin SP, Dabiri JO, Costello JH. 2009. Functional morphology and fluid
644 interactions during early development of the scyphomedusa *Aurelia aurita*. The Biological
645 Bulletin 217:283–291. <https://doi.org/10.1086/BBLv217n3p283>

646 Gemmell BJ, Colin SP, Costello JH. 2018. Widespread utilization of passive energy recapture in
647 swimming medusae. Journal of Experimental Biology 221:jeb168575.
648 doi:10.1242/jeb.168575

649 Gemmell BJ, Costello JH, Colin SP, Stewart CJ, Dabiri JO, Tafti D, Priya S. 2013. Passive energy
650 recapture in jellyfish contributes to propulsive advantage over other metazoans. Proceedings
651 of the National Academy of Sciences 110:17904–17909. doi:10.1073/pnas.1306983110

652 Gibson BM, Furbish DJ, Rahman IA, Schmeeckle MW, Laflamme M, Darroch SA. 2021. Ancient
653 life and moving fluids. Biological Reviews 96:129–152. doi:10.1111/brv.12649

654 Gibson BM, Rahman IA, Maloney KM, Racicot RA, Mocke H, Laflamme M, Darroch SA. 2019.
655 Gregarious suspension feeding in a modular Ediacaran organism. Science Advances
656 5:eaaw0260. doi:10.1126/sciadv.aaw0260

657 Grant WD, Madsen OS. 1986. The continental-shelf bottom boundary layer. Annual Review of
658 Fluid Mechanics 18:265–305. doi:10.1146/annurev.fl.18.010186.001405

659 Guo J, Han J, Van Iten H, Song Z, Qiang Y, Wang W, Zhang Z, Li G. 2021. A ten-faced
660 hexangulaconulariid from Cambrian Stage 2 of South China. Journal of Paleontology
661 95:957–964. doi:doi.org/10.1017/jpa.2021.25

662 Guo J, Han J, Van Iten H, Song Z, Qiang Y, Wang W, Zhang Z, Li G, Sun Y, Sun J. 2020a. A new
663 tetraradial olivoooid (Medusozoa) from the Lower Cambrian (Stage 2) Yanjiahe Formation,
664 South China. Journal of Paleontology 94:457–466. doi:10.1017/jpa.2019.101

665 Guo J, Han J, Van Iten H, Wang X, Qiang Y, Song Z, Wang W, Zhang Z, Li G. 2020b. A fourteen-
666 faced hexangulaconulariid from the early Cambrian (Stage 2) Yanjiahe Formation, South
667 China. Journal of Paleontology 94:45–55. doi:10.1017/jpa.2019.56

668 Gutarra S, Rahman IA. 2022. The locomotion of extinct secondarily aquatic tetrapods. Biological
669 Reviews 97:67–98. doi:10.1111/brv.12790

670 Han J, Hu S, Cartwright P, Zhao F, Ou Q, Kubota S, Wang X, Yang X. 2016a. The earliest pelagic
671 jellyfish with rhopalia from Cambrian Chengjiang Lagerstätte. Palaeogeography,
672 Palaeoclimatology, Palaeoecology 449:166–173. doi:10.1016/j.palaeo.2016.02.025

673 Han J, Kubota S, Li G, Ou Q, Wang X, Yao X, Shu D, Li Y, Uesugi K, Hoshino M. 2016b.
674 Divergent evolution of medusozoan symmetric patterns: Evidence from the microanatomy of
675 Cambrian tetraradial cubozoans from South China. Gondwana Research 31:150–163.
676 doi:10.1016/j.gr.2015.01.003

677 Han J, Kubota S, Li G, Yao X, Yang X, Shu D, Li Y, Kinoshita S, Sasaki O, Komiya T. 2013.
678 Early Cambrian pentamerous cubozoan embryos from South China. PloS one 8:e70741.
679 doi:10.1371/journal.pone.0070741

680 Han J, Guo J, Ou Q, Song Z, Liu P, Hao W, Sun J, Wang X. 2020. Evolutionary framework of
681 early Cambrian cnidarians from South China. Earth Science Frontiers 27:67.
682 doi:10.13745/j.esf.sf.2020.6.3

683 Holzapfel GA. 2002. Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science.
684 Kluwer Academic Publishers Dordrecht.

685 Hu S, Steiner M, Zhu M, Erdtmann B-D, Luo H, Chen L, Weber B. 2007. Diverse pelagic
686 predators from the Chengjiang Lagerstätte and the establishment of modern-style pelagic
687 ecosystems in the early Cambrian. *Palaeogeography, Palaeoclimatology, Palaeoecology*
688 254:307–316. doi:10.1016/j.palaeo.2007.03.044

689 Jarms G, Morandini A, da Silveira F. 2002. Cultivation of polyps and medusae of Coronatae
690 (Cnidaria, Scyphozoa) with a brief review of important characters. *Helgoland Marine*
691 *Research* 56:203–210. doi:10.1007/s10152-002-0113-3

692 LaBarbera M. 1984. Feeding currents and particle capture mechanisms in suspension feeding
693 animals. *American Zoologist* 24:71–84. doi:10.1093/icb/24.1.71

694 Leclère L, Röttinger E. 2017. Diversity of cnidarian muscles: function, anatomy, development and
695 regeneration. *Frontiers in Cell and Developmental Biology* 4:157. doi:
696 10.3389/fcell.2016.00157

697 Leme JM, Van Iten H, Simões MG. 2022. A new conulariid (Cnidaria, Scyphozoa) from the
698 terminal Ediacaran of Brazil. *Frontiers in Earth Science* 10:777746.
699 doi:10.3389/feart.2022.777746

700 Li G, Zhu M, Van Iten H, Li C. 2004. Occurrence of the earliest known *Sphenothallus* Hall in the
701 Lower Cambrian of southern Shaanxi Province, China. *Geobios* 37:229–237.
702 doi:10.1016/j.geobios.2003.04.002

703 Li P, Hua H, Zhang L, Zhang D, Jin X, Liu Z. 2007. Lower Cambrian phosphatized *Punctatus*
704 from southern Shaanxi and their ontogeny sequence. *Chinese Science Bulletin* 52:2820–2828.
705 doi:10.1007/s11434-007-0447-y

706 Liu P, Yang X, Tang Q, He K, Zhang Y. 2021. Computational fluid dynamics analysis of the
707 gregarious behavior of *Anabarites trisulcatus* from the early Cambrian. *Acta*
708 *Micropalaeontologica Sinica* 38:234–240. doi:10.16087/j.cnki.1000-0674.20210906.002

709 Liu P, Zhang Y, Yang X, Wang B, Zhang T, Sun J, Tang Q, He K, Hao W, Yue N. 2022.
710 Hydrodynamic simulations of millimeter-scale Cambrian sedentary medusozoans. *Journal of*
711 *Geophysical Research: Biogeosciences* 127:e2022JG006854. doi:10.1029/2022JG006854

712 Liu Y, Li Y, Shao T, Zhang H, Wang Q, Qiao J. 2014. *Quadrapyrgites* from the Lower Cambrian
713 of South China: growth pattern, post-embryonic development, and affinity. *Chinese Science*
714 *Bulletin* 59:4086–4095. doi:10.1007/s11434-014-0481-5

715 Liu Y, Shao T, Zhang H, Wang Q, Zhang Y, Chen C, Liang Y, Xue J. 2017. A new scyphozoan
716 from the Cambrian Fortunian Stage of South China. *Palaeontology* 60:511–518.
717 doi:doi.org/10.1111/pala.12306

718 McHenry MJ, Jed J. 2003. The ontogenetic scaling of hydrodynamics and swimming performance
719 in jellyfish (*Aurelia aurita*). *Journal of Experimental Biology* 206:4125–4137.
720 doi:10.1242/jeb.00649

721 Mohseni K, Gharib M. 1998. A model for universal time scale of vortex ring formation. *Physics of*
722 *Fluids* 10:2436–2438. doi:10.1063/1.869785

723 Mohseni K, Ran H, Colonius T. 2001. Numerical experiments on vortex ring formation. *Journal of*
724 *Fluid Mechanics* 430:267–282. doi:0.1017/S0022112000003025

725 Pratt MC. 2008. Living where the flow is right: How flow affects feeding in bryozoans.
726 *Integrative and Comparative Biology* 48:808–822. doi:10.1093/icb/icn052

727 Qian Y. 1977. Hyolitha and some problematica from the Lower Cambrian Meishucun Stage in

728 central and SW China. *Acta Palaeontologica Sinica* 16:255–275.

729 Rahman IA. 2017. Computational fluid dynamics as a tool for testing functional and ecological
730 hypotheses in fossil taxa. *Palaeontology* 60:451–459. doi:10.1111/pala.12295

731 Rahman IA, Darroch SA, Racicot RA, Laflamme M. 2015. Suspension feeding in the enigmatic
732 Ediacaran organism *Tribrachidium* demonstrates complexity of Neoproterozoic ecosystems.
733 *Science Advances* 1:e1500800. doi:10.1126/sciadv.1500800

734 Rahman IA, O’Shea J, Lautenschlager S, Zamora S. 2020. Potential evolutionary trade-off
735 between feeding and stability in Cambrian cinctan echinoderms. *Palaeontology* 63:689–701.
736 doi:10.1111/pala.12495

737 Robertson MA, Efremov F, Paik J. 2019. RoboScallop: A bivalve inspired swimming robot. *IEEE
738 Robotics and Automation Letters* 4:2078–2085. doi:10.1109/LRA.2019.2897144

739 Sahin M, Mohseni K, Colin SP. 2009. The numerical comparison of flow patterns and propulsive
740 performances for the hydromedusae *Sarsia tubulosa* and *Aequorea victoria*. *Journal of
741 Experimental Biology* 212:2656–2667. doi:10.1242/jeb.025536

742 Shick, J.M., 1991. A Functional Biology of Sea Anemones. Springer Dordrecht.

743 Song Hanchen, Song Haijun, Rahman IA, Chu D. 2021. Computational fluid dynamics confirms
744 drag reduction associated with trilobite queuing behaviour. *Palaeontology* 64:597–608.
745 doi:10.1111/pala.12562

746 Steiner M, Qian Y, Li G, Hagadorn JW, Zhu M. 2014. The developmental cycles of early
747 Cambrian Olivooidae fam. nov.(? Cycloneuralia) from the Yangtze Platform (China).
748 *Palaeogeography, Palaeoclimatology, Palaeoecology* 398:97–124.
749 doi:10.1016/j.palaeo.2013.08.016

750 Straehler-Pohl I. 2017. Cubozoa and Scyphozoa: The results of 20 years of scyphozoan life cycle
751 research with new results on cubozoan life cycles to suggest a new nomenclature referring to
752 both classes. *Frontiers in Ecological Studies of Jellyfish* (eds Toyokawa M, Miyake H,
753 Nishikawa, J), Seibutsu Kenkyu Sha Co Ltd (Organisms Research Co Ltd), Tokyo 17–29.

754 Tarhan LG, Droser ML, Cole DB, Gehling JG. 2018. Ecological Expansion and Extinction in the
755 Late Ediacaran: Weighing the Evidence for Environmental and Biotic Drivers. *Integrative
756 and Comparative Biology* 58:688–702. doi:10.1093/icb/icy020

757 Trowbridge JH, Lentz SJ. 2018. The bottom boundary layer. *Annual Review of Marine Science*
758 10:397–420. doi:10.1146/annurev-marine-121916-063351

759 Van Iten H, de Moraes Leme J, Simoes MG, Marques AC, Collins AG. 2006. Reassessment of the
760 phylogenetic position of conulariids (? Ediacaran-Triassic) within the subphylum medusozoa
761 (Phylum Cnidaria). *Journal of Systematic Palaeontology* 4:109 – 118.
762 doi:10.1017/S1477201905001793

763 Wang X, Han J, Vannier J, Ou Q, Yang X, Uesugi K, Sasaki O, Komiya T. 2017. Anatomy and
764 affinities of a new 535-million-year-old medusozoan from the Kuanchuanpu Formation,
765 South China. *Palaeontology* 60:853–867. doi:10.1111/pala.12320

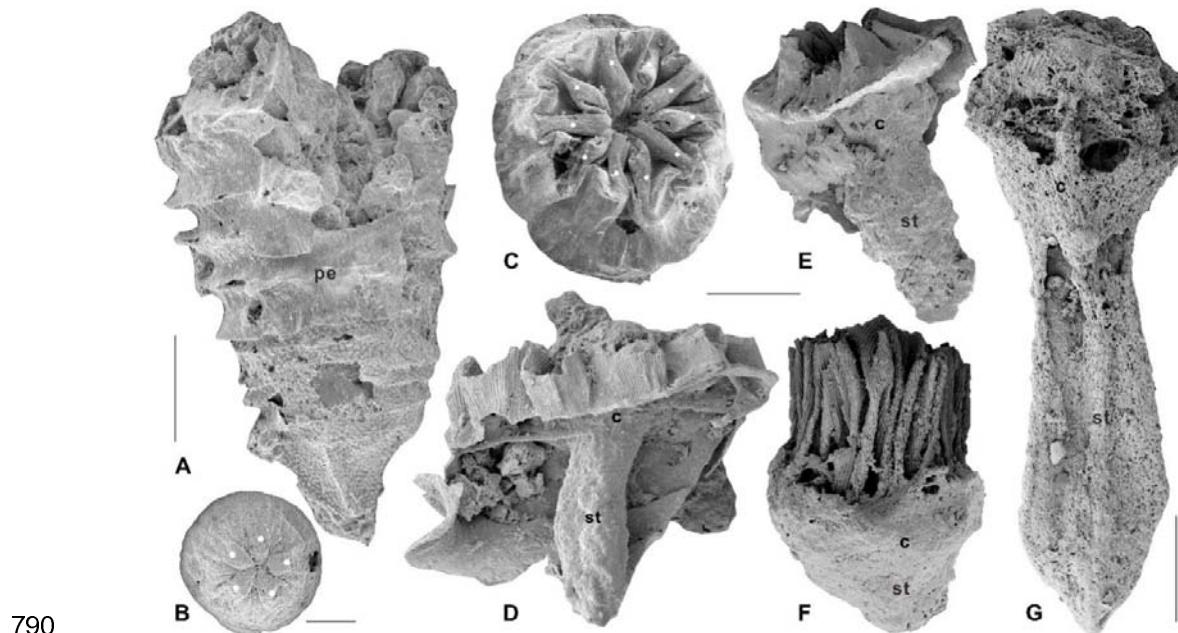
766 Wang X, Vannier J, Yang X, Kubota S, Ou Q, Yao X, Uesugi K, Sasaki O, Komiya T, Han J. 2020.
767 An intermediate type of medusa from the early Cambrian Kuanchuanpu Formation, South

768 China. Palaeontology 63:775–789. doi:10.1111/pala.12483

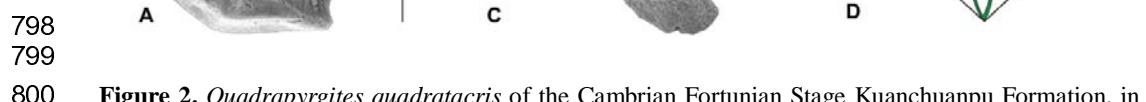
769 Wang X, Vannier J, Yang X, Leclère L, Ou Q, Song X, Komiya T, Han J. 2022. Muscle systems
770 and motility of early animals highlighted by cnidarians from the basal Cambrian. eLife
771 11:e74716. doi:10.7554/eLife.74716

772 Waters JA, White LE, Sumrall CD, Nguyen BK. 2017. A new model of respiration in blastoid
773 (Echinodermata) hydrospires based on computational fluid dynamic simulations of virtual 3D
774 models. Journal of Paleontology 91:662–671. doi:10.1017/jpa.2017.1

775 Wengrove ME, Foster DL. 2014. Field evidence of the viscous sublayer in a tidally forced
776 developing boundary layer. Geophysical Research Letters 41:5084–5090.
777 doi:10.1002/2014GL060709


778 Yong Y, Peng J, Wang X, Yu C, Hao, Sun J, Guo J, Han J. 2022. A new species of *Octapyrgites*
779 (Cnidaria) from the Lower Cambrian Kuanchuanpu formation, Southern Shaanxi. Acta
780 Micropalaeontologica Sinica 39:223–234.

781 Zhang Y, Zhang T, Yong Y, Yu C, Xiao J, He K, Wang D, Wang X, Wang B, Yang X, Han J. 2022.
782 Effect of boundary layer on simulation of microbenthic fossils in coastal and shallow seas.
783 Earth Science Frontiers. doi:10.13745/j.esf.sf.2023.5.32


784 Zhu M, Van Iten H, Cox RS, Zhao Y, Erdtmann B-D. 2000. Occurrence of *Byronia* Matthew and
785 *Sphenothallus* Hall in the Lower Cambrian of China. PalZ 74:227–238.
786 doi:10.1007/BF02988098

787 Zhuravlev AY, Wood R. 2020. Dynamic and synchronous changes in metazoan body size during
788 the Cambrian Explosion. Scientific Reports 10:1–8. doi:10.1038/s41598-020-63774-2

789

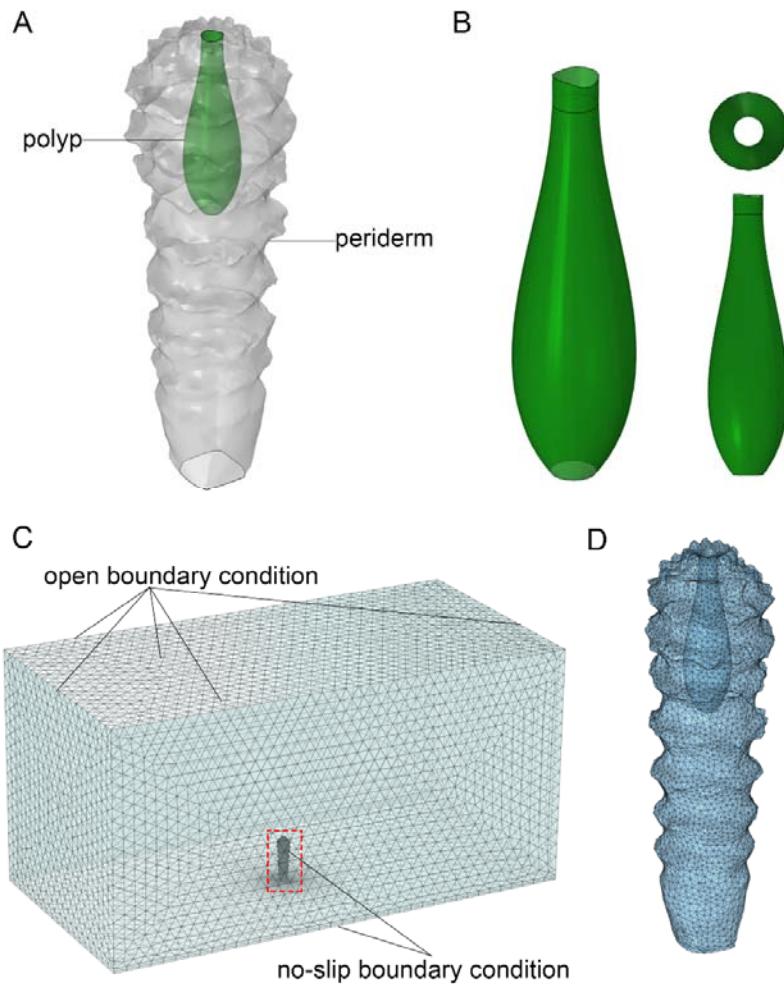


Figure 1 *Olivooides mirabilis* from the Cambrian Fortunian Stage Kuanchuanpu Formation, in Shizhonggou section, Ningqiang County, Shaanxi Province, China. A, juvenile stage; B, prehatched development stage; C, peridermal apertural view; D–G, possible internal calyx-like polyp. Solid white dots indicate the pentaradial symmetry. Abbreviations: c, calyx; st, stalk; pe, periderm. Scale bars: A, 500 μ m; B, 200 μ m; C–F, 300 μ m; G, 400 μ m.

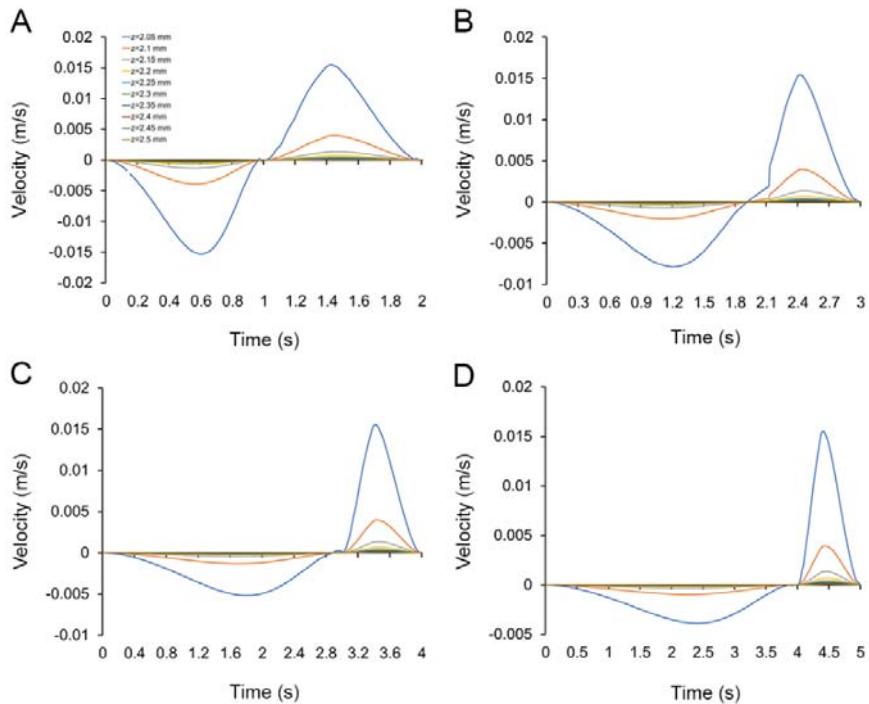
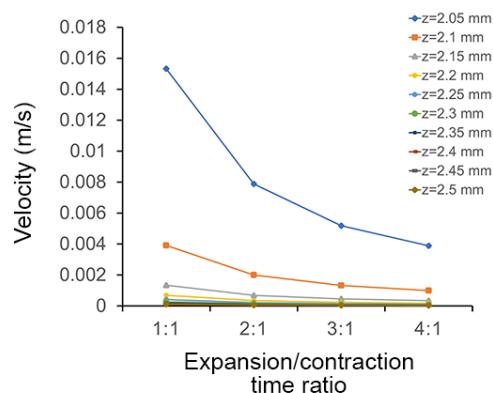


Figure 2. *Quadrapyrgites quadratacris* of the Cambrian Fortunian Stage Kuanchuanpu Formation, in

801 the Zhangjiagou section, Xixiang County. A, polyp stage with uplifted peridermal aperture; B, apertural
802 view showing concaved peridermal aperture; C, possible calyx-like polyp with a stalk. D, a 2D
803 structure of *Quadrapyrgites* with simplified internal anatomy. Solid white dots indicate the pentaradial
804 symmetry. Abbreviations: eu, exumbrella; su, subumbrella; sc, subumbrellar cavity; te, tentacle; m,
805 mouth; pe, periderm; pa, periderm aperture; st, stalk; ca, calyx. Scale bar: 200 μ m.
806

807
808
809 **Figure 3.** A, a 3D model of *Quadrapyrgites*; B, a reduced model of the polyp subumbrella; C, meshed
810 computational domain and boundary conditions (dashed box in C marks the position of D).
811

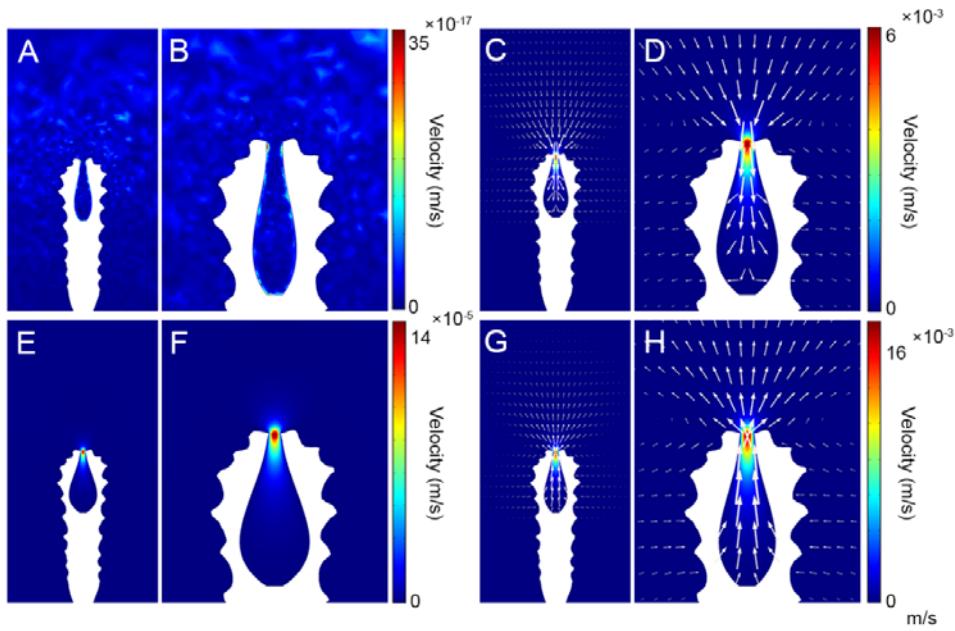


812

813

814 **Figure 4.** A, B, C, and D are the velocity variations with time collected by sampling cut points in all
815 simulations with expansion/contraction time ratios of 1:1, 2:1, 3:1, and 4:1, respectively.

816

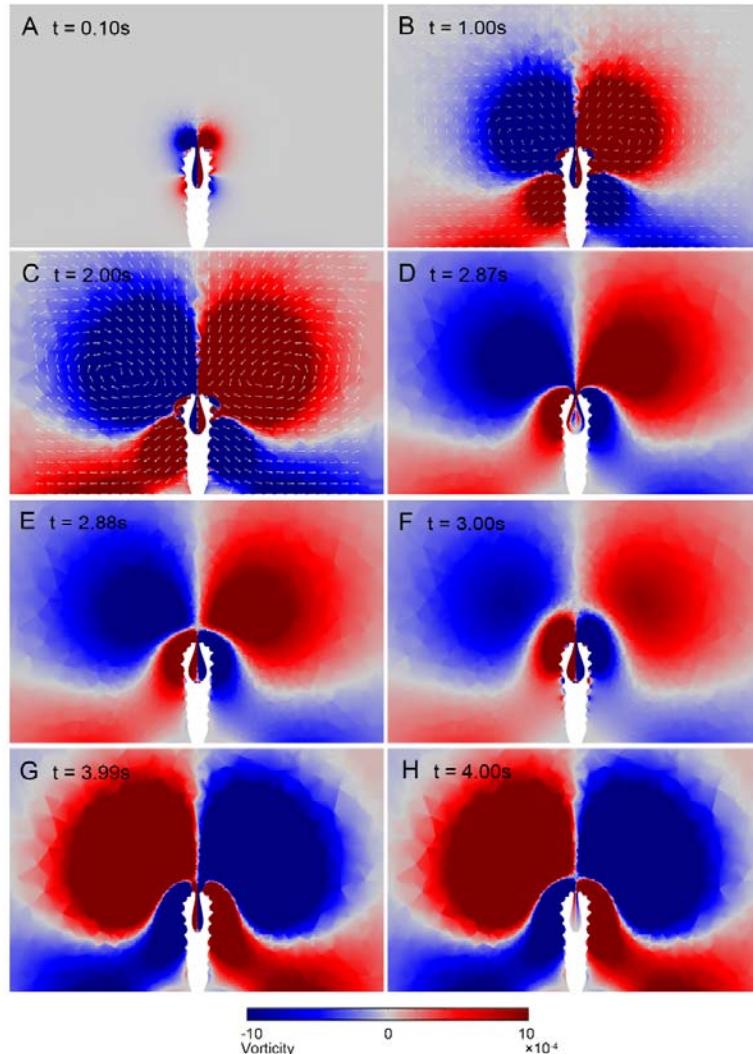


817

818

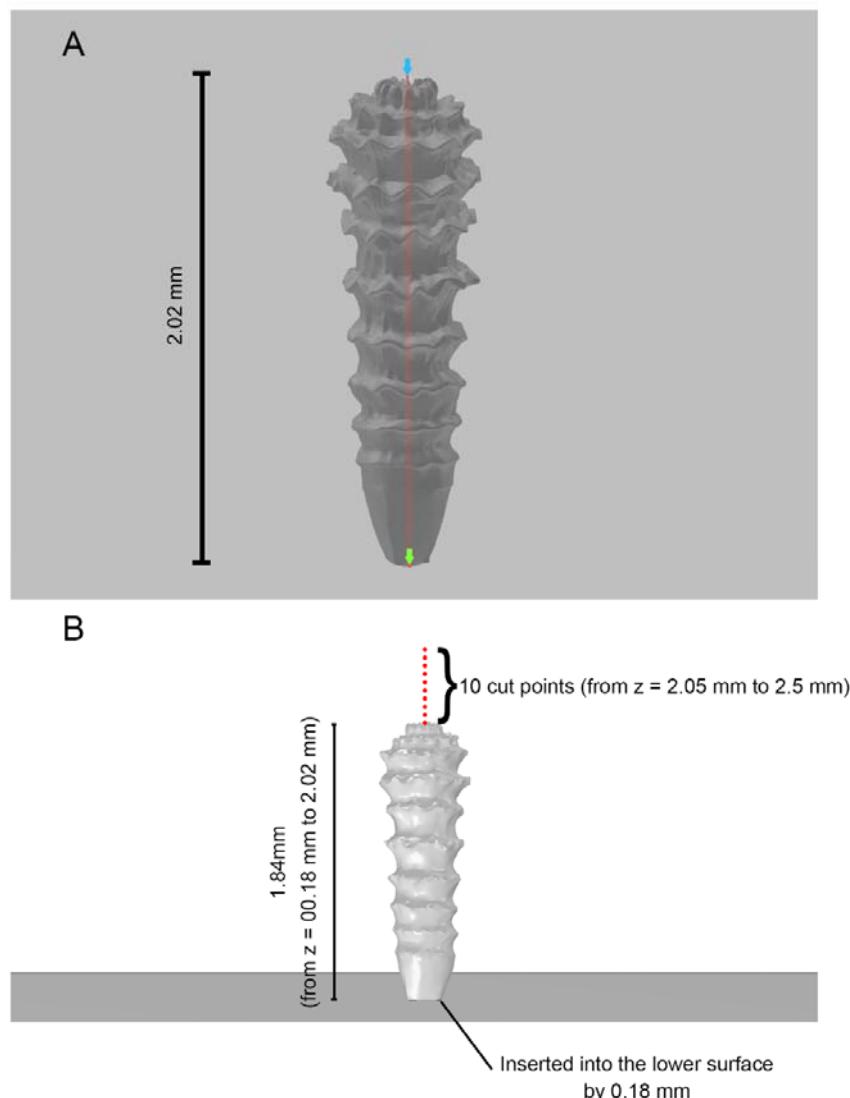
819 **Figure 5.** Maximum flow velocity data collected by sampling cut points in all simulations with
820 different expansion/contraction time ratios.

821



822

823


824 **Figure 6.** A, C, E, and G show the status of the polyp subumbrella at different moments. B, D, F, and H
825 show the corresponding enlarged views of the polyp, with the white arrows representing the flow
826 direction and velocity magnitude (the size of the arrows is proportional to the natural logarithm of the
827 flow velocity magnitude with a range quotient of 1,000) of water flow. A, B, $t = 0$ s, the polyp is at rest,
828 and the subumbrella opening is in its maximum state; C, D, $t = 1.8$ s, the subumbrella is in the process
829 of expansion, and the flow velocity near the peridermal aperture has reached its maximum; E, F, $t = 3$ s,
830 the subumbrella is in its maximum state, and the subumbrella opening is in its minimum state; G, H, $t =$
831 3.5 s, the subumbrella is in the process of contraction, and the flow velocity near the peridermal
832 aperture has reached its maximum value.

833

834

835 **Figure 7.** Vortex visualisation of the dynamic process of *Quadrapyrgite* (the length of arrows was
836 normalised to represent the orientation of velocity). A, $t = 0.1$ s, the upper main vortex, and the
837 lower secondary vortex begin to form. B, $t = 1$ s, contact between the secondary vortex and the
838 lower boundary C, $t = 2$ s, the main and secondary vortex is developed to the maximum
839 visualisation range of vorticity. D, E, $t = 2.87\text{--}2.88$ s, separation of the main vortex occurs. F, $t = 3$ s,
840 the new main vortex of the contraction process formed, the expansion process ended, and the
841 contraction process began. G, H, $t = 3.9\text{--}4$ s, separation of the main vortex occurred.
842 **Animation supplement 1.** 2D visualisation of vortex (the length of arrows was normalised to
843 represent the orientation of flow velocity).

844

845 **Figure supplement 1.** A, height of *Quadrapyrgites*. B, positions of *Quadrapyrgites* and cut points
846 in computational domain.

847

848