

1 The fate of bacterial secondary metabolites in the rhizosphere: *Streptomyces* degrades and
2 feeds on cyclic lipopeptides produced by competitors

3 **Augustin Rigolet¹, Anthony Argüelles Arias¹, Adrien Anckaert¹, Loïc Quinton², Sébastien Rigali^{3,4},**
4 **Deborah Tellatin³, Pierre Burguet², Marc Ongena¹**

5

6 ¹Microbial Processes and Interactions laboratory, TERRA teaching and research centre, Gemblo
7 Agro-Bio Tech, University of Liège, Gemblo, 5030, Belgium

8 ²Department of Chemistry, University of Liège, Liège, 4000, Belgium

9 ³InBioS—Centre for Protein Engineering, University of Liège, Liege, 4000, Belgium

10 ⁴Hedera-22, Liege, 4000, Belgium

11

12 Correspondence:

13 Augustin Rigolet arigolet@uliege.be

14 Marc Ongena marc.ongena@uliege.be

15 **Keywords:**

16 *Bacillus velezensis*, *Streptomyces venezuelae*, *Pseudomonas*, BSMs, Cyclic lipopeptides, enzymatic
17 degradation, competition, interaction, foraging, feeding, rhizosphere.

18 **Abstract:**

19 Cyclic lipopeptides are key bioactive secondary metabolites produced by some plant beneficial
20 rhizobacteria such as *Pseudomonas* and *Bacillus*. They exhibit antimicrobial properties, promote
21 induced systemic resistance in plants and support key developmental traits including motility, biofilm
22 formation and root colonization. However, our knowledge about the fate of lipopeptides once
23 released in the environment and especially upon contact with neighboring rhizobacteria remains
24 limited. Here, we investigated the enzymatic degradation of *Bacillus* and *Pseudomonas* cyclic
25 lipopeptides by *Streptomyces venezuelae*. We observed that *Streptomyces* is able to degrade the
26 three lipopeptides surfactin, iturin and fengycin upon confrontation with of *B. velezensis* *in vitro* and
27 *in planta* according to specific mechanisms. *S. venezuelae* was also able to degrade the structurally
28 diverse sessilin, tolaasin, orfamide, xantholisin and putisolvin-type lipopeptides produced by
29 *Pseudomonas*, indicating that this trait is likely engage in the interaction with various competitors.

30 Furthermore, the degradation of CLPs is associated with the release of free amino and fatty acids and
31 was found to enhance *Streptomyces* growth, indicating a possible nutritional utilization. Thereby, this
32 work stresses on how the enzymatic arsenal of *S. venezuelae* may contribute to its adaptation to
33 BSMs-driven interactions with microbial competitors. The ability of *Streptomyces* to degrade
34 exogenous lipopeptides and feed on them adds a new facet to the implications of the degradation of
35 those compounds by *Streptomyces*, where linearization of surfactin was previously reported as a
36 detoxification mechanism. Additionally, we hypothesize that lipopeptide-producing rhizobacteria and
37 their biocontrol potential are impacted by the degradation of their lipopeptides as observed with the
38 polarized motility of *B. velezensis*, avoiding the confrontation zone with *Streptomyces* and the loss of
39 antifungal properties of degraded iturin. This work illustrates how CLPs, once released in the
40 environment, may rapidly be remodeled or degraded by members of the bacterial community, with
41 potential impacts on CLP-producing rhizobacteria and the biocontrol products derived from them.

42 **Main:**

43 Cyclic lipopeptides (CLPs) represent a prominent and structurally heterogeneous class of molecules
44 among the broad spectrum of small bioactive secondary metabolites (BSMs) formed by some plant
45 beneficial rhizobacteria such as *Pseudomonas* and *Bacillus*^{1,2}. These amphiphilic compounds consist
46 of a partly or fully cyclized oligopeptide linked to a single fatty acid. They have been shown to inhibit
47 the growth of a large range of phytopathogens and elicit immune responses in the host plant, leading
48 to an induced systemic resistance (ISR) against infection by microbial pathogens^{3,4}. These traits are
49 largely responsible for the biocontrol potential of some CLP-producing isolates used to reduce plant
50 diseases in sustainable agriculture³. From an ecological perspective, antimicrobial CLPs also
51 contribute to the weaponry developed by these plant-associated bacteria to harm or kill microbial
52 competitors in the densely populated rhizosphere niche. Moreover, CLPs support key developmental
53 traits such as motility, biofilm formation or root colonization^{2,3,5}.

54 CLPs are quite efficiently produced both *in vitro* and under natural conditions and substantial
55 amounts are presumably released in the surrounding environment⁵⁻⁷. These metabolites are
56 considered as chemically stable compounds due to the closed structure of the peptide moiety, the
57 alternation of D- and L-amino acids and due to the incorporation of non-proteinogenic residues².
58 These molecules may thus accumulate in the rhizosphere, impact microbial interactions and
59 modulate the composition of soil microbiomes. However, some recent studies reported instability of
60 CLPs in the soil or in synthetic communities⁸⁻¹⁰. Yet, the mechanisms underlying CLP degradation as
61 well as the possible ecological outcomes resulting from the phenomenon are poorly described.

62 In this work, we wanted to investigate the possible degradation of CLPs by *Streptomyces* as soil
63 competitor and more specifically by *S. venezuelae* known for its metabolic robustness, behavioral
64 plasticity and extensive enzymatic arsenal¹¹. We first confronted the natural isolate *Streptomyces*
65 *venezuelae* ATCC 10712 (Sv) to *Bacillus velezensis* strain GA1 (Bv), an archetypical root-associated
66 isolate that efficiently co-produces surfactin, iturin and fengycin as the three lipopeptide families
67 typical of the *B. subtilis* group^{12,13}. Bacteria were inoculated at distance on gelified root exudate-
68 mimicking medium designed to reflect the nutritional context of the rhizosphere (Fig. 1a). Sv colonies
69 were phenotypically similar in interaction compared to monoculture while Bv colonies displayed a
70 polarized growth and altered motility close to Sv (Fig. 1a, Supp. fig. 1). UPLC-qTOF-MS metabolite
71 profiling of the compounds extracted from the agar in the confrontation zone revealed a decrease in
72 the abundance of the three *Bacillus* CLP families compared with monocultures (Fig. 1b and Supp. fig.
73 1b), along with the accumulation of their cognate linearized forms eluting earlier (lower apparent
74 hydrophobicity, Fig. 1b) and which were identified based on mass increment of 18 Da and MS/MS
75 structure elucidation (Fig. 1c, Supp. fig. 2-4). Interestingly, additional ion species corresponding to
76 shorter CLP fragments of surfactin (loss of the fatty acid from the linear form), iturin (loss of
77 asparagine in position 3) and fengycin (loss of the terminal isoleucine) were also detected in the
78 confrontation zone but not in Bv monoculture (Fig. 1b, MS/MS spectra in Supp. fig. 2-4). We next
79 confronted Sv and the GFP-tagged GA1 upon colonization of tomato roots in a set-up better
80 mimicking rhizosphere conditions. When inoculated alone, Bv readily colonizes roots as biofilm-
81 structured colonies (Fig. 1d) and efficiently forms the three lipopeptides in their native cyclic
82 structure as revealed by UPLC-MS analysis of rhizosphere extracts (Fig. 1e). Upon co-inoculation with
83 Sv who forms mycelial pellets along the roots, there is no spatial exclusion of Bv, which still colonizes
84 roots and secretes lipopeptides in substantial amounts. However, as for plate confrontation, a high
85 proportion of linear iturins and surfactins (but not fengycins) along with surfactin fragment were
86 observed in rhizosphere extracts indicating that some degradation of Bv CLPs by Sv also occurs under
87 more natural settings of root co-colonization (Fig. 1e).

88 Based on these data, we further explored the Sv-mediated alteration of *Bacillus* CLPs and
89 investigated the degradation process beyond linearization by using purified CLPs supplemented with
90 Sv cell-free supernatant (CFS) on a time course experiment combined with feature-based molecular
91 networking (FBMN). For each CLP, FBMN identified multiple degradation products generated in
92 presence of Sv CFS, including those detected in confrontation assays and *in planta* (Fig. 2a,b,c,
93 MS/MS spectra in Supp. fig. 2-4). Based on the fragments identified by FBMN and time-course
94 monitoring of their occurrence (Fig. 2d, Supp. fig. 5), we propose a degradation mechanisms specific
95 for each CLP characterized by the sequential generation of linearized lipopeptides followed by

96 truncated fragments (Fig. 2a,b,c). In a similar set-up, we also tested Sv CFS for its ability to break
97 down *Pseudomonas* CLPs representative of some of the main classes produced by soil-borne
98 species¹. Albeit to different degrees, sessilin, tolaasin, orfamide, xantholisin and putisolvin were all
99 degraded (Supp. fig. 6-10) indicating that Sv may target a broad range of structurally diverse CLPs
100 that the bacterium is likely to encounter in the soil. In most cases, degradation initiates with the
101 opening of the peptide cycle followed by iterative degradation of the linear form, associated with the
102 release of free fatty or amino acids. These mechanisms suggest the involvement of several enzymes
103 secreted by Sv including esterase or endo-proteases for linearization and exo-proteases to further
104 degrade the peptide. The enzymatic nature of the degradation was confirmed as heat-treated cell-
105 free supernatant (CFS) of Sv completely loses its degradation activity (Supp. fig. 11) and comparative
106 proteomic of active to inactive CFS of Sv highlighted the presence of several secreted proteases and
107 amino acid/oligopeptide transporter unique to the active CFS of Sv (Supp. table 3).

108 Hence, Sv can conceivably catabolize those exogenous CLPs and use them as nutritional sources.
109 Indeed, we observed a significant increase in growth of Sv cultivated on gelified CLP-containing CFS
110 of Bv mutants (GA1 *ΔbaeJ-mInA-dfnA*, mutant unable to produce the three antibacterial polyketides
111 bacillaene, difficidin and macrolactin, known for their toxicity toward *Streptomyces*¹⁴) compared to
112 CLPs-free supernatants (GA1 *Δsfp*, mutant unable to produce the *sfp*-dependent metabolites: CLPs,
113 PKs and the siderophore bacillibactin) (Fig. 2e,f). Extraction of the metabolites from the Sv cultures
114 grown on CLP-containing conditions reveals the presence of degradation products of both iturin,
115 surfactin and fengycin, further indicating that increased growth is driven by CLP catabolism (Fig. 2g).
116 We propose that the ability of Sv to degrade CLPs and feed on them adds a new facet to the
117 implications of CLPs degradation by *Streptomyces*, where linearization of surfactin was previously
118 reported as a detoxification mechanism deployed by *Streptomyces* to counter the inhibition of aerial
119 mycelium formation surfactin causes¹⁵. In environments marked by nutrient scarcity such as the
120 rhizosphere, exogenous CLP degradation may thus represent a foraging strategy for Sv to access
121 alternative sources of nutrients directly emanating from diverse microbial competitors.

122 Additionally, CLPs are key multifunctional BSMs whose biocontrol-associated activities often involve
123 membrane perturbation and pore formation¹⁶. This CLP-membrane interaction is enabled by the
124 peculiar amphiphilic 3D structures of those CLPs^{17,18}. However, since the degradation alters their
125 structures, it is likely associated to a loss of function. Indeed, *In vitro* experiments show that digested
126 iturin loses its antifungal activities against phytopathogenic fungi *Fusarium* and *Botrytis* *in vitro*
127 (Supp. fig. 12). Likewise, linear surfactin has been reported to lose its ISR triggering activity on
128 tobacco cells^{17,19}. Nonetheless, the impact degradation has on the biocontrol activities of other CLPs
129 and on the biocontrol potential of CLPs-producing rhizobacteria deserves further investigation.

130 Furthermore, CLPs degradation also possibly hampers the producers as it may alter the promotion of
131 phenotypical traits such as biofilm formation, motility and root colonization by those CLPs. The
132 polarized motility of Bv away from Sv colonies observed in Fig. 1a may indeed result from the
133 degradation of CLPs, especially surfactin, in the confrontation zone as it has been reported that
134 structural modification of surfactin alters its ability to promote motility²⁰. Yet, the actual impact of
135 CLPs degradation on Bv phenotypes remains elusive.

136 Finally, the degradation of CLPs increases the chemical space resulting from the interaction as it
137 generates numerous degradation products. Some of them may retain unsuspected bioactivities as
138 recently reported. The degradation by *Paenibacillus* of the lipopeptide syringafactin produced by
139 *Pseudomonas* generates toxic products to their common amoeba predators²¹ and the degradation of
140 surfactin, also by *Paenibacillus*, serves as deterrent or territory marker in the interaction with *B.*
141 *subtilis*²².

142

143 **Materials and Methods:**

144 **Strains and Cultures Conditions**

145 Strains used are listed in Table S1

146 All experiments with *S. venezuelae* were inoculated with spores suspensions. *Streptomyces* spores
147 were recovered from SFA medium plate (soy flour 20g/L, mannitol 20g/L, agar 20g/L, tap water 1L;
148 pH 7.2) and stored at -80°C in peptone water (peptone 10g/L, NaCl 5g/L) supplemented with glycerol
149 25% (v/v). Spores concentration were measured with Bruker cells.

150 All *B. velezensis* GA1 wt and mutants and phytopathogenic bacteria were routinely precultured
151 overnight in root exudates mimicking medium (REM; 0.5L of *all medium* (0.685g of KH₃PO₄, 21g of
152 MOPS, 0.5g of MgSO₄.7H₂O, 0.5g of KCl, 1.0g of yeast extract), 100µL of the trace solution (0.12g of
153 Fe₂(SO₄)₃, 0.04g of MnSO₄, 0.16g of CuSO₄ and 0.4g Na₂MoO₄ per 10mL) and 0.5L of *tobacco medium*
154 (2.0g of glucose, 3.4g of fructose, 0.4g of maltose, 0.6g of ribose, 4.0g of citrate, 4.0g of oxalate, 3.0g
155 of succinate, 1.0g of malate, 10g of fumarate, 1.0g of casamino acids, 2.0g of (NH₄)₂SO₄ per liter, pH
156 7.0) as described by ²³ at 30 °C. After being washed three times in REM (cells were collected,
157 centrifuged at 10 000rpm for 1 minute and resuspended in fresh REM), bacterial suspensions were
158 set at proper OD_{600nm} and used for the experimental setup.

159 *Pseudomonas* strains were routinely precultured in casamino acid liquid medium (CAA; 10g/L
160 casamino acid, 0.3g /L K₂HPO₄, 0.5g/L MgSO₄ and pH 7.0), at 30°C. After being washed three times in
161 casamino acid liquid medium (cells were collected, centrifuged at 10 000rpm for 1 minute and

162 resuspended in fresh medium), bacterial suspensions were set at proper OD_{600nm} and used for the
163 experimental setup.

164 **Construction of *Bacillus* Knock-out Mutant Strains**

165 Triple mutant GA1 *ΔbaeJ-dfnA-mlnA* was constructed from GA1 *ΔbaeJ-dfnA* from Andric *et al.*, 2022.
166 On this mutant, *mlnA* gene was deleted by allelic replacement using a mutagenesis cassette
167 containing a phleomycin resistance gene (50µg/mL) flanked by 1 kb of the upstream region and 1 kb
168 of the downstream region of the targeted gene. Mutagenesis cassettes were constructed by overlap
169 PCR as described by ²⁴. The primers used were:

170 UpF: CGGAAAAACCGTTCAAAAA

171 UpR: CAGGAAACAGCTATGACTTTAAAATTGTCATTACTCTAAGCA

172 DwF: GTAAAACGACGCCAGTCTAAGGCGCAGATTGGATA

173 DwR: TGTACCTGTGCCATGTGCTT

174 Recombination cassette was introduced in *B. velezensis* GA1 by inducing natural competence using a
175 method adapted from ²⁵. Briefly, after an initial preculture in LB medium at 37°C (160rpm) during at
176 least 6h, cells were washed twice with peptone water. 1µg of the recombinant cassette was added to
177 the GA1 cells suspension adjusted to an OD_{600nm} of 0.01 into MMG liquid medium (19g/L K₂HPO₄
178 anhydrous; 6g/L KH₂PO₄; 1g/L Na₃ citrate anhydrous; 0.2g/L MgSO₄ 7H₂O; 2g/L Na₂SO₄; 50µM FeCl₃
179 (filtrated on 0.22µm pore size filters), 2µM MnSO₄, 8g/L glucose, 2g/L L-glutamic acid, pH 7.0). After
180 24h of incubation at 37°C with shaking, double crossing over events were selected on LB plates
181 supplemented with the adequate antibiotic. The gene deletion was confirmed by PCR analysis.

182 **Confrontation experiments.**

183 Confrontation assays were performed on square Petri dishes (12 x 12cm) with 40mL of REM solid
184 medium at 26°C (REM supplemented with 14g/L of agar).

185 *S. venezuelae* ATCC10712 were inoculated as stripes (1x 12cm) in the middle of the plate with 40µL
186 of spores suspension (10⁷ spores/mL) and spread with a cotton swab. Next, *B. velezensis* GA1 cells
187 were collected from fresh precultures as described and adjusted to OD_{600nm} 0.1. Then, 5µL of *B.*
188 *velezensis* GA1 suspension were spotted at 1cm of *Streptomyces* line. Control plates were done
189 following the same procedure without the inoculation of either *Bacillus* or *Streptomyces*. Plates were
190 then incubated for 3 days at 26°C in the dark. Pictures of the plates were then captured with a
191 captured using a CoolPix camera (NIKKOR x60 wide optical zoom extra-low dispersion vibration
192 reduction [EDVR] 4.3 to 258 mm 1:33 to 6.5).

193 Metabolites accumulating in the vicinity of either *Bacillus* or *Streptomyces* and in the confrontation
194 zone were recovered as followed: an area of agar (2 x 1cm) near the colony was sampled, transferred
195 to Eppendorf tubes and placed for 24h at -20°C. Then, the agar were thawed at room temperature
196 and centrifuged for 10 minutes at 13 000rpm. The supernatants were then collected and filtered
197 (0.22µm pore size filters) before UPLC-MS analysis.

198 **In planta experiments.**

199 For the *in planta* studies, tomato seeds (*Solanum lycopersicum* var. Moneymaker) were sterilized
200 following the protocol described by Hoff *et al.* (2021). Briefly, tomato seeds were primarily sterilized
201 in 70% ethanol (v/v) by gently shaking for 2 minutes. Further, the ethanol was removed, and the
202 seeds were added to the 50mL of sterilization solution (4.5mL of bleach containing 9.5% (v/v) of
203 active chlorine, 0.01g of Tween 80, and 45.5mL of sterile water) and gently shaken for 10 minutes.
204 Seeds were thereafter washed 10 times with water to eliminate sterilization solution residues.
205 Sterilized seeds were then placed on square Petri dishes (12 x 12 cm) (5 seeds per plate) containing
206 Hoagland solid medium (14g/L agar, 5mL of stock 1 [EDTA 5.20mg/L; FeSO₄·7H₂O 3.90mg/L; H₃BO₃
207 1.40mg/L; MgSO₄·7H₂O 513mg/L; MnCl₂·4H₂O 0.90mg/L; ZnSO₄·7H₂O 0.10mg/L; CuSO₄·5H₂O
208 0.05mg/L; 1mL in 50mL stock 1, NaMoO₄·2H₂O 0.02mg/L 1mL in 50mL stock 1], 5mL of stock 2
209 [KH₂PO₄ 170mg/L], 5mL of stock 3 [KNO₃ 316mg/L, Ca(NO₃)₂·4H₂Omg/L], pH 6.5) and were placed in
210 the dark to germinate for 3 days. Afterward, germinated seeds were inoculated with 2µL of the
211 culture (OD_{600nm} 0.1) of *B. velezensis* GA1-GFP, 2µL of spore suspension (10⁷ spores/mL) of *S.*
212 *venezuelae* ATCC10712 or with both GA1 and ATCC10712 (co-inoculation) and grown at 22°C under a
213 16/8h day/night cycle with constant light for 7 days.

214 For BSMs production analysis in *in planta* conditions, an agar part (1 x 1 cm) near the tomato roots
215 was cut and weighted. Extraction and UPLC-MS analysis of the metabolites were then performed
216 with the same protocol of the confrontation assays.

217 Stereomicroscopic pictures of inoculated tomato roots were taken with a Nikon SMZ1270
218 stereomicroscope (Nikon, Japan) equipped with a Nikon DS-Qi2 monochrome microscope camera
219 and a DS-F 2.5x F-mount adapter 2.5x. Pictures were captured in the bright field channel and green
220 widefield fluorescence (emission 535nm, excitation 470nm) with an ED Plan 2x/WF objective at an
221 exposure time of 40ms. NIS-Element AR software (Nikon, Japan) was used to generate merged bright
222 field and green fluorescence. Back ground and root green autofluorescence were removed by
223 adjusting the LUTs (3388 to 6638)

224 **Generation of cell-free supernatants.**

225 The generation of cell-free supernatants (CFS) of Bv and Bv mutants (Δsfp or GA1 $\Delta baeJ-dfnA-mInA$)
226 were performed as followed. We inoculated 250mL flasks containing 50mL REM culture with at initial
227 OD_{600nm} 0.02 with cells from fresh precultures as previously described. We then incubated the
228 cultures for 24h at 30°C with continuous orbitally shaking (180rpm). Next, the cultures were
229 centrifuged at 5000rpm at room temperature for 20 minutes. The supernatants were further filter-
230 sterilized (0.22μm pore size filters) and stored at -20°C until further use. .

231 Generation of *Pseudomonas* CFS was performed as followed: We inoculated 250mL flasks containing
232 50mL CAA culture with at initial OD_{600nm} 0.02 with cells from fresh precultures as described. We then
233 incubated the culture for 48h at 26°C with continuous orbitally shaking (180rpm). Next, the cultures
234 were centrifuged at 5000rpm at room temperature for 20 minutes. The supernatants were further
235 filter-sterilized (0.22μm pore size filters) and stored at -20°C until further use.

236 *S. venezuelae* cultures were performed on ISP2 medium at 28°C (yeast extract 4g/L, malt extract
237 10g/L, glucose 4g/L, agar 20g/L; pH 7.3). On 12 x 12 cm Petri square plates, three stripes (1cm x 12)
238 of spores were inoculated with a cotton swab (40μL of spores suspension (10⁷ spores/mL) each),
239 spaced by 3cm each. The plates were left for 7 days of incubation. Next, the agar media was
240 recovered and placed in Falcon tubes at -20°C for 24h. Then, the agar media were defrost at room
241 temperature and centrifuged (8000rpm for 20 minutes). Finally the supernatant leaked from the agar
242 was collected, filtered sterilized (0.22μm pore size filters) and stored at -20°C until further use. The
243 heat treated Sv supernatant was generated by incubating an aliquot of the cell-free supernatant of Sv
244 for 10 minutes at 98°C. The supernatant was then filtered (0.22μm pore size filters) and stored at -
245 20°C until further use.

246 ***In vitro* degradation of CLPs assays by *S. venezuelae***

247 The degradation assays of *Bacillus* CLPs by *S. venezuelae* were performed as followed: 500μL
248 solutions of pure surfactin, iturin or fengycin (40μM) were supplemented by 4% (v/v) of *S. venezuelae*
249 supernatant (or heat-treated supernatant) prepared as previously described. Then the solutions were
250 incubated for 24h at 30°C with continuous shaking (180rpm). Next, the solution were centrifuged (1
251 minute at 10 000rpm), filtered (0.22μm pore size filters) and analyzed by UPLC-MS.

252 The degradation assays of *Pseudomonas* CLPs were performed using CFS generated as described
253 above. They were supplemented by 4% (v/v) of *S. venezuelae* CFS prepared as described previously.
254 Next, the solutions were incubated for 24h at 30°C with continuous shaking (180rpm). Then solution
255 were centrifuged (1 minute at 10 000rpm), filtered (0.22μm pore size filters) and analyzed by UPLC-
256 MS.

257 For the CLPs degradation kinetic experiments, surfactin, iturin and fengycin solutions supplemented
258 with *S. venezuelae* supernatant were prepared following the same protocol. 20 μ L of solution were
259 sampled at each time point and directly mixed with 80 μ L of acetonitrile to stop enzymatic
260 degradation. Finally, they were stored at -20°C until analyzed by UPLC-MS.

261 **UPLC-MS analyses**

262 All UPLC-MS analysis were performed using an Agilent 1290 Infinity II coupled with a diode array
263 detector and a mass detector (Jet Stream ESI-Q-TOF 6530) in positive mode with the parameters set
264 up as follows: capillary voltage of 3.5kV, nebulizer pressure of 35lb/in², drying gas of 8L/min, drying
265 gas temperature of 300°C, flow rate of sheath gas of 11L/min, sheath gas temperature of 350°C,
266 fragmentor voltage of 175V, skimmer voltage of 65V, and octopole radiofrequency of 750V. Accurate
267 mass spectra were recorded in the m/z range of 300 to 1,700. For untargeted MS/MS, we used the
268 same MS1 parameters as described. We added MS2 untargeted acquisition mode with the
269 parameters as follow: MS/MS range 50 to 1700m/z, MS/MS scan rate 3 spectra/s, Isolation width
270 MS/MS medium (approx. 4amu), Decision Engine Native, Fixed Collision Energies 25V and 40V for
271 surfactin, 50V for iturin and 60V for fengycin experiments, precursor selection : 3 for surfactin
272 experiment, 4 for iturin and fengycin experiments, threshold 1500 (Abs), isotope model common,
273 active exclusion after 2 spectra and released after 0.5 minute, sort precursors by charge state then
274 abundance (charge state preference 1). For targeted MS/MS, we used the same MS1 parameters
275 MS/MS range 50 to 1700m/z or 50 to 3200 (when required for *Pseudomonas* CLPs with mass
276 >1700Da), MS/MS scan rate 3 spectra/s, Isolation width MS/MS narrow (approx. 1.3amu), Fixed
277 Collision Energies 20, 40 and 60V. In all experiments, a C18 Acquity UPLC ethylene bridged hybrid
278 (BEH) column (2.1mm × 50mm × 1.7 μ m; Waters, Milford, MA, USA) was used at a flow rate of
279 0.6mL/min and a temperature of 40°C. The injection volume was 20 μ L, and the diode array detector
280 scanned a wavelength spectrum between 190 and 600nm. Otherwise mentioned, a gradient of
281 acidified water (0.1% formic acid) (solvent A) and of acidified acetonitrile (0.1% formic acid) (solvent
282 B) was used as mobile phase with a constant flow rate of 0.6mL/min, starting at 10% B and rising to
283 100% B in 20 minutes. Solvent B was kept at 100% for 4 minutes before going back to the initial ratio.
284 MassHunter Workstation v10.0 and ChemStation software were used for data collection and analysis.
285 For untargeted analysis of iturin and fengycin degradation products, we used the same solvent and
286 flow rate, starting at 10% B to 20% in 2 minutes, then rising to 50% B at 14 minute and 100% B at 25
287 minute, followed by 6 minutes at 100% B and 5 at 10% B.

288 **MZmine-GNPS analysis**

289 Mzmine 3 parameters used in this study are listed in supp. Table 3. Feature lists were then exported
290 and submitted to GNPS. GNPS analysis of each CLP was performed with the parameter as follow:
291 Quantification Table Source: MZmine, Precursor Ion Mass Tolerance: 0.02Da, Fragment Ion Mass
292 Tolerance: 0.02Da, Min Pairs Cos: 0.5 for iturin and fengycin and 0.6 for surfactin, Minimum Matched
293 Fragment ions: 4, Maximum shift between precursors: 500, Network TopK: 10, Maximum Connected
294 Component Size: 100. All the other parameters were set as defaults. GNPS networks were then
295 exported to cytoscape. Nodes corresponding to canonical CLP were identified based on the exact
296 mass, the retention time, the presence in control CLP samples (without *Sv* supernatant treatment)
297 and confirmed with the MS/MS spectra. Conversely, degradation products were identified as
298 connected to canonical CLP and accumulating in CLP samples treated with *Sv*. The structures of the
299 fragments were then elucidated with the MS/MS spectra.

300 The GNPS job ID are, for surfactin : ID=[4c38af1675e744598573848474b784de](#), for iturin:
301 [ID=a2ac85a8fe49439fbf8235d514d31b1a](#) and, for fengycin: ID=[336c4c73ab6642f68787a173cf3ca719](#)

302 **Growth on CLPs assays**

303 The ability of *Streptomyces* to grow on *B. velezensis* CLPs were performed on 48 wells microplates.
304 Each well was filled with 500µL of agar solution (40g/L agar) and 500µL of cell-free supernatant of *B.*
305 *velezensis* GA1, GA1 Δ sfp or GA1 Δ baeJ-dfnA-mlnA. Wells were inoculated with 5µL of spore
306 suspensions of *Streptomyces* (OD_{600nm} 0.1). The microplates were incubated for 3 days at 28°C.
307 Stereomicroscopic pictures of inoculated tomato roots were taken with a Nikon SMZ1270
308 stereomicroscope (Nikon, Japan) equipped with a Nikon DS-Qi2 monochrome microscope camera
309 and a DS-F 1x F-mount adapter 1x. Pictures were captured in the bright field channel and with an ED
310 Plan 1x/WF objective at an exposure time of 20ms, gain 1.2X. NIS-Element AR software (Nikon,
311 Japan) was used to generate bright field images. Colony area were measure by binary thresholding
312 (LUTs <15100).

313 **Inhibition assays.**

314 For antifungal activities, we first prepared stock solution of spores. To that end, *Fusarium* and
315 *Botrytis* fungi were grown on PDA (potato extract 4g/L, dextrose 20g/L, agar 15g/L) plates on the
316 dark for 3 days at room temperature, followed by one day at daylight and 3 subsequent days in the
317 dark. Spores were then collected, filtered and stored at -80°C in peptone water supplemented with
318 glycerol 25% (v/v) for *Fusarium* and 50% (v/v) for *Botrytis*. The activity of iturin and linear iturin was
319 quantified in microtiter plates (96-wells) filled with 250µL of LB liquid medium, inoculated with 10⁶
320 spores/mL of *Fusarium* or *Botrytis* from stock spores solutions at OD_{600nm} 0.01. The activities of iturin

321 and linear iturin were estimated by measuring the pathogen OD_{600nm} every 30 minutes for 24h with a
322 Tecan Spark microplate reader, continuously shaken at 150rpm and at 30°C.

323 **Acknowledgment:**

324 We warmly thank Guillaume Balleux and Pascale Bonnet for proof reading this document. We also
325 gratefully acknowledge Sébastien Steels and Catherine Helmus for their technical support.

326 **Funding:**

327 This work was supported by Action de Recherche Concertée, Mind Project, from the university of
328 Liège, by the EU Interreg V France-Wallonie-Vlaanderen portfolio SmartBiocontrol (Bioscreen and
329 Bioprotect projects, avec le soutien du Fonds européen de développement régional - Met steun van
330 het Europees Fonds voor Regionale Ontwikkeling), the European Union Horizon 2020 research and
331 innovation program under grant agreement No. 731077 and by the EOS project ID 30650620 from
332 the FWO/F.R.S.-FNRS. AR and AA are recipient of a F.R.I.A. fellowship (F.R.S.-FNRS, National Funds for
333 Scientific Research in Belgium) and MO is Research Director at the F.R.S.-FNRS. S.R. is a Senior
334 Research Associate at the Belgian Fund for Scientific Research (F.R.S.-FNRS, Brussels, Belgium)

335

336 **Conflict of interest statement.**

337 The authors declare no competing interests

338

- 339 1. Cesa-luna, C. *et al.* Charting the Lipopeptidome of Nonpathogenic *Pseudomonas*. *mSystems* **8**,
340 (2023).
- 341 2. Raaijmakers, J. M., De Bruijn, I., Nybroe, O. & Ongena, M. Natural functions of lipopeptides
342 from *Bacillus* and *Pseudomonas* : more than surfactants and antibiotics. *FEMS Microbiol. Rev.*
343 **34**, 1037–1062 (2010).
- 344 3. Köhl, J., Kolnaar, R. & Ravensberg, W. J. Mode of action of microbial biological control agents
345 against plant diseases: Relevance beyond efficacy. *Front. Plant Sci.* **10**, 1–19 (2019).
- 346 4. Pieterse, C. M. J. *et al.* Induced systemic resistance by beneficial microbes. *Annu. Rev.*
347 *Phytopathol.* **52**, 347–375 (2014).
- 348 5. Raaijmakers, J. M. & Mazzola, M. Diversity and natural functions of antibiotics produced by
349 beneficial and plant pathogenic bacteria. *Annu. Rev. Phytopathol.* **50**, 403–424 (2012).
- 350 6. Andrić, S. *et al.* Lipopeptide Interplay Mediates Molecular Interactions between Soil Bacilli and
351 Pseudomonads. *Microbiol. Spectr.* **9**, (2021).
- 352 7. Debois, D. *et al.* Plant polysaccharides initiate underground crosstalk with bacilli by inducing

353 synthesis of the immunogenic lipopeptide surfactin. *Environ. Microbiol. Rep.* **7**, 570–582
354 (2015).

355 8. Chevrette, M. G. *et al.* Microbiome composition modulates secondary metabolism in a
356 multispecies bacterial community. *Proc. Natl. Acad. Sci. U. S. A.* **119**, (2022).

357 9. Lima, T. M. S. *et al.* Biodegradability of bacterial surfactants. *Biodegradation* **22**, 585–592
358 (2011).

359 10. Habe, H., Sato, Y., Taira, T. & Imura, T. Enrichment and isolation of surfactin-degrading
360 bacteria. *J. Oleo Sci.* **70**, 581–587 (2021).

361 11. Shepherdson, E. M., Baglio, C. R. & Elliot, M. A. *Streptomyces* behavior and competition in the
362 natural environment. *Curr. Opin. Microbiol.* **71**, (2023).

363 12. Arguelles-Arias, A. *et al.* *Bacillus amyloliquefaciens* GA1 as a source of potent antibiotics and
364 other secondary metabolites for biocontrol of plant pathogens. *Microb. Cell Fact.* **8**, 63 (2009).

365 13. Andrić, S. *et al.* Plant-associated *Bacillus* mobilizes its secondary metabolites upon perception
366 of the siderophore pyochelin produced by a *Pseudomonas* competitor. *ISME J.* **17**, 263–275
367 (2023).

368 14. Straight, P. D., Fischbach, M. A., Walsh, C. T., Rudner, D. Z. & Kolter, R. A singular enzymatic
369 megacomplex from *Bacillus subtilis*. *Proc. Natl. Acad. Sci. U. S. A.* **104**, 305–310 (2007).

370 15. Hoefler, B. C. *et al.* Enzymatic resistance to the lipopeptide surfactin as identified through
371 imaging mass spectrometry of bacterial competition. *Proc. Natl. Acad. Sci. U. S. A.* **109**,
372 13082–13087 (2012).

373 16. Crouzet, J. *et al.* Biosurfactants in Plant Protection Against Diseases: Rhamnolipids and
374 Lipopeptides Case Study. *Frontiers in Bioengineering and Biotechnology* **8**, 1014 (2020).

375 17. Henry, G., Deleu, M., Jourdan, E., Thonart, P. & Ongena, M. The bacterial lipopeptide surfactin
376 targets the lipid fraction of the plant plasma membrane to trigger immune-related defence
377 responses. *Cell. Microbiol.* **13**, 1824–1837 (2011).

378 18. Sur, S., Romo, T. D. & Grossfield, A. Selectivity and Mechanism of Fengycin, an Antimicrobial
379 Lipopeptide, from Molecular Dynamics. *J. Phys. Chem. B* **122**, 2219–2226 (2018).

380 19. Jourdan, E. *et al.* Insights into the defense-related events occurring in plant cells following
381 perception of surfactin-type lipopeptide from *Bacillus subtilis*. *Mol. Plant-Microbe Interact.* **22**,
382 456–468 (2009).

383 20. Aleti, G. *et al.* Surfactin variants mediate species-specific biofilm formation and root

384 colonization in *Bacillus*. *Environ. Microbiol.* **18**, 2634–2645 (2016).

385 21. Zhang, S., Mukherji, R., Chowdhury, S., Reimer, L. & Stallforth, P. Lipopeptide-mediated
386 bacterial interaction enables cooperative predator defense. *Proc. Natl. Acad. Sci. U. S. A.* **118**,
387 e2013759118 (2021).

388 22. Luzzatto-Knaan, T., Melnik, A. V. & Dorrestein, P. C. Mass Spectrometry Uncovers the Role of
389 Surfactin as an Interspecies Recruitment Factor. *ACS Chem. Biol.* **14**, 459–467 (2019).

390 23. Nihorimbere, V. *et al.* Impact of rhizosphere factors on cyclic lipopeptide signature from the
391 plant beneficial strain *Bacillus amyloliquefaciens* S499. *FEMS Microbiol. Ecol.* **79**, 176–191
392 (2012).

393 24. Bryksin, A. V. & Matsumura, I. Overlap extension PCR cloning: A simple and reliable way to
394 create recombinant plasmids. *Biotechniques* **48**, 463–465 (2010).

395 25. Jarmer, H., Berka, R., Knudsen, S. & Saxild, H. H. Transcriptome analysis documents induced
396 competence of *Bacillus subtilis* during nitrogen limiting conditions. *FEMS Microbiol. Lett.* **206**,
397 197–200 (2002).

398

399

400 **Figure 1. *Streptomyces venezuelae* ATCC 10712 linearizes *Bacillus* lipopeptides surfactin, iturin and
401 fengycin upon interaction between *Bacillus velezensis* GA1. a.** Picture of the interaction between *B.*
402 *velezensis* GA1 (Bv, left side) and *S. venezuelae* ATCC 10712 (Sv, right side) on plate. Dashed
403 rectangles represent the sampling areas used for metabolites extraction. The picture is
404 representative of 3 biological replicates. **b.** UPLC-ESI-MS EIC of canonical, linear and degradation
405 products of surfactin, iturin and fengycin extracted from agar in the interaction zone in-between Sv
406 and Bv (confrontation zone, in red) and on the Bv side (in blue). The EIC are merged chromatograms
407 of the $[m+H]^+$ monoisotopic adducts of the main variants of each CLP. “Cn” represents the
408 number of carbon of the fatty acid of the main CLP variant detected in each peak. Chromatograms
409 are representatives of 3 biological replicates. Mean peak areas of the replicates of the different CLPs
410 and linearized CLPs are shown in Supp. fig. 1. **c.** LC-ESI-MS/MS spectra of linear surfactin C14 and
411 corresponding structure. Blue and red clippers and arrows represent the y- and b-ions. Fa stands for
412 “fatty acid” **d.** Merged bright field and green fluorescens stereomicroscopic photos of tomato roots,
413 not inoculated (control root, top picture), inoculated with GA1 GFPmut3-tagged (Bv inoculated,
414 middle picture) and co-inoculated with GA1 GFPmut3 and *S. venezuelae* ATCC10712 (Bv-Sv co-
415 inoculated, bottom picture). Pictures are representatives of 4 biological replicates. **e.** UPLC-ESI-MS
416 EIC of canonical (blue) and linear (red) surfactin, fengycin and iturin extracted from tomato roots
417 surrounding inoculated with Bv (top panels) and co-inoculated with Bv and Sv (bottom panel).
418 Chromatograms are representatives of 4 biological replicates.

419 **Figure 2. *S. venezuelae* degrades *B. velezensis* CLPs and feeds on it. a, b, c.** Feature-based molecular
420 networking of the degradation products of *Bacillus* CLPs surfactin (a), iturin (b) and fengycin (c)
421 generated by Sv and proposed degradation mechanisms of each CLP. Pure CLPs were incubated for
422 24h 30°C at 100 μ M supplemented with 4% (v/v) of Sv CFS. MS/MS spectra are available in Supp. fig.
423 2-4. The degradation mechanisms are proposed based on the fragments detected. Summary of the
424 identified features is available in Supp. table 4. **d.** Time course degradation of surfactin upon
425 supplementation of Sv CFS 4% (v/v) **e.** Pictures of the Sv colony grown on gelified GA1 Δ baeJ-mlnA-
426 dfnA and GA1 Δ sfp supernatant respectively. The sfp gene encodes for a 4'-phosphopantetheinyl
427 transferase required for the activation of the synthesis of non-ribosomal peptides (NRPs) and
428 polyketides (PKs). The mutant GA1 Δ sfp is unable to synthesize the Sfp-dependent BSMs: the CLPs
429 (surfactin, iturin and fengycin), the PKs (bacillaene, difficidin and macrolactin) and the siderophore
430 bacillibactin. The mutant GA1 Δ baeJ-mlnA-dfnA is unable to synthesize the PKs bacillaene,
431 macrolactin and difficidin. Both strains were grown on iron sufficient medium to repress bacillibactin
432 production. We used the mutants repressed in the synthesis of the PKs (Δ baeJ-mlnA-dfnA and Δ sfp)
433 as Bv PKs inhibits Sv growth at high concentrations (i.e. when Sv grows on Bv CFS). Picture are

434 representatives of 6 replicates. **f.** Relative summed colony area of Sv upon growth on GA1 $\Delta baeJ$ -
435 $mlnA-dfnA$ and GA1 Δsfp supernatants respectively. Pictures areas used for colony area
436 measurement =0.025cm². Each dot represent a biological replicate (n=6). Statistical significance was
437 calculated using Mann–Whitney test where (****: p< 0.0001). **g.** LC-ESI-MS EIC chromatograms of
438 *Bacillus* CLPs iturin, surfactin and fengycin and the corresponding degradation products in Sv cultures
439 grown on gelified GA1 $\Delta baeJ-mlnA-dfnA$ CFS. The chromatograms are representatives of two
440 biological replicates.

441 **Supp. fig. 1. Degradation of *Bacillus* lipopeptides surfactin, iturin and fengycin in interaction**
442 **between *Bacillus velezensis* GA1 and *Streptomyces venezuelae* ATCC 10712. a.** Pictures of, from left
443 to right, *Bacillus velezensis* GA1 alone (Bv), the interaction between *B. velezensis* (Bv, left side) and *S.*
444 *venezuelae* (Sv, right side) and *S. venezuelae* alone (Sv). Dashed squares represent the sampling area
445 for metabolites extraction. Pictures are representative of 3 biological replicates. **b.** Mean peak areas
446 of canonical (blue) and linear (red) CLPs of *Bacillus* (surfactin, iturin and fengycin) extracted from agar
447 in the control *Bacillus velezensis* GA1 (Bv), the control *S. venezuelae* (Sv) and in coculture of *B.*
448 *velezensis* and *S. venezuelae*: on the side of *B. velezensis* (Bv side), in the interaction zone in-between
449 Sv and Bv (confrontation zone) and on the *S. venezuelae* side (Sv side) as represented by the dashed
450 squares in the pictures panel a. n=3 biological replicates. error bar indicating \pm standard deviation.
451 Peak area were measure from UPLC-ESI-MS EIC of the monoisotopic [m+H]⁺.

452 **Supp fig. 2. UPLC-ESI-qTOF MS/MS spectra surfactin degradation products generated by Sv.**
453 Clippers represent B- and Y- ions sequences (in blue and red respectively). MS/MS spectra are
454 merged spectra acquired at CID energy 20 and 40V.

455 **Supp. fig. 3. UPLC-ESI-qTOF MS/MS spectra of iturin degradation products generated by Sv.**
456 Clippers represent B- and Y- ions sequences (in blue and red respectively). MS/MS CID energy was
457 50V.

458 **Supp. fig. 4. UPLC-ESI-qTOF MS/MS spectra fengycin degradation products generated by Sv.**
459 Clippers represent B- and Y- ions sequences (in blue and red respectively). MS/MS CID energy was
460 60V .

461 **Supp. fig. 5. Degradation kinetics of surfactin, iturin and fengycin in presence of *S. venezuelae***
462 **supernatant.** Canonical CLP and degradation product content were measured by UPLC-ESI MS and
463 are expressed as peak area. error bars represent the standard deviation n=3. Degradation kinetics
464 were performed on 40 μ M pure surfactin, iturin and fengycin incubated at 30°C for 48h with 10%
465 (v/v) filter-sterilized (0.22 μ M filters) *S. venezuelae* supernatant grown on ISP2 (adequate for enzyme
466 production).

467 **Supp. fig. 6. Proposed degradation mechanisms of *Pseudomonas* spp. CLPs tolaasins, sessilins,
468 orfamides, putisolvins and xantholysins by *S. venezuelae*.** The mechanisms are inferred from the
469 fragments detected and identified of each CLPs. To generate and identify degradation products, CFS
470 of *Pseudomonas* containing the CLPs were incubated for 24 h at 30°C supplemented with 4% (v/v) of
471 Sv CFS. The samples were the analyzed by UPLC-ESI-MS and structure were determined by UPLC-ESI-
472 MS/MS. MS/MS spectra of the fragments are available in supp. Fig. 7-9.

473 **Supp. fig. 7. UPLC-ESI-qTOF MS/MS spectra orfamide degradation products generated by Sv.**
474 Clippers represent B- and Y- ions sequences (in blue and red respectively). MS/MS CID energy was 20
475 and 40V . Red balls correspond to the positions of amino acid substitution in the orfamide variants

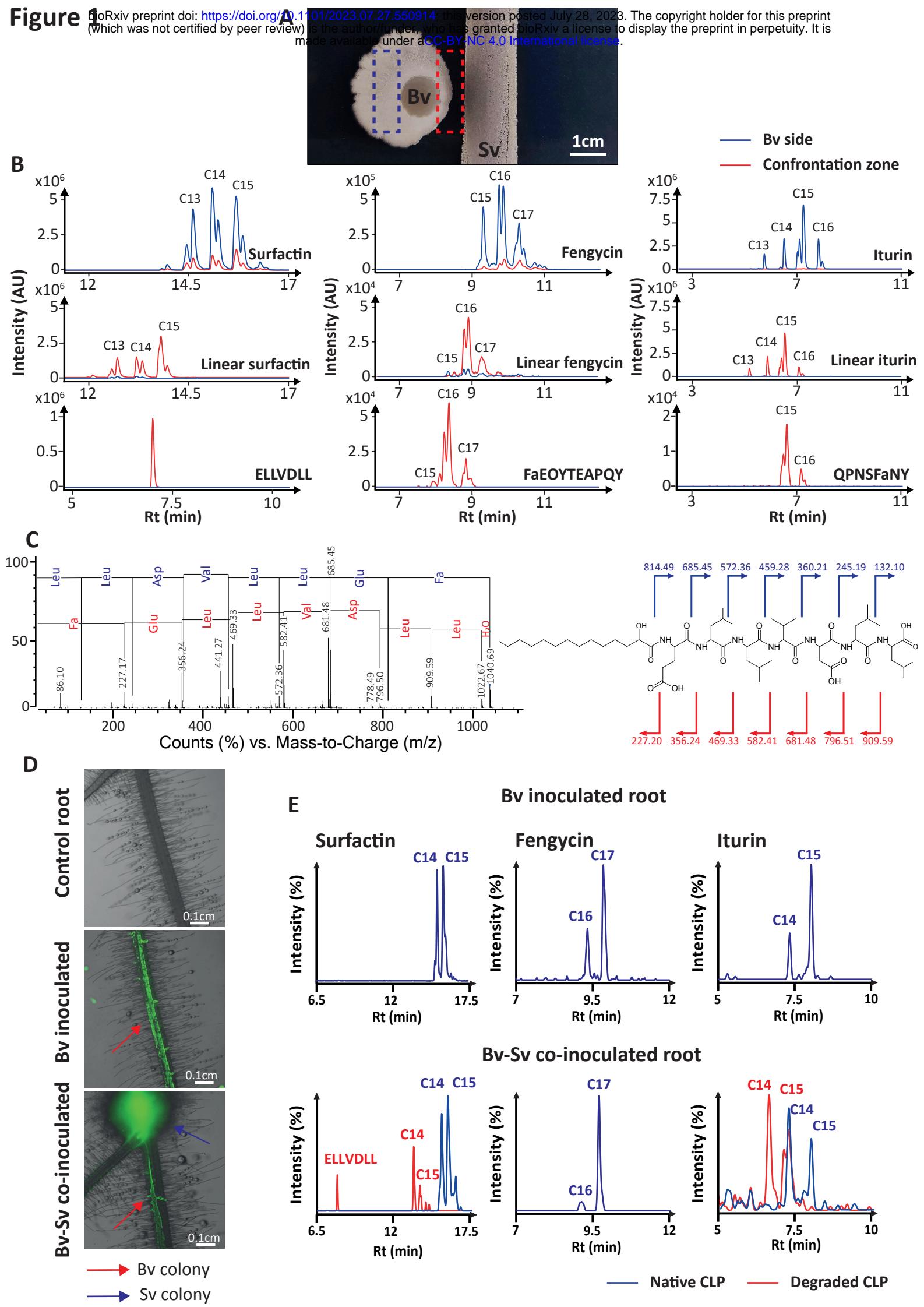
476 **Supp. fig. 8. UPLC-ESI-qTOF MS/MS spectra putisolvin degradation products generated by Sv.**
477 Clippers represent B- and Y- ions sequences (in blue and red respectively). MS/MS CID energy was 20
478 and 40V . Red balls correspond to the positions of amino acid substitution in the putisolvin variants

479 **Supp. fig. 9. UPLC-ESI-qTOF MS/MS spectra Xantholysin degradation products generated by Sv.**
480 Clippers represent B- and Y- ions sequences (in blue and red respectively). MS/MS CID energy was 20
481 and 40V . Red balls correspond to the positions of amino acid substitution in the Xantholysin variants

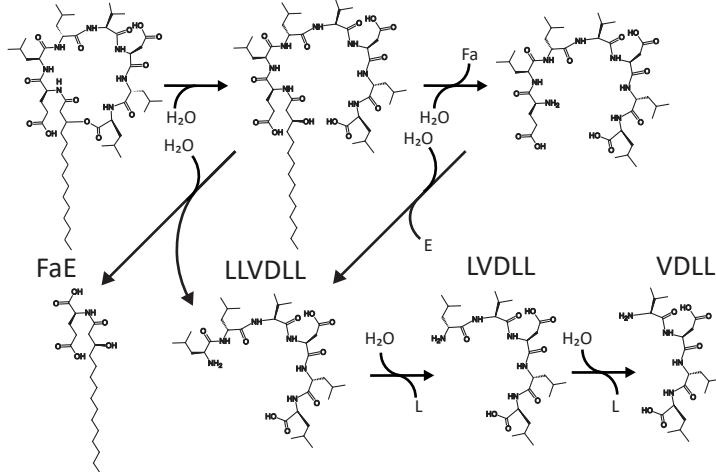
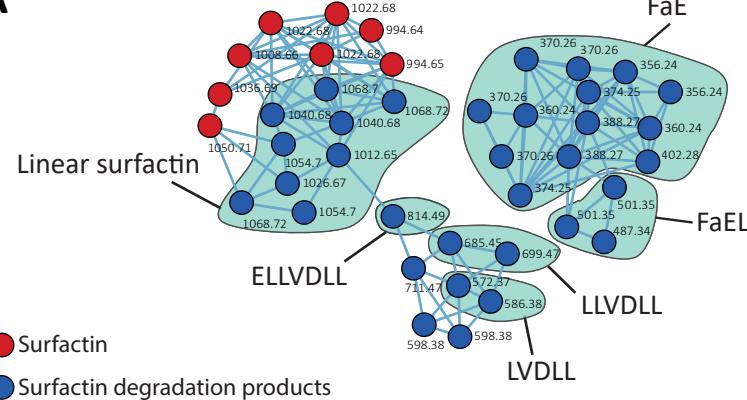
482 **Supp. fig. 10. UPLC-ESI-qTOF MS/MS spectra sessilin/tolaasin degradation products generated by
483 Sv.** Clippers represent B- and Y- ions sequences (in blue and red respectively). MS/MS CID energy was
484 20 and 40V . Red balls correspond to the positions of amino acid substitution in the sessilin/tolaasin
485 variants. Letters in blue in the peptide chain of the VSLVVQLVDhbTIHseDabK correspond to the
486 amino acids in the peptide cycle

487 **Supp. fig. 11. The CLP-degradation activity of *S. venezuelae* is heat sensitive.** LC-MS EIC of canonical
488 and linear iturins (left) and canonical and linear surfactin (right) in *B. velezensis* GA1 supernatant
489 (top), *B. velezensis* GA1 supplemented with *S. venezuelae* ATCC10712 (middle) and *B. velezensis* GA1
490 supernatant supplemented with *S. venezuelae* ATCC10712 heat treated (10' at 98°C) supernatant
491 (bottom). Notation "Cn" correspond to the fatty acid chain length of the variant of surfactin and
492 iturin associated to each peak. Y-axes of the chromatograms of the 3 conditions are linked for iturin
493 and surfactin.

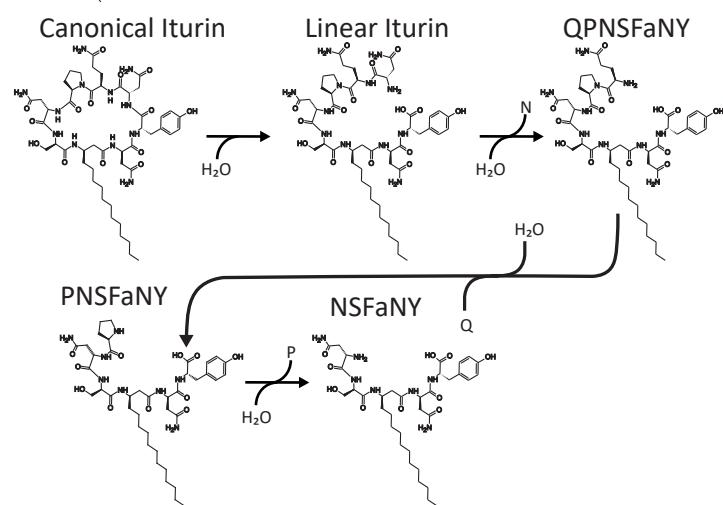
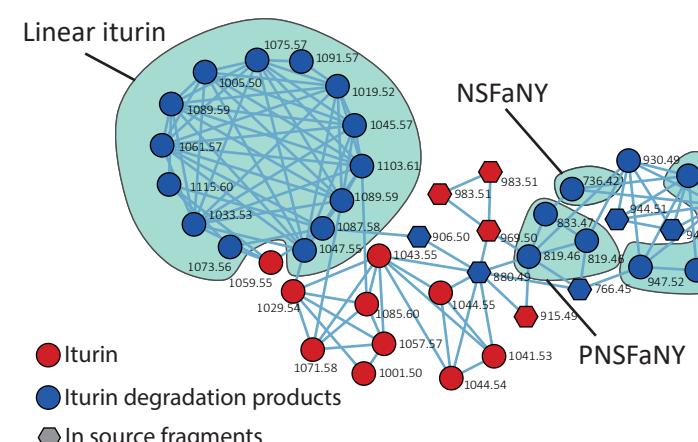
494 **Supp. fig. 12. Degraded iturin losses its inhibitory activity against fungal and bacterial
495 phytopathogens.** Optical density of *B. cinerea* and *F. lactuca* liquid cultures supplemented with
496 canonical or degraded iturin. Graphs show the mean optical density (OD) and \pm SD calculated for 6
497 biological replicates (n=6). OD was measured on 96 wells microplates inoculated with 10^6 spores/ml
498 and grown for 96 and 48h for *Botrytis* and *Fusarium* respectively. Ctrl correspond to fungal culture

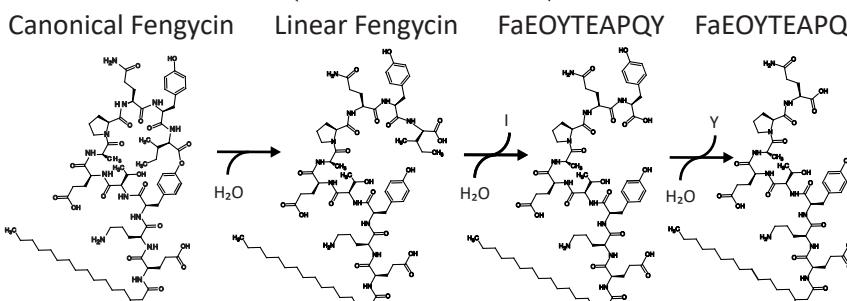
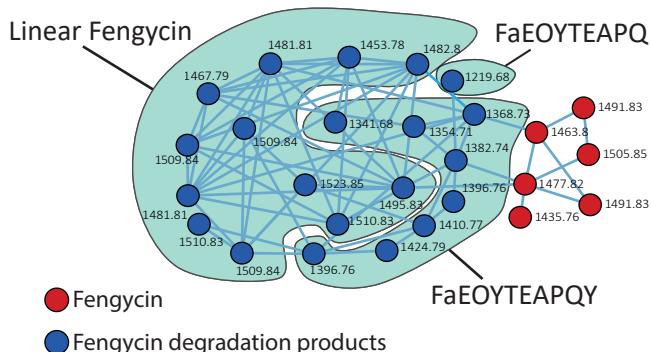

499 without (linear) iturin supplementation. Statistical comparison between control and supplemented
500 with CLPs was performed based on T-test (ns: not significant, *: p<0.05, **** p<0.0001).

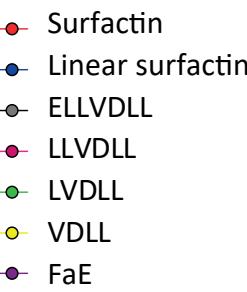
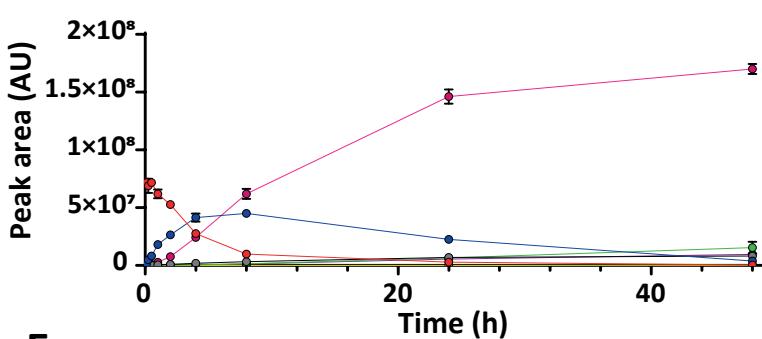
501 **Supp. table 1. Stains used in this study**

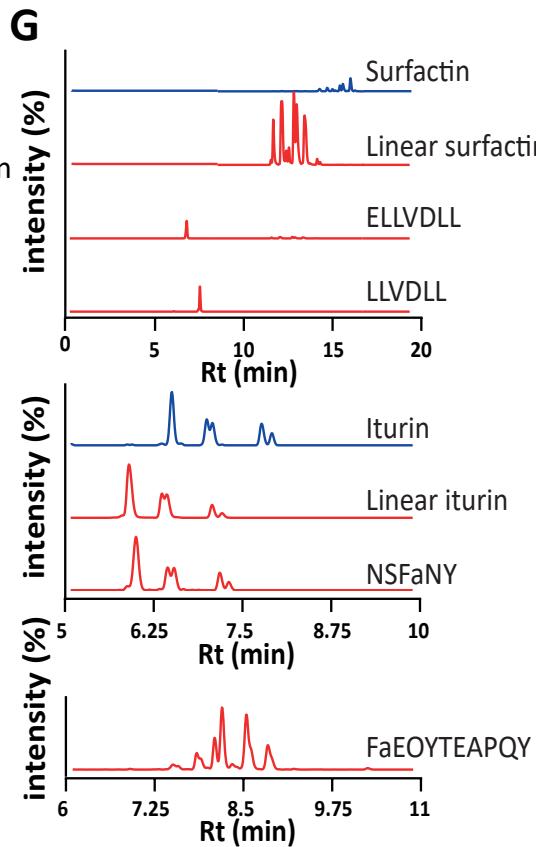
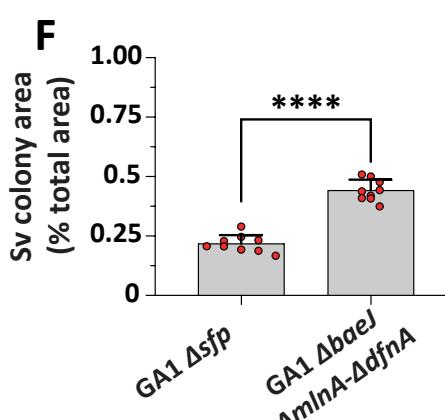
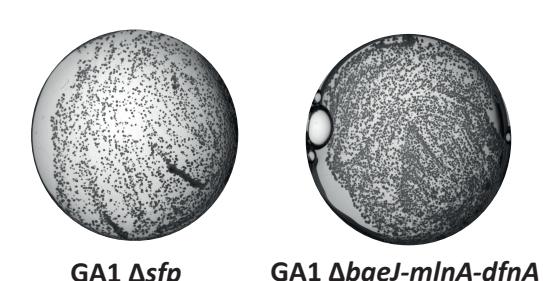


502 **Supp. table 2. MZmine parameters used for FBMN**

503 **Supp. table 3. Secreted proteins found only in active Sv CFS with function possibly related to CLP
504 catabolism.**



505 **Supp. table 4. Features identified in Fig. 1 a,b,c.**



A



B




6

D

E

