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Abstract

Contemplative neuroscience has increasingly explored meditation using neuroimaging. How-
ever, the brain mechanisms underlying meditation remain elusive. Here, we implemented a
causal mechanistic framework to explore the spatiotemporal dynamics of expert meditators
during meditation and rest. We first applied a model-free approach by defining a probabilistic
metastable substate (PMS) space for each state, consisting of different probabilities of occur-
rence from a repertoire of dynamic patterns. Different brain signatures were mainly found
in the triple-network model (i.e., the executive control, salience, and default-mode networks).
Moreover, we implemented a model-based approach by adjusting the PMS of the resting state
to a whole-brain model, which enabled us to explore in silico perturbations to transition to
the meditation state. Consequently, we assessed the sensitivity of different brain areas re-
garding their perturbability and their mechanistic local-global effects. Using a synchronous
protocol, we successfully transitioned from the resting state to the meditative state by shifting
areas mainly from the somatomotor and dorsal attention networks. Overall, our work reveals
distinct whole-brain dynamics in meditation compared to rest, and how the meditation state
can be induced with localized artificial perturbations. It motivates future work regarding

meditation as a practice in health and as a potential therapy for brain disorders.

Keywords: meditation, fMRI, brain states, whole-brain modeling, stimulation


https://doi.org/10.1101/2023.07.27.550828
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.27.550828; this version posted July 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Introduction

If we transform our way of perceiving things, then we transform the quality of our lives. This kind

of transformation is brought about by the form of mind training known as meditation.

Matthieu Ricard (Ricard and Wolf] [2017)

Meditation encompasses a wide range of mental training techniques that allow to explore one’s

inner self and relation with the outer world (Kabat-Zinn| 2005; [Hanh|[1991)). It has roots in different

cultures and religions, with its origin dating back to ancient Hindu and Buddhist spiritual traditions

in India (Sharma) [2015; |Wynne, 2009; Dumoulinl |1988]). The different practices of meditation (e.g.,

attentional, open monitoring, loving kindness) have a variety of positive effects, including present-
moment awareness and observation of experience with openness, acceptance, and non-attachment

(Dahl et al., 2015; Ricard et al.,|2014; Lutz et al. 2009; |[Kabat-Zinn| 2003). They can also promote

stress reduction, well-being, social connectedness, self-awareness, and attention and emotional
regulation (Basso et al.l 2019} |(Champion et al., 2018; [Pascoe et al., [2017; |Guendelman et al} 2017}
Tang et all [2015; [Marchand, [2012} |Ludwig and Kabat-Zinn, |2008; |Valentine and Sweet}, 2007).

Over the past years, meditation is increasingly being explored as an intervention to enhance
well-being and alleviate suffering in the healthy general population, as well as to prevent and re-

cover from disability and disease (Dahl et al., 2015; Ludwig and Kabat-Zinn, 2008). The field

of contemplative neuroscience, in particular, uses neuroscience tools - e.g., functional magnetic

resonance imaging (fMRI) - to study the effects of meditation (Davidson Rl 2013} [Varela), [1993)).

Neuroanatomical studies have investigated structural gray matter thickness in meditators relative

to controls, finding structural evidence such as the thickening of the prefrontal cortex with expe-

rience in long-term meditation practice (Lazar et al., [2005). Moreover, functional brain imaging

studies have largely shown that key brain areas relevant to meditation belong to the default mode

network (DMN), the salience network and the control network (Ganesan et al.l [2022; [Sezer et al.|

12022; [Fox et al., |2016; Hasenkamp et al., |2012). Interestingly, these resting-state networks belong
to the triple-network model hypothesis . Different static and seed-based approaches
have analyzed blood oxygen level-dependent (BOLD) signal activity and network connectivity
changes of meditation in health (Vishnubhotla et al., 2021; Martinez et all 2021}; [Kyeong et al.,
|2017; |Garrison et al., 2014} Ives-Deliperi et al.l 2013; Pagnoni| 2012} Kilpatrick et al., [2011)) and
brain disorders (Li et al.| 2022} Datko et al., 2022; [Lifshitz et al., |2019; |Goldin et al.| [2009). Fur-

thermore, theoretical methods have considered the underlying brain dynamics (Mooneyham et al.l

2017; Bremer et al., 2022; Martinez et al., 2021; Lim et al., 2018; |Marusak et al., 2018), including

whole-brain approaches such as turbulent dynamics (Escrichs et al., [2022), dynamical complexity

(Escrichs et all 2019) and structural and effective connectivity (De Filippi et al., [2022)). Whole-

brain dynamics analysis and computational modeling can shed light on the mechanisms underlying

meditation practices (Tang et al [2015). Nonetheless, they remain largely unexplored.

The elegant awakening framework proposed by [Deco et al.| (2019) has been robust and helpful in

elucidating the underlying causal mechanisms and brain transitions in different brain states towards
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control regimes (Escrichs et al., 2023; Vohryzek et al., 2022; Mana et al.,|2023; Deco et al. [2019).

It consists of a model-free approach, Leading Eigenvector Dynamics Analysis (LEiDA) (Cabral
2017)), and a model-based approach, consisting of Hopf whole-brain computational models
and off-line in silico perturbations. Brain dynamics are studied with reference to the concept of

metastability, which corresponds to the ability of a system to maintain equilibrium regardless of

slight perturbations (Freyer et al.| [2012; [Kelso, [2012)). LEiDA framework, in particular, typifies a

brain state with its probabilistic metastable substate (PMS) space (Escrichs et al., 2021; Kringel-|
bach and Deco, |2020; Figueroa et al., 2019; |Lord et al.,2019; Deco et al.,[2019; |Cabral et al., 2017)

Each PMS corresponds to a discrete repertoire of metastable substates (i.e., dynamic patterns) at

critical points between chaos and order (Cabral et al., [2017; Deco et all [2017b)), in which substate

duration and arrangement is a dynamic signature of a particular brain state (e.g., sleep, anesthe-
sia) (Deco and Kringelbach, 2016; Tognoli and Kelso, 2014). By building a whole-brain model
composed of a network of coupled local nodes (Botvinik-Nezer et al., 2020; Deco et al.| 2019)), the

empirical PMS can be simulated which then allows to force a transition to a desired control state

with in silico external stimulation. Hence, whole-brain reactivity and its causal underpinnings can

be studied by stimulating one brain area at a time (Kringelbach and Deco, [2020; [Breakspear, 2017}
Deco et al., [2015; Deco and Kringelbach), [2014]).

Using the framework outlined above, we investigated the underlying causal mechanisms of
brain activity of expert meditators during a meditation focused on breath (i.e., Anapanasati in
Pali language) and resting-state. As a first step, we applied LEiDA to define the PMS of meditation
and rest. As a second step, we developed a Hopf whole-brain model based on the empirical PMS
of resting-state at the bifurcation point, where oscillatory and noisy regimes are undifferentiated,
and the system is critical. Lastly, we applied off-line in silico external unilateral and localized
probing to force the transition from the resting-state PMS to the meditation PMS. Thus, we could
evaluate local brain areas in terms of their sensitivity to stimulation and their mechanistic global
effects after perturbation. Overall, our work contributes to the state-of-the-art of contemplative
neuroscience, as we try to understand brain mechanisms during meditation and resting-state in

expert meditators. Furthermore, it motivates current and potential future therapies based on

meditation (Ludwig and Kabat-Zinn, 2008; |Grossman et al., 2004). This way, benefit actual and

future practices for the healthy population and brain disorders.

Materials and Methods

Participants

This study selected 20 experienced meditators and 20 healthy controls from a dataset previ-

ously described in Escrichs et al|(2019). The meditator group consisted of 13 males and 7 females

(mean age=39.8 years (SD=10.29); education=13.6 years; and meditation experience=9,526.9
hours (SD=8,619.8). Meditators were recruited from Vipassana communities in Barcelona, Catalo-
nia, Spain, and had more than 1,000 hours of meditation experience with a daily practice of over

one hour. The healthy control group consisted of 13 males and 7 females with no prior meditation
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experience (mean age= 39.75 years (SD=10.13); education=13.8 years). Both groups were well-
matched for age, gender, and educational level and reported no history of neurological disorder.
All participants provided written informed consent, and the study was approved by the Ethics

Committee of the Bellvitge University Hospital in accordance with the Helsinki Declaration.

MRI Data Acquisition

Magnetic resonance imaging (MRI) scans were performed on a 3T (Siemens TRIO) scanner
using a 32-channel receiver coil. High-resolution T1-weighted images were acquired with 208 con-
tiguous sagittal slices, with the following parameters: repetition time (TR) 1970 ms, echo time
(TE) 2.34 ms, inversion time (IT) 1050 ms, flip angle 9°, field of view (FOV) 256 mm, and isotropic
voxel size 1 mm. Resting-state and meditation functional MRI (fMRI) scans were obtained using a
single-shot gradient-echo echo-planar imaging (EPI) sequence, comprising a total of 450 volumes,
with TR 2000 ms, TE 29 ms, FOV 240 mm, in-plane resolution 3 mm, 32 transversal slices, thick-
ness 4 mm, and a flip angle of 80°. Diffusion-weighted imaging (DWI) data were collected using
a dual spin-echo diffusion tensor imaging (DTI) sequence, comprising 60 contiguous axial slices,
with TE 92 ms, FOV 236 mm, isotropic voxel size 2 mm, no gap, and matrix sizes 118 x 118.
Diffusion was measured with 64 optimal non-collinear diffusion directions using a single b value of
1,500 s/mm?2 interleaved with 9 non-diffusion b0 images, with a frequency-selective fat saturation

pulse applied to avoid artifacts.

Experimental conditions

During rest, participants were instructed not to think about anything in particular. During
meditation, participants had to focus on their natural breathing and come back to it whenever the
mind wandered. Participants were asked to remain still and move as little as possible inside the
scanner. Consistent with previous methodologies in meditation neuroimaging studies (Braboszcz
et al., 2017; [Ives-Deliperi et al.| [2011} Manna et al., [2010; Davanger et al.l |2010), we excluded the
first and last volumes of the fMRI conditions in the final contrast analyses to ensure that the initial
and final stages of the acquisition did not influence the physiological measures collected during the
meditation and resting-state periods. These excluded periods, comprising the first and last 110
timepoints, served as a build-up period for the meditation practice, as the effects of meditation
have been observed to accumulate slowly over time. This approach was taken to avoid potential

confounding effects that may arise from the initial and final stages of the meditation practice.

Resting-state fMRI preprocessing

Preprocessing was done using MELODIC version 3.14 (Beckmann and Smith| 2004), which is
part of FMRIB’s Software Library (FSL, http://fsl.fmrib.ox.ac.uk/fsl). First, the initial 5
volumes were discarded, followed by motion correction using MCFLIRT (Jenkinson et al., |2002),
non-brain removal using BET (Brain Extraction Tool) (Smith| 2002), spatial smoothing with
5 mm FWHM Gaussian Kernel, rigid-body registration, high pass filter cutoff = 100.0s, and

single-session ICA with automatic dimensionality estimation. Noise removal was performed using


http://fsl.fmrib.ox.ac.uk/fsl
https://doi.org/10.1101/2023.07.27.550828
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.27.550828; this version posted July 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

FIX (FMRIB’s ICA-based X-noiseifier) (Griffanti et al., 2014)), which independently removes noise

components for each participant. FSLeyes in Melodic mode was used to manually classify the single-
subject Independent Components (ICs) into “good” for signal, “bad” for noise, and “unknown”
for ambiguous components, based on the spatial map, the time series, and the temporal power

spectrum (Griffanti et al., 2017} |Salimi-Khorshidi et al., [2014)). Finally, FIX was applied using the

default parameters to obtain a cleaned version of the functional data.

We then used FSL tools to extract the timeseries in native EPI space between 100 cortical
(Schaefer et all) 2018) and 16 subcortical brain nodes (Tian et al) [2020). Specifically, we co-
registered the cleaned functional data to the T1-weighted structural image using FLIRT

land Smith| 2001)). The T1-weighted image was then co-registered to the standard MNI space using
FLIRT (12 DOF) and FNIRT (Andersson et al., 2007; |Jenkinson and Smith, [2001). The resulting

transformations were concatenated, inversed, and applied to warp the resting-state atlas from MNI
space to the cleaned functional data in native space, preserving the labels with a nearest-neighbor
interpolation method. Finally, we used custom-made Matlab scripts to extract the averaged time

series using fslmaths and fslmeants.

Probabilistic Tractography preprocessing

For each participant, a whole-brain structural connectivity matrix (SC) was computed using the

atlas described above following the steps of previous studies (Muthuraman et al.,|2016; |Cao et al.|
[2013} |[Gong et all [2009). The analysis was conducted using FMRIB’s Diffusion Toolbox (FDT)
in FMRIB’s Software Library (FSL). First, the DICOM images were converted into Neuroimaging

Informatics Technology Initiative (NIfTI) format using dem2nii. The b0 image in native space

was then co-registered to the T1-weighted image using FLIRT (Jenkinson and Smith| [2001)). The

co-registered T1 image was then co-registered to the standard space using FLIRT and FNIRT

(Andersson et al., [2007; Jenkinson and Smith) 2001). The resulting transformation was inverted

and applied to warp the atlas from the MNI space to the native MRI diffusion space using nearest-
neighbor interpolation. Next, the diffusion-weighted images were processed using the FDT pipeline
in FSL. Non-brain tissues were removed using the Brain Extraction Tool (BET) . The
eddy current distortions and head motion were corrected using the eddy_correct tool
land Sotiropoulos} 2016]), and the gradient matrix was reoriented to correct for motion
. To model crossing fibers, BEDPOSTX was used, and the probability of multi-fibre
orientations was computed to improve the sensitivity of non-dominant fibre populations

let al., 2007, [2003). Probabilistic Tractography was then performed for each participant in their
native MRI diffusion space using the default settings of PROBTRACKX (Behrens et al. 2007,

2003). Finally, the connectivity probability SC,,, between nodes n and p were calculated as the
proportion of sampled fibres in all voxels in node n that reach any voxel in node p. Since diffusion
tensor imaging (DTI) does not capture fiber directionality, the SC,,, matrix was symmetrized by

computing its transpose matrix SCp, and averaging both matrices.
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Leading Eigenvector Dynamics Analysis (LEiDA)

The first step was to define the empirical brain states of resting-state and meditation from
a quantitative point of view, by using the LEiDA method (Cabral et al. |2017)). As outlined in
Figure , in each parcellated brain area the blood oxygenation level-dependent (BOLD) time
series were filtered (0.04-0.07 Hz) and Hilbert-transformed. For all participants in resting-state and
meditation, at each repetition time (TR), a BOLD phase coherence matrix - dynamical functional
connectivity dFC(t) - was calculated between each brain area pair n and p. This was done by

calculating the cosine of the phase difference:

dFC(n,p,t) = cos (6(n,t) — 6(p,t)). (1)

When a pair of nodes are temporarily aligned, the phase coherence is close to one since the
difference between their Hilbert transformed signal angle is 0° [cos(0°)=1]. Contrarily, orthogonal
BOLD signals have a phase coherence close to zero [cos(90°)=0]. The resulting dFC(¢) of each
participant represented the interregional BOLD synchrony at each timepoint. The size of the
matrix was NxNxT, where N is the number of brain areas (116) and T the total time points (220).
A total of 880 (20 participants * 220 timepoints) matrices were calculated. A dominant connectivity
pattern (dimension NxN) was obtained by reducing the dimensionality of the undirected and
symmetric matrices into their leading eigenvectors Vi (t) (dimension Nx1) (Deco et al. [2019).
The eigenvectors capture the dominant connectivity pattern at each time point ¢, representing
the contribution of each brain area to the whole structure (Cabral et al., [2017). It is possible
to reproduce the dominant connectivity pattern of dFC(¢) by calculating the outer product of
Vi (t) and its transpose (V1.V1.T) (Lohmann et al. |2010). The leading eigenvectors dFC(t) for
each TR and all participants from all states were then clustered with K-means clustering, varying
k from 3 to 8. The resulting cloud centroids V.(t), which represent the dominant connectivity
pattern in each cluster, were rendered onto a brain map using the Surf Ice software (https:
//www.nitrc.org/projects/surfice/).

Lastly, we computed the Probabilistic Metastable Substate Space (PMS), which expresses the
probability of being in each metastable substate from the substate repertoire. Specifically, the
ratio of number of epochs (TRs) in a cluster divided by the total number of epochs in all clusters

was computed separately for resting-state and meditation.

Whole-Brain Computational Model

A whole-brain computational model was built for resting-state using the normal form of su-
percritical Hopf bifurcation. This Landau-Stuart oscillator, referred to as Hopf, has been used to
study transitions from noisy to oscillatory regimes (Deco et al., 2015 (Figure ) Emergent
brain dynamics were simulated by linking the structural and functional connectivity using effective
connectivity (Deco et al., 2015). For each of the 100 cortical and 16 subcortical brain areas (Tian
et al., |2020; |[Schaefer et all 2018), BOLD activity was emulated and the working point was fitted

and optimized with specific parameters of the model (Deco et al., [2019).
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The following pair of coupled equations can be used to represent an uncoupled node n in

Cartesian coordinates:

dz,,
dt = [an — w%z - yi]xn — WnYn + B1a(t), @)
2

ddi: = [an — 25, = Yplyn + wny + Bin(t),
where x,, represents the BOLD signal, 7,,(¢) corresponds to the additive Gaussian noise, 8 = 0.01
to the standard deviation of the additive Gaussian noise, and f,, = w,, /27 is the frequency of the
system. This frequency was estimated by averaging the empirically filtered BOLD signals in the
0.04- to 0.07-Hz band for each brain node n=1,..., 116 (Deco et al., 2019). The parameter a=0
indicates the bifurcation point between noise and oscillations. The noise regime is found in a<0,
whereas synchronous oscillations in a>0 at a firing frequency of w/2r (Deco et al., [2017a)). A value
of a,=-0.02 for each brain node n was selected based on previous findings (Deco et al., [2017b)).
Furthermore, a global coupling weight G' and an additive coupling term C,, were included.

The whole-brain dynamics at each node n were defined as:

N
dz,,
dt = [an - ZE% - yi]f‘cn — WnYn + GZ Onp(xp - xn) + B’r]n(t)a
p=
0 v (3)
ditn = lan — 25, = Ynlyn + wpzn + G Z Cop(Yp — Yn) + B (1),
p=1

where the global coupling weight G represents the strength between all nodes (i.e., axonal con-
ductivity) and scales all of the connections equally. The additive coupling term C,,, is built upon
the SC and represents the input to node n from each of the rest of the nodes p (i.e., myelination

density). It is a weighted matrix since it assumes different densities for each node.

Model Fitting: Comparing empirical and simulated probability metastable space

states

The global coupling weight G was ranged from 0 to 0.5 in steps of 0.01 and the model run 200
iterations for each value of G. In order to obtain the simulated PMS space, LEiDA was computed
on the Hilbert transformed simulated signal based on the centroids already defined in the empirical
analysis. Maximal model fit was obtained for the value of G that resulted in a maximal similarity
between the modelled PMS at resting-state and the empirical PMS at resting-state, corresponding
to their lowest Kullback-Leibler (KL) distance (Deco et al. 2019). This metric is given by:

emp (1)

KL (Popmp, Psim) = 0.5 (Z Pemp (i) In (M) + Z Pyim (i) In (}W)) . @

where for each brain metastable substate 4, Pe,,;(7) are the empirical probabilities and Pg;, (4) the

simulated probabilities.
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Model Optimization: Method for updating Effective Connectivity

For each value of G, the SC was updated to address potential connections that were missing.
The initial value of C' corresponded to the average of the empirical DTI structural connectivity
of all participants normalized to 0.2 (Deco et al. 2019, 2017b, 2015). The distance between

hases_mod
(@)
)

the grand average phase coherence matrices of the model F and the empirical matrices

F C’fjhases’emp was calculated iteratively and the SC was transformed to effective connectivity (EC).

A gradient descent approach adjusted each structural connection between each pair of nodes i and

g

Ci;=Cij+e (Fog’msesfemp _ chhases,mod> | 5

in which € = 0.01, and the grand average phase coherence matrices is given by:

FCij = (cos (95(1) — ilt)) ). (6)

The Hilbert transform BOLD signal phase of nodes j and ¢ at time ¢ is expressed by ¢(t) and
the brackets indicate the average across time. Each time, the empirical and simulated values were

compared until the difference was less than 0.001(Deco et al., |2019).

Unilateral Perturbation of the Whole-Brain Model

Transitions from resting-state towards the target meditative state were evaluated as schematized
in Figure[Ip. The whole-brain model for the resting-state condition was perturbed unilaterally by
moving individually and separately the local bifurcation parameter a of each of the 116 brain areas.
A measure of the fit to the target state (empirical meditation) was evaluated by computing the KL
distance between the perturbed modelled resting-state PMS and the target empirical meditation
PMS. Areas with the lowest KL distance were predicted to promote transitions after simulation.
There were two different protocols studied, synchronization and noise. As for the synchronization
protocol, the bifurcation parameter was shifted from 0 to 0.2 in steps of 0.01; as for the noise
protocol, it was shifted from 0 to -0.2 in steps of -0.01. Stimulation intensities are represented by
the absolute value of each step (Deco et al., 2017b)). In order to minimize random effects from the

Gaussian noise of the model, each simulation was repeated 3 times (Deco et al., [2019)).

Statistical Analysis

The statistical analysis were performed using MATLAB R2022a from MathWorks (Natick, MA,
USA). To test the results of the PMS obtained by LEiDA, Wilcoxon tests with 1000 iterations were
used to examine the probability of occurrence of all explored clustering conditions (k from 3 to
8). Permutations were compared using the Wilcoxon test with a significance threshold of 0.05.
Multiple comparisons were corrected with the False Discovery Rate (FDR) method (Hochberg
and Benjamini, 1990) when testing the differences between resting-state and meditation for all
metastable substates in each value of k. The reported P-values remain significant after FDR

correction.


https://doi.org/10.1101/2023.07.27.550828
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.27.550828; this version posted July 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Results

LEiDA

The most accurate description of the empirical data across participants corresponded to a value
of cluster centers £=5. This amount of clusters was the minimum number of k£ that provided a
maximal proportion of statistically significant differences between resting-state and meditation,
surviving correction by multiple comparisons. We illustrate the probability of occurrence of the
PMS of resting-state and meditation in Figure [2a. In addition, we rendered cluster centroid
eigenvectors onto the brain maps in Figure [2b. The sign of eigenvector elements are positive or
negative and indicated by red and blue colors, respectively. The signs represent the direction that
the BOLD signals from different elements follow in relation to their projection onto the leading
eigenvector. Hence, classifying elements into communities in which color strength reflects how
strongly each area is associated with its community (Alonso Martinez et al. 2020} |Cabral et al.
2017). In the first metastable substate, all eigenvector elements had the same sign. On the other
hand, substate 2 showed a functional network dominated mainly by the somatomotor and salience
networks, and the putamen. Additionally, substate 3 displayed a community comprised mostly of
the DMN and a few areas from the limbic system, whereas substate 4 showed coordination primarily
between the control network and the DMN. Lastly, substate 5 had a network principally led by the
visual system and some areas of the somatomotor and dorsal attention networks. The probability
of occurrence of meditation compared to resting-state was significantly higher in substate 4 [0.169
+ 0.021 vs. 0.111 4+ 0.019, P=0.019], and lower in substate 2 [0.117 &+ 0.015 vs. 0.202 £ 0.023,
P=0.008] and substate 3 [0.121 £ 0.015 vs. 0.188 + 0.023, P=0.025].

Whole-brain computational model for resting-state

We fitted and optimized a whole-brain model for resting-state in order to find the parameters
that maximally approximated its empirical PMS, corresponding to the minimal KL distance be-
tween the simulated and the empirical PMS. The best fit was found at a global coupling of G=0.03
with a KL distance of 0.008 (Figure [3). The similar probabilities of occurrence for all of the five
substates are shown in Figure [3]b.

In silico stimulations to force transitions from resting-state to meditation

In the last step of the analysis, we systematically perturbed the model of resting-state and
compared the resulting perturbed PMS with the empirical PMS of meditation. For the synchronous
protocol, we shifted the bifurcation parameter a independently in each brain area, with positive
values. Contrarily, for the noise protocol, we used negative values. We identified the optimal
perturbation as the one resulting in the smallest KL distance between the perturbed modelled
source PMS (resting-state) and the target empirical PMS (meditation).

Results for perturbing the whole-brain model of resting-state in the synchronization and noise
protocols at different stimulation intensities are illustrated in Figures and [dpb, respectively.

The color-scale indicates the KL distances between the empirical and the perturbed PMS after
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stimulating each brain area separately. The noise protocol was not successful in transitioning from
resting-state to meditation. In contrast, in the synchronization protocol, KL distances decreased
with increasing positive bifurcation point values a. The lowest KL distances for the maximal
number of brain areas were given at a perturbation value of a=0.14. At this stimulation intensity,
the most sensitive areas belonged mainly to somatomotor and dorsal attention networks, and fewer
areas of the salience, visual and default-mode networks. For values of ¢>0.14, the system drifted
again away from the target meditative state.

The best transition for each brain area was obtained at the stimulation intensity which pro-
vided the minimum KL distance between the perturbed PMS and the target PMS, illustrated in
Figure [Bp. The minimum KL distance for the optimal perturbation of each brain area is ren-
dered into the brain maps of Figure [Bb. The top 10 areas to perturb, at their particular optimal
stimulation intensity in the synchronization protocol, belonged to the somatomotor network and
dorsal attentional network. We achieved the best fit when perturbing the right somatomotor cortex
(RH Som 6 from the Schaeffer 100 parcellation (Schaefer et al., [2018)) at an intensity of a=0.14.
Consequently, the perturbed and target PMS were very similar, as reflected in Figure [Bk.

Discussion

We successfully studied brain dynamics using model-free and model-based approaches (Deco
et al.;|2017b) to find causal mechanisms explanations for meditation in a group of expert meditators.
LEiDA allowed us to characterize brain signatures of meditation and resting-state by defining their
PMS, with an associated probability of occurrence of being in distinct metastable substate (i.e.,
dynamic pattern) (Cabral et al.,[2017). Interestingly, we found brain dynamics differences between
resting-state and meditation in areas that overlap with the triple-network model (Menon |2011)).
Then, we fitted a Hopf model to the empirical PMS of resting-state. Consequently, this allowed us
to force a transition from the PMS of the resting-state model to the PMS of the target meditation
using off-line in silico unilateral perturbations. By varying stimulation intensities and protocols,
we were able to determine the mechanistic global effects of exhaustive local perturbations. This
way, we revealed how local changes in resting-state can alter whole-brain dynamics and evaluated
the optimal transition towards a meditative state. Using a synchronization protocol, we could
transition from the resting state to the meditative state. The most sensitive brain regions were
located in somatomotor and dorsal attention networks.

In the model-free approach, we used LEiDA to reveal signatures of interacting brain networks
for meditation and resting-state (Figure . During meditation, compared to the resting state, we
found a significantly lower probability of occurrence in substates 2 and 3, and a significantly higher
probability in substate 4. Firstly, we found that substate 2 exhibited a functional network predom-
inated by the somatomotor network, the salience network and the putamen. The somatomotor
network is responsible for processing bodily sensations and executing reactions (ten Donkelaar
et al., 2020)), and it has been shown that its activity decreases in meditation (Jerath et al., |2012]).
Additionally, the salience network monitors reaction to external information, switching between

internal and external processing to external stimuli, and processing of pain, emotion, reward and
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motivation (Goulden et al., 2014} [Elton and Gaol 2014). A reduction in functional connectivity

within the salience network has been associated with experiential acceptance and present-moment

awareness (Sezer et all] [2022)). Interestingly, |Guidotti et al. (2023)) used a trained classifier reveal-

ing that this network was able to discriminate meditation style in an expert group, highlighting its

crucial role in specific meditation techniques. Lastly, the putamen, involved in motor control and

learning (Vinas-Guasch and Wul, [2017)), has been related to the attentional disengagement from

irrelevant information during meditation in expert meditators [Sperduti et al.| (2011). With regards

to substate 3, we found it displayed a community led majorly by the DMN and some areas of

the limbic system. Our result aligns with previous studies reporting a reduction in DMN activity

during meditation |Ganesan et al| (2023)); |Garrison et al.| (2015, which could be associated with

the phenomenological well-being of meditation (Brandmeyer and Delorme, [2021} Killingsworth and|
2010)). On the other hand, we revealed that substate 4 presented a coordination mainly

between the central executive network and the DMN. The central executive network is associ-
ated with executive functions (i.e., attention, cognitive control and working memory) (Niendam

2012), whereas the DMN is involved in internal thought, self-related processing and mind-

wandering (Alves et al., 2019, [Mason et al) [2007). Their interaction, therefore, is necessary for

balancing self-referential and external stimuli processing (Chen et all 2013). Bauer et al. (2019))

reported increased connectivity between areas of the DMN and frontoparietal network in medi-

tators during a practice suggesting a top-down regulation from the CEN to the DMN in order

to suppress distraction and direct the focus of attention. Furthermore, Kajimura et al.| (2020)

reported the integration of the frontoparietal network into the DMN in a single naive participant
after 65 days of meditation, explained by the inhibition of the DMN during a focus task which
increases concentration and emotion regulation.

Interestingly, we found an overlap between some leading networks in the metastable substates
revealed in LEiDA and the networks from the triple-network model: the DMN, the salience and
the central executive network . This model identifies the salience and central execu-
tive network as task-positive networks and the DMN as a mind-wandering network. A modulator
role is given to the salience network, responsible for evaluating sensory inputs and switching the
activations of the central executive network and the DMN when in an attentional goal-oriented

state or at rest, respectively. The relevance of self-referential and attentional network in medita-

tion studies has been highlighted by several research groups (Bremer et al. 2022} [Vishnubhotlal
let all 2021} [Lim et all 2018} [Gotink et all, 2016} Berkovich-Ohana et all [2012)). An interesting

study conducted by Hasenkamp et al. (2012) evaluated breath-focused meditation in experienced

meditators, which had to press a button when they noticed focus was lost (i.e., mind-wandering).
This way, researchers identified a cognitive cycle of four stages and fMRI activation patterns: 1)
loss of focused attention was associated with DMN activation, 2) awareness of mind-wandering co-
existed with salience network activation, 3) shift of attention from mind-wandering and redirection
of attention back to the breath happened when the central executive network activity increased,
and lastly, 4) a sustained attention to breath coexisted with activity in the central executive net-
work (in particular the dorsolateral prefrontal cortex). The relevance of this DMN-salience-central

executive network interplay comes from the fact that it is increasingly explored in brain disor-
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ders (e.g., schizophrenia, attention deficit hyperactivity disorder, depression) (Menon, |2011)) and
developmental studies in children (Denervaud et al., |2020; Ryali et al., |2016|). Therefore, regular
practice of meditation could help re-balance the interaction between these networks (Bremer et al.|
2022)) as well as develop cognitive skills related to attention maintenance and disengagement from
distraction (Hasenkamp and Barsaloul 2012} [Hasenkamp et al.| |2012]).

For the model-based approach, we first built a Hopf whole-brain computational model of resting-
state, which allowed us to systematically evaluate in silico stimulations to force a transition to a
meditative state (Deco et al., [2017b]). We obtained the resting-state model by optimizing empirical
functional and structural data and determining a global coupling value of G=0.03, corresponding
to the lowest KL distance between the empirical PMS and the modeled PMS (Figure[3]). We then
explored local perturbations region by region in order to study their dynamical causal whole-brain
effects as well as the possibility of shifting the system from resting-state to a meditative state. We
could transition successfully from resting-state to meditation with a synchronous regime, led by
oscillations, and not in a noisy protocol (Figure . Furthermore, we approached the meditative
target state with increasing positive stimulation intensities, reaching an optimal transition at a
bifurcation point of a=0.14, and then drifted away. Our results show relevant areas most sensitive
to perturb were found in the somatomotor and dorsal attentional networks (Figure [5). The im-
portance of the former comes from the fact that during meditation body awareness processing is
altered (Tang et al.l 2015) and attention has to be oriented to the target stimulus - interoceptive
sensation (i.e., breathing) - and disengage from non-target stimuli - distractors (Ganesan et al.
2022; Kabat-Zinn|, 2003)). In particular, our results showed that the most optimal area for pertur-
bation was in right somatomotor cortex (RH Som 6 from the Schaeffer 100 parcellation (Schaefer
et al., |2018])) at a stimulation intensity of a=0.14. Overall, our model-based results provide novel
insights into how local perturbations influence global brain dynamics. We could explore the most
sensitive brain areas in terms of their response to perturbations as a model-based biomarker of the
underlying mechanisms of meditation.

This study has some limitations. Firstly, we analyzed a relatively small sample size dataset.
Therefore, validating our results using a larger dataset would be beneficial (Fox et al.l |2016). In
addition, our analysis focuses on a specific meditation technique which prevents the generalization
of our findings to all styles of meditation. Given the heterogeneity of the practice, we cannot
oversimplify our results to one signature of brain dynamics in meditation (Young et al., 2021} [Fox
and Cahnl [2019). Moreover, our study solely examines state differences between resting-state and
meditation, specifically in expert meditators. In order to study the effects of meditation practice
on brain structure and function over time, longitudinal studies are necessary. As a remark, we want
to emphasize the importance of not oversimplifying the Eastern tradition of meditating to a single
motivation around attention and emotion regulation (Garcia-Campayo et al.,2021)). Additionally,
if used as a therapeutic intervention, it is essential to recognize that meditation is not a cure-all
solution (Wright,, [2013)).

In this work, we revealed the underlying brain mechanisms in a group of expert meditators
during focused attention on breathing. Using the LEiDA model-free approach, we could quantita-

tively define the brain dynamics during meditation and resting-state and found differences in areas
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mainly overlapping the triple-network model (Deco et al., [2019; |(Cabral et al.l [2017). In addition,
the model-based approach allowed us to measure the whole-brain reactivity to localized perturba-
tion at resting-state and study transitions towards meditation. Successful transitions were found
in a synchronization protocol and the most sensitive areas were located in the somatomotor and
dorsal attention networks. Given the paucity of research in meditation with neuroscience tools, our
results shed light on the field of contemplative neuroscience for promoting meditation practices in
health and a potential therapy in disease (Ludwig and Kabat-Zinn| 2008; |Grossman et al., [2004)).
Our findings could open future investigations in meditation research and other non-ordinary states

of consciousness.
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a Model-Free Approach: Leading Eigenvector Dynamics Analysis
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Figure 1: Methodology for model-free and model-based approaches. a Model-free framework: Leading
Eigenvector Dynamic Analysis (LEiDA). In each parcellated brain area, the fMRI BOLD signal was band-passed
filtered and Hilbert transformed to obtain the amplitude and phase information. For all participants in meditation
and resting-state, the phase coherence matrix dFC(t) between brain areas was computed at each repetition time.
The dimensionality of each matrix was reduced to its leading eigenvector Vi (t) into positive (red color) and negative
(blue color) values. Afterweards, K-means clustering was applied to the leading eigenvectors and the PMS computed
for both meditation and resting-state. The optimal number of cluster centers was chosen according to the minimum
value of k with the highest proportion of probabilities of occurrence of the metastable substates with significant
difference between meditation and resting-state (k=5). b Model-based framework: whole-brain model. A Hopf
whole-brain computational model was built for resting-state using the empirical frequency w calculated on the
empirical fMRI signal, and fitting the modelled PMS space to the empirical PMS by looking at the global coupling
G that minimized their KL distance. Effective connectivity was used to optimize the model by adjusting the DTI
with a gradient descent approach until convergence. In silico stimulation was applied in each brain node separately
by moving the bifurcation parameter a positively for a synchronization protocol, and negatively for a noise protocol.
Optimal transition was detected for the bifurcation parameter that gave the minimum KL distance between the

perturbed modelled PMS of resting-state, and the empirical PMS of meditation.
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Figure 2: a Empirical Probabilistic Metastable Substate (PMS) Space. Mean probability of occurrence of resting-
state and meditation in each metastable substate. Differences were computed with a 95% confidence interval and
significance is represented with asterisks (* p < 0.05, ** p < 0.01 and *** p < 0.001). Substates 1, 3 and 4 had
a higher probability of occurrence during meditation compared to resting-state. Substates 2 and 3 presented the
opposite behavior. b Cluster centroids V. (t) rendered onto brain maps, representing leading eigenvectors. Substate
1 had all eigenvector elements with the same sign. Substate 2 was characterized with an interaction mostly between
the somatomotor network, salience network, and the putamen. Substate 3 presented a functional network dominated
by the DMN and areas from the limbic system. Substate 4 had community formed mainly by the control network
and the DMN. Substate 5 showed positive values mostly in areas from the visual system, and also the somatomotor

network and dorsal attention network.

a b
0.40 T T T ;
Best fit 00 Rest Empirical
KLD=0.008 ) [0 Rest Simulated

m ’ o B

g 5

T —

3 5 035

v v

> 8

8 020 S

g 2

L = 0.20

5 2

I~ r o

* °

o
0.05 ﬂ
%90 00 o 02 ‘ 0. 0 °
. : . 03 4 5 © e .
‘0("3 ‘09“3 ‘0‘7 o \05
Global Coupling (G) By oV BN \>‘°

Figure 3: Model-based results: Whole-brain model a Optimal fit and optimization for resting-state model at

a global coupling weight G of 0.03. b Empirical and simulated PMS for resting-state in G=0.03.
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Figure 4: Model-based results: In silico stimulation. We stimulated one brain area at a time to study whole-

brain effects and evaluate a possible transition from resting-state to meditation. The local bifurcation parameter a
was shifted independently for each node. The x-axis represents stimulation intensities and the color scale shows the
KL distance between the perturbed PMS and the target PMS. a In the synchronization protocol, the system moved
closer to the meditation state for positive values of a with an optimal transition in a=0.14 for most of the areas.
The best fit was obtained when perturbing the RH Som 6. For values higher than ¢>0.14 the system drifted away.
b In the noise protocol, the KL distance between the perturbed modelled PMS of resting-state and the empirical

PMS of meditation, never decreased for increasing negative values of a.
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Figure 5: Optimal perturbational results. a Best fit for forcing transition from resting-state to meditation.
Optimal perturbation for each brain (x-axis) area in the synchronization protocol, found at the stimulation intensity
(right y-axis) which gives the minimum KL between the modelled PMS of resting-state after perturbation, and the
empirical PMS of meditation (left y-axis). Optimal fit was found when stimulating the RH Som 6 with an intensity
of a=0.14. b Fit of optimal stimulation for each brain area in the synchronization protocol. Colorcode represents
the KL distance between the perturbed modelled PMS of resting-state and the empirical PMS of meditation. ¢
PMS for simulated resting-state, perturbed resting-state and empirical meditation. When the resting-state model
was perturbed at the RH Som 6 with an intensity of a=0.14, the probabilities of occurrence of substates 1 and 4

increased, whereas for substate 2, 3 and 5 decreased.
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