

Wall teichoic acid substitution with glucose governs phage susceptibility of *Staphylococcus epidermidis*

Christian Beck^{a,b,c}, Janes Krusche^{a,b,c}, Anna Notaro^d, Axel Walter^{a,e}, Lara Kränkel^{a,b,c}, Anneli Vollert^f, Regine Stemmler^{a,b,c}, Johannes Wittmann^g, Martin Schaller^f, Christoph Slavetinsky^{a,b,c,h}, Christoph Mayer^{a,e}, Cristina De Castroⁱ, Andreas Peschel^{a,b,c,†}

^aCluster of Excellence “Controlling Microbes to Fight Infections (CMFI)”, University of Tübingen, Tübingen, Germany

^bInterfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, Tübingen, Germany

^cGerman Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany

^dDepartment of Agricultural Sciences, University of Naples, Naples, Italy

^eInterfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions/Glycobiology, University of Tübingen, Tübingen, Germany

^fElectron-Microscopy, Department of Dermatology, University Hospital Tübingen, Tübingen, Germany

^gLeibniz Institute, DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany

^hPediatric Surgery and Urology, University Children’s Hospital Tübingen, University of Tübingen, Germany

ⁱDepartment of Chemical Sciences, University of Naples, Naples, Italy

[†]Correspondence to Andreas Peschel (andreas.peschel@uni-tuebingen.de)

Abstract: 301 words

Article: 4989 words

1 **Abstract**

2 The species- and clone-specific susceptibility of *Staphylococcus* cells for bacteriophages is governed by
3 the structures and glycosylation patterns of wall teichoic acid (WTA) glycopolymers. The glycocodes of
4 phage-WTA interaction in the opportunistic pathogen *Staphylococcus epidermidis* and in other
5 coagulase-negative staphylococci (CoNS) have remained unknown. We report a new *S. epidermidis*
6 WTA glycosyltransferase TagE whose deletion confers resistance to siphoviruses such as ΦE72 but
7 enables binding of otherwise unbound podoviruses. *S. epidermidis* glycerolphosphate WTA was found
8 to be modified with glucose in a *tagE*-dependent manner. TagE is encoded together with the enzymes
9 PgcA and GtaB providing uridine diphosphate-activated glucose. ΦE72 transduced several other CoNS
10 species encoding TagE homologs suggesting that WTA glycosylation via TagE is a frequent trait among
11 CoNS that permits inter-species horizontal gene transfer. Our study unravels a crucial mechanism of
12 phage-*Staphylococcus* interaction and of horizontal gene transfer and it will help in the design of anti-
13 staphylococcal phage therapies.

14 **Importance**

15 Phages are highly specific for certain bacterial hosts, and some can transduce DNA even across
16 species boundaries. How phages recognize cognate host cells remains incompletely understood.
17 Phages infecting members of the genus *Staphylococcus* bind to wall teichoic acid (WTA)
18 glycopolymers with highly variable structures and glycosylation patterns. How WTA is glycosylated in
19 the opportunistic pathogen *Staphylococcus epidermidis* and in other coagulase-negative
20 *Staphylococcus* (CoNS) species has remained unknown. We describe that *S. epidermidis* glycosylates
21 its WTA backbone with glucose and we identify a cluster of three genes, responsible for glucose
22 activation and transfer to WTA. Their inactivation strongly alters phage susceptibility patterns,
23 yielding resistance to siphoviruses but susceptibility to podoviruses. Many different CoNS species
24 with related glycosylation genes can exchange DNA via siphovirus ΦE72 suggesting that glucose-
25 modified WTA is crucial for interspecies horizontal gene transfer. Our finding will help to develop
26 antibacterial phage therapies and unravel routes of genetic exchange.

27

28 Introduction

29 *Staphylococcus epidermidis* is one of the most abundant colonizers of mammalian skin and of nasal
30 epithelia [1, 2]. Some nosocomial *S. epidermidis* clones also cause invasive infections, in particular
31 biofilm-associated infections on catheters or artificial implants such as hip and knee joints or heart
32 valves [3, 4]. Although *S. epidermidis* is not as aggressive pathogen as *Staphylococcus aureus*,
33 biofilm-associated infections are difficult to treat and cause a high burden of morbidity and costs for
34 health care systems. Many *S. epidermidis* clones are resistant to beta-lactams and other antibiotics
35 such as linezolid, which further complicates the treatment of *S. epidermidis* infections [1].

36 The major invasive *S. epidermidis* clones seem to pursue two different virulence strategies. The MLST
37 type 2 (ST2) strains produce particularly strong biofilms [3, 5]. In contrast, ST10, ST23, and ST87 clones
38 are only weak biofilm formers, but they express an additional surface molecule that alters their host
39 interaction capacities and leads to a shift from commensal to pathogen behavior [6]. Surface
40 properties and host interaction of staphylococci are governed not only by surface proteins but also by
41 cell-wall anchored glycopolymers composed of alditolphosphate repeating units called wall teichoic
42 acids (WTA) [7, 8]. The WTA polymers of *S. epidermidis* and other coagulase-negative *Staphylococcus*
43 (CoNS) species have remained a neglected field of research despite their potentially critical role for
44 host colonization and infection. Most *S. epidermidis* clones seem to express WTA composed of
45 glycerolphosphate (GroP) repeating units [9]. A recent study has shown that ST10, ST23, and ST87
46 strains express an additional *S. aureus*-type WTA composed of ribitolphosphate (RboP) repeating units,
47 which shapes their interaction with human epithelial and endothelial cells [6].

48 WTA is also crucial for binding of virtually all known *Staphylococcus* phages, which use differences in
49 WTA structure to recognize their cognate host species [10]. Phages of the Siphoviridae and podovirus groups
50 often not only discriminate between different WTA backbones but also between different types of
51 backbone glycosylation. Most Firmicutes link D-alanine esters and sugar residues to GroP or RboP
52 repeating units [7, 8]. Variation in glycosylation for instance by N-acetylglucosamine (GlcNAc) in alpha
53 or beta configuration or N-acetylgalactosamine (GalNAc) has been found to govern the susceptibility
54 patterns of *S. aureus* strains for different phages [11-14]. The group of broad-host range myoviruses,
55 however, requires WTA for binding but does not discriminate between RboP and GroP WTA and does
56 not require WTA glycosylation [15-17].

57 WTA-phage interaction is of importance for phage-therapeutic strategies, which have gained
58 increasing attention recently [3, 18]. Moreover, they are critical for inter-species horizontal gene
59 transfer via transducing bacteriophages [19]. Such transduction events have led to the transfer of
60 resistance and virulence genes into the genomes of *S. aureus* and other species, thereby allowing, for

61 instance, evolution of methicillin-resistant *S. epidermidis* (MRSE) and methicillin-resistant *S. aureus*
62 (MRSA) [20, 21]. Despite the critical role of WTA in these processes, the biosynthesis, composition, and
63 glycosylation of the canonical *S. epidermidis* WTA has not been studied.

64 Here we demonstrate, that *S. epidermidis* strain 1457 glycosylates its GroP-WTA with glucose and we
65 identify the WTA glucosyltransferase gene *tagE*. *S. epidermidis tagE* mutants showed complex changes
66 in phage susceptibility patterns including both, the loss, and the acquisition of susceptibility to certain
67 phages, some of which we found to be capable of transducing plasmid DNA between different CoNS
68 species.

69

70 **Results**

71 **1. Disruption of a putative glycosyl transferase gene cluster confers resistance to phage ΦE72**

72 Several new phages with the capacity to infect *S. epidermidis* have been reported recently [22, 23].
73 Some of them have the capacity to transduce DNA between different *S. epidermidis* lineages, raising
74 the question, which bacterial target structures are recognized by the phages' binding proteins, and
75 how universal these target structures may be among different clones of *S. epidermidis* and other CoNS.
76 As most *S. aureus* phages recognize the sugar modifications of WTA [11-13, 24], it was tempting to
77 speculate that glycosylated GroP-WTA is also required for binding of *S. epidermidis* phages. However,
78 the enzymes responsible for WTA glycosylation in *S. epidermidis* have remained unknown and it has
79 also remained elusive, which glycosylation patterns can be found on *S. epidermidis* GroP-WTA. To
80 elucidate the WTA glycosylation pathways of *S. epidermidis* and explore its impact on phage interaction
81 we set out to identify and inactivate the responsible enzyme genes.

82 A library of transposon mutants of *S. epidermidis* 1457 was created using a xylose-inducible Himar1
83 transposase [25] and incubated with phage ΦE72, which is known to infect and multiply in strain 1457
84 [22]. Two mutants, which were resistant to ΦE72 were identified and found to have the transposon
85 integrated in two adjacent genes of unknown function (Fig. 1a; Fig. 2a, d). The two genes were not in
86 the vicinity of other WTA-biosynthesis related genes, but their gene products shared similarity with
87 glycosylation-related enzymes. The gene B4U56_RS02220 product was 46% similar to TagE of *Bacillus*
88 *subtilis*, which glycosylates GroP-WTA with glucose residues [26] and 48% similar to TarM of *S. aureus*,
89 which glycosylates RboP-WTA with GlcNAc (Fig. 1b) [27]. The adjacent gene B4U56_RS02215 encodes
90 a protein with 59% similarity to the phosphoglucomutase PgcA of *B. subtilis*, which isomerizes glucose-
91 6-phosphate to yield glucose-1-phosphate [28]. In addition, the product of gene B4U56_RS02210, next
92 to *pgcA*, was 85% similar to the GtaB enzyme of *B. subtilis* generating UDP-glucose from glucose-1-
93 phosphate and UTP [29]. Both, PgcA and GtaB are required for glycosylation of GroP-WTA with glucose

94 via TagE in *B. subtilis* [30], although the two genes are not encoded together with *tagE* in *B. subtilis*
95 [31, 32]. We assumed that the three enzymes might cooperate in *S. epidermidis* to activate and attach
96 glucose to GroP-WTA.

97

98 **2. *S. epidermidis* TagE is responsible for glucose addition to GroP-WTA**

99 The three *S. epidermidis* genes were renamed according to the corresponding *B. subtilis* genes *tagE*,
100 *gtaB*, and *pgcA*. All three genes were inactivated by targeted deletion to confirm their roles in phage
101 susceptibility. The three mutants were as resistant to ΦE72 infection as the transposon mutants, and
102 complementation of the *tagE* mutant with a plasmid-encoded copy of the gene locus restored wild-
103 type level ΦE72 susceptibility (Fig. 2 c,f). The various transposon and targeted deletion mutants were
104 approximately 3-fold less susceptible to ΦE72 infection, but were not completely resistant, suggesting
105 that the phage may have additional, albeit less effective ways to interact with *S. epidermidis* 1457. In
106 a similar way, and even more pronounced, the mutants had retained only limited capacities to bind
107 ΦE72 particles in liquid media (Fig. 2 d-f; Fig S1).

108 WTA isolated from 1457 wild type (WT) contained substantial amounts of glucose when analyzed by
109 an enzymatic glucose assay indicating that ca. 50% of the GroP-WTA repeating units are modified with
110 glucose (Fig. 3a). In contrast, none of the WTA samples of any of the *tagE*, *gtaB*, or *pgcA* mutants was
111 found to contain glucose. High-performance liquid chromatography coupled to a mass spectrometry
112 detector (HPLC-MS) and nuclear magnetic resonance (NMR) spectroscopy confirmed the presence of
113 glucose-substituted GroP repeating units in the wild type and the absence of glucose in the mutants
114 (Fig. 3b,c; Fig. S2). These findings reflect earlier reports on the presence of glucose on *S. epidermidis*
115 GroP-WTA [9] and they confirm that the PgcA-GtaB-TagE pathway is required for GroP-WTA
116 glycosylation with glucose. NMR analysis indicated that the glucose units are α configured at the
117 anomeric center and attached to the C2-position of GroP. About 15% of the glucose residues are
118 modified with D-alanine at the O6-position of glucose (Fig. 3c; NMR extended description). The α -
119 configuration is reminiscent of the configuration of GlcNAc on RboP-WTA introduced by the TagE-
120 related TarM in *S. aureus* [27].

121 The absence of glucose on GroP-WTA in the $\Delta tagE$ mutant did not alter biofilm formation by *S.*
122 *epidermidis* 1457 (Fig. S3). Moreover, no differences in growth kinetics (Fig. S1), cell wall thickness, or
123 cell shape (Fig. S4) were observed in the mutants, indicating that the absence of glucose on GroP-WTA
124 has no major impact on overall cellular properties of the *S. epidermidis* surface.

125 UDP-glucose generated by PgcA and GtaB is also required for biosynthesis of the glycolipid
126 diglucosyldiacylglycerol (DGlcDAG), which serves as anchor structure for lipoteichoic acid (LTA)

127 polymers in *B. subtilis* and many other Firmicutes (Fig 4a) [33-35]. However, DGlcDAG is not essential
128 for LTA biosynthesis because mutants lacking the glycolipids still produce LTA attached to
129 phosphatidylglycerol lipids [35, 36]. The *S. epidermidis* *pgcA* and *gtaB* mutants, but not the *tagE*
130 mutant, also lacked DGlcDAG, which was present in the parental strain (Fig. 4b), indicating that
131 DGlcDAG is synthesized in *S. epidermidis* by the same pathway as in *B. subtilis* and *S. aureus*.

132

133 **3. Lack of WTA glucose impairs binding of known *S. epidermidis* siphoviruses but promotes binding
134 of podoviruses**

135 Several other phages in addition to ΦE72 were analyzed for an impact of GroP-WTA glucose
136 modification on phage binding and infection. The ΦE72-related siphoviruses Φ456, Φ459, and Φ27,
137 which are known to bind to *S. epidermidis* 1457 [22], showed reduced binding to the *pgcA*, *gtaB*, and
138 *tagE* mutants compared to the wild type but the reduction was less pronounced as for ΦE72 (Fig. 5a,f).
139 Φ459 was equally reduced in its capacities to propagate in the mutants as ΦE72 (Fig. 5b). Despite their
140 capacity to bind *S. epidermidis* 1457, Φ27 and Φ456 did not form clear plaques on wild-type or mutant
141 strains. Two recently isolated myoviruses of the genus sepunavirus, ΦBE04 and ΦBE06 [37], showed
142 no reduction in their ability to bind and infect the mutants, suggesting that these myoviruses are not
143 dependent on glucose-modified GroP-WTA (Fig. 5d,e). This behavior resembles the lacking impact of
144 WTA glycosylation on myovirus ΦK infection of *S. aureus* [13].

145 Several other phages, which bind *S. epidermidis* 1457 but cannot replicate in this strain, behaved
146 differently. Siphovirus Φ187, which is only distantly related to ΦE72 and requires GroP-WTA modified
147 with GalNAc for infection of target cells [24], still bound efficiently to the GroP-WTA glucose-deficient
148 mutants (Fig. 5a), indicating that the GroP-WTA glucose modifications are not necessary for Φ187
149 binding. Φ187 even showed higher plasmid transduction efficiency in the absence of GroP-WTA
150 glucose residues (Fig. 6a). Furthermore, the podoviruses ΦUKE3, ΦSpree, and ΦBE03 [37] exhibited
151 strongly increased binding to the *pgcA*, *gtaB*, and *tagE* mutants compared to the wild type (Fig. 5 c,f),
152 indicating that these phages are attenuated for binding in the presence of glucose residues on GroP-
153 WTA. Thus, the GroP-WTA glucose residues are important for most of the known *S. epidermidis* phages
154 albeit in quite different ways, depending on the individual phage.

155 **4. The presence of *tagE* in the genomes of CoNS species corresponds to the capacity of ΦE72 to
156 transduce these species**

157 The *tagE* gene was found in virtually all available *S. epidermidis* genomes suggesting that the
158 substitution of GroP-WTA with glucose is a general trait in *S. epidermidis*. Accordingly, ΦE72 bound
159 well to the tested *S. epidermidis* strains from at least two different sequence types (ST86, ST32) with

160 one exception (Fig. 6b). Notably, Φ E72 did not bind to *S. epidermidis* E73 (ST23), which produces RboP-
161 WTA in addition to GroP-WTA [6]. However, a E73 *tarJLM2* mutant lacking RboP-WTA was effectively
162 bound by Φ E72 indicating that the additional RboP-WTA shields the surface of *S. epidermidis* in a way
163 that precludes binding of the phage.

164 GroP-WTA has been reported in several other CoNS species. The nature of the sugar modifications in
165 these species has remained largely unknown, but several CoNS have been reported to contain either
166 glucose, GlcNAc or GalNAc attached to WTA [9]. We succeeded in transducing many different CoNS
167 species via Φ E72 with either the staphylococcal shuttle vector pBASE or the green-fluorescent protein-
168 expressing plasmid pC183-S3 GFP. Some of the available CoNS genomes were found to encode TagE
169 homologs albeit with different degrees of sequence conservation, ranging from 43% to 83% similarity
170 (Table 1). Those species with TagE similarities above 67% could be transduced by Φ E72, while those
171 with less conserved TagE homologs did not take up DNA from Φ E72 (Fig. 6c), suggesting that only CoNS
172 with highly conserved versions of TagE may glycosylate their GroP-WTA in a similar way as in *S.*
173 *epidermidis* while the others may glycosylate either other WTA backbone types or may transfer other
174 sugars. Among the tested species, *Staphylococcus pasteuri*, *Staphylococcus lugdunensis*,
175 *Staphylococcus cohnii*, *Staphylococcus caprae*, *Staphylococcus schleiferi*, *Staphylococcus carnosus*,
176 *Staphylococcus simulans*, and *Staphylococcus warneri* strains were transducible with Φ E72. Isolates of
177 two of these species, *Staphylococcus cohnii* and *Staphylococcus warneri*, have indeed previously been
178 described to produce GroP-WTA, which is modified with glucose [9]. In contrast to the varying degrees
179 of conservation of *tagE*, the *pgcA* and *gtaB* genes are present in virtually all *Staphylococcus* genomes
180 with high sequence similarity, including *S. aureus*, probably because UDP-glucose is required in all
181 these species for DGlcDAG glycolipid synthesis [36]. Among the strains that encode highly conserved
182 TagE homologues, *tagE* was encoded in the vicinity of both *pgcA* and *gtaB* only in *S. pasteuri* and *S.*
183 *lugdunensis*, in addition to *S. epidermidis* (Table 1). Thus, phage Φ E72 represents a helpful tool for
184 studying WTA properties and an attractive vehicle for interspecies transduction of DNA among
185 members of the genus *Staphylococcus*.

186

187 **Discussion**

188 WTA structures are known to be highly diverse among Firmicutes, often with species- or even clone-
189 specific composition [7, 38]. Most *S. epidermidis* produce a WTA type that is entirely different from
190 that of *S. aureus* with a GroP rather than a RboP backbone. This study shows that *S. epidermidis* uses
191 a GroP backbone with unmodified or with alanylated glucose. It remains unclear why *S. epidermidis*
192 and *S. aureus* have developed such entirely different WTA types. The different structures may limit the

193 number of bacteriophages that can infect and harm either one or both species. However, Φ K, one the
194 most lytic bacteriophages, can lyse *Staphylococcus* cells irrespective of the WTA backbone structure
195 and a recent study has demonstrated that several *Staphylococcus* phages can infect both, *S. aureus*
196 and *S. epidermidis* [39]. The differences in WTA may limit infections and concomitant lysogenization
197 or transduction events by specific members of the siphovirus group, which depend much more on a
198 specific WTA backbone and glycosylation type than myoviruses. Notably, the presence of glucose on
199 GroP-WTA prevented adsorption to *S. epidermidis* by all tested podoviruses (Φ UKE3, Φ Spree, and
200 Φ BE03). The number of available *S. epidermidis*-targeting phages is still very limited, which impedes
201 more extensive studies on the susceptibility of *S. epidermidis* wild-type and WTA mutant strains for
202 different phage types. Discovery programs for identification of new phages that can infect *S.*
203 *epidermidis* will help to clarify these questions in the future.

204 WTA is an important bacterial ligand for host receptors on mammalian immune cells with critical roles
205 in innate immunity [8, 40]. WTA glycosylated with GlcNAc can activate the scavenger receptor langerin
206 on skin Langerhans cells [41]. *S. aureus* is found on the skin of atopic dermatitis patients eliciting skin
207 inflammation in a process that probably involves WTA-langerin interaction [8]. In contrast, *S.*
208 *epidermidis* cannot activate langerin [41], probably because its GroP-WTA is glycosylated with glucose.
209 It may be advantageous for *S. epidermidis*, one of the most abundant skin-colonizers [1], and for other
210 CoNS, to avoid skin inflammation by producing a non-inflammatory WTA type decorated with glucose.

211 *S. epidermidis* uses the same pathway for GroP-WTA glycosylation with glucose residues as described
212 for *B. subtilis* [28]. Activation of glucose via the PgcA and GtaB enzymes yields UDP-glucose as donor
213 of glucose residues, which are subsequently transferred to the WTA backbone by TagE. Other WTA
214 glycosyltransferases apart for TarM [27], including those transferring glucose to RboP-WTA in *B. subtilis*
215 W23 (TarQ) [7, 11], GlcNAc to RboP-WTA in certain *S. aureus* clones (TarS, TarP) [11, 42], or GalNAc to
216 GroP-WTA in *S. aureus* ST395 (TagN) [24] share no or very low similarity with TagE. However, protein
217 structure prediction with Alphafold 2 revealed that TagE most likely forms a symmetric, propeller-like
218 homotrimer with each monomer divided into the characteristic glycosyltransferase domain and the β -
219 sheets containing trimerization domain as previously described for the well-studied *S. aureus*
220 glycosyltransferase TarM (Fig. S5) [43-45].

221 In addition to glucose, WTA is usually also modified with D-alanine [38]. Since GroP repeating units
222 have only one free hydroxyl group for substitution with either D-alanine or glucose, it is not surprising
223 that only ca. 50% of the repeating units carried glucose residues. The teichoic acid D-alanylation
224 machinery attaches D-alanine to a variety of different molecules including LTA, RboP-WTA, and GroP-
225 WTA [46]. Its limited specificity for acceptor substrates may explain why a minor portion of the glucose
226 residues on *S. epidermidis* GroP-WTA are also alanylated. GroP repeating units are shorter than RboP

227 repeating units, which may explain why the additional RboP-WTA polymers of *S. epidermidis* E73 are
228 probably longer and precluded binding of Φ E72 to strain E73. The additional WTA may, therefore,
229 represent a further strategy to interfere with phage infection and with interaction of other WTA-
230 binding molecules.

231 Several other CoNS species appear to produce a similar WTA type as *S. epidermidis* because they
232 encode potential TagE proteins and interact with Φ E72. Interspecies horizontal gene transfer via WTA-
233 binding transducing phages appears to be rather common among these species and may have
234 contributed to the import of the methicillin-resistance conferring *mecA* gene into *S. epidermidis* and,
235 eventually, to *S. aureus* to create MRSE and MRSA clones [20]. It remains mysterious how the barrier
236 for horizontal gene transfer between *S. epidermidis* and *S. aureus* that results from the substantial
237 differences in WTA structure could be overcome. Specific *S. epidermidis* clonal lineages with both,
238 GroP-WTA and *S. aureus*-type RboP-WTA such as ST10, ST23, and ST87 [6] or the *S. aureus* lineage
239 ST395 producing CoNS-type GroP-WTA [14], may represent critical hubs for the exchange of genetic
240 material between the species *S. epidermidis* and *S. aureus*. Several CoNS species encode potential WTA
241 glycosyltransferase homologs with only low or no similarity to TagE. They may produce other WTA
242 backbones or glycosylate their WTA with other sugars.

243 *S. epidermidis* often causes difficult-to-treat biofilm-based infections on implanted materials, which
244 frequently require surgical replacement [4]. Treatment with lytic bacteriophages that could destroy *S.*
245 *epidermidis* biofilms hold promise for the development of new therapeutic strategies [3, 18].
246 Understanding how phages detect suitable host bacteria and which *S. epidermidis* clones express
247 corresponding phage-binding WTA motives will be important for the success of such strategies. The
248 TagE-mediated WTA glycosylation with glucose might contribute to the narrow host range of lytic
249 podoviruses like Φ BE03 [37]. Accordingly, finding podoviruses, which bind to GroP-WTA glucose might
250 help to develop efficient therapeutic phage cocktails. Moreover, glycosylated WTA is a major antigen
251 for protective antibodies against *S. aureus* [42, 47, 48] and, probably, also *S. epidermidis*. It represents
252 therefore a particularly attractive antigen for vaccine development [48]. As for phage therapy, the
253 success of such vaccination strategies will depend on in-depth knowledge on the structure and
254 prevalence of WTA glycoepitopes among different *S. epidermidis* lineages. Our study may motivate
255 more extensive investigations on WTA glycoepitopes in different staphylococcal pathogens and
256 commensals.

257

258 **Materials and Methods**

259 **Bacterial strains and growth conditions**

260 *S. epidermidis* and *S. aureus* strains were cultivated in basic medium (BM) and incubated at 37°C on an
261 orbital shaker. *E. coli* strains were cultivated in lysogeny broth (LB). Media were supplemented with
262 appropriate antibiotics chloramphenicol (10 µg/ml), or ampicillin (100 µg/ml). *E. coli* DC10b and *S.*
263 *aureus* PS187 Δ sauUSI Δ hsdR were used as cloning hosts, *S. epidermidis* 1457 was used for gene
264 deletion studies. Bacteriophages and propagation strains used in this study are listed in Table S1.

265 **Transposon mutagenesis of *S. epidermidis* strain 1457**

266 The transposon plasmid pBTn described previously [25] was used to create a transposon library in *S.*
267 *epidermidis* 1457. The features of this temperature-sensitive *E. coli*/*S. aureus* shuttle vector include a
268 mini-transposon with an erythromycin resistance cassette flanked by inverted repeats from the horn
269 fly transposon and a xylose-inducible transposase Himar1, which can mobilize the mini-transposon and
270 integrate it into the chromosome with no bias for any specific sequence. Transposon library
271 construction has been described in detail before [27]. In short, *S. epidermidis* 1457 was transformed
272 with pBTn followed by mobilization of the mini-transposon into the genome upon xylose induction of
273 the transposase. The pBTn plasmid was cured via shifts to nonpermissive temperature.

274 **Isolation of phage-resistant transposon mutants**

275 To isolate phage-resistant mutants, the transposon mutant library was infected with Φ E72 at a MOI of
276 at least 100. After incubation for up to 4 h, the cells were centrifuged at 5,000 \times g for 10 min and plated
277 on TSA agar containing erythromycin. Single colonies of surviving mutants were transferred to fresh
278 TSA agar plates repeatedly. Phage resistance was confirmed by spot assays with Φ E72, and the phage-
279 resistant mutants were treated with 1 µg/ml mitomycin to test for and to exclude lysogeny. To identify
280 the site of transposon insertion, total DNA was isolated, purified with the NucleoSpin® tissue kit
281 (Macherey-Nagel, Düren), digested, religated, multiplied with primers erm-For and erm-Rev (Table S2),
282 which anneal to the erythromycin resistance cassette of the mini-transposon, and sequenced.

283 **Molecular genetic methods**

284 For the construction of the *tagE*, *pgcA*, and *gtaB* mutants in *S. epidermidis* 1457, the pBASE6 *E.*
285 *coli*/*S. aureus* shuttle vector was used according to standard procedures [49]. For mutant
286 complementation, plasmid pRB473 was used [50]. The primers for knockout and complementation
287 plasmid construction are listed in (Table S2). Both pBASE6 and pRB473 containing either the respective
288 up- and downstream fragments for knockout construction (pBASE6) or the complementation sequence
289 (pRB473), were used to transform *E. coli* DC10b, and subsequently PS187 Δ sauUSI Δ hsdR by
290 electroporation. The plasmids were subsequently transferred to *S. epidermidis* strain 1457 by

291 transduction with Φ 187 using *S. aureus* PS187 Δ sauUS1 Δ hsdR as donor strain as described previously
292 [51].

293 **Phage binding, infection, and transduction assays**

294 Phage spot assays were performed as described previously [14]. All applied bacteriophages (Table S1)
295 were propagated in suitable bacterial host strains and phage lysates were filtered to yield sterile phage
296 suspensions. Test bacteria were cultivated overnight in fresh BM. $OD_{600} = 0.1$ was adjusted in 5 ml LB
297 soft agar for the preparation of bacterial overlay lawns. 10 μ l of phage suspensions were spotted onto
298 the bacterial lawns. After overnight incubation at 37°C for podoviruses and siphoviruses, and 30°C for
299 myoviruses, phage clearing zones and individual plaques were observed and recorded.

300 Phage adsorption efficiency was determined as described previously with minor modifications [14].
301 Briefly, adsorption rates were analyzed by mixing approximately 10⁶ PFU/ml in BM supplemented with
302 4 mM CaCl₂ with the tested bacteria at an OD_{600} of 0.5 and incubating for 15 min at 37°C. The samples
303 were subsequently centrifuged, and the supernatants were spotted on indicator strains to determine
304 the number of unbound phages in the supernatant. The adsorption rate was calculated by dividing the
305 number of bound phages by the number of input phages.

306 Transduction experiments were performed as described previously [14]. Briefly, 1 ml of exponentially
307 growing cultures of a recipient strain was adjusted to an OD_{600} of 0.5. The cells were sedimented by
308 centrifugation and resuspended in 200 μ l of phage buffer containing 0.1% gelatin, 1 mM MgSO₄, 4 mM
309 CaCl₂, 50 mM Tris, and 0.1 M NaCl. 200 μ l of bacteria in phage buffer were mixed with 100 μ l of lysates
310 obtained from *S. aureus* PS187 and *S. epidermidis* 1457 donor strains carrying plasmids of choice.
311 Samples were then incubated for 15 min at 37°C, diluted, and plated on chloramphenicol-containing
312 BM agar to count colonies.

313 **Electron microscopy**

314 *S. epidermidis* 1457 wild type, Δ tagE, Δ pgcA, and Δ gtaB were grown until stationary phase, and fixed
315 at an OD_{600} of 10 in 200 μ l Karnovsky's fixative (3% formaldehyde, 2.5% glutaraldehyde in 0.1 M
316 phosphate buffer pH 7.4) for 24 h. Samples were then centrifuged at 1,400 x g for 5 min, supernatant
317 was discarded, pellets were resuspended in approximately 20 μ l agarose (3.9%) at 37°C, cooled to
318 room temperature, and cut into small pieces. Postfixation was based on 1.0% osmium tetroxide
319 containing 2.5% potassium ferrocyanide (Morphisto) for 2 h. After following the standard methods,
320 samples were embedded in glycide ether and cut using an ultramicrotome (Ultracut E, Reichert). Ultra-
321 thin sections (30 nm) were mounted on copper grids and analyzed using a Zeiss LIBRA 120 transmission
322 electron microscope (Carl Zeiss) operating at 120 kV.

323 **WTA isolation**

324 WTA was isolated as described previously [14, 52, 53] with minor modifications. Briefly, bacterial cells
325 from two liters of overnight cultures were washed and disrupted with glass beads in a cell disrupter
326 (Euler). Cell lysates were incubated at 37°C overnight in the presence of DNase and RNase. SDS was
327 added to a final concentration of 2% followed by ultrasonication for 15 min. Cell walls were washed
328 several times to remove SDS. To release WTA from cell walls, samples were treated with 5%
329 trichloroacetic acid for 4 h at 65°C. Peptidoglycan debris was separated via centrifugation (10 min,
330 14,500 x g). Determination of phosphate amounts as described previously [53-55] was used for WTA
331 quantification. Crude WTA extracts were further purified as already described [27]. Briefly, the pH of
332 the crude extract was adjusted to 5 with NaOH and dialyzed against water with a Slide-A-Lyzer Dialysis
333 Cassette (MWCO of 3.5 kDa; Thermo Fisher Scientific). For HPLC-MS analysis, 50 µl of 100 mM WTA
334 sample were hydrolyzed with 100 mM NaOH at 60°C for 2 h. The remaining dialyzed WTA was further
335 lyophilized for long-term storage at -20 °C or used for further analysis. 10-15 mg lyophilized WTA
336 sample were used for NMR. Detailed explanations of the HPLC-MS and NMR methods can be found as
337 extended descriptions of detailed methods.

338 **Enzymatic determination of glucose in the WTA samples**

339 The High Sensitivity Glucose Assay Kit (mak181, Sigma-Aldrich) was used to determine the glucose
340 content in the WTA sample. 50 µl of dialyzed WTA samples and 50 µl of 1 mM glucose standard solution
341 were dried in a vacuum concentrator at 60°C. 100 µl of 0.5 M HCl was added to the samples and the
342 standard solution and cooked for 2 h in a water bath. The glucose standard was diluted 1:50 resulting
343 in a 10 µM concentration and different volumes were used to cover a range of 0 - 100 pmol. Samples
344 were also diluted at least 1:50 and different dilutions of the samples were tested in a 96-well plate.
345 The assay was performed according to the manufacturer's instructions. The fluorescence intensity was
346 measured at excitation wavelength 535 nm and emission wavelength 587 nm.

347 **Glycolipid isolation, thin layer chromatography (TLC) and detection with α-naphthol**

348 The detection of glycolipids was performed similar to a previously described method [36]. *S.*
349 *epidermidis* 1457 and the respective mutants were grown to OD₆₀₀ of 3.5. 5 ml of bacterial suspension
350 were washed and resuspended in 500 µl of 100 mM sodiumacetate (pH 4.7) and transferred into glass
351 vials. 500 µl chloroform and 500 ml methanol were added and the mixture was vortexed vigorously.
352 The samples were centrifuged at 4,600 x g for 20 min at 4°C and the lower phase was dried overnight
353 and resuspended in 25 µl methanol and chloroform in a 1:1 ratio. The whole sample was applied to a
354 high-performance thin-layer chromatography (HPTLC) silica gel 60 plate (10 x 10 cm; Merck) with a
355 Hamilton syringe. A positive control containing 5 µg digalactosyldiacylglycerol (DGDG, Sigma-Aldrich)

356 was used. A Linomat 5 (Camag), and an auto developing chamber (Camag), were used to apply the
357 sample to the TLC plate and to run it with a solvent containing 65:25:4 (v/v/v)
358 chloroform/methanol/H₂O. The dried TLC plate was sprayed with 3.2% α-naphthol in
359 methanol/H₂SO₄/H₂O 25:3:2 (v/v/v) and the glycolipids were visualized by heating the plate at 110°C
360 for a few minutes.

361 ***In silico* analysis**

362 All statistical analyses were performed with Graph Pad Prism 9.2.0 (GraphPad Software, La Jolla, USA).
363 Multiple sequence alignment was performed with SnapGene® 5.3.2 using MUSCLE. Protein structure
364 prediction was done using AlphaFold2 with ColabFold [44, 45].

365 **Acknowledgements**

366 We thank David Gerlach, Xin Du, and Bernhard Krismer for helpful discussions, Arnaud Kengmo
367 Tchoupa and Ulrike Redel for help with TLC, and Y. Que and E. Baumgartner for supply of phages. This
368 work was financed by grants from the German Research Foundation to A.P. (TRR34; TRR165 project ID
369 246807620; PE 805/7-1 project ID 410190180; PE 805/8-1 project ID 410190180) and the German
370 Center for Infection Research (DZIF) to A.P. The authors acknowledge infrastructural support by the
371 Cluster of Excellence EXC 2124 ‘Controlling Microbes to Fight Infections’ project ID 39083813

372 References

373

374 1. Severn MM, Horswill AR. *Staphylococcus epidermidis* and its dual lifestyle in skin health and
375 infection. *Nat Rev Microbiol*. 2022. Epub 20220830. doi: 10.1038/s41579-022-00780-3. PubMed
376 PMID: 36042296.

377 2. Otto M. *Staphylococcus epidermidis*--the 'accidental' pathogen. *Nat Rev Microbiol*.
378 2009;7(8):555-67. doi: 10.1038/nrmicro2182. PubMed PMID: 19609257; PubMed Central PMCID:
379 PMCPMC2807625.

380 3. Schilcher K, Horswill AR. *Staphylococcal Biofilm Development: Structure, Regulation, and*
381 *Treatment Strategies*. *Microbiol Mol Biol Rev*. 2020;84(3). Epub 20200812. doi:
382 10.1128/mmbr.00026-19. PubMed PMID: 32792334; PubMed Central PMCID: PMCPMC7430342.

383 4. Becker K, Heilmann C, Peters G. Coagulase-negative staphylococci. *Clin Microbiol Rev*.
384 2014;27(4):870-926. doi: 10.1128/CMR.00109-13. PubMed PMID: 25278577; PubMed Central
385 PMCID: PMCPMC4187637.

386 5. Otto M. *Staphylococcal Biofilms*. *Microbiol Spectr*. 2018;6(4). doi:
387 10.1128/microbiolspec.GPP3-0023-2018. PubMed PMID: 30117414; PubMed Central PMCID:
388 PMCPMC6282163.

389 6. Du X, Larsen J, Li M, Walter A, Slavetinsky C, Both A, et al. *Staphylococcus epidermidis* clones
390 express *Staphylococcus aureus*-type wall teichoic acid to shift from a commensal to pathogen
391 lifestyle. *Nat Microbiol*. 2021;6(6):757-68. Epub 20210524. doi: 10.1038/s41564-021-00913-z.
392 PubMed PMID: 34031577.

393 7. Brown S, Santa Maria JP, Jr., Walker S. Wall teichoic acids of gram-positive bacteria. *Annu Rev*
394 *Microbiol*. 2013;67:313-36. doi: 10.1146/annurev-micro-092412-155620. PubMed PMID: 24024634;
395 PubMed Central PMCID: PMCPMC3883102.

396 8. van Dalen R, Peschel A, van Sorge NM. Wall Teichoic Acid in *Staphylococcus aureus* Host
397 Interaction. *Trends Microbiol*. 2020;28(12):985-98. Epub 20200612. doi: 10.1016/j.tim.2020.05.017.
398 PubMed PMID: 32540314.

399 9. Endl J, Seidl HP, Fiedler F, Schleifer KH. Chemical composition and structure of cell wall
400 teichoic acids of staphylococci. *Arch Microbiol*. 1983;135(3):215-23. doi: 10.1007/BF00414483.
401 PubMed PMID: 6639273.

402 10. Ingmer H, Gerlach D, Wolz C. Temperate Phages of *Staphylococcus aureus*. *Microbiol Spectr*.
403 2019;7(5). Epub 2019/09/29. doi: 10.1128/microbiolspec.GPP3-0058-2018. PubMed PMID:
404 31562736.

405 11. Brown S, Xia G, Luhachack LG, Campbell J, Meredith TC, Chen C, et al. Methicillin resistance in
406 *Staphylococcus aureus* requires glycosylated wall teichoic acids. *Proc Natl Acad Sci U S A*.
407 2012;109(46):18909-14. Epub 20121001. doi: 10.1073/pnas.1209126109. PubMed PMID: 23027967;
408 PubMed Central PMCID: PMCPMC3503181.

409 12. Gerlach D, Sieber RN, Larsen J, Krusche J, De Castro C, Baumann J, et al. Horizontal transfer
410 and phylogenetic distribution of the immune evasion factor tarP. *Front Microbiol*. 2022;13:951333.
411 Epub 20221028. doi: 10.3389/fmicb.2022.951333. PubMed PMID: 36386695; PubMed Central
412 PMCID: PMCPMC9650247.

413 13. Li X, Gerlach D, Du X, Larsen J, Stegger M, Kühner P, et al. An accessory wall teichoic acid
414 glycosyltransferase protects *Staphylococcus aureus* from the lytic activity of Podoviridae. *Sci Rep*.
415 2015;5:17219. Epub 20151124. doi: 10.1038/srep17219. PubMed PMID: 26596631; PubMed Central
416 PMCID: PMCPMC4667565.

417 14. Winstel V, Liang C, Sanchez-Carballo P, Steglich M, Munar M, Bröker BM, et al. Wall teichoic
418 acid structure governs horizontal gene transfer between major bacterial pathogens. *Nat Commun*.
419 2013;4:2345. doi: 10.1038/ncomms3345. PubMed PMID: 23965785; PubMed Central PMCID:
420 PMCPMC3903184.

421 15. Xia G, Corrigan RM, Winstel V, Goerke C, Gründling A, Peschel A. Wall teichoic Acid-
422 dependent adsorption of staphylococcal siphovirus and myovirus. *J Bacteriol*. 2011;193(15):4006-9.

423 Epub 20110603. doi: 10.1128/jb.01412-10. PubMed PMID: 21642458; PubMed Central PMCID: PMCPMC3147540.

424 16. O'Flaherty S, Ross RP, Meaney W, Fitzgerald GF, Elbreki MF, Coffey A. Potential of the
425 polyvalent anti-Staphylococcus bacteriophage K for control of antibiotic-resistant staphylococci from
426 hospitals. *Appl Environ Microbiol*. 2005;71(4):1836-42. doi: 10.1128/aem.71.4.1836-1842.2005.
427 PubMed PMID: 15812009; PubMed Central PMCID: PMCPMC1082512.

428 17. Cerca N, Oliveira R, Azeredo J. Susceptibility of *Staphylococcus epidermidis* planktonic cells
429 and biofilms to the lytic action of *staphylococcus* bacteriophage K. *Lett Appl Microbiol*.
430 2007;45(3):313-7. doi: 10.1111/j.1472-765X.2007.02190.x. PubMed PMID: 17718845.

431 18. Kilcher S, Loessner MJ. Engineering Bacteriophages as Versatile Biologics. *Trends Microbiol*.
432 2019;27(4):355-67. Epub 20181012. doi: 10.1016/j.tim.2018.09.006. PubMed PMID: 30322741.

433 19. Winstel V, Kühner P, Rohde H, Peschel A. Genetic engineering of untransformable coagulase-
434 negative staphylococcal pathogens. *Nat Protoc*. 2016;11(5):949-59. Epub 20160421. doi:
435 10.1038/nprot.2016.058. PubMed PMID: 27101516.

436 20. Rolo J, Worning P, Nielsen JB, Bowden R, Bouchami O, Damborg P, et al. Evolutionary Origin
437 of the Staphylococcal Cassette Chromosome *mec* (SCCmec). *Antimicrob Agents Chemother*.
438 2017;61(6). Epub 20170524. doi: 10.1128/AAC.02302-16. PubMed PMID: 28373201; PubMed Central
439 PMCID: PMCPMC5444190.

440 21. Lee AS, de Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A, et al. Methicillin-
441 resistant *Staphylococcus aureus*. *Nat Rev Dis Primers*. 2018;4:18033. Epub 2018/06/01. doi:
442 10.1038/nrdp.2018.33. PubMed PMID: 29849094.

443 22. Fisarova L, Botka T, Du X, Maslanova I, Bardy P, Pantucek R, et al. *Staphylococcus epidermidis*
444 Phages Transduce Antimicrobial Resistance Plasmids and Mobilize Chromosomal Islands. *mSphere*.
445 2021;6(3). Epub 2021/05/14. doi: 10.1128/mSphere.00223-21. PubMed PMID: 33980677.

446 23. Fanaei Pirlar R, Wagemans J, Ponce Benavente L, Lavigne R, Trampuz A, Gonzalez Moreno M.
447 Novel Bacteriophage Specific against *Staphylococcus epidermidis* and with Antibiofilm Activity.
448 *Viruses*. 2022;14(6). Epub 20220620. doi: 10.3390/v14061340. PubMed PMID: 35746811; PubMed
449 Central PMCID: PMCPMC9230115.

450 24. Winstel V, Sanchez-Carballo P, Holst O, Xia G, Peschel A. Biosynthesis of the unique wall
451 teichoic acid of *Staphylococcus aureus* lineage ST395. *mBio*. 2014;5(2):e00869. Epub 20140408. doi:
452 10.1128/mBio.00869-14. PubMed PMID: 24713320; PubMed Central PMCID: PMCPMC3993852.

453 25. Li M, Rigby K, Lai Y, Nair V, Peschel A, Schittek B, et al. *Staphylococcus aureus* mutant screen
454 reveals interaction of the human antimicrobial peptide dermcidin with membrane phospholipids.
455 *Antimicrob Agents Chemother*. 2009;53(10):4200-10. Epub 20090713. doi: 10.1128/aac.00428-09.
456 PubMed PMID: 19596877; PubMed Central PMCID: PMCPMC2764178.

457 26. Allison SE, D'Elia MA, Arar S, Monteiro MA, Brown ED. Studies of the genetics, function, and
458 kinetic mechanism of TagE, the wall teichoic acid glycosyltransferase in *Bacillus subtilis* 168. *J Biol
459 Chem*. 2011;286(27):23708-16. Epub 20110510. doi: 10.1074/jbc.M111.241265. PubMed PMID:
460 21558268; PubMed Central PMCID: PMCPMC3129151.

461 27. Xia G, Maier L, Sanchez-Carballo P, Li M, Otto M, Holst O, et al. Glycosylation of wall teichoic
462 acid in *Staphylococcus aureus* by TarM. *J Biol Chem*. 2010;285(18):13405-15. Epub 20100225. doi:
463 10.1074/jbc.M109.096172. PubMed PMID: 20185825; PubMed Central PMCID: PMCPMC2859500.

464 28. Lazarevic V, Soldo B, Médico N, Pooley H, Bron S, Karamata D. *Bacillus subtilis* alpha-
465 phosphoglucomutase is required for normal cell morphology and biofilm formation. *Appl Environ
466 Microbiol*. 2005;71(1):39-45. doi: 10.1128/aem.71.1.39-45.2005. PubMed PMID: 15640167; PubMed
467 Central PMCID: PMCPMC544238.

468 29. Pooley HM, Paschoud D, Karamata D. The gtaB marker in *Bacillus subtilis* 168 is associated
469 with a deficiency in UDPglucose pyrophosphorylase. *J Gen Microbiol*. 1987;133(12):3481-93. doi:
470 10.1099/00221287-133-12-3481. PubMed PMID: 2846750.

471 30. Yasbin RE, Maino VC, Young FE. Bacteriophage resistance in *Bacillus subtilis* 168, W23, and
472 interstrain transformants. *J Bacteriol*. 1976;125(3):1120-6. doi: 10.1128/jb.125.3.1120-1126.1976.
473 PubMed PMID: 815237; PubMed Central PMCID: PMCPMC236191.

475 31. Qian Z, Yin Y, Zhang Y, Lu L, Li Y, Jiang Y. Genomic characterization of ribitol teichoic acid
476 synthesis in *Staphylococcus aureus*: genes, genomic organization and gene duplication. *BMC*
477 *Genomics*. 2006;7(1):74. doi: 10.1186/1471-2164-7-74.

478 32. Swoboda JG, Campbell J, Meredith TC, Walker S. Wall teichoic acid function, biosynthesis,
479 and inhibition. *Chembiochem*. 2010;11(1):35-45. doi: 10.1002/cbic.200900557. PubMed PMID:
480 19899094; PubMed Central PMCID: PMCPMC2798926.

481 33. Jorasch P, Wolter FP, Zähringer U, Heinz E. A UDP glucosyltransferase from *Bacillus subtilis*
482 successively transfers up to four glucose residues to 1,2-diacylglycerol: expression of *ypfP* in
483 *Escherichia coli* and structural analysis of its reaction products. *Mol Microbiol*. 1998;29(2):419-30.
484 doi: 10.1046/j.1365-2958.1998.00930.x. PubMed PMID: 9720862.

485 34. Kiriukhin MY, Debabov DV, Shinabarger DL, Neuhaus FC. Biosynthesis of the glycolipid anchor
486 in lipoteichoic acid of *Staphylococcus aureus* RN4220: role of *YpfP*, the diglucosyldiacylglycerol
487 synthase. *J Bacteriol*. 2001;183(11):3506-14. doi: 10.1128/jb.183.11.3506-3514.2001. PubMed PMID:
488 11344159; PubMed Central PMCID: PMCPMC99649.

489 35. Fedtke I, Mader D, Kohler T, Moll H, Nicholson G, Biswas R, et al. A *Staphylococcus aureus*
490 *ypfP* mutant with strongly reduced lipoteichoic acid (LTA) content: LTA governs bacterial surface
491 properties and autolysin activity. *Mol Microbiol*. 2007;65(4):1078-91. Epub 20070719. doi:
492 10.1111/j.1365-2958.2007.05854.x. PubMed PMID: 17640274; PubMed Central PMCID:
493 PMCPMC2169524.

494 36. Gründling A, Schneewind O. Genes required for glycolipid synthesis and lipoteichoic acid
495 anchoring in *Staphylococcus aureus*. *J Bacteriol*. 2007;189(6):2521-30. Epub 20070105. doi:
496 10.1128/jb.01683-06. PubMed PMID: 17209021; PubMed Central PMCID: PMCPMC1899383.

497 37. Valente LG, Pitton M, Fürholz M, Oberhaensli S, Bruggmann R, Leib SL, et al. Isolation and
498 characterization of bacteriophages from the human skin microbiome that infect *Staphylococcus*
499 *epidermidis*. *FEMS Microbes*. 2021;2. doi: 10.1093/femsma/xtab003.

500 38. Weidenmaier C, Peschel A. Teichoic acids and related cell-wall glycopolymers in Gram-
501 positive physiology and host interactions. *Nat Rev Microbiol*. 2008;6(4):276-87. Epub 2008/03/11.
502 doi: 10.1038/nrmicro1861. PubMed PMID: 18327271.

503 39. Goller PC, Elsener T, Lorge D, Radulovic N, Bernardi V, Naumann A, et al. Multi-species host
504 range of staphylococcal phages isolated from wastewater. *Nat Commun*. 2021;12(1):6965. Epub
505 20211129. doi: 10.1038/s41467-021-27037-6. PubMed PMID: 34845206; PubMed Central PMCID:
506 PMCPMC8629997.

507 40. Schade J, Weidenmaier C. Cell wall glycopolymers of Firmicutes and their role as nonprotein
508 adhesins. *FEBS Lett*. 2016;590(21):3758-71. Epub 20160725. doi: 10.1002/1873-3468.12288. PubMed
509 PMID: 27396949.

510 41. van Dalen R, De La Cruz Diaz JS, Rumpret M, Fuchsberger FF, van Teijlingen NH, Hanske J, et
511 al. Langerhans Cells Sense *Staphylococcus aureus* Wall Teichoic Acid through Langerin To Induce
512 Inflammatory Responses. *mBio*. 2019;10(3). Epub 20190514. doi: 10.1128/mBio.00330-19. PubMed
513 PMID: 31088921; PubMed Central PMCID: PMCPMC6520447.

514 42. Gerlach D, Guo Y, De Castro C, Kim SH, Schlatterer K, Xu FF, et al. Methicillin-resistant
515 *Staphylococcus aureus* alters cell wall glycosylation to evade immunity. *Nature*. 2018;563(7733):705-
516 9. Epub 20181121. doi: 10.1038/s41586-018-0730-x. PubMed PMID: 30464342.

517 43. Koc C, Gerlach D, Beck S, Peschel A, Xia G, Stehle T. Structural and enzymatic analysis of TarM
518 glycosyltransferase from *Staphylococcus aureus* reveals an oligomeric protein specific for the
519 glycosylation of wall teichoic acid. *J Biol Chem*. 2015;290(15):9874-85. Epub 20150219. doi:
520 10.1074/jbc.M114.619924. PubMed PMID: 25697358; PubMed Central PMCID: PMCPMC4392284.

521 44. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate
522 protein structure prediction with AlphaFold. *Nature*. 2021;596(7873):583-9. Epub 20210715. doi:
523 10.1038/s41586-021-03819-2. PubMed PMID: 34265844; PubMed Central PMCID:
524 PMCPMC8371605.

525 45. Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making
526 protein folding accessible to all. *Nature Methods*. 2022;19(6):679-82. doi: 10.1038/s41592-022-
527 01488-1.

528 46. Schultz BJ, Snow ED, Walker S. Mechanism of D-alanine transfer to teichoic acids shows how
529 bacteria acylate cell envelope polymers. *Nat Microbiol*. 2023. Epub 20230612. doi: 10.1038/s41564-
530 023-01411-0. PubMed PMID: 37308592.

531 47. Kurokawa K, Jung DJ, An JH, Fuchs K, Jeon YJ, Kim NH, et al. Glycoepitopes of staphylococcal
532 wall teichoic acid govern complement-mediated opsonophagocytosis via human serum antibody and
533 mannose-binding lectin. *J Biol Chem*. 2013;288(43):30956-68. Epub 20130917. doi:
534 10.1074/jbc.M113.509893. PubMed PMID: 24045948; PubMed Central PMCID: PMCPMC3829409.

535 48. van Dalen R, Molendijk MM, Ali S, van Kessel KPM, Aerts P, van Strijp JAG, et al. Do not
536 discard *Staphylococcus aureus* WTA as a vaccine antigen. *Nature*. 2019;572(7767):E1-e2. Epub
537 20190731. doi: 10.1038/s41586-019-1416-8. PubMed PMID: 31367020.

538 49. Geiger T, Francois P, Liebeke M, Fraunholz M, Goerke C, Krismeyer B, et al. The stringent
539 response of *Staphylococcus aureus* and its impact on survival after phagocytosis through the
540 induction of intracellular PSMs expression. *PLoS Pathog*. 2012;8(11):e1003016. Epub 20121129. doi:
541 10.1371/journal.ppat.1003016. PubMed PMID: 23209405; PubMed Central PMCID:
542 PMCPMC3510239.

543 50. Brückner R. A series of shuttle vectors for *Bacillus subtilis* and *Escherichia coli*. *Gene*.
544 1992;122(1):187-92. doi: 10.1016/0378-1119(92)90048-t. PubMed PMID: 1452028.

545 51. Winstel V, Kühner P, Rohde H, Peschel A. Genetic engineering of untransformable coagulase-
546 negative staphylococcal pathogens. *Nature Protocols*. 2016;11(5):949-59. doi:
547 10.1038/nprot.2016.058.

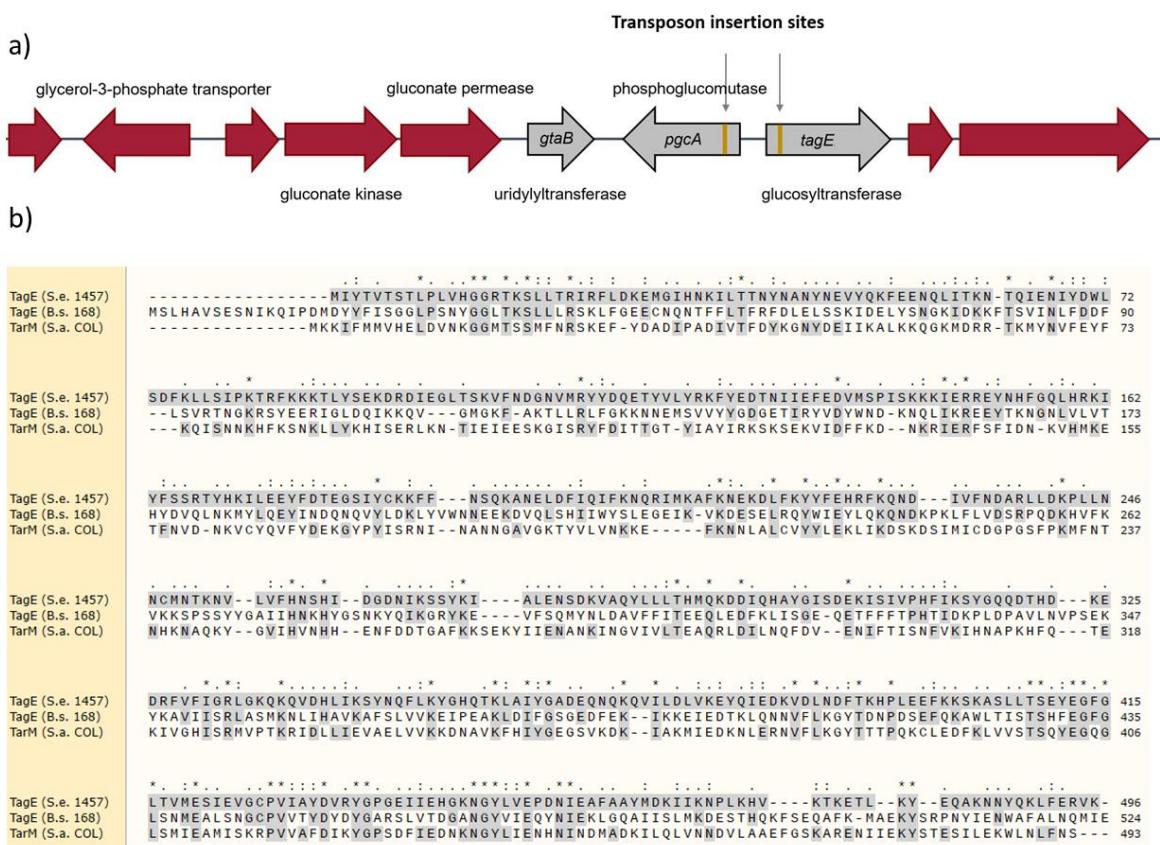
548 52. Weidenmaier C, Kokai-Kun JF, Kristian SA, Chanturiya T, Kalbacher H, Gross M, et al. Role of
549 teichoic acids in *Staphylococcus aureus* nasal colonization, a major risk factor in nosocomial
550 infections. *Nat Med*. 2004;10(3):243-5. Epub 20040201. doi: 10.1038/nm991. PubMed PMID:
551 14758355.

552 53. Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Gotz F. Inactivation of the *dlt* operon in
553 *Staphylococcus aureus* confers sensitivity to defensins, protegrins, and other antimicrobial peptides.
554 *J Biol Chem*. 1999;274(13):8405-10. doi: 10.1074/jbc.274.13.8405. PubMed PMID: 10085071.

555 54. Chen PS, Toribara TY, Warner H. Microdetermination of Phosphorus. *Analytical Chemistry*.
556 1956;28:1756-8.

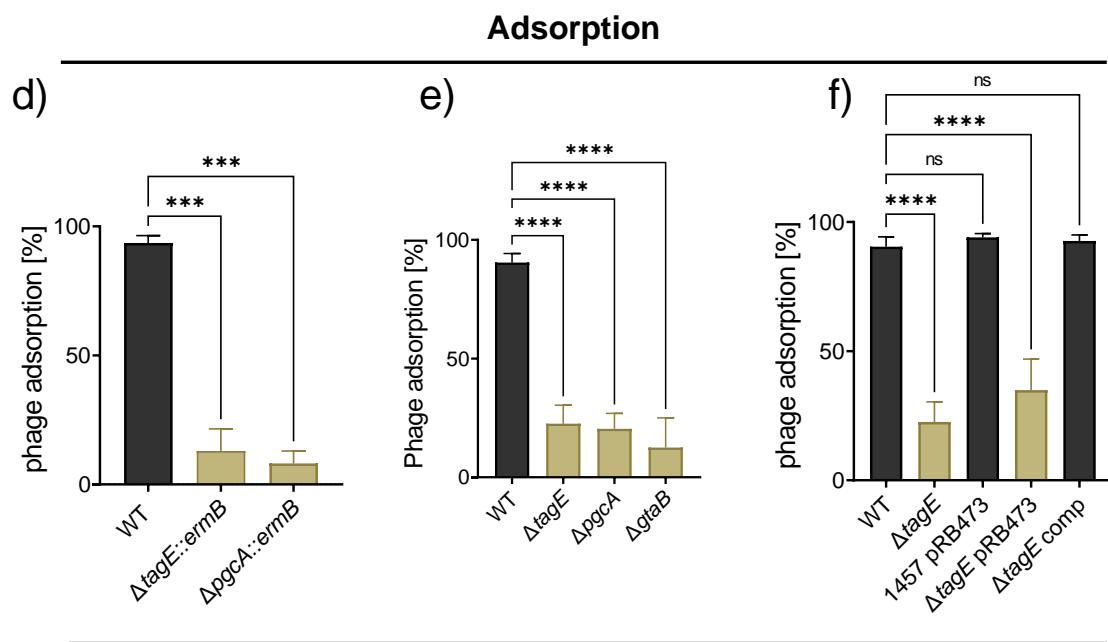
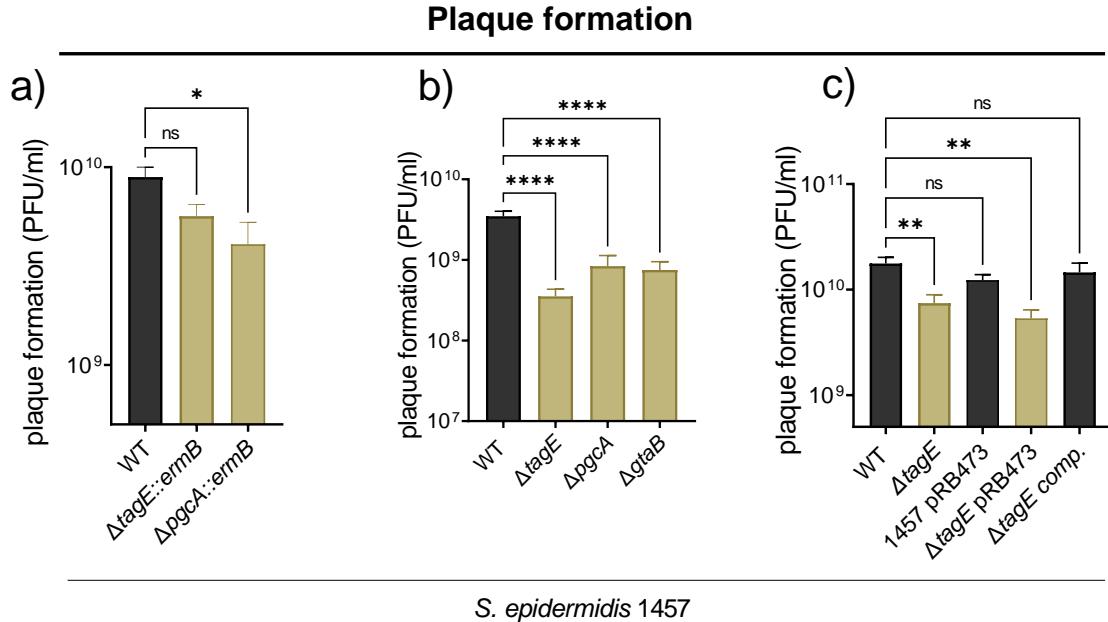
557 55. Chen PS, Toribara TY, Warner H. Microdetermination of Phosphorus. *Analytical Chemistry*.
558 1956;28(11):1756-8. doi: 10.1021/ac60119a033.

559 56. Kontou EE, Walter A, Alka O, Pfeuffer J, Sachsenberg T, Mohite OS, et al. UmetaFlow: an
560 untargeted metabolomics workflow for high-throughput data processing and analysis. *Journal of
561 Cheminformatics*. 2023;15(1):52. doi: 10.1186/s13321-023-00724-w.

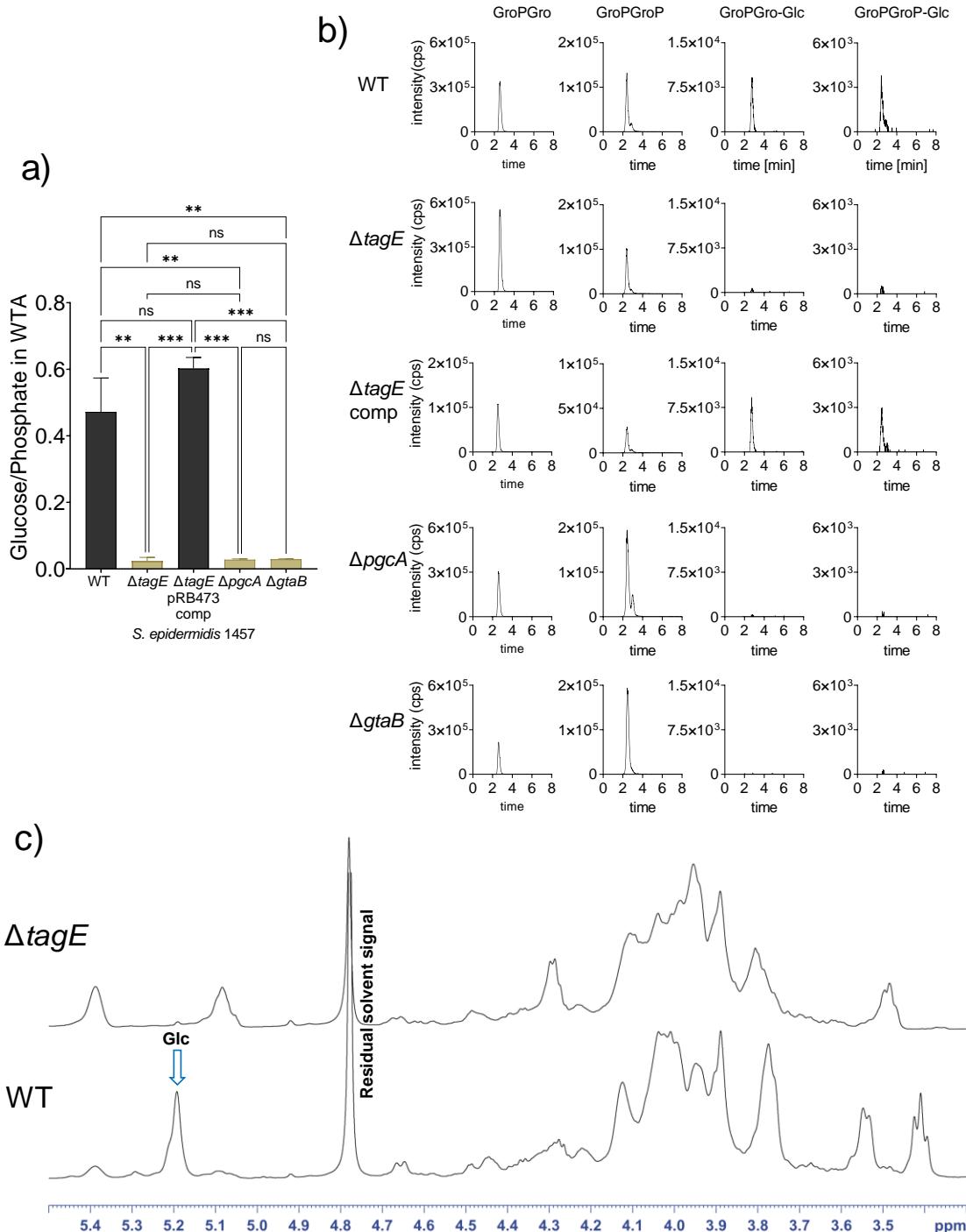

562 57. Speciale I, Notaro A, Garcia-Vello P, Di Lorenzo F, Armiento S, Molinaro A, et al. Liquid-state
563 NMR spectroscopy for complex carbohydrate structural analysis: A hitchhiker's guide. *Carbohydrate
564 Polymers*. 2022;277:118885. doi: <https://doi.org/10.1016/j.carbpol.2021.118885>.

565 58. Garcia-Vello P, Sharma G, Speciale I, Molinaro A, Im SH, De Castro C. Structural features and
566 immunological perception of the cell surface glycans of *Lactobacillus plantarum*: a novel rhamnose-
567 rich polysaccharide and teichoic acids. *Carbohydr Polym*. 2020;233:115857. Epub 20200110. doi:
568 10.1016/j.carbpol.2020.115857. PubMed PMID: 32059908.

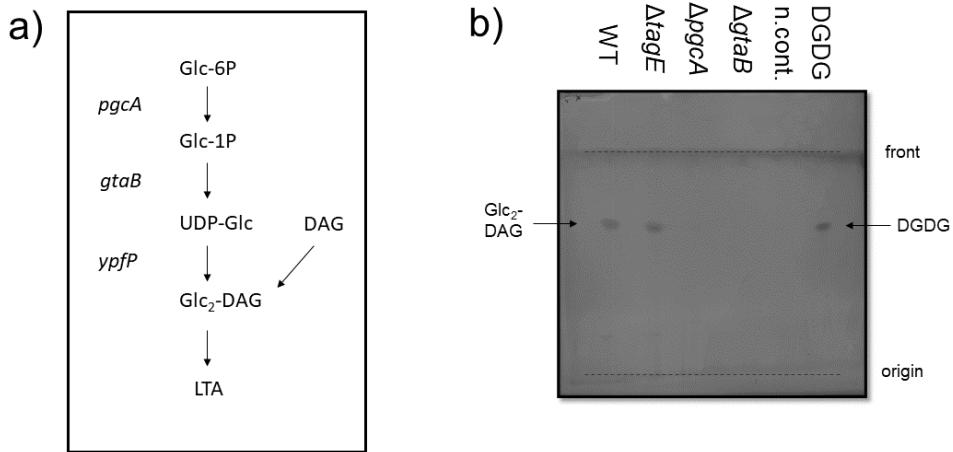
569



570

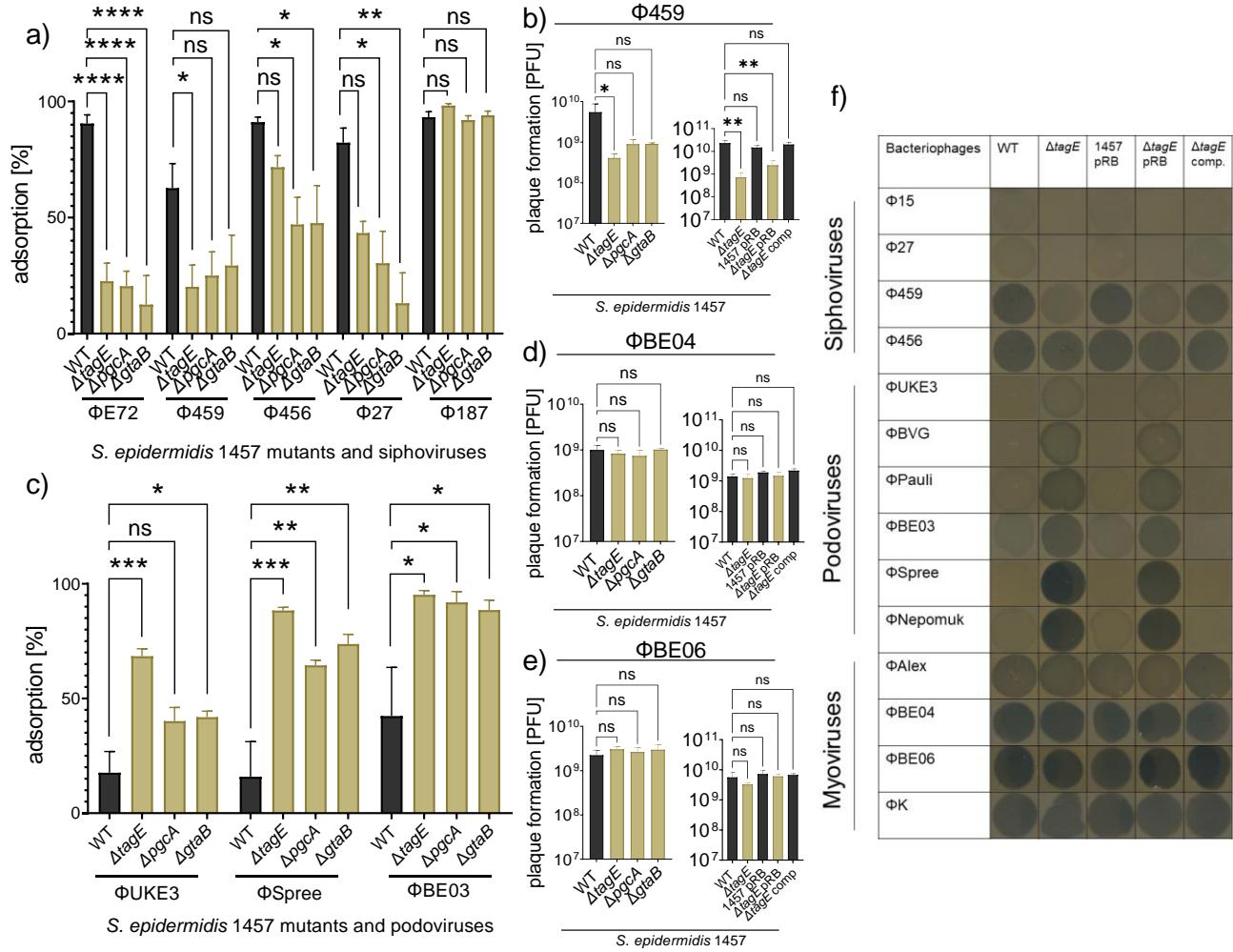
571 Figures


572

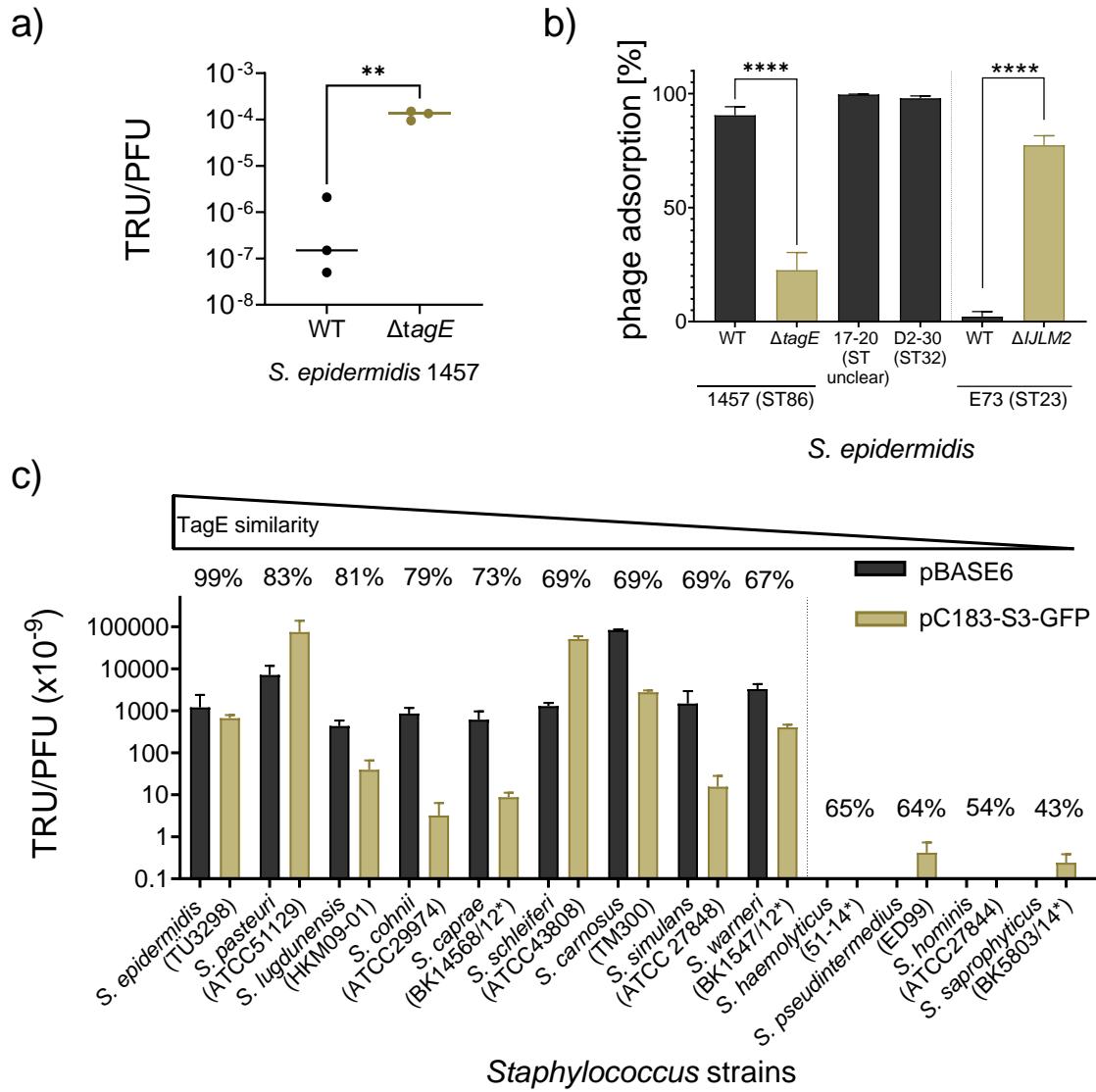
573 **Figure 1:** The *tagE* gene encodes a glycosyltransferase in *S. epidermidis*. a) Genetic locus identified by
574 transposon mutagenesis contains the *S. epidermidis* *tagE*, *pgcA*, and *gtaB* homologues. Transposon
575 insertion sites are labeled in gold. b) MUSCLE alignment of *S. epidermidis* TagE with *B. subtilis* TagE and
576 *S. aureus* TarM protein sequences.


577

578 **Figure 2:** ΦE72 shows decreased infection (a,b) and binding (d,e) of the *tagE*, *pgcA*, and *gtaB* mutants.
 579 This defect can be restored by complementing the *tagE* mutant with the genetic locus containing *tagE*,
 580 *pgcA*, and *gtaB* on plasmid pRB473 (c,f). The data represent the mean \pm SEM of at least three
 581 independent experiments. Ordinary one-way ANOVA was used to determine statistical significance
 582 versus *S. epidermidis* 1457 wild type (WT), indicated as: not significant (ns), *P < 0.05, **P < 0.01, ***P <
 583 0.001, ****P < 0.0001.


584

585 **Figure 3:** WTA analysis of the *S. epidermidis* mutants $\Delta tagE$, $\Delta pgcA$, $\Delta gtaB$ and of $\Delta tagE$ containing the
 586 pRB473 plasmid carrying *tagE*, *pgcA*, and *gtaB* genes for complementation. a) Ratio of glucose per
 587 phosphate content of WTA measured enzymatically. b) HPLC-MS: Extracted ion chromatograms (EIC)
 588 of GroP-Gro ([M - H]⁻ = 245.0432) and GroP-GroP ([M - H]⁻ = 325.0095) with (GroP-Gro-Glc; [M - H]⁻ =
 589 407.096) (GroP-GroP-Glc; [M - H]⁻ = 487.0623) or without glucose substitution. c) ¹H NMR spectra
 590 reveal D-glucose on WTA of the *S. epidermidis* 1457 wild type (WT) (at the C2-position of GroP), while
 591 deletion of *tagE* results in absence of glucose on WTA. For a) data represent the mean \pm SEM of at
 592 least three independent experiments. Ordinary one-way ANOVA was used to determine statistical
 593 significance, indicated as: not significant (ns), **P < 0.01, ***P < 0.001.

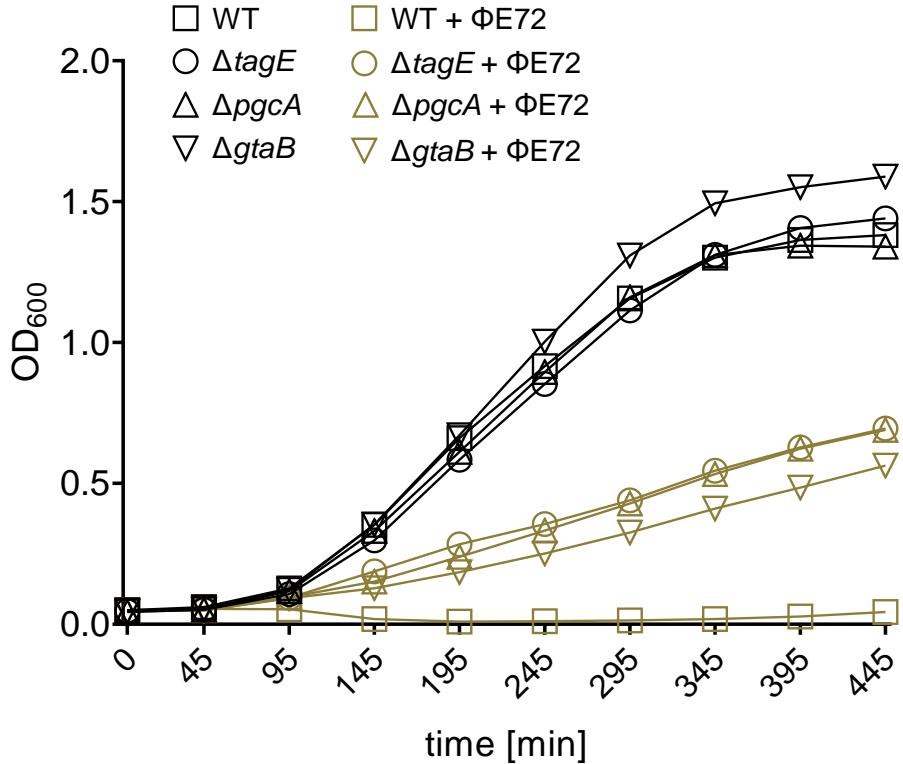

594

595 **Figure 4:** Glycolipid detection by TLC. a) LTA glycolipid biosynthesis pathway as described for *S. aureus*
596 and *B. subtilis* (adapted from [36]). b) Glycolipid detection on a TLC plate stained with α -
597 naphtol/sulfuric acid. 5 μ g of digalactosyldiacylglycerol (DGDG) was used as positive control, the
598 solvent methanol/chloroform (1:1) as negative control (n.cont.). One representative experiment of
599 three independent experiments is shown.

600

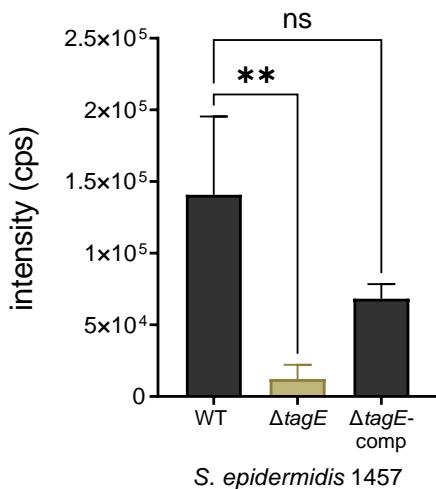
601 **Figure 5:** TagE-glycosylated WTA increases binding of siphoviruses but reduces podovirus binding. WTA
602 glycosylation-deficient mutants of *S. epidermidis* show decreased binding of ΦE72-related siphoviruses
603 Φ459, Φ456, and Φ27 (a), but increased binding of the podoviruses ΦUKE3, ΦSpree, and ΦBE03 (c),
604 while the GroP-GalNAc-specific siphovirus Φ187 still shows strong binding (a). WTA glycosylation-
605 deficient mutants of *S. epidermidis* show less plaque formation by ΦE72-related siphovirus Φ459 (b),
606 while plaque formation by the myoviruses ΦBE04 (d) and ΦBE06 (e) remains unchanged. f) Lytic zones
607 and “lysis from without” by siphoviruses decrease in the absence of *tagE* but increase for podoviruses.
608 Myoviruses show formation of lytic zones independently of the presence or absence of *tagE*. (pRB=
609 pRB473 (empty vector control); comp = complementation with *tagE*, *gtab*, *pgcA* genes) The data
610 represents the mean \pm SEM of at least three independent experiments. Ordinary one-way ANOVA was
611 used to determine statistical significance versus *S. epidermidis* 1457 wild type (WT), indicated as: not
612 significant (ns), *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

613

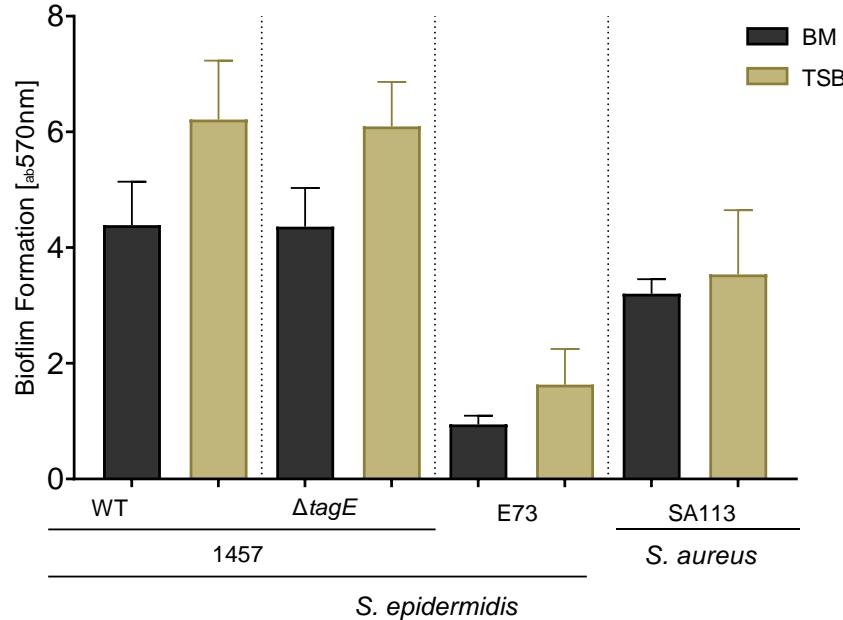

614 **Figure 6:** Correlation of TagE-related genes of CoNS species with phage transduction. a) Φ 187
615 transduction of pRB473 is increased in the absence of glucosylated GroP-WTA. b) Φ E72 binds to
616 different strains of *S. epidermidis* but binding is prevented by RboP expression of strain E73. c) Φ E72-
617 mediated transduction of pBASE6 or pC183-S3-GFP to CoNS depends on high TagE homology. If type
618 strains were used to determine sequence similarity of TagE homologues, strain names are marked with
619 an asterisk. The data represents the mean \pm SEM of at least three independent experiments. For a,b)
620 unpaired t-test was used to determine statistical significance versus *S. epidermidis* 1457 wild type
621 (WT), indicated as: **P < 0.01, ****P < 0.0001.

622

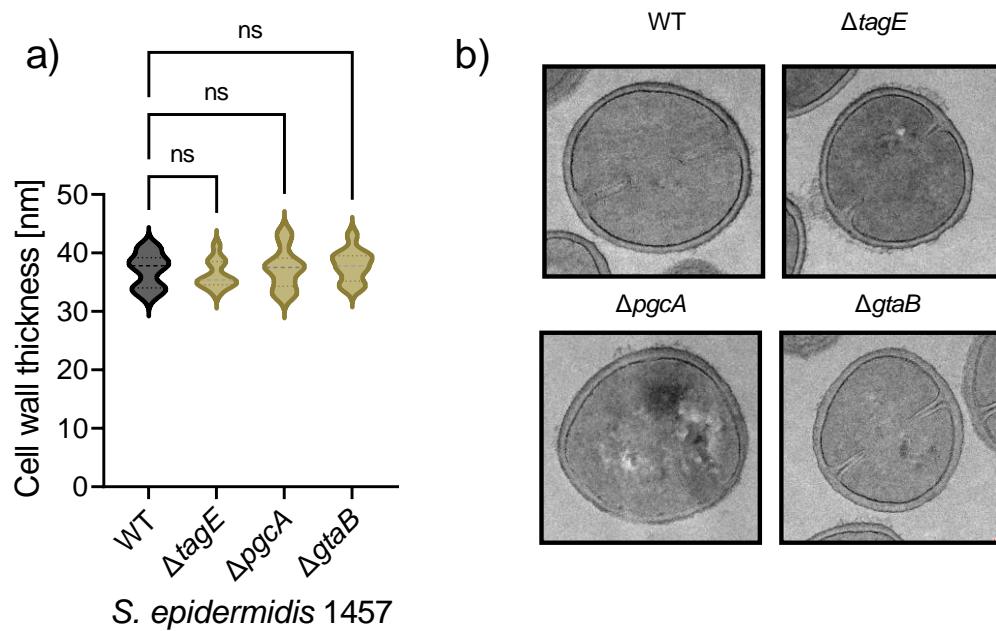
623 **Table 1:** Conservation of TagE homologs in CoNS strains used for transduction.


Species	Strain name	Query cover [%]	Sequence identity [%]	Sequence similarity [%]	<i>tagE, pgcA, gtaB</i> encoded together
<i>Staphylococcus epidermidis</i>	TÜ3298	100%	99%	99%	Yes
<i>Staphylococcus epidermidis</i>	D2-30	100%	99%	99%	Yes
<i>Staphylococcus pasteuri</i>	ATCC51129	100%	69%	83%	Yes
<i>Staphylococcus lugdunensis</i>	HKU09-01	99%	64%	81%	Yes
<i>Staphylococcus cohnii</i>	ATCC29974	99%	61%	79%	No
<i>Staphylococcus caprae</i>	ATCC35538	100%	52%	73%	No
<i>Staphylococcus schleiferi</i>	ATCC43808	98%	50%	69%	No
<i>Staphylococcus carnosus</i>	TM300	99%	48%	69%	No
<i>Staphylococcus simulans</i>	ATCC27848	99%	46%	69%	No
<i>Staphylococcus warneri</i>	ATCC27836	99%	47%	67%	No
<i>Staphylococcus haemolyticus</i>	ATCC29970	99%	45%	65%	No
<i>Staphylococcus pseudointermedius</i>	ED99	100%	43%	64%	No
<i>Staphylococcus hominis</i>	ATCC27844	65%	28%	54%	No
<i>Staphylococcus saprophyticus</i>	ATCC15305	85%	24%	43%	No

624


625

626 **Fig. S1:** $\Phi E72$ prevents growth of *S. epidermidis* 1457 wild type (WT). Growth of the $\Delta tagE$, $\Delta pgcA$,
627 $\Delta gtaB$ mutants is only partially reduced by $\Phi E72$ compared to growth without addition of phage.
628 Approximately 5×10^8 PFU/ml were used. Data represent mean \pm SEM of three independent
629 experiments.


630

631 **Fig. S2:** Area-under-the-curve quantification of GroP-GroP-Glc residue ($[M - H]^- = 487.0623$) total ion
632 chromatogram measured by HPLC-MS after chemical digest of *S. epidermidis* WTA. Data
633 represent mean \pm SEM of three independent experiments. Ordinary one-way ANOVA was used to
634 determine statistical significance versus *S. epidermidis* 1457 wild type (WT), indicated as: not
635 significant (ns), **P < 0.01.

636

637 **Fig. S3:** *S. epidermidis* 1457 biofilm formation was measured in BM and TSB medium. Biofilm formation
638 is unchanged in the $\Delta tagE$ deletion mutant.

639

640 **Fig. S4:** Electron microscopy at 12,500 x magnification indicates that cell wall thickness (a), and cell
641 shape (b), is unchanged in all mutants compared to the wild type. a) shows the mean cell wall thickness
642 of at least 11 different bacterial cells of each mutant or the wild type (WT). Ordinary one-way ANOVA
643 was used to determine statistical significance versus *S. epidermidis* 1457 wild type (WT), indicated as:
644 not significant (ns).

645

646

647 **Fig. S5:** Structural prediction of the *S. epidermidis* TagE trimer with AlphaFold2 [44, 45].

648

649 **Table S1:** Bacteriophages and bacterial strains used in this study.

Bacteriophage	Propagation strain	Morphology	Reference or origin
ΦE72	<i>S. epidermidis</i> 1457	siphovirus	Fišarová et al
Φ459	<i>S. epidermidis</i> SE459	siphovirus	Fišarová et al
Φ456	<i>S. epidermidis</i> SE456	siphovirus	Fišarová et al
Φ27	<i>S. epidermidis</i> SE27	siphovirus	Fišarová et al
Φ15	<i>S. epidermidis</i> SE15	siphovirus	Fišarová et al
Φ187	<i>S. aureus</i> PS187	siphovirus	Pantůcek et al
ΦUKE3	<i>S. epidermidis</i> DSM18857	podovirus	DSMZ*
ΦSpree	<i>S. epidermidis</i> DSM18857	podovirus	DSMZ*
ΦBE03	<i>S. epidermidis</i> SKNA73	podovirus	Valente et al.**
ΦBVG	<i>S. epidermidis</i> DSM20608	podovirus	DSMZ*
ΦPauli	<i>S. epidermidis</i> DSM20608	podovirus	DSMZ*
ΦNepomuk	<i>S. epidermidis</i> DSM20044	podovirus	DSMZ*
ΦBE04	<i>S. epidermidis</i> SKNA34	myovirus	Valente et al.**
ΦBE06	<i>S. epidermidis</i> SKNA34	myovirus	Valente et al.**
ΦAlex	<i>S. epidermidis</i> DSM3269	myovirus	DSMZ*
ΦK	<i>S. epidermidis</i> RN4220	myovirus	O'Flaherty et al.

650 * DSMZ: German Collection of Microorganisms and Cell Cultures

651 ** Department of Intensive Care Medicine, Inselspital, Bern University Hospital, Switzerland

652

653 **Table S2:** Primer sequences used for cloning and sequencing.

Primer name	Primer sequence	Application
tagE F1-For	ATCTGAATTCAAGTAAATCAGCATCAATAAG	Deletion of <i>S. epidermidis</i> tagE
tagE F1-Rev	TTTGAGATCTGAAATTTATAATGTGATTAAAGAA G	Deletion of <i>S. epidermidis</i> tagE
tagE F2-For	TATAAGATCTTAGGTATTCAAGATGGTTAGATGAT C	Deletion of <i>S. epidermidis</i> tagE
tagE F2-Rev	ATTAGTCGACAATGCATTAGAAGTTAAATTGAA C	Deletion of <i>S. epidermidis</i> tagE
pgcA F1-For	AAGGGAATTCCAAAAGAAATGTTACCAATATTAG	Deletion of <i>S. epidermidis</i> pgcA
pgcA F1-Rev	TTTGAGATCTTAATATCGAAATAGAATTAAACATG	Deletion of <i>S. epidermidis</i> pgcA
pgcA F2-For	TACGAGATCTTCGAAAACATAAAAAGTTCTTAG	Deletion of <i>S. epidermidis</i> pgcA
pgcA F2-Rev	TTTTGTCGACTTGAATGAAATCTAATTTCATTGC	Deletion of <i>S. epidermidis</i> pgcA
gtaB F1-For	GTCTTGGATTCTAATACCACTCGTATTACAG	Deletion of <i>S. epidermidis</i> gtaB
gtaB F1-Rev	ATATAAGATCTACAGACATCCACTGAAAAACACT AG	Deletion of <i>S. epidermidis</i> gtaB
gtaB F2-For	GTCAAGATCTTGATTATTAGAAAGGATAGTACC C	Deletion of <i>S. epidermidis</i> gtaB
gtaB F2-Rev	TATCTGTCGACAACTTAACATTGAGTTAGTT G	Deletion of <i>S. epidermidis</i> gtaB
TagE Locus Comp-For	TCATGGTACCTTACTTACTCTCTCAAACAAAC	Fragment synthesis for complementation of gene locus containing tagE, pgcA, and gtaB
TagE Locus Comp-Rev	TTCTGTCGACATTCTGATTAAGTTAATGTTAATAT TG	Fragment synthesis for complementation of gene locus containing tagE, pgcA, and gtaB
473 Eco	CCTCAAGCTAGAGAGTCATTACCCC	sequencing of pRB473 and pBASE shuttle vectors
473 Hind	CTGGATTGTTCAGAACGCTCGG	sequencing of pRB473 shuttle vector
pBASE Hind	CTACTTCTTCAAACCTCTCTACG	sequencing of pBase shuttle vector
erm-For	CTATTATTAACGGGAGGAAA	Sequencing from erythromycin cassette forward
erm-Rev	TAATCTAACGTATTTATCTGCGTA	Sequencing from erythromycin cassette reverse

654

Extended descriptions of detailed methods

WTA compositional analysis

HPLC-MS

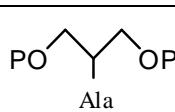
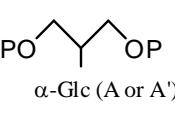
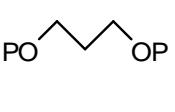
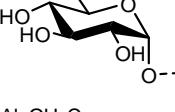
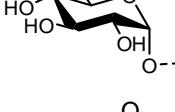
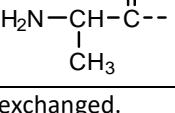
Analysis of the WTA polymer composition was performed using an LTQ Orbitrap Velos mass spectrometer (Thermo Fisher Scientific), connected to an ACQUITY ultra-performance liquid chromatography (UPLC) system (Waters Corporation). Separation in the UPLC was carried out using a Phenomenex C18-Gemini® column (150 × 2 mm, 3 µm, 110 Å, Phenomenex) at 37°C with 0.1% formic acid and 0.05% HCO₂NH₄ (A) and CH₃CN (B) buffer system. A single run (injection volume of 5 µl) was performed with a flow rate of 0.2 ml/min and a two-step gradient: after 2.5 min of equilibration with 100% A, a 1-min gradient up to 5% B was followed by a 4-min gradient up to 70% B. After 2 min at 70% B, a re-equilibration step of 2.5 min followed with a flow rate of 4 ml/min. LC-MS data processing was done with UmetaFlow GUI ([56], <https://github.com/axelwalter/streamlit-metabolomics-statistics>) via extracted ion chromatograms with a mass tolerance of 10 ppm.

NMR

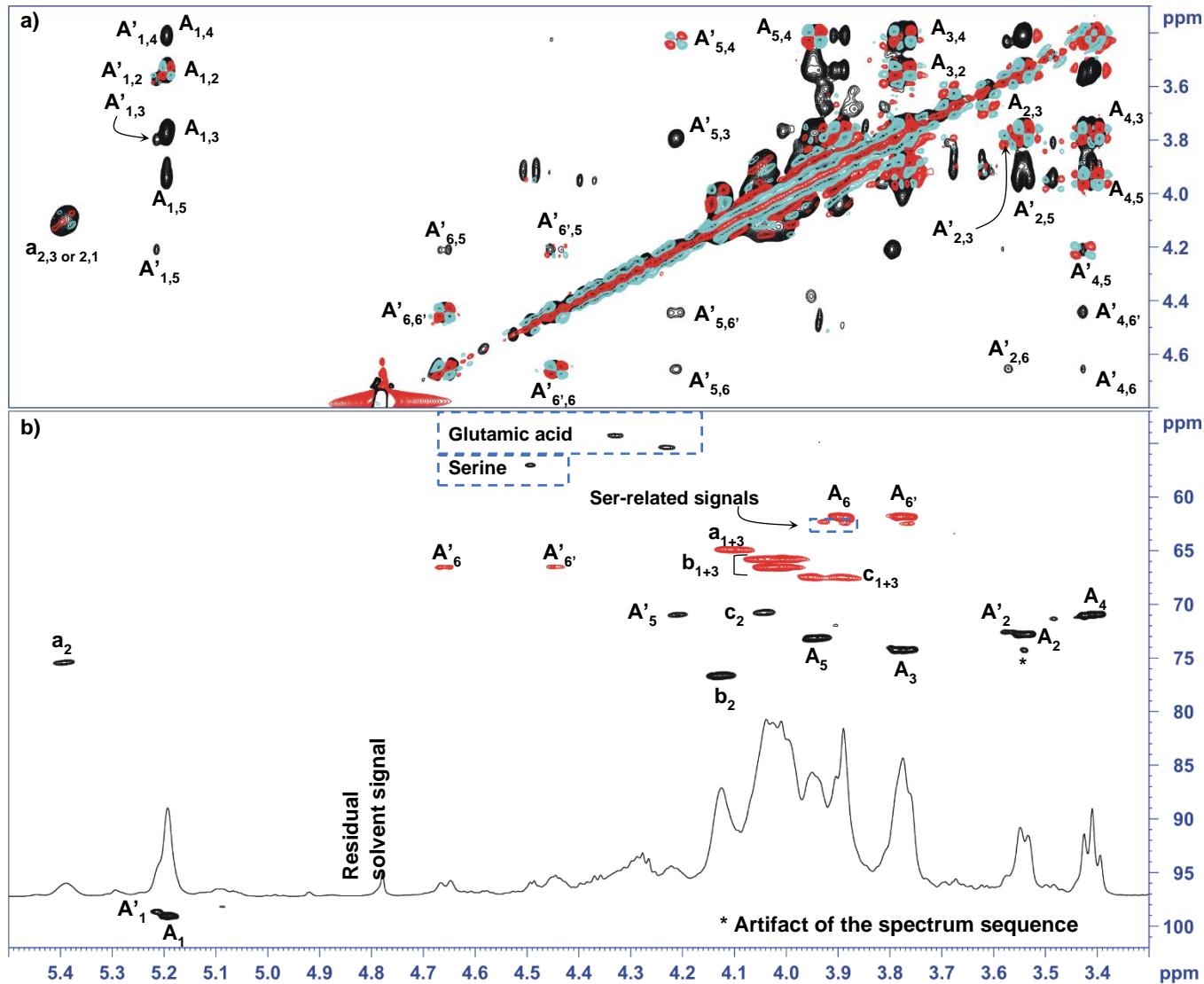
¹H NMR spectra were recorded for both, wild-type and $\Delta tagE$ *S. epidermidis* strains, and they were carried out on a Bruker DRX-600 spectrometer equipped with a cryo-probe, at 298 K. Chemical shifts of spectra recorded in D₂O were calculated in ppm relative to internal acetone (2.225 and 31.45 ppm). 2D NMR spectra were acquired for *S. epidermidis* wild type only, the spectral width was set to 12 ppm and the frequency carrier placed at the residual HOD peak, suppressed by pre-saturation. Two-dimensional spectra (DQ-COSY, TOCSY, NOESY, gHSQC, and gHMBC) were measured using standard Bruker software. For all experiments, 512 FIDs of 2,048 complex data points were collected, 32 scans per FID were acquired for homonuclear spectra, and 100 and 200 ms of mixing time was used for the TOCSY and NOESY spectra, respectively. Heteronuclear ¹H-¹³C spectra were measured in the ¹H-detected mode, gHSQC spectrum was acquired with 40 scans per FID, the GARP sequence was used for ¹³C decoupling during acquisition; gHMBC scans doubled those of gHSQC spectrum. During processing, each data matrix was zero-filled in both dimensions to give a matrix of 4K × 2K points and was resolution-enhanced in both dimensions by a cosine-bell function before Fourier transformation; data processing and analysis were performed with the Bruker Topspin 3 program.

NMR analysis of the WTA of the wild type (WT) strain of *Staphylococcus epidermidis*

NMR analyses of the spectra displayed several signals in the anomeric region (5.5 – 4.4 ppm, Fig. 3c) of the proton spectrum with the one at 5.20 ppm being more intense than the others. Then, inspection of the HSQC spectrum (Fig S6a) disclosed that only the signals at ~ 5.2 and ~ 5.1 ppm arose by the anomeric position of different monosaccharide residues, due to the characteristic values of the related carbon atoms (Table S3, [57]). The full assignment of both proton and carbon chemical shifts was possible with confidence only for the most abundant unit, labelled with **A**. Thus, the anomeric proton at 5.2 ppm was labelled **A**₁, and the combined analysis of the TOCSY and COSY spectra determined that it was an α -glucose (Fig. S6b). Indeed, the TOCSY spectrum showed that **A**₁ correlated to four other protons as occurs for *gluco* configured residues, and this information combined with those from the COSY spectrum enabled the sequence assignment from H-2 to H-5 (Fig. S6b, Table S3). Then, the identification of A6 was inferred by the finding of the H-4/H-6 cross peak in the TOCSY spectrum (Fig. S6b) while the position of the other H-6 proton, labelled A6' was determined by the strong cross-peak in the COSY spectrum (Fig. S6b). Finally, the identification of the carbon chemical shifts was inferred by analysing the ¹H-¹³C HSQC (Fig. S6a), which determined that **A** was a glucose unit that was not further substituted due to the similarity of its carbon chemical shifts to those reported for the reference glycoside [57]. The inspection of the HMBC spectrum (not shown) reported a cross peak connecting H-1 of **A** to a carbon at 76.7 ppm in turn correlated to a proton at 4.12 ppm, later assigned to H-2/C-2 of a glycerol (Gro) unit, labelled **b**.







Interestingly, H-1 of **A** was flanked by a second anomeric proton at 5.22 ppm (Fig. S6b, Table S3), labelled as **A'** and presenting a correlation pattern in the TOCSY spectrum very similar to that of **A**, except for the fact that the density analogue to **A**_{1,5} was missing while there was a new one relating H-1 to a proton at 4.21 ppm. The identification of the sequence between the protons of this second spin system was aided by the COSY spectrum and the additional signal at 4.21 was assigned to H-5, in turn correlated to the two H-6 protons at 4.66 and 4.44 ppm (Fig. S6b), highly deshielded due to the O-acylation with an Ala residue as inferred by the long range correlation with a carbonyl group at 171.5 ppm (not shown).

Then, the anomeric region reported a proton signal at 5.39 ppm, attached to a carbon at 75.5 ppm with only one additional correlation in the COSY spectrum with a proton at ca. 4.1 ppm, assigned with a hydroxy-methyl carbon at 64.9 ppm in the HSQC spectrum (Figure S6a). The pattern of this unit, labelled **a**, was found to be consistent with that of a Gro unit, phosphorylated at both ends and acylated with an Ala unit at O-2, as described in the WTA polymers containing GroP motifs [42].


Finally, the HSQC spectrum contained three densities at ¹H/¹³C 4.04/70.8, and 4.12/76.7, labelled as **c**₂, and **b**₂, respectively, all identified with the aid of the values reported in literature (Table S3). In detail,

c was a glycerol unit not further substituted [42], while **b** had the glucose units (**A** and **A'**) linked to O-2 [58]. Of note, the HSQC spectrum contained other densities not related to the WTA polymer and presumably belonging to other compounds co-purified with it. In some cases, it was possible to recognize some amino acids, but it was never possible to establish the nature of the compound(s) due to the low intensities of the signals or to the lack of the proper correlations in the full set of NMR spectra acquired. The integration of the **A**_{5,1} and **A'**_{5,1} densities in the TOCSY spectrum (Figure S6b) revealed that about 15% of this monosaccharide was derivatized with an alanine at O-6.

Table S3: NMR chemical shifts. ¹H (600MHz) chemical shifts of WTA structural motifs found in *S. epidermidis* wild type. The sample was dissolved in deuterated water (HOD, 550 µl) and measured at 298 K. By convention, C-1 of the glycerol unit is placed at the left of the structural formula, P stands for phosphate.

Residue	motif	1;1' (for Gro)	2	3; 3' (for Gro)	4	5	6; 6'
a		4.11 x 2	5.39	4.11 x 2	--	--	--
Gro		64.9	75.5	64.9	--	--	--
b		~ 4.02 x 2*	4.12	~ 4.05 – 4.00*	--	--	--
Gro		66.6	76.7	65.8	--	--	--
c		3.85;3.90	4.04	3.85;3.90	--	--	--
Gro		67.5	70.8	67.5	--	--	--
A		5.20	3.54	3.78	3.41	3.95	3.89; 3.77
t-α-Glc		98.9	72.8	74.3	71.0	73.1	61.9
A'		5.22	3.57	3.80	3.43	4.21	4.66; 4.44
t-α-Glc6Ala		96.2	72.6	74.1	71.2	71.0	66.5
Ala		--	4.23	1.62	--	--	--
		171.5	50.1	16.6--	--	--	--

* These signals can be exchanged.

Fig. S6: NMR spectra recorded for WTA isolated from *S. epidermidis* wild type. a) Expansion of the HSQC spectrum detailing the anomeric and the carbinolic region. b) Overlap of the TOCSY (black) and COSY (cyan and red) spectra. In all the spectra, the most relevant densities are labelled with the letter used in Table S3; as for the carbohydrate units (**A** and **A'**), the anomeric signals are indicated with a capital letter, while the Gro units (**a**, **b**, and **c**) are labeled with small letters.