

1 **Butyrate Protects against SARS-CoV-2-induced Tissue Damage in**
2 **Golden Hamsters**

3

4 Huan Yu,^a Lunzhi Yuan,^b# Zhigang Yan,^a Ming Zhou,^b Jianghui Ye,^b Kun Wu,^b
5 Wenjia Chen,^a Rirong Chen,^a Ningshao Xia,^b Yi Guan,^{a,c,d}# Huachen Zhu^{a,c,d}#

6

7 ^aGuangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases /
8 Joint Laboratory for International Collaboration in Virology and Emerging
9 Infectious Diseases (Ministry of Education), Joint Institute of Virology (Shantou
10 University/The University of Hong Kong), Shantou University Medical College,
11 Shantou, Guangdong, China

12 ^bState Key Laboratory of Vaccines for Infectious Diseases, National Institute of
13 Diagnostics and Vaccine Development in Infectious Diseases, NMPA Key
14 Laboratory for Research and Evaluation of Infectious Disease Diagnostic
15 Technology, School of Public Health, Xiamen University, Xiamen, Fujian, China

16 ^cState Key Laboratory of Emerging Infectious Diseases (SKLEID), School of
17 Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong,
18 Hong Kong SAR, China

19 ^dEKIH (Gewuzhikang) Advanced Pathogen Research Institute, Futian District,
20 Shenzhen, Guangdong, China

21

22 Running Head: Butyrate protects against SARS-CoV-2 infection

23

24 #Address correspondence to Huachen Zhu, zhuhch@hku.hk; Yi Guan,
25 yguan@hku.hk; and Lunzhi Yuan, yuanlunzhi@xmu.edu.cn.

26 **ABSTRACT**

27 Butyrate, produced by gut microbe during dietary fiber fermentation, plays
28 anti-inflammatory and antioxidant effects in chronic inflammation diseases, yet
29 it remains to be explored whether butyrate has protective effects against viral
30 infections. Here, we demonstrated that butyrate alleviated tissue injury in
31 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected
32 golden hamsters with supplementation of butyrate before and during the
33 infection. Butyrate-treated hamsters showed augmentation of type I interferon
34 (IFN) response and activation of endothelial cells without exaggerated
35 inflammation. In addition, butyrate regulated redox homeostasis by enhancing
36 the activity of superoxide dismutase (SOD) to inhibit excessive apoptotic cell
37 death. Therefore, butyrate exhibited an effective prevention against
38 SARS-CoV-2 by upregulating antiviral immune responses and promoting cell
39 survival.

40

41 **IMPORTANCE**

42 Since SARS-CoV-2 has caused severe disease characterized by acute
43 respiratory distress syndrome (ARDS) in humans, it is essential to develop
44 therapeutics based on relieving such severe clinical symptoms. Current
45 therapy strategies mainly focus on individuals who have COVID-19, however,
46 there is still a strong need for prevention and treatment of SARS-CoV-2
47 infection. This study showed that butyrate, a bacterial metabolite, improved the
48 response of SARS-CoV-2-infected hamsters by reducing immunopathology
49 caused by impaired antiviral defenses and inhibiting excessive apoptosis

50 through reduction in oxidative stress.

51

52 **KEYWORDS**

53 butyrate, SARS-CoV-2, golden hamster, type I IFN, apoptosis, oxidative stress

54

55 **Word count:**

56 Abstract: 114 words;

57 Importance: 83 words;

58 Main text: 3049 words.

59

60

61

62 **INTRODUCTION**

63 Short-chain fatty acids (SCFAs) are the most abundant metabolites mainly
64 produced by the gut microbiota in colon via fermentation of dietary fiber (1, 2).
65 Among SCFAs, butyrate is a primary energy source for colonocytes and a
66 well-known anti-inflammatory mediator, which can be activated by binding to G
67 protein-coupled receptors (GPRs), mainly GPR41 and GPR43 (3), or inhibit the
68 activity of histone deacetylase (HDAC) (4). Butyrate can not only regulate
69 mucosal barrier function and mucosal immunity, but also mediate the
70 communication between colonic microbiota and other organs such as brain,
71 lung and liver (5-8).

72 Lower respiratory infections are reported the 4th leading cause of death
73 with 2.6 million global deaths in 2019 (9). Since December 2019, severe acute
74 respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused more than 6.9
75 million deaths of coronavirus disease 2019 (COVID-19) by July 2023 (10).
76 SARS-CoV-2 can replicate both in the upper and lower respiratory tract (11,
77 12). SARS-CoV-2 infection, alongside individual susceptibility and host
78 immunity, can even progress to severe and life-threatening pneumonia, which
79 is responsible for increased morbidity and mortality in COVID-19 (13). Patients
80 with either acute COVID-19 or Post-acute COVID Syndrome (PACS) were
81 reported to have gastrointestinal symptoms such as abdominal pain, diarrhea,
82 nausea and vomiting (14, 15). Interestingly, patients with PACS at 6 months
83 showed gut microbiome dysbiosis compared with non-COVID-19 controls and
84 patients without PACS, while the PACS development was not significantly
85 correlated with viral load both in respiratory and stool (16). Therefore, there is

86 growing emphasis on how butyrate maintaining intestinal homeostasis and
87 reducing lung disruption in SARS-CoV-2 infection.

88 So far, many therapeutic approaches have been developed for COVID-19
89 including the use of antiviral drugs, monoclonal antibodies, immunomodulators
90 and convalescent plasma (17-21). However, it is still unclear whether the
91 interventions based on gut microbe and metabolites are effective for the
92 prevention and treatment of respiratory viral infection. As mentioned above,
93 butyrate, a major metabolite of gut microbiota and a fuel for colonocytes, can
94 regulate immune response and mediate gut-lung communication. We
95 hypothesized that oral administration of butyrate protects against SARS-CoV-2
96 infection. Here, we investigated the effects of butyrate on colon mucosal barrier
97 and lung injury in SARS-CoV-2-challenged golden hamsters. The results
98 showed that butyrate can significantly increase the number of goblet cells in the
99 colon. More importantly, supplementation of butyrate boosted the antiviral
100 immune responses and promoted cell survival in the lung, as a result, alleviated
101 lung injury of SARS-CoV-2-infected hamsters.

102 **RESULTS**

103 **Body weight change and viral load in hamsters.** To assess whether
104 microbial metabolites protect against virus-induced inflammation and tissue
105 injury, golden hamsters were orally administrated with butyrate before and
106 during the course of SARS-CoV-2 infection (Fig. 1A). From 2 to 5 days post
107 inoculation (dpi), hamsters in the virus-inoculated groups, either
108 butyrate-treated or untreated, showed significant decrease in body weight, while
109 the mock-infected group showed slight body gain. There was no significant
110 difference between the control and the butyrate-treated groups in weight loss
111 (Fig. 1B). To further investigate the effect of butyrate on SARS-CoV-2
112 replication, we assessed the viral load in trachea, lung and colon of the
113 hamsters. The highest viral RNA load was detected in the lungs of
114 virus-inoculated individuals throughout the infection (Fig. 1C). The mock
115 infected group had no virus infection (data not shown). From 3 to 5 dpi, viral
116 RNA in the lung was trending higher both in control and butyrate-treated
117 hamsters in contrast to a gradual decrease in the trachea (Fig. 1C). At 5 dpi,
118 viral RNA in the lung of butyrate-treated hamsters was slightly higher than that
119 in the control ($P > 0.05$) as well as that in the trachea ($P > 0.05$) (Fig. 1C). Low
120 copies of viral RNA were detected in the colon at 3 and 5 dpi (Fig. 1C). No
121 statistical significance was observed in the viral load between butyrate-treated
122 hamsters and the control ($P > 0.05$).

123 **Pathological changes in hamsters.** At 5 dpi, gross observation showed
124 pulmonary hemorrhage and edema in 50-75% in control hamsters, while
125 10-50% in butyrate-treated hamsters (Fig. 2A). Histopathological analysis of
126 the lung revealed that hamsters treated with butyrate had significantly lower

127 pathological scores with fewer inflammatory cells infiltration, reduced alveolar
128 structure damage and less hemorrhage at 5 dpi (Fig. 2B and C).
129 immunohistochemistry (IHC) for SARS-CoV-2 N Protein (NP) detection
130 showed that there was fewer viral antigen in the lung of butyrate-treated
131 hamsters in comparison to the control (Fig. 2B). As above mentioned, butyrate
132 protected against SARS-CoV-2 by eliminating viral antigen and reducing tissue
133 destruction.

134 **Expression levels of representative genes in hamsters.** To elucidate
135 how butyrate influences antiviral innate immunity, we assessed the expression
136 levels of genes involved following SARS-CoV-2 infection (see Table 1 for
137 primer sequences). First, a marked reduction in interferon alpha and beta
138 receptor subunit 1 gene (*Ifnar1*) was observed in the control compared with
139 both mock and butyrate-treated hamsters at 5 dpi, indicating an inhibited type I
140 interferon (IFN) signaling induced by SARS-CoV-2 (Fig. 3A). Inflammatory
141 cytokines such as interleukin 6 (*Il6*), *Il1b* and tumor necrosis factor alpha (*Tnfa*)
142 were both upregulated in two virus-inoculated groups with higher levels in
143 butyrate-treated hamsters (Fig. 3B). So did the proinflammatory interferon
144 gamma (*Ifng*) (Fig. 3D). Next, to test whether butyrate can influence the
145 immunomodulatory functions of endothelial cells, we assessed mRNA
146 expression of cellular adhesion molecules. Intercellular adhesion molecule 1
147 (*Icam1*) was marginally downregulated in the control compared with the mock,
148 whereas an increased expression was observed in butyrate-treated hamsters
149 (Fig. 3C). Vascular cell adhesion molecule 1 (*Vcam1*) and selectin E (*Sele*)
150 were both upregulated after SARS-CoV-2 stimulation, but no significant
151 upregulation were seen in *Vcam1* between mock and control hamsters (Fig.

152 3C). Determination of these adhesion molecules showed that endothelial cells
153 in the lung of butyrate-treated hamsters were activated at 5 dpi. Finally, we
154 found endothelial nitric oxide synthase (*eNOS*, *Nos3*) as well as inducible NOS
155 (*iNOS*, *Nos2*) was significantly decreased in the control compared with the
156 mock, indicating deficient nitric oxide (NO) inside blood vessels upon infection,
157 which thus leads to endothelial dysfunction and suppressed NO signaling in
158 regulating inflammation (Fig. 3D). However, butyrate reversed the
159 downregulation of these two nitric oxide synthases in the lung at 5 dpi (Fig. 3D).
160 Taken together, these results showed that butyrate regulated inflammation by
161 activating antiviral response and promoting homeostasis and activation of
162 endothelial cells.

163 **Oxidative status in hamsters.** To further determine the pathogenesis of
164 inflammation, we assessed oxidative stress at 5 dpi. The expression level of
165 NADPH oxidase 2 (*Nox2*) showed slight increase in the control and
166 butyrate-treated hamsters, which probably pointed toward the production of
167 reactive oxygen species (ROS) (Fig. 4A). Compared with the mock, the level of
168 malondialdehyde (MDA) in the plasma of the control was markedly elevated,
169 indicating lipid peroxidation subsequent to oxidative stress (Fig. 4B). Moreover,
170 the activity of superoxide dismutase (SOD), a key antioxidant enzyme in redox
171 signaling, was significantly decreased in the control compared with
172 butyrate-treated hamsters (Fig. 4C). Therefore, butyrate contributed to
173 anti-inflammatory effects through reduction of oxidative stress mainly by
174 regulating redox signaling.

175 **Apoptosis in hamsters.** To determine the consequences of oxidative
176 stress and whether structural integrity of the lung was also affected by butyrate,

177 we assessed SARS-CoV-2-induced apoptosis at 5 dpi. Hoechst staining
178 showed that the lung of butyrate-treated hamsters compared with the control
179 had significantly fewer apoptotic cells (Fig. 5A and B). In line with this,
180 caspase-8 (*Casp8*), a crucial initiator in apoptotic pathway, was significantly
181 increased in the control, but no significant difference between mock and
182 butyrate-treated hamsters (Fig. 5C). Executioner caspase, especially *Casp3*,
183 was upregulated in virus-inoculated groups either butyrate-treated or untreated,
184 indicating apoptosis upon SARS-CoV-2 infection (Fig. 5C). However, the
185 expression of *Bcl2*, an antiapoptotic signature gene, showed significant
186 increase when hamsters were treated with butyrate (Fig. 5C). Thus, butyrate
187 alleviated lung injury by preventing excessive apoptotic cell death and
188 promoting cell survival mediated by an antiapoptotic gene.

189 **Goblet cells and *Muc2* expression in hamsters.** As butyrate is the
190 metabolite mainly produced in colon, we also assessed whether butyrate
191 regulated the development of mucosal barrier. Compared with butyrate-treated
192 hamsters, there were significantly fewer goblet cells in the colon of the control
193 (Fig. 6A and B). Similarly, crypts were elongated ($P<0.001$) and mucin 2 (*Muc2*)
194 expression was somewhat increased ($P>0.05$) in butyrate-treated hamsters
195 (Fig. 6B and C). Thus, SARS-CoV-2 infection impaired the colon mucosal
196 barrier and butyrate played a role in goblet cell development.

197 **DISCUSSION**

198 Here, we demonstrated that butyrate could protect the
199 SARS-CoV-2-infected hamsters by enhancing antiviral response and
200 promoting cell survival to maintain tissue homeostasis. In severe and critical
201 COVID-19 patients, low or no type I IFNs levels were observed, suggesting a
202 highly impaired type I IFN response in these patients (22, 23). Similarly, the
203 expression of IFNB1 and IFN-stimulated genes (ISGs) such as MX1, ISG20
204 and OASL failed to be activated in SARS-CoV-2-infected golden hamsters and
205 ferrets respectively (23, 24). At the same time, IFN-I/II
206 receptors-double-knockout mice have increased viral titers and higher
207 congestion scores of the lungs following SARS-CoV-2 infection (25). We found
208 that butyrate activated innate immune response in the early phase of
209 SARS-CoV-2 infection, characterized by upregulated type I IFN signaling and
210 increased proinflammatory cytokines, which contributed to rapid viral antigen
211 clearance and avoided immunopathology in the lungs. This was also
212 supported by a recent study which showed that antiviral factors such as IL1b,
213 IRF7, TNF and IFNAR1 were upregulated in butyrate-treated gut epithelial
214 organoids (26).

215 Another feature of severe COVID-19 patients was lymphopenia and
216 immunosuppression, which was responsible for hyperinflammation in the late
217 stage of disease (27, 28). As innate immune response alone may be
218 insufficient to viral clearance, recruitment of lymphocytes appeared a more
219 effective defense in virus infection. Alveolar capillary endothelial cells not only
220 functioned as gas change, but were capable of recruiting immune cells through
221 adhesion molecules and activating CD4+ T cells (29). By binding to T cell

222 integrin, ICAM1 increased T cell receptor (TCR) signaling to mediate activation,
223 adhesion and migration of T cells (30, 31). Patients with COVID-19 showed
224 pulmonary vascular injury associated with intracellular presence of
225 SARS-CoV-2 and endothelial cell destruction (32). In a SARS-CoV-2-infected
226 vascularized lung-on-chip model, despite unproductive viral replication, lower
227 CD31 expression and decreased barrier integrity were observed (33). These
228 evidences indicated endothelial injury might lead to impaired immune cell
229 recruitment and thus increased hyperinflammation in the lung. In our study,
230 SARS-CoV-2-infected hamsters had decreased gene expression levels of
231 adhesion molecules (*lcam1* and *Vcam1*), suggesting suppression of
232 endothelial cells activation. NOS3 was mainly expressed in endothelial cells
233 and NOS3-derived NO was involved in maintaining vascular homeostasis, like
234 vasodilation, inhibition of vascular inflammation and preventing endothelial
235 cells apoptosis (34). Together with NOS2, endogenous NO produced also
236 regulated T cell differentiation and activation (35). Our data showed that
237 butyrate reversed the expression of *Nos3* and *Nos2* induced by SARS-CoV-2.
238 Thus, butyrate offered endothelial protection and promoted endothelial cells
239 activation.

240 Further exploring the effect of butyrate on reducing tissue damage, we
241 observed that butyrate played anti-oxidative and anti-apoptotic effects.
242 Increasing evidences suggested that pathological responses in COVID-19
243 patients was probably caused by oxidative stress (36). Excessive ROS and
244 subsequent MDA, a lipid peroxidation product, were both oxidative markers
245 (37, 38). Moreover, there is decreased expression of the antioxidant enzyme
246 SOD3 in the lungs of elderly COVID-19 patients (39). Not only that, the link

247 between oxidative stress and apoptosis has been proven (40). Apoptosis
248 induced by SARS-CoV-2 was associated with disease severity and inhibition
249 of intrinsic apoptosis could markedly ameliorated the lung damage in
250 transgenic mice that expressed human angiotensin-converting enzyme 2
251 (hACE2) (41, 42). BCL2 is known to suppress apoptosis by regulating ROS
252 levels in cytoplasm and mitochondria (40). Thus, our findings suggested that
253 butyrate might inhibit SARS-CoV-2-induced apoptosis by improving
254 antioxidant capacity in the lung.

255 In summary, we demonstrated that butyrate protected against
256 SARS-CoV-2-induced tissue damage in golden hamsters. Among respiratory
257 diseases, butyrate has previously been associated with regulation in chronic
258 pulmonary disorders and no significant effects are observed in treating
259 SARS-CoV-2-infected hamsters with a combination of SCFAs (i.e. acetate,
260 propionate and butyrate) (43, 44). Our study highlighted the beneficial effects
261 of butyrate on boosting antiviral immune response and reducing oxidative
262 stress to promote cell survival in the disease.

263 **MATERIALS AND METHODS**

264 **Virus.** The SARS-CoV-2 D614G variant AP62 (hCoV-19/China/AP62/2020,
265 GISAID accession No. EPI_ISL_2779638) was used in this study. Virus stocks
266 were prepared by three passages in Vero (ATCC CCL-81) in Dulbecco's
267 modified Eagle Medium (DMEM) (Gibco) with 1% Penicillin-Streptomycin
268 (Gibco). Virus titers were measured by plaque assay.

269 **Experimental animal and study design.** 8-10-week-old male golden
270 hamsters were derived from Charles River Laboratories (Beijing Vital River
271 Laboratory Animal Technology Co., Ltd.) and raised at the specific
272 pathogen-free animal feeding facilities. For butyrate-treated group, sodium
273 butyrate (Sigma-Aldrich) was supplemented in the drinking water at a final
274 concentration of 500 mmol/L 12 days prior to virus inoculation and until the end
275 of the experiment (3 or 5 days post-inoculation, dpi) (Figure 1). Control
276 hamsters were supplied with water without butyrate during the experiment.
277 Hamsters were anaesthetized with isoflurane and intranasally inoculated with a
278 dose of 1×10^4 plaque forming units (PFU) of SARS-CoV-2 diluted in 200 μ L
279 phosphate-buffered saline (PBS). Mock animals were inoculated with 200 μ L
280 PBS. Body weight of each hamster was measured daily during the course of
281 the experiment. At day 3 and 5 post-inoculation, three and eight hamsters
282 were euthanized respectively. Blood samples were collected to prepare
283 plasma. After gross observation and pathological examination, trachea, lung
284 and colon were collected to determine viral load or levels of host gene
285 expression. Lung and colon tissues were also fixed in 10% formalin for
286 histologic analysis. All experiments with the infectious virus were performed in
287 biosafety level 3 (BSL-3) and animal biosafety level 3 (ABSL-3) containment

288 facilities. The animal experiment was approved by the Medical Animal Care
289 and Welfare Committee of Shantou University Medical College (Ref No.
290 SUMC2023-058).

291 **Determination of viral load.** Fresh trachea, lung and colon tissues were
292 collected and homogenized in PBS (100 mg/mL) respectively and RNA was
293 extracted using the RNA Extraction Kit (Wantai Beijing). Quantitative real-time
294 PCR (RT-qPCR) was performed to detect the ORF1ab and N gene of
295 SARS-CoV-2 using the SARS-CoV-2 RT-qPCR Kit (Wantai Beijing) on a
296 SLAN-96S real-time PCR system (Hongshi Shanghai).

297 **Determination of host gene expression level.** Tissues kept in
298 InvitrogenTM RNAlaterTM Stabilization Solution (Thermo Fisher Scientific) were
299 homogenized in buffer RLT Plus (Qiagen). Total RNA from lung and colon
300 samples was extracted using RNeasy Plus Mini Kit (Qiagen) according to the
301 manufacturer's instructions. For determination of target gene expression level,
302 cDNA was synthetized from total RNA using PrimeScript II 1st Strand cDNA
303 Synthesis Kit (Takara) and amplified using ChamQ Universal SYBR qPCR
304 Master Mix (Vazyme Biotech) on a SLAN-96S real-time PCR system (Hongshi
305 Shanghai). Primer sequences used for amplification were listed in Table 1. For
306 each sample, the host gene expression level was normalized to the house
307 keeping gene γ -actin (*Actg*) and calculated using $2^{-\Delta\Delta Ct}$ method.

308 **Histologic analysis.** After being fixed in 10% formalin, lung and colon
309 tissues were then embedded into paraffin and sectioned into 3-5 μ m slices. The
310 fixed lung sections were stained with hematoxylin and eosin (H&E) for
311 histopathological analysis. Lung injury was evaluated according to pathological
312 changes as follows: 1) alveolar septum widened and consolidation; 2)

313 pulmonary hemorrhage and edema; and 3) inflammatory cell infiltration. Score
314 each pathological change on a scale of 0 to 4: 0 = no damage; 1 = mild injury; 2
315 = moderate injury; 3 = severe injury; and 4 = very severe (45). For one lung
316 lobe, the pathological score was the sum of these pathological changes. For
317 each hamster, the comprehensive pathological score was averaged over the
318 pathological score of 3 or 4 lung lobes. To elucidate the distribution of viral
319 antigen in lung tissues, immunohistochemistry (IHC) was used to detect the N
320 protein (NP) of SARS-CoV-2. A murine anti-SARS-CoV-2 NP specific
321 monoclonal antibody (15A7-1) was applied (45). The colon sections were
322 stained with Alcian Blue (AB) to analyze goblet cells and crypt length. For each
323 hamster, the number of goblet cells and the crypt length were averaged over at
324 least 5 well-defined crypts (46). Images were taken using a ZEISS Axio Imager
325 A2 microscope.

326 **Apoptosis assay.** Formalin-fixed lung sections were stained with Hoechst
327 33258 (Beyotime) and the images were captured using a fluorescence
328 microscope (ZEISS, Axio Imager A2). Apoptotic cells are characterized by
329 condensed chromatin, so the cells which showed higher fluorescence intensity
330 in nuclei were considered as Hoechst positive cells. The percentage of Hoechst
331 positive cells was measured in ImageJ (NIH).

332 **Malondialdehyde (MDA) and superoxide dismutase (SOD) assays.**
333 Plasma prepared was used for MDA measurement with Lipid Peroxidation
334 MDA Assay Kit (Beyotime). Freshly collected lung samples were homogenized
335 in lysis buffer (Beyotime) for SOD detection by Superoxide Dismutase (SOD)
336 Assay Kit (Nanjing Jiancheng). One unit of SOD is defined as the amount of

337 enzyme that causes 50% inhibition of the reduction reaction between
338 water-soluble tetrazolium salt-1 (WST-1) and superoxide anion.

339 **Statistics.** All results were presented as mean \pm standard deviation (SD).
340 Student's t test (two tailed) and two-way analysis of variance (ANOVA) was
341 used for comparison of treatment groups. Mann-Whitney test was used to
342 calculate the P value in the case of non-normal distribution of the data. $P < 0.05$
343 was statistically significant. * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$. NS = no
344 significance. Graph generation and statistical analysis were performed in
345 GraphPad Prism 8.0.1 (GraphPad Software).

346 **ACKNOWLEDGMENTS**

347 We thank all staff from the Guangdong-Hong Kong Joint Laboratory of
348 Emerging Infectious Diseases / Joint Laboratory for International Collaboration
349 in Virology and Emerging Infectious Diseases / Joint Institute of Virology
350 (STU/HKU) and SKLEID for their technical support and administrative
351 assistance.

352 This research was funded by Shenzhen-Hong Kong Science and
353 Technology Cooperation Zone-Shenzhen program (grant number
354 HZQB-KCXYZ-2021014), Department of Science & Technology, Guangdong
355 (grant number 2019B121205009), Hong Kong Research Grant Council (grant
356 number T11-705/21-N and T11-712/19-N), the Innovation and Technology
357 Commission of Hong Kong and Li Ka Shing Foundation. The funders had no
358 role in the study design, data collection and analysis, decision to publish, or
359 preparation of the article.

360 The authors declare no competing interests. Conceptualization, H.Y. and
361 H.Z.; methodology, H.Y., L.Y. and H.Z.; resources and supervision, L.Y., N.X.,
362 Y.G. and H.Z.; experimental investigation, H.Y., L.Y., Z.Y., M.Z., J.Y., K.W.,
363 W.C. and R.C.; formal analysis, H.Y. and H.Z.; visualization, H.Y.; manuscript
364 writing, H.Y. (original draft) and H.Z.; project administration, H.Z.; funding
365 acquisition, Y.G. and H.Z..

366

367 **REFERENCES**

368 1. Zhang L, Liu C, Jiang Q, Yin Y. 2021. Butyrate in Energy Metabolism: There Is Still More
369 to Learn. *Trends Endocrinol Metab* 32:159-169.

370 2. Medawar E, Haange SB, Rolle-Kampczyk U, Engelmann B, Dietrich A, Thieleking R,
371 Wiegank C, Fries C, Horstmann A, Villringer A, von Bergen M, Fenske W, Veronica Witte
372 A. 2021. Gut microbiota link dietary fiber intake and short-chain fatty acid metabolism with
373 eating behavior. *Transl Psychiatry* 11:500.

374 3. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. 2016. From Dietary Fiber to
375 Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. *Cell*
376 165:1332-1345.

377 4. Chang PV, Hao L, Offermanns S, Medzhitov R. 2014. The microbial metabolite butyrate
378 regulates intestinal macrophage function via histone deacetylase inhibition. *Proc Natl
379 Acad Sci U S A* 111:2247-52.

380 5. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake
381 C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K,
382 Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O,
383 Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H. 2013. Commensal
384 microbe-derived butyrate induces the differentiation of colonic regulatory T cells. *Nature*
385 504:446-50.

386 6. Wei H, Yu C, Zhang C, Ren Y, Guo L, Wang T, Chen F, Li Y, Zhang X, Wang H, Liu J.
387 2023. Butyrate ameliorates chronic alcoholic central nervous damage by suppressing

388 microglia-mediated neuroinflammation and modulating the microbiome-gut-brain axis.

389 Biomed Pharmacother 160:114308.

390 7. Dang AT, Marsland BJ. 2019. Microbes, metabolites, and the gut-lung axis. Mucosal

391 Immunol 12:843-850.

392 8. Tilg H, Adolph TE, Trauner M. 2022. Gut-liver axis: Pathophysiological concepts and

393 clinical implications. Cell Metab 34:1700-1718.

394 9. WHO. 2020. The top 10 causes of death.

395 <https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death>.

396 10. WHO. 2023. WHO Coronavirus (COVID-19) Dashboard. <https://covid19.who.int>.

397 11. Wolfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Muller MA, Niemeyer D,

398 Jones TC, Vollmar P, Rothe C, Hoelscher M, Bleicker T, Brunink S, Schneider J, Ehmann

399 R, Zwirglmaier K, Drosten C, Wendtner C. 2020. Virological assessment of hospitalized

400 patients with COVID-2019. Nature 581:465-469.

401 12. V'Kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. 2021. Coronavirus biology and

402 replication: implications for SARS-CoV-2. Nature reviews Microbiology 19:155-170.

403 13. Lamers MM, Haagmans BL. 2022. SARS-CoV-2 pathogenesis. Nat Rev Microbiol

404 20:270-284.

405 14. Patel KP, Patel PA, Vunnam RR, Hewlett AT, Jain R, Jing R, Vunnam SR. 2020.

406 Gastrointestinal, hepatobiliary, and pancreatic manifestations of COVID-19. J Clin Virol

407 128:104386.

408 15. Cooney J, Poullis A. 2022. Post-COVID-19 irritable bowel syndrome. Neurogastroenterol

409 Motil 34:e14420.

410 16. Liu Q, Mak JYW, Su Q, Yeoh YK, Lui GC-Y, Ng SSS, Zhang F, Li AYL, Lu W, Hui DS-C,
411 Chan PK, Chan FKL, Ng SC. 2022. Gut microbiota dynamics in a prospective cohort of
412 patients with post-acute COVID-19 syndrome. Gut 71:544-552.

413 17. Saravolatz LD, Depcinski S, Sharma M. 2023. Molnupiravir and Nirmatrelvir-Ritonavir:
414 Oral Coronavirus Disease 2019 Antiviral Drugs. Clin Infect Dis 76:165-171.

415 18. Taylor PC, Adams AC, Hufford MM, de la Torre I, Winthrop K, Gottlieb RL. 2021.
416 Neutralizing monoclonal antibodies for treatment of COVID-19. Nat Rev Immunol
417 21:382-393.

418 19. Korley FK, Durkalski-Mauldin V, Yeatts SD, Schulman K, Davenport RD, Dumont LJ, El
419 Kassar N, Foster LD, Hah JM, Jaiswal S, Kaplan A, Lowell E, McDyer JF, Quinn J, Triulzi
420 DJ, Van Huysen C, Stevenson VLW, Yadav K, Jones CW, Kea B, Burnett A, Reynolds JC,
421 Greineder CF, Haas NL, Beiser DG, Silbergliit R, Barsan W, Callaway CW, Investigators
422 S-CP. 2021. Early Convalescent Plasma for High-Risk Outpatients with Covid-19. N Engl J
423 Med 385:1951-1960.

424 20. Rossotti R, Travi G, Ughi N, Corradin M, Baiguera C, Fumagalli R, Bottiroli M, Mondino M,
425 Merli M, Bellone A, Basile A, Ruggeri R, Colombo F, Moreno M, Pastori S, Perno CF,
426 Tarsia P, Epis OM, Puoti M, Niguarda C-WG. 2020. Safety and efficacy of anti-il6-receptor
427 tocilizumab use in severe and critical patients affected by coronavirus disease 2019: A
428 comparative analysis. The Journal of infection doi:10.1016/j.jinf.2020.07.008.

429 21. Group RC, Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, Staplin N,
430 Brightling C, Ustianowski A, Elmahi E, Prudon B, Green C, Felton T, Chadwick D, Rege K,
431 Fegan C, Chappell LC, Faust SN, Jaki T, Jeffery K, Montgomery A, Rowan K, Juszczak E,

432 Baillie JK, Haynes R, Landray MJ. 2021. Dexamethasone in Hospitalized Patients with

433 Covid-19. *N Engl J Med* 384:693-704.

434 22. Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, Péré H, Charbit B,

435 Bondet V, Chenevier-Gobeaux C, Breillat P, Carlier N, Gauzit R, Morbieu C, Pène F, Marin

436 N, Roche N, Szwebel T-A, Merkling SH, Treluyer J-M, Veyer D, Mouthon L, Blanc C,

437 Tharaux P-L, Rozenberg F, Fischer A, Duffy D, Rieux-Laucat F, Kernéis S, Terrier B.

438 2020. Impaired type I interferon activity and inflammatory responses in severe COVID-19

439 patients. *Science (New York, NY)* 369:718-724.

440 23. Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, Jordan TX,

441 Oishi K, Panis M, Sachs D, Wang TT, Schwartz RE, Lim JK, Albrecht RA, tenOever BR.

442 2020. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. *Cell*

443 181:1036-1045.e9.

444 24. Hoagland DA, Møller R, Uhl SA, Oishi K, Frere J, Golynker I, Horiuchi S, Panis M,

445 Blanco-Melo D, Sachs D, Arkun K, Lim JK, tenOever BR. 2021. Leveraging the antiviral

446 type I interferon system as a first line of defense against SARS-CoV-2 pathogenicity.

447 *Immunity* 54.

448 25. Leist SR, Dinnon KH, 3rd, Schäfer A, Tse LV, Okuda K, Hou YJ, West A, Edwards CE,

449 Sanders W, Fritch EJ, Gully KL, Scobey T, Brown AJ, Sheahan TP, Moorman NJ, Boucher

450 RC, Gralinski LE, Montgomery SA, Baric RS. 2020. A Mouse-Adapted SARS-CoV-2

451 Induces Acute Lung Injury and Mortality in Standard Laboratory Mice. *Cell*

452 doi:10.1016/j.cell.2020.09.050.

453 26. Li J, Richards EM, Handberg EM, Pepine CJ, Raizada MK. 2021. Butyrate Regulates

454 COVID-19-Relevant Genes in Gut Epithelial Organoids From Normotensive Rats.

455 Hypertension (Dallas, Tex : 1979) 77:e13-e16.

456 27. Yu K, He J, Wu Y, Xie B, Liu X, Wei B, Zhou H, Lin B, Zuo Z, Wen W, Xu W, Zou B, Wei L,

457 Huang X, Zhou P. 2020. Dysregulated adaptive immune response contributes to severe

458 COVID-19. Cell Res 30:814-816.

459 28. Tian W, Zhang N, Jin R, Feng Y, Wang S, Gao S, Gao R, Wu G, Tian D, Tan W, Chen Y,

460 Gao GF, Wong CCL. 2020. Immune suppression in the early stage of COVID-19 disease.

461 Nat Commun 11:5859.

462 29. Gillich A, Zhang F, Farmer CG, Travaglini KJ, Tan SY, Gu M, Zhou B, Feinstein JA,

463 Krasnow MA, Metzger RJ. 2020. Capillary cell-type specialization in the alveolus. Nature

464 586:785-789.

465 30. Jankowska KI, Williamson EK, Roy NH, Blumenthal D, Chandra V, Baumgart T, Burkhardt

466 JK. 2018. Integrins Modulate T Cell Receptor Signaling by Constraining Actin Flow at the

467 Immunological Synapse. Front Immunol 9:25.

468 31. Johansen KH, Golec DP, Huang B, Park C, Thomsen JH, Preite S, Cannons JL, Garcon F,

469 Schrom EC, Courreges CJF, Veres TZ, Harrison J, Nus M, Phelan JD, Bergmeier W, Kehrl

470 JH, Okkenhaug K, Schwartzberg PL. 2022. A CRISPR screen targeting PI3K effectors

471 identifies RASA3 as a negative regulator of LFA-1-mediated adhesion in T cells. Sci Signal

472 15:eabl9169.

473 32. Capuano A, Rossi F, Paolisso G. 2020. Covid-19 Kills More Men Than Women: An

474 Overview of Possible Reasons. Front Cardiovasc Med 7:131.

475 33. Thacker VV, Sharma K, Dhar N, Mancini GF, Sordet-Dessimoz J, McKinney JD. 2021.

476 Rapid endotheliitis and vascular damage characterize SARS-CoV-2 infection in a human

477 lung-on-chip model. *EMBO Rep* 22:e52744.

478 34. Forstermann U, Sessa WC. 2012. Nitric oxide synthases: regulation and function. *Eur*

479 *Heart J* 33:829-37, 837a-837d.

480 35. Garcia-Ortiz A, Serrador JM. 2018. Nitric Oxide Signaling in T Cell-Mediated Immunity.

481 *Trends Mol Med* 24:412-427.

482 36. Laforge M, Elbim C, Frere C, Hemadi M, Massaad C, Nuss P, Benoliel JJ, Becker C. 2020.

483 Tissue damage from neutrophil-induced oxidative stress in COVID-19. *Nat Rev Immunol*

484 20:515-516.

485 37. Forman HJ, Zhang H. 2021. Targeting oxidative stress in disease: promise and limitations

486 of antioxidant therapy. *Nat Rev Drug Discov* 20:689-709.

487 38. Cen M, Ouyang W, Zhang W, Yang L, Lin X, Dai M, Hu H, Tang H, Liu H, Xia J, Xu F.

488 2021. MitoQ protects against hyperpermeability of endothelium barrier in acute lung injury

489 via a Nrf2-dependent mechanism. *Redox Biol* 41:101936.

490 39. Abouhashem AS, Singh K, Azzazy HME, Sen CK. 2020. Is Low Alveolar Type II Cell

491 SOD3 in the Lungs of Elderly Linked to the Observed Severity of COVID-19? *Antioxid*

492 *Redox Signal* 33:59-65.

493 40. Sharma P, Kaushal N, Saleth LR, Ghavami S, Dhingra S, Kaur P. 2023. Oxidative

494 stress-induced apoptosis and autophagy: Balancing the contrary forces in

495 spermatogenesis. *Biochim Biophys Acta Mol Basis Dis* 1869:166742.

496 41. Andre S, Picard M, Cezar R, Roux-Dalvai F, Alleaume-Butaux A, Soundaramourty C, Cruz
497 AS, Mendes-Frias A, Gotti C, Leclercq M, Nicolas A, Tauzin A, Carvalho A, Capela C,
498 Pedrosa J, Castro AG, Kundura L, Loubet P, Sotto A, Muller L, Lefrant JY, Roger C, Claret
499 PG, Duvnjak S, Tran TA, Racine G, Zghidi-Abouzid O, Nioche P, Silvestre R, Droit A,
500 Mammano F, Corbeau P, Estaquier J. 2022. T cell apoptosis characterizes severe
501 Covid-19 disease. *Cell Death Differ* 29:1486-1499.

502 42. Chu H, Shuai H, Hou Y, Zhang X, Wen L, Huang X, Hu B, Yang D, Wang Y, Yoon C,
503 Wong BH, Li C, Zhao X, Poon VK, Cai JP, Wong KK, Yeung ML, Zhou J, Au-Yeung RK,
504 Yuan S, Jin DY, Kok KH, Perlman S, Chan JF, Yuen KY. 2021. Targeting highly
505 pathogenic coronavirus-induced apoptosis reduces viral pathogenesis and disease
506 severity. *Sci Adv* 7.

507 43. Corrêa RO, Castro PR, Moser R, Ferreira CM, Quesniaux VFJ, Vinolo MAR, Ryffel B.
508 2022. Butyrate: Connecting the gut-lung axis to the management of pulmonary disorders.
509 *Front Nutr* 9:1011732.

510 44. Sencio V, Machelart A, Robil C, Benech N, Hoffmann E, Galbert C, Deryuter L, Heumel S,
511 Hantute-Ghesquier A, Flourens A, Brodin P, Infantini F, Richard V, Dubuisson J, Granette
512 C, Sulpice T, Wolowczuk I, Pinet F, Prévot V, Belouzard S, Briand F, Duterque-Coquillaud
513 M, Sokol H, Trottein F. 2022. Alteration of the gut microbiota following SARS-CoV-2
514 infection correlates with disease severity in hamsters. *Gut microbes* 14:2018900.

515 45. Yuan L, Zhu H, Zhou M, Ma J, Liu X, Wu K, Ye J, Yu H, Chen P, Chen R, Wang J, Zhang
516 Y, Ge S, Yuan Q, Cheng T, Guan Y, Xia N. 2022. Nasal irrigation efficiently attenuates

517 SARS-CoV-2 Omicron infection, transmission and lung injury in the Syrian hamster model.

518 iScience 25:105475.

519 46. Johansson ME, Hansson GC. 2022. Goblet cells need some stress. J Clin Invest 132.

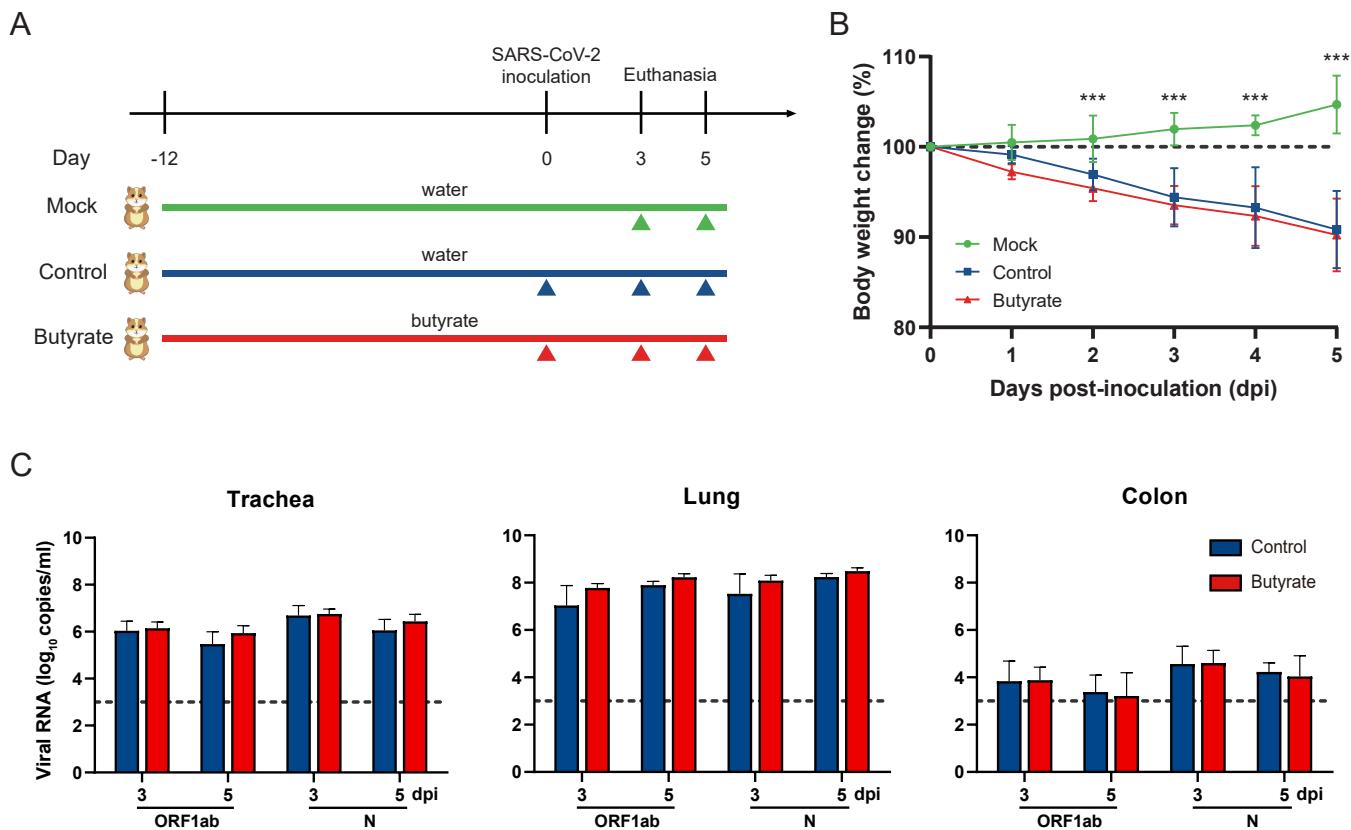
520 **Figure legends**

521 **FIG 1** Body weight change and viral load in golden hamsters intranasally
522 challenged with SARS-CoV-2. (A) study design. Hamsters were supplied with
523 or without butyrate in the drinking water since day 12 prior to the virus
524 inoculation till the endpoint of the experiment. Mock animals were hamsters
525 which received pure drinking water and no virus inoculation with SARS-CoV-2.
526 Control indicated hamsters which received drinking water and intranasal
527 inoculation of 1×10^4 plaque forming units (PFU) of SARS-CoV-2. Butyrate
528 indicated hamsters receiving 500 mmol/L of sodium butyrate supplemented in
529 their daily drinking water and SARS-CoV-2 inoculation. At days 3 (n=3) and 5
530 (n=8) post-inoculation (dpi), hamsters were euthanized and samples were
531 collected for further analysis. (B) Body weight change after virus inoculation.
532 (C) Viral RNA detected in the trachea, lung and colon of hamsters at 3 and 5
533 dpi. Data are represented as mean \pm SD. Statistical significance were
534 analyzed with two-way ANOVA. *P<0.05, **P<0.01, ***P<0.001. The body
535 weight change and viral load had no significant difference between
536 butyrate-treated hamsters and the control.

537 **FIG 2** Pathological changes in the lung of golden hamsters intranasally
538 inoculated with SARS-CoV-2. (A) Gross lung images of hamsters at 5 dpi.
539 Scale bars, 1 cm. (B) Histopathological examination of the lungs at 5 dpi.
540 Detection of SARS-CoV-2 NP-positive cells are indicated by black arrows.
541 Scale bars, 200 μ m. (C) Comprehensive pathological scores of the lungs at 5
542 dpi. Data are represented as mean \pm SD. Statistical significance were
543 analyzed with Student's t test. *P<0.05, **P<0.01, ***P<0.001.

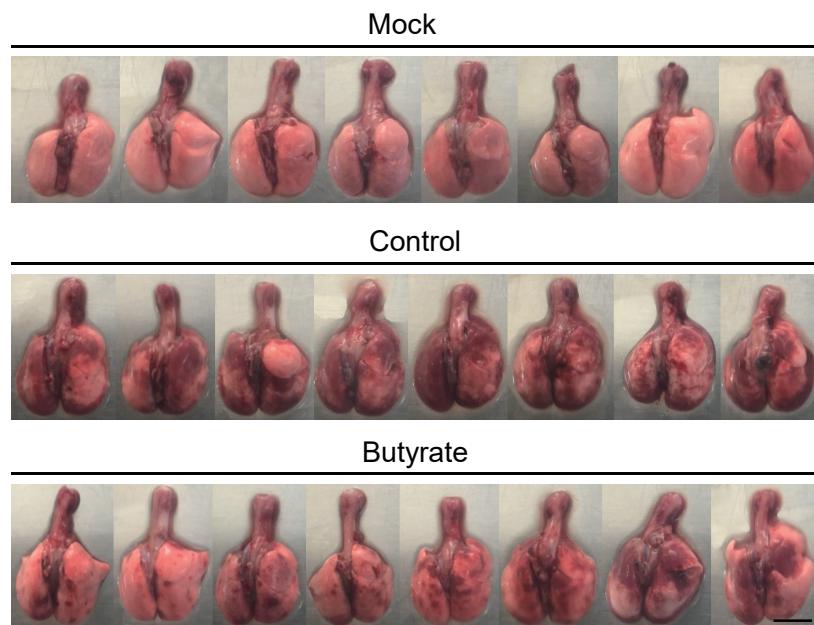
544 **FIG 3** Expression levels of representative genes in golden hamsters
545 intranasally challenged with SARS-CoV-2. Relative mRNA expression for
546 representative genes in (A) type I interferon (IFN) signaling, (B)
547 proinflammatory effect, (C) endothelial cells activation and (D) nitric oxide
548 production in the lungs at 5 dpi. The mRNA level was normalized to the house
549 keeping gene γ -actin and calculated using $2^{-\Delta\Delta Ct}$ method. Data are represented
550 as mean \pm SD. Statistical significance was analyzed with Student's t test. *P<
551 0.05, **P<0.01, ***P<0.001.

552 **FIG 4** Oxidative status in golden hamsters intranasally challenged with
553 SARS-CoV-2. (A) Relative mRNA expression for NADPH oxidase 2 (*Nox2*) in
554 the lungs at 5 dpi. (B) Malondialdehyde (MDA) levels in the plasma at 5 dpi. (C)
555 Superoxide dismutase (SOD) activity in the lungs at 5 dpi. Data are
556 represented as mean \pm SD. Statistical significance was analyzed with
557 Student's t test. *P<0.05, **P<0.01, ***P<0.001.


558 **FIG 5** Apoptosis in golden hamsters intranasally challenged with
559 SARS-CoV-2. (A) Hoechst staining of the lungs at 5 dpi. Scale bars, 50 μ m. (B)
560 Quantification of Hoechst positive cells in the lungs. (C) Relative mRNA
561 expression for representative genes in apoptosis pathways in the lungs at 5 dpi.
562 The mRNA level was normalized to the house keeping gene γ -actin and
563 calculated using $2^{-\Delta\Delta Ct}$ method. Data are represented as mean \pm SD. Statistical
564 significance was analyzed with Student's t test. *P < 0.05, **P < 0.01, ***P <
565 0.001.

566 **FIG 6** Goblet cells and *Muc2* expression in the colon of golden hamsters
567 intranasally challenged with SARS-CoV-2. (A) AB-stained sections of colon. (B)

568 Quantification of AB+ cells and crypt length in the colon at 5 dpi. Scale bars,
569 100 μ m. (C) *Muc2* expression in the colon at 5 dpi. Data are represented as
570 mean \pm SD. Statistical significance was analyzed with Student's t test. *P<0.05,
571 **P<0.01, ***P<0.001.


572 **TABLE 1** Primer sequences used for RT-qPCR

Gene	Forward primer (5'->3')	Reverse primer (5'->3')
<i>Ifnb1</i>	TACTGGCAGCTGGGAAGGTA	TGCCTGCAACCATTATCCAGT
<i>Ifnar1</i>	TCAGCAAGTGTGCGCAAGCTA	TGTGGCTGCAAGTTCTCGAT
<i>Ifnar2</i>	AATTGGGGTTGTCGGCTTT	AGGTGACGTTCCCAGTGATG
<i>Il6</i>	AGACAAAGCCAGAGTCATT	TCGGTATGCTAAGGCACAG
<i>Il1b</i>	GAGAGTGTGGACCCAAACA	TAAATCCTGGCCGCTGTTGT
<i>Tnfa</i>	TGAGCCATCGTGCCAATG	AGCCCGTCTGCTGGTATCAC
<i>ICam1</i>	CCGTGAGCTCCATGGAAAT	TGAGGCTGAGGAGGTCTGAT
<i>Vcam1</i>	CCTTCCCTCTGAGAGCGTC	TATGCGCCGTCAATGGACTT
<i>Sele</i>	AAGCTATGACACACCCCTGCC	ATTCTGAGCTCCAACTCGCC
<i>Nos3</i>	CACCTCACCGTAGCTGTGTT	GTCCTGGACCCACTAGGAT
<i>Nos2</i>	GACCATGGAGCATCCAACT	AAATTCAAGGCCACCCACCT
<i>Ifng</i>	TGTTGCTCTGCCTCACTCAGG	AAGACGAGGTCCCCTCCATT
<i>Nox2</i>	TTGATGGACCCTTGGCACA	AACCACTCGAAGGCATGTGT
<i>Casp8</i>	AATGCCGGAAGTGTGTGACT	CGTTCTCCTCGCCTTGCTA
<i>Casp3</i>	AAGATCCCTGAACTCCATGTCC	CTGTGCTGGATGTTCTCCAAGT
<i>Casp6</i>	AGATGCCGATTGCTCCTGT	TTCCAACCAGGCTCTGACAC
<i>Casp7</i>	GACCAGAGTGAACGACAGGG	ATGGTCAACGGCCGAAGTAG
<i>Bax</i>	TTGCTACAGGGTTCATCCAGG	TCTCCGATTGCCTGAGACA
<i>Bcl2</i>	AAATGCCGAGAAGAAGCGA	GTTCCACGGTTGGCTTCAC
<i>Muc2</i>	CAGACAATGGTGGCTGGCTA	TTGTGGATGCAGGGACACTC
<i>Actg</i>	ACAGAGAGAAGATGACGCAGATAATG	GCCTGAATGCCACGTACA

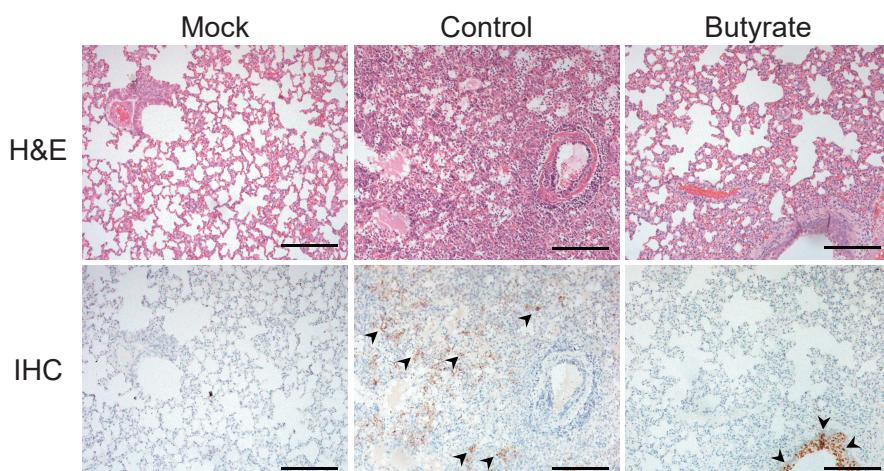
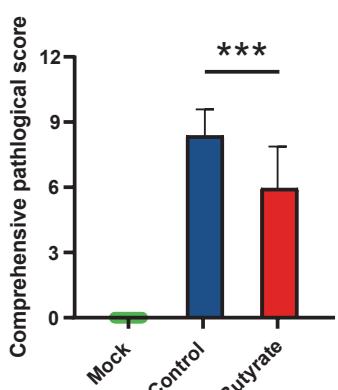
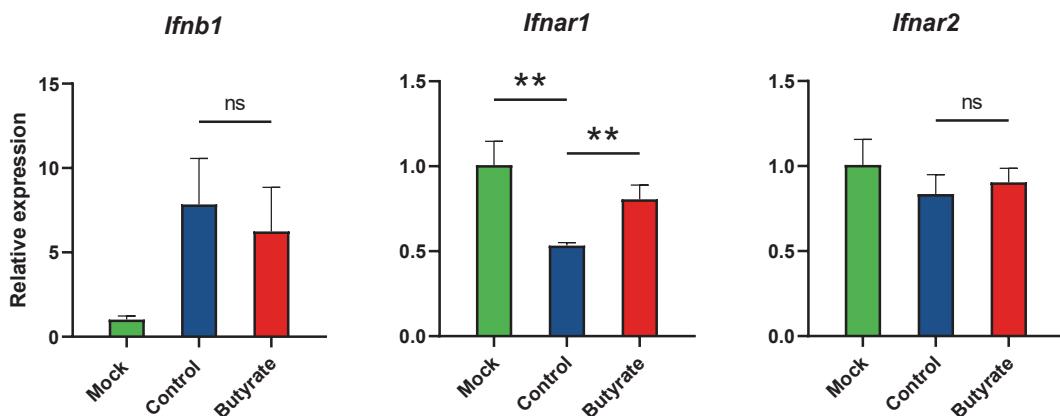


FIG 1 Body weight change and viral load in golden hamsters intranasally challenged with SARS-CoV-2. (A) study design. Hamsters were supplied with or without butyrate in the drinking water since day 12 prior to the virus inoculation till the endpoint of the experiment. Mock animals were hamsters which received pure drinking water and no virus inoculation with SARS-CoV-2. Control indicated hamsters which received drinking water and intranasal inoculation of 1×10^4 plaque forming units (PFU) of SARS-CoV-2. Butyrate indicated hamsters receiving 500 mmol/L of sodium butyrate supplemented in their daily drinking water and SARS-CoV-2 inoculation. At days 3 (n=3) and 5 (n=8) post-inoculation (dpi), hamsters were euthanized and samples were collected for further analysis. (B) Body weight change after virus inoculation. (C) Viral RNA detected in the trachea, lung and colon of hamsters at 3 and 5 dpi. Data are represented as mean \pm SD. Statistical significance were analyzed with two-way ANOVA. *P < 0.05, **P < 0.01, ***P < 0.001. The body weight change and viral load had no significant difference between butyrate-treated hamsters and the control.


A

B



C

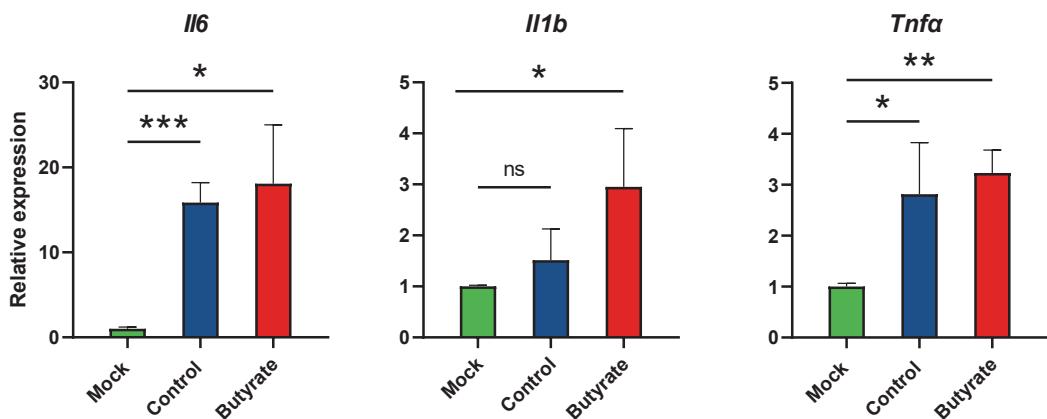
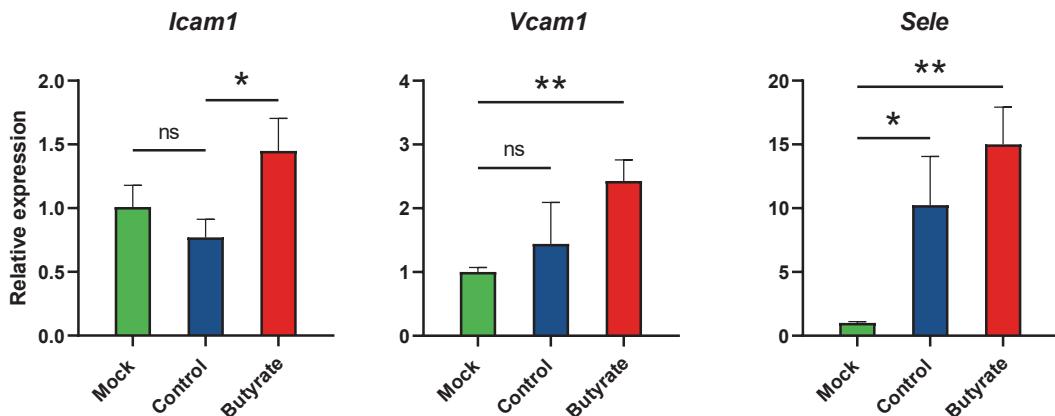
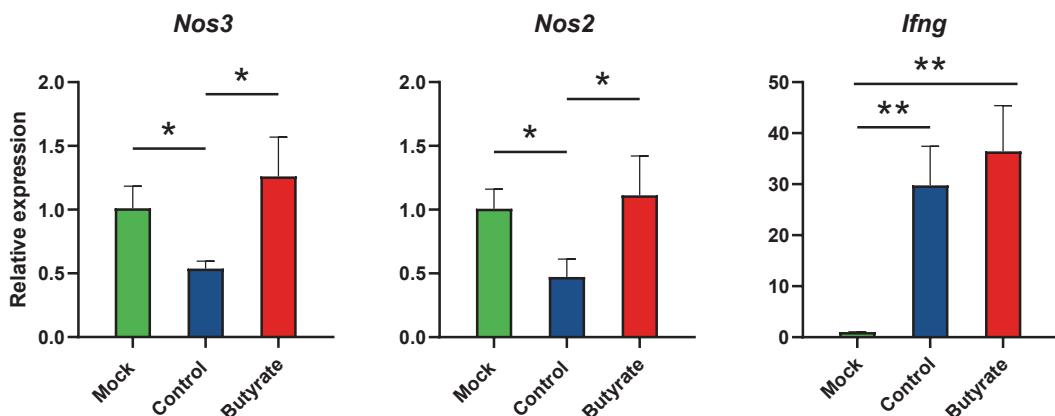
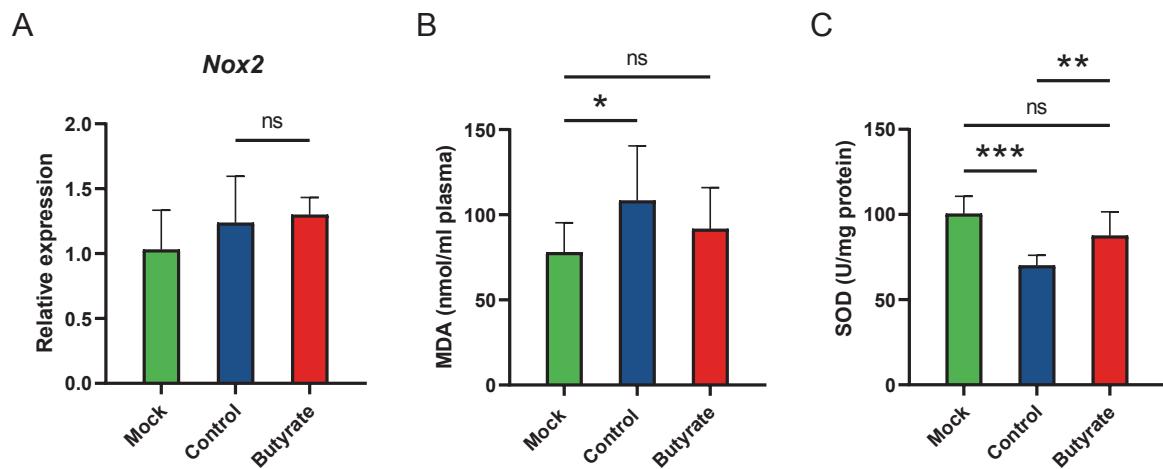


FIG 2 Pathological changes in the lung of golden hamsters intranasally inoculated with SARS-CoV-2. (A) Gross lung images of hamsters at 5 dpi. Scale bars, 1 cm. (B) Histopathological examination of the lungs at 5 dpi. Detection of SARS-CoV-2 NP-positive cells are indicated by black arrows. Scale bars, 200 μ m. (C) Comprehensive pathological scores of the lungs at 5 dpi. Data are represented as mean \pm SD. Statistical significance were analyzed with Student's t test. *P < 0.05, **P < 0.01, ***P < 0.001.


A


B


C

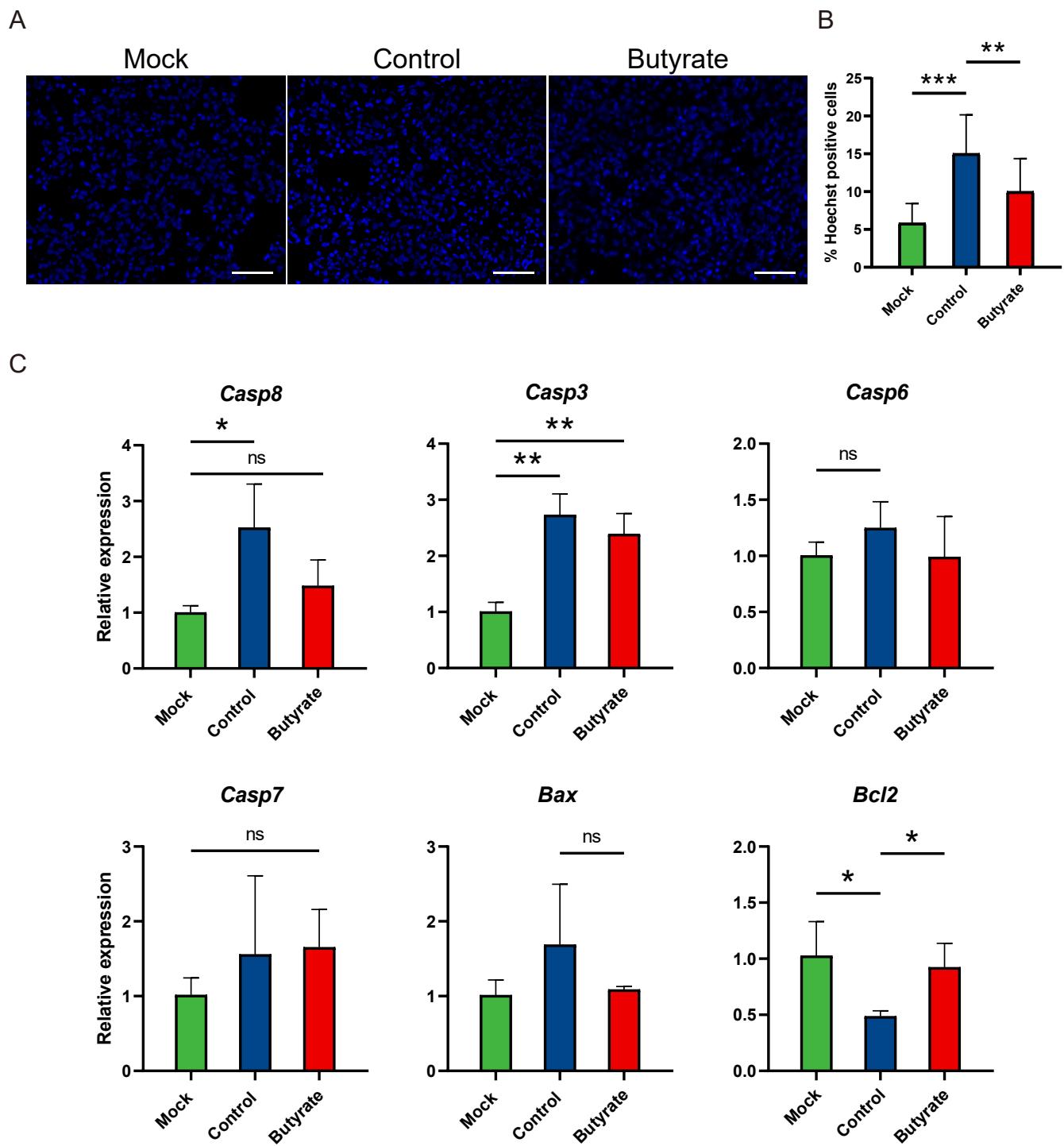

D

FIG 3 Expression levels of representative genes in golden hamsters intra-nasally challenged with SARS-CoV-2. Relative mRNA expression for representative genes in (A) type I interferon (IFN) signaling, (B) proinflammatory effect, (C) endothelial cells activation and (D) nitric oxide production in the lungs at 5 dpi. The mRNA level was normalized to the house keeping gene γ -*actin* and calculated using $2^{-\Delta\Delta Ct}$ method. Data are represented as mean \pm SD. Statistical significance was analyzed with Student's t test. *P < 0.05, **P < 0.01, ***P < 0.001.

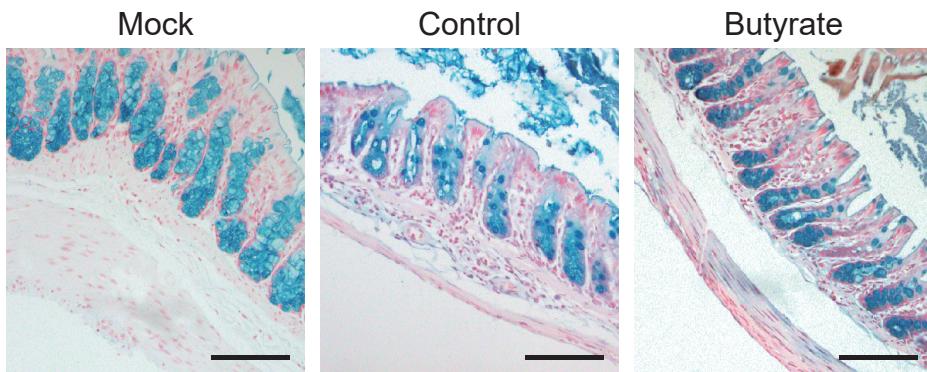


FIG 4 Oxidative status in golden hamsters intranasally challenged with SARS-CoV-2. (A) Relative mRNA expression for NADPH oxidase 2 (*Nox2*) in the lungs at 5 dpi. (B) Malondialdehyde (MDA) levels in the plasma at 5 dpi. (C) Superoxide dismutase (SOD) activity in the lungs at 5 dpi. Data are represented as mean ± SD. Statistical significance was analyzed with Student's t test. *P<0.05, **P<0.01, ***P<0.001.

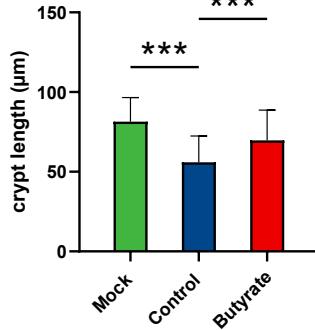
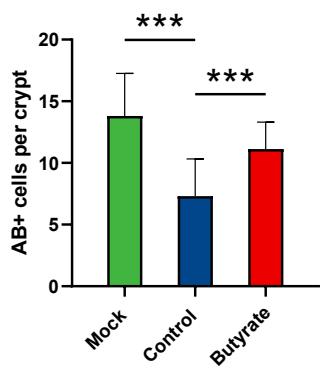
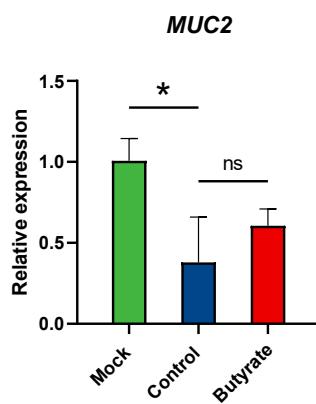



FIG 5 Apoptosis in golden hamsters intranasally challenged with SARS-CoV-2. (A) Hoechst staining of the lungs at 5 dpi. Scale bars, 50 μ m. (B) Quantification of Hoechst positive cells (cells with higher fluorescence intensity in nuclei) in the lungs. (C) Relative mRNA expression for representative genes in apoptosis pathways in the lungs at 5 dpi. The mRNA level was normalized to the house keeping gene γ -actin and calculated using $2^{-\Delta\Delta Ct}$ method. Data are represented as mean \pm SD. Statistical significance was analyzed with Student's t test. *P < 0.05, **P < 0.01, ***P < 0.001.


A

B

C

FIG 6 Goblet cells and *Muc2* expression in the colon of golden hamsters intranasally challenged with SARS-CoV-2. (A) AB-stained sections of colon. (B) Quantification of AB+ cells and crypt length in the colon at 5 dpi. Scale bars, 100 μ m. (C) *Muc2* expression in the colon at 5 dpi. Data are represented as mean \pm SD. Statistical significance was analyzed with Student's t test. *P < 0.05, **P < 0.01, ***P < 0.001.