

1 **Agent-based modeling of the prostate tumor microenvironment uncovers spatial tumor
2 growth constraints and immunomodulatory properties**

3 Maisa van Genderen^{1,2*}, Jeroen Kneppers^{2*}, Anniek Zaalberg^{2*}, Elise Bekers³, Andries M
4 Bergman^{2,4†}, Wilbert Zwart^{2,5,6†}, Federica Eduati^{1,6†}

5

6 **Author affiliations**

7 ¹ Laboratory of Computational Biology, Department of Biomedical Engineering, Eindhoven University of
8 Technology, PO Box 513, 5600MB, Eindhoven, the Netherlands

9 ² Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX
10 Amsterdam, The Netherlands

11 ³ Division of Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the
12 Netherlands

13 ⁴ Division of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam,
14 the Netherlands

15 ⁵ Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of
16 Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands.

17 ⁶ Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600MB,
18 Eindhoven, the Netherlands

19

20 *These authors have contributed equally

21 †To whom correspondence can be addressed: Federica Eduati f.eduati@tue.nl, Andre Bergman
22 a.bergman@nki.nl and Wilbert Zwart w.zwart@nki.nl

23

24 The authors have declared no conflicts of interest.

25

26

27 **Running title: Modeling hormonal therapy in the prostate tumor microenvironment**

28 **Keywords:** agent-based modeling, androgen receptor, tumor microenvironment, androgen deprivation
29 therapy, castration resistance

30

31 **Abstract**

32 Inhibiting androgen receptor (AR) signaling through androgen deprivation therapy (ADT)
33 reduces prostate cancer (PCa) growth in virtually all patients, but response is temporary, and
34 resistance inevitably develops, ultimately leading to lethal castration-resistant prostate cancer
35 (CRPC). The tumor microenvironment (TME) plays an important role in the development and
36 progression of PCa. In addition to tumor cells, TME-resident macrophages and fibroblasts
37 express AR and are therefore also affected by ADT. However, the interplay of different TME
38 cell types in the development of CRPC remains largely unexplored.

39 To understand the complex stochastic nature of cell-cell interactions, we created a
40 PCa-specific agent-based model (PCABM) based on *in vitro* cell proliferation data. PCa cells,
41 fibroblasts, “pro-inflammatory” M1-like and “pro-tumor” M2-like polarized macrophages are
42 modeled as agents from a simple set of validated base assumptions. PCABM allows us to
43 simulate the effect of ADT on the interplay between various prostate TME cell types. The
44 resulting *in vitro* growth patterns mimic human PCa.

45 Our PCABM can effectively model hormonal perturbations by ADT, in which PCABM
46 suggests that CRPC arises in clusters of resistant cells, as is observed in multifocal PCa. In
47 addition, fibroblasts compete for cellular space in the TME while simultaneously creating
48 niches for tumor cells to proliferate in. Finally, PCABM predicts that ADT has
49 immunomodulatory effects on macrophages that may enhance tumor survival. Taken together,
50 these results suggest that AR plays a critical role in the cellular interplay and stochastic
51 interactions in the TME that influence tumor cell behavior and CRPC development.

52 **Introduction**

53 Prostate cancer (PCa) is the second most common cancer in men worldwide, with 1.4
54 million new cases and over 370,000 deaths annually¹. Androgen receptor (AR) signaling plays
55 a pivotal role in PCa initiation and progression, motivating the development of several therapies
56 targeting this hormone-driven transcription factor over the years²⁻⁴. However, despite an initial
57 treatment response in most patients, resistance to ADT inevitably develops, resulting in lethal
58 metastatic castration-resistant prostate cancer (CRPC). Therefore, the development of new
59 therapies that effectively treat or even prevent CRPC is critical⁵.

60 Recently, multiple studies have shown that the tumor microenvironment (TME) plays a
61 key role in the development and progression of PCa⁶⁻¹⁰. The prostate TME consists of a variety
62 of non-malignant cells, including fibroblasts and macrophages¹¹⁻¹⁴. Cells in the TME influence
63 PCa cell growth through chemical and physical interactions between tumor- and stromal cells,
64 through angiogenesis, immune suppression, extracellular matrix (ECM) remodeling and tumor
65 invasion^{9,15-17}. Although fibroblasts are mostly quiescent in healthy tissues, in the TME
66 fibroblasts are in a state reminiscent of wound healing and are referred to as cancer-associated
67 fibroblasts (CAFs)^{11,18,19}. Another dominant component of the prostate TME is macrophages,
68 which are highly plastic cells that can polarize into a spectrum of phenotypes. Conventionally,
69 two extreme polarizations of tumor-associated macrophages are recognized: classically
70 activated pro-inflammatory (M1) macrophages and alternatively activated anti-inflammatory
71 (M2) macrophages^{20,21}. In general, M1-macrophages are anti-tumorigenic leading to tumor cell
72 death, whereas M2-like macrophages are pro-tumorigenic, promoting tumor growth. These
73 phenotypically distinct macrophages have been hypothesized to have contrasting effects on
74 tumor progression²². Importantly, specific macrophage subtypes have a prognostic value for
75 PCa patients, suggesting that the relative contributions of these subtypes are related to patient
76 outcome²³.

77 Interestingly, AR expression is not restricted to PCa cells, but is also expressed and
78 functional in cells of the prostate TME, including fibroblasts and macrophages²⁴. Consequently,

79 interactions between cells of the prostate TME could potentially be affected by androgens and
80 thus by AR-targeted therapies, including ADT. However, studies on ADT altering TME cell
81 interactions in the context of primary PCa and CRPC development are limited and present
82 conflicting results. Low levels of AR in stromal tissues are associated with an earlier onset of
83 PCa recurrence^{7,25}. Indeed, AR signaling in the stroma has been reported to play a protective
84 role in PCa development, as low AR expression in the TME is associated with a high-grade
85 tumor and poor clinical outcome⁷. Previously, we have shown that AR inhibition in CAFs
86 triggers PCa cell migration via paracrine regulation of CCL2 and CXCL8, which may contribute
87 to PCa invasiveness and metastasis²⁵. Alternatively, infiltration of tumor-associated
88 macrophages (TAMs) influences disease progression toward CRPC development after ADT^{26–}
89 ²⁸. AR signaling in macrophages activates TREM-1 signaling, which subsequently leads to the
90 secretion of pro-inflammatory cytokines that support PCa cell line migration and invasion²⁹. In
91 addition, AR has been described as an enhancer of macrophage and monocyte
92 differentiation^{30,31}. However, it is not fully understood how the combined interactions between
93 TME cells contribute to CRPC development and what the role of ADT is in these interactions.

94 Recently, computational agent-based models (ABMs) have been used to describe the
95 complex interplay between cancer cells and TME cells^{32–34} by modeling individual agents that
96 perform stochastic actions, thereby creating complexity from a simple set of base cell actions.
97 Previously, ABMs have been successfully applied to study tumor stem cell growth^{35,36}, tumor
98 cell migration³⁷, avascular tumor growth³⁸, radiotherapy optimization³⁹ and response to
99 immunotherapy in colorectal cancer^{40,41}. Recently we developed an ABM to study prostate
100 cancer onset, however this does not account for the effect of therapy on the prostate tumor
101 microenvironment⁴².

102 In this study we generated a PCa-specific ABM (PCABM) which includes the
103 interactions between tumor cells, fibroblasts, and macrophages in relation to hormonal therapy.
104 The PCABM is informed by *in vitro* prostate TME co-culture growth data, using particle swarm
105 optimization (PSO). PCABM simulations show that CRPC is multifocal and arises from clusters

106 of resistant cells within the prostate TME. In addition, fibroblasts play an indispensable role in
107 regulating spatial proliferative constraints while simultaneously providing a protective niche for
108 tumor cells from the tumocidal effect of pro-inflammatory macrophages.

109 Recently, we reported a genome-wide CRISPR screen in PCa cells co-cultured with
110 pro-inflammatory macrophages where we identified AR as a critical regulator of macrophage-
111 mediated killing⁴³. These studies revealed AR as a genuine tumor-intrinsic immunomodulator,
112 with hormone deprivation preventing tumor cell killing by M1 macrophages. Consistent with
113 this study in cell line models, our PCABM confirms *in silico* that ADT exposes
114 immunomodulatory effects in the prostate TME, impeding macrophage-mediated tumor cell
115 killing in androgen-deprived conditions. Cumulatively, our *in silico* model faithfully phenocopies
116 both the response of tumor cells to hormonal stimuli, as well as the impact of therapy thereon
117 in relation to its microenvironment.

118

119 **Materials & Methods**

120 ***In vitro* Cultures**

121 **Cell culture and M1- and M2 macrophage differentiation**

122 The prostate cancer cell lines LNCaP (ATCC CRL-1740) and LNCaP-abl (ATCC CVCL-
123 4793) the monocytic cell line THP-1 (ATCC TIB-202) and immortalized foreskin fibroblast BJ
124 cell line (CRL-2522) were cultured in RPMI-1640 (Gibco) supplemented with 10% fetal bovine
125 serum (FBS, Sigma) and 1% penicillin-streptomycin (P/S, Gibco). For hormonal related
126 experiments all cells were cultured in RPMI 1640 supplemented with 5% Dextran Coated
127 Charcoal (DCC, Sigma) stripped-serum and 1% P/S 3 days before to the start of the
128 experiment. AR was induced with 10nM R1881 (Sigma) supplemented RPMI-DCC. Cell lines
129 were kept at low passage and regularly tested mycoplasma negative. THP-1 cells were
130 stimulated with either 100ng/mL (for M1 macrophages) or 50ng/mL (for M2 macrophages) of
131 phorbol 12-myristate 13-acetate (PMA, Sigma) for 48h, followed by 24h in fresh 10%FBS-
132 RPMI. M1-macrophages were differentiated by 24h stimulation of 10ng/mL lipopolysaccharide
133 (LPS, Sigma) and 10ng/mL interferon- γ (IFN- γ , Peprotech), while M2-macrophages were
134 differentiated by 72h stimulation with 20ng/mL IL-4 (Peprotech) and 20ng/mL IL-13
135 (Peprotech).

136

137 **Lentiviral vector and transduction**

138 Lentivirus was generated in HEK293T cells cultured in 10% FBS, 1% P/S
139 supplemented DMEM (Gibco). To produce LNCaP-eGFP cells, HEK293T were transfected
140 using polyethylenimine (PEI) with packaging constructs (pMDLg/pRRE, pRSV-Rev, pCMV-
141 VSV-G, AddGene). Virus was harvested after 24h, filtered with a 0.22 μ m filter (Millipore) and
142 snap frozen in liquid nitrogen. LNCaP cells were infected at a MOI > 2 and selected with
143 2 μ g/mL puromycin (Sigma) and checked for eGFP expression regularly.

144

145

146 **Three cell type co-culture assays**

147 For co-culture assays, LNCaP cells and BJ fibroblasts were cultured together with
148 either M1- or M2-like macrophages (**Supplementary Figure S1**). Additionally, LNCaP cells
149 were cultured with BJ fibroblasts, M1- or M2-like macrophages separately. Firstly, 3750 THP-
150 1 cells were seeded in a 96-well plate (CELLSTAR plate, 96w, F, vClear, TC, PS, black, lid,
151 Greiner) in 100 μ L medium per well. THP-1 cells were differentiated towards M1- or M2-like
152 macrophages following the above-mentioned protocol. LNCaP-eGFP cells were added to
153 differentiated macrophages with or without BJ fibroblasts (4:1 ratio). To investigate the effect
154 of different hormone conditions on LNCaP cell survival, all cells were cultured in 5% DCC and
155 1% PS RPMI-1640 and stimulated with either DMSO (vehicle) or 10nM R1881. Additionally,
156 cells were individually stimulated with either DMSO or 10nM R1881 for 24h, washed and co-
157 cultured subsequently. LNCaP-eGFP cell fluorescence and proliferation was measured using
158 IncuCyte Zoom (Essen BioScience) for 7 days. BJ fibroblast proliferation was measured
159 separately by IncuCyte Zoom phase-contrast analysis.

160

161 **Hormone conditions, apoptosis and resistant cell assays**

162 To validate PCABM predictions on ADT effects, 3750 THP-1 cells were differentiated
163 into M1- and M2 macrophages as described earlier in 5% DCC, 1% PS RPMI-1640. M1- and
164 M2 macrophages were subsequently stimulated with either DMSO (vehicle) or 10nM R1881
165 for 24 hours. LNCaP-eGFP cells were seeded at a density of 15000 cells per well in a 96-well
166 plate (CELLSTAR plate, 96w, F, vClear, TC, PS, black, lid, Greiner) 24h before the start of the
167 assay in 100 μ L of 5% DCC, 1% PS RPMI-1640 and were either stimulated with DMSO or
168 10nM R1881 for 24 hours. All cells were gently washed with PBS and LNCaP-eGFP cells were
169 co-cultured in DMSO with either 3750 DMSO- or 3750 R1881 stimulated M1- or M2-polarized
170 macrophages. Cell proliferation was measured with the IncuCyte Zoom fluorescent signal
171 imaging system for 7 days. Data was normalized to time point zero (t = 24hrs) to account for
172 possible fluorescence intensity artifacts upon initialization. To compare Incucyte results to *in*
173 *silico* results, PCABM data was normalized to the number of tumor cells upon initialization.

174 Cell apoptosis was measured and analyzed using IncuCyte Zoom (EssenBioScience)
175 on similar cell numbers, timespans and set-up as described previously with 0.5 mM Caspase-
176 3/7 Red Reagent for Apoptosis (Essen BioScience), while apoptosis control was induced by
177 supplementing to 0.5 mM Phenylarsine Oxide (PAO, Sigma). To investigate growth of LNCaP-
178 abl cells in androgen-deprived conditions, 250 LNCaP-abl cells were seeded on a 96-well plate
179 and cultured in RPMI-1640, 5% DCC + 1% PS. Cell proliferation was measured and analyzed
180 by brightfield analysis with the IncuCyte Zoom (Essen BioScience) for 10 days.

181

182 **Agent Based Model Design**

183 Our two-dimensional PCABM consists of four agents (cell types): tumor cells, M1 and
184 M2 polarized macrophages, and fibroblasts as these are the most abundant cell types and key
185 players in the prostate TME⁴⁴. PCABM requires specific size grid cells, although in reality actual
186 cell sizes vary, therefore each grid cell was assigned the size of one tumor cell⁴⁵ as 142.89
187 μm^2 . Agents occupy exactly one position on a customizable rectangular grid, which size was
188 scaled to *in vitro* well size leading to a 125x125 square grid (reality: 1.48 mm²).

189 To emulate *in vitro* settings, different agent types are randomly scattered on the grid
190 upon initialization, with seeding densities matching *in vitro* experiments. PCABM runs for a
191 fixed number of time steps of four hours every simulation, and each cell type has a probability
192 to perform actions in the order: tumor cells, fibroblasts, M1 macrophages, and M2
193 macrophages (summarized in **Figure 1A**).

194 Tumor cells can proliferate (TU_{pprol}), die ($\text{TU}_{\text{pdeath}}$, spontaneous death) or migrate
195 (TU_{pmig}) either towards fibroblasts or in random directions (TU_{rwalk} and have limited proliferation
196 capacity (TU_{pmax}). Fibroblasts can proliferate (F_{pprol}) with limited capacity (F_{pmax}), die (F_{pdeath} ,
197 spontaneous) or migrate (F_{pmig}) either towards tumor cells or in random directions (F_{rwalk}). M1
198 and M2 polarized macrophages can migrate (M_{pmig}) either towards tumor cells or randomly
199 (M_{rwalk}). Macrophages can kill (M_{pkill}) when bordering a tumor cell, with maximum killing capacity
200 (M_{kmax}) before exhaustion and can spontaneously die (M_{pdeath}). M2 polarized macrophages

201 were calibrated to have attenuated tumoricidal activity compared to M1 polarized
202 macrophages. Additionally, M2 polarized macrophages have the ability to increase tumor cell
203 proliferation probability ($M2_{TUadd}$).

204 Migration and proliferation processes requires unoccupied grid space in all agents'
205 neighborhood (Moore neighborhood), such that agents compete for space upon performing
206 actions. Finally, inactive agents idle. All actions have calibrated stochastic probabilities, which
207 resembles stochasticity observed in biological processes. An overview of model parameters is
208 shown in **Supplementary Table S1**.

209

210 **Initial parameter estimation**

211 Tumor cell and macrophage migration parameters from Kather *et. al.*^{40,41} were scaled
212 to match PCABM grid size and time steps. Other parameter values were estimated using
213 particle swarm optimization (PSO), which uses swarm behavior to search for global solutions⁴⁶
214 and has been useful in a variety of optimization problems, including ABM^{40,47–49}.

215 Relative tumor cell numbers produced by PCABM were compared to *in vitro* relative
216 growth curves to estimate parameters. TU_{pmax} was assumed to be the same in presence or
217 absence of hormone and estimated only in hormone proficient conditions, in which ADT is
218 assumed to be non-toxic. TU_{pprol} was instead fitted independently in the two hormonal
219 conditions. The tumor cell apoptotic probability was measured *in vitro* using a caspase 3 and
220 7 assay and was assumed equal for both androgen pro- and deficient conditions. PSO was
221 ran 50 times for each biological replicate (replicate optimizations in **Supplementary Figure**
222 **S2**), with fixed parameter set to the median of the triplicate to be used as input for the next
223 PSO iteration.

224 Similar to tumor cells, relative fibroblast numbers produced by PCABM were compared
225 to relative fibroblast growth curves *in vitro* and parameters F_{pprol} , F_{pmax} and F_{pdeath} were fitted.
226 Fibroblast parameters were only optimized for DCC+R1881 conditions, since fibroblasts exhibit
227 similar growth curves in androgen pro- and deficient conditions (**Supplementary Figure S2**)²¹.

228 Fibroblast migration parameters (F_{pmig} and F_{rwalk}) and tumor cell migration towards fibroblasts
229 (TU_{rwalk}) were qualitatively tuned by comparing model visualizations to *in vitro* captured cell
230 dynamics.

231 Macrophage optimizations were performed separately for M1- and M2-polarized
232 macrophages in the presence of both tumor and fibroblast cells for both DMSO and R1881
233 conditions (**Supplementary Figure S3-4**). Again, PCABM relative tumor cell numbers in
234 macrophage presence were fitted to *in vitro* relative tumor cell numbers. The parameters $M1_{\text{pkill}}$
235 and $M1_{\text{kmax}}$ were optimized in hormone proficient conditions and killing capacities were
236 assumed at maximum in these conditions as justified by our *in vitro* killing observations
237 (**Supplementary Figure S5**). However, for vehicle conditions only $M1_{\text{pkill}}$ was optimized, as
238 this value is reasonably lower in hormone deficient conditions. Similarly, M2-polarized
239 macrophage killing $M2_{\text{pkill}}$ was optimized with $M2_{\text{kmax}}$ the same as $M1_{\text{kmax}}$, although
240 simultaneously $M2_{\text{TUadd}}$ was optimized as tumor promoting growth parameter (**Supplementary**
241 **Figure S5**). A full list of the estimated parameters can be found in **Supplementary Table S2**.

242

243 **Exploring effects of ADT on the prostate TME**

244 Simulations solely included tumor cells and macrophages to exclude possible
245 confounding effects of fibroblasts. Parameters were estimated similarly to previous parameter
246 optimizations, optimizing 50 times with PSO in triplicate. However, instead of fixing the median
247 parameter value over all triplicates to create one model, median parameters were fixed for
248 each triplicate model individually. Killing probability (M_{pkill}) and capacity (M_{kmax}) of macrophages
249 were estimated separately for M1- and M2-macrophages in hormone proficient conditions.

250

251 **Modeling castration resistance**

252 Using PCABMs optimized hormonal TME conditions, CRPC growth was simulated by
253 seeding a co-culture of androgen sensitive and resistant tumor cells (1:100) in hormone
254 deprived conditions. Resistant tumor cells have different proliferation probability and capacity

255 parameters ($TU_{pprores}$ and $TU_{pmaxres}$ respectively), which were fitted to *in vitro* growth of LNCaP-
256 abl cells (androgen ablated), an ADT resistant clone derived from LNCaP cells. Resistant tumor
257 cells migrate as fast as non-resistant cells and have the same probability of spontaneous death
258 as non-resistant tumor cells in hormone proficient conditions. To simulate interactions in the
259 TME upon CRPC development also fibroblasts, M1- or M2-macrophage agents were added.
260 Since the amount of TME cell infiltration varies in prostate tumors, simulations were run with
261 various ratios of different cell types.

262

263 **Patient samples and histology**

264 Spatial cellular patterns produced by PCABM were compared with a histological sample
265 from a radical prostatectomy specimen, which was formalin fixed, paraffin embedded (FFPE).
266 Tissue was stained with hematoxylin and eosin (HE) and a 200x enlarged microscopy image
267 was taken.

268

269 **Statistical analysis**

270 Statistical analysis of growth rate differences in hormone conditions was performed
271 using linear mixed-effect models with longitudinal analysis using R package *TumGrowth*⁵⁰. For
272 validation, *in vitro* LNCaP cell growth was tested in different hormone conditions over time and
273 also PCABM output for CRPC simulations with different cell types was analyzed similarly.
274 Different TME compositions were tested for effects on simulated relative tumor cell number
275 over time. Type II analysis of covariance (ANOVA) with Wald tests were used to calculate p-
276 values with significance cutoff 0.05.

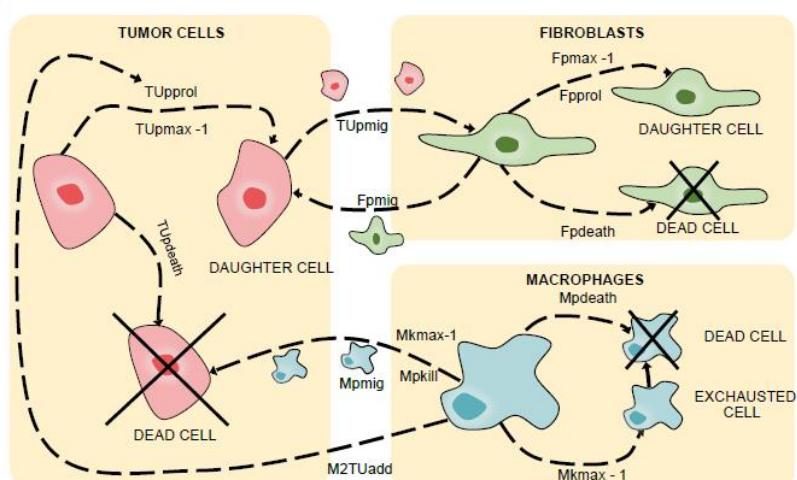
277

278 **Data and code availability**

279 The model used in this study is publicly available in
280 https://github.com/SysBioOncology/PCABM_ADT.

281

282 **Results**


283 **PCABM conceptual model**

284 We developed an ABM consisting of tumor cells, fibroblasts, M1 and M2 macrophages,
285 which are seen as agents and scattered randomly on grid upon initialization to mimic *in vitro*
286 settings. These cellular agents perform actions (proliferate, die) and interact with each other
287 as schematically represented in **Figure 1A** (see **Material and Methods** for a more extensive
288 description of the model).

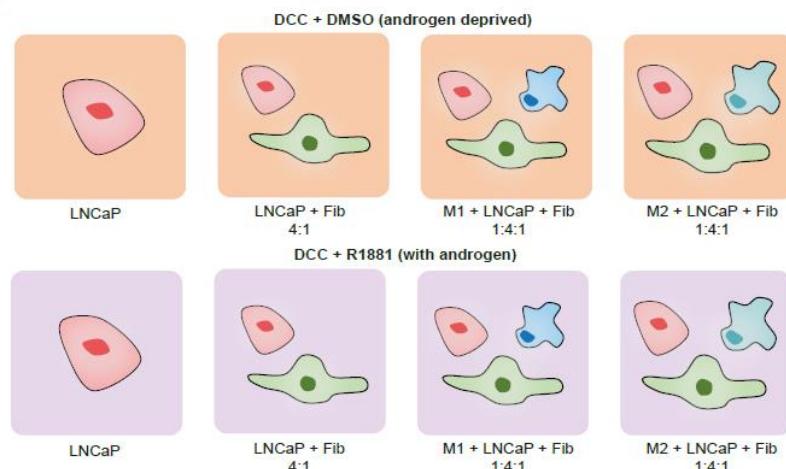

289 We optimized the PCABM on co-cultures experimental data (six technical replicates
290 spanning three biological replicates) measured in androgen proficient R1181 conditions versus
291 hormone deprived vehicle control conditions to mimic the TME in normal and ADT conditions
292 respectively (**Figure 1B**).

Figure 1

a

b

293 **Figure 1: PCABM parameter and cell type action overview.**

294 **a)** Overview of all modelled cell interactions, in which each cell type can migrate, idle and die.

295 Tumor cells and fibroblasts proliferate, while macrophages can either kill or support tumor cells

296 depending on their subtype.

297 **b)** PCABM is optimized for two *in vitro* co-culture conditions: cells grown in dextran coated

298 charcoal (DCC) supplemented medium without androgen (DMSO, upper panels) and with

299 androgen (R1881, lower panels). The different cell types are LNCaP, LNCaP + fibroblasts and

300 LNCaP + fibroblasts + either M1 or M2-polarized macrophages.

301

302 **PCABM forms similar growth patterns as *in vitro* co-cultures and histological samples**

303 Upon initialization of PCABM, cells are randomly distributed across a grid and self-

304 organized to form complex spatial patterns over time (**Figure 2A**). In our *in silico* PCABM, we

305 observe similar spatial growth patterns to those observed *in vitro* (**Figure 2B**) and to those

306 observed in human tumor samples, as identified in HE stained formalin-fixed paraffin

307 embedded prostate tumor tissue (**Figure 2C**). These observations illustrate PCABM's ability to

308 reliably model spatial PCa growth pattern complexity *in silico* from a simple set of assumptions

309 and optimizations.

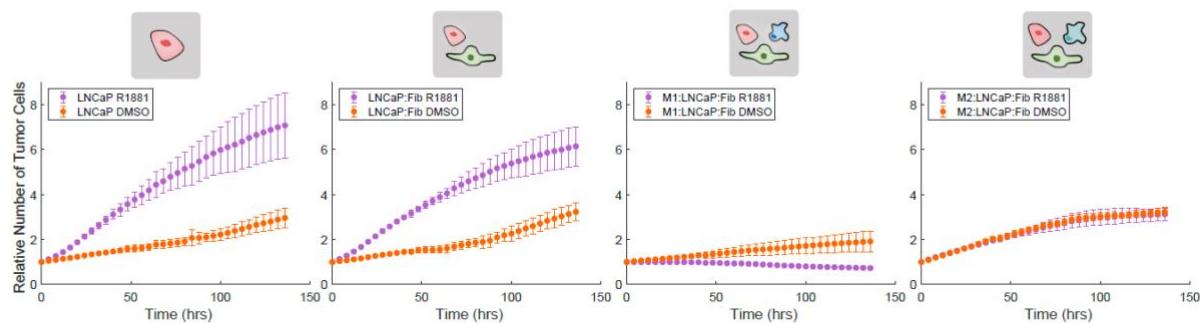
Figure 2

310 **Figure 2: Prostate TME spatial patterns *in silico*, *in vitro*, and *in vivo* in hormone
311 proficient conditions.**

312 **a)** Modeled tumor cells (red) and fibroblasts (green) are randomly distributed across PCABM
313 lattice, but spatiotemporally organize after 4, 68 and 140 hours of pseudo-time.
314 **b)** *In vitro* co-culture of tumor cells (red) and fibroblasts (brightfield, 1:1 ratio) after 140 hours.
315 **c)** FFPE HE staining at 200x magnification of a primary prostate tumor, showing distinct
316 epithelial tumor foci (masked image) surrounded by stroma.

317 **Hormonal response of PCa cells is accurately captured by PCABM**

318 PCABM simulations recapitulate LNCaP cell growth curves observed in *in vitro*
319 experiments well in both hormone proficient and deficient conditions (**Figure 3**). Model
320 estimation of tumor cell proliferation (TU_{pprol}) shows a threefold increase in tumor cell
321 proliferation as response to R1881 treatment ($TU_{pprol} = 0.1144$ for R1881 versus 0.0389 vehicle
322 control; **Supplementary Figure S2** for parameter optimizations). When adding fibroblasts *in*
323 *silico* to the culture under R1881 conditions, a slight reduction in the growth rate is observed
324 without changing proliferation parameters, matching the corresponding experimental data
325 (**Figure 3**). This change underlines the predictive power for ABM stochastic modeling without
326 additional adjustments.


327 Co-culturing M1-polarized macrophages together with LNCaP and fibroblast, we
328 observed an *in vitro* strong decrease in tumor growth rate compared to LNCaP mono-cultures
329 and LNCaP + fibroblast co-cultures, while such an effect was less apparent in the hormone
330 deprived condition (**Figure 3A**). By simulating the same experimental condition (i.e. model with
331 LNCaP, fibroblasts and M1 macrophages) and optimizing PCABM's M1 macrophage killing
332 probability ($M1_{pkill}$) based on these data, we found a 22-fold decrease in killing capacity in
333 hormone deficient (DCC+DMSO) versus hormone proficient (DCC+R1881) conditions ($M1_{pkill}$
334 = 0.005 and 0.1116 respectively; **Figure 3B**). In contrast, replacing M1-like for M2-like

335 polarized macrophages did not result in a differential effect in growth curves between hormone
336 conditions both *in vitro* and *in silico* (**Figure 3A,B**).

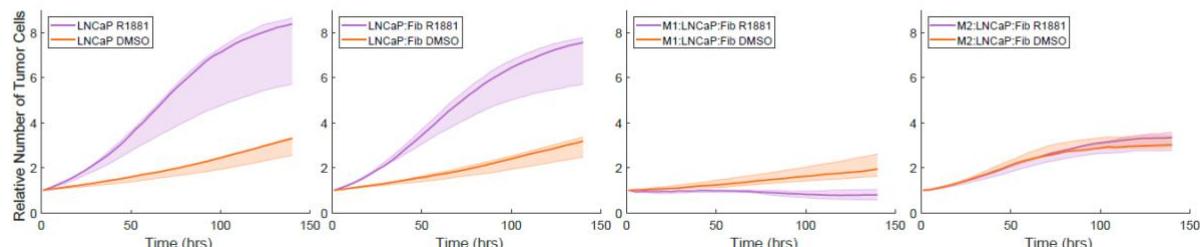

337 Such cell culture growth dynamics could be reliably reproduced *in silico* using PCABM,
338 with different observed tumor cell proliferation and kill capacities in the hormonal conditions for
339 M2-polarized macrophages (TU_{pprof} R1881 = 0.0389 and TU_{pprof} DMSO = 0.1348; $M2_{pkill}$ R1881
340 = 0.0223, $M2_{pkill}$ DMSO = 0.0348; **Figure 3B, Supplementary Figure S3-4**). Taken together,
341 these data suggest that PCABM accurately describes PCa cell proliferation potential and the
342 impact of R1881 treatment thereon, when co-cultured with different TME cell types.

Figure 3

a

b

343 **Figure 3: *In vitro* tumor cell proliferation and hormone response is accurately captured
344 by PCABM's optimized *in silico* parameters.**

345 **a)** *Incucyte* data for different co-cultures in hormone deficient (DMSO, orange) and hormone
346 proficient (R1881, purple) conditions for sequentially LNCaP monoculture; LNCaP and
347 fibroblast co-culture; LNCaP, fibroblast and M1-polarized macrophage co-culture; LNCaP,
348 fibroblast and M2-polarized macrophage co-culture.

349 **b)** PCABM model behavior after parameter optimization in hormone deficient (DMSO, orange)
350 and hormone proficient (R1881, purple) *in silico* conditions for sequentially LNCaP

351 *monoculture; LNCaP and fibroblast co-culture; LNCaP, fibroblast and M1-polarized*
352 *macrophage co-culture; LNCaP, fibroblast and M2-polarized macrophage co-culture.*
353 *Data represent the average of three biological replicates, with six technical replicates each.*
354 *Error bars indicate standard deviation. Lines represent PCABM model output with the median*
355 *of optimized parameters over three biological replicates. Shading represents model output for*
356 *optimized parameters within interquartile range given by 50 optimizations for each biological*
357 *replicate.*

358

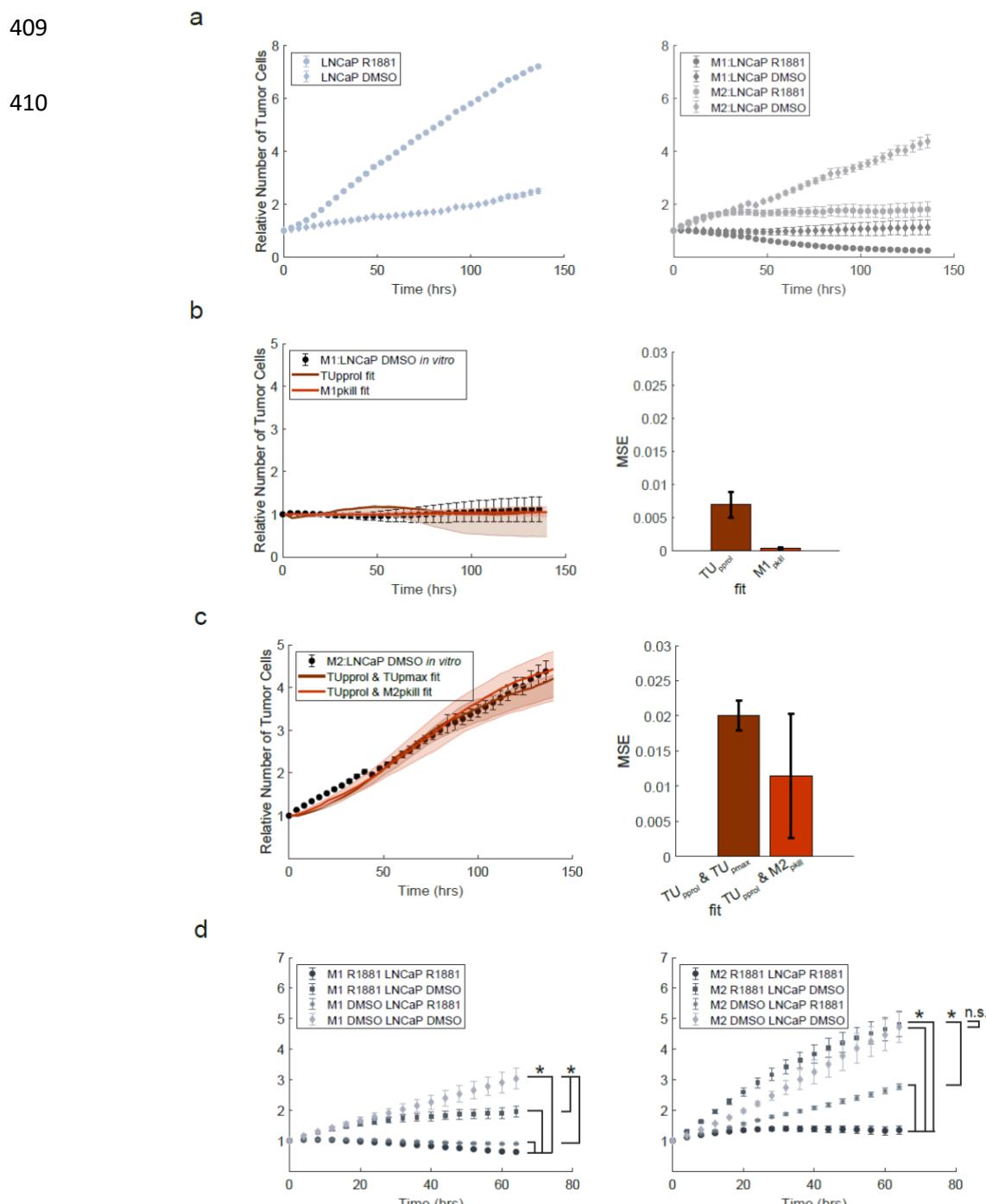
359 **PCABM predicts immunomodulatory effects of ADT on macrophages**

360 Through PCABM parameter optimization we further estimated whether the hormone-
361 driven decrease of LNCaP cell growth in co-culture with M1 or M2 polarized macrophages was
362 tumor cell intrinsic or related to macrophage tumoricidal activity. For this purpose, we cultured
363 LNCaPs with macrophages but without the presence of fibroblasts and saw differences
364 compared to previous growth rates, with a clear tumoricidal effect for M1 macrophages
365 supplemented with R1881 (**Figure 4A**). Paradoxically, optimizing LNCaP TU_{pprol} in vehicle
366 conditions while using macrophage M1_{pkill} and M1_{kmax} that we previously optimized in hormone-
367 proficient conditions, resulted in higher predicted proliferation values (TU_{pprol} DMSO = 0.1550;
368 TU_{pprol} R1881 = 0.1144, **Figure 4B, Supplementary Figure S4**). Since higher LNCaP TU_{pprol}
369 is expected upon R1881 treatment, we optimized M1_{pkill} while keeping LNCaP proliferation
370 constant on vehicle conditions (TU_{pprol} DMSO = 0.0389), which resulted in an improved PCABM
371 fit to *in vitro* data with smaller mean square error (MSE) between data and model fit for all three
372 *in vitro* replicates (**Figure 4B, Supplementary Figure S5**). Importantly, R1881 conditions
373 increased M1_{pkill} capacity 21-46 fold (M1_{pkill} DMSO = 0.005 in vehicle control; M1_{pkill} R1881 =
374 0.2034). These PCABM optimizations suggest that changes in tumor cell viability upon
375 hormone deprivation are not solely dictated by decreased tumor cell proliferation but are also
376 impacted by M1 macrophage tumoricidal effects.

377 To observe whether such an approach would also improve MSEs in the M2-polarized
378 PCABM, and whether M2-macrophage polarization has differential effects on the TME
379 compared to M1-polarized macrophages, we again optimized $M2_{pkill}$ while keeping LNCaP
380 proliferation constant to vehicle conditions (TU_{pprol} DMSO = 0.1341), with TU_{pmax} DMSO = 5,
381 which only slightly improved PCABM fit and MSEs (**Figure 4C, Supplementary Figure S5**).
382 As expected, PCABM indicates that M2-macrophages exhibit less tumoricidal activity
383 compared to M1-macrophages and become tumor promoting in vehicle conditions, enhancing
384 predicted tumor growth (TU_{pprol} 2-3 fold increase) while decreasing tumor killing capacity ($M2_{pkill}$
385 2-4 decrease) relative to R1881 conditions (TU_{pprol} DMSO = 0.0384 and TU_{pprol} R1881 = 0.1128
386 and $M2_{pkill}$ DMSO = 0.0219 and $M2_{pkill}$ R1881 = 0.0441; **Figure 4C, Supplementary Table S2**).
387 In co-cultures, we validated these findings with individually stimulated co-culture cell
388 constituents. For M1 co-cultures we observed that growth is significantly increased in hormone
389 deprived conditions, while for M2 co-cultures this effect is not present (**Figure 4D**). These
390 results suggest that ADT exerts an immunomodulatory effect on tumor cell killing.

391 **Figure 4: PCABM predicts immunomodulatory ADT-mediated macrophage tumoricidal
392 effects. (Figure on next page)**

393 **a)** LNCaP growth curve alone (left) or in co-culture with M1- or M2-macrophages (right) in
394 absence or presence of R1881.


395 **b)** PCABM optimization for TU_{pprol} and $M1_{pkill}$ in DCC+DMSO (left) and mean squared error
396 (MSE) between experimental data and PCABM for M1:LNCaP TU_{pprol} and $M1_{pkill}$ (right).

397 **c)** PCABM optimization for TU_{pprol} and or $M2_{pkill}$ in DCC DMSO (left) and mean squared error
398 (MSE) between experimental data and PCABM for M2:LNCaP TU_{pprol} + TU_{pmax} and TU_{pprol} +
399 $M2_{pkill}$ (right).

400 **d)** Growth curve of LNCaP co-cultured with M1-macrophages individually stimulated with
401 DMSO or R1881 (left) and growth curve of LNCaP co-cultured with M2-macrophages
402 individually stimulated with DMSO or R1881 (right).

403 Bars and error represent mean and standard deviation over MSE of 50 optimizations for
404 replicate 1. Dots represent average and error bars represent standard deviation of six technical
405 replicates. Lines represent PCABM output with the median of optimized parameters. Shading
406 represents model output for optimized parameters within interquartile range given by 50
407 optimizations.

408 **Figure 4**

411 **Spatial effects in the TME and differential macrophage tumoricidal capacities enhance**
412 **TME cellular dynamics**

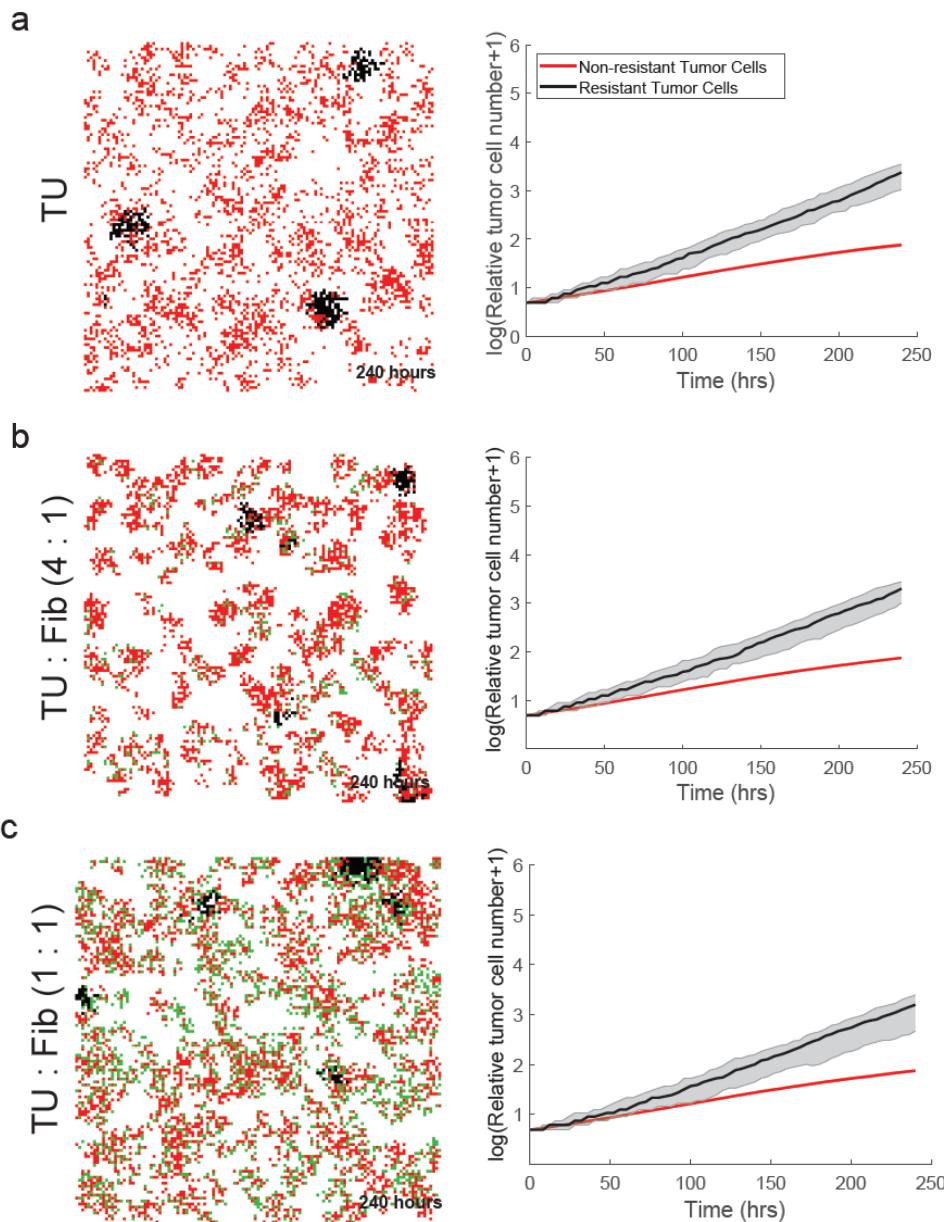
413 We next sought to investigate how the TME contributes to the emergence of CRPC.
414 Experimental data from castration resistant LNCaP-abl (androgen ablated) cells grown in
415 hormone deprived conditions was used to fit proliferation parameters for resistant cells
416 (**Materials and Methods, Supplementary Figure S2**). In contrast to LNCaP cells, *in vitro*
417 LNCaP-abl growth increases exponentially in hormone deprived conditions (**Supplementary**
418 **Fig. S2C**). Therefore, to mimic LNCaP-abl growth observed *in vitro*, we optimized a higher tumor
419 cell proliferation ($TU_{pprores} = 0.06$) for resistant cells, which is almost twice that of LNCaP TU_{pprol}
420 in hormone deprived conditions. Interestingly, LNCaP-abl cells readily form clusters of resistant
421 cells *in silico* (**Figure 5A**), which is also observed when growing LNCaP-abl cells *in vitro*.

422 While the *in silico* addition of fibroblasts does not affect proliferation speed, there are
423 increased fibroblast directional migration effects towards tumor cells. These effects result in
424 increased hormone-sensitive tumor-cell cluster formation, which in turn is balanced by cellular
425 competition for space as fibroblasts take up growth space (**Figure 5B-C**). These data suggest
426 that not only the population growth of TME constituents, but that also the available TME space
427 is an important characteristic to describe the entirety of TME cellular growth dynamics.

428

429 **Figure 5: CRPC simulations in PCABM with fibroblasts.** (Figure on next page)

430 **a) Growth of LNCaP and LNCaP-abl cells.**

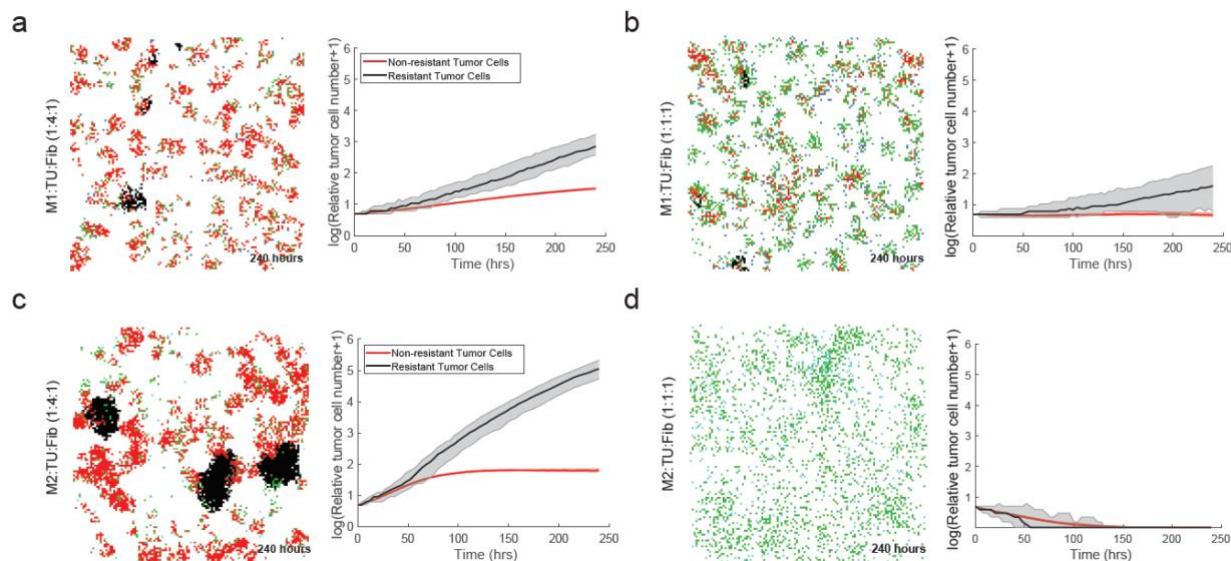

431 **b) Relative growth of tumor cells seeded with fibroblasts at a 4:1 ratio**

432 **c) Relative growth of tumor cells seeded with fibroblasts at a 1:1 ratio**

433 *For all panels, PCABM (left) is compared to Incucyte (right) of co-cultures of LNCaP cells with*
434 *LNCaP-abl cells and fibroblasts.*

435

Figure 5



437 Macrophage phenotype and influx play a critical role on resistant tumor cell growth

438 Next, we further enriched our *in silico* model, by including tumoricidal M1 polarized
439 macrophages in CRPC-PCABM, which has a repressing effect on both CRPC and hormone
440 responsive PCa proliferation speed. Since the number of tumor-resident macrophages vary
441 greatly between PCa samples^{23,51}, which can be partially explained by differences in tumor
442 volume and macrophage influx, we wondered how PCABM would respond to varying levels of
443 macrophages. When quadrupling the amount of macrophages to tumor cells, tumor cell
444 population extinction is quickly achieved *in silico* (Figure 6A,B). Interestingly, the addition of a

445 large fibroblast presence seems to reduce macrophage tumoricidal effects (**Figure 6B**).
446 Conversely, M2-polarized macrophages significantly increase tumor cell proliferation, and
447 proportionally to a larger extent for CRPC as compared to hormone-sensitive PCa cells (**Figure**
448 **6D,E**). Additionally, when changing the ratios between tumor cells and M2-polarized
449 macrophages we observe a growth reduction of both resistant and hormone-sensitive tumor
450 cells (**Figure 6D,E**). Taken together, these observations demonstrate how a higher influx of
451 macrophages lead to tumor remission even in the context of resistant tumor cells, while
452 fibroblasts provide a protective niche for resistant tumor cells to proliferate in.

Figure 6

453 **Figure 6: CRPC simulations in PCABM with fibroblasts and either M1 and M2 polarized**
454 **macrophages.**

455 **a)** *M1 macrophages seeded with tumor cells and fibroblasts at a 1:4:1 ratio*

456 **b)** *M1 macrophages seeded with tumor cells and fibroblasts at a 1:1:1 ratio*

457 **c)** *M2 macrophages seeded with tumor cells and fibroblasts at a 1:4:1 ratio*

458 **d)** *M2 macrophages seeded with tumor cells and fibroblasts at a 1:1:1 ratio*

459 *For all panels, PCABM (left) is compared to Incucyte (right) of co-cultures of LNCaP cells and*
460 *LNCaP-abl cells, fibroblasts and M1- or M2-polarized macrophages.*

461 **Discussion**

462 Because AR plays a key role in PCa progression, patients with metastatic disease recurrence
463 are typically treated with AR-targeted therapeutics^{52,53}. Since cells in the TME also express
464 AR, they are consequently also affected by ADT, which could affect cell-cell interactions. In
465 this work, we replicated ADT-conditions *in silico* in a PCa-specific ABM, which is able to model
466 the spatiotemporal complexity of prostate TME cell interactions in both hormone pro- and
467 deficient conditions. By implementing a simple set of stochastic assumptions, an intrinsically
468 organized, self-assembling TME cellular structure emerges in PCABM that resembles the
469 histology in PCa patient samples. Since PCa is multifocal in 60-90% of cases⁵⁴, these
470 simulated tumor foci further underscore the ability of the PCABM to form clinically relevant
471 spatial patterns and suggest that the TME plays a critical role in the formation of multifocal
472 disease.

473 Our modeling assumptions were calibrated and refined using data from extensive *in*
474 *vitro* co-cultures, that incorporate cell proliferation and migration data. Because PCABM is
475 currently modeled only for LNCaP cells, it is currently limited in its ability to accurately replicate
476 PCa growth and development of CRPC. However, the model is adaptable to other AR-positive
477 PCa cell lines, provided that *in vitro* data exists for calibration demonstrating its strength in that
478 the parameters are easily adaptable to other hypotheses. Multiple PCa cell lines have been
479 developed with a wide variety of proliferation kinetics and response to hormones, which may
480 lead to different PCABM results.

481 Recently, we found that AR plays a key-role in macrophage-mediated killing, being a
482 critical tumor-intrinsic regulator and preventing macrophages from killing tumor cells in
483 androgen deprived conditions⁴³. Fully in line with this, our PCABM predicts that ADT affects
484 the cellular behavior of both tumor cells and M1 macrophages, further solidifying our
485 observation that AR plays an immunomodulatory role in the prostate TME. Independent *in vitro*
486 experiments validated this, suggesting that ADT affects the differentiation of this cell type,
487 which may potentially stimulate tumor growth. Interestingly, the addition of fibroblasts to

488 PCABM stimulates directional migration of both tumor cells and fibroblasts, resulting in a limited
489 amount of space around the tumor cells. In androgen proficient conditions such a proliferation
490 space will be severely limited due to high proliferation rates, whereas in androgen deficient
491 conditions, such an effect will theoretically be less pronounced due to decreased proliferation
492 rates of AR-responsive cells. These results suggest that fibroblasts block the access of M1
493 macrophages to tumor cells by their preferential clustering around tumor cells. Since
494 macrophages are able to kill tumor cells through cell-to-cell contact⁴⁰, fibroblasts may prevent
495 macrophages from completing their tumoricidal activity.

496 In addition, we modeled CRPC formation in PCABM and showed that resistant cells
497 form separate clusters due to the directional migration effects of fibroblasts. These findings
498 support the multifocality of PCa and further highlight the tumor-protective role of fibroblasts by
499 limiting the physical access of macrophages while creating a niche for tumor cells. Previously,
500 the amount of stroma has been shown to be inversely correlated with recurrence-free survival,
501 suggesting that stromal cells may protect tumor cells from being killed^{55,56}. Supporting this, M1
502 macrophages decreased the growth of both androgen-sensitive and -insensitive PCa cells,
503 whereas M2 macrophages allowed castration-resistant tumor cells to rapidly take over the
504 TME. Recently, tumor-associated macrophages have been associated with PCa progression
505 after ADT¹² and the development of CRPC⁸, which is supported by our findings on the
506 immunomodulatory effects of ADT and CRPC growth. These findings are also consistent with
507 our recent report, in which we showed that AR signaling in macrophages plays a critical role in
508 PCa migration and invasion through TREM-1 signaling and a concomitant upregulation of IL-
509 10²⁹. In contrast, when AR signaling is blocked in CAFs, PCa cells migrate under the influence
510 of upregulated CCL2 and CXCL8 secretion²⁵. These studies further underline the tumor-driving
511 effects of the prostate TME induced by ADT, along with the differential intercellular interactions
512 in this context.

513 Technically, PCABM has been calibrated to *in vitro* time scales and data. For more *in*
514 *vivo*-like PCABM representations, longer pseudo timescales are needed, and the currently

515 modeled pseudo timescales could be extended with long-term culture data, although long-term
516 culture has practical limitations. We approximated the prostate TME by including tumor cells,
517 fibroblasts and macrophages, which are the most abundant cell types in PCa⁴⁴.

518 In conclusion, we present PCABM, an *in silico* tool that simulates and accurately
519 describes the functional interplay between prostate TME cells in hormone proficient and ADT
520 conditions and in the emergence of CRPC. Our findings suggest that targeting TME cell types
521 may provide a novel avenue for the treatment of CRPC, as different TME cell types influence
522 castration-resistant tumor cell growth. In future research, PCABM could be used to design
523 targeting strategies involving the TME to achieve optimal anti-tumor efficacy, which may serve
524 as a blueprint for implementation in other cancer types.

525

526 **Acknowledgements**

527 We express gratitude to all members of the Zwart and Bergman lab, and members of the NKI
528 Oncogenomics division for helpful scientific discussion. We would like to thank Margot Passier
529 for testing the code. This work was supported by Prostate Cancer Foundation, Department of
530 Defense, Oncode Institute and Alpe d'HuZes/ KWF Dutch Cancer Society.

531

532 **Author contributions**

533 A.Z., J.K., A.M.B, W.Z. and F.E. conceived the study. M.v.G. performed all *in silico* modeling
534 experiments. A.Z. and J.K. carried out *in vitro* experiments. E.B. provided histology samples.
535 M.v.G., A.Z., J.K., A.M.B. and W.Z. wrote the manuscript with input from all authors. A.M.B.,
536 W.Z. and F.E. supervised the study.

537

538 **Conflict of interest statement**

539 The authors declare no conflicts of interest.

540 **References**

541 1 Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A *et al.* Global
542 Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for
543 36 Cancers in 185 Countries. *CA Cancer J Clin* 2021; **71**: 209–249.

544 2 Gelmann EP. Molecular biology of the androgen receptor. *J Clin Oncol* 2002; **20**: 3001–
545 3015.

546 3 Yang Q, Fung KM, Day W V., Kropp BP, Lin HK. Androgen receptor signaling is required
547 for androgen-sensitive human prostate cancer cell proliferation and survival. *Cancer Cell
548 Int* 2005; **5**: 8.

549 4 Heinlein CA, Chang C. Androgen receptor in prostate cancer. *Endocr Rev* 2004; **25**: 276–
550 308.

551 5 Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune contexture in human
552 tumours: impact on clinical outcome. *Nature Reviews Cancer* 2012 12:4 2012; **12**: 298–
553 306.

554 6 Malignant Transformation of Human Prostatic Epithelium Is Associated with the Loss of
555 Androgen Receptor Immunoreactivity in the Surrounding Stroma | Clinical Cancer
556 Research | American Association for Cancer Research.
557 [https://aacrjournals.org/clincancerres/article/5/3/569/199257/Malignant-Transformation-
558 of-Human-Prostatic](https://aacrjournals.org/clincancerres/article/5/3/569/199257/Malignant-Transformation-of-Human-Prostatic) (accessed 10 Jul2023).

559 7 Wikström P, Marusic J, Stattin P, Bergh A. Low stroma androgen receptor level in normal
560 and tumor prostate tissue is related to poor outcome in prostate cancer patients. *Prostate*
561 2009; **69**: 799–809.

562 8 Huang H, Wang C, Liu F, Li HZ, Peng G, Gao X *et al.* Reciprocal Network between
563 Cancer Stem-Like Cells and Macrophages Facilitates the Progression and Androgen
564 Deprivation Therapy Resistance of Prostate Cancer. *Clin Cancer Res* 2018; **24**: 4612–
565 4626.

566 9 Kumar V, Randhawa P, Bilodeau R, Mercola D, McClelland M, Agrawal A *et al.* Spatial
567 Profiling of the Prostate Cancer Tumor Microenvironment Reveals Multiple Differences
568 in Gene Expression and Correlation with Recurrence Risk. *Cancers (Basel)* 2022; **14**.
569 doi:10.3390/CANCERS14194923.

570 10 Wong HY, Sheng Q, Hesterberg AB, Croessmann S, Rios BL, Giri K *et al.* Single cell
571 analysis of cribriform prostate cancer reveals cell intrinsic and tumor microenvironmental
572 pathways of aggressive disease. *Nat Commun* 2022; **13**. doi:10.1038/S41467-022-
573 33780-1.

574 11 Olumi A, Grossfeld G, Hayward S, Carroll P, Cunha G, Hein P *et al.* Carcinoma-
575 associated fibroblasts direct tumor progression of initiated human prostatic epithelium.
576 *Cancer Res* 1999; **59**. doi:10.1186/BCR138.

577 12 Nonomura N, Takayama H, Nakayama M, Nakai Y, Kawashima A, Mukai M *et al.*
578 Infiltration of tumour-associated macrophages in prostate biopsy specimens is predictive
579 of disease progression after hormonal therapy for prostate cancer. *BJU Int* 2010; **107**:
580 1918–1922.

581 13 Neal JT, Li X, Zhu J, Giangarra V, Grzeskowiak CL, Ju J *et al.* Organoid Modeling of the
582 Tumor Immune Microenvironment. *Cell* 2018; **175**: 1972-1988.e16.

583 14 Kfouri Y, Baryawno N, Severe N, Mei S, Gustafsson K, Hirz T *et al.* Human prostate
584 cancer bone metastases have an actionable immunosuppressive microenvironment. *Cancer Cell* 2021; **39**: 1464-1478.e8.

586 15 Nagasaki T, Hara M, Nakanishi H, Takahashi H, Sato M, Takeyama H. Interleukin-6
587 released by colon cancer-associated fibroblasts is critical for tumour angiogenesis: anti-
588 interleukin-6 receptor antibody suppressed angiogenesis and inhibited tumour-stroma
589 interaction. *Br J Cancer* 2014; **110**: 469–478.

590 16 Croci DO, Zacarías Fluck MF, Rico MJ, Matar P, Rabinovich GA, Scharovsky OG.
591 Dynamic cross-talk between tumor and immune cells in orchestrating the
592 immunosuppressive network at the tumor microenvironment. *Cancer Immunol
593 Immunother* 2007; **56**: 1687–1700.

594 17 Zhang Z, Karthaus WR, Lee YS, Gao VR, Wu C, Russo JW *et al.* Tumor
595 Microenvironment-Derived NRG1 Promotes Antiandrogen Resistance in Prostate
596 Cancer. *Cancer Cell* 2020; **38**: 279-296.e9.

597 18 Ippolito L, Morandi A, Taddei ML, Parri M, Comito G, Iscaro A *et al.* Cancer-associated
598 fibroblasts promote prostate cancer malignancy via metabolic rewiring and mitochondrial
599 transfer. *Oncogene* 2019; **38**: 5339–5355.

600 19 Sun DY, Wu JQ, He ZH, He MF, Sun H Bin. Cancer-associated fibroblast regulate
601 proliferation and migration of prostate cancer cells through TGF-β signaling pathway. *Life
602 Sci* 2019; **235**. doi:10.1016/J.LFS.2019.116791.

603 20 Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG *et al.* Macrophage
604 polarization in tumour progression. *Semin Cancer Biol* 2008; **18**: 349–355.

605 21 Cioni B, Zwart W, Bergman AM. Androgen receptor moonlighting in the prostate cancer
606 microenvironment. *Endocr Relat Cancer* 2018; **25**: R331–R349.

607 22 Edin S, Wikberg ML, Dahlin AM, Rutegård J, Öberg Å, Oldenborg PA *et al.* The
608 distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the
609 molecular characteristics of colorectal cancer. *PLoS One* 2012; **7**.
610 doi:10.1371/JOURNAL.PONE.0047045.

611 23 Siefert JC, Cioni B, Muraro MJ, Alshalalfa M, Vivie J, van der Poel HG *et al.* The
612 prognostic potential of human prostate cancer-associated macrophage subtypes as
613 revealed by single-cell transcriptomics. *Molecular Cancer Research* 2021; **19**: 1778–
614 1791.

615 24 Henshall SM, Quin DI, Soon Lee C, Head DR, Golovsky D, Brenner PC *et al.* Altered
616 Expression of Androgen Receptor in the Malignant Epithelium and Adjacent Stroma Is
617 Associated with Early Relapse in Prostate Cancer | Cancer Research | American
618 Association for Cancer Research.
619 2001.https://aacrjournals.org/cancerres/article/61/2/423/507843/Altered-Expression-of-
620 Androgen-Receptor-in-the (accessed 10 Jul2023).

621 25 Cioni B, Nevedomskaya E, Melis MHM, van Burgsteden J, Stelloo S, Hodel E *et al.* Loss
622 of androgen receptor signaling in prostate cancer-associated fibroblasts (CAFs)
623 promotes CCL2- and CXCL8-mediated cancer cell migration. *Mol Oncol* 2018; **12**: 1308–
624 1323.

625 26 Fang LY, Izumi K, Lai KP, Liang L, Li L, Miyamoto H *et al.* Infiltrating macrophages
626 promote prostate tumorigenesis via modulating androgen receptor-mediated CCL4-
627 STAT3 signaling. *Cancer Res* 2013; **73**: 5633–5646.

628 27 Lissbrant IF, Stattin P, Wikstrom P, Damber JE, Egevad L, Bergh A. Tumor associated
629 macrophages in human prostate cancer: relation to clinicopathological variables and
630 survival. *Int J Oncol* 2000; **17**: 445–451.

631 28 Rohrs JA, Wang P, Finley SD. Understanding the Dynamics of T-Cell Activation in Health
632 and Disease Through the Lens of Computational Modeling. *JCO Clin Cancer Inform*
633 2019; **3**: 1–8.

634 29 Cioni B, Zaalberg A, van Beijnum JR, Melis MHM, van Burgsteden J, Muraro MJ *et al.*
635 Androgen receptor signalling in macrophages promotes TREM-1-mediated prostate
636 cancer cell line migration and invasion. *Nature Communications* 2020 11:1 2020; **11**: 1–
637 17.

638 30 Becerra-Díaz M, Strickland AB, Keselman A, Heller NM. Androgen and Androgen
639 Receptor as Enhancers of M2 Macrophage Polarization in Allergic Lung Inflammation.
640 *The Journal of Immunology* 2018; **201**: 2923–2933.

641 31 Consiglio CR, Gollnick SO. Androgen Receptor Signaling Positively Regulates Monocytic
642 Development. *Front Immunol* 2020; **11**. doi:10.3389/FIMMU.2020.519383.

643 32 Arulraj T, Barik D. Mathematical modeling identifies Lck as a potential mediator for PD-1
644 induced inhibition of early TCR signaling. *PLoS One* 2018; **13**.
645 doi:10.1371/JOURNAL.PONE.0206232.

646 33 Thurley K, Wu LF, Altschuler SJ. Modeling Cell-to-Cell Communication Networks Using
647 Response-Time Distributions. *Cell Syst* 2018; **6**: 355–367.e5.

648 34 Railsback SF (Steven F, Grimm V. Agent-based and individual-based modeling : a
649 practical introduction. 2012; : 329.

650 35 Poleszczuk J, Hahnfeldt P, Enderling H. Evolution and Phenotypic Selection of Cancer
651 Stem Cells. *PLoS Comput Biol* 2015; **11**. doi:10.1371/JOURNAL.PCBI.1004025.

652 36 Poleszczuk J, Macklin P, Enderling H. Agent-Based Modeling of Cancer Stem Cell Driven
653 Solid Tumor Growth. *Methods Mol Biol* 2016; **1516**: 335–346.

654 37 Frascoli F, Flood E, Kim PS. A model of the effects of cancer cell motility and cellular
655 adhesion properties on tumour-immune dynamics. *Math Med Biol* 2017; **34**: 215–240.

656 38 Pourhasanzade F, Sabzpushan SH, Alizadeh AM, Esmati E. An agent-based model of
657 avascular tumor growth: Immune response tendency to prevent cancer development.
658 *Simulation* 2017; **93**: 641–657.

659 39 Jalalimanesh A, Shahabi Haghghi H, Ahmadi A, Soltani M. Simulation-based
660 optimization of radiotherapy: Agent-based modeling and reinforcement learning. *Math
661 Comput Simul* 2017; **133**: 235–248.

662 40 Kather JN, Poleszczuk J, Suarez-Carmona M, Krisam J, Charoentong P, Valous NA *et
663 al.* In Silico Modeling of Immunotherapy and Stroma-Targeting Therapies in Human
664 Colorectal Cancer. *Cancer Res* 2017; **77**: 6442–6452.

665 41 Kather JN, Charoentong P, Suarez-Carmona M, Herpel E, Klupp F, Ulrich A *et al.* High-
666 Throughput Screening of Combinatorial Immunotherapies with Patient-Specific In Silico
667 Models of Metastatic Colorectal Cancer. *Cancer Res* 2018; **78**: 5155–5163.

668 42 Passier M, Genderen M van, Zaalberg A, Kneppers J, Bekers E, Bergman AM *et al.*
669 Exploring the onset and progression of prostate cancer through a multicellular agent-

670 based model. *Cancer Research Communications* 2023; <https://doi.org/10.1158/2767-9764.CRC-23-0097>.

671

672 43 Zaalberg A, Minnee E, Mayayo-Peralta I, Schuurman K, Gregoricchio S, Schaik TA van et al. A genome-wide CRISPR screen in human prostate cancer cells reveals drivers of macrophage-mediated cell killing and positions AR as a tumor-intrinsic immunomodulator. *bioRxiv* 2023; : 2023.06.06.543873.

673

674

675

676 44 Chiarugi P, Paoli P, Cirri P. Tumor microenvironment and metabolism in prostate cancer. *Semin Oncol* 2014; **41**: 267–280.

677

678 45 Lazar DC, Cho EH, Luttgen MS, Metzner TJ, Uson ML, Torrey M et al. Cytometric comparisons between circulating tumor cells from prostate cancer patients and the prostate tumor derived LNCaP cell line. *Phys Biol* 2012; **9**: 016002.

679

680

681 46 Kennedy J, Eberhart R. Particle swarm optimization. *Proceedings of ICNN'95 - International Conference on Neural Networks* 1995; **4**: 1942–1948.

682

683 47 Ab Wahab MN, Nefti-Meziani S, Atyabi A. A Comprehensive Review of Swarm Optimization Algorithms. *PLoS One* 2015; **10**: e0122827.

684

685 48 Schwaab M, Biscaia, EC, Monteiro JL, Pinto JC. Nonlinear parameter estimation through particle swarm optimization. *Chem Eng Sci* 2008; **63**: 1542–1552.

686

687 49 Tan RK, Bora S. Parameter Tuning of Complex Systems Modeled in Agent Based Modeling and Simulation. *International Journal of Computer and Information Engineering* 2017; **11**: 1314–1323.

688

689

690 50 Enot DP, Vacchelli E, Jacquemet N, Zitvogel L, Kroemer G. TumGrowth: An open-access web tool for the statistical analysis of tumor growth curves. *Oncoimmunology* 2018; **7**. doi:10.1080/2162402X.2018.1462431.

691

692

693 51 Comito G, Giannoni E, Segura CP, Barcellos-De-Souza P, Raspollini MR, Baroni G et al. Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. *Oncogene* 2014; **33**: 2423–2431.

694

695

696 52 Kirby M, Hirst C, Crawford ED. Characterising the castration-resistant prostate cancer population: a systematic review. *Int J Clin Pract* 2011; **65**: 1180–1192.

697

698 53 Payne H, Mason M. Androgen deprivation therapy as adjuvant/neoadjuvant to radiotherapy for high-risk localised and locally advanced prostate cancer: recent developments. *Br J Cancer* 2011; **105**: 1628.

700

701 54 Andreou M, Cheng L. Multifocal prostate cancer: biologic, prognostic, and therapeutic implications. *Hum Pathol* 2010; **41**: 781–793.

702

703 55 Ayala G, Tuxhorn JA, Wheeler TM, Frolov A, Scardino PT, Ohori M et al. Reactive Stroma as a Predictor of Biochemical-Free Recurrence in Prostate Cancer | Clinical Cancer Research | American Association for Cancer Research. 2003. <https://aacrjournals.org/clincancerres/article/9/13/4792/202227/Reactive-Stroma-as-a-Predictor-of-Biochemical-Free> (accessed 10 Jul2023).

704

705

706

707

708 56 Singer E, Linehan J, Babilonia G, Imam SA, Smith D, Loera S et al. Stromal response to prostate cancer: nanotechnology-based detection of thioredoxin-interacting protein partners distinguishes prostate cancer associated stroma from that of benign prostatic hyperplasia. *PLoS One* 2013; **8**. doi:10.1371/JOURNAL.PONE.0060562.

709

710

711