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Abstract 
 
The nuanced detection of rodent behavior in preclinical biomedical research is essential for 
understanding disease conditions, genetic phenotypes, and internal states. Recent advances in 
machine vision and artificial intelligence have popularized data-driven methods that segment 
complex animal behavior into clusters of behavioral motifs. However, despite the rapid progress, 
several challenges remain: Statistical power typically decreases due to multiple testing correction, 
poor transferability of clustering approaches across experiments limits practical applications, and 
individual differences in behavior are not considered. Here, we introduce "behavioral flow analysis" 
(BFA), which creates a single metric for all observed transitions between behavioral motifs. Then, 
we establish a "classifier-in-the-middle" approach to stabilize clusters and enable transferability of 
our analyses across datasets. Finally, we combine these approaches with dimensionality reduction 
techniques, enabling "behavioral flow fingerprinting" (BFF) for individual animal assessment. We 
validate our approaches across large behavioral datasets with a total of 443 open field recordings 
that we make publicly available, comparing various stress protocols with pharmacologic and brain-
circuit interventions. Our analysis pipeline is compatible with a range of established clustering 
approaches, it increases statistical power compared to conventional techniques, and has strong 
reproducibility across experiments within and across laboratories. The efficient individual 
phenotyping allows us to classify stress-responsiveness and predict future behavior. This approach 
aligns with animal welfare regulations by reducing animal numbers, and enhancing information 
extracted from experimental animals  
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Introduction 
The majority of preclinical biomedical research is conducted in mice. Thus, the reliable detection of 
complex mouse behavior is critical to gain insights into disease conditions, genetic phenotypes and 
internal states (emotion, well-being etc.). Traditionally, behavior assessment has been performed by 
manual observation of animals1–3, a time consuming approach notoriously plagued by human bias, 
high inter- and intra-rater variability and poor reproducibility4,5. The advent of pose-estimation 
technology6–8 has enabled the automation of this process using supervised machine learning 
methods, thus solving the problem of variability and reproducibility5,9–13. However, the process of 
selecting and defining the relevant behaviors still introduces considerable human bias and limits the 
analyses to predefined assumptions about animal behavior4,14,15.  

Given these limitations, data-driven methods that analyze behavior independent of human 
intervention have recently attracted more interest. Based on raw or processed video data, these 
approaches segment behavior using clustering algorithms or more sophisticated state-space 
models, and have revealed a remarkable complexity underlying even the simplest behavior tasks16–

21.  For example, open field behavior - routinely used as a testbed for analyzing unconstrained rodent 
behavior - was shown to contain a large number of readily identifiable behavioral clusters (also called 
syllables or motifs)16,18,19,21.  

Despite this rapid progress, such advancements have given rise to three novel challenges, 
which we address in this work. 1) The multiple testing problem: One of the major promises of 
unbiased, data-driven analyses of animal behavior is the ability to better resolve differences between 
experimental groups, by analyzing large numbers of behavioral variables4,14,15. However, the more 
variables we identify, the less power we have to detect group differences due to increased statistical 
demands from multiple testing corrections. We solve this by introducing a "behavioral flow analysis" 
(BFA), which uses a single metric to identify treatment effects based on the observed transitions 
between the different behavioral clusters. 2) The transferability problem: Clusters that represent 
behaviors vary between experiments, making it impossible to compare clustering results between 
different experiments. Further, it remains difficult to transfer a model between different testing 
conditions, datasets or laboratories. We address this using a "classifier-in-the-middle" approach, 
which trains a supervised machine learning classifier to recognize established behavioral clusters in 
newly encountered datasets. 3) The problem of individual differences: Despite ever more nuanced 
analyses on the group level, it has not yet been demonstrated that behavioral personality profiling - 
akin to a detailed clinical assessment routinely conducted in human studies - is possible in mice.  
We combine BFA and stabilized clusters with dimensionality reduction techniques to generate a 
single, high-dimensional datapoint for each animal. This "behavioral flow fingerprinting" (BFF) 
approach provides an individual assessment of each animal and allows large-scale comparisons of 
animal behavior across a wide range of experimental manipulations.  

Using a series of stress paradigms, pharmacological and circuit neuroscience interventions, 
we test and validate our approach across many behavioral datasets. Our results are in line with the 
reduce-and-refine principles set forth by animal welfare regulations, as our approach increases 
statistical power, reduces the number of animals required for experiments, and increases the 
information extracted from each experimental animal. 
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 28, 2023. ; https://doi.org/10.1101/2023.07.27.550778doi: bioRxiv preprint 

https://paperpile.com/c/sJGHpK/hxuW+FuvK+0TAy
https://paperpile.com/c/sJGHpK/Q2ag+2eDT
https://paperpile.com/c/sJGHpK/N8aI+f15n+fQaD
https://paperpile.com/c/sJGHpK/2eDT+NRoc+FR22+KJFA+RUCP+YWue
https://paperpile.com/c/sJGHpK/Q2ag+6Zno+TPBx
https://paperpile.com/c/sJGHpK/3ca9+ZNyY+E6dg+Rssn+G0Xh+9KSb
https://paperpile.com/c/sJGHpK/3ca9+ZNyY+E6dg+Rssn+G0Xh+9KSb
https://paperpile.com/c/sJGHpK/9KSb+E6dg+3ca9+Rssn
https://paperpile.com/c/sJGHpK/Q2ag+6Zno+TPBx
https://doi.org/10.1101/2023.07.27.550778
http://creativecommons.org/licenses/by/4.0/


4 

Results 

1. Behavior Flow Analysis (BFA) increases power to detect treatment effects 
Data-driven clustering vs. classical analyses. The ability to resolve nuanced behaviors in a data-
driven manner holds the promise to reliably and powerfully identify behavioral phenotypes16–21. We 
hypothesized that such an unsupervised approach would reveal known phenotypes in existing 
datasets with greater sensitivity. To test this, we first turned to a large, published behavioral dataset22 
in which mice were exposed to chronic social instability stress (CSI, n=30) or to control handling 
(n=29), before being tested on the open field test (OFT) for 10 minutes (Figure 1A). For classical 
behavior analysis - as described previously9,22 - we tracked 13 bodypoints using the pose-estimation 
tool DeepLabCut6,7, transformed the point-tracking data into a set of features, computed standard 
OFT parameters ('distance traveled' and 'time in center'), and employed a supervised machine 
learning analysis to quantify supported and unsupported rears. CSI mice spent more time in the 
center of the open field and they traveled more distance, while their rearing behavior was not affected 
(Figure 1B), thus representing a useful dataset with known phenotypical differences between 
groups.  

We then tested how well an unsupervised clustering approach performs at resolving group 
differences. We first transformed the point-tracking data into an extended set of 41 features (see 
Methods section). These features were then resolved over a sliding time window (+/-15 frames) to 
describe short temporally resolved sequences (Figure 1C). The resulting data contained 1271 
dimensions for each frame. We then used a simple and computationally efficient k-means clustering 
algorithm to resolve different behaviors. To determine the best number of clusters, we chose an 
approach used previously for segmenting behavior by VAME21 and MoSeq17. To this end, we first 
partitioned the recorded behavior into 100 clusters, and then chose the number of clusters which 
represented 95% of the imaging frames. This mark indicated about 70 clusters (Suppl. Figure 1A), 
so we subsequently re-ran the clustering approach using 70 clusters. Although nominal p-values 
revealed that CSI and control animals behaved differently on many of these clusters, only 4 out of 
70 clusters survived the appropriate multiple testing correction (Benjamini-Yekutieli, Figure 1D). 
Visual inspection of these significant clusters reveals - in agreement with the classical analysis - that 
they capture the time the animals spent in the center of the open field. Specifically, these four 
clusters represent movement of the mouse from the periphery into the center (cluster 41, Suppl. 
Video 1), movement in or through the center (cluster 23, Suppl. Video 2), orienting and turning in 
the center (cluster 69, Suppl. Video 3) and movement from the center back to the periphery (cluster 
45, Suppl. Video 4).  
 
Quantifying transitions between clusters. Importantly, behavior emerges as a dynamic property 
of moment-to-moment action. Thus, we took advantage of the frame-by-frame resolution of the 
clustering data to assess the behavioral flow (i.e. the temporal sequence in which one cluster 
transitions to another cluster) in each animal (Figure 1E). To enable this approach, we created an 
open source code base that allows the loading and analysis of (manual, supervised or unsupervised) 
labeling results on a frame-by-frame basis. We used this package to first analyze how behavior flows 
across all animals in the CSI experiment, independent of group assignment (Figure 1F). This 
demonstrated that many clusters had ingoing and outgoing transitions that were much more likely 
to occur. An example are the clusters identified as significant between CSI and control mice, where 
behavioral flow indicates that when mice move from the periphery to the center (cluster 41) this can 
be followed by movement through the center (cluster 23) or exploration in the center (cluster 69), 
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which is most often followed by a movement back into the periphery (this "crossing of the open field"-
sequence is displayed schematically in Figure 1E, and supported by data in Figure 1F).  

We then asked whether these transitions would reveal group differences between CSI and 
control mice. However, when we applied multiple testing corrections to account for the high number 
of observed transitions (1753 observed transitions out of 4830 possible transitions), none of them 
remained significant (adj. p>0.05). To demonstrate that the information gain is punished by multiple 
testing correction, we designed a sensitivity assay. We used the CSI dataset to generate multiple 
two-group comparisons of random subsets of each group of mice, and successively reduced group 
sizes in silico (Suppl. Figure 1B). The results demonstrate that - when using unadjusted p-values - 
both cluster usage and transition occurrences perform better than classical analyses (for which the 
best statistical value between distance, time in center, supported rearing and unsupported rearing 
was used; Suppl. Figure 1C). However, when applying multiple testing corrections, both cluster and 
transition measures perform poorer than classical analyses in detecting phenotype differences 
(Suppl. Figure 1D).  
 
Behavioral Flow Analysis (BFA). To address the multiple testing problem, we used a statistical 
approach to detect group differences based on the combined behavioral flow data, which we term 
"behavioral flow analysis" (BFA). The BFA method first defines the difference between the two 
experimental groups based on the Manhattan distance between group means across all behavioral 
transitions (Figure 1G). To assess if this distance is significantly larger than expected, we used a 
bootstrapping approach where randomized group assignments were generated using the original 
data to estimate a null distribution of the inter-group distance (Figure 1H). Then, we calculated the 
percentile and tested the true distance against the null distribution using a right-tailed z-test, which 
revealed a strong group difference that is very unlikely due to chance (Figure 1I). Given this result, 
we tested whether BFA would increase the power to detect differences between groups. We again 
used the sensitivity assay by gradually lowering group sizes from 25 to 5 animals in silico. With large 
group numbers (>10mice/group), the increase in statistical power provided by BFA is extremely large 
(Figure 1J). Gradually lowering the group sizes from 25 to 5 replicates demonstrated that BFA still 
resolved a phenotype at lower group sizes than the best of the classically recorded behaviors 
(termed "best behavior", see Methods for details, Figure 1J).  

To ensure that this is not due to potentially poor manual selection of relevant behaviors we 
devised a combined behavior analysis, which leverages all data generated with the OFT analysis 
using DLC (as described in a previous publication9, DLCAnalyzer) in combination with a principal 
component analysis (PCA) to deal with the highly correlated variables. We observed that this 
composite measure (termed "combined behavior") performed worse than the "best behavior" (Figure 
1J), confirming that by manually selecting the "best behavior" we created an advantageous scenario 
that requires prior knowledge of the phenotype. Thus, BFA is indeed much more powerful at 
detecting group differences than the behavior that best captures group differences, and more 
powerful than a composite score of predictive individual behaviors.  
 
BFA works with various clustering approaches. As many different clustering approaches have 
been successfully used to analyze rodent behavior16,19,21, we tested whether the BFA method would 
work independent of the clustering algorithm employed. We first turned to VAME, one of the most 
recently developed unsupervised approaches for behavior analysis. DLC-based tracking data was 
used for egocentric alignment as described by the authors (Suppl. Figure 2A) and reached good 
model performance (Suppl. Figure 2B). Estimating the best number of clusters (as described above) 
we selected 80 clusters (Suppl. Figure 2C). Similar to the k-means approach, 5 of these clusters 
revealed significant group differences (adj. p<0.05) between CSI and control animals (Suppl. Figure 
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2D), despite the fact that both algorithms only showed moderate alignment in the type of clusters 
identified (Suppl. Figure 2E). The resulting behavioral flow diagram showed differences for certain 
transitions (Suppl. Figure 2F), but the attempt to analyze all possible behavioral transitions was 
again punished by multiple testing correction (1820 observed transitions out of 6320 possible 
transitions), revealing no statistically significant group differences (Suppl. Figure 2G). However, BFA 
- computed based on all behavioral transitions - was able to reveal a highly significant group 
difference (Suppl. Figure 2H). 
 
BFA works with various clustering approaches and cluster numbers. We also tested BFA using 
clusters generated by B-SOiD, another popular unsupervised clustering pipeline16. Using B-SOiD 
restricted the input features to 9 body points (Suppl. Figure 3A). Adjusting the number of clusters in 
B-SOiD, which uses a hierarchical clustering method, is not straight-forward, and systematically 
varying the input parameters generated a wide range of possible clusters. We settled for 8 clusters, 
which efficiently separated the data (Suppl. Figure 3B), and which were accurately assigned to single 
frames by the random forest classifier as assessed by confusion matrix and test data accuracy 
(Suppl. Figure 3C). It has indeed been reported recently that some clustering algorithms only resolve 
a few behavior motifs in open field data19, and it offered an opportunity to test whether our BFA 
approach would work on fewer clusters. Three of the identified clusters showed significant group 
differences (adj. p<0.05; Suppl. Figure 3D). Mapping these B-SOiD clusters to our k-means clusters 
reveals that every B-SOiD cluster contains many of the clusters represented by k-means (Supp. 
Figure 3E). The resulting behavioral flow diagrams show that 5 transitions were significantly different 
between CSI and controls (adj. p<0.05, Suppl. Figure 3 F-H), in line with the notion that the small 
number of observed transitions (56 observed transitions out of 56 possible transitions) rendered the 
multiple testing correction less punishing. We then conducted BFA and again found that it was very 
powerful in detecting a group difference (Suppl. Figure 3I). A systematic assessment showed that 
BFA can increase statistical power across all three clustering approaches (Figure 1J/L). B-SOiD 
yielded good results despite the small number of clusters, thus we also compared the performance 
of BFA using the k-means-based approach with different numbers of clusters. Indeed, a broad range 
of cluster numbers (from 10 to 100) all strongly increased statistical power (Figure 1K). Because 25 
clusters showed the best results in this dataset, we used 25 clusters in the subsequent analyses. 
Overall, BFA enables efficient phenotype detection across clustering algorithms, and even with very 
low cluster numbers. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 28, 2023. ; https://doi.org/10.1101/2023.07.27.550778doi: bioRxiv preprint 

https://paperpile.com/c/sJGHpK/3ca9
https://paperpile.com/c/sJGHpK/Rssn
https://doi.org/10.1101/2023.07.27.550778
http://creativecommons.org/licenses/by/4.0/


7 

 
Figure 1. Behavioral flow analysis increases sensitivity to detect phenotypes. (A) Schematic showing 
experimental design for chronic social instability (CSI). (B) Classical behavior readouts in the open field test 
show that CSI mice spend more time in the center (t(53)=2.96, adj. p=0.045) and travel greater distance 
(t(52)=4.55, adj. p<0.001). (C) Feature extraction based on pose-estimation tracking and sequential feature 
integration for subsequent clustering. (D) k-means cluster occurrence in CSI. (E) Schematic example of 
behavioral flow based on cluster transitions. (F) Average behavioral flow over all animals. (G) Schematic of 
computing Manhattan distance to compare behavioral transition matrices between groups. (H) Bootstrapping 
approach used for behavioral flow analysis (BFA) to compare the transition distance based on the true group 
assignment versus the randomized group assignment. (I) BFA reveals a treatment effect for CSI 
(percentile=99.9, z=5.72, p<0.001). (J) BFA enhances the sensitivity to detect the CSI phenotype. (K) BFA 
enhances sensitivity using various numbers of k-means clusters. (L) (J) Phenotype detection sensitivity in CSI 
using B-SOiD or VAME clustering with BFA. Adj. p-values are denoted as: *<0.05, **<0.01, ***<0.001. Error 
bars denote ± SEM. 
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2. Cluster stabilization enables direct comparisons across experiments.  
Adding new behavioral datasets. Because behavior is complex and nuanced, cluster boundaries 
and sub-divisions tend to be blurry, and as a result unsupervised clustering tends to be sensitive to 
minor differences in the data. Therefore, some cluster stabilization would be required to compare 
results across experiments. To address this issue, we added two new behavioral datasets. First, we 
performed an experiment in which mice were tested 45min and 24hrs after a short swim stress 
exposure (acute swim (AS), n=15; control, n=15). (Figure 2A). Second, we added a pharmacological 
stress model that allowed us to introduce a graded stress response by injecting mice with variable 
doses of yohimbine, an α2-adrenergic receptor antagonist, which triggers strong noradrenaline 
release by disinhibiting the locus coeruleus23,24. Control animals were injected with saline (n=5), 
while each mouse in the treatment group received one injection of yohimbine ranging from 0.4 to 6 
mg/kg (n=15; Figure 2B). 
 
Cluster stabilization across experiments. To obtain comparable clustering results across these 
experiments, all the data could be used in one big clustering experiment. However, this would entail 
re-running the unsupervised clustering every time new data is added and soon become 
computationally challenging as previously observed18. Instead, we stabilized clusters using a 
classifier-in-the-middle approach. To this end, we first selected only a random set of 20 animals from 
each behavioral experiment (CSI, AS, yohimbine) for performing k-means clustering to generate 25 
clusters, as this number of clusters was sufficient to detect phenotypical differences as shown above 
(Figure 1K). Afterwards, we used these clustering results to train a neural network that can imitate 
the clustering on the random subset for the rest of the data (Figure 2C). Using a 10-fold cross 
validation we found that this approach had good (>0.9) precision and recall values across all 25 
clusters (Figure 2D).  

Using this cluster stabilization approach, we first re-analyzed the CSI experiment. As we now 
only used 25 clusters, multiple testing correction was less punishing and we identified 6 significant 
clusters (Figure 2E), and two significant transitions (Figure 2F). Visual inspection revealed - 
consistent with the original analysis - that all clusters that occurred more frequently in CSI mice 
captured behaviors related to active locomotion in the center: movement in the center of the open 
field (cluster 3, Suppl. Video 5), the initiation of movement from the periphery to the center (cluster 
14, Suppl. Video 6), fast locomotion crossing the center or moving from center to periphery (cluster 
21, Suppl. Video 7), and exploration/turning in the center or movement towards the periphery (cluster 
25, Suppl. Video 8). In contrast, the only underrepresented cluster in CSI mice was movement or 
exploration along the periphery of the open field (cluster 10, Suppl. Video 9). Accordingly, the 
transitions significantly overrepresented in CSI mice captured the transition from being stationary 
close to the wall to initiating movement into the center (cluster 16 to cluster 14), and from moving 
into the center to slowing down and re-orienting in the center (cluster 14 to cluster 3). Also the BFA 
pipeline reproduced the very strong phenotype (Figure 2G) and increased statistical power 
compared to classical analyses (Figure 2H). Taken together, our findings reveal that, independent 
of the number of clusters, our approach captures meaningful behavioral motifs and interpretable 
transitions, also when the original dataset is reanalyzed using a set of clusters derived from training 
on subsets of videos from various experiments. 
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Figure 2. Cluster stabilization enables comparisons across experiments. (A) Schematic of experimental 
design for OFT after acute swim (AS) stress, or (B) after yohimbine injections. (C) Clustering across large 
datasets. (D) Classifier performance on 10-fold cross-validation for each cluster. (E) Quantification of cluster 
occurrences in CSI. (F) Absolute differences in behavioral flow in control vs. CSI. For each cluster, the absolute 
difference in the observed number of transitions between groups is plotted. (G) BFA reveals a treatment effect 
for CSI (percentile=99.9, z=6.02, p<0.001). (H) BFA enhances phenotype detection sensitivity in CSI. (I) 
Cluster occurrences in AS (45 min). (J) Absolute difference in behavioral flow in control vs. AS (45 min). (K) 
BFA reveals a treatment effect for AS at 45 min (percentile=99.4, z=3.09, p=0.001) but not at 24 h 
(percentile=80.9, z=0.85, p=0.198). (L) Phenotype detection sensitivity in AS. (M) Cluster occurrences in 
yohimbine. (N) Absolute difference in behavioral flow in saline vs. yohimbine. (O) BFA reveals a treatment 
effect for yohimbine (percentile=99.8, z=5.56, p<0.001). Adj. p-values are denoted as: *<0.05, **<0.01, 
***<0.001. Error bars denote ± SEM. 
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Cluster stabilization across experiments: Swim stress and yohimbine. We then applied the 
same analysis pipeline using the clustering classifier to open field behavior assessed 45 minutes 
after an acute swim stress. None of the 25 clusters and none of the observed transitions revealed 
any group differences (Figure 2I,J), yet BFA readily identified a significant group difference (Figure 
2K). When we instead analyzed open field behavior 24hrs after swim stress, neither the 25 clusters 
or their transitions (Suppl. Figure 4A,B) nor BFA revealed a discernible phenotype anymore (Figure 
2K), consistent with our previous observations that swim stress only induces transient changes in 
mouse behavior25. These results suggest that BFA can detect group differences when other methods 
fail, but it does not create arbitrary effects in a scenario when no effects would be expected. Despite 
the successful BFA analysis, the sensitivity to detect a phenotype could not be improved in this 
dataset (Figure 2L).  

Next we applied the same analysis pipeline to mice injected with escalating doses of 
yohimbine. For this, we grouped all yohimbine-injected mice into one group (yohimbine, n=15), and 
compared them to the 5 saline-injected controls (Figure 2B). Because of the small number of mice 
in the control group, nominally large effects on various individual clusters did not yield statistical 
significance after multiple testing correction (Figure 2M), nor on the level of observed transitions 
(Figure 2N). However, BFA was again able to reveal a highly significant group difference (Figure 
2O), showcasing the power of this analysis even when applied to experiments with intentionally high 
variability and small, otherwise underpowered group sizes.  

A visual comparison of cluster occurrence across all three experiments reveals very clearly 
that acute swim stress and yohimbine injections - which both acutely trigger strong noradrenaline 
release - induce similar behavioral profiles in the open field, but these behavioral changes are very 
distinct from the ones induced by CSI (Figure 2E,I,M). For example, yohimbine strongly suppresses 
clusters 1 and 11, which capture the initiation and termination of a supported rear, respectively (see 
Suppl. Video 10 and 11), in line with our previous findings that yohimbine reduces supported 
rearing24.  

3. Behavioral Flow Fingerprinting (BFF) captures individual differences 
Capturing cluster transitions per animal. Thus far, we have leveraged the power of unsupervised 
clustering and BFA to identify group differences. Ultimately, however, it is necessary to understand 
behavior on the level of individual animals. Recently, MoSeq was used to demonstrate that 
unsupervised approaches can resolve differences between different drugs and drug doses18. We 
thus asked whether behavioral flow would be sensitive to drug dosage in the yohimbine experiment 
(Figure 3A). When modeling occurrence of transitions as a function of dosage, one transition, from 
cluster 11 to 7, showed a significant association with the dose of yohimbine (Figure 3B). Visual 
inspection showed that this transition captured the end of a supported rear (cluster 11, Suppl. Video 
11), and the subsequent turning motion and initiation of movement (cluster 7, Suppl. Video 12). At 
higher doses of yohimbine, mice transition less frequently between these clusters related to 
supported rearing (Figure 3B). To further explore individual differences based on behavioral flow, 
we considered that the behavioral flow diagrams represent high-dimensional data for each animal 
(625 possible transitions between 25 clusters). For easier visualization and analysis, we applied 
Uniform Manifold Approximation and Projection (UMAP) to project the high-dimensional behavioral 
transition matrix of each animal onto a single datapoint in 2D space, while retaining as much relevant 
information as possible. The resulting 2D embeddings showed a very good separation of the saline 
vs yohimbine groups (Figure 3C), and were also able to resolve low vs high dosages, despite the 
small animal numbers used in this experiment (Figure 3D). As this high-dimensional representation 
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of behavioral complexity aims to provide a unique description of each animal's behavioral phenotype, 
we refer to this approach as "Behavioral Flow Fingerprinting" (BFF). 
 
Plotting behavioral profiles across many experiments. Being able to stabilize the unsupervised 
clustering analyses across experiments, and to capture individual behavioral response profiles of 
each animal, we explored whether we could plot individual behavioral profiles across experiments. 
We first performed the BFF embedding of all cluster transitions on the CSI dataset, which revealed 
a shift of CSI animals away from controls (Figure 3E,G). However, it also showed the large overlap 
between both experimental groups, which reflects the large spread between data points (individual 
mice) using classical measures such as "distance moved" or "time in center" (see Figure 1B).  

We then applied the same BFF analysis to the open field data after swim stress exposure. 
Also for this dataset, 2D embedding reveals that the group mean is shifted away from the control 
group after 45 min, but 24 hours after stress exposure the group mean overlaps again with the 
control group (Figure 3F,H). Next, we plotted the BFF embedding across all three experiments 
(Figure 3I). In order to remove potential batch effects across experiments, we normalized behavioral 
flow to the internal control group within each dataset (by normalizing the transition matrix of each 
animal to the mean of the control group, see Methods section for details). This is in notable contrast 
to a previous attempt, where each group was compared not to an internal control, but  to all other 
groups combined18, thus potentially overestimating the power to identify effects. The resulting 2D 
embedding shows that yohimbine - which triggers noradrenaline release - induces very distinct 
changes that separate the yohimbine group very strongly from control animals. Acute stress - during 
which noradrenaline is released as well - shifts the animals towards the yohimbine group (45min), 
an effect that disappears as stress effects subside (24hrs). This shows that combining BFF with 
cluster stabilization allows visualizing treatment effects and comparing the impact of various 
manipulations across experiments and individuals in ways that were previously not possible. 
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Figure 3. Behavioral flow fingerprinting (BFF) captures individual differences in high-dimensional 
space. (A) Schematic of experimental design showing the escalating dose of yohimbine. (B) Using dose in a 
log-linear model reveals one significant transition (R2=0.75, F(1,18)=55.44, adj. p=0.002). (C) BFF reveals a 
separation between mice treated with vehicle versus yohimbine when applying UMAP dimension reduction to 
their transition matrices. The crossbars represent the average UMAP1 and UMAP2 values with SEM for each 
group. (D) BFF can also visualize the drug dose delivered to each animal. (E, G) BFF applied to the chronic 
social instability (CSI) dataset. (F, H) BFF applied to the acute swim stress (AS) dataset. (I) Plotting BFF 
embeddings across all three experiments (CSI, AS, yohimbine) reveals a separation of all experimental groups 
in 2D space.  
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4. Cluster transfer to new datasets and data integration.  
Next, we tested how well the analysis pipeline can be transferred to new datasets that were not used 
to perform clustering and train the clustering classifier. To this end, we performed two new 
experiments. In the first experiment, mice were exposed to chronic restraint stress (CRS) for 90 
minutes per day on 10 consecutive days (Figure 4A), and tested in the OFT 45 minutes after the last 
stress exposure. In the second experiment, we triggered noradrenaline release directly in the brain 
using chemogenetic (DREADD, hM3Dq) activation of the locus coeruleus26,27 (Figure 4B). We 
recorded open field behavior directly after DREADD activation. Then, we performed clustering as 
described above using the cluster classifier trained on the CSI, swim stress and yohimbine data 
(Figure 4C). 

The behavioral flow diagram of control animals from the two new datasets appears very 
similar to the behavioral flow diagram of control animals from the previous datasets (Figure 4D). 
Further, we observed that clusters 1 and 11 (Suppl. Video 13 and 14) mapped to onset and offset 
of supported rearing, respectively, consistent with the previous experiments (see Suppl. Videos 10 
and 11). This demonstrates a reproducible clustering transfer for completely new datasets. Further 
analysis revealed 6 significant clusters in the CRS experiment (Figure 4E), but no cluster transition 
survived multiple testing correction (Figure 4F). BFA identified a highly significant group effect 
(Figure 4G) and greatly increased power to detect group differences (Figure 4H). In the DREADD 
experiment no significant clusters or transitions were detected (Figure 4I,J), which is likely due to 
the small number of animals in the control group (n=8) and variable responses between mice. 
However, BFA was again able to reveal a significant group effect (Figure 4K), and increased power 
to detect group effects compared to classical behavioral analyses (Figure 4L).  

Although no cluster transitions were significantly different between groups for either 
experiment (Figure 4F,J), BFF clearly separated phenotypes in the 2D embedding (Figure 4M,N). 
We then plotted all experiments presented thus far in one 2D embedding (Figure 4O). Strikingly, all 
manipulations that acutely trigger noradrenaline release (acute swim, yohimbine and DREADD) 
were shifted away from the control groups in the same direction. In sharp contrast, the two chronic 
stressors (CSI and CRS) induced distinct phenotypes, with animals being shifted towards two 
different directions. This demonstrates that our analysis pipeline can be employed on different 
datasets that were not used for training the clustering classifier, and that across experiments this 
approach holds the potential to phenotype behavioral response profiles in ways that are consistent 
with the underlying brain processes. 
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Figure 4. Clustering is transferable to new datasets with the same experimental setup. (A) Schematic 
of experimental design for OFT after chronic restraint stress (CRS), or (B) after DREADD activation of the 
locus coeruleus. (C) Cluster transfer to new datasets that were not used for the initial clustering. (D) 
Comparison of average behavior flow in control animals reveals a similar pattern between original clustering 
(CSI, AS and yohimbine) and transferred clustering (CRS and DREADD). (E) Quantification of cluster 
occurrences in CRS. (F) Absolute differences in behavioral flow in control vs. CRS. (G) BFA reveals a 
treatment effect for CRS (percentile=99.9, z=5.41, p<0.001). (H) Phenotype detection sensitivity in CRS. (I) 
Quantification of cluster occurrences after DREADD-activation of the locus coeruleus. (J) Absolute differences 
in behavioral flow in saline vs. clozapine. (K) BFA reveals a treatment effect for the DREADD experiment 
(percentile=99.2, z=2.91, p=0.002). (L) Phenotype detection sensitivity in DREADD experiment. (M) BFF using 
dimensionality reduction for the CRS experiment, and (N) for the DREADD experiment. Crossbars represent 
the average UMAP1 and UMAP2 values ± SEM for each group. (O)  BFF embeddings across original (CSI, 
AS, yohimbine) and new (CRS, DREADD) experiments. Adj. p-values are denoted as *<0.05 and **<0.01. 
Error bars denote ± SEM. 
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5. BFF captures individual variability and allows behavioral predictions 
Longitudinal screening of behavior. We have shown that BFF can readily resolve group 
differences, but even more promising is its ability to capture complex behavior on the level of 
individual animals. In mice exposed to acute swim stress (AS) we noted - despite the clear treatment 
effect - that several animals exposed to AS embedded closer to controls (Figure 4O), raising the 
possibility that they might have been less responsive to the effects of stress. Distinguishing 
responders from non-responders is one of the great challenges in preclinical research, as it would 
enable screening for molecular mechanisms or therapeutics, and facilitate analyses of circuit 
mechanisms that determine treatment success. We thus devised an experimental setup that allowed 
us to repeatedly screen animals in the OFT, using an inescapable footshock (IFS) paradigm, which 
delivers a series of strong fooshocks over 20 minutes and induces long-lasting behavioral changes 
in rats28,29 and mice30,31. Mice were tested in the OFT the day before stress exposure (OFT1), the 
day after stress exposure (OFT2), as well as one week afterwards (OFT3). Between OFT2 and 
OFT3, fear memory was assessed and mice were exposed to one extinction session per day, in 
which they were placed in the footshock context for 5 minutes without shock exposure (see Figure 
5A). Cluster analysis revealed a strong stress-induced phenotype on OFT2, the day after footshock 
exposure (Figure 5B), and two behavioral transitions revealed a significant difference between 
groups (Figure 5C,D). These effects on cluster occurrences and transitions were not observable 
before footshock exposure (OFT1, Suppl. Figure 6A,B) and disappeared again after the extinction 
period during OFT3 (Suppl. Figure 5C,D). Next, we applied the BFA and BFF algorithms to assess 
performance of the animals on all three OFT tests. BFA revealed no significant difference between 
groups before stress exposure (OFT1), a very strong phenotype the day after stress exposure 
(OFT2), and again no significant group difference 7 days after stress exposure and following 
extinction (OFT3; Figure 5E). Then we used BFF to plot the behavioral transition dynamics in 2D 
together with all previous experiments, which revealed a very strong separation between groups 
(Figure 5F). Notably, the animals exposed to IFS clustered together with the other acute stress and 
noradrenaline manipulations, in line with the notion that acute stress is characterized by a strong 
release of noradrenaline.  
 
Capturing stress-responsiveness in high-dimensional space. Based on the BFF results, we 
devised a method to determine which stress-exposed animals appear more similar to control mice 
(non-responders), and which mice show a stronger behavioral change in response to stress 
(responders). The "responder"- attribution was based on UMAP1 and UMAP2 thresholds with the 
highest geometric mean of recall and specificity for each dimension. To account for parameter 
sensitivity of the UMAP reduction, we repeated the classification into responders and non-
responders for several different 2D embeddings of the same transition data by changing the random 
seed. The final classification was then based on a majority vote over all 2D embeddings (schematic 
shown in Figure 6G, see Methods for more details). This approach allows separating responders 
from non-responders based not on a single behavioral test, but by taking the entire high-dimensional 
behavioral flow data into account (Figure 5H). Beyond stratifying animals into groups, this approach 
allows assigning a "stress-responsivity score" to each individual mouse, based on how often the 
animal was classified as a non-responder in all the 2D embeddings (percentage of classifications) 
(Figure 6I). Using this new group assignment, we compared OFT2 performance and found - as 
expected - different cluster representation and behavioral flow (Figure 5J,K) and a very strong group 
difference using BFA (Figure 5L).  
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Figure 5. BFF captures individual variability and allows behavioral predictions. (A) Schematic of 
experimental design for inescapable footshock (IFS). (B) Cluster occurrences in IFS (OFT2). (C) Absolute 
difference in behavioral flow in control vs. IFS (OFT2). (D) Significant transition occurrences in control vs. IFS 
(OFT2). (E) BFA reveals a treatment effect of IFS only during OFT 2 (OFT1: percentile=3.9, z=-1.54, p=0.939; 
OFT2: percentile=99.9, z=7.77, p<0.001; OFT3: percentile=44.5, z=-0.18, p=0.570). (F) 2D embedding of 
behavioral flow across all datasets (stabilized to controls). (G) Schematic workflow of stratifying non-
responding and responding groups based on multiple 2D embeddings. (H) 2D embedding of behavioral flow 
in IFS (OFT2) labeled for group assignment, or (I) labeled for their stress-responsivity score. (J) Cluster 
occurrences in non-responding vs. responding mice. (K) Absolute differences in behavioral flow in responding 
vs. non-responding mice. (L) BFA reveals a group effect between responding and non-responding mice 
(percentile=99.8, z=4.44, p<0.001). (M) Freezing response on extinction days 1 and 6 reveals differences 
between non-responding and responding mice (extinction day 1: F(2,32)=29.37, p<0.001; extinction day 6: 
F(2,32)=4.08, p=0.026). Adj. p-values are denoted as: *<0.05, **<0.01, ***<0.001. Error bars denote ± SEM. 
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More interestingly, using the same group assignment we found that responders (based on OFT2 
performance) showed a stronger freezing response 48 hours after prolonged footshock exposure 
compared to non-responders (Figure 5M), and responders also failed to fully extinguish their freezing 
response during 6 consecutive days of extinction training (Figure 5M, Suppl. Figure 5E).  

A previous study had reported that - using a very similar experimental design in rats - the 
activity (distance traveled) in the open field can be used to dissociate responders from non-
responders32. We thus used the same approach to divide mice based on 'distance traveled' into the 
top and bottom 25% (Suppl. Figure 5F). However, this group assignment was not able to reveal any 
differences in freezing responses before or throughout extinction (Supplementary Figure 5G). This 
shows that BFF provides a description of stress-induced animal behaviors that is sufficiently detailed 
to enable a prediction about future behavioral performance on a different test.  
 

6. Transferability of BFA and BFF across labs and setups 
Finally, we tested whether our BFA/BFF analysis pipeline could be applied to open field data 
collected in an entirely different setup in another laboratory (Roche, Basel). We again devised an 
experiment in which mice were challenged with different doses of yohimbine. This time, mice 
received either vehicle injection, or injections of 1, 3 or 6 mg/kg yohimbine (Figure 6A). Five minutes 
after drug injection, mice were tested in the open field test for 10 minutes. Notably, the new setup 
was smaller (40.5cm x 40.5cm) than our original setup (45x45cm), and differed in multiple ways (see 
methods for details). Briefly, the floor was covered with wood chip bedding, the setup was inside a 
different sound attenuating enclosure, camera setup and lighting conditions were different and video 
acquisition was performed with 30 instead of 25 frames per second (fps). Top-view video tracking 
was again performed using DeepLabCut. Because our cluster classifier was not designed for 
stabilizing clusters across different setups and fps, we again performed k-means clustering (k=25) 
on these data, and then used the same analysis pipeline for BFA and BFF as described above. We 
find clear treatment effects using cluster occurrence (Figure 6B, note that these are not the same 
clusters as with the cluster stabilizer introduced earlier, thus we labeled them #R.1-R.25), transitions 
(Figure 6C), as well as a very strong group effect using BFA (Figure 6D). Also BFF revealed a clear 
separation between groups (Figure 6E).  

Next, we applied BFA separately to each dose (n=8) and found that it detects strong 
treatment effects in all doses, with p-values getting lower as the dose gets higher (Figure 6F). Again, 
BFA shows much higher statistical power when compared to the quantification of cluster occurrence, 
which only detects a single cluster as significant at the lowest dose (1mg/kg, see Suppl. Figure 6). 
Finally, also BFF clearly separates the different doses of yohimbine in a 2D embedding (Figure 6E).  
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Figure 6. BFA and BFF are transferable to other setups. (A) Schematic showing experimental design for 
OFT after yohimbine or saline injection in another laboratory using a different OFT setup. These are not the 
same clusters as with the cluster stabilizer introduced earlier, thus they are labeled #R.1-R.25  (B) Cluster 
occurrences in yohimbine. (C) Absolute difference in behavioral flow in mice treated with saline vs. yohimbine. 
(D) BFA reveals a treatment effect for yohimbine (percentile=99.9, z=7.63, p<0.001). (E) BFF shows a 
separation between saline and yohimbine treatment. Crossbars represent the average UMAP1 and UMAP2 
values ± SEM for each group. (F) Separate BFA of different yohimbine dosages show an increasing treatment 
effect (1 mg/kg: percentile=99.9, z=3.76, p<0.001; 3 mg/kg: percentile=99.8, z=5.33, p<0.001; 6 mg/kg: 
percentile=99.9, z=6.04, p<0.001) (G) BFF also separates the different doses of yohimbine treatment.  Adj. p-
values are denoted as: *<0.05, **<0.01, ***<0.001. Error bars denote ± SEM. 
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Discussion 
Empowering the analysis of behavior. Big data approaches hold enormous promise, but also 
present major challenges. When transcriptomic screening techniques first emerged, molecular 
biologists swiftly embraced the vast potential of unbiased discovery, often overlooking basic 
statistical rigor 33,34. Similar issues followed the emergence of fMRI analyses in neuroscience 35 and 
the advent of GWAS studies in medicine36. In each case, it took many years to recognize the 
substantial issue of false-positive findings stemming from inflated alpha-error probabilities. 
Analogously, we are in the midst of a revolution in behavioral neuroscience, where big data 
approaches allow us to describe and quantify rodent behavior with unprecedented resolution4,15. The 
most advanced algorithms to assess complex behaviors quantify the total number of occurrences of 
each cluster or the number of transitions between clusters to identify group differences10,16,18,21,37,38.  

However, analyzing rodent behavior is challenging, because it can be affected by multiple 
factors that are independent of the experimental manipulation and difficult to control. Such factors 
include for example the scent of the experimenter39, variations in maternal care40, hierarchies within 
the cage41 or social interactions with stressed conspecifics42. When this notorious variability is 
combined with the high number of measurements that result from data-driven approaches, stringent 
multiple testing correction becomes quintessential. As a result, large group numbers are required, 
which runs counter to the goal that these approaches set out to achieve in the first place: a more 
refined analysis of rodent behavior that reduces the number of animals needed for testing. 

Our BFA approach addresses this issue by circumventing the multiple testing problem. Using 
a large number of independent behavioral datasets, we demonstrate that this approach is able to 
increase statistical power independent of group size, and that it is able to resolve subtle phenotypes 
when classic analyses fail. Further, we use a behavioral benchmarking dataset to demonstrate that 
BFA can be efficiently deployed using the output of several, fundamentally different clustering 
approaches16,21. On the one hand, this suggests that the dynamic information contained within 
transitions between behavioral clusters - irrespective of how these clusters are identified - provides 
critical insights into animal behavior. On the other hand, the compatibility of our approach with other 
clustering algorithms allows researchers to use it as an add-on tool to determine whether a given 
dataset contains a treatment effect, before using more exploratory analyses to identify the nature of 
the behavioral differences (i.e. identify which clusters or transitions are impacted).  
 
BFF for deep behavioral profiling of individuals. One of the great challenges in preclinical 
research is to identify treatment responsiveness on the level of individual animals using behavior 
testing. In stress research, this typically involves determining which of the stress-exposed animals 
classify as resilient (they can maintain health and well-being) and which animals are susceptible 
(they will develop maladaptive health outcomes43,44). The most popular approaches to stratify 
resilient/susceptible animals only use a single measure on a single test, e.g. the time they spend 
interacting with an unfamiliar animal after chronic social defeat45, the amount of sucrose consumed 
after stress46, the intensity of the startle response47, or the time unstressed animals explore certain 
areas during approach-avoidance tests48,49. More elaborate strategies use several behavioral tests 
(e.g. to assess anxiety, social interaction, anhedonia etc.) following stress exposure, and dissociate 
resilient from susceptible mice by assigning composite test scores50–52. While the former approach 
is problematic because it relies on one measure on a single test, profiling animals across multiple 
tests is labor intensive and incompatible with some experimental designs.  

As a proof-of-concept approach, we harness the ability of BFF to represent high-dimensional 
behavioral data collected from a single behavioral test in one "composite" datapoint per animal. We 
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show that using BFF on open field behavior one day after a single inescapable footshock stressor 
can be used to predict long-term fear and fear extinction responses on the group level. This is 
reminiscent of recent work in humans, where complex behavioral features were collected during an 
approach-avoidance task to successfully predict physiological stress responses better than a clinical 
assessment53. Future work will be needed to carefully assess whether this approach can improve 
the predictive power compared to more elaborate screening strategies. However, the ability to 
behaviorally profile individual animals using a short and widely-used laboratory test, will empower 
biomedical research labs to integrate behavior analysis with big data approaches, such as molecular 
screening or high-throughput imaging.   
 
Limitations and outlook. Several notable limitations plague any data-driven attempt to segment 
behavior recordings. First, not all clusters yield behaviors that can be recognized by human 
observers, which limits the interpretability of findings. Second, choosing the optimal number of 
clusters is a well-known and difficult challenge54. We chose to provide a computationally efficient k-
means clustering approach, based on features extracted from bodypoint-tracking with sensible 
temporal integration. We then quantified the observed transitions between clusters to capture the 
dynamic behavioral flow rather than the absolute counts of clusters. Many of the resulting clusters 
yield recognizable and interpretable behavioral motifs, and the observed transitions reveal 
meaningful behavioral sequences of mouse behavior, but many clusters (and their transitions) 
remain difficult to interpret. Regarding cluster numbers, many different evaluation metrics are 
available to determine the optimal number of clusters, and they typically do not agree with one 
another15,54. We determined cluster numbers based on an approach that is simple and intuitive, and 
has been used by behavior segmentation methods before17,21. However, this approach is influenced 
by the choice of cluster numbers used for the initial assessment (100 clusters in our case). Overall, 
when choosing the number of clusters, there is likely a delicate balance between signal and noise, 
where too few clusters result in a weak signal, and too many amplify noise. Even for a given test 
and setup, there is presumably no 'optimal' number of clusters, but rather, it is contingent on the 
specific phenotype under investigation. Simpler phenotypes (e.g. when locomotor activity is 
generally affected) may be sufficiently captured with fewer clusters, while detecting more nuanced 
phenotypes could necessitate more clusters.  

While these considerations challenge the idea of selecting a fixed number of clusters, our 
BFF approach showcases the advantage of defining and stabilizing a set of clusters across many 
experiments. By training our clustering algorithm on a subset of videos that represent a number of 
different experimental conditions, we stabilize the cluster assignment across experiments. We 
demonstrate that - within the same experimental setup - this approach can resolve behavioral 
phenotypes and visualize large-scale comparisons of individual animals across experimental 
conditions. This revealed not only a clear dissociation between acute and chronic stressors, but it 
identified similarities between behavioral changes induced by acute stress and noradrenergic 
manipulations, in line with the known biological link between acute stress and activation of the 
noradrenergic system through the locus coeruleus 24,55,56. Going forward, there is likely a trade-off 
between identifying the optimal number of clusters to maximally boost statistical power for each 
given experiment, and the decision to stabilize a "reasonable" number of clusters to allow direct 
comparisons across large numbers of datasets collected within a given laboratory or potentially 
across larger research consortia. 
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Data availability 
All video data produced in our lab (411 separate recordings), corresponding pose estimation data 
and metadata has been deposited online and can be accessed under 
https://zenodo.org/record/8186065. All video data and pose estimation data produced by Roche 
Pharma (32 separate recordings) can be accessed under https://zenodo.org/record/8188683. The 
BehaviorFlow package and furthermore any script used to analyze our data and generate the 
manuscript figures can be accessed under (https://github.com/ETHZ-INS/BehaviorFlow) 
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Methods 
Animals: 
Mice were maintained in a temperature- and humidity-controlled facility on a 12 h reversed light–
dark cycle (lights off at 08:15 a.m.) with food and water ad libitum. Mice were housed in groups of 
5 per-cage and used for experiments when 2.5–4 months old unless stated otherwise. For each 
experiment, mice of the same age were used in all experimental groups to rule out confounding 
effects of age. All tests were conducted during the animals’ active (dark) phase from 10 a.m. to 6 
p.m. Mice were habituated to the colony room for at least 2 weeks before experimentation. Mice 
were single housed 24h before behavioral testing in order to standardize their environment and 
avoid disturbing cagemates during testing57,58. All procedures were carried out in accordance to 
Swiss cantonal regulations for animal experimentation and were approved under licenses: 
ZH155/2015, ZH161/2017, ZH106/2020, ZH067/2022.  
 
Open field test (OFT): 
Open field testing took place inside sound insulated, ventilated multi conditioning chambers (TSE 
Systems Ltd, Germany). The open field arena (45 × 45 × 40 cm [L × W × H]) consisted of four 
transparent Plexiglas walls and a light gray PVC floor. Animals were tested for 10 min under dim 
lighting (4 lux). Animals were removed from their home cage and placed directly into the center of 
the open field. The doors of the conditioning chamber were then swiftly closed. Video recording at 
25 fps was triggered by infra-red beam break upon the mouse entering the arena. Pose estimation 
was performed using DeepLabCut and data were processed using custom R Scripts that are 
available online (https://github.com/ETHZ-INS/DLCAnalyzer) to measure distance, time in center, 
supported rears and unsupported rears9. 
 
Chronic social instability (CSI): 
The CSI procedure was carried out as previously described59 on male C57BL/6J (C57BL/6JRj) 
mice (n=59) obtained from Janvier (France). The mice arrived at the lab aged between postnatal 
day 21–23 housed in groups of 5. Upon arrival they were ear-tagged and split randomly (by cage) 
into either the CSI or control group. The CSI mice underwent the CSI paradigm, which consisted of 
briefly placing all CSI mice (n = 30) into a larger cage, from which they were then randomly 
assigned to new cages. Mice in the control group were similarly handled, however, they entered 
the larger cage only with their cagemates before they were all returned to their original cage. The 
mice were subjected to these cage changes twice a week (Tuesday/Friday) for seven weeks, 
during the last cage change the mice were returned to their original cage and allowed to rest for 5 
weeks prior to any further testing. 
 
Acute swim (AS): 
Male (C57BL/6JRj) mice (n=30) were obtained from Janvier (France). Acute swim (AS) mice 
(n=15) had to swim in a plastic beaker (20 cm diameter, 25 cm deep) filled to 17 cm with 17.9–
18.1 °C water for 6 minutes before they were placed back into their home cages. Control mice 
(n=15) remained in their homecage until further testing in the Open field. Open field testing was 
performed 45 min and 24 hours after the stress. 
 
Yohimbine injections: 
Male C57BL/6J (C57BL/6JRj) mice (n=20) were obtained from Janvier (France). Before open field 
testing mice were hand-restrained and received one of 15 dosages of yohimbine ranging from 0.4 
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mg/kg - 6 mg/kg (n=15) or vehicle (saline 0.9%) (n=5) (i.p.). Mice were immediately placed into the 
center of the open field test arena following their restraint and i.p. injection. 
 
Chronic restraint stress (CRS): 
C57BL/6J (C57BL/6JRj) male (n=16) and female (n=16) mice were obtained from Janvier (France) 
and housed in groups of 4 animals per cage. Upon arrival, animals were randomly split into a 
control and chronic restraint stress (CRS) group by cage. CRS animals were placed in a 50 ml 
Falcon tube with a large air hole for 90 minutes for 10 consecutive days, while control animals 
were gently handled daily. On day 10, CRS animals were placed in the open field test arena 45 
minutes after the end of the restraint stress.  
 
Chemogenetic activation of locus coeruleus (DREADD): 
Heterozygous C57BL/6-Tg(Dbh-icre)1Gsc female (n=16) mice were subjected to stereotactic brain 
injections, as described previously27. The mice were anesthetized with isoflurane and placed in a 
stereotaxic frame. For analgesia, animals received a subcutaneous injection of 2 mg/kg Meloxicam 
and a local anesthetic (Emla cream; 5% lidocaine, 5% prilocaine) before and after surgery. A 
pneumatic injector (Narishige, IM-11-2) and calibrated microcapillaries (Sigma-Aldrich, P0549) 
were used to inject 1 μL of virus (ssAAV-5/2-hSyn1-dlox-hM3D(Gq)_mCherry(rev)-dlox-WPRE-
hGHp(A); physical titer: 4 x 10E12 vg/ml) bilaterally into the locus coeruleus (coordinates from 
bregma: anterior/posterior -5.4 mm, medial/lateral ± 1.0 mm, dorsal/ventral -3.8 mm). 3 weeks 
after surgery, animals were tested in the open field arena for 20 min. For consistency in this study, 
we only used the first 10 min of recordings. Animals were injected i.p. with 0.03 mg/kg clozapine 
(Sigma-Aldrich, Steinheim, Germany) (n=8) or saline 0.9% (n=8) and placed directly into the center 
of the open field test arena. 
 
Yohimbine experiment from Roche: 
Male C57BL/6J mice (n=32) were obtained from Charles River Laboratories (Saint Germain sur 
l'Arbresle, France) and single housed in GM500 cages (Tecniplast) upon arrival in the test facility 
(Roche Innovation Center, Basel) to prevent aggression. Cages were supplemented with nesting 
material and two pieces of enrichment that were changed during each cage change. Mice were 
given ad libitum access to food (Standard Diet; Kliba Nafag) and water, and temperature and 
humidity were continuously monitored and controlled to 22oC ± 2oC and 50 ± 10 %, respectively. 
The holding and test room were maintained on a 12h:12h light: dark cycle, with lights transitioning 
to fully on by 06:00. Ethical approval for this study was provided by the Federal Food Safety and 
Veterinary Office of Switzerland. All animal experiments were conducted in strict adherence to the 
Swiss federal ordinance on animal protection and welfare as well as according to the rules of the 
Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC), 
and with the explicit approval of the local veterinary authorities (License BS2448). 
Mice were acclimatized to the facility for 1 week prior to the locomotor activity test. On the day of 
the test, mice (n=8 per treatment group) were randomly allocated to receive either Yohimbine at 1, 
3 or 6 mg/kg (i.p.) or its vehicle (0.3% Tween 80 in 0.9% Saline; i.p.), 5 minutes prior to being 
placed into the center of the test arena. The dose volume was 10 mL/Kg and mice weighed on 
average 24.5g (min / max.: 23g / 27.4g) at the time of the test. The test arena was a clear Perspex 
chamber (41 x 41 x 30.5 cm), held within a sound- and light-attenuating cubicle (Omnitech 
Electronics, USA), and retrofitted with a camera positioned above the chamber to enable 
continuous video capture at 30 fps of locomotor activity during the 30-minute test. For behavioral 
flow analysis, only the first 10 minutes of recording were used. 
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Inescapable footshock (IFS):  
Male C57BL/6J (C57BL/6JRj) mice (n=35) were obtained from Janvier (France). Upon arrival, 
animals were randomly split into a control and inescapable footshock (IFS) group and single-
housed one day prior to behavioral testing. All animals were first tested in the open field test for 10 
min (OFT1). One day later, IFS animals were placed inside the TSE multi conditioning systems’ 
black fear conditioning arena. After 5 min of rest, the animals received 19 foot shocks (0.5 sec, 1 
mA) over 20 min. Shocks were randomly distributed over the 20 minutes to be 30, 60 or 90 
seconds apart. Control animals were placed in the same boxes without receiving a footshock. 24 
hours later, all animals were placed in the open field test for 10 min (OFT2). All animals were 
placed in the black fear conditioning arena for 5 minutes daily for 6 consecutive days one day 
before a final open field test (OFT3). 
 
Pose estimation and tracking based open field analysis: 
DeepLabCut 2.0.7 was used to track 13 body points and the 4 corners of the open field test arena. 
Tracked points included nose, headcentre, neck, right ear (earr), left ear (earl), bodycentre, 
bodycentre left (bcl), bodycentre right (bcr), left hip (hipl), right hip (hipr), tailbase, tail center, tail 
tip. In addition the 4 corners of the open field were tracked to automatically detect the open field 
arena boundaries in each recording. The networks for different tests were trained using 10–20 
frames from multiple randomly selected videos for 250,000–1,030,000 iterations. X and Y 
coordinates of DLC-tracking data were imported into R Studio (v 3.6.1) and processed with the 
DLCAnalyzer package9. Points relating to the arenas were used to define the arenas in silico by 
using their median XY coordinates. Values of points with low likelihood (<0.95) and points tracked 
outside an existence polygon (arena scaled by a factor 1.3) were removed and interpolated using 
the R package “imputeTS” (v.3.2). The speed and acceleration of each point was determined by 
integrating the animal’s position over time. The pixel-to-cm conversion ratio for each video was 
determined by comparing the volume of the arena in silico in px2 to the measured size of the arena 
in cm2. Zones of interest were calculated from the arena using polygon-modification functions . 
Furthermore, we applied a previously trained supervised classifier9 to quantify supported and 
unsupported rears on a per frame basis. 
 
Statistical analysis of open field data: 
In order to assess group differences based on tracking data prior to clustering, we used automated 
metrics from the DLCAnalyzer package9 such as distance moved, time spent in center and number 
of supported and unsupported rears. Significance was assessed with a standard parametric t-test. 
 
Generation of feature data for k-means clustering: 
We used the pose estimation data (N ~ 15000 frames) to generate a set of m = 41 features (see 
table below) resulting in a large numeric matrix Xi ∈ ℝN x m for each recording (here denoted with 
index i). 5 different types of features were used: acceleration of points, distance between point-
pairs, angle between two point-pairs, distance of point to closest border, and area of a polygon 
spanned by multiple points (Table 1). 
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Name Type feature scheme 

Ac1 acceleration nose 

Ac2 acceleration headcentre 

Ac3 acceleration neck 

Ac4 acceleration right ear (earr) 

Ac5 acceleration left ear (earl) 

Ac6 acceleration bodycentre 

Ac7 acceleration bodycentre left (bcl) 

Ac8 acceleration bodycentre right (bcr) 

Ac9 acceleration left hip (hipl) 

Ac10 acceleration right hip (hipr) 

Ac11 acceleration tailbase 

A1 angle (hipr -  tailbase) - (tailbase - hipl) 

A2 angle (tailbase -  bodycentre) - (bodycentre - neck) 

A3 angle (bcr -  bodycentre) - (bodycentre -bcl) 

A4 angle (bodycentre -  neck) - (neck - headcentre) 

A5 angle (tailbase -  bodycentre) - (neck - headcentre) 

A6 angle (bcl -  hipl) - (bcl - earl) 

A7 angle (bcr -  hipr) - (bcr - earr) 

A8 angle (nose -  earr) - (nose - earl) 

D1 border proximity nose 

D2 border proximity neck 

D3 border proximity bodycentre 

D4 border proximity tailbase 

S1 distance nose - headcentre 

S2 distance headcentre - neck 

S3 distance neck - bodycentre 

S4 distance bodycentre - bcr 

S5 distance bodycentre - bcl 

S6 distance bodycentre - tailbase 

S7 distance tailbase - hipr 

S8 distance tailbase - hipl 

S9 distance bcr - hipr 

S10 distance bcl - hipl 
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S11 distance bcl - earl 

S12 distance bcr - earr 

S13 distance nose - earr 

S14 distance nose - earl 

Ar1 area tailbase - hipr - hipl 

Ar2 area hipr - hipl - bcl - bcr 

Ar3 area bcr - earr -earl - bcl 

Ar4 area earr - nose - earl 

Table 1: Feature data 
 
Feature data was then first normalized on a per recording level. Z-score normalization was used 
for distances and area features, angle data (in rad) was not normalized and border proximities and 
accelerations were scaled linearly (with a factor of 0.1 and 4 respectively). These feature data 
were furthermore expanded over sequences of +- 15 frames (t  = 31) centered on each frame to 
generate a larger feature set of m * t = 1271 values for each frame resulting in Xtemporal,i ∈ ℝN x (m * t). 
 
Determining best number of clusters: 
For determining the best number of clusters, we applied an approach described previously by 
others17,21. We first ran the clustering for a total number of 100 clusters. For each cluster, we then 
computed the proportion of image frames assigned to it. To determine the best number of clusters, 
we added the cluster proportions (sorted from high to low proportion) and chose the number of 
clusters which contain 95% image frames as the best one. 
 
k-means clustering: 
For k-means clustering, we selected a random subset of 20 samples per experiment from the 
chronic social instability, the acute swim stress and the yohimbine injection experiments (s = 60). 
All feature data of each frame for these subsets were combined into one single large matrix 
Xclustering ∈ ℝ(N * s) x (m * t) that was then z-score normalized across columns. The normalized feature 
matrix was k-means clustered using the function bigkmeans() of the R package “biganalytics” 
(v.1.1.21)  
 
B-SOiD: 
As a comparison to k-means clustering, we ran B-SOiD16 on the chronic social instability dataset. 
We followed the steps described on the tutorial webpage (bsoid.org). In short, we trained B-SOiD 
on a random subsample of 20 files containing the pose estimation computed by DLC. Due to 
computational issues, we used a reduced set of 9 tracking points including nose, headcentre, 
neck, bodycentre, bodycentre left (bcl), bodycentre right (bcr), left hip (hipl), right hip (hipr), and 
tailbase as input for B-SOiD. We explored different “minimum cluster size ranges” and ended up 
with a range between 0.10 and 0.95. The remaining 39 files (not used for clustering) got their 
clusters assigned using a trained random forest classifier. 
 
VAME: 
We ran VAME21(v.1.1) using PyTorch(v.1.7.0) and followed the workflow as described in the 
publication. We ran VAME on all 59 pose estimation files from DLC. The 11 tracking points 
including nose, headcentre, neck, right ear (earr), left ear (earl), bodycentre, bodycentre left (bcl), 
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bodycentre right (bcr), left hip (hipl), right hip (hipr), and tailbase used as input were egocentric 
aligned to the two tracking points nose and tailbase. Before clustering, we changed the parameters 
“n_cluster” to 80 (see above how we determined the best number of clusters), “pose confidence” to 
0.95 and “n_features” to 22 in the configuration file.  
 
Clustering classifier: 
To transfer clustering to larger or new datasets, we trained a sequential neural network to imitate 
the clustering results obtained with k-means. We used the framework designed in a previous 
publication9 with the clusters obtained from k-means as ground truth labeling data and Xclustering as 
input data. We used R packages for tensorflow (v. 2.9.0) and keras (v. 2.8.0) to design and train 
the neural network. We used a neural network with a single hidden layer of 1024 units (using “relu” 
activation) and an input shape of 1271 followed by a dropout layer with a rate of 0.4 to prevent 
overfitting. We used an output layer with 25 output neurons using the “softmax” activation function. 
Data was shuffled before training for 30 epochs with a batch size of 512. We used the “categorical 
crossentropy” loss function, “rmsprop” as optimizer and “accuracy” as metric during training. 
Clustering classifiers were then applied to Xtemporal of each individual recording to obtain the final 
clustering results. 
 
Clustering classifier assessment: 
To assess the performance of the clustering classifiers, we performed a 10 fold cross-validation. 
All 60 recordings in the clustering (= training) set were randomly shuffled before sequentially a 
different set of 6 recordings were set aside for validation each time and the training was performed 
on the remaining 54 recordings only. Then, for each cross-validation pass we calculated precision, 
recall and F1 score on a per cluster basis. 
 
Label data processing: 
We used the newly written BehaviorFlow Package to process all label data (= cluster assigned to 
each frame) from the k-means classifier, VAME and B-SOiD. To remove noise and single frame 
misclassifications, we processed this data by first smoothing all labels using a sliding window of +- 
5 frames and selecting the most abundant categorical value across the window using the 
SmoothLabels_US() function. Next, we calculated metrics such as number of clusters, behavior 
onset/offsets and time spent in each cluster on a per recording basis using the CalculateMetrics() 
function. We then calculated the transition matrix across all label groups for each recording 
independently using the AddTransitionMatrixData(). This function first removes any repeating 
labels from each label vector to create an occurrence vector. Then, this occurrence vector and the 
same vector shifted by 1 element are used to calculate the contingency table using the table() 
function of the base package of R resulting in a transition matrix Ti ∈ W NC x NC where i denotes the 
i-th recording and NC the number of clusters. To calculate stabilized transition matrices Tstabilized,i ∈ 
ℝ NC x NC we used the function CalculateStabilizedTransitions() for defined subsets and control 
recordings. The stabilized transition matrix  is defined as the difference to the mean of the control 
recordings (1). Next, we calculated the confusion matrix across all label groups using the 
AddConfusionMatrix() function. This function calculates a contingency table for a source-target pair 
using the table() function of the base package of R with the full label vector of the source and the 
full label vector of the target label group. 
 

(1) 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖 =  𝑇𝑇𝑖𝑖 − ∑𝑁𝑁𝐶𝐶𝐶𝐶
𝑇𝑇𝐶𝐶
𝑁𝑁𝐶𝐶
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Ti  = Transition matrix of recording i, NC = number of control group recordings, TC = Transitionmatrix 
of control group recording C 
 
Statistical analysis of labeling data (two group analysis): 
We used the TwoGroupAnalysis() function of the BehaviorFlow Package for the statistical analysis 
of label data. This function runs a number of statistical tests to test for group differences on the 
cluster usage level and the transition level on each label group. For number of cluster occurrences 
and time spent with clusters, a simple parametric t-test followed by a Benjamini-Yekutieli multiple 
testing correction (using the function t.test() and p.adjust() of R) was used. The same test was also 
applied to individual transitions. To test for overall differences across all transitions (referred to as 
behavioral flow analysis or BFA), we first calculated the group-wise mean transition matrix and 
then the absolute Manhattan distance between the two groups based on these mean matrices (2). 
We then used a bootstrapping approach to estimate a null distribution of the inter group distance 
from random groupings. We randomly shuffled the group assignment vector 1000 times and 
calculated the inter group distance for each sampling. We then used this to calculate the percentile 
for non-parametric statistics (3). Next, we calculated mean and standard deviation from the null 
distribution and z (4) for parametric tests. We used the error function to calculate the parametric 
right-tailed p-value from z using the function erf() from the R package “pracma” (v.2.3.8) for the 
hypothesis true distance > null distribution distances (5).  
 

(2)  𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  ∑𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗 = 1 ∑𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘 = 1 �∑𝑁𝑁𝐶𝐶𝐶𝐶
𝑥𝑥 𝑗𝑗,𝑘𝑘,𝐶𝐶

𝑁𝑁𝐶𝐶
 −  ∑𝑁𝑁𝑇𝑇𝑇𝑇 

𝑥𝑥 𝑗𝑗,𝑘𝑘,𝑇𝑇

𝑁𝑁𝑇𝑇
 � 

Nclust = number of clusters, NC = number of control group recordings, NT = number of test group 
recordings, xi,j,r = number of transitions from cluster i to cluster j in recording i 
 
 

(3)  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  
∑
𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑏𝑏 = 1 (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑏𝑏 < 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒)

𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 1
 

Nbootstraps = number of bootstraps, distancebootstraps,b  = Manhattan distance from b-th bootstrapping, 
distance = true group Manhattan distance from (2) 
 
 

(4)  𝑧𝑧 =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠)
 𝑠𝑠𝑠𝑠(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)

 

distance = true group Manhattan distance from (2), distancebootstraps  = Manhattan distances 
obtained from bootstrapping, mean() = arithmetic mean, sd() = standard deviation 
 
 

(5)  𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =  1 −  𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧 / √2)
2

 
𝑧𝑧 from (4),  erf() = error function 
 
in silico sensitivity assay: 
To create the sensitivity curves, we designed an in silico assay that step wise reduces group sizes 
and randomly selects a subset of both groups (ensuring that they are equally sized) prior to 
running a two group comparison. For the CSI dataset we used group sizes 25, 20,15, 10, and 5; 
for the AS dataset we used group sizes of 13, 11, 9, 7, and 5; for the CRS dataset we used group 
sizes of 14, 12, 10, 8, and 5 and for the DREADD dataset group sizes of 7, 6, 5, 4, and 3. To better 
estimate the p-value at each step, we performed 50 random samplings followed by a two group 
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comparison each time. For “best behavior”, we picked the lowest p-value from the 4 classical 
readouts (distance, time spent in center, number of supported and unsupported rears) for each 
random sampling and group size. For “combined behavior”, we devised an analysis method that 
leverages all automated readouts from the DLCAnalyzer package. Due to the highly correlated 
nature of some readouts (i.e raw distance and distance moving), we first applied a principal 
component analysis on all readouts. Then, we selected the principal components that cumulatively 
explain at least 90% of the variance and fitted a linear model with the formula group ~ PC1 + … + 
PCN, (where “group” is a binary grouping variable, PC1 is the first principal component and PCN 
the Nth principal component) using the lm() method of the R. This model was then tested against a 
null model using an analysis of variance method to assess if a group difference can be verified 
based on the principal component data. Last, we -log10 transformed all p-values prior to 
calculating mean and standard deviation of the p-values for each dataset. 
 
Log-linear modeling: 
To test for an association between yohimbine dosage and the occurrence of transitions between 
clusters, we used a log-linear model. We first transformed both the yohimbine dosages and the 
transition occurrences using the natural logarithm. We then fitted a linear model to these two 
variables using the lm() method from R. 
 
2D embedding: 
For 2D embedding, we used the function Plot2DEmbedding() of the BehaviorFlow Package. As 
input data, the stabilized transition matrix (Tstabilized,i) was used for each recording. We then used a 
UMAP embedding with the function umap() from the R package “M3C” (v.1.16.0). Points were 
colored by relevant groups and +- standard error of the mean (SEM) ranges (based on UMAP1 
and UMAP2 coordinates) were added to the plot for visual aid. 
 
Grouping of resilient and susceptible animals: 
To determine resilient and susceptible groups of animals based on 2D embeddings of transition 
data, first calculated UMAP1 and UMAP2 coordinates using the Plot2DEmbedding() function of the 
BehaviorFlow Package. Then, we separately assessed for their classification performance 
(stressed vs. control) using receiver operating characteristic (ROC) curves (roc() from R package 
“pROC”, v.1.18.0). The best performing thresholds in distinguishing groups using either UMAP1 or 
UMAP2 were determined using the highest geometric mean (G-mean) value computed between 
recall and specificity. The two thresholds then divide the 2D embedding into quadrants, and the 
one with the highest number of stressed animals was used to define them as susceptible while 
stressed animals in the other three quadrants were defined as resilient. To adjust for the sensitivity 
of the umap() function to setting a random seed, we repeated this procedure 101 times for different 
random seeds and let a majority vote (>50%) over all classifications decide on the final group 
assignment for each stressed animal. 
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