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Abstract

Background: Culture-independent diagnostic tests (CIDTs) are gaining

popularity as tools for detecting pathogens in food. Shotgun sequencing holds

substantial promise for food testing as it provides abundant information on

microbial communities, but the challenge is in analyzing large and complex

sequencing datasets with a high degree of both sensitivity and specificity. Falsely

classifying sequencing reads as originating from pathogens can lead to

unnecessary food recalls or production shutdowns, while low sensitivity resulting

in false negatives could lead to preventable illness.

Results: We have developed a bioinformatic pipeline for identifying Salmonella as

a model pathogen in metagenomic datasets with very high sensitivity and

specificity. We tested this pipeline on mock communities of closely related

bacteria and with simulated Salmonella reads added to published metagenomic

datasets. Salmonella-derived reads could be found at very low abundances (high

sensitivity) without false positives (high specificity). Carefully considering

software parameters and database choices is essential to avoiding false positive

sample calls. With well-chosen parameters plus additional steps to confirm the

taxonomic origin of reads, it is possible to detect pathogens with very high

specificity and sensitivity.
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Background

Foodborne illnesses are a global public health issue, with an estimated 600 million

incidents of illness and 420 thousand deaths occurring worldwide as of 2010 [1, 2].
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In order to prevent consumers from becoming ill, it is essential to detect foodborne

pathogens in the production chain.

Culture-based microbiological methods for pathogen detection, which rely on se-

lective enrichment and isolation on agar plates, have been in use for more than a cen-

tury [3]. Although these methods are sensitive, they are time- and labour- intensive

and require labs staffed by expert personnel. In recent years, there has been increas-

ing interest in using culture-independent diagnostic tests (CIDTs) for diagnosis and

surveillance of pathogenic organisms of concern. CIDTs include PCR-based meth-

ods as well as high-throughput sequencing of either marker genes (e.g 16S rRNA or

virulence-related genes) or metagenomes via shotgun sequencing [4, 5, 6, 7, 8, 3, 9].

Shotgun sequencing, wherein all DNA in a sample is sequenced, provides metage-

nomic data that can be used to detect the presence of pathogens. This type of

sequencing avoids the amplification biases that plague phylogenetic metabarcoding

[10] and produces datasets containing the full breadth of genetic material [11]. Ac-

cordingly, these datasets can also provide information on genes conferring virulence

[12] and antimicrobial resistance [3, 13] . Metagenomic data can be used for serotyp-

ing of pathogens [14]. It may even be possible to produce metagenome-assembled

genomes (MAGs) of pathogens for use in multi-locus sequence typing (MLST) and

other analyses [3]. Furthermore, metagenomic datasets can be searched for multi-

ple pathogens during diagnostics or for routine monitoring during food production,

although culture enrichment, which requires prior knowledge of possible pathogens-

of-interest, is usually still essential to detect organisms at low abundance [3].

While these factors make metagenomics via shotgun sequencing an enticing op-

tion for pathogen detection, there are downsides. The pure culture isolates produced

by microbiological methods can be used for downstream analyses including drug-

resistance phenotyping and whole-genome sequencing (WGS) for source attribution

[3]; by definition, CIDTs bypass this step [15]. Furthermore, the depth of sequencing

required and associated cost must be considered. Detecting low-abundance organ-

isms in samples with overwhelming numbers of reads from the host, food matrix,

and/or other microbes is a major barrier [16].

Trustworthy taxonomic classification of each sequencing read is an ongoing chal-

lenge, and many bioinformatic tools have been and continue to be developed to

address this issue [17, 18, 19, 20, 21, 22, 23]. Metagenomic read classification al-
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gorithms primarily rely on identifying species by comparing them to the closest

matches in existing databases. However, this approach poses challenges when deal-

ing with species that have limited representation in public repositories, especially

when compared to pathogenic species. Additionally, certain sequences exhibit high

conservation between species, creating a risk of misclassifying non-pathogens as

related pathogens.

Falsely identified reads (that is, sequencing reads erroneously classified as coming

from the pathogen of interest) can lead to false positive calls of samples, which

presents a particular problem in the field of pathogen detection. In the context of

food production, these could cause economic loss from unnecessary recalls or factory

shutdowns. Various strategies have been proposed to eliminate false positives, such

as setting a high threshold for the number of pathogen-derived reads required for

a sample to be considered “positive” [24]; manually curating reference databases

and using stringent software settings [25]; or confirming reads putatively classified

as the pathogen-of-interest by comparison to species-specific regions (SSRs) [26].

In this study, we aimed to develop and test a pipeline that confidently identifies

pathogens from communities of closely related organisms while optimizing lower lim-

its of detection. To do so, we built upon Huang et al.’s [26] use of SSRs to eliminate

false positive classification of shotgun sequencing reads. Our interest was particu-

larly in the lower limits of detection, and in confidently identifying pathogens from

communities of closely related organisms. We also consider the importance of care-

fully selecting software parameters (rather than simply using defaults) and reference

databases. Kraken [27] and its updated version, Kraken 2 [19] use k-mer based align-

ment and are among the most highly cited metagenomic classifiers. There are range

of pre-made reference databases available for Kraken 2, and it also allows the pro-

duction of custom databases. With well-chosen databases and parameters, Kraken

2 achieves high precision and recall [28]. For these reasons, Kraken 2 was used as

the classifer in this experiment. We use Salmonella as a model for the broader

problem of pathogen detection in metagenomic datasets. Non-typhoidal serovars of

Salmonella, which cause potentially life-threatening gastrointestinal illess, are one

of the most common contributors to foodborne illness in Canada [29] and are one

of the top 4 causes of diarrhoeal diseases globally [30]. However, the findings of this

study could be adapted and extended to other pathogens.
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Results

Briefly, our workflow tested reliability and lower limits of detection of simulated

Salmonella reads in shotgun sequencing datasets. We started with simulated back-

ground communities of closely-related bacteria (i.e., members of the Enterobacte-

riaceae family), since the chance of false identification should be higher with more

closely related organisms. We tested classification by Kraken 2 using various ref-

erence databases and confidence levels, as well as an additional confirmation step

in which putative Salmonella reads were compared against “species”-specific reads

from the Salmonella pan-genome [31]. To compare the detection sensitivity against

other reference-based classification software, we also investigated these simulated

libraries using the recently-released Metaphlan4 [21].

Choice of confidence level and database affects number of false positives

We first examined the impact of confidence level. Confidence scoring in Kraken 2

is a simple scheme in which the user defines a score threshold between 0 and 1

(default: 0). Each sequence is scored based on kmer mapping, and the label for that

sequence is adjusted until the score meets or exceeds the confidence threshold. A

more detailed explanation can be found in the software manual[1]. At confidence 0,

the default setting, the majority of Salmonella-derived reads are correctly assigned,

but there are many false positives (Fig. 1).

As confidence increases, the number of Salmonella-derived reads identified higher

on the taxonomic tree increases; while these identities are not incorrect, they would

not lead their libraries to be considered “positive for Salmonella”. Strangely, the

number of Salmonella-derived reads falsely identified (that is, identified as a differ-

ent genus) increases with increasing confidence when using the standard (“kr2std”)

database. Conversely, increasing confidence reduces misidentification when using

the bacteria or plasmid-edited bacteria (“kr2plrename”) databases (Fig. 1).

The prevalence of false positives at differing confidence levels can also be seen

by their effect on precision in precision-recall curves (Fig. 2). This is most readily

apparent in libaries with low counts of Salmonella-derived reads (bottom panel).

Precision is very low at confidence 0 and near perfect at confidence 1, regardless of

database used. However, database choice impacts precision and recall at intermedi-

[1]https://github.com/DerrickWood/kraken2/wiki/Manual
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ate confidence levels, with the kr2bac database showing near-perfect precision and

high recall already at confidence 0.25 (Fig. 2, bottom panel).

Comparison to SSRs is quite effective at removing false positives

To remove false positives while retaining the best chance of detecting true posi-

tives, we added a comparison step analogous to that used in the SNIPE pipeline

[26]. All reads identified by Kraken 2 as belonging to the Salmonella genus were

then compared to 403 “species”-specific regions (SSR; though in this case they are

genus- rather than species-specific) of 1000 bp length each from the Salmonella

pan-genome. These SSRs were previously found by Laing et al. [31] by extracting

1000 bp-long regions shared by 211 closed S. enterica genomes, iteratively screening

these regions against the GenBank nr database, and discarding any region present

in any genomic sequence except that of S. enterica.

This comparison substantially reduced the number of false positives remaining at

the end of the analysis pipeline. For all three databases, however, false positives

remained at confidence 0 (the Kraken 2 default) and were only completely absent

at confidence ≥ 0.25 (Fig. 1, right panel).

Reads from novel organisms that are related to Salmonella are also filtered

We have collected genome sequence data for unusual isolates recovered from food

and environmental sources, ten of which were mis-identified as Salmonella based

on closest matches to published genomes by either MASH (1 Citrobacter spp.), 16S

sequence analysis (6 Enterobacter/Klebsiella spp.) or detection of species-specific

genes (3 Citrobacter spp.). These genomes have not been published and are there-

fore not incorporated into public databases. To test whether sequencing reads from

these organisms pose a problem for the present workflow, a metagenome was cre-

ated by simulating reads from 31 unpublished genomes to coverage levels of 35

to 82x (Table S2, 10.5281/zenodo.8056523). While Kraken 2 analysis on its own

classified 16,904 of the 40 million total reads as coming from Salmonella, none of

these reads passed through the SSR-check step. Sequencing files are available at

10.5281/zenodo.8056523.
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Workflow limits of detection in a background of related species

A subsequent round of analysis investigated limits of detection using libraries with

lower Salmonella content and the analysis parameters with the best precision and

recall characteristics, i.e., the Kraken 2 bacteria database and confidence 0.25, with

subsequent confirmation of putative Salmonella reads by comparison to SSRs. All

libraries contained 10 million total reads, and included 5, 10, or 50 Salmonella-

derived reads. At least one read was positively identified as Salmonella in 16/20

replicates of 50 Salmonella read libraries , 14/20 replicates of 10 Salmonella read

libraries, and 12/20 replicates of 5 Salmonella read libraries (Table 1), giving a

calculated LOD50 of 10.2 reads in a 10 million read library [32] (CI: 6.8-15.3). In

comparison, Metaphlan4 was much less sensitive, requiring 1 × 104 Salmonella-

derived reads in a 10 million read library (0.1 %) for reliable detection (Table 1),

with a calculated LOD50 of 2106 reads in a 10 million read library (CI: 1247-3557).

Limits of detection in a real microbiome background

Previous rounds of analysis made use of fully simulated shotgun sequencing libraries

containing reads from members of the Enterobacteriaceae family. To explore use of

the analysis pipeline for detecting Salmonella in more realistic set of sequences,

libraries were created using published shotgun sequencing datasets from chicken

gut microbiomes. Salmonella detection was attempted by (a) searching for two

Salmonella marker genes and (b) using the pipeline established above (using the

Kraken 2 bacteria database and confidence 0.25, plus comparison to Salmonella

SSRs). Marker genes invA and stn are commonly used for Salmonella detection in

rapid tests such as quantitative PCR and loop-mediated isothermal amplification

[33, 34, 35]. Read fragments of these genes could be reliably detected (100 % of

replicates) in libraries with approx. 4×104 Salmonella-derived reads, with an LOD50

for one or more of the markers of 1754 (CI: 1067-2884) Salmonella-derived reads in a

40 million read library (Fig. 3, top panel). Using the established detection pipeline,

Salmonella reads could be detected in all libraries with 40 Salmonella-derived reads,

with an LOD50 of 5.5 (CI: 3.1-9.8).

Discussion

Here we present a metagenomics analysis pipeline for the confident detection of

Salmonella in a background matrix containing closely related species, which could
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pose problems in the form of false positives. We show the importance of appropriate

database and software parameter choices, and extend the SNIPE pipeline’s [26] use

of species-specific regions (SSRs) for identifying and filtering false positives given by

popular classification software Kraken 2 [19]. In establishing their pipeline, Huang

et al. used default parameters in their chosen classification software, which this cur-

rent study has found to be inadequate. At confidence 0 (the Kraken 2 default), false

positives persist even after the SSR-comparison filtering step. Furthermore, their

testing sets included a very limited number of closely related genomes as a con-

founding factor, whereas multiple members of the Enterobacteriaceae family could

be expected to be present in sample types that are frequent targets for pathogen

detection, including human clinical samples [36], food-animal microbiomes [37], or

food products [38]. Thus, testing extensively in a dataset containing a large number

and variety of related organisms was informative.

We were particularly interested in the sensitivity of pathogen detection. Low limits

of detection make it possible to detect Salmonella even when it is a very small com-

ponent of the sample community. Additionally, extremely sensitive bioinformatic

methods allow detection from shallower sequencing datasets, which would reduce

costs. Our pipeline was able to correctly identify 100 % of Salmonella-positive se-

quencing libraries containing just 100 Salmonella-derived reads. Even with just five

Salmonella-derived reads, more than half of library replicates were correctly iden-

tified as positive. By comparison, the recently-released Metaphlan4 software was

very specific, but far less sensitive. However, one consideration in using such a sen-

sitive detection pipeline is the risk contamination via carry-over between sequencing

runs, a known issue with Illumina sequencers [39]. Samples contaminated in this

way would legitimately contain reads identified as belonging to the pathogen of

interest by this pipeline, and thus be considered positive [24, 40]. There is presently

no way to overcome this issue in data analysis once sequencing has been performed;

it can only be minimized during wet-lab procedures.

There are additional limitations to this analysis. Almost all members of the

Salmonella genus are considered pathogenic [41], so identification at the genus level

is sufficient for these organisms. Other genera contain both benign and pathogenic

members, making species-level identification necessary. Still other species or sub-

species are benign unless they carry certain virulence factors (for example, the
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majority of E. coli are harmless, but Shiga-toxin producing E. coli (STEC) cause

gastrointestinal illness and even death [42]). In such cases, virulence genes or ge-

netically linked markers must be detected for positive identification [15, 43]. We

show that far higher pathogen numbers in a population are required for detection

of marker genes (in this study, invA and stn) compared to general genomic reads.

We found that best results came from using the Kraken 2 bacteria database; how-

ever, we had prior knowledge that the pathogen-of-interest is bacterial. Diagnostic

analyses where the cause of disease is unknown would require use of additional

databases (ex. a virus database), and many additional SSRs for various species.

The kraken 2-build function allows the production of custom databases, so it would

be possible to create a combined bacteria-virus database, and to add in organisms

of interest that are not yet included.

Conclusions

Shotgun sequencing is gaining popularity in many biological fields, including food

safety. However, it is challenging to analyze the resulting datasets for the pres-

ence of pathogens with a high degree of both sensitivity and specificity. Believable

results as far as positive and negative calls for samples are essential when false

positives could lead to food recalls or production shut-downs and false negatives

could lead to preventable illnesses. Many pipelines exist for metagenomics-based

detection of foodborne pathogens [24], but these pipelines are often not tested on

mock communities where the provenance of each read is known and false classifica-

tion can be assessed. Here, we have built upon previous suggestions to develop and

systematically test a pipeline for detection of Salmonella as a model pathogen in

metagenomic datasets. We emphasize that careful consideration of software param-

eter and database choices is essential. With well-chosen parameters plus additional

steps to confirm the taxonomic origin of reads, it is possible to detect pathogens

with very high specificity and sensitivity.

Methods

Mock Community

The mock community “enterobac” is composed of members of the Enterobaceriaceae

family, to which the genus Salmonella belongs. Complete reference genomes for
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62 species in the Enterobacteraceae family were selected using the NCBI genome

browser[2] and downloaded from the NCBI RefSeq database (Table S1).

The art illumina function of ART [44] was used to generate simulated shotgun

sequencing reads for each genome with the following parameters: 25-fold coverage,

paired reads of length 150 bp with insert size 300 bp, read length standard devi-

ation of 10 bp, and an error profile from the Illumina HiSeq 2500. Reads from all

genomes except Salmonella enterica subsp. enterica serovar Typhimurium str. LT2

were concatenated into “master” mock community files with a total of 26,976,269

paired-end reads.

Mock Libraries

Libraries of 10 million paired reads were produced by randomly subsetting reads

from the master file using BBMAPs’ reformat function [45]. Read counts were chosen

based on the desired number of Salmonella reads per library; for example, for the

10 % Salmonella library, 1× 105 reads were selected from those produced from the

Salmonella Typhimurium genome, and 9× 105 reads were selected from the master

mock community file. Twenty replicates were produced at each target level.

An additional mock community was also generated, comprised of unpublished ge-

nomic data from 31 strains erroneously identified as Salmonella by either MASH (1

Citrobacter spp.), 16S sequence analysis (6 Enterobacter/Klebsiella spp.) or detec-

tion of species-specific genes (3 Citrobacter spp.) (Table S2). Genomes had 35 to 82

fold coverage, with a total of 40 Million paired end reads. Libraries were produced

similar to above. Illumina HiSeq short reads were synthesized from the draft genome

assemblies and raw reads of the bacterial genomes using the FetaGenome2 (fabri-

cate metagenome) tool developed in house[3]. Briefly, Art version 2.5.8 was used to

simulate paired-end HiSeq reads of 150 bp in length with a 300 bp insert size. To

simulate variability in coverage levels (e.g. higher coverage in plasmids vs chromo-

somal sequences), the FetaGenomePlasmidAware edition uses BWA to map reads

to the original assembly to determine coverage depth of each contig in the given as-

sembly, then uses the coverage report output to create more reads for higher-depth

locations and fewer reads for low-depth locations of the genome. The simulated

[2]https://www.ncbi.nlm.nih.gov/datasets/genomes/?taxon=543
[3]https://github.com/OLC-Bioinformatics/FetaGenome2

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2023. ; https://doi.org/10.1101/2023.07.27.550528doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.27.550528
http://creativecommons.org/licenses/by-nd/4.0/


Bradford et al. Page 10 of 18

library was tested with the current workflow, with Kraken 2 confidence of 0.25 and

the kr2bac database, followed by confirmation by checking against Salmonella SSRs.

Kraken 2 reference databases

A pre-indexed version of the Kraken 2 [19] standard database (“kr2std”), which

contains archaea, bacteria, viral, plasmid, human, and UniVec Core sequences[4]

was downloaded on 01 Oct 2021 (database last updated 17 May 2021).

The Kraken 2 bacteria library and taxonomy were downloaded on 28 Oct 2021

according to the software manual instructions (see supplementary material). The un-

altered Kraken 2 bacteria databases (“kr2bac”) was built using these files. Database

“kr plrenamed db” was built after altering the bacteria library file according to in-

structions from Doster et al. (2019) [25] (see supplementary material). Plasmids in

the bacteria library fasta file were renamed using sed, and the database was then

built as above.

Salmonella Species Specific Regions (SSRs)

Laing et al. (2017) [31] investigated the Salmonella pan-genome and found 403 re-

gions of 1000 bp each that were specific to the Salmonella genus. These regions were

used to confirm the identity of reads classified as Salmonella-derived by Kraken 2.

The position of on these regions on the Salmonella reference genome (Salmonella

enterica subsp. enterica serovar Typhimurium str. LT2) was taken from the supple-

mentary files [31] and the faidx function of samtools [46] was used to extract the

sequences in fasta format. A blast-formatted database was then created using the

sequences and BLAST CLI’s makeblastdb command [47, 48].

Workflows

Custom Snakemake [49] workflows were written to carry out library setup and anal-

yses. Each mock library was first subject to trimming with Trimmomatic [50] with

parameters SLIDINGWINDOW:4:20 MINLEN:36. Singleton files passing quality

check from the Trimmomatic output were concatenated with paired files to ensure

minimal loss of sequences. Reads were then classified with Kraken 2 [19]. The first

round of analysis was used to establish the best database and confidence level. For

this, 10 million-read libraries with 1 %, 0.1 %, and 0.01 % Salmonella content were

[4]https://benlangmead.github.io/aws-indexes/k2
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classified with each of the three Kraken 2 databases described above (kr2std, kr2bac,

and kr2plrename) at five confidence levels: 0 (default), 0.25, 0.5, 0.75, and 1.

Output from this analysis was also used to establish the utility of comparison to

SSRs [31] for removing false positives. Information about reads classified as members

of the Salmonella genus (“putative Salmonella hits”) was extracted from the Kraken

2 output and the origin of the read recorded using a custom Python script to

determine the number of false positives (that is, reads originating from a non-

Salmonella genome that were classified as a member of the Salmonella genus).

Sequences from all Kraken 2 Salmonella hits were compared to the SSR database

using the BLAST command line application [47]. The origin of these SSR Salmonella

hits was again checked to determine remaining false positives.

The second round of analysis explored lower limits of detection in mock communi-

ties based on best practices from the above analyses. Libraries with 0.005 %, 0.001

%, and 0.0005 % Salmonella were classified with Kraken 2 against the bacteria

database (“kr2bac”) at 0.25 confidence. Kraken 2 Salmonella hits were extracted

and compared to SSRs, and false positives were recorded, as above.

Mock libraries were also analyzed with Metaphlan4 [21] using the vJan21

database. All reads that passed the Trimmomatic step were combined into one

file per library and analyzed with default parameters, using the output parameters

“unclassified estimation” and “-t rel ab w read stats”. Individual library profiles

were combined with the merge metaphlan tables.py script, and libraries with at

least one read in the Salmonella genus were considered positive for Salmonella.

Limits of detection in real metagenomic background

Limits of detection for Salmonella-derived reads were further explored using pub-

lished chicken caecal shotgun libraries as the background microbiome. Sequencing

files from Salaheen et al. (2017) [51] were retrieved from the European Nucleotide

Archive (accession codes SRR5280289, SRR5280393, and SRR5280514). Briefly, the

Salaheen et al. (2017) study investigated the impact of antibiotic growth promotors

on cecal microbiomes of Cobb-500 broiler chicks. Retrieved sequences were from

control chickens which did not receive growth promotors. These reads were paired-

end (2x151 bp) from an Illumina NextSeq 500. Sequencing files were concatenated

to create master microbiome files containing 119,068,070 paired reads. The master
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files were classified with Kraken 2 [19] using the kr2bac library and confidence 0.2,

and all reads matching to Salmonella were removed. This resulted in master files

of 119,068,030 reads. Reads were also checked against a custom database derived

from the chicken (Gallus gallus) reference genome to ensure that the number of host

reads in the shotgun dataset was neglible.

The genome of Salmonella Enteritidis strain CFIAFB20140150 (accession code

SRR10859048) [52] was used for generation of simulated shotgun sequencing reads

using the art illumina function of ART [44], as above. This strain was chosen based

on its concurrent use in a laboratory spike-in study. Replicate libraries were pro-

duced by appending the appropriate number of Salmonella Enteritidis-derived reads

to the master microbiome files, then subsetting libraries of 40 million reads using

BBMAP’s reformat function [45]. Libraries were produced at eight target levels,

from 10 % (approx. 4 million S. Enteritidis-derived reads) to 0.000001 % (0.4 reads),

and 20 replicates were produced per target level.

Libraries were analyzed using the above workflow, with the Kraken 2 bacteria

database, confidence 0.25, and SSR checks. Additionally, DIAMOND-formatted

databases of the invA and stn marker genes were created using animo acid sequences

retrieved from NCBI (WP 000927219.1 and AAA21354.1, respectively) with the DI-

AMOND makedb function [53]. The presence of these genes in libraries was tested

using DIAMOND’s blastx function with a percent ID cutoff of 96.

Statistics

Plotting and statistical analyses were carried out in R v4.2.2 [54]. The full list of

packages used is available in the supplementary material. LOD50 was calcluated via

the log-log model by Wilrich and Wilrich [32] using a tool they provide online[5].

Although this model was developed for calculating LODs in terms of bacterial CFU

per gram of food matrix during spike-in experiments, we adapted the calculation

for counts of pathogen-derived reads in sequencing libraries.
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20. Huson, D.H., Beier, S., Flade, I., Górska, A., El-Hadidi, M., Mitra, S., Ruscheweyh, H.-J., Tappu, R.: Megan

community edition-interactive exploration and analysis of large-scale microbiome sequencing data. PLoS

computational biology 12(6), 1004957 (2016)

21. Blanco-Mı́guez, A., Beghini, F., Cumbo, F., McIver, L.J., Thompson, K.N., Zolfo, M., Manghi, P., Dubois, L.,

Huang, K.D., Thomas, A.M., et al.: Extending and improving metagenomic taxonomic profiling with

uncharacterized species using metaphlan 4. Nature Biotechnology, 1–12 (2023)

22. Menzel, P., Ng, K.L., Krogh, A.: Fast and sensitive taxonomic classification for metagenomics with kaiju.

Nature communications 7(1), 1–9 (2016)

23. Ounit, R., Wanamaker, S., Close, T.J., Lonardi, S.: Clark: fast and accurate classification of metagenomic and

genomic sequences using discriminative k-mers. BMC genomics 16(1), 1–13 (2015)
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Figures

Figure 1 Left panel: Stacked bars showing Kraken 2’s classification of Salmonella-derived reads in

the library with 0.001% Salmonella. In blue, Salmonella-derived reads identified explicitly as from

the Salmonella genus; orange, those identified at a less specific taxonomic level; green,

unclassified; and red misidentified as neither Salmonella nor an appropriate higher taxonomic

group. Right panel: Number of non-Salmonella-derived reads classified as Salmonella (i.e. false

positives) by Kraken 2, and remaining after checking Kraken 2 results against SSRs. Libraries

contained 10 million reads each. Error bars are 1 std deviation. X-axis is square-root transformed

to better display low values.
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Figure 2 Precision-recall plots for Salmonella detection via Kraken 2 classification in 10 million

read libraries containing 100k (top panel), 10k (middle panel), and 100 (bottom panel)

Salmonella-derived reads. Precision is a measure of specificity, with high precision indicating a low

rate of false positives; recall is a measure of sensitivity, with high recall indicating a low rate of

false negatives.

Table 1 Number of replicate libraries at each spike-in level testing positive for Salmonella according

to the current pipeline (“Kraken2 + SSR”) or Metaphlan4. Libraries contained 10 million reads.

Salmonella reads Positive libraries: Positive libraries:

in library Replicates Kraken2+SSRs Metaphlan4

1× 105 20 20 20

1× 104 20 20 20

1× 103 20 20 4

1× 102 20 20 0

50 20 16 0

10 20 13 0

5 20 12 0

0 20 0 0
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Figure 3 Detection of Salmonella marker genes (top) or Salmonella-derived reads (bottom) using

the established workflow in a chicken caecal microbiome background. Libraries contained 40

million total reads. Datapoints from individual replicates are shown. Y-axis is in log10 scale.
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