

1 **Plasma Activated Water as a Pre-Treatment Strategy in the Context of Biofilm-Infected Chronic 2 Wounds**

3 Heema K. N. Vyas^{a,b*}, Binbin Xia^a, David Alam^a, Nicholas P. Gracie^c, Joanna G. Rothwell^c, Scott A. Rice^{d,e},
4 Dee Carter^{b,c}, Patrick J. Cullen^a, and Anne Mai-Prochnow^a

5 ^aSchool of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales,
6 Australia

7 ^bThe Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales,
8 Australia

9 ^cSchool of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales,
10 Australia

11 ^dAgriculture and Food, Microbiomes for One Systems Health, Commonwealth Scientific and Industrial
12 Research Organisation, Sydney, New South Wales, Australia

13 ^eThe Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, New
14 South Wales, Australia

15 **Corresponding Author. E-mail address: heema.vyas@sydney.edu.au*

16 **Abstract**

17 Healing and treatment of chronic wounds are often complicated due to biofilm formation by pathogens.
18 Here, the efficacy of Plasma Activated Water (PAW) as a pre-treatment strategy has been investigated prior
19 to the application of topical antiseptics polyhexamethylene biguanide, povidone iodine, and MediHoney,
20 which are routinely used to treat chronic wounds. The efficacy of this treatment strategy was determined
21 against biofilms of *Escherichia coli* formed on a plastic substratum and on a human keratinocyte monolayer
22 substratum used as an *in vitro* biofilm-skin epithelial cell model. PAW pre-treatment greatly increased the
23 killing efficacy of all the three antiseptics to eradicate the *E. coli* biofilms formed on the plastic and
24 keratinocyte substrates. However, the efficacy of the combined PAW-antiseptic treatment and single
25 treatments using PAW or antiseptic alone was lower for biofilms formed in the *in vitro* biofilm-skin
26 epithelial cell model compared to the plastic substratum. Scavenging assays demonstrated that reactive
27 species present within the PAW were largely responsible for its anti-biofilm activity. PAW treatment
28 resulted in significant intracellular RONS accumulation within the *E. coli* biofilms, while also rapidly acting
29 on the microbial membrane leading to outer membrane permeabilisation and depolarisation. Together, these
30 factors contribute to significant cell death, potentiating the antibacterial effect of the assessed antiseptics.

31 *Key Words: Biofilm, plasma activated water, chronic wounds, antiseptics, in vitro, Escherichia coli*

32 **1. Introduction**

33 In Australia, non-healing chronic wounds (burns, pressure ulcers, diabetic foot ulcers, venous leg ulcers etc)
34 annually costs the healthcare system \$3.5 billion; in the United Kingdom, chronic wound care costs £5.3
35 billion per year; and in the United States, this figure alarmingly exceeds \$28 billion [1, 2]. Various
36 pathogens colonise and contaminate chronic wounds such as Gram-positive (*Staphylococcus aureus*,
37 *Enterococcus faecalis*, *Streptococcus agalactiae*) and Gram-negative (*Escherichia coli* and *Pseudomonas*
38 *aeruginosa*) bacteria and fungi (*Candida albicans* and *Aspergillus fumigatus*) [3, 4]. Each of these pathogens
39 are prolific biofilm formers, which can delay healing, complicate treatment, and contribute to the recalcitrant
40 and recurrent nature of chronic wounds [4]. Biofilms are microbial assemblages that can aggregate on a
41 surface and are typically found embedded within a self-produced and/or host-derived protective matrix of
42 extracellular polymeric substances (EPS) [4]. Biofilms are difficult to clear via host immunity and display
43 increased antimicrobial tolerance, and many currently available antimicrobials do not specifically target

14 biofilms

[4].

15

16 Worryingly, several antimicrobials have been deemed redundant as their overuse and overreliance has
17 resulted in the rapid increase and emergence of antimicrobial resistance (AMR). In wound care, this has seen
18 a shift from topical and systemic antibiotic use towards topical antiseptic ointments, creams, foams, and
19 wound rinses/soaks. Topical antiseptics like polyhexamethylene biguanide (PHMB), povidone iodine (PI),
20 and medical-grade honey are widely recognised first-line treatments, that non-selectively reduce, inhibit, or
21 eradicate microorganisms associated with critically colonised wounds. Despite their promise as safe, cheap,
22 easily applicable, broad-spectrum antimicrobial agents, evidence of their anti-biofilm activity is limited [5].
23

24

25 Plasma medicine is a science that has been investigated in the biomedical field and in clinical practice for
26 cosmetic purposes, cancer therapy, and the treatment of various infections (fungal nails, dental plaque,
27 infected root canals etc.,) [6, 7]. Plasma medicine involves the application of cold atmospheric plasma
28 (CAP) for therapeutic purposes, either directly to the wound or by generating plasma activated liquids [8].
29 The highly reactive environment of CAP contains several charged particles (electrons, negative and positive
30 ions), excited atoms and molecules, radical species, and UV-photons, which have antimicrobial activity [8].
31 Interfacing CAP directly with water can transfer these reactive species, generating plasma activated water
32 (PAW). PAW has demonstrated potent antimicrobial activity thought to arise from the variety of short- and
33 long-lived reactive oxygen and nitrogen species (RONS) [9]. PAW is an effective alternative to traditional
34 antimicrobials, and as it acts on multiple targets opportunities for resistance are reduced [10]. PAW has
35 demonstrated antimicrobial efficacy against various planktonic Gram-positive and Gram-negative bacteria,
36 fungi, and viruses [11, 12]. However, its anti-biofilm efficacy remains underexplored.
37

38

39 Here, we have assessed the efficacy of PAW as a pre-treatment strategy to improve the anti-biofilm activity
40 of routinely used topical chronic wound antiseptics PHMB, PI, and medical-grade honey. To aid the
41 translation from the lab to clinical use, we have assessed the anti-biofilm activity of this strategy in an *in*
42 *vitro* biofilm model that includes a keratinocyte monolayer to mimic the substratum of the wound bed.
43 Inclusion of the host cells is important because biofilms that are formed in simple *in vitro* model systems
44 (e.g., reliant upon plastic, glass, or steel surfaces) lack the impact of host factors, subsequently affecting
45 biofilm antimicrobial susceptibility profiles [13]. We demonstrate that PAW initially kills a significant
46 portion of biofilm cells, and subsequent application of antiseptics results in complete biofilm eradication.
47 Lastly, the mechanisms underpinning PAWs anti-biofilm activity were also investigated. Overall, our
48 findings support further investigation into PAW as a component in wound care, with PAW pre-treatment
49 potentiating the anti-biofilm activity of routinely used topical antiseptics.
50

51

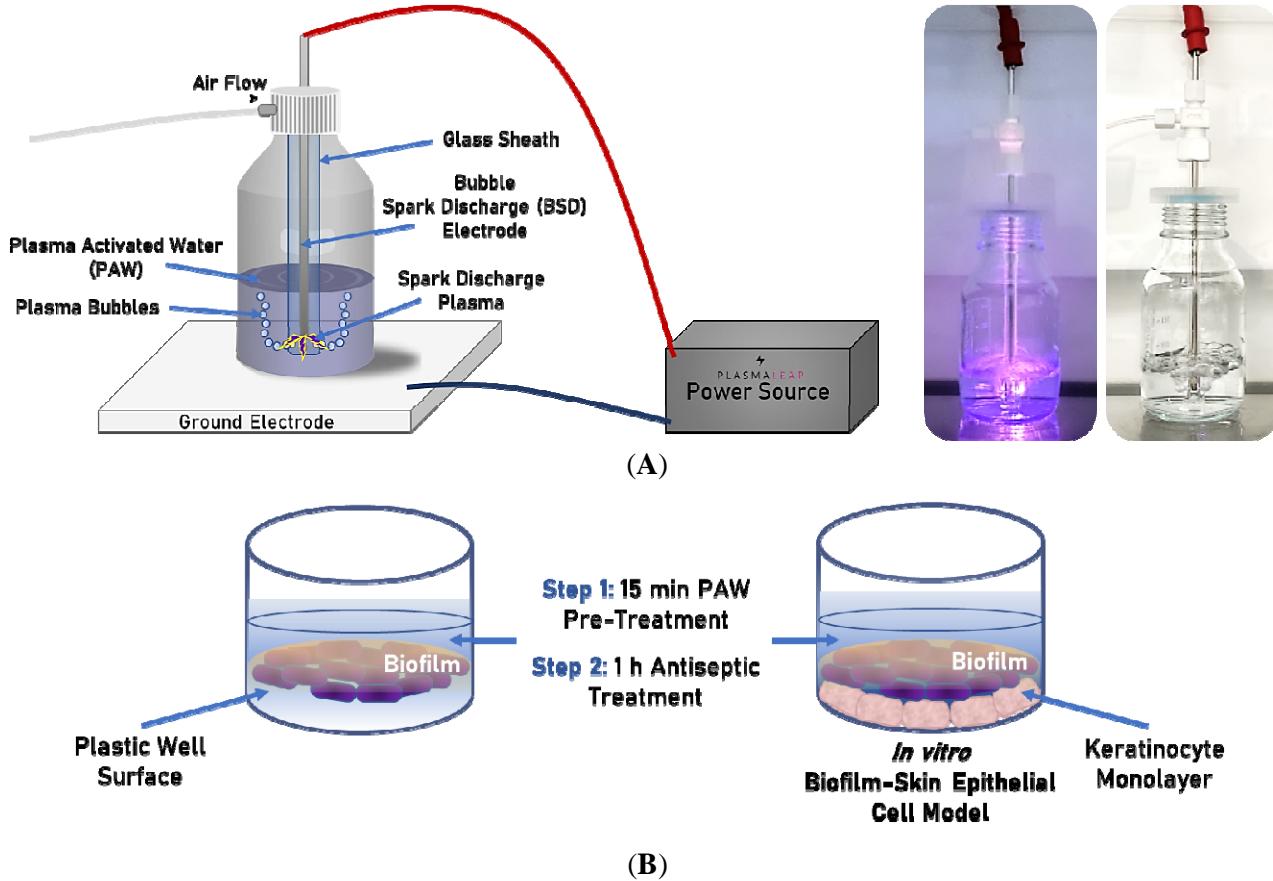
52 **2. Materials and Methods**

53 **2.1. Strain and Culture Conditions:**

54 *Escherichia coli* has been identified as a common biofilm former in chronic wounds and has thus been
55 selected for this study [3]. *E. coli* (ATCC 25922) was routinely maintained on Luria-Bertani (LB) agar (10.0
56 g/L tryptone (pancreatic digest of casein), 5.0 g/L yeast extract powder, 10.0 g/L sodium chloride, and 7.5
57 g/L agar) and cultured in liquid LB media at 37°C at 160 rpm.
58

59 **2.2. Human Keratinocyte Cell Culture Conditions and Monolayer Formation for the *In Vitro* Biofilm-Skin 60 Epithelial Cell Model:**

61 HaCaTs, a human epidermal keratinocyte cell line (CLS Cat# 300493/p800_HaCaT), was cultured and
62 maintained in Dulbecco's Modified Eagle Medium (DMEM) F12 (Gibco, USA), supplemented with 2 mM
63 L-glutamine (Gibco, Life Technologies, USA) and 10% (v/v) heat-inactivated foetal bovine serum (Bovogen
64 Biologicals, Australia) at 37°C in 5% CO₂ and 20%O₂ atmospheric conditions. HaCaT keratinocyte cell
65


31 monolayers were generated as per modified methods of Vyas [14] to encompass host factor presence in the
32 *in vitro* biofilm-skin epithelial cell model. In brief, wells of 96-well flat bottom microtiter plates were pre-
33 coated with 300 μ g/mL collagen I from rat tail (Gibco, Life Technologies, USA) for 1 h at 37°C. Once
34 coated, excess collagen was removed, and wells were washed with sterile 1×PBS. Then, each well was
35 seeded with 150 μ L HaCaT cell suspension ($\approx 1 \times 10^6$ cells/mL) and incubated for 24 h (or until 95%
36 monolayer confluence was achieved). Monolayers were fixed with 4% paraformaldehyde (PFA) (20 min,
37 room temperature). Once fixed, PFA was removed, and monolayers washed twice with 200 μ L sterile
38 1×PBS. Monolayers were submerged in 1×PBS and stored at 4°C and used within two weeks.

39 **2.3. Biofilm Formation:**

40 *E. coli* biofilms were formed on the bottom of 96-well microtiter plates with and without fixed keratinocyte
41 monolayers as the substratum. Plate wells were inoculated with 150 μ L of diluted overnight bacterial culture
42 ($\approx 1 \times 10^6$ CFU/mL) and incubated for 24 h (37°C, 50 rpm).

43 **2.4. Plasma Activated Water Generation and Treatment:**

44 Plasma activated water (PAW) was generated as previously described using a bubble spark discharge (BSD)
45 reactor [15] (Fig. 1A). This reactor comprised a stainless-steel metal rod as the high voltage electrode. It is
46 enclosed in a glass sheath with four 0.4 mm diameter holes at the end of the electrode that permit plasma gas
47 to enter the liquid as bubbles. The reactor was placed in 250 mL Schott bottles containing 100 mL of
48 autoclave sterilised Milli-Q water. Using a Leap100 high voltage power supply (PlasmaLeap Technologies,
49 Australia), a voltage input of 150 V, discharge frequency of 1500 Hz, resonance frequency of 60 kHz, and a
50 duty cycle of 100 μ s was applied for 20 min with airflow at 1 standard litre per min (slm). As a control, 100
51 mL autoclave sterilised Milli-Q water was subjected to 20 min exposure to air flow at 1 slm without plasma
52 discharge. Treatment of biofilms grown on both plastic substratum and fixed keratinocyte monolayers used
53 200 μ L of the freshly produced PAW or control to the wells for 15 min (Fig. 1B).

14 **Figure 1: PAW generation and treatment of biofilms. A)** Schematic representation of the BSD reactor
15 used to generate the PAW with photograph of PAW generation (left) and control generated without plasma
16 discharge (right). **B)** PAW was added directly onto the 24 h *E. coli* biofilms formed on either the plastic well
17 surface (left) or a fixed keratinocyte monolayer (*in vitro* biofilm-skin epithelial cell model; right). PAW was
18 applied for 15 min as a pre-treatment, then biofilms are challenged with clinically relevant topical antiseptics
19 routinely used for treating chronic wounds.

20 **2.5. Antimicrobial Agents:**

21 Three topical antiseptics routinely used for the treatment of chronic wounds were used: polyhexamethylene
22 biguanide (PHMB) (All Chemical, Australia), povidone iodine (PI) (Sigma-Aldrich, Australia), and a
23 commercially available medical-grade manuka honey (MediHoney, Comvita Ltd, New Zealand). The
24 MediHoney was stored in the dark at 4°C and dissolved in sterile Milli-Q water for use at a stock solution of
25 40%. Gramicidin (Sigma-Aldrich, Australia) and colistin sodium methanesulfonate (colistin; Sigma-Aldrich,
26 Australia) are antimicrobials with membrane activity and were used as the positive controls for the
27 membrane assays, where appropriate [16].

28 **2.6. Antimicrobial Susceptibility Testing:**

29 **2.6.1. Planktonic Cells - Minimum Inhibitory Concentration and Minimum Bactericidal Concentration**
30 **Assays:**

31 To assess the antimicrobial efficacy of PHMB, PI, MediHoney, PAW, and control against planktonic *E. coli*,
32 minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays were
33 performed. The MIC determines the lowest concentration of the antimicrobial that will inhibit visible
34 growth, whilst the MBC is the lowest concentration of an antibacterial agent required to kill *E. coli* cells
35 upon spot plating on LB agar. Standard protocols of either microbroth dilution series (as per CLSI
36 guidelines) or resazurin staining [17, 18] were performed against planktonic suspensions of *E. coli* ($\approx 1 \times 10^6$
37 CFU/mL), incubated for 24 h at 37°C. Lastly, to determine if these were bactericidal or bacteriostatic against
38 planktonic *E. coli* cells, MBC/MIC ratios were calculated. An MBC/MIC ratio ≤ 4 was considered
39 bactericidal, whilst an MBC/MIC ratio > 4 was considered bacteriostatic [19].

40 **2.6.2. Biofilms - Minimum Biofilm Eradication Concentration Assay:**

41 Minimum biofilm eradication concentration (MBEC) assays were utilised to assess *E. coli* biofilm
42 antimicrobial susceptibility. Briefly, the biofilms were washed once with 150 μ L Milli-Q water and pre-
43 treated with 200 μ L PAW (or control) for 15 min. The PAW (or control) was then removed and the biofilms
44 challenged with 100 μ L of two-fold serial dilutions of respective antiseptic (PHMB, PI, or MediHoney) for
45 1 h, at 37°C. Biofilms were washed, resuspended in sterile 1×PBS, and viable biofilm cells were enumerated
46 via 10-fold serial dilutions and spot plating on LB agar (overnight, 37°C) for subsequent colony counting
47 and CFU/mL determination. The MBEC was determined as the lowest concentration of antimicrobial
48 required to induce complete biofilm eradication, i.e., where 100% of biofilm-associated *E. coli* cells have
49 been killed.

50 **2.7. PAW Physicochemical Analysis:**

51 The physicochemical properties of PAW and control such as temperature, pH, oxidation-reduction potential
52 (ORP), electrical conductivity, as well as the concentrations of ozone, hydrogen peroxide, nitrite, and nitrate
53 generated via the BSD reactor, were measured as per Rothwell [15] and Zhou [20]. Briefly, a double
54 junction, gel-filled pH probe with built-in temperature sensor was used to measure the pH, ORP was
55 measured using a combination ORP electrode and general-purpose reference electrode, conductivity was
56 measured via a four-ring electrical conductivity probe. These probes and the research-grade benchtop meter
57 were sourced from Hanna Instruments (USA). Dissolved ozone concentrations were determined using a
58 colorimetric assay using the N,N-diethyl-p-phenylenediamine method (accurate at 0.00-2.00 mg/L) with the
59 intensity of the solution at 525 nm measured by a multiparameter benchtop photometer from Hanna

50 Instruments. Hydrogen peroxide was quantified using the titanium (IV) oxysulfate method, measuring the
51 yellow complex formed at 407 nm. Nitrite was quantified using the Griess Reagent method by absorption at
52 526 nm. Nitrate ions were quantified using a 930 compact Ion Chromatograph (IC) with ProfIC autosampler
53 and automated dilution module (Metrohm). A Metrosep A Supp 7 (5 μ m packing, 4 x 250mm) column was
54 used to separate analytes over 32 min using an isocratic flow rate of 0.7 mL/min of 3.6 mmol/L sodium
55 carbonate. Samples were automatically diluted by the instrument 1:20 before injecting 1 μ L to the column to
56 ensure peak symmetry.

57 **2.8. PAW Physicochemical Impact on Biofilms:**

58 Scavengers were used to investigate the effect of specific reactive species to determine which components
59 contribute to the anti-biofilm activity of PAW. The reactive species targets and scavengers that were
60 quenched included superoxide ions using 20 mM disodium 4,5-dihydroxybenzene-1,3-disulfonate (tiron),
61 ozone using 0.1 mM uric acid (can also scavenge hydroxyl radicals) and a general reactive oxygen species
62 (ROS) scavenger (superoxide ions, ozone, hydroxyl radicals) using 20 mM ascorbic acid [15]. These
63 scavengers were directly added to the Schott bottles containing 100 mL sterile Milli-Q water prior to PAW
64 generation. A control (no plasma generation) was also included.

65 As PAW generation is both an acidifying and heat-inducing process, the impact of pH and temperature was
66 also assessed. Biofilms were exposed to sterile Milli-Q water that was adjusted to a pH of 2.8 using nitric
67 acid, and Milli-Q water heated to 51.3°C (the maximum temperature reached during PAW generation), as
68 well as the combination of pH 2.8 Milli-Q water heated to 51.3°C.

69 **2.9. Quantification of Biofilm RONS:**

70 To further confirm the intracellular accumulation of both ROS and reactive nitrogen species (RNS) upon
71 PAW treatment, biofilms were stained with 20 μ M 2',7'-dichlorofluorescin diacetate (DCFDA; Sigma-
72 Aldrich, Australia) and 5 μ mol 4,5-diaminofluorescein diacetate (DAF-FM; Sigma-Aldrich, Australia),
73 respectively [21, 22]. Biofilms were challenged for 15 min with 200 μ L PAW and control as above. Once
74 challenged, biofilms were stained with either 150 μ L DCFDA or DAF-FM solution for 30 min. The ROS
75 and RNS were detected at an excitation/emission of 485-15 nm/535-15 nm and 495-15 nm/515-15 nm
76 (CLARIOStar), respectively.

77 **2.10. Effect of PAW on Membrane Activity:**

78 **2.10.1. Membrane Depolarisation:**

79 Membrane depolarisation was assessed in *E. coli* using 2 μ mol/L 3,3'-diethylthiadicarbocyanine iodide
80 (DiSC3(5); Sigma-Aldrich, Australia) [22], a fluorogenic dye measuring changes in transmembrane
81 potential. The dye was allowed to incorporate into 50 μ L planktonic *E. coli* cells ($\approx 5 \times 10^6$ CFU/mL) for 20
82 min at 37°C. Once washed, the cells were exposed to 200 μ L PAW and control (0-15 min). As a positive
83 control, 50 μ g/mL gramicidin was used. Fluorescence was measured at 600-15/660-15 nm (CLARIOStar),
84 and membrane depolarisation was reported as arbitrary units.

85 **2.10.2. Inner Membrane Permeability:**

86 To assess the inner membrane permeability of the *E. coli* cells post-PAW treatment, an ortho-nitrophenyl- β -
87 galactoside (ONPG; Sigma-Aldrich, Australia) assay was performed as per Brun [22]. Planktonic *E. coli*
88 cells were prepared to a final density of $\approx 5 \times 10^6$ CFU/mL. In a 96-well plate, 50 μ L of *E. coli* cells was
89 exposed to 1.5 mM ONPG (dissolved in 1 \times PBS). Stained *E. coli* cells were then challenged with 200 μ L
90 PAW and control. Gramicidin was used as the positive control. ONPG was measured in a time-dependent
91 manner

92 (0-15 min) at 405 nm (CLARIOStar) to determine the inner membrane permeability.

23 **2.10.3. Outer Membrane Permeability:**

24 PAW-induced outer membrane permeability was measured based on fluorescent dye N-phenyl-1-
25 naphthylamine (NPN; Sigma-Aldrich, Australia) uptake [22]. 50 μ L of planktonic *E. coli* cells
26 ($\approx 5 \times 10^6$ CFU/mL) were mixed with 10 μ M NPN and challenged by 200 μ L PAW or control. The positive
27 control was 200 μ g/mL colistin. NPN-associated fluorescence was measured over time (0-15 min) at
28 excitation/emission wavelengths of 350-15 nm/420-15 nm. At each time point, the value of fluorescence was
29 converted as the percentage of NPN uptake over the observed fluorescence on untreated *E. coli* using
30 *Equation 1* [23]:

31 **Equation 1** $NPN \text{ uptake } (\%) = \frac{(F_{control} - FB) - (F_{obs} - FB)}{F_{control} - FB} \times 100\%$

32 F_{obs} is the observed fluorescence of NPN with *E. coli* in the presence of PAW or control at a certain time
33 point.

34 $F_{control}$ is the fluorescence of NPN with *E. coli* cells in Milli-Q water.

35 F_B is the background fluorescence in the absence of NPN.

36 **2.10.4. Scanning Electron Microscopy:**

37 Scanning electron microscopy (SEM) imaging was utilised to assess the morphological changes induced of
38 *E. coli* biofilm cells following PAW treatment. *E. coli* biofilms were grown for 24 h on 13 mm plastic Nunc
39 Thermanox coverslips (Proscitech, Rochester, USA) in a 12-well polystyrene plate. Biofilms were treated
40 with PAW and control (and positive controls gramicidin and colistin) for 1 and 15 min. Biofilms were air
41 dried and prepared for SEM imaging using methods adapted from Vyas [24] with the following
42 modifications. Biofilms were pre-fixed for 30 min at 4°C, followed by fixation for 1 h at 4°C. Post-fixation,
43 washed biofilms were dehydrated via graded ethanol series (30%, 50%, 70%, 90%, and 3 \times 100%) and
44 critical point dried. Dried biofilms were sputter coated with 20 nm platinum (Edwards Vacuum coater,
45 USA) and visualised using a JEOL JSM-7500 microscope (JEOL, Japan) at 500 and 5,000 \times magnification.
46 Images were taken at random positions to reduce bias.

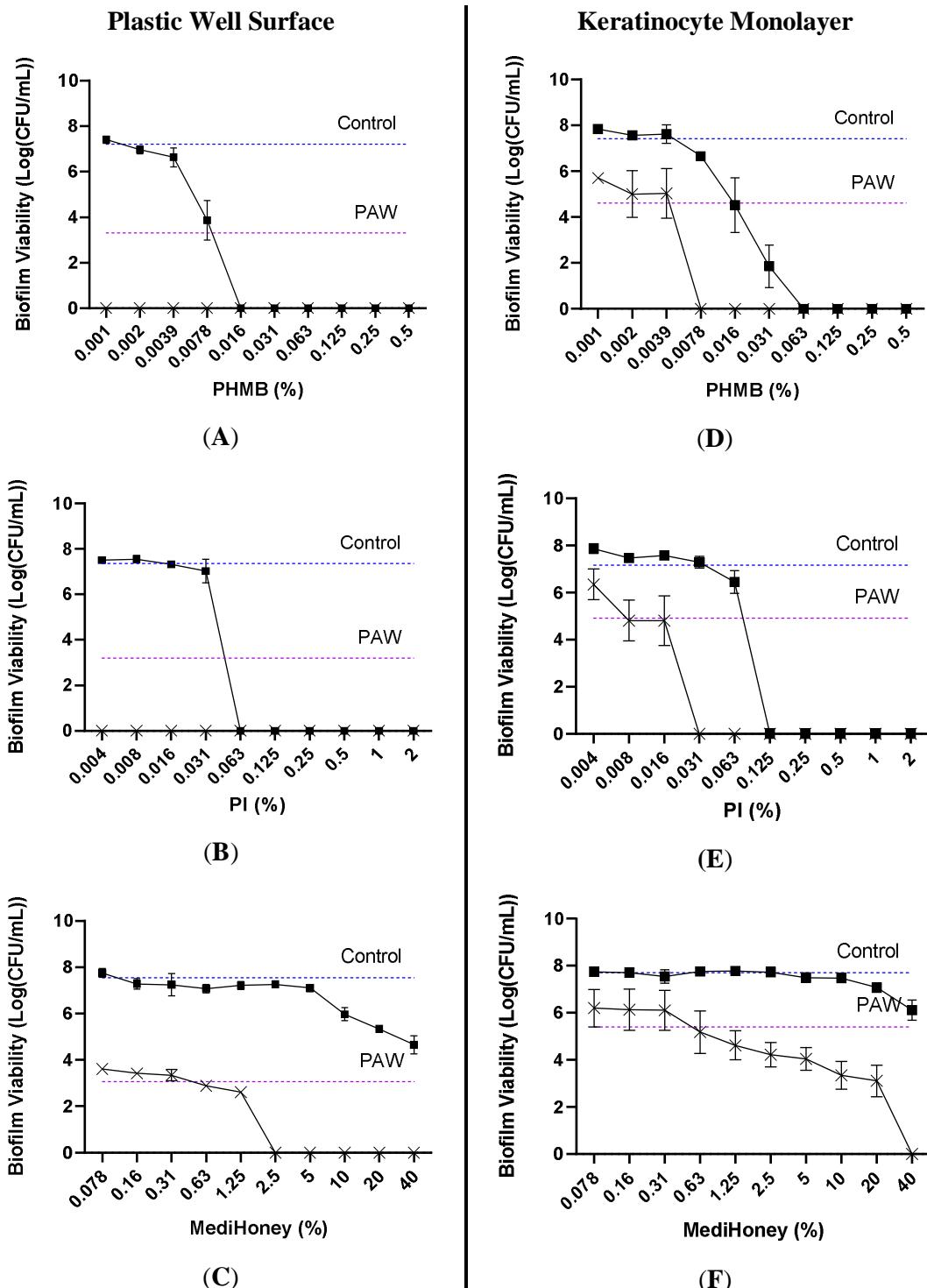
47 **2.11. Statistical Analysis:**

48 Statistical analysis was performed using GraphPad Prism (version 8.4.0, GraphPad Software, USA).
49 Experiments were performed in triplicate (with two technical replicates each) and values were expressed as
50 mean \pm standard error of the mean (or standard deviation, where appropriate). A one- or two-way ANOVA
51 was performed where appropriate with a Tukey's multiple comparisons post-hoc test, and $P \leq 0.05$ was
52 considered significant.

53 **3. Results**

54 **3.1. PAW Pre-Treatment Greatly Enhances the Anti-Biofilm Activity of Topical Antiseptics:**

55 The effectiveness of three topical antiseptics (PHMB, PI, and MediHoney) routinely used to treat chronic
56 wounds was individually assessed against planktonic *E. coli* cells and their MIC, MBC, and MBC/MIC
57 values determined (Table 1). PHMB and PI were both potent bactericidal agents (MBC/MIC \leq 4), with MIC
58 values of 0.001% and 0.063%, respectively. MediHoney required a much higher dose to inhibit
59 *E. coli* growth (MIC of 10%) and was bacteriostatic (MBC/MIC $>$ 4). PAW demonstrated bactericidal
60 activity (MBC/MIC \leq 4), with a MIC of 3.13%. The Milli-Q water without plasma (termed the control) had
61 no antimicrobial effect (MIC $>$ 50%).


62 PAW was assessed as a pre-treatment strategy against 24 h *E. coli* biofilms formed on a plastic substratum,
63 followed by treatment with a dilution series of one of the topical antiseptics (Fig. 2). Specifically, PAW was
64 applied first to the biofilms for 15 mins, and then the biofilm further challenged for
65 1 h with PHMB, PI, or MediHoney. PAW+PHMB and PAW+PI (Fig. 2A and B) completely eradicated

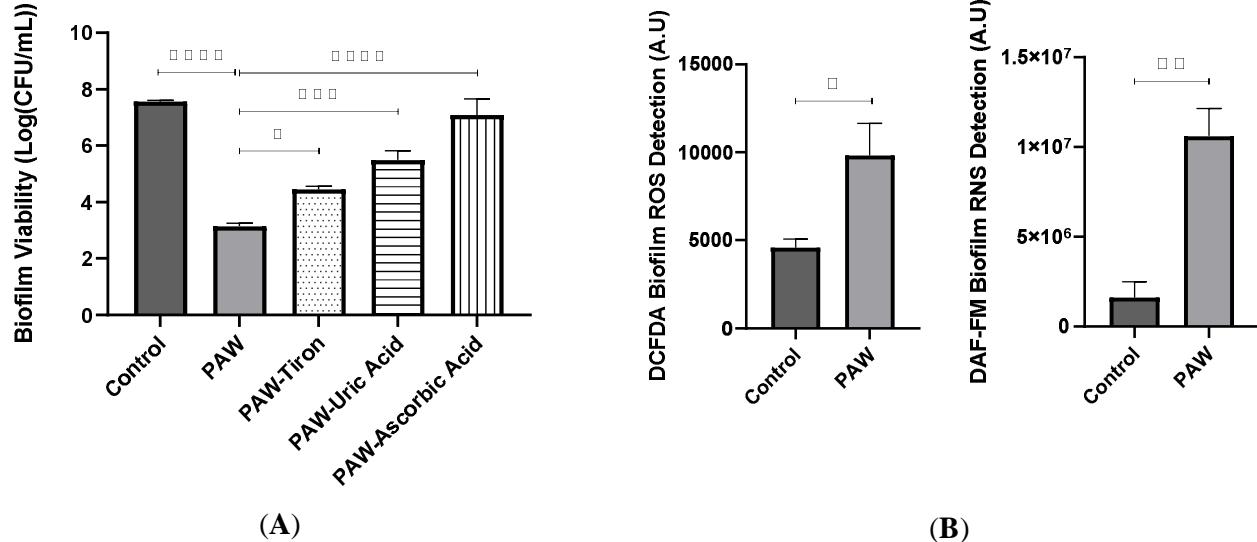
biofilm cells at all concentrations tested (MBEC values of PAW+0.001% PHMB and PAW+0.004% PI). These MBEC's suggest that *E. coli* biofilm susceptibility is either equivalent to, or far exceeds, its planktonic cell counterparts when compared to the PHMB and PI MIC values, respectively. The control treatment (pre-treatment with Milli-Q water without plasma activation) required substantially higher concentrations of PHMB and PI to achieve complete biofilm eradication (MBEC's control+0.016% PHMB and control+0.063% PI, respectively). For MediHoney, complete biofilm eradication was achieved for PAW pre-treated biofilms (MBEC of PAW+2.5% MediHoney), with biofilm susceptibility far exceeding the planktonic MIC for MediHoney alone (10%). PAW alone was assessed (purple dotted line, Fig 2A-C), consistently reducing biofilm viability by \approx 4.5 log when compared to the control (\approx 7.4 log, blue dotted line, Fig 2A-C).

Given the anti-biofilm efficacy of PAW as a pre-treatment on the plastic substratum, this analysis was extended to an *in vitro* biofilm-skin epithelial cell model comprising a keratinocyte monolayer as the substratum for *E. coli* biofilm growth. The efficacy of the antimicrobial treatment was lower for biofilms formed on the keratinocyte monolayer than those formed on plastic (Fig 2D-F). PAW pre-treatment followed by either PHMB or PI (Fig. 2D and E) completely eradicated the biofilm, producing MBECs of PAW+0.0078% PHMB and PAW+0.031% PI, while the control treatment had MBECs of control+0.063% PHMB and control+0.125% PI (Fig 2D and E). PAW+MediHoney (Fig. 2F) achieved complete biofilm eradication at the highest concentration tested (MBEC of PAW+40% MediHoney). Control+MediHoney (Fig. 2F) reduced biofilm viability by \approx 1.5 log compared to the control alone (\approx 7.4 log, blue dotted line, Fig 2D-F). As with the plastic substratum, PAW alone (purple dotted line, Fig 2D-F) did not completely eradicate the biofilms formed on the keratinocyte monolayer but achieved \approx 2 log reduction in biofilm viability when compared to the control (blue dotted line).

Table 1: Antimicrobial susceptibility testing of PHMB, PI, MediHoney, PAW, and control against planktonic *E. coli*. MBC/MIC \leq 4 is bactericidal, whilst MBC/MIC ratio $>$ 4 is bacteriostatic.

	MIC (%)	MBC (%)	$\frac{MBC}{MIC}$
PHMB	0.001	0.001	\leq 4
PI	0.063	0.25	\leq 4
MediHoney	10	>20	$>$ 4
PAW	3.13	0.097	\leq 4
Control	>50%	>50%	$>$ 4

71 **Figure 2: PAW pre-treatment greatly increases the *in vitro* antimicrobial susceptibility of *E. coli* 72 biofilms.** Effect on biofilm viability of PAW+PHMB/PI/MediHoney (×), control+PHMB/PI/MediHoney 73 (■), PAW (purple dotted line), and control (blue dotted line) on **A-C** plastic and **D-F** keratinocyte 74 monolayer is demonstrated. Data represents mean \pm SEM; n = 3 biological replicates, with 2 technical 75 replicates each.

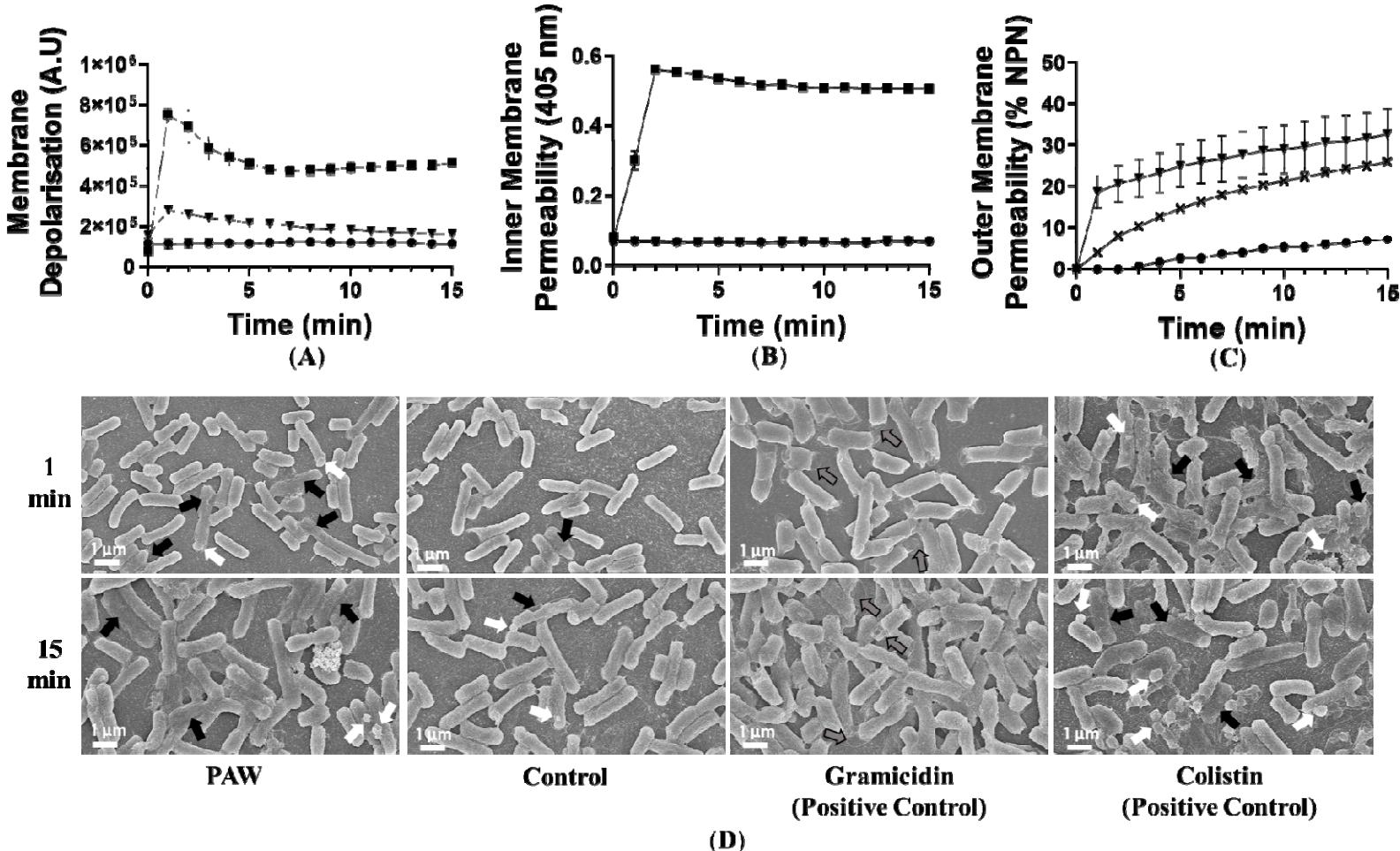

76 3.2. RONS Primarily Contribute to the Anti-Biofilm Activity of PAW:

77 To determine the mechanisms behind the anti-biofilm activity of PAW, the properties of PAW were 78 investigated, including temperature, pH, oxidation-reduction potential (ORP), conductivity, and RONS 79 (ozone, hydrogen peroxide, nitrite, and nitrate) (Supplemental Table. 1). The PAW was found to have a low 80 pH (pH 2.8) and an initial temperature of 51.3°C, compared to the control (pH 6.2 and 24.2°C). PAW was 81 also notably more conductive (763.3 μ S/cm) with a high ORP (502 mV) compared to control (4.8 μ S/cm and

32 390 mV). The RONS that were detected included ozone (1.9 ppm, approaching upper detection limit of 2
33 ppm), hydrogen peroxide (8.8 ppm), and nitrate (123.0 ppm), while nitrite was not detected (0.0 ppm).
34 RONS were not detected within the control. The effects of pH and temperature were assessed both
35 individually and combined. Neither had significant impacts on *E. coli* biofilm viability (Supplemental Fig.
36 1). This suggested that the anti-biofilm activity of PAW was primarily due to RONS.

37 A scavenger assay was performed to determine which reactive species contributed to the anti-biofilm
38 activity of PAW using tiron (superoxide scavenger), uric acid (ozone scavenger), and ascorbic acid (general
39 ROS scavenger). These were added immediately prior to PAW generation and the resulting PAW was then
40 applied to the *E. coli* biofilms for 15 min, with biofilm viability determined via cell enumeration.
41 Scavenging of superoxide, ozone, and ROS generally during the PAW generation process resulted in an
42 increase in *E. coli* biofilm cell viability of ≈ 1.5 ($P \leq 0.05$), 2.5 ($P \leq 0.001$), and 7 log ($P \leq 0.0001$)
43 respectively, compared to the biofilm viability post-PAW treatment (Fig. 3A).

44 The accumulation of RONS within the PAW treated *E. coli* biofilms was then determined using fluorescent
45 staining (Fig. 3B). Compared to the control, a significant increase ($P \leq 0.05$) in fluorescent intensity was
46 observed for DCFDA stained biofilms treated with PAW, demonstrating the accumulation of ROS within
47 the biofilm following 15 min PAW treatment (Fig. 3B; left). DAF-FM fluorescence increased even more
48 significantly ($P \leq 0.01$), demonstrating a higher abundance of RNS within the PAW treated *E. coli* biofilms
49 (Fig. 3B; right).



50 **Figure 3: RONS primarily contribute to the anti-biofilm activity of PAW. A)** PAW with the addition of
51 tiron, uric acid, and ascorbic acid to scavenge superoxide, ozone, and general ROS, respectively.
52 **B)** Intracellular ROS was measured using DCFDA staining (left) and intracellular RNS was measured using
53 DAF-FM staining (right). Data represents mean \pm SEM, * ($P \leq 0.05$), ** ($P \leq 0.01$), *** ($P \leq 0.001$), and
54 **** ($P \leq 0.0001$); n = 3 biological replicates, with 2 technical replicates each.

55 **3.3. PAW Treatment Causes Rapid Outer Membrane Permeability and Membrane Depolarisation:**
56 To further determine the mode of action of PAW on *E. coli*, membrane activity was investigated utilising
57 specific stains. For membrane depolarisation, DiSC3(5) was used (Fig. 4A) whilst inner and outer
58 membrane activity used ONPG- and NPN-based assays, respectively (Fig. 4B and C). The greatest effects
59 were seen on the outer membrane (Fig. 4C), where within 1 min of exposure to PAW the outer membrane
60 was significantly perturbed ($P \leq 0.0001$) as indicated by NPN uptake. This effect increased until 15 min ($P \leq$
61 0.0001) when compared to the control. The membrane was also significantly depolarised at 1 min of PAW
62 treatment
63 ($P \leq 0.0001$) (Fig. 4A), but this effect gradually decreased over time and by 11 min depolarisation did not

14 significantly differ from the control. PAW did not appear to induce any inner membrane permeability, as the
15 detected fluorescent values for PAW treated *E. coli* were the same as the control (Fig. 4B).

16 SEM imaging (Fig. 4D) was conducted to qualitatively distinguish any effects caused by PAW to the *E. coli*
17 cells, particularly in the context of membrane changes. Gramicidin and colistin were also included for
18 comparison. Many of the PAW-treated *E. coli* biofilm cells appeared flattened, with some cells exhibiting
19 membrane blebbing at 1 min of treatment, which was further pronounced at 15 min. Control treated cells
20 (1 and 15 min) also showed flattening, but at a relatively lower frequency (blebbing only seen at 15 min).
21 Both gramicidin and colistin induced extensive morphological changes, and gramicidin was the only
22 treatment to induce significant concaving or collapsing inward of *E. coli* cell ends at 1 min. As with PAW
23 and control treatments, colistin flattened cells and induced prominent cell membrane blebbing at both 1 and
24 15 min. When inspected at a lower magnification (500 x; Supplemental Fig. 2) the PAW and control
25 treatments did not appear to remove *E. coli* biofilm from the surface, indicating that the PAW generated in
26 this study does not physically dislodge biofilms as part of its mechanism of action.

Figure 4: PAW disrupts the integrity of the *E. coli* cell membrane. **A)** Membrane depolarisation was determined for *E. coli* incubated with 2 μ M DiSC3(5). *E. coli* cells were challenged with PAW (▼), control (●), and gramicidin (positive control) (■). **B)** Inner membrane permeability was determined by the addition of 1.5 mM ONPG to the *E. coli* cells and cytoplasmic β -galactosidase leakage was determined with o-nitrophenol detection (405 nm). **C)** Outer membrane permeability was evaluated by incubating *E. coli* with 10 μ M NPN and subsequently challenged with PAW (▼), control (●), and colistin (positive control) (x). NPN uptake was expressed as a percentage (%). **D)** SEM was utilised to visualise morphological changes induced by PAW, particularly on *E. coli* biofilm cell membranes. Biofilms were treated for 1 or 15 min with PAW and control. Gramicidin and colistin positive controls were also included. Morphological changes included cell flattening (black arrows), cell membrane blebbing (white arrows), and collapsing/concaving inward of individual cell ends (grey arrows).

36 **4. Discussion**

37 Biofilm-infected chronic wounds are difficult to treat via conventional antimicrobials [25]. As we fast
38 approach the post-antibiotic era, the development of newer antimicrobials and treatment strategies is critical.
39 Contextually, our results indicate that applying the PAW as an initial wound rinse/soak prior to the topical
40 application of antiseptics (e.g., PHMB, PI, and MediHoney) can aid in the complete eradication of *E. coli*
41 biofilm cells, whilst reducing the concentration of subsequently applied antiseptic. This is important as any
42 remnant surviving biofilm cells can otherwise re-populate and re-establish a biofilm at the wound bed,
43 contributing to recalcitrance and chronicity. Lowering antiseptic concentration can also be beneficial, as
44 some topical antiseptics facilitate dermal hypersensitivity/allergenicity and increase the risk of cytotoxicity
45 for key cell types (e.g., keratinocytes and fibroblasts) which are responsible for wound healing [5]. Further
46 study is needed to investigate the exact synergism occurring between PAW and each antiseptic considering
47 their unique modes of action; PHMB destabilises the microbial membrane; PI disrupts the respiratory chain,
48 disrupts efflux pumps, and denatures cellular proteins and enzymes; and medical-grade honey hinders
49 microbial growth and is rich in antimicrobial ROS (e.g., hydrogen peroxide) [5]. This may provide further
50 insight as to why PAW is more effective when combined with PHMB or PI over MediHoney. Lastly, we
51 demonstrate that PAW pre-treatment is also effective against biofilms generated in the *in vitro* biofilm-skin
52 epithelial cell model that encompasses a keratinocyte monolayer as the substratum for biofilm growth.
53 Several studies have reported that biofilm model choice is crucial when assessing and developing novel
54 antimicrobials and treatment strategies [13]. Biofilms generated in *in vitro* model systems that fail to capture
55 or mimic the infection scenario/local host microenvironment, i.e., in the case of chronic wounds lacking the
56 skin epithelia, three-dimensional tissue layering, or even the wound milieu, may result in biofilms that differ
57 in their architecture/structure, individual biofilm cell morphology, metabolic profile, quorum sensing, as
58 well as their antimicrobial susceptibility (reviewed [13]). Hence, the findings of this study indicates that a
59 more realistic prediction for translatable antimicrobial success under clinical settings is greatly increased
60 and/or achievable.

51 Considering PAWs demonstrated antimicrobial potency and anti-biofilm efficacy as a pre-treatment
52 strategy, the mechanisms underpinning its activity were investigated. Physicochemical analysis revealed
53 several RONS present within the PAW including ozone, hydrogen peroxide, and nitrate. These reactive
54 species have been found to inactivate several pathogens, some of which have been implicated in chronic
55 wounds (e.g., *E. coli* and *P. aeruginosa*) [26, 27]. Given the abundance and diversity of ROS in PAW, along
56 with their widely recognised role in CAP-mediated microbial damage [28], these were the focus of
57 subsequent study. Firstly, a scavenger assay was performed to selectively remove ROS species. The greatest
58 increase in biofilm viability was seen for PAW scavenged via ascorbic acid, whereby several important ROS
59 (e.g., superoxide, ozone, and several ozone by-products, like hydroxyl radicals) were removed. In fact,
60 scavenging these various ROS from PAW was so effective that *E. coli* biofilm viability did not significantly
61 differ to the biofilm control. Xia [21] found PAW-associated superoxide was crucial for *E. coli* biofilm
62 removal, and Rothwell [15] found superoxide (and/or its downstream reactive species) were primary
63 contributors to PAW-mediated inactivation of planktonic *E. coli* and *Listeria innocua* cells. Saijai [29] found
64 that ozonated bubble water was a strong sterilising agent against *E. coli*. Moreover, ozone can generate
65 several other reactive downstream ROS (e.g., hydroxyl radicals). Hydroxyl radicals are potent antibacterial
66 agents against several planktonic and biofilm bacteria like *E. coli* and *Streptococcus mutans* [29-31]. Taken
67 together, it is apparent that scavenging superoxide and ozone from PAW subsequently prohibits the
68 formation of various ROS by-products. Collectively, their removal significantly reduces the antimicrobial
69 power of PAW.

70 CAP has previously been shown to inactivate bacterial cells by creating an intracellularly high oxidative
71 stress environment with cells responding to this environment by producing additional RONS [28]. Oxidative
72 stress is harmful to microbial cells and their intracellular components (e.g., nucleic acids, proteins, lipids),

33 and inducing such a surge in intracellular ROS causes irreversible damage and enhances lethality [28, 32,
34 33]. Patange [28] described several ROS (superoxide, peroxide, hydroxyl radicals) as key proponents in
35 CAP-mediated intracellular damage of *Listeria monocytogenes* biofilm cells. Similarly, PAW-associated
36 hydrogen peroxide, superoxide, ozone, and their by-product ROS may each contribute to a damaging
37 oxidative stress response in the treated *E. coli* biofilms. This may result in an increased intracellular ROS
38 production which is damaging to the cells. PAW-induced oxidative stress can also generate high
39 concentrations of intracellular RNS within Gram-positive and Gram-negative bacterial cells (e.g., *S. aureus*,
40 *L. monocytogenes*, and *E. coli*) [28, 34]. Here, we also demonstrated significant intracellular RNS
41 accumulation post-PAW treatment, with relatively higher RNS detected than ROS. Additionally, it is also
42 possible that PAW-derived RONS directly penetrated through the EPS and accumulated within the biofilm
43 structure [27]. Once in the biofilm structure, PAW-associated RONS can infiltrate into *E. coli* cells by active
44 transport through the lipid bilayer, or more passively through membrane pores [35].

45 Lastly, the membrane activity of PAW was investigated. Ozone was a prominent potent ROS in our PAW
46 with significant anti-biofilm activity. Komanapalli and Lau [36] observed that short-term ozone exposure
47 (1-5 min), resulted in rapid *E. coli* cellular membrane lipid oxidation and cytoplasmic release of proteins and
48 nucleic acid. Leakage was linked to increased membrane permeability [36]. Ozone-induced membrane lipid
49 oxidation can also cause notable changes to the physical properties of the microbial membrane, e.g.,
50 inducing membrane depolarisation [37]. Here, within 1-minute of PAW treatment, *E. coli* cells had
51 significant membrane depolarisation and outer membrane permeability. Hence, ozone may play an important
52 role, thwarting the microbial membrane. Zhang [38] suggests that CAP-induced membrane damage involves
53 the cumulative impact of several long- and short-lived ROS like hydroxyl radicals, hydrogen peroxide, and
54 ozone. These can act on membrane-associated proteins, further triggering oxidative stress within *E. coli*
55 cells, a process resulting in rapid death [38]. SEM imaging of PAW-treated *E. coli* biofilm cells revealed
56 significant morphological changes with cells flattening and membrane blebbing. *In vivo*, several Gram-
57 negative pathogens (e.g., *P. aeruginosa* and *Helicobacter pylori*) have been found to produce outer
58 membrane vesicles (OMVs) that are released as a survival mechanism in response to immune cells like
59 macrophages undergoing “oxidative burst”, where potent antimicrobial ROS is released [39]. OMVs are
60 spherical, extracellular vesicles that bud off from the outer membrane, and when observed under the
61 microscope appear as “blebs” on the microbial surface [39, 40]. *E. coli* has also been shown to produce
62 OMVs in response to hydrogen peroxide, other ROS, as well as other stressors like increased temperature
63 and hyperosmotic stress [40]. Hence, it is possible that *E. coli* biofilm cell membrane blebbing resulted from
64 both PAW-associated ROS and the other physicochemical properties of the PAW.

15 5. **Conclusions**

16 This study highlights the utility of PAW as a pre-treatment strategy, potentiating the efficacy of topical
17 antiseptics that are routinely used in the treatment of infected chronic wounds. Initially, the PAW is likely
18 killing a significant portion of biofilm cells, enhancing the anti-biofilm activity of subsequently applied
19 antiseptics. Importantly, complete eradication is also achievable when biofilms are generated under
20 conditions that encompass host factors, i.e., when grown on keratinocyte monolayers of the *in vitro* biofilm-
21 skin epithelial cell model. Mechanistically, PAW-associated reactive species are pivotal to inducing *E. coli*
22 biofilm cell death, leading to intracellular RONS accumulation and rapid cell membrane abrogation. Overall,
23 this study provides a solid basis for additional investigation into PAW as a pre-treatment strategy for chronic
24 wounds infected by other relevant microbes (e.g., *S. aureus*, *P. aeruginosa*, and *C. albicans*), and with
25 differing antimicrobials (e.g., topical disinfectants) or treatment strategies (e.g., debridement). PAW is a
26 promising alternative antimicrobial considering the AMR crisis, providing innovation towards effective
27 wound treatment and clinical practice.

28 6. **Acknowledgements**

29 This work was supported by the Australian Research Council Discovery Scheme (DP210101358). We thank
30 Prof Martina Sanderson-Smith (University of Wollongong) for kindly providing the HaCaT cell line utilised
31 in this study, and for her overall support of this project. The authors acknowledge the valuable technical
32 assistance and support provided by staff, namely, Dr Mitchell J. B. Nancarrow and Dr Qiang Zhu, at the
33 University of Wollongong Electron Microscopy Centre.

34 **7. Author contributions**

35 Conceptualisation, H.K.N.V.; methodology, H.K.N.V.; formal analysis, H.K.N.V.; experimental
36 investigation, H.K.N.V., B.X., D.A., N.P.G., J.G.R.; data curation, H.K.N.V.; visualisation, H.K.N.V.;
37 writing—original draft preparation, H.K.N.V.; writing—review and editing H.K.N.V., B.X., D.A., N.P.G.,
38 J.G.R., S.A.R., D.C., P.J.C., A.M-P.; supervision, A.M-P. and H.K.N.V.; resources, A.M-P. and P.J.C.;
39 funding acquisition, A.M-P. All authors have read and agreed to the published version of the manuscript.

40 **8. Conflict of Interest**

41 Patrick J. Cullen is the CEO of PlasmaLeap Technologies, the supplier of the plasma power source and BSD
42 reactor utilised in this study.

43 **9. References**

- 44 [1] Guest JF, Fuller GW, Vowden P. Cohort study evaluating the burden of wounds to the UK's National
45 Health Service in 2017/2018: update from 2012/2013. *BMJ Open*. 2020;10:e045253.
- 46 [2] McCosker L, Tulleners R, Cheng Q, Rohmer S, Pacella T, Graves N, et al. Chronic wounds in Australia:
47 A systematic review of key epidemiological and clinical parameters. 2019;16:84-95.
- 48 [3] Rahim K, Saleha S, Zhu X, Huo L, Basit A, Franco OL. Bacterial Contribution in Chronicity of Wounds.
49 *Microbial Ecology*. 2017;73:710-21.
- 50 [4] Bjarnsholt T, Kirketerp-Møller K, Jensen PØ, Madsen KG, Phipps R, Kroghfelt K, et al. Why chronic
51 wounds will not heal: a novel hypothesis. *Wound Repair and Regeneration*. 2008;16:2-10.
- 52 [5] Sibbald RG, Elliott JA, Verma L, Brandon A, Persaud R, Ayello EA. Update: Topical Antimicrobial
53 Agents for Chronic Wounds. *Adv Skin Wound Care*. 2017;30:438-50.
- 54 [6] Puligundla P, Mok C. Potential applications of nonthermal plasmas against biofilm-associated
55 microorganisms in vitro. *Journal of applied microbiology*. 2017;122:1134-48.
- 56 [7] Gilmore BF, Flynn PB, O'Brien S, Hickok N, Freeman T, Bourke P. Cold plasmas for biofilm control:
57 opportunities and challenges. *Trends in biotechnology*. 2018;36:627-38.
- 58 [8] Weltmann K, Von Woedtke T. Plasma medicine—current state of research and medical application.
59 *Plasma Physics and Controlled Fusion*. 2016;59:014031.
- 60 [9] Mai-Prochnow A, Alam D, Zhou R, Zhang T, Ostrikov K, Cullen PJ. Microbial decontamination of
61 chicken using atmospheric plasma bubbles. 2021;18:2000052.
- 62 [10] Nicol MJ, Brubaker TR, Honish BJ, Simmons AN, Kazemi A, Geissel MA, et al. Antibacterial effects
63 of low-temperature plasma generated by atmospheric-pressure plasma jet are mediated by reactive oxygen
64 species. *Scientific reports*. 2020;10:1-11.
- 65 [11] Mai-Prochnow A, Clauson M, Hong J, Murphy AB. Gram positive and Gram negative bacteria differ in
66 their sensitivity to cold plasma. *Scientific Reports*. 2016;6:38610.
- 67 [12] Aboubakr HA, Parra FS, Collins J, Bruggeman P, Goyal SM. *In situ* inactivation of human norovirus
68 GII. 4 by cold plasma: Ethidium monoazide (EMA)-coupled RT-qPCR underestimates virus reduction and
69 fecal material suppresses inactivation. *Food microbiology*. 2020;85:103307.
- 70 [13] Vyas HKN, Xia B, Mai-Prochnow A. Clinically relevant *in vitro* biofilm models: A need to mimic and
71 recapitulate the host environment. *Biofilm*. 2022;4:100069.
- 72 [14] Vyas HKN, McArthur JD, Sanderson-Smith ML. An optimised GAS-pharyngeal cell biofilm model.
73 *Scientific Reports*. 2021;11:8200.

74 [15] Rothwell JG, Alam D, Carter DA, Soltani B, McConchie R, Zhou R, et al. The antimicrobial efficacy of
75 plasma-activated water against *Listeria* and *E. coli* is modulated by reactor design and water composition.
76 2022;132:2490-500.

77 [16] Prenner EJ, Lewis RNAH, McElhaney RN. The interaction of the antimicrobial peptide gramicidin S
78 with lipid bilayer model and biological membranes. *Biochimica et Biophysica Acta (BBA) - Biomembranes*.
79 1999;1462:201-21.

80 [17] Humphries R, Bobenik AM, Hindler JA, Schuetz AN. Overview of Changes to the Clinical and
81 Laboratory Standards Institute *Performance Standards for Antimicrobial Susceptibility Testing*, M100, 31st
82 Edition. *Journal of Clinical Microbiology*. 2021;59:10.1128/jcm.00213-21.

83 [18] Elshikh M, Ahmed S, Funston S, Dunlop P, McGaw M, Marchant R, et al. Resazurin-based 96-well
84 plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants.
85 *Biotechnology Letters*. 2016;38:1015-9.

86 [19] Pankey G, Sabath L. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the
87 treatment of Gram-positive bacterial infections. *Clinical infectious diseases*. 2004;38:864-70.

88 [20] Zhou R, Zhou R, Zhang X, Zhuang J, Yang S, Bazaka K, et al. Effects of Atmospheric-Pressure N₂,
89 He, Air, and O₂ Microplasmas on Mung Bean Seed Germination and Seedling Growth. *Scientific Reports*.
90 2016;6:32603.

91 [21] Xia B, Vyas HKN, Zhou R, Zhang T, Hong J, Rothwell JG, et al. The importance of superoxide anion
92 for *Escherichia coli* biofilm removal using plasma-activated water. *Journal of Environmental Chemical
93 Engineering*. 2023;109977.

94 [22] Brun P, Bernabè G, Marchiori C, Scarpa M, Zuin M, Cavazzana R, et al. Antibacterial efficacy and
95 mechanisms of action of low power atmospheric pressure cold plasma: membrane permeability, biofilm
96 penetration and antimicrobial sensitization. *Journal of applied microbiology*. 2018;125:398-408.

97 [23] Lee DL, Powers JPS, Pflegerl K, Vasil ML, Hancock REW, Hodges RS. Effects of single d-amino acid
98 substitutions on disruption of β -sheet structure and hydrophobicity in cyclic 14-residue antimicrobial peptide
99 analogs related to gramicidin S. *The Journal of Peptide Research*. 2004;63:69-84.

100 [24] Vyas HKN, Indraratna AD, Everest-Dass A, Packer NH, De Oliveira DMP, Ranson M, et al. Assessing
101 the Role of Pharyngeal Cell Surface Glycans in Group A *Streptococcus* Biofilm Formation. 2020;9:775.

102 [25] Kim PJ, Steinberg JS. Wound Care: Biofilm and Its Impact on the Latest Treatment Modalities for
103 Ulcerations of the Diabetic Foot. *Seminars in Vascular Surgery*. 2012;25:70-4.

104 [26] Joshi SG, Cooper M, Yost A, Paff M, Ercan UK, Fridman G, et al. Nonthermal dielectric-barrier
105 discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in
106 *Escherichia coli*. *Antimicrobial agents and chemotherapy*. 2011;55:1053-62.

107 [27] Alkawareek MY, Algwari QT, Laverty G, Gorman SP, Graham WG, O'Connell D, et al. Eradication of
108 *Pseudomonas aeruginosa* biofilms by atmospheric pressure non-thermal plasma. *PLoS One*. 2012;7:e44289.

109 [28] Patange A, O'Byrne C, Boehm D, Cullen PJ, Keener K, Bourke P. The Effect of Atmospheric Cold
110 Plasma on Bacterial Stress Responses and Virulence Using *Listeria monocytogenes* Knockout Mutants.
111 *Front Microbiol*. 2019;10:2841.

112 [29] Saijai S, Thonglek V, Yoshikawa K. Sterilization effects of ozone fine (micro/nano) bubble water. *Int J
113 Plasma Environ Sci Technol*. 2019;12:55-8.

114 [30] Nakamura K, Shirato M, Kanno T, Örtengren U, Lingström P, Niwano Y. Antimicrobial activity of
115 hydroxyl radicals generated by hydrogen peroxide photolysis against *Streptococcus mutans* biofilm.
116 *International Journal of Antimicrobial Agents*. 2016;48:373-80.

117 [31] Wang H, Hasani M, Wu F, Prosser R, MacHado GB, Warriner K. Hydroxyl-radical activated water for
118 inactivation of *Escherichia coli* O157:H7, *Salmonella* and *Listeria monocytogenes* on germinating mung
119 beans. *International Journal of Food Microbiology*. 2022;367:109587.

120 [32] Wang X, Zhao X. Contribution of Oxidative Damage to Antimicrobial Lethality. *Antimicrobial Agents
121 and Chemotherapy*. 2009;53:1395-402.

22 [33] Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. A common mechanism of cellular death
23 induced by bactericidal antibiotics. *Cell*. 2007;130:797-810.

24 [34] Borkar SB, Negi M, Kaushik N, Abdul Munna S, Nguyen LN, Choi EH, et al. Plasma-Generated
25 Nitric Oxide Water Mediates Environmentally Transmitted Pathogenic Bacterial Inactivation via
26 Intracellular Nitrosative Stress. *Int J Mol Sci*. 2023;24.

27 [35] Han L, Patil S, Boehm D, Milosavljević V, Cullen PJ, Bourke P. Mechanisms of Inactivation by High-
28 Voltage Atmospheric Cold Plasma Differ for *Escherichia coli* and *Staphylococcus aureus*. *Applied and*
29 *Environmental Microbiology*. 2016;82:450-8.

30 [36] Komanapalli IR, Lau BHS. Ozone-induced damage of *Escherichia coli* K-12. *Applied Microbiology*
31 and *Biotechnology*. 1996;46:610-4.

32 [37] Brodowska AJ, Nowak A, Śmigielski K. Ozone in the food industry: Principles of ozone treatment,
33 mechanisms of action, and applications: An overview. *Critical reviews in food science and nutrition*.
34 2018;58:2176-201.

35 [38] Zhang H, Ma J, Shen J, Lan Y, Ding L, Qian S, et al. Roles of membrane protein damage and
36 intracellular protein damage in death of bacteria induced by atmospheric-pressure air discharge plasmas.
37 *RSC Adv*. 2018;8:21139-49.

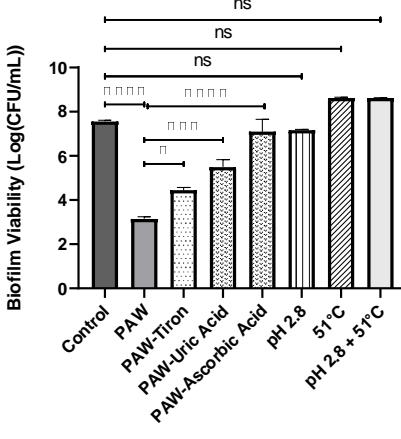
38 [39] Sabra W, Lunsdorf H, Zeng A-P. Alterations in the formation of lipopolysaccharide and membrane
39 vesicles on the surface of *Pseudomonas aeruginosa* PAO1 under oxygen stress conditions. *Microbiology*.
40 2003;149:2789-95.

41 [40] Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and
42 functions. *Nature Reviews Microbiology*. 2015;13:605-19.

43

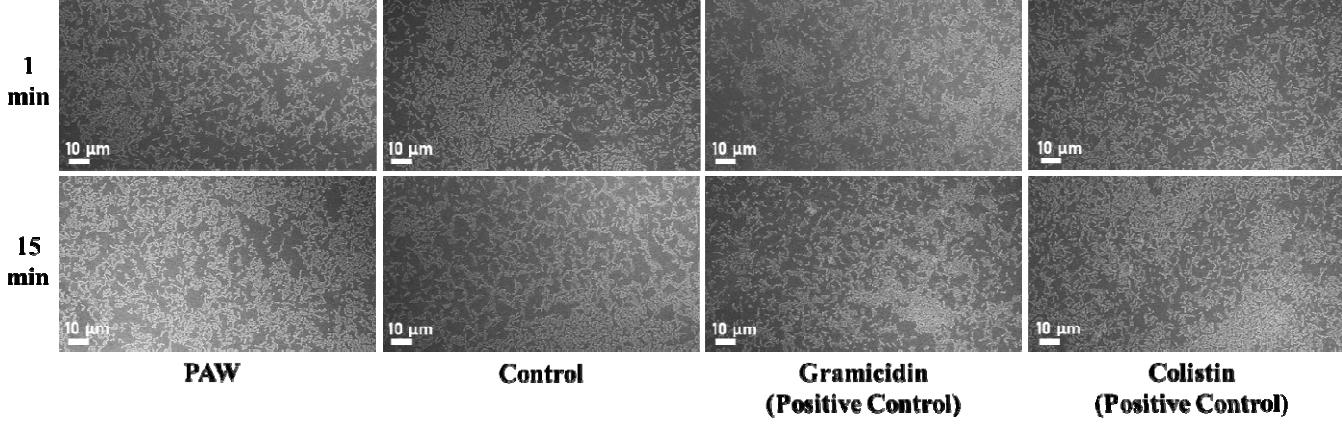
44

45 **Supplementary Data**


46

47 **Supplemental Table 1: The physicochemical properties of PAW and control generated for 20 min**
48 **using the BSD reactor.** Data represents mean \pm Std Dev, n = 3 replicates.

	PAW	control
Temperature (°C)	51.3 \pm 1.2	24.2 \pm 0.4
pH	2.8 \pm 0.0	6.2 \pm 0.2
ORP (mV)	502.0 \pm 6.1	390 \pm 14.1
Conductivity (μS/cm)	763.3 \pm 35.1	4.8 \pm 2.0
Ozone (ppm)	1.9 \pm 0.2	0.0 \pm 0.0
Hydrogen Peroxide (ppm)	8.8 \pm 1.5	0.0 \pm 0.0
Nitrite (ppm)	0.0 \pm 0.0	0.0 \pm 0.0
Nitrate (ppm)	123.0 \pm 4.0	0.5 \pm 0.1*


19

* Trace quantities detected, likely as a contaminant

50

51 **Supplemental Figure 1: RONS primarily contribute to the anti-biofilm activity of PAW.** Addition of
52 tiron, uric acid, and ascorbic acid effectively scavenge superoxide anions, ozone, and general ROS from the
53 PAW, significantly increasing biofilm viability (compared to biofilms treated with whole PAW). Whilst
54 Milli-Q water at pH 2.8, 51°C, and combined pH 2.8 +51°C do not significantly impact biofilm viability,
55 instead closely resemble viability of control.

56

57 **Supplemental Figure 2: SEM imaging of *E. coli* biofilms treated for 1 and 15 mins with PAW, control,**
58 **and Positive controls (Gramicidin and Colistin) at 500 x magnification.** SEM images demonstrate that