

# <sup>1</sup> Sensitivity analysis of models of gas exchange for lung hy- <sup>2</sup> perpolarised <sup>129</sup>Xe MRS and MRI

<sup>3</sup> Yohn Taylor<sup>1</sup>, Frederick J Wilson<sup>2</sup>, Mina Kim<sup>1</sup>, Geoff J M Parker<sup>1,3</sup>,

<sup>4</sup> **1** Centre for Medical Image Computing, Quantitative Imaging Group, Department of Medical  
<sup>5</sup> Physics and Biomedical Engineering, University College London, London, United Kingdom

<sup>6</sup> **2** GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, United Kingdom

<sup>7</sup> **3** Bioxydyn Limited, Manchester, United Kingdom

<sup>8</sup> \* Corresponding author:

**Name** Geoff J M Parker

**Department** Centre for Medical Image Computing

**Institute** University College London

<sup>9</sup> **Address** 90 High Holborn

WC1V 6LJ, London

United Kingdom

**E-mail** [geoff.parker@ucl.ac.uk](mailto:geoff.parker@ucl.ac.uk)

10

## Abstract

11

**Purpose:** Sensitivity analysis enables the identification of influential parameters and the optimisation of model composition. Such methods have not previously been applied systematically to models describing hyperpolarised  $^{129}\text{Xe}$  gas exchange in the lung. Here, we evaluate current  $^{129}\text{Xe}$  gas exchange models to assess their precision for identifying alterations in pulmonary-vascular function and lung microstructure.

12

**Methods:** We assess sensitivity using established univariate methods and scatter plots for parameter interactions. We apply them to the model described by Patz and MOXE *et al.*, examining their ability to measure: i) importance (rank), ii) temporal dependence, and iii) interaction effects of each parameter across healthy and diseased ranges.

13

**Results:** The univariate methods and scatter plot analyses demonstrate consistently similar results for the importance of parameters common to both models evaluated. Alveolar surface area to volume ratio is identified as the parameter to which model signals are most sensitive. The alveolar-capillary barrier thickness is identified as a low-sensitivity parameter for the MOXE model. An acquisition window of at least 200 ms effectively demonstrates model sensitivity to most parameters. Scatter plots reveal interaction effects in both models, impacting output variability and sensitivity.

14

**Conclusion:** Our sensitivity analysis ranks the parameters within the model described by Patz *et al* and within the MOXE model. The MOXE model shows low sensitivity to alveolar-capillary barrier thickness, highlighting the need for designing acquisition protocols optimised for the measurement of this parameter. The presence of parameter interaction effects highlights the requirement for care in interpreting model outputs.

15

**Keywords:** Mathematical modelling, sensitivity analysis, hyperpolarised  $^{129}\text{Xe}$  MRI

### 33 Introduction

34 Hyperpolarised  $^{129}\text{Xe}$  (HpXe) MRS and MRI of the lungs permit the assessment of the temporal  
35 dynamics of gas exchange across the alveolar-capillary barrier (1).  $^{129}\text{Xe}$  is highly lipophilic and  
36 soluble and follows a similar diffusion pathway to that of oxygen (9). As a result,  $^{129}\text{Xe}$  gas transfer  
37 mechanisms can be modelled utilising uptake curves of characteristic spectroscopic peaks generated  
38 from the movement of  $^{129}\text{Xe}$  between the gas (airways and alveoli) and dissolved (tissue/blood) lung  
39 compartments. Fitting 1D diffusion compartment models to HpXe MRS chemical shift saturation  
40 recovery (CSSR) data enables the extraction of microstructural and physiological measurements of  
41 the lung, providing markers for evaluating global and regional lung function. Two-compartment  
42 models (11; 16) typically consider  $^{129}\text{Xe}$  dissolved in blood and tissue collectively - the dissolved  
43 phase - while three-compartment models (8; 4) differentiate between frequency shifted  $^{129}\text{Xe}$  peaks  
44 from a combined tissue and plasma pool - the tissue phase - and red blood cells (RBC). The two-  
45 compartment model introduced by Patz *et al* (11) (from here on denoted 'Patz model'), and the  
46 three-compartment MOXE model (4) have been used for the clinical assessment of a range of lung  
47 diseases, including chronic obstructive pulmonary disease (COPD), interstitial lung disease (ILD)  
48 and asthma (14; 7).

49 The Patz model allows the estimation of septal thickness,  $d$ , the alveolar surface area to volume  
50 ratio, SVR, and the blood transit time through the capillary bed,  $\tau_c$ . As an extension of the  
51 Patz model, the MOXE model additionally considers the tissue and RBC phases (11), allowing the  
52 estimation of three more parameters: the alveolar-capillary barrier thickness,  $\delta$ , the xenon-exchange  
53 time constant,  $T$ , and the haematocrit, HCT.

54 When using either model to characterise disease it is necessary to understand the attainable  
55 measurement specificity and sensitivity to underlying disease processes for each parameter. The type  
56 and severity of disease will dictate the parameters that are expected to provide disease sensitivity.  
57 For example, a decrease in SVR and an increase in  $d$  are indicative of symptoms common within  
58 emphysematic and fibrotic lung diseases (5), respectively. The ability of a measurement technique  
59 and an associated signal model to precisely measure these differences is dependent on the dynamic  
60 range of signal changes that are associated with changes in the model's parameters. Sensitivity  
61 analysis investigates how variations in signals predicted by a model can be attributed to variations  
62 within different input factors/parameters (18). If model output is not sensitive to changes within  
63 the relevant parameter space for a particular experimental setting, precise interrogation of these

64 parameters cannot be achieved. As a result, sensitivity analysis can assist in defining influential  
65 and non-influential parameters within a given model, thereby identifying what parameterisations  
66 are likely to be feasible and informative within a given experimental scenario (20).

67 In this study we apply both univariate and multivariate sensitivity analysis methods to the Patz  
68 and MOXE 1D diffusion models to investigate each model's sensitivity to parameter variability.  
69 We identify interaction effects, determine parameter importance - ranking parameters to which  
70 the output is most and least sensitive to (12) - for both models, and identify model sensitivity to  
71 parameter variation across a range of saturation recovery repetition times; identifying experimental  
72 periods for optimal parameter measurement.

## 73 Theory

### 74 Chemical shift saturation recovery (CSSR)

75 The rate of regrowth due to the influx of polarised spins of the  $^{129}\text{Xe}$  dissolved phase signal after a  
76 saturation radio-frequency (RF) pulse can be described by appropriate models, allowing parameters  
77 of interest to be estimated. When using chemical shift saturation recovery (CSSR) (2; 11), a spec-  
78 troscopic measurement of the  $^{129}\text{Xe}$  magnetisation is taken after each of a series of repetition times  
79 TR, allowing the rate of  $^{129}\text{Xe}$  uptake within the dissolved phase compartments to be determined.  
80 Uptake curves demonstrate a characteristic increase over time, highlighting an initial rapid influx  
81 of gas within the compartments, followed by a slower uptake phase. This can be represented by  
82 a combination of two processes: the replenishment of the  $^{129}\text{Xe}$  from the gas phase to the tissue  
83 phase, and the uptake into and exit from the local tissue of  $^{129}\text{Xe}$  via the capillary blood flow.

84

### 85 Two compartment model

86 The model described by Patz (11) is derived from the solution of the diffusion equation,

$$\frac{\partial M_d}{\partial t} = D \frac{\partial^2 M_d}{\partial x^2}, \quad [1]$$

87 where  $D$  denotes the dissolved phase diffusion coefficient of xenon. The diffusion process is described  
88 as a two compartment model, with the septum bounded by the alveoli as shown in Fig. 1. The Patz  
89 model describes the diffusion of hyperpolarised  $^{129}\text{Xe}$  into the dissolved phase, defined as a single

90 compartment combining the tissue phase and red blood cells.

91 When employing the CSSR technique, hyperpolarised  $^{129}\text{Xe}$  is inhaled into the lungs followed  
92 by a frequency selective RF pulse, which saturates the longitudinal magnetisation in the dissolved  
93 phase. At time  $t = 0$ ,  $M_g(x, t = 0) = M_0$  and  $M_d(x, t = 0) = 0$ , where  $x$  represents the spatial  
94 position of dissolved xenon and  $M_g$  and  $M_d$  represent the longitudinal magnetisation in the gas  
95 phase (alveoli) and dissolved phase (septum), respectively. At  $t > 0$ , unsaturated  $^{129}\text{Xe}$  from the  
96 alveoli diffuses into the septum, leading to

$$M_d(0, t) = M_d(d, t) = \lambda M_g, \quad [2]$$

97 where  $\lambda$  is the Ostwald solubility of xenon within tissue and the magnetisation from the alveoli space  
98  $M_g$  is approximated to be unchanged  $M_g(x, t) = M_0$ . The solution for the boundary conditions for  
99  $^{129}\text{Xe}$  magnetisation,  $M_d$ , within the dissolved phase (2) results in,

$$M_d(x, t) = \lambda M_g \left[ 1 - \sum_{n=odd} \left( \frac{4}{\pi n} \right) \sin \left( \frac{n\pi x}{d} \right) e^{-Dt \frac{n^2 \pi^2}{d^2}} \right]. \quad [3]$$

100 The integral of the  $^{129}\text{Xe}$  magnetisation in the septum (dissolved phase) provides the fraction  
101 of the septum occupied by hyperpolarised  $^{129}\text{Xe}$  at time  $t$ ,

$$\rho(x, t) = \frac{M_d(x, t)}{\lambda M_g}, \quad [4]$$

$$f(t) = \frac{1}{d} \int_{x=0}^d \rho(x, t) dx = 1 - \sum_{n=odd} \frac{8}{\pi^2 n^2} e^{-Dt \frac{n^2 \pi^2}{d^2}}, \quad [5]$$

where  $\rho$  is the dimensionless representation of  $^{129}\text{Xe}$  magnetisation density within the septal slab  
of thickness  $d$ . The ratio of the dissolved phase  $^{129}\text{Xe}$  signal after time  $t$  to the gas phase at time  
 $t = 0$  is

$$F(t) = \frac{M_d(t \rightarrow \infty)}{M_g(t = 0)} f(t) = \lambda \frac{V_d}{V_g} f(t), \quad [6]$$

where  $M_d(t \rightarrow \infty)$  is the  $^{129}\text{Xe}$  magnetisation at septum saturation (19). The septal volume is  
denoted by  $V_d = Ad$ , where  $A$  is the surface area between the alveolar gas and the septal boundary.  
As there are two boundaries, the total surface area  $S_A = 2A$ . Consequently, the septal volume  $V_d$   
is

$$V_d = \frac{S_A d}{2}, \quad [7]$$

and

$$F(t) = \frac{\lambda d}{2} \frac{S_A}{V_g} f(t). \quad [8]$$

102 Blood flow is assumed to have constant velocity, to be independent of  $^{129}\text{Xe}$  concentration, and  
 103 to be orthogonal to the capillary wall. The Patz model treats the entire septum as a flowing system,  
 104 with blood flowing within the pulmonary vessels residing in the gas exchange zone (GEZ) for a  
 105 certain period of time. A simple plug flow model is used in simulating this effect by separating the  
 106 blood into three spatial regions as shown in Fig. 1.

107 In Fig. 1, region 1 represents blood upstream from the GEZ at  $t = 0$ , which subsequently passes  
 108 through the GEZ for a fraction of the measurement time. Region 2 depicts blood present within the  
 109 GEZ for the entire duration of  $t$ . Similarly, region 3 like region 1 spends a fraction of time within  
 110 the GEZ and is found downstream of the GEZ at time  $t$ . The figure shows the transit time of the  
 111 dissolved phase within the GEZ, with panels 1a) and 1b) illustrating the plug flow regions at  $t = 0$   
 112 and  $t$ , respectively. Due to region 2 residing in the GEZ for the entire diffusion time, the fraction of  
 113 blood within the septum containing  $^{129}\text{Xe}$  is  $f(t)$ . The fraction of the alveolar space contributing  
 114 to the diffusion of  $^{129}\text{Xe}$  into the blood within region 2 is  $f_2 = (\tau_c - t)/\tau_c$ .

115 The fraction of septal space contributing to blood in region 1 and region 3 ( $f_1, f_3$ ) occupied by  
 116 magnetised  $^{129}\text{Xe}$ , differs from region 2 due to their respective starting and ending positions residing  
 117 outside of the GEZ. Consequently, the incremental time  $t'$  of the diffusion time  $t$  of region 1 and 3  
 118 within the GEZ is used to determine the average  $f_1, f_3$ :

$$\bar{f}_1(t) = \bar{f}_3(t) = \frac{1}{t} \int_0^t f(t') dt', \quad [9]$$

$$\bar{f}_1(t) = \bar{f}_3(t) = 1 + \left( \frac{8d^2}{\pi^4 D} \right) \left( \frac{1}{t} \right) \sum_{n,odd} \left[ \frac{1}{n^4} e^{-\frac{n^2 \pi^2 D t}{d^2}} - 1 \right], \quad [10]$$

119 with  $f_3 = f_1 = t/\tau_c$ . The contribution of each region to the overall blood flow is denoted by  $F_1(t)$   
 120 and  $F_3(t)$ :

$$F_1(t) = f_1 \cdot F(t) = \frac{t}{\tau_c} \cdot \frac{\lambda d}{2} \frac{S_A}{V_g} \bar{f}_1(t) \equiv F_3(t), \quad [11]$$

121 with the total flow given by

$$F_{flow}(t) = F_1(t) + F_2(t) + F_3(t), \quad [12]$$

$$F_{flow}(t) = \frac{\lambda d}{2} \frac{S_A}{V_g} \left( \frac{\tau_c - t}{\tau_c} \right) f(q) + \lambda d \frac{S_A}{V_g} \left[ \frac{t}{\tau_c} + \frac{8d^2}{D\pi^4} \frac{1}{\tau_c} g(q) \right]. \quad [13]$$

122 The functions of the dimensionless parameter  $q$ ,  $h(q)$  and  $g(q)$  (where  $q = (Dt/d^2)$ ) are:

$$h(q) = \left[ 1 - \sum_{n=odd} \frac{8}{\pi^2 n^2} e^{-q\pi^2 n^2} \right], \quad [14]$$

$$g(q) = \left[ \sum_{n=odd} \frac{1}{n^4} (e^{-q\pi^2 n^2} - 1) \right]. \quad [15]$$

123 The physiological parameters extracted when utilising the Patz model are the septal thickness  
 124  $d$ , the alveolar surface area to volume of gas ratio SVR ( $S_A/V_g$ ) and the capillary transit time,  $\tau_c$ .

## 125 Three compartment model

### 126 MOXE model

127 The MOXE model is an extension of the Patz model, incorporating both tissue and RBC dynamics  
 128 (4). As a result, the alveolar-capillary barrier thickness,  $\delta$ , exchange time constant,  $T$ , and the  
 129 haematocrit, HCT, can be derived, with the introduction of terms for the relative Ostwald solubilities  
 130 of plasma and RBC ( $\lambda_{PL}$  and  $\lambda_{RBC}$ ). The signal distribution  $S_d$  is equivalent to the ratio of dissolved  
 131 and gas phase magnetisation,  $F$  (Eq. 8) such that

$$S_d(x, t) = \lambda \frac{S_A}{V_g} \left( 1 - \frac{4}{\pi} \sum_{n=odd} \frac{1}{n} \sin \frac{n\pi x}{d} e^{-n^2 t/T} \right), \quad [16]$$

132 where  $T$ , is the exchange time constant represented by

$$T = \frac{d^2}{\pi^2 D}. \quad [17]$$

133 The spatial integral of  $S_d$  over 0 to  $\delta$  and  $d - \delta$  to  $d$ , as highlighted in Fig. 1, leads to the signal  
 134 contribution  $S_{d1}$  of the  $^{129}\text{Xe}$  signal within the tissue phase:

$$S_{d1}(t) = \lambda d \frac{S_A}{V_g} \left( 2 \frac{\delta}{d} - \frac{8}{\pi^2} \sum_{n=odd} \left[ 1 - \cos(n\pi \frac{\delta}{d}) \right] e^{-n^2 t/T} \right). \quad [18]$$

135 Modelling the  $^{129}\text{Xe}$  signal from the blood, incorporating flow, results in

$$S_{d2} = 2\lambda d \frac{S_A}{V_g} \left\{ \left(1 - 2\frac{\delta}{d}\right) \frac{t}{\tau_c} - \frac{8}{\pi^2} \frac{T}{\tau_c} \sum_{n=odd} \left[ \frac{1}{n^4} \cos(n\pi\frac{\delta}{d}) \right] e^{-n^2 t/T} \right\} + 2\lambda d \frac{S_A}{V_g} \left( \frac{\tau_c - t}{\tau_c} \right) \left\{ \left(1 - 2\frac{\delta}{d}\right) - \frac{8}{\pi^2} \sum_{n=odd} \left[ \frac{1}{n^2} \cos(n\pi\frac{\delta}{d}) \right] e^{-n^2 t/T} \right\}. \quad [19]$$

136 Expressions for the signal amplitudes of the chemical shifts within the dissolved phase for plasma,  
137 tissue and RBCs displayed in Fig. 1 are given by

$$S_{TP}(t) = S_{d1}(t) + (1 - \eta)S_{d2}(t), \quad [20]$$

and

$$S_{RBC}(t) = \eta S_{d2}(t), \quad [21]$$

where  $\eta$  is the fraction of dissolved gas in the RBC's and  $(1 - \eta)S_{d2}(t)$  is the term for the signal contribution within the plasma, with HCT defined as

$$\frac{\eta/\lambda_{RBC}}{\eta/\lambda_{RBC} + (1 - \eta)/\lambda_{PL}}. \quad [22]$$

138 The plots for the Patz and MOXE models in Fig. 1 both display a rapid signal increase until  
139  $t \sim 100$  ms due to the influx of  $^{129}\text{Xe}$  within the septum. After this point, contribution to signal  
140 growth is exclusively a result of blood flow and increases more slowly with time. Fig. 1b highlights  
141 the additional signal change in the Patz model when capillary transit time  $\tau_c$  increases to values  
142 greater than the diffusion time due to blood flow. As  $\tau_c \rightarrow \infty$  (i.e. as blood flow tends to zero),  
143 the  $^{129}\text{Xe}$  signal increase after  $t \sim 100$  ms becomes negligible; as a result,  $^{129}\text{Xe}$  saturation occurs,  
144 highlighted in Fig. 1b by the dashed line. A similar phenomenon is seen with the MOXE model,  
145 but is not shown here to retain diagram clarity.

## 146 Methods

147 Univariate and multivariate analysis (13) methods were applied in the assessment of each parameter  
148 for each model, with values spanning ranges that include expected values for both healthy and  
149 diseased lungs, as shown in Table. 1.

## 150 **Univariate sensitivity analysis**

151 Model parameter range was defined as the mean  $\pm$  standard deviation of the literature-derived  
152 parameter values (Table. 1). Parameters were independently varied within these ranges, whilst  
153 maintaining constant values for the other parameters at their mean.

154 Python 3 (spyder 5.0.0) and MATLAB (2021a) were used for the CSSR Patz and MOXE model  
155 simulations and sensitivity analysis implementation. CSSR simulations with forty TR values equally  
156 spaced between 10 ms and 800 ms were generated for each model's univariate sensitivity analysis  
157 plot. Numerical computations of the infinite series of  $F_{flow}$ ,  $S_{d1}$ , and  $S_{d2}$  were reduced at the fifth  
158 terms, removing values of  $n = 9$  or greater.

159 The sensitivity of each model to its constituent parameters was simulated by incrementing each  
160 parameter independently over its range at each TR whilst maintaining the other parameters at their  
161 mean value. This was then visualised by plotting the resultant signal range as a function of TR.

## 162 **Signal Percent Change**

163 Signal percentage change (SPC) refers to the percentage signal change observed as a parameter is  
164 varied from its mean value, simulated for each of the forty TRs. Simulations employed the upper and  
165 lower limits of a specific parameter's range whilst maintaining the other parameters at their mean  
166 values. Simulations outline the general shape of signal change due to variation over the parameter  
167 range and at which point in the experimental procedure this change occurs; determining if specific  
168 periods within the acquisition window exhibit greater changes in signal than others. Constant SPC  
169 displays a lack of variation in the sensitivity within the experimental procedure whilst any change  
170 in signal is associated with a change in sensitivity.

## 171 **Scatter plots sensitivity analysis**

172 Scatter plots are commonly used as visual methods for examining correlations between model output  
173 signal variability and input parameters. In general, parameters producing a larger degree of output  
174 variability - displaying visible negative and positive correlations - are parameters to which the model  
175 is more sensitive. 2D plots were produced by simulating all the output values (across all values of  
176 other parameters) corresponding to each individual parameter value. 3D plots demonstrate the  
177 relationship between each parameter and signal output when also considering the range of a second  
178 chosen parameter, allowing evidence for parameter interaction to be observed.

179 Latin hypercube sampling was used to efficiently sample the parameter space evenly for parameters in both models. All scatter simulations and sampling were performed using both custom-written  
180 and built-in MATLAB code (The Mathworks, Natick MA, R2021a).

## 182 Results

### 183 Univariate sensitivity analysis

184 The univariate sensitivity analysis for each parameter of the Patz model is shown in Fig. 2. The three  
185 plots highlight the signal variations observed when independently varying each model parameter  
186 SVR,  $d$ ,  $\tau_c$ . The colour scale corresponds to the values of the parameter being varied. For all  
187 parameters, an increase in model output signal amplitude and signal range is observed when moving  
188 to longer TRs. As shown by the gradations in the colour coding, increases in both SVR and  $d$  lead  
189 to increased output signal amplitude, whereas increases in  $\tau_c$  lead to a decrease in output signal  
190 amplitude. A larger model output signal range for SVR than for  $d$  or  $\tau_c$  is apparent at all TRs,  
191 suggesting higher signal sensitivity to this model parameter.

192 Fig. 3 and Fig. 4 show the univariate sensitivity analysis for the tissue phase and RBC phase of  
193 the MOXE model, respectively. Similar results to the Patz model for SVR,  $d$ , and  $\tau_c$  are present in  
194 both the tissue phase and RBC plots although, in general, sensitivity to  $\tau_c$  is lower for MOXE. Of  
195 the three additional MOXE parameters, HCT displays the largest output range of signal intensity  
196 for most of the TR range, followed by  $T$  and then  $\delta$ , when considering the tissue phase. For the  
197 RBC phase, a larger output range is generally seen for  $\delta$  than for  $T$ , with both ranges again being  
198 smaller than that for HCT. As with  $\tau_c$ , increases in HCT lead to decreases in signal amplitude when  
199 considering the tissue phase, but this trend is reversed for HCT in the RBC plots. Increases in  $T$   
200 lead to decreases in signal for both the tissue phase and RBC phase. Increases in  $\delta$  lead to increases  
201 in signal amplitude when considering the tissue phase, but to signal decreases in the RBC plots.  
202 The range of signal intensity variation due to varying HCT increases with TR, whereas the opposite  
203 trend is seen for  $\delta$  and  $T$  in the tissue phase. In the RBC phase the range of signal intensity due to  
204 variation in  $\delta$  increases with TR, with  $T$  again showing a decrease.

### 205 Signal percentage change analysis

206 The SPC plots in Fig. 5 display the upper and lower SPC values corresponding to the maximum and  
207 minimum parameter values for each Patz and MOXE parameter range throughout the simulated

208 range of TRs. Variations in SPC over the TR range for the tissue phase plots were evident in all  
209 parameters with the exception of SVR, whilst variations in SPC for the RBC phase are only evident  
210 in  $d$ ,  $\delta$ ,  $T$  and  $\tau_c$ . The largest shift in the shape of SPC is seen between  $0 \text{ ms} < \text{TR} < 200 \text{ ms}$ , with  
211 the exception of changes due to  $\tau_c$ , which displays a gradual change throughout the TR range.

## 212 Scatter plot and 3D plot analyses

213 Fig. 6 displays scatter plots for the Patz model, showing the signal amplitude change due to each  
214 individual parameter when accounting for the full variation of the other model parameters. Plots  
215 are shown for simulations using a TR midway between the initial and final TR at  $\sim 400 \text{ ms}$ . The  
216 strongest correlation with signal amplitude is seen for SVR, with  $\tau_c$  showing the weakest evidence  
217 for correlation, suggesting that distinguishing signal changes uniquely due to  $\tau_c$  would be the most  
218 challenging. 3D plots in Fig. 7 display parameter interaction effects between the three Patz model  
219 parameters with the boxed (red and black) plots ( $\tau_{c700}$ ) highlighting the interaction effects of using  
220 a longer TR.

221 Figs. 8 and 9 show the signal amplitude change of each individual parameter when accounting  
222 for the full variation of the other model parameters for the MOXE model, for the tissue phase and  
223 RBC phase, respectively. Plots are shown for simulations using a TR midway between the initial  
224 and final TR at  $\sim 400 \text{ ms}$ . The strongest correlations at  $\text{TR} = 400 \text{ ms}$  are again evident in SVR,  
225 with  $d$  and HCT also showing correlations.

226 Sup. Figs. S1 and S2 show representative model sensitivity in a range of parameter combinations  
227 for the tissue and RBC phase respectively. Fifteen combinations were produced from the six-  
228 parameter MOXE model assessing two parameter interactions.

## 229 Discussion

230 Univariate, scatter, and SPC sensitivity analysis methods were employed to investigate the Patz  
231 and MOXE models' sensitivity to changes within their respective input parameter space.

## 232 Univariate Sensitivity Analysis

233 Univariate sensitivity analysis simulations for the Patz model displayed the greatest sensitivity to  
234 SVR throughout the entire range of TR values. Sensitivity to  $d$  and  $\tau_c$  was lower but increased  
235 with TR. The inverse relationship between  $\tau_c$  and signal amplitude is apparent in Fig. 2 and is

236 dependent on the proportion of  $^{129}\text{Xe}$  within the GEZ. The plug flow highlighted in Fig. 1 depicts  
237 the surface area apportioned to the individual regions traversing the GEZ. Following  $^{129}\text{Xe}$  diffusion  
238 into the septum (Patz) or capillary (MOXE), each region then reflects the fraction of blood in the  
239 GEZ occupied by  $^{129}\text{Xe}$ . At smaller  $\tau_c$  values the proportion of  $^{129}\text{Xe}$  within the GEZ increases (Eq.  
240 13), resulting in an increase in signal amplitude. This relationship is also reflected in both MOXE  
241 tissue and RBC phase  $\tau_c$  simulations.

242 Univariate sensitivity analysis simulations for the MOXE model included assessments for both  
243 the tissue phase and RBC compartments. The tissue phase results reflect a combination of the  $^{129}\text{Xe}$   
244 contribution in the blood plasma and lung tissue (Eq. 20), and therefore represent the larger overall  
245 pool of dissolved  $^{129}\text{Xe}$ . The RBC phase results reflect a comparatively smaller  $^{129}\text{Xe}$  concentration  
246 contribution (Eq. 21), highlighted by the reduced signal amplitudes in each parameter-specific plot  
247 (Fig. 4), relative to the plots for the tissue phase (Fig. 3).

248 The MOXE model parameters that are shared with the Patz model (SVR,  $d$ ,  $\tau_c$ ), displayed  
249 similar results when evaluating the model sensitivity within the tissue phase (Figs. 2 and 3). Both  
250 models exhibited an increase in model output range as a function of increasing TR due to the flow  
251 component associated with  $^{129}\text{Xe}$  reaching the blood after approximately 100 ms.

252 Increases in SVR,  $\delta$ ,  $d$  led to increases in tissue phase signal across the TR range, whereas HCT,  
253  $T$  and  $\tau_c$  showed inverse relationships demonstrating a reduction in the overall blood contribution.  
254 (Fig. 3). The opposite relationship was observed for HCT in the RBC phase, as HCT largely  
255 dictates the contribution of the  $^{129}\text{Xe}$  RBC signal within the GEZ (Eq. 20).

256 Plots for  $\delta$  and  $T$  in the tissue phase (Fig. 3) show larger output ranges at shorter TRs, demon-  
257 strating a greater proportion of  $^{129}\text{Xe}$  within the tissue prior to entry into the GEZ. Conversely,  
258 longer TRs depict smaller ranges and reflect the dispersion of  $^{129}\text{Xe}$  away from the tissue and into  
259 the blood stream.

260

## 261 Signal Percentage Change

262 Results for the SPC were analysed for each parameter from each model to determine if specific  
263 ranges within the acquisition window exhibit greater changes in sensitivities than others. Fig. 5  
264 displays the SPC over the range of TR periods for the tissue phase and RBC within the MOXE  
265 model and for the dissolved phase within the Patz model. For the MOXE model, most of the  
266 variation in signal change due to HCT,  $d$ , and  $T$  occur at TR values  $< 200$  ms within the tissue

267 phase, while change due to  $\delta$  and  $\tau_c$  varies more slowly over the TR range. SVR displays the largest,  
268 and unchanging effect over the entire TR range. These results are in agreement with experimental  
269 validation of saturation recovery modelling techniques (19). Similar results were established within  
270 the RBC phase, with the exception of  $\delta$  which remained approximately constant apart from within  
271 the initial TR range (TR  $\leq$  100 ms).

272 SPC plots for the dissolved phase in the Patz model displayed greater variability for  $d$  than seen  
273 with the MOXE model, with variation again mainly limited to the TR  $<$  200 ms range.  $\tau_c$  and SVR  
274 vary in a similar way to the variation seen within the MOXE model.

## 275 Scatter plots

276 Scatter plots offer an intuitive way to visualise the relationship between specific parameters and  
277 model outputs, which, unlike the univariate analysis, accounts for the influence of all other pa-  
278 rameters. Scatter plots for the three Patz and six MOXE parameters yielded similar conclusions  
279 to corresponding model univariate SA methods. 2D plots for shared Patz and MOXE parameters  
280 (Figs. 6, 8, and 9) displayed high positive signal correlations with SVR that are relatively uncon-  
281 taminated by the effects of other parameters. Plots of  $d$  and  $\tau_c$  showed a degree of positive and  
282 negative correlation, respectively, but with far less specificity, as illustrated by the broad scatter  
283 of sample points. Plots for the MOXE-specific parameters  $\delta$ ,  $T$  showed little evidence of correla-  
284 tion, indicating low specificity of signal changes in both the tissue and RBC phases, whereas HCT  
285 demonstrated a greater degree of correlation, particularly in the RBC phase, indicating its stronger  
286 influence on the observed signals (Figs. 8 and 9).

## 287 3D plots

288 3D plots displayed interaction effects between the three Patz and six MOXE parameters, by assessing  
289 the increase or decrease in signal amplitude correlation as highlighted in the 3D surface plots (aerial  
290 perspective) in Fig. 7. Sup. Figs. S1 and S2. Interaction effects for the Patz model were evident  
291 between all parameters with stronger correlations in SVR -  $d$  and  $\tau_c$  -  $d$  combinations and are  
292 heightened dependent on TR value, demonstrated by the  $\tau_c$ 700 plots in Fig. 7. For MOXE tissue  
293 phase plots (Sup. Figs. S1 and S2), interactions were observed in all parameter couplings with  
294 less noticeable correlations observed when assessing  $T$ , and  $\delta$ . Both parameters showed little model  
295 output variability within the univariate method and displayed weak correlations in the scatter. As  
296 such, minimal interactions with these parameters at the specific delay time chosen ( $\sim$ 400 ms) can be

seen. Interactions between SVR and  $d$  and SVR and HCT displayed more noticeable interactions when evaluating the upper limits of SVR and  $d$ , against the lower limits of HCT. As the HCT is RBC phase-specific, as previously mentioned, lower values would ensure maximum tissue phase signal contributions for SVR and  $d$ . Similarly, noticeable interactions were observed for all MOXE RBC phase parameter couplings. The largest interactions were observed in SVR against HCT, and SVR against  $d$ . The lowest interactions were observed with SVR against T,  $\delta$ , and  $\tau_c$ . However, unlike tissue phase simulations, RBC simulations displayed an increased sensitivity when assessing the range of  $\delta$ , resulting in stronger correlations in comparison to the tissue phase. 3D plots for the RBC compartment for SVR,  $d$  and  $\tau_c$  interactions displayed similar trends to the 3D scatter Patz plots (Sup. Figs. [S1](#) and [S2](#)).

### Implications for *in vivo* measurements and limitations

Sensitivity varied for the different models and dissolved phase compartments within MOXE, but the surface area to volume ratio (SVR) and septal wall thickness ( $d$ ) consistently demonstrated greater sensitivity in both the Patz and MOXE models. The alveolar-capillary barrier thickness ( $\delta$ ) showed the greatest difference in sensitivity between the two MOXE model dissolved phases, but overall, sensitivity to variation in  $\delta$  is low, which has previously been demonstrated experimentally ([10](#)). Sensitivity to all other parameters was marginally greater than  $\delta$ , but substantially lower than sensitivity to SVR and  $d$ . These observations provide useful guidance for the likely signal-to-noise ratio (SNR) requirements of CSSR measurements designed to measure model parameters. For example, an SNR of only  $\sim 2$  would be adequate to distinguish the extremes of the range of possible SVR and  $d$ , whereas an SNR of  $\sim 15$  would be required to distinguish the extremes of the range of possible  $\delta$  (Figs. [3](#) and [4](#)). More subtle differences would require correspondingly higher SNR.

Parameter ranges chosen for each model were extracted from a limited set of sources and measurement techniques (Table [1](#)). As a result, the ranges highlighted for each parameter may possess intrinsic biases. Moreover, a broad range of both healthy and diseased values was used for each sensitivity analysis technique without differentiating between disease type and stage of progression. The analysis of stratified disease groups for both models would permit the evaluation of model sensitivity to disease classification and progression.

Both models demonstrate higher sensitivity to TR measurements between 0 - 200 ms. Different studies in the literature have evaluated  $^{129}\text{Xe}$  signals over different TR ranges. For example, ([6](#); [22](#)) assessed the Patz and MOXE models at  $\text{TR} \leq 200$  ms, with a range of TR measurements ( $\text{TR} <$

328 200 ms and  $TR > 200$  ms) being more common generally in other studies (4, 19, 15). These results  
329 suggest that future studies would benefit from performing comparable simulations before finalising  
330 their experimental protocols.

331 It is possible that further sensitivity analyses may yield additional useful information. The  
332 main objectives of the presented sensitivity analysis of the Patz and MOXE models were parameter  
333 ranking and screening; however, mapping - which observes areas within the parameter input space  
334 producing extreme output values - was not evaluated. The inclusion of mapping methods such  
335 as the distance-based generalised sensitivity analysis (DGSA) (10) in conjunction with the prior  
336 methods may provide a further understanding of model sensitivity.

## 337 Conclusions

338 The sensitivity analysis of the Patz model demonstrated a higher signal sensitivity to both SVR  
339 and  $d$  than to  $\tau_c$ . Similarly, the sensitivity analysis of the MOXE model also displayed sensitivity  
340 to SVR and  $d$ , whilst also demonstrating sensitivity to HCT and  $T$ . In contrast, a much lower  
341 sensitivity to  $\delta$  was identified. Sensitivity variation as a result of delay time increased between the  
342 first 200 ms for both models due mainly to the underlying processes surrounding saturation of the  
343 tissue and blood flow. Consequently, multiple measurements taken within periods between 0 - 200  
344 ms were highlighted as advantageous in optimising model sensitivity due to the intrinsic parameter  
345 variation highlighted in both the signal percent change and scatter plot analyses. Interaction effects  
346 within the Patz and MOXE model were also shown to have an effect on the likely specificity of  
347 changes in signal to changes in the underlying parameters. These findings demonstrate the likely  
348 ability of two hyperpolarised  $^{129}\text{Xe}$  diffusion models to identify differences in lung microstructure  
349 and function.

## 350 Acknowledgments

351 This work is co-funded by an EPSRC Industrial CASE award (Voucher No. V20000074) aligned  
352 to the EPSRC UCL Centre for Doctoral Training in Medical Imaging (EP/S021930/1) and Glaxo-  
353 SmithKline Research Development Ltd (BIDS3000035683).

354 **References**

355 1 Albert, M., Cates, G., Driehuys, B., Happer, W., Saam, B., Springer, C. & Wishnia, A. Biological  
356 magnetic resonance imaging using laser-polarized  $^{129}\text{Xe}$ . *Nature*. **370**, 199-201 (1994)

357 2 Butler, J., Mair, R., Hoffmann, D., Hrovat, M., Rogers, R., Topulos, G., Walsworth, R. & Patz,  
358 S. Measuring surface-area-to-volume ratios in soft porous materials using laser-polarized xenon  
359 interphase exchange nuclear magnetic resonance. *Journal Of Physics: Condensed Matter*. **14**,  
360 L297 (2002)

361 3 Cassan, S., Divertie, M. & Brown, A. Fine structural morphometry on biopsy specimens of  
362 human lung: 2. Diffuse idiopathic pulmonary fibrosis. *Chest*. **65**, 275-278 (1974)

363 4 Chang, Y. MOXE: a model of gas exchange for hyperpolarized  $^{129}\text{Xe}$  magnetic resonance of the  
364 lung. *Magnetic Resonance In Medicine*. **69**, 884-890 (2013)

365 5 Coxson, H., Rogers, R., Whittall, K., D'YACHKOVA, Y., Pare, P., Sciurba, F. & Hogg, J. A  
366 quantification of the lung surface area in emphysema using computed tomography. *American  
367 Journal Of Respiratory And Critical Care Medicine*. **159**, 851-856 (1999)

368 6 Imai, H., Kimura, A. & Fujiwara, H. Small animal imaging with hyperpolarized  $^{129}\text{Xe}$  magnetic  
369 resonance. *Analytical Sciences*. **30**, 157-166 (2014)

370 7 Mammarappallil, J., Rankine, L., Chan, H., Weatherley, N., Wild, J. & Driehuys, B. New de-  
371 velopments in imaging Idiopathic Pulmonary Fibrosis with hyperpolarized Xenon MRI. *Journal  
372 Of Thoracic Imaging*. **34**, 136 (2019)

373 8 Maansson, S., Wolber, J., Driehuys, B., Wollmer, P. & Golman, K. Characterization of diffusing  
374 capacity and perfusion of the rat lung in a lipopolysaccharide disease model using hyperpolarized  
375  $^{129}\text{Xe}$ . *Magnetic Resonance In Medicine: An Official Journal Of The International Society For  
376 Magnetic Resonance In Medicine*. **50**, 1170-1179 (2003)

377 9 Meersmann, T. & Brunner, E. Hyperpolarized xenon-129 magnetic resonance: concepts, pro-  
378 duction, techniques and applications. (Royal Society of Chemistry, 2015)

379 10 Park, J., Yang, G., Satija, A., Scheidt, C. & Caers, J. DGSA: A Matlab toolbox for distance-  
380 based generalized sensitivity analysis of geoscientific computer experiments. *Computers & Geo-  
381 sciences*. **97** pp. 15-29 (2016)

382 11 Patz, S., Muradyan, I., Hrovat, M., Dabaghyan, M., Washko, G., Hatabu, H. & Butler, J.  
383 Diffusion of hyperpolarized<sup>129</sup>Xe in the lung: a simplified model of<sup>129</sup>Xe septal uptake and  
384 experimental results. *New Journal Of Physics*. **13**, 15009 (2011,1), <https://doi.org/10.1088/1367-2630/13/1/015009>

386 12 Pianosi, F., Beven, K., Freer, J., Hall, J., Rougier, J., Stephenson, D. & Wagener, T. Sensitivity  
387 analysis of environmental models: A systematic review with practical workflow. *Environmental  
388 Modelling & Software*. **79** pp. 214-232 (2016)

389 13 Qian, G. & Mahdi, A. Sensitivity analysis methods in the biomedical sciences. *Mathematical  
390 Biosciences*. **323** pp. 108306 (2020)

391 14 Qing, K., Mugler III, J., Altes, T., Jiang, Y., Mata, J., Miller, G., Ruset, I., Hersman, F. &  
392 Ruppert, K. Assessment of lung function in asthma and COPD using hyperpolarized <sup>129</sup>Xe  
393 chemical shift saturation recovery spectroscopy and dissolved-phase MRI. *NMR In Biomedicine*.  
394 **27**, 1490-1501 (2014)

395 15 Ruppert, K., Altes, T., Mata, J., Ruset, I., Hersman, F. & Mugler III, J. Detecting pulmonary  
396 capillary blood pulsations using hyperpolarized xenon-129 chemical shift saturation recovery  
397 (CSSR) MR spectroscopy. *Magnetic Resonance In Medicine*. **75**, 1771-1780 (2016)

398 16 Ruppert, K., Mata, J., Brookeman, J., Hagspiel, K. & Mugler III, J. Exploring lung function  
399 with hyperpolarized <sup>129</sup>Xe nuclear magnetic resonance. *Magnetic Resonance In Medicine: An  
400 Official Journal Of The International Society For Magnetic Resonance In Medicine*. **51**, 676-687  
401 (2004)

402 17 Ruppert, K., Qing, K., Patrie, J., Altes, T. & Mugler III, J. Using hyperpolarized xenon-129  
403 MRI to quantify early-stage lung disease in smokers. *Academic Radiology*. **26**, 355-366 (2019)

404 18 Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M. &  
405 Tarantola, S. Global sensitivity analysis: the primer. (John Wiley & Sons,2008)

406 19 Stewart, N., Leung, G., Norquay, G., Marshall, H., Parra-Robles, J., Murphy, P., Schulte, R.,  
407 Elliot, C., Condliffe, R., Griffiths, P. & Others Experimental validation of the hyperpolarized  
408 <sup>129</sup>Xe chemical shift saturation recovery technique in healthy volunteers and subjects with  
409 interstitial lung disease. *Magnetic Resonance In Medicine*. **74**, 196-207 (2015)

410 20 Wu, J., Dhingra, R., Gambhir, M. & Remais, J. Sensitivity analysis of infectious disease models:  
411 methods, advances and their application. *Journal Of The Royal Society Interface*. **10**, 20121018  
412 (2013)

413 21 YUBA, K. A STUDY ON THE PULMONARY FUNCTIONS AND THE PULMONARY  
414 CIRCULATION IN CARDIO-PULMONARY DISEASES:(I) Pulmonary Diffusing Capacity in  
415 Cardio-Pulmonary Diseases. *Japanese Circulation Journal*. **35**, 1391-1397 (1971)

416 22 Zanette, B. & Santyr, G. Accelerated interleaved spiral-IDEAL imaging of hyperpolarized  $^{129}\text{Xe}$   
417 for parametric gas exchange mapping in humans. *Magnetic Resonance In Medicine*. **82**, 1113-  
418 1119 (2019)

419 **Figures and Tables**

Table 1: Symbol, meaning, range, typical healthy values, and units of parameters used within the Patz and MOXE models.

| Symbol   | Meaning                              | Range (mean $\pm$ st. dev.) | Healthy | Units (citations)     |
|----------|--------------------------------------|-----------------------------|---------|-----------------------|
| $SVR$    | Surface area to volume ratio         | $196 \pm 175$               | 256     | $\text{cm}^{-1}$ (5)  |
| $d$      | Septal wall thickness                | $11.35 \pm 3.25$            | 8.8     | $\mu\text{m}$ (4; 17) |
| $\tau_c$ | Capillary transit time               | $1.3 \pm 0.8$               | 1.3     | s (21)                |
| $T$      | Exchange time constant               | $0.039 \pm 0.026$           | 0.026   | ms (4; 17)            |
| $HCT$    | Haematocrit                          | $0.225 \pm 0.085$           | 0.265   | % (4; 19)             |
| $\delta$ | Alveolar-capillary barrier thickness | $1.2065 \pm 0.4445$         | 1.0     | $\mu\text{m}$ (3; 19) |

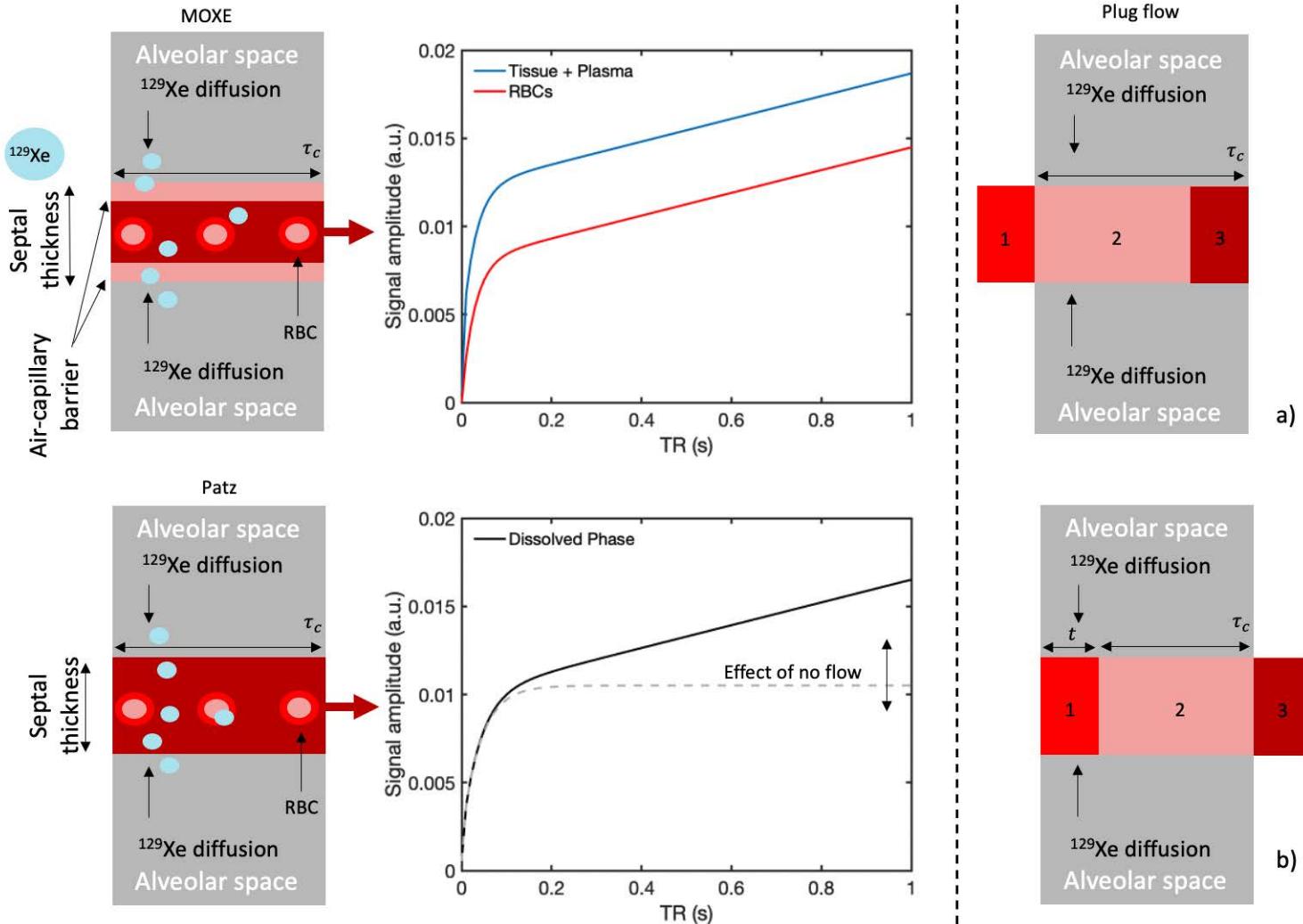


Figure 1: Block diagrams of the MOXE and Patz diffusion systems with  $^{129}\text{Xe}$  diffusing from both boundaries alongside corresponding model-derived signal plots. The Patz model is represented by a single plot of the dissolved phase signal, whereas the MOXE model is a coupled equation containing plots for both the tissue and RBC compartments. Plug flow diagrams (a and b) highlight defined spatial regions of blood quantifying blood flow.

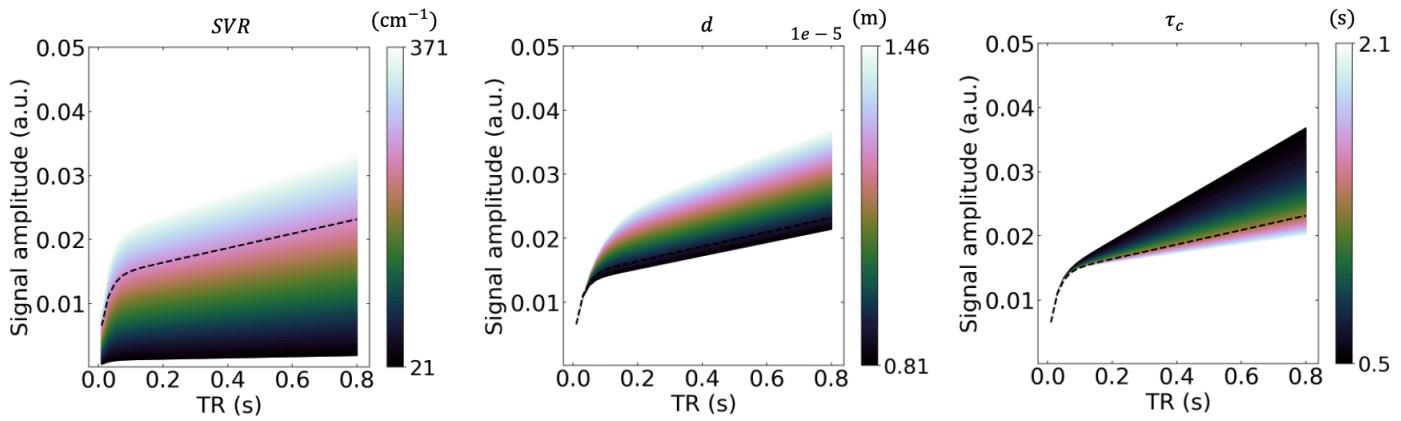


Figure 2: Univariate sensitivity analysis plots of the Patz parameters spanning the allowed range, where the black dashed lines are the outputs associated with input Patz model values for a healthy individual (Table 1) (11). Colour bars correspond to the defined range of each parameter.

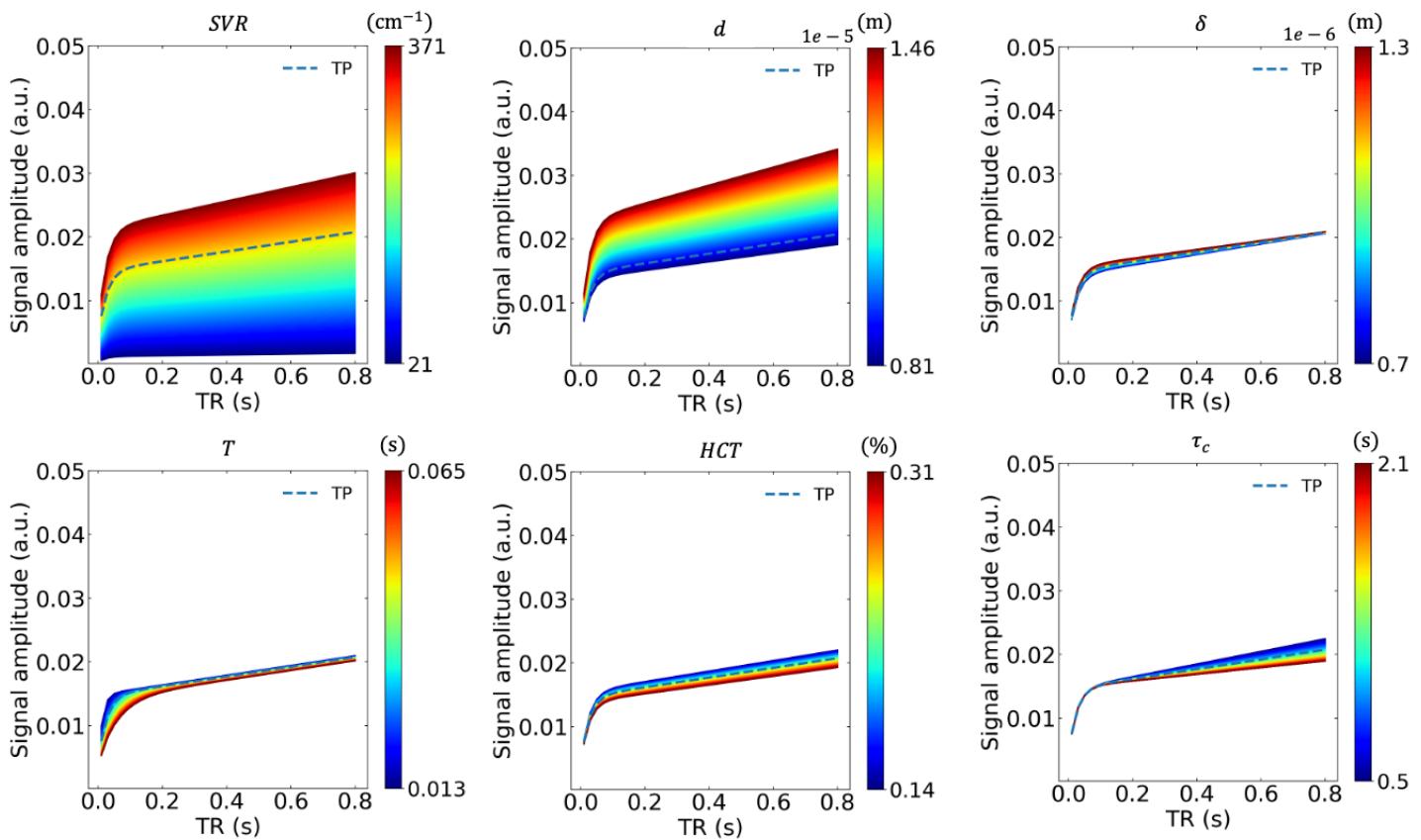


Figure 3: Univariate sensitivity analysis plots of the MOXE parameters spanning the allowed range (tissue phase), where the black dashed lines are the outputs associated with input MOXE model values for a healthy individual (Table 1).

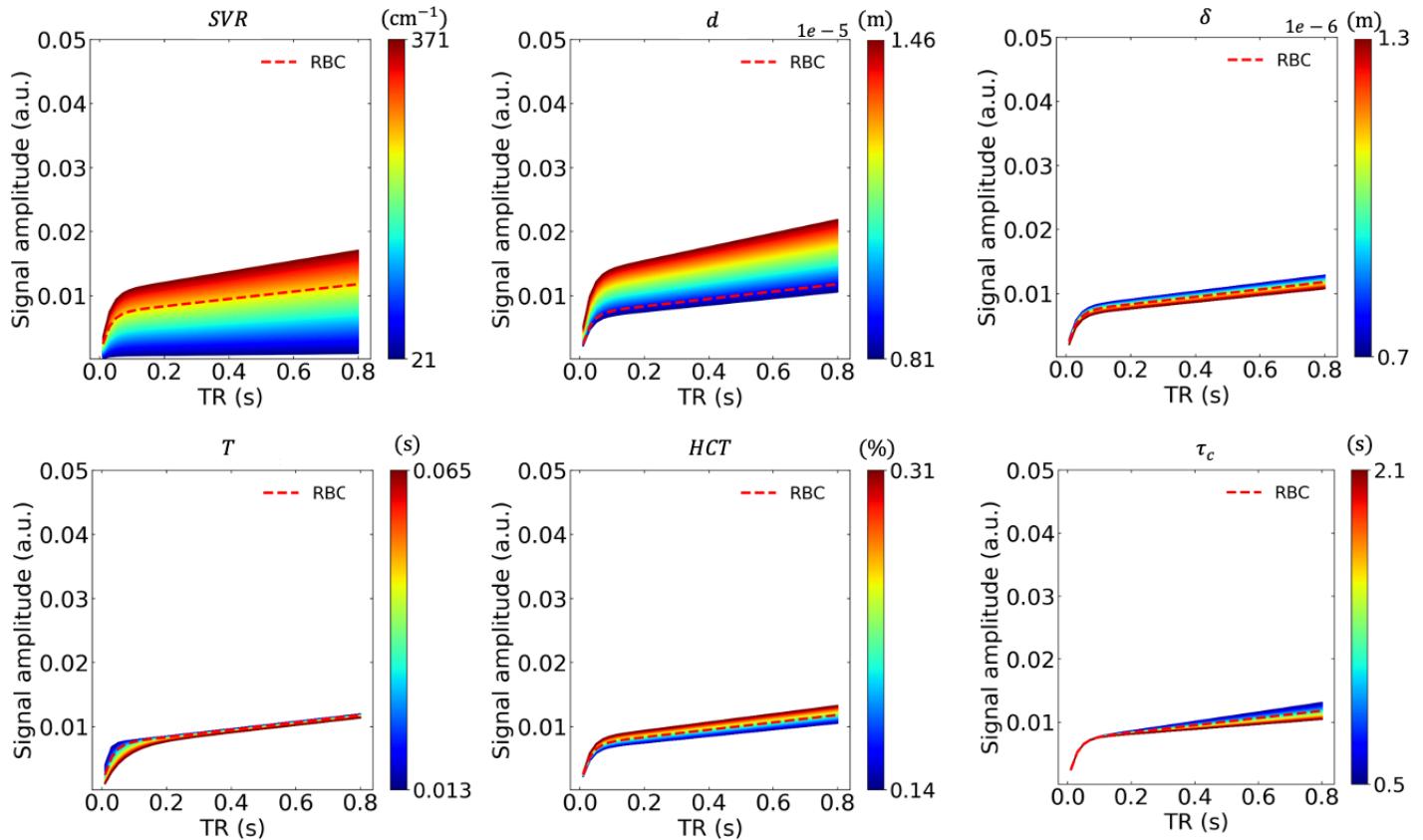


Figure 4: Univariate sensitivity analysis plots of the MOXE parameters spanning the allowed range (RBC phase), where the black dashed lines are the outputs associated with input MOXE model values for a healthy individual (Table 1).

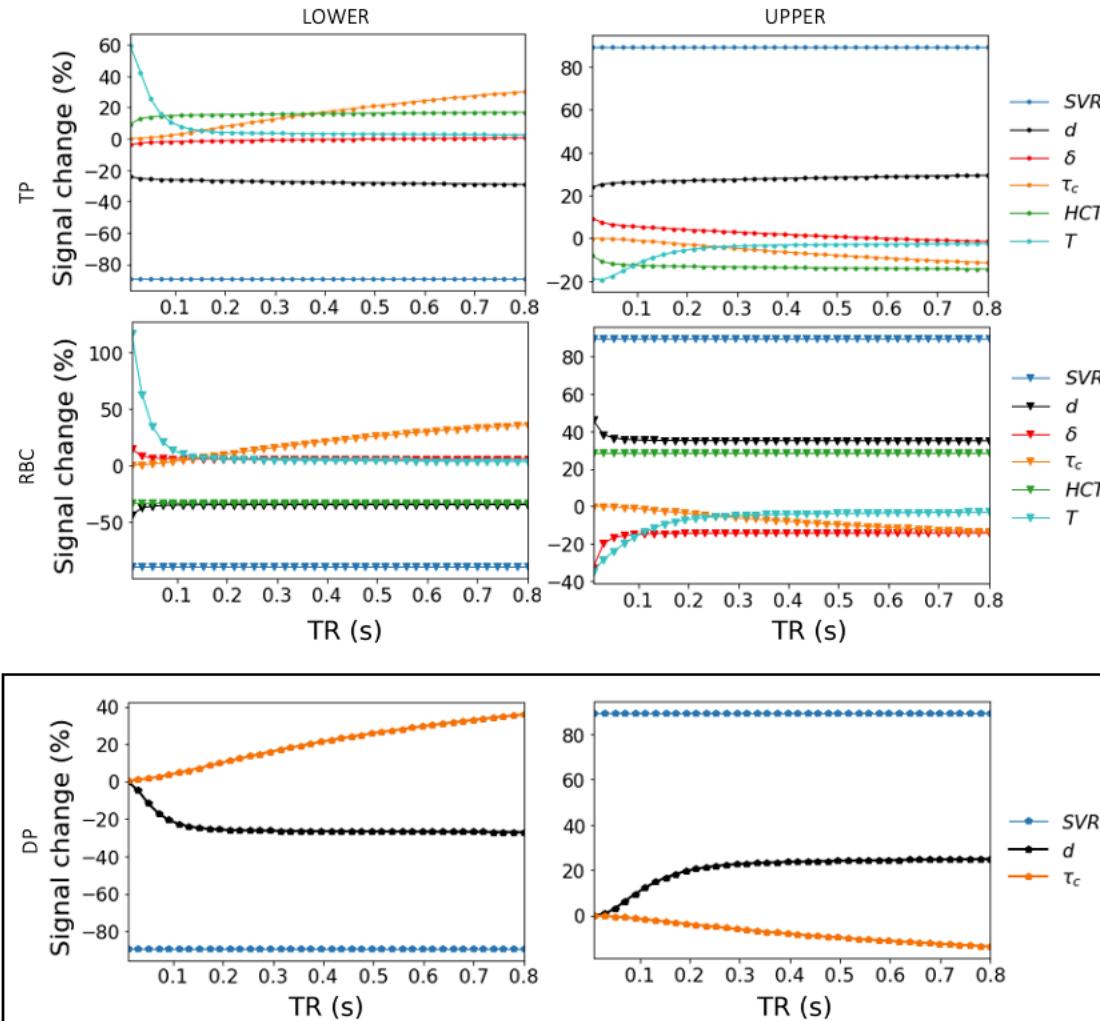


Figure 5: Signal percentage change (SPC) as a function of delay time (TR), highlighting the extremes of the parameter range for the tissue phase (TP) and RBC compartments of the MOXE model (top two rows) and for the Patz model dissolved phase (DP) (bottom row, boxed). The upper and lower limits are the signal percentage change values when using the highest and lowest values within each individual parameter range.

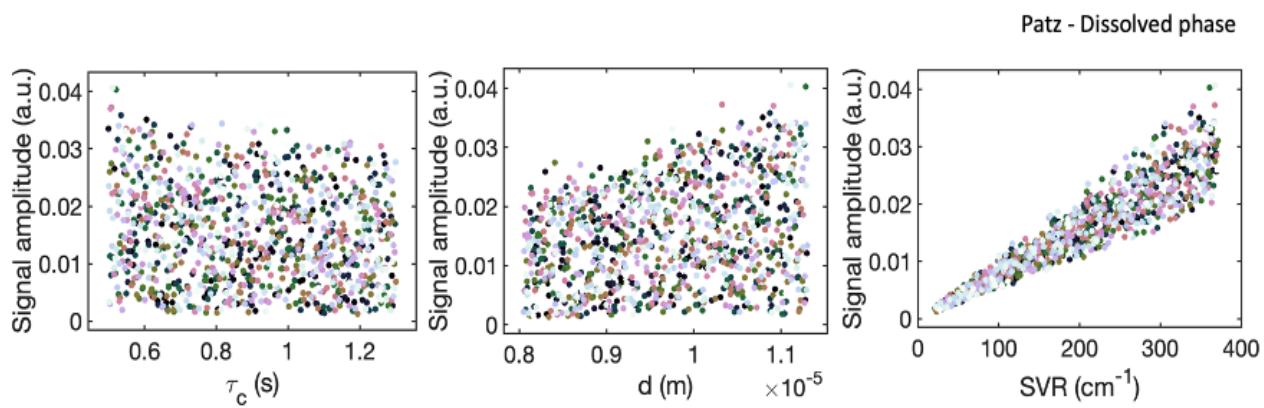


Figure 6: 2D Scatter plots showing the signal relationship with each individual parameter whilst allowing the full variation of the other model parameters.

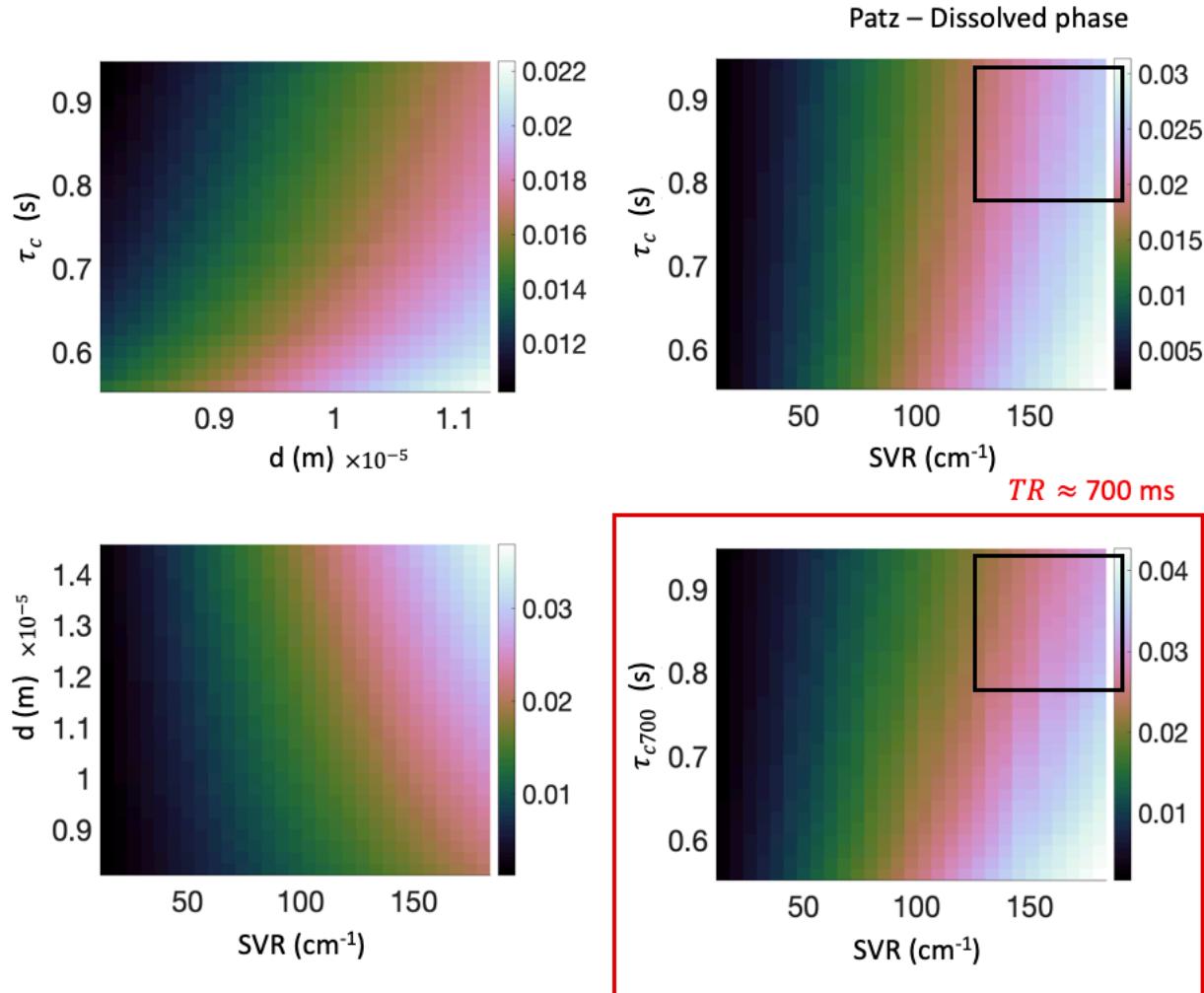


Figure 7: 3D plots show the relationship between each parameter considering the range of the other parameters against the signal output. All simulations were taken at a TR of 400 ms with the exception of  $\tau_{c700}$ , which was taken at a TR of 700 ms (red box); demonstrating a dependency between interaction effects and TR (black boxes).

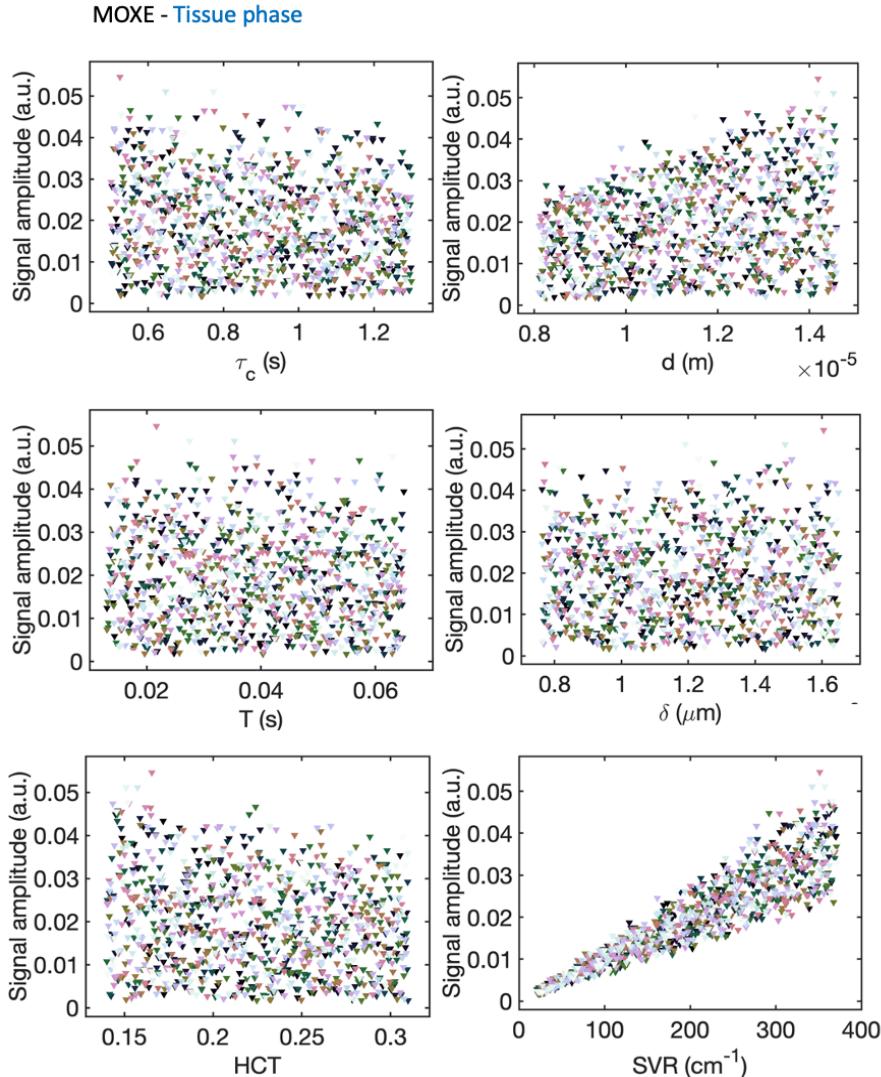


Figure 8: Scatter plots illustrate the signal relationship with each parameter individually while considering the complete variation of the other model parameters for the tissue phase in the MOXE model.

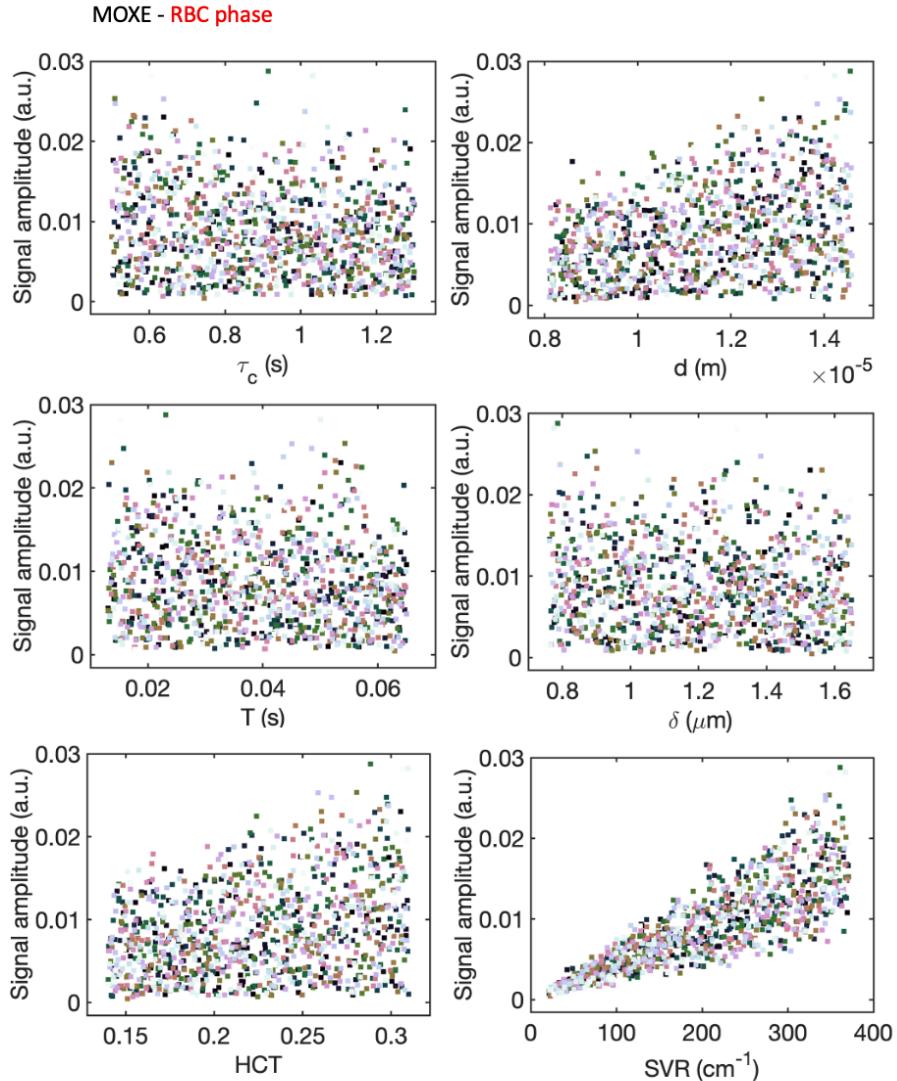


Figure 9: Scatter plots showing the signal relationship with each individual parameter whilst allowing the full variation of the other model parameters for the RBC phase in the MOXE model.

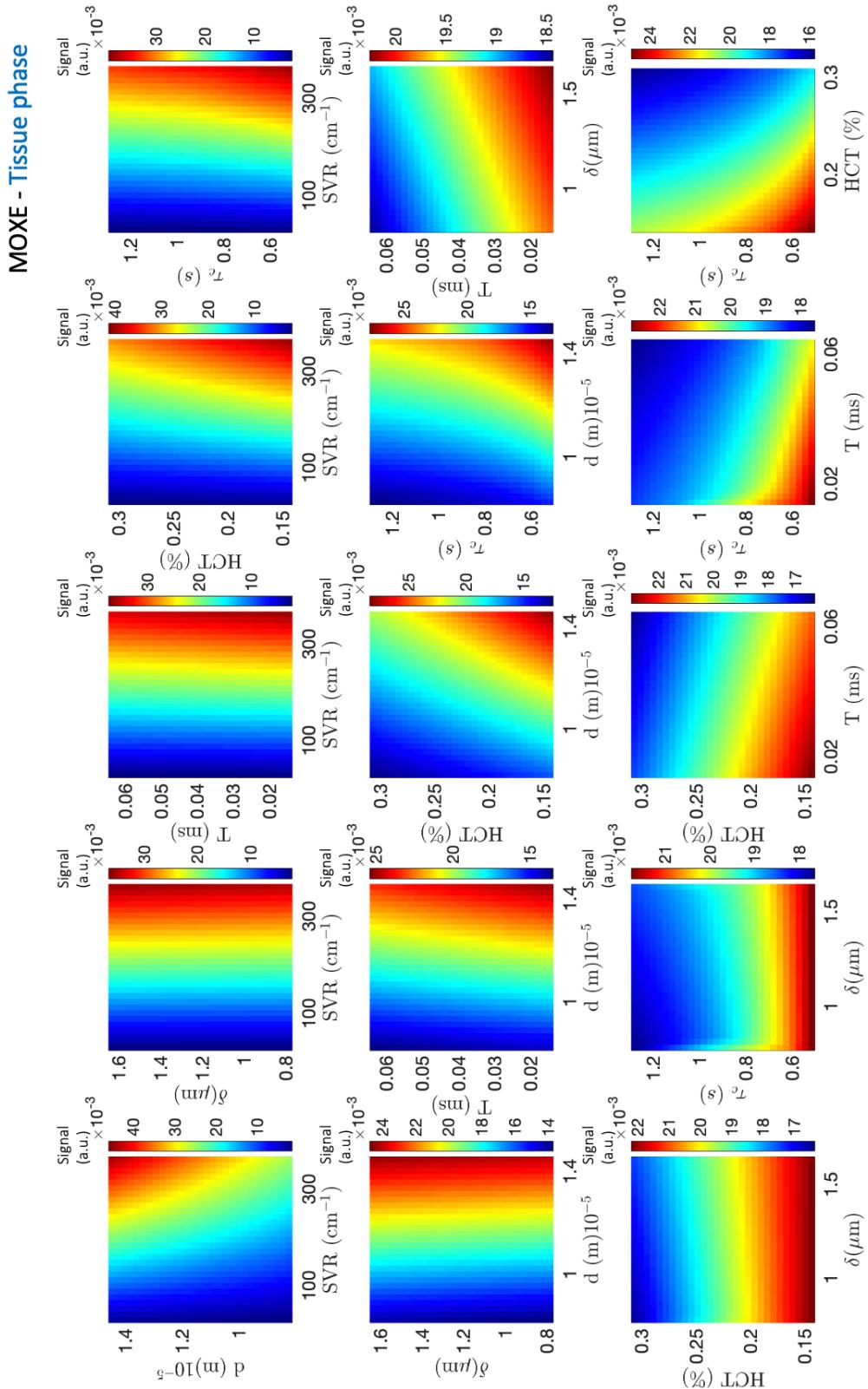


Figure S1: 3D plots show the relationship between interaction effects of all other parameters in the TP of the MOXE model. All simulations were taken at a TR of 400 ms. The colour bar indicates signal intensity, where the direction of the trend corresponds to the contribution of interaction.

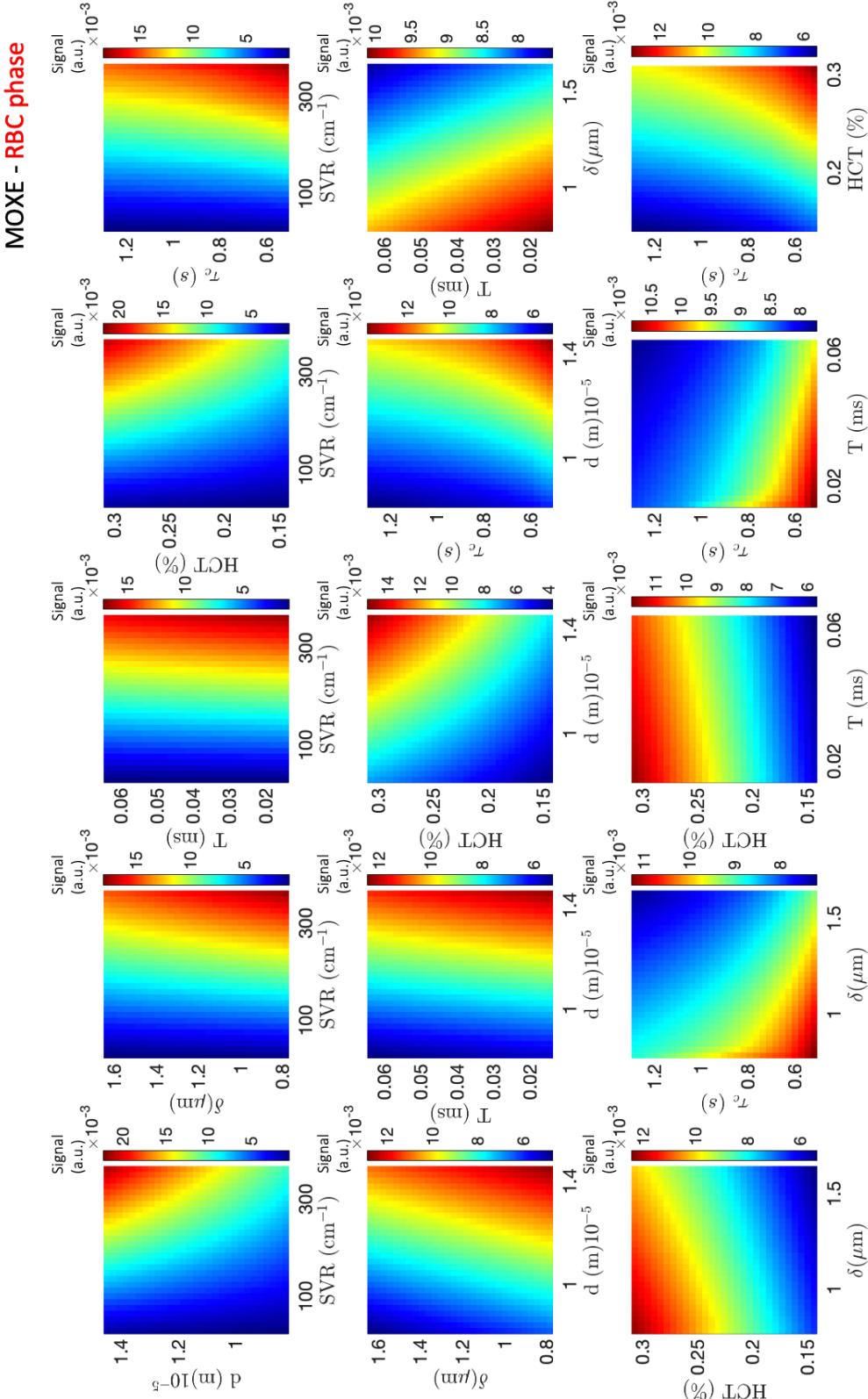


Figure S2: 3D plots show the relationship between interaction effects of all other parameters in the RBC of the MOXE model. All simulations were taken at a TR of 400 ms. The colour bar indicates signal intensity, where the direction of the trend corresponds to the contribution of interaction.