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Abstract10

Purpose: Sensitivity analysis enables the identification of influential parameters and the op-11

timisation of model composition. Such methods have not previously been applied systematically12

to models describing hyperpolarised 129Xe gas exchange in the lung. Here, we evaluate current13

129Xe gas exchange models to assess their precision for identifying alterations in pulmonary-14

vascular function and lung microstructure.15

Methods: We assess sensitivity using established univariate methods and scatter plots for16

parameter interactions. We apply them to the model described by Patz and MOXE et al.,17

examining their ability to measure: i) importance (rank), ii) temporal dependence, and iii)18

interaction effects of each parameter across healthy and diseased ranges.19

Results: The univariate methods and scatter plot analyses demonstrate consistently similar20

results for the importance of parameters common to both models evaluated. Alveolar surface21

area to volume ratio is identified as the parameter to which model signals are most sensitive.22

The alveolar-capillary barrier thickness is identified as a low-sensitivity parameter for the MOXE23

model. An acquisition window of at least 200 ms effectively demonstrates model sensitivity to24

most parameters. Scatter plots reveal interaction effects in both models, impacting output25

variability and sensitivity.26

Conclusion: Our sensitivity analysis ranks the parameters within the model described by27

Patz et al and within the MOXE model. The MOXE model shows low sensitivity to alveolar-28

capillary barrier thickness, highlighting the need for designing acquisition protocols optimised29

for the measurement of this parameter. The presence of parameter interaction effects highlights30

the requirement for care in interpreting model outputs.31

Keywords: Mathematical modelling, sensitivity analysis, hyperpolarised 129Xe MRI32
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Introduction33

Hyperpolarised 129Xe (HpXe) MRS and MRI of the lungs permit the assessment of the temporal34

dynamics of gas exchange across the alveolar-capillary barrier (1). 129Xe is highly lipophilic and35

soluble and follows a similar diffusion pathway to that of oxygen (9). As a result, 129Xe gas transfer36

mechanisms can be modelled utilising uptake curves of characteristic spectroscopic peaks generated37

from the movement of 129Xe between the gas (airways and alveoli) and dissolved (tissue/blood) lung38

compartments. Fitting 1D diffusion compartment models to HpXe MRS chemical shift saturation39

recovery (CSSR) data enables the extraction of microstructural and physiological measurements of40

the lung, providing markers for evaluating global and regional lung function. Two-compartment41

models (11; 16) typically consider 129Xe dissolved in blood and tissue collectively - the dissolved42

phase - while three-compartment models (8; 4) differentiate between frequency shifted 129Xe peaks43

from a combined tissue and plasma pool - the tissue phase - and red blood cells (RBC). The two-44

compartment model introduced by Patz et al (11) (from here on denoted ‘Patz model’), and the45

three-compartment MOXE model (4) have been used for the clinical assessment of a range of lung46

diseases, including chronic obstructive pulmonary disease (COPD), interstitial lung disease (ILD)47

and asthma (14; 7).48

The Patz model allows the estimation of septal thickness, d, the alveolar surface area to volume49

ratio, SVR, and the blood transit time through the capillary bed, ⌧c. As an extension of the50

Patz model, the MOXE model additionally considers the tissue and RBC phases (11), allowing the51

estimation of three more parameters: the alveolar-capillary barrier thickness, �, the xenon-exchange52

time constant, T , and the haematocrit, HCT.53

When using either model to characterise disease it is necessary to understand the attainable54

measurement specificity and sensitivity to underlying disease processes for each parameter. The type55

and severity of disease will dictate the parameters that are expected to provide disease sensitivity.56

For example, a decrease in SVR and an increase in d are indicative of symptoms common within57

emphysematic and fibrotic lung diseases (5), respectively. The ability of a measurement technique58

and an associated signal model to precisely measure these differences is dependent on the dynamic59

range of signal changes that are associated with changes in the model’s parameters. Sensitivity60

analysis investigates how variations in signals predicted by a model can be attributed to variations61

within different input factors/parameters (18). If model output is not sensitive to changes within62

the relevant parameter space for a particular experimental setting, precise interrogation of these63
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parameters cannot be achieved. As a result, sensitivity analysis can assist in defining influential64

and non-influential parameters within a given model, thereby identifying what parameterisations65

are likely to be feasible and informative within a given experimental scenario (20).66

In this study we apply both univariate and multivariate sensitivity analysis methods to the Patz67

and MOXE 1D diffusion models to investigate each model’s sensitivity to parameter variability.68

We identify interaction effects, determine parameter importance - ranking parameters to which69

the output is most and least sensitive to (12) - for both models, and identify model sensitivity to70

parameter variation across a range of saturation recovery repetition times; identifying experimental71

periods for optimal parameter measurement.72

Theory73

Chemical shift saturation recovery (CSSR)74

The rate of regrowth due to the influx of polarised spins of the 129Xe dissolved phase signal after a75

saturation radio-frequency (RF) pulse can be described by appropriate models, allowing parameters76

of interest to be estimated. When using chemical shift saturation recovery (CSSR) (2; 11), a spec-77

troscopic measurement of the 129Xe magnetisation is taken after each of a series of repetition times78

TR, allowing the rate of 129Xe uptake within the dissolved phase compartments to be determined.79

Uptake curves demonstrate a characteristic increase over time, highlighting an initial rapid influx80

of gas within the compartments, followed by a slower uptake phase. This can be represented by81

a combination of two processes: the replenishment of the 129Xe from the gas phase to the tissue82

phase, and the uptake into and exit from the local tissue of 129Xe via the capillary blood flow.83

84

Two compartment model85

The model described by Patz (11) is derived from the solution of the diffusion equation,86

@Md

@t
= D

@
2
Md

@x2
, [1]

where D denotes the dissolved phase diffusion coefficient of xenon. The diffusion process is described87

as a two compartment model, with the septum bounded by the alveoli as shown in Fig. 1. The Patz88

model describes the diffusion of hyperpolarised 129Xe into the dissolved phase, defined as a single89
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compartment combining the tissue phase and red blood cells.90

When employing the CSSR technique, hyperpolarised 129Xe is inhaled into the lungs followed91

by a frequency selective RF pulse, which saturates the longitudinal magnetisation in the dissolved92

phase. At time t = 0, Mg(x, t = 0) = M0 and Md(x, t = 0) = 0, where x represents the spatial93

position of dissolved xenon and Mg and Md represent the longitudinal magnetisation in the gas94

phase (alveoli) and dissolved phase (septum), respectively. At t > 0, unsaturated 129Xe from the95

alveoli diffuses into the septum, leading to96

Md(0, t) = Md(d, t) = �Mg, [2]

where � is the Ostwald solubility of xenon within tissue and the magnetisation from the alveoli space97

Mg is approximated to be unchanged Mg(x, t) = M0. The solution for the boundary conditions for98

129Xe magnetisation, Md, within the dissolved phase (2) results in,99

Md(x, t) = �Mg

"
1�

X

n=odd

✓
4

⇡n

◆
sin

⇣
n⇡x

d

⌘
e
�Dtn

2⇡2

d2

#
. [3]

The integral of the 129Xe magnetisation in the septum (dissolved phase) provides the fraction100

of the septum occupied by hyperpolarised 129Xe at time t,101

⇢(x, t) =
Md(x, t)

�Mg
, [4]

f(t) =
1

d

Z d

x=0
⇢(x, t)dx = 1�

X

n=odd

8

⇡2n2
e
�Dtn

2⇡2

d2 , [5]

where ⇢ is the dimensionless representation of 129Xe magnetisation density within the septal slab

of thickness d. The ratio of the dissolved phase 129Xe signal after time t to the gas phase at time

t = 0 is

F (t) =
Md(t ! 1)

Mg(t = 0)
f(t) = �

Vd

Vg
f(t), [6]

where Md(t ! 1) is the 129Xe magnetisation at septum saturation (19). The septal volume is

denoted by Vd = Ad, where A is the surface area between the alveolar gas and the septal boundary.

As there are two boundaries, the total surface area SA = 2A. Consequently, the septal volume Vd

is

Vd =
SAd

2
, [7]
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and

F (t) =
�d

2

SA

Vg
f(t). [8]

Blood flow is assumed to have constant velocity, to be independent of 129Xe concentration, and102

to be orthogonal to the capillary wall. The Patz model treats the entire septum as a flowing system,103

with blood flowing within the pulmonary vessels residing in the gas exchange zone (GEZ) for a104

certain period of time. A simple plug flow model is used in simulating this effect by separating the105

blood into three spatial regions as shown in Fig. 1.106

In Fig. 1, region 1 represents blood upstream from the GEZ at t = 0, which subsequently passes107

through the GEZ for a fraction of the measurement time. Region 2 depicts blood present within the108

GEZ for the entire duration of t. Similarly, region 3 like region 1 spends a fraction of time within109

the GEZ and is found downstream of the GEZ at time t. The figure shows the transit time of the110

dissolved phase within the GEZ, with panels 1a) and 1b) illustrating the plug flow regions at t = 0111

and t, respectively. Due to region 2 residing in the GEZ for the entire diffusion time, the fraction of112

blood within the septum containing 129Xe is f(t). The fraction of the alveolar space contributing113

to the diffusion of 129Xe into the blood within region 2 is f2 = (⌧c � t)/⌧c.114

The fraction of septal space contributing to blood in region 1 and region 3 (f1, f3) occupied by115

magnetised 129Xe, differs from region 2 due to their respective starting and ending positions residing116

outside of the GEZ. Consequently, the incremental time t
0 of the diffusion time t of region 1 and 3117

within the GEZ is used to determine the average f1, f3:118

f̄1(t) = f̄3(t) =
1

t

Z t

0
f(t0)dt0, [9]

f̄1(t) = f̄3(t) = 1 +

✓
8d2

⇡4D

◆✓
1

t

◆ X

n,odd


1

n4
e
�n2⇡2Dt

d2 � 1

�
, [10]

with f3 = f1 = t/⌧c. The contribution of each region to the overall blood flow is denoted by F1(t)119

and F3(t):120

F1(t) = f1 · F (t) =
t

⌧c
· �d
2

SA

Vg
f̄1(t) ⌘ F3(t), [11]

with the total flow given by121

Fflow(t) = F1(t) + F2(t) + F3(t), [12]
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Fflow(t) =
�d

2

SA

Vg

✓
⌧c � t

⌧c

◆
f(q) + �d

SA

Vg


t

⌧c
+

8d2

D⇡4

1

⌧c
g(q)

�
. [13]

The functions of the dimensionless parameter q, h(q) and g(q) (where q = (Dt/d
2)) are:122

h(q) =

"
1�

X

n=odd

8

⇡2n2
e
�q⇡2n2

#
, [14]

g(q) =

"
X

n=odd

1

n4

⇣
e
�q⇡2n2 � 1

⌘#
. [15]

The physiological parameters extracted when utilising the Patz model are the septal thickness123

d, the alveolar surface area to volume of gas ratio SVR (SA/Vg) and the capillary transit time, ⌧c.124

Three compartment model125

MOXE model126

The MOXE model is an extension of the Patz model, incorporating both tissue and RBC dynamics127

(4). As a result, the alveolar-capillary barrier thickness, �, exchange time constant, T , and the128

haematocrit, HCT, can be derived, with the introduction of terms for the relative Ostwald solubilities129

of plasma and RBC (�PL and �RBC). The signal distribution Sd is equivalent to the ratio of dissolved130

and gas phase magnetisation, F (Eq. 8) such that131

Sd(x, t) = �
SA

Vg

 
1� 4

⇡

X

n=odd

1

n
sin

n⇡x

d
e
�n2t/T

!
, [16]

where T , is the exchange time constant represented by132

T =
d
2

⇡2D
. [17]

The spatial integral of Sd over 0 to � and d� � to d, as highlighted in Fig. 1, leads to the signal133

contribution Sd1 of the 129Xe signal within the tissue phase:134

Sd1(t) = �d
SA

Vg

 
2
�

d
� 8

⇡2

X

n=odd


1� cos(n⇡

�

d
)

�
e
�n2t/T

!
. [18]

Modelling the 129Xe signal from the blood, incorporating flow, results in135
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Sd2 = 2�d
SA

Vg

(
(1� 2

�

d
)
t

⌧c
� 8

⇡2

T

⌧c

X

n=odd


1

n4
cos(n⇡

�

d
)

�
e
�n2t/T

)

+ 2�d
SA

Vg

✓
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)� 8
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X
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
1

n2
cos(n⇡

�

d
)

�
e
�n2t/T

)
. [19]

Expressions for the signal amplitudes of the chemical shifts within the dissolved phase for plasma,136

tissue and RBCs displayed in Fig. 1 are given by137

STP (t) = Sd1(t) + (1� ⌘)Sd2(t), [20]

and

SRBC(t) = ⌘Sd2(t), [21]

where ⌘ is the fraction of dissolved gas in the RBC’s and (1 � ⌘)Sd2(t) is the term for the signal

contribution within the plasma, with HCT defined as

⌘/�RBC

⌘/�RBC + (1� ⌘)/�PL
. [22]

The plots for the Patz and MOXE models in Fig. 1 both display a rapid signal increase until138

t ⇠ 100 ms due to the influx of 129Xe within the septum. After this point, contribution to signal139

growth is exclusively a result of blood flow and increases more slowly with time. Fig. 1b highlights140

the additional signal change in the Patz model when capillary transit time ⌧c increases to values141

greater than the diffusion time due to blood flow. As ⌧c ! 1 (i.e. as blood flow tends to zero),142

the 129Xe signal increase after t ⇠ 100 ms becomes negligible; as a result, 129Xe saturation occurs,143

highlighted in Fig. 1b by the dashed line. A similar phenomenon is seen with the MOXE model,144

but is not shown here to retain diagram clarity.145

Methods146

Univariate and multivariate analysis (13) methods were applied in the assessment of each parameter147

for each model, with values spanning ranges that include expected values for both healthy and148

diseased lungs, as shown in Table. 1.149
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Univariate sensitivity analysis150

Model parameter range was defined as the mean ± standard deviation of the literature-derived151

parameter values (Table. 1). Parameters were independently varied within these ranges, whilst152

maintaining constant values for the other parameters at their mean.153

Python 3 (spyder 5.0.0) and MATLAB (2021a) were used for the CSSR Patz and MOXE model154

simulations and sensitivity analysis implementation. CSSR simulations with forty TR values equally155

spaced between 10 ms and 800 ms were generated for each model’s univariate sensitivity analysis156

plot. Numerical computations of the infinite series of Fflow, Sd1, and Sd2 were reduced at the fifth157

terms, removing values of n = 9 or greater.158

The sensitivity of each model to its constituent parameters was simulated by incrementing each159

parameter independently over its range at each TR whilst maintaining the other parameters at their160

mean value. This was then visualised by plotting the resultant signal range as a function of TR.161

Signal Percent Change162

Signal percentage change (SPC) refers to the percentage signal change observed as a parameter is163

varied from its mean value, simulated for each of the forty TRs. Simulations employed the upper and164

lower limits of a specific parameter’s range whilst maintaining the other parameters at their mean165

values. Simulations outline the general shape of signal change due to variation over the parameter166

range and at which point in the experimental procedure this change occurs; determining if specific167

periods within the acquisition window exhibit greater changes in signal than others. Constant SPC168

displays a lack of variation in the sensitivity within the experimental procedure whilst any change169

in signal is associated with a change in sensitivity.170

Scatter plots sensitivity analysis171

Scatter plots are commonly used as visual methods for examining correlations between model output172

signal variability and input parameters. In general, parameters producing a larger degree of output173

variability - displaying visible negative and positive correlations - are parameters to which the model174

is more sensitive. 2D plots were produced by simulating all the output values (across all values of175

other parameters) corresponding to each individual parameter value. 3D plots demonstrate the176

relationship between each parameter and signal output when also considering the range of a second177

chosen parameter, allowing evidence for parameter interaction to be observed.178
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Latin hypercube sampling was used to efficiently sample the parameter space evenly for parame-179

ters in both models. All scatter simulations and sampling were performed using both custom-written180

and built-in MATLAB code (The Mathworks, Natick MA, R2021a).181

Results182

Univariate sensitivity analysis183

The univariate sensitivity analysis for each parameter of the Patz model is shown in Fig. 2. The three184

plots highlight the signal variations observed when independently varying each model parameter185

SVR, d, ⌧c. The colour scale corresponds to the values of the parameter being varied. For all186

parameters, an increase in model output signal amplitude and signal range is observed when moving187

to longer TRs. As shown by the gradations in the colour coding, increases in both SVR and d lead188

to increased output signal amplitude, whereas increases in ⌧c lead to a decrease in output signal189

amplitude. A larger model output signal range for SVR than for d or ⌧c is apparent at all TRs,190

suggesting higher signal sensitivity to this model parameter.191

Fig. 3 and Fig. 4 show the univariate sensitivity analysis for the tissue phase and RBC phase of192

the MOXE model, respectively. Similar results to the Patz model for SVR, d, and ⌧c are present in193

both the tissue phase and RBC plots although, in general, sensitivity to ⌧c is lower for MOXE. Of194

the three additional MOXE parameters, HCT displays the largest output range of signal intensity195

for most of the TR range, followed by T and then �, when considering the tissue phase. For the196

RBC phase, a larger output range is generally seen for � than for T , with both ranges again being197

smaller than that for HCT. As with ⌧c, increases in HCT lead to decreases in signal amplitude when198

considering the tissue phase, but this trend is reversed for HCT in the RBC plots. Increases in T199

lead to decreases in signal for both the tissue phase and RBC phase. Increases in � lead to increases200

in signal amplitude when considering the tissue phase, but to signal decreases in the RBC plots.201

The range of signal intensity variation due to varying HCT increases with TR, whereas the opposite202

trend is seen for � and T in the tissue phase. In the RBC phase the range of signal intensity due to203

variation in � increases with TR, with T again showing a decrease.204

Signal percentage change analysis205

The SPC plots in Fig. 5 display the upper and lower SPC values corresponding to the maximum and206

minimum parameter values for each Patz and MOXE parameter range throughout the simulated207
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range of TRs. Variations in SPC over the TR range for the tissue phase plots were evident in all208

parameters with the exception of SVR, whilst variations in SPC for the RBC phase are only evident209

in d, �, T and ⌧c. The largest shift in the shape of SPC is seen between 0 ms < TR < 200 ms, with210

the exception of changes due to ⌧c, which displays a gradual change throughout the TR range.211

Scatter plot and 3D plot analyses212

Fig. 6 displays scatter plots for the Patz model, showing the signal amplitude change due to each213

individual parameter when accounting for the full variation of the other model parameters. Plots214

are shown for simulations using a TR midway between the initial and final TR at ⇠ 400 ms. The215

strongest correlation with signal amplitude is seen for SVR, with ⌧c showing the weakest evidence216

for correlation, suggesting that distinguishing signal changes uniquely due to ⌧c would be the most217

challenging. 3D plots in Fig. 7 display parameter interaction effects between the three Patz model218

parameters with the boxed (red and black) plots (⌧c700) highlighting the interaction effects of using219

a longer TR.220

Figs. 8 and 9 show the signal amplitude change of each individual parameter when accounting221

for the full variation of the other model parameters for the MOXE model, for the tissue phase and222

RBC phase, respectively. Plots are shown for simulations using a TR midway between the initial223

and final TR at ⇠ 400 ms. The strongest correlations at TR = 400 ms are again evident in SVR,224

with d and HCT also showing correlations.225

Sup. Figs. S1 and S2 show representative model sensitivity in a range of parameter combinations226

for the tissue and RBC phase respectively. Fifteen combinations were produced from the six-227

parameter MOXE model assessing two parameter interactions.228

Discussion229

Univariate, scatter, and SPC sensitivity analysis methods were employed to investigate the Patz230

and MOXE models’ sensitivity to changes within their respective input parameter space.231

Univariate Sensitivity Analysis232

Univariate sensitivity analysis simulations for the Patz model displayed the greatest sensitivity to233

SVR throughout the entire range of TR values. Sensitivity to d and ⌧c was lower but increased234

with TR. The inverse relationship between ⌧c and signal amplitude is apparent in Fig. 2 and is235
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dependent on the proportion of 129Xe within the GEZ. The plug flow highlighted in Fig. 1 depicts236

the surface area apportioned to the individual regions traversing the GEZ. Following 129Xe diffusion237

into the septum (Patz) or capillary (MOXE), each region then reflects the fraction of blood in the238

GEZ occupied by 129Xe. At smaller ⌧c values the proportion of 129Xe within the GEZ increases (Eq.239

13), resulting in an increase in signal amplitude. This relationship is also reflected in both MOXE240

tissue and RBC phase ⌧c simulations.241

Univariate sensitivity analysis simulations for the MOXE model included assessments for both242

the tissue phase and RBC compartments. The tissue phase results reflect a combination of the 129Xe243

contribution in the blood plasma and lung tissue (Eq. 20), and therefore represent the larger overall244

pool of dissolved 129Xe. The RBC phase results reflect a comparatively smaller 129Xe concentration245

contribution (Eq. 21), highlighted by the reduced signal amplitudes in each parameter-specific plot246

(Fig. 4), relative to the plots for the tissue phase (Fig. 3).247

The MOXE model parameters that are shared with the Patz model (SVR, d, ⌧c), displayed248

similar results when evaluating the model sensitivity within the tissue phase (Figs. 2 and 3). Both249

models exhibited an increase in model output range as a function of increasing TR due to the flow250

component associated with 129Xe reaching the blood after approximately 100 ms.251

Increases in SVR, �, d led to increases in tissue phase signal across the TR range, whereas HCT,252

T and ⌧c showed inverse relationships demonstrating a reduction in the overall blood contribution.253

(Fig. 3). The opposite relationship was observed for HCT in the RBC phase, as HCT largely254

dictates the contribution of the 129Xe RBC signal within the GEZ (Eq. 20).255

Plots for � and T in the tissue phase (Fig. 3) show larger output ranges at shorter TRs, demon-256

strating a greater proportion of 129Xe within the tissue prior to entry into the GEZ. Conversely,257

longer TRs depict smaller ranges and reflect the dispersion of 129Xe away from the tissue and into258

the blood stream.259

260

Signal Percentage Change261

Results for the SPC were analysed for each parameter from each model to determine if specific262

ranges within the acquisition window exhibit greater changes in sensitivities than others. Fig. 5263

displays the SPC over the range of TR periods for the tissue phase and RBC within the MOXE264

model and for the dissolved phase within the Patz model. For the MOXE model, most of the265

variation in signal change due to HCT, d, and T occur at TR values < 200 ms within the tissue266
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phase, while change due to � and ⌧c varies more slowly over the TR range. SVR displays the largest,267

and unchanging effect over the entire TR range. These results are in agreement with experimental268

validation of saturation recovery modelling techniques (19). Similar results were established within269

the RBC phase, with the exception of � which remained approximately constant apart from within270

the initial TR range (TR  100 ms).271

SPC plots for the dissolved phase in the Patz model displayed greater variability for d than seen272

with the MOXE model, with variation again mainly limited to the TR < 200 ms range. ⌧c and SVR273

vary in a similar way to the variation seen within the MOXE model.274

Scatter plots275

Scatter plots offer an intuitive way to visualise the relationship between specific parameters and276

model outputs, which, unlike the univariate analysis, accounts for the influence of all other pa-277

rameters. Scatter plots for the three Patz and six MOXE parameters yielded similar conclusions278

to corresponding model univariate SA methods. 2D plots for shared Patz and MOXE parameters279

(Figs. 6, 8, and 9) displayed high positive signal correlations with SVR that are relatively uncon-280

taminated by the effects of other parameters. Plots of d and ⌧c showed a degree of positive and281

negative correlation, respectively, but with far less specificity, as illustrated by the broad scatter282

of sample points. Plots for the MOXE-specific parameters �, T showed little evidence of correla-283

tion, indicating low specificity of signal changes in both the tissue and RBC phases, whereas HCT284

demonstrated a greater degree of correlation, particularly in the RBC phase, indicating its stronger285

influence on the observed signals (Figs. 8 and 9).286

3D plots287

3D plots displayed interaction effects between the three Patz and six MOXE parameters, by assessing288

the increase or decrease in signal amplitude correlation as highlighted in the 3D surface plots (aerial289

perspective) in Fig. 7, Sup. Figs. S1 and S2. Interaction effects for the Patz model were evident290

between all parameters with stronger correlations in SVR - d and ⌧c - d combinations and are291

heightened dependent on TR value, demonstrated by the ⌧c700 plots in Fig. 7. For MOXE tissue292

phase plots (Sup. Figs. S1 and S2), interactions were observed in all parameter couplings with293

less noticeable correlations observed when assessing T , and �. Both parameters showed little model294

output variability within the univariate method and displayed weak correlations in the scatter. As295

such, minimal interactions with these parameters at the specific delay time chosen (⇠400 ms) can be296
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seen. Interactions between SVR and d and SVR and HCT displayed more noticeable interactions297

when evaluating the upper limits of SVR and d, against the lower limits of HCT. As the HCT298

is RBC phase-specific, as previously mentioned, lower values would ensure maximum tissue phase299

signal contributions for SVR and d. Similarly, noticeable interactions were observed for all MOXE300

RBC phase parameter couplings. The largest interactions were observed in SVR against HCT, and301

SVR against d. The lowest interactions were observed with SVR against T, �, and ⌧c. However,302

unlike tissue phase simulations, RBC simulations displayed an increased sensitivity when assessing303

the range of �, resulting in stronger correlations in comparison to the tissue phase. 3D plots for the304

RBC compartment for SVR, d and ⌧c interactions displayed similar trends to the 3D scatter Patz305

plots (Sup. Figs. S1 and S2).306

Implications for in vivo measurements and limitations307

Sensitivity varied for the different models and dissolved phase compartments within MOXE, but308

the surface area to volume ratio (SVR) and septal wall thickness (d) consistently demonstrated309

greater sensitivity in both the Patz and MOXE models. The alveolar-capillary barrier thickness (�)310

showed the greatest difference in sensitivity between the two MOXE model dissolved phases, but311

overall, sensitivity to variation in � is low, which has previously been demonstrated experimentally312

(19). Sensitivity to all other parameters was marginally greater than �, but substantially lower313

than sensitivity to SVR and d. These observations provide useful guidance for the likely signal-to-314

noise ratio (SNR) requirements of CSSR measurements designed to measure model parameters. For315

example, an SNR of only ⇠2 would be adequate to distinguish the extremes of the range of possible316

SVR and d, whereas an SNR of ⇠15 would be required to distinguish the extremes of the range of317

possible � (Figs. 3 and 4). More subtle differences would require correspondingly higher SNR.318

Parameter ranges chosen for each model were extracted from a limited set of sources and mea-319

surement techniques (Table 1). As a result, the ranges highlighted for each parameter may possess320

intrinsic biases. Moreover, a broad range of both healthy and diseased values was used for each321

sensitivity analysis technique without differentiating between disease type and stage of progression.322

The analysis of stratified disease groups for both models would permit the evaluation of model323

sensitivity to disease classification and progression.324

Both models demonstrate higher sensitivity to TR measurements between 0 - 200 ms. Different325

studies in the literature have evaluated 129Xe signals over different TR ranges. For example, (6; 22)326

assessed the Patz and MOXE models at TR  200 ms, with a range of TR measurements (TR <327
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200 ms and TR > 200 ms) being more common generally in other studies (4; 19; 15). These results328

suggest that future studies would benefit from performing comparable simulations before finalising329

their experimental protocols.330

It is possible that further sensitivity analyses may yield additional useful information. The331

main objectives of the presented sensitivity analysis of the Patz and MOXE models were parameter332

ranking and screening; however, mapping - which observes areas within the parameter input space333

producing extreme output values - was not evaluated. The inclusion of mapping methods such334

as the distance-based generalised sensitivity analysis (DGSA) (10) in conjunction with the prior335

methods may provide a further understanding of model sensitivity.336

Conclusions337

The sensitivity analysis of the Patz model demonstrated a higher signal sensitivity to both SVR338

and d than to ⌧c. Similarly, the sensitivity analysis of the MOXE model also displayed sensitivity339

to SVR and d, whilst also demonstrating sensitivity to HCT and T . In contrast, a much lower340

sensitivity to � was identified. Sensitivity variation as a result of delay time increased between the341

first 200 ms for both models due mainly to the underlying processes surrounding saturation of the342

tissue and blood flow. Consequently, multiple measurements taken within periods between 0 - 200343

ms were highlighted as advantageous in optimising model sensitivity due to the intrinsic parameter344

variation highlighted in both the signal percent change and scatter plot analyses. Interaction effects345

within the Patz and MOXE model were also shown to have an effect on the likely specificity of346

changes in signal to changes in the underlying parameters. These findings demonstrate the likely347

ability of two hyperpolarised 129Xe diffusion models to identify differences in lung microstructure348

and function.349
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Figures and Tables419

Table 1: Symbol, meaning, range, typical healthy values, and units of parameters used within the

Patz and MOXE models.
Symbol Meaning Range (mean ± st. dev.) Healthy Units (citations)

SV R Surface area to volume ratio 196 ± 175 256 cm�1 (5)

d Septal wall thickness 11.35 ± 3.25 8.8 µm (4; 17)

⌧c Capillary transit time 1.3 ± 0.8 1.3 s (21)

T Exchange time constant 0.039 ± 0.026 0.026 ms (4; 17)

HCT Haematocrit 0.225 ± 0.085 0.265 % (4; 19)

� Alveolar-capillary barrier thickness 1.2065 ± 0.4445 1.0 µm (3; 19)
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Figure 1: Block diagrams of the MOXE and Patz diffusion systems with 129Xe diffusing from both

boundaries alongside corresponding model-derived signal plots. The Patz model is represented by a

single plot of the dissolved phase signal, whereas the MOXE model is a coupled equation containing

plots for both the tissue and RBC compartments. Plug flow diagrams (a and b) highlight defined

spatial regions of blood quantifying blood flow.
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Figure 2: Univariate sensitivity analysis plots of the Patz parameters spanning the allowed range,

where the black dashed lines are the outputs associated with input Patz model values for a healthy

individual (Table 1) (11). Colour bars correspond to the defined range of each parameter.

Figure 3: Univariate sensitivity analysis plots of the MOXE parameters spanning the allowed range

(tissue phase), where the black dashed lines are the outputs associated with input MOXE model

values for a healthy individual (Table 1).

19 / 27

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2023. ; https://doi.org/10.1101/2023.07.26.550733doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.26.550733
http://creativecommons.org/licenses/by-nc-nd/4.0/


Submited to

Figure 4: Univariate sensitivity analysis plots of the MOXE parameters spanning the allowed range

(RBC phase), where the black dashed lines are the outputs associated with input MOXE model

values for a healthy individual (Table 1).

20 / 27

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2023. ; https://doi.org/10.1101/2023.07.26.550733doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.26.550733
http://creativecommons.org/licenses/by-nc-nd/4.0/


Submited to

Figure 5: Signal percentage change (SPC) as a function of delay time (TR), highlighting the extremes

of the parameter range for the tissue phase (TP) and RBC compartments of the MOXE model (top

two rows) and for the Patz model dissolved phase (DP) (bottom row, boxed). The upper and lower

limits are the signal percentage change values when using the highest and lowest values within each

individual parameter range.

21 / 27

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2023. ; https://doi.org/10.1101/2023.07.26.550733doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.26.550733
http://creativecommons.org/licenses/by-nc-nd/4.0/


Submited to

Figure 6: 2D Scatter plots showing the signal relationship with each individual parameter whilst

allowing the full variation of the other model parameters.
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Figure 7: 3D plots show the relationship between each parameter considering the range of the

other parameters against the signal output. All simulations were taken at a TR of 400 ms with

the exception of ⌧c700, which was taken at a TR of 700 ms (red box); demonstrating a dependency

between interaction effects and TR (black boxes).
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Figure 8: Scatter plots illustrate the signal relationship with each parameter individually while

considering the complete variation of the other model parameters for the tissue phase in the MOXE

model.
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Figure 9: Scatter plots showing the signal relationship with each individual parameter whilst allow-

ing the full variation of the other model parameters for the RBC phase in the MOXE model.
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