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10 Abstract

1 Purpose: Sensitivity analysis enables the identification of influential parameters and the op-
12 timisation of model composition. Such methods have not previously been applied systematically
13 to models describing hyperpolarised *°Xe gas exchange in the lung. Here, we evaluate current
14 129X e gas exchange models to assess their precision for identifying alterations in pulmonary-
15 vascular function and lung microstructure.

16 Methods: We assess sensitivity using established univariate methods and scatter plots for
17 parameter interactions. We apply them to the model described by Patz and MOXE et al.,
18 examining their ability to measure: i) importance (rank), ii) temporal dependence, and iii)
19 interaction effects of each parameter across healthy and diseased ranges.

20 Results: The univariate methods and scatter plot analyses demonstrate consistently similar
21 results for the importance of parameters common to both models evaluated. Alveolar surface
22 area to volume ratio is identified as the parameter to which model signals are most sensitive.
23 The alveolar-capillary barrier thickness is identified as a low-sensitivity parameter for the MOXE
24 model. An acquisition window of at least 200 ms effectively demonstrates model sensitivity to
25 most parameters. Scatter plots reveal interaction effects in both models, impacting output
26 variability and sensitivity.

27 Conclusion: Our sensitivity analysis ranks the parameters within the model described by
28 Patz et al and within the MOXE model. The MOXE model shows low sensitivity to alveolar-
29 capillary barrier thickness, highlighting the need for designing acquisition protocols optimised
30 for the measurement of this parameter. The presence of parameter interaction effects highlights
31 the requirement for care in interpreting model outputs.

32 Keywords: Mathematical modelling, sensitivity analysis, hyperpolarised '29Xe MRI
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;s Introduction

s« Hyperpolarised 2°Xe (HpXe) MRS and MRI of the lungs permit the assessment of the temporal
s dynamics of gas exchange across the alveolar-capillary barrier (1). '2?Xe is highly lipophilic and
36 soluble and follows a similar diffusion pathway to that of oxygen (9). As a result, 1?°Xe gas transfer
37 mechanisms can be modelled utilising uptake curves of characteristic spectroscopic peaks generated
s from the movement of 129Xe between the gas (airways and alveoli) and dissolved (tissue/blood) lung
30 compartments. Fitting 1D diffusion compartment models to HpXe MRS chemical shift saturation
a0 recovery (CSSR) data enables the extraction of microstructural and physiological measurements of
a1 the lung, providing markers for evaluating global and regional lung function. Two-compartment
«2 models (L1} [16)) typically consider '29Xe dissolved in blood and tissue collectively - the dissolved
43 phase - while three-compartment models (8; 4) differentiate between frequency shifted ?9Xe peaks
as from a combined tissue and plasma pool - the tissue phase - and red blood cells (RBC). The two-
a5 compartment model introduced by Patz et al (11) (from here on denoted ‘Patz model’), and the
a6 three-compartment MOXE model (4) have been used for the clinical assessment of a range of lung
a7 diseases, including chronic obstructive pulmonary disease (COPD), interstitial lung disease (ILD)
s and asthma (145 [7).

49 The Patz model allows the estimation of septal thickness, d, the alveolar surface area to volume
so ratio, SVR, and the blood transit time through the capillary bed, 7.. As an extension of the
51 Patz model, the MOXE model additionally considers the tissue and RBC phases (11)), allowing the
52 estimation of three more parameters: the alveolar-capillary barrier thickness, d, the xenon-exchange
53 time constant, 7', and the haematocrit, HCT.

54 When using either model to characterise disease it is necessary to understand the attainable
55 measurement specificity and sensitivity to underlying disease processes for each parameter. The type
s and severity of disease will dictate the parameters that are expected to provide disease sensitivity.
57 For example, a decrease in SVR and an increase in d are indicative of symptoms common within
ss emphysematic and fibrotic lung diseases (5), respectively. The ability of a measurement technique
so and an associated signal model to precisely measure these differences is dependent on the dynamic
6o range of signal changes that are associated with changes in the model’s parameters. Sensitivity
61 analysis investigates how variations in signals predicted by a model can be attributed to variations
62 within different input factors/parameters (18). If model output is not sensitive to changes within

63 the relevant parameter space for a particular experimental setting, precise interrogation of these
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64 parameters cannot be achieved. As a result, sensitivity analysis can assist in defining influential
6s and non-influential parameters within a given model, thereby identifying what parameterisations
66 are likely to be feasible and informative within a given experimental scenario (20)).

67 In this study we apply both univariate and multivariate sensitivity analysis methods to the Patz
s and MOXE 1D diffusion models to investigate each model’s sensitivity to parameter variability.
6o  We identify interaction effects, determine parameter importance - ranking parameters to which
70 the output is most and least sensitive to (12)) - for both models, and identify model sensitivity to
71 parameter variation across a range of saturation recovery repetition times; identifying experimental

72 periods for optimal parameter measurement.

73 Theory

72 Chemical shift saturation recovery (CSSR)

75 The rate of regrowth due to the influx of polarised spins of the ?Xe dissolved phase signal after a
76 saturation radio-frequency (RF) pulse can be described by appropriate models, allowing parameters
77 of interest to be estimated. When using chemical shift saturation recovery (CSSR) (2; [11)), a spec-
78 troscopic measurement of the 12?Xe magnetisation is taken after each of a series of repetition times
7o TR, allowing the rate of 1??Xe uptake within the dissolved phase compartments to be determined.
so Uptake curves demonstrate a characteristic increase over time, highlighting an initial rapid influx
s1  of gas within the compartments, followed by a slower uptake phase. This can be represented by
&2 a combination of two processes: the replenishment of the '?9Xe from the gas phase to the tissue
s phase, and the uptake into and exit from the local tissue of 12?Xe via the capillary blood flow.

84

ss 'Two compartment model

ss The model described by Patz (11) is derived from the solution of the diffusion equation,

oM, 9% M,
ot " oz’ 1

g7 where D denotes the dissolved phase diffusion coefficient of xenon. The diffusion process is described
ss as a two compartment model, with the septum bounded by the alveoli as shown in Fig. [1} The Patz

so model describes the diffusion of hyperpolarised 1??Xe into the dissolved phase, defined as a single
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o0 compartment combining the tissue phase and red blood cells.

o1 When employing the CSSR technique, hyperpolarised ??Xe is inhaled into the lungs followed
92 by a frequency selective RF pulse, which saturates the longitudinal magnetisation in the dissolved
o3 phase. At time t = 0, My(x,t = 0) = My and My(x,t = 0) = 0, where x represents the spatial
o4 position of dissolved xenon and M, and M, represent the longitudinal magnetisation in the gas
os phase (alveoli) and dissolved phase (septum), respectively. At t > 0, unsaturated '?°Xe from the

o6 alveoli diffuses into the septum, leading to

My(0,t) = My(d, t) = \M,, 2]

o7 where A is the Ostwald solubility of xenon within tissue and the magnetisation from the alveoli space
98 M, is approximated to be unchanged Mg(x,t) = M. The solution for the boundary conditions for
o 129Xe magnetisation, My, within the dissolved phase results in,

Mg(z,t) = AM, [1 -y <7T4n> sin (”%x) eDt”fz§2] . 3]

n=odd

100 The integral of the '?Xe magnetisation in the septum (dissolved phase) provides the fraction
101 of the septum occupied by hyperpolarised 12?Xe at time t,

Md(.%',t)

p(x,t) = M, [4]

f(t)—il/d platdr=1- Y D P 5

=0 n=odd
where p is the dimensionless representation of '??Xe magnetisation density within the septal slab
of thickness d. The ratio of the dissolved phase ?9Xe signal after time ¢ to the gas phase at time

t=01is
Pl = a0 = 3, g

where My(t — oo) is the 12*Xe magnetisation at septum saturation (19). The septal volume is
denoted by V; = Ad, where A is the surface area between the alveolar gas and the septal boundary.
As there are two boundaries, the total surface area S4 = 2A. Consequently, the septal volume Vj
is

Sad

Vd = T, [7]
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and
Ad Sz
Ft)=——=f(). 8
()= 3200 g
102 Blood flow is assumed to have constant velocity, to be independent of 12?Xe concentration, and

103 to be orthogonal to the capillary wall. The Patz model treats the entire septum as a flowing system,
104 with blood flowing within the pulmonary vessels residing in the gas exchange zone (GEZ) for a
105 certain period of time. A simple plug flow model is used in simulating this effect by separating the
106 blood into three spatial regions as shown in Fig.

107 In Fig. [1} region 1 represents blood upstream from the GEZ at t = 0, which subsequently passes
108 through the GEZ for a fraction of the measurement time. Region 2 depicts blood present within the
100 GEZ for the entire duration of ¢. Similarly, region 3 like region 1 spends a fraction of time within
10 the GEZ and is found downstream of the GEZ at time t. The figure shows the transit time of the
11 dissolved phase within the GEZ, with panels ) and ) illustrating the plug flow regions at t =0
112 and ¢, respectively. Due to region 2 residing in the GEZ for the entire diffusion time, the fraction of
13 blood within the septum containing 2°Xe is f(¢). The fraction of the alveolar space contributing
14 to the diffusion of ??Xe into the blood within region 2 is fo = (7, —t)/7e.

115 The fraction of septal space contributing to blood in region 1 and region 3 (f1, f3) occupied by
116 magnetised 12Xe, differs from region 2 due to their respective starting and ending positions residing
117 outside of the GEZ. Consequently, the incremental time ¢’ of the diffusion time ¢ of region 1 and 3

1s  within the GEZ is used to determine the average fi, fs:

A= ) =1 [ rar. 9

A =50 =1+ (55) (7) T [5e7 1], 10

n,odd

o with f3 = f; = t/7.. The contribution of each region to the overall blood flow is denoted by F} ()
120 and F3(t):

t AdSy -
Fi(t) = fi-F(t) = — - o<~ f1(t) = F3(1), [11]
Te 2V,
121 with the total flow given by
Fflow(t) :Fl(t)+F2(t)+F3(t)7 [12]
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A Sq [Te—1t Salt 8d% 1
F = —— _— | — —_— . 1
flow(t) = 5 V};( - )f(q)JrAdVg [TC+DW4Tcg(q)] [13]

122 The functions of the dimensionless parameter g, h(q) and g(q) (where ¢ = (Dt/d?)) are:

hlg) = [1 - fn] , 14

9la) = [Z G —1)]. 15)

n=odd

123 The physiological parameters extracted when utilising the Patz model are the septal thickness

124 d, the alveolar surface area to volume of gas ratio SVR (S4/V;) and the capillary transit time, .

125 Three compartment model

126 MOXE model

127 The MOXE model is an extension of the Patz model, incorporating both tissue and RBC dynamics
s (4). As a result, the alveolar-capillary barrier thickness, §, exchange time constant, 7', and the
120 haematocrit, HCT, can be derived, with the introduction of terms for the relative Ostwald solubilities
130 of plasma and RBC (Apy, and Arpc). The signal distribution Sy is equivalent to the ratio of dissolved

131 and gas phase magnetisation, F' (Eq. [§) such that

4 1
Sa(w,t) = A%A <1 -= > sz’nm;xe"Qt/T> : [16]

9 T n=odd "
132 where T, is the exchange time constant represented by
d2
T=——. 17
133 The spatial integral of Sy over 0 to d and d — § to d, as highlighted in Fig. |1] leads to the signal

134 contribution Sy of the 12Xe signal within the tissue phase:

Sa1(t) = )\df/’: (22 - % Z {1 - cos(mrfl)] e_”Qt/T> : [18]

n=odd

135 Modelling the ??Xe signal from the blood, incorporating flow, results in
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+ 2Ad‘f/;‘ (TCT_ t) {(1 - 2%) - % > [;cos(mrfl)] e—n2t/T}. [19]

¢ n=odd
136 Fxpressions for the signal amplitudes of the chemical shifts within the dissolved phase for plasma,

137 tissue and RBCs displayed in Fig. [1]are given by

Srp(t) = Sa1(t) + (1 —n)Sax(t), [20]
and

SrBc(t) = nSa(t), [21]

where 7 is the fraction of dissolved gas in the RBC’s and (1 — 7)Sg2(t) is the term for the signal
contribution within the plasma, with HCT defined as

n/ARrBC
n/Arc + (1 —=n)/ApL

[22]

138 The plots for the Patz and MOXE models in Fig. [I| both display a rapid signal increase until
130 ¢ ~ 100 ms due to the influx of '??Xe within the septum. After this point, contribution to signal
10 growth is exclusively a result of blood flow and increases more slowly with time. Fig. highlights
11 the additional signal change in the Patz model when capillary transit time 7. increases to values
12 greater than the diffusion time due to blood flow. As 7. — oo (i.e. as blood flow tends to zero),
143 the 12Xe signal increase after ¢ ~ 100 ms becomes negligible; as a result, 1??Xe saturation occurs,
142 highlighted in Fig. by the dashed line. A similar phenomenon is seen with the MOXE model,

145 but is not shown here to retain diagram clarity.

1w Methods

17 Univariate and multivariate analysis (13) methods were applied in the assessment of each parameter
148 for each model, with values spanning ranges that include expected values for both healthy and

140 diseased lungs, as shown in Table.
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150 Univariate sensitivity analysis

151 Model parameter range was defined as the mean + standard deviation of the literature-derived
152 parameter values (Table. [1). Parameters were independently varied within these ranges, whilst
153 maintaining constant values for the other parameters at their mean.

154 Python 3 (spyder 5.0.0) and MATLAB (2021a) were used for the CSSR Patz and MOXE model
155 simulations and sensitivity analysis implementation. CSSR simulations with forty TR values equally
156 spaced between 10 ms and 800 ms were generated for each model’s univariate sensitivity analysis
157 plot. Numerical computations of the infinite series of Fyjoy, Sq1, and Sgz were reduced at the fifth
158 terms, removing values of n = 9 or greater.

159 The sensitivity of each model to its constituent parameters was simulated by incrementing each
10 parameter independently over its range at each TR whilst maintaining the other parameters at their

161 mean value. This was then visualised by plotting the resultant signal range as a function of TR.

162 Signal Percent Change

163 Signal percentage change (SPC) refers to the percentage signal change observed as a parameter is
162 varied from its mean value, simulated for each of the forty TRs. Simulations employed the upper and
165 lower limits of a specific parameter’s range whilst maintaining the other parameters at their mean
166 values. Simulations outline the general shape of signal change due to variation over the parameter
167 range and at which point in the experimental procedure this change occurs; determining if specific
168 periods within the acquisition window exhibit greater changes in signal than others. Constant SPC
160 displays a lack of variation in the sensitivity within the experimental procedure whilst any change

170 in signal is associated with a change in sensitivity.

i1 Scatter plots sensitivity analysis

172 Scatter plots are commonly used as visual methods for examining correlations between model output
173 signal variability and input parameters. In general, parameters producing a larger degree of output
174 variability - displaying visible negative and positive correlations - are parameters to which the model
175 is more sensitive. 2D plots were produced by simulating all the output values (across all values of
176 other parameters) corresponding to each individual parameter value. 3D plots demonstrate the
177 relationship between each parameter and signal output when also considering the range of a second

178 chosen parameter, allowing evidence for parameter interaction to be observed.
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179 Latin hypercube sampling was used to efficiently sample the parameter space evenly for parame-
180 ters in both models. All scatter simulations and sampling were performed using both custom-written

181 and built-in MATLAB code (The Mathworks, Natick MA, R2021a).

2 Results

183 Univariate sensitivity analysis

18 The univariate sensitivity analysis for each parameter of the Patz model is shown in Fig. [2. The three
185 plots highlight the signal variations observed when independently varying each model parameter
186 SVR, d, 7.. The colour scale corresponds to the values of the parameter being varied. For all
187 parameters, an increase in model output signal amplitude and signal range is observed when moving
188 to longer TRs. As shown by the gradations in the colour coding, increases in both SVR and d lead
180 to increased output signal amplitude, whereas increases in 7. lead to a decrease in output signal
100 amplitude. A larger model output signal range for SVR than for d or 7. is apparent at all TRs,
101 suggesting higher signal sensitivity to this model parameter.

102 Fig. [8land Fig. [4]show the univariate sensitivity analysis for the tissue phase and RBC phase of
103 the MOXE model, respectively. Similar results to the Patz model for SVR, d, and 7. are present in
102 both the tissue phase and RBC plots although, in general, sensitivity to 7. is lower for MOXE. Of
105 the three additional MOXE parameters, HCT displays the largest output range of signal intensity
106 for most of the TR range, followed by T and then §, when considering the tissue phase. For the
107 RBC phase, a larger output range is generally seen for § than for T', with both ranges again being
108 smaller than that for HCT. As with 7, increases in HCT lead to decreases in signal amplitude when
100 considering the tissue phase, but this trend is reversed for HCT in the RBC plots. Increases in T
200 lead to decreases in signal for both the tissue phase and RBC phase. Increases in § lead to increases
201 in signal amplitude when considering the tissue phase, but to signal decreases in the RBC plots.
202 The range of signal intensity variation due to varying HCT increases with TR, whereas the opposite
203 trend is seen for § and 7" in the tissue phase. In the RBC phase the range of signal intensity due to

204 variation in J increases with TR, with T again showing a decrease.

205 Signal percentage change analysis

206 The SPC plots in Fig. [p|display the upper and lower SPC values corresponding to the maximum and

207 minimum parameter values for each Patz and MOXE parameter range throughout the simulated
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208 range of TRs. Variations in SPC over the TR range for the tissue phase plots were evident in all
200 parameters with the exception of SVR, whilst variations in SPC for the RBC phase are only evident
210 ind, §, T and 7.. The largest shift in the shape of SPC is seen between 0 ms < TR < 200 ms, with

211 the exception of changes due to 7., which displays a gradual change throughout the TR range.

212 Scatter plot and 3D plot analyses

213 Fig. [0] displays scatter plots for the Patz model, showing the signal amplitude change due to each
214 individual parameter when accounting for the full variation of the other model parameters. Plots
215 are shown for simulations using a TR midway between the initial and final TR at ~ 400 ms. The
216 strongest correlation with signal amplitude is seen for SVR, with 7, showing the weakest evidence
217 for correlation, suggesting that distinguishing signal changes uniquely due to 7. would be the most
218 challenging. 3D plots in Fig. [7 display parameter interaction effects between the three Patz model
210 parameters with the boxed (red and black) plots (7.700) highlighting the interaction effects of using
220 a longer TR.

221 Figs. [§] and [0 show the signal amplitude change of each individual parameter when accounting
222 for the full variation of the other model parameters for the MOXE model, for the tissue phase and
23 RBC phase, respectively. Plots are shown for simulations using a TR midway between the initial
24 and final TR at ~ 400 ms. The strongest correlations at TR = 400 ms are again evident in SVR,
225 with d and HCT also showing correlations.

226 Sup. Figs. and[S2|show representative model sensitivity in a range of parameter combinations
27 for the tissue and RBC phase respectively. Fifteen combinations were produced from the six-

28  parameter MOXE model assessing two parameter interactions.

20 Discussion

230 Univariate, scatter, and SPC sensitivity analysis methods were employed to investigate the Patz
231 and MOXE models’ sensitivity to changes within their respective input parameter space.
222 Univariate Sensitivity Analysis

233 Univariate sensitivity analysis simulations for the Patz model displayed the greatest sensitivity to
23a SVR throughout the entire range of TR values. Sensitivity to d and 7. was lower but increased

235 with TR. The inverse relationship between 7, and signal amplitude is apparent in Fig. [2 and is
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236 dependent on the proportion of 129Xe within the GEZ. The plug flow highlighted in Fig. [1| depicts
237 the surface area apportioned to the individual regions traversing the GEZ. Following ?9Xe diffusion
238 into the septum (Patz) or capillary (MOXE), each region then reflects the fraction of blood in the
230 GEZ occupied by 12Xe. At smaller 7, values the proportion of 12?Xe within the GEZ increases (Eq.
200 [13]), resulting in an increase in signal amplitude. This relationship is also reflected in both MOXE
221 tissue and RBC phase 7. simulations.

242 Univariate sensitivity analysis simulations for the MOXE model included assessments for both
223 the tissue phase and RBC compartments. The tissue phase results reflect a combination of the 129Xe
244 contribution in the blood plasma and lung tissue (Eq. , and therefore represent the larger overall
25 pool of dissolved ??Xe. The RBC phase results reflect a comparatively smaller 12?Xe concentration
246 contribution (Eq. , highlighted by the reduced signal amplitudes in each parameter-specific plot
27 (Fig. , relative to the plots for the tissue phase (Fig. .

248 The MOXE model parameters that are shared with the Patz model (SVR, d, 7.), displayed
249 similar results when evaluating the model sensitivity within the tissue phase (Figs. |Z and . Both
250 models exhibited an increase in model output range as a function of increasing TR due to the flow
251 component associated with 129Xe reaching the blood after approximately 100 ms.

252 Increases in SVR, 6, d led to increases in tissue phase signal across the TR range, whereas HCT,
253 T and 7, showed inverse relationships demonstrating a reduction in the overall blood contribution.
254 (Fig. |3). The opposite relationship was observed for HCT in the RBC phase, as HCT largely
255 dictates the contribution of the 29Xe RBC signal within the GEZ (Eq. .

256 Plots for ¢ and T in the tissue phase (Fig. [3) show larger output ranges at shorter TRs, demon-
257 strating a greater proportion of '2°Xe within the tissue prior to entry into the GEZ. Conversely,
28 longer TRs depict smaller ranges and reflect the dispersion of 2*Xe away from the tissue and into
250 the blood stream.

260

21 Signal Percentage Change

22 Results for the SPC were analysed for each parameter from each model to determine if specific
263 ranges within the acquisition window exhibit greater changes in sensitivities than others. Fig.
264 displays the SPC over the range of TR periods for the tissue phase and RBC within the MOXE
265 model and for the dissolved phase within the Patz model. For the MOXE model, most of the

266 variation in signal change due to HCT, d, and T occur at TR values < 200 ms within the tissue

11 /7


https://doi.org/10.1101/2023.07.26.550733
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.26.550733; this version posted July 27, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

SUBMITED TO

267 phase, while change due to § and 7. varies more slowly over the TR range. SVR displays the largest,
268 and unchanging effect over the entire TR range. These results are in agreement with experimental
260 validation of saturation recovery modelling techniques (19). Similar results were established within
270 the RBC phase, with the exception of § which remained approximately constant apart from within
2r1 the initial TR range (TR < 100 ms).

272 SPC plots for the dissolved phase in the Patz model displayed greater variability for d than seen
273 with the MOXE model, with variation again mainly limited to the TR < 200 ms range. 7. and SVR

274 vary in a similar way to the variation seen within the MOXE model.

75 Scatter plots

276 Scatter plots offer an intuitive way to visualise the relationship between specific parameters and
277 model outputs, which, unlike the univariate analysis, accounts for the influence of all other pa-
213 rameters. Scatter plots for the three Patz and six MOXE parameters yielded similar conclusions
279 to corresponding model univariate SA methods. 2D plots for shared Patz and MOXE parameters
280 (Figs. @ and @ displayed high positive signal correlations with SVR that are relatively uncon-
281 taminated by the effects of other parameters. Plots of d and 7. showed a degree of positive and
282 negative correlation, respectively, but with far less specificity, as illustrated by the broad scatter
283 of sample points. Plots for the MOXE-specific parameters §, T showed little evidence of correla-
284 tion, indicating low specificity of signal changes in both the tissue and RBC phases, whereas HCT
285 demonstrated a greater degree of correlation, particularly in the RBC phase, indicating its stronger

286 influence on the observed signals (Figs. E and @

287 3D plots

288 3D plots displayed interaction effects between the three Patz and six MOXE parameters, by assessing
280 the increase or decrease in signal amplitude correlation as highlighted in the 3D surface plots (aerial
200 perspective) in Fig. [7, Sup. Figs. and Interaction effects for the Patz model were evident
201 between all parameters with stronger correlations in SVR - d and 7. - d combinations and are
202 heightened dependent on TR value, demonstrated by the 7,799 plots in Fig. For MOXE tissue
203 phase plots (Sup. Figs. and , interactions were observed in all parameter couplings with
204 less noticeable correlations observed when assessing T', and 4. Both parameters showed little model
205 output variability within the univariate method and displayed weak correlations in the scatter. As

206 such, minimal interactions with these parameters at the specific delay time chosen (~400 ms) can be
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207 seen. Interactions between SVR and d and SVR and HCT displayed more noticeable interactions
208 when evaluating the upper limits of SVR and d, against the lower limits of HCT. As the HCT
200 is RBC phase-specific, as previously mentioned, lower values would ensure maximum tissue phase
300 signal contributions for SVR and d. Similarly, noticeable interactions were observed for all MOXE
301 RBC phase parameter couplings. The largest interactions were observed in SVR against HCT, and
302 SVR against d. The lowest interactions were observed with SVR against T, §, and 7.. However,
303 unlike tissue phase simulations, RBC simulations displayed an increased sensitivity when assessing
304 the range of §, resulting in stronger correlations in comparison to the tissue phase. 3D plots for the

305 RBC compartment for SVR, d and 7. interactions displayed similar trends to the 3D scatter Patz

s06 plots (Sup. Figs. and .

307 Implications for in vivo measurements and limitations

308 Sensitivity varied for the different models and dissolved phase compartments within MOXE, but
s00 the surface area to volume ratio (SVR) and septal wall thickness (d) consistently demonstrated
310 greater sensitivity in both the Patz and MOXE models. The alveolar-capillary barrier thickness (0)
si1 showed the greatest difference in sensitivity between the two MOXE model dissolved phases, but
312 overall, sensitivity to variation in ¢ is low, which has previously been demonstrated experimentally
si3 ([19). Sensitivity to all other parameters was marginally greater than §, but substantially lower
s1a  than sensitivity to SVR and d. These observations provide useful guidance for the likely signal-to-
s15 noise ratio (SNR) requirements of CSSR measurements designed to measure model parameters. For
s16  example, an SNR of only ~2 would be adequate to distinguish the extremes of the range of possible
a1z SVR and d, whereas an SNR of ~15 would be required to distinguish the extremes of the range of
sis possible § (Figs. [3] and . More subtle differences would require correspondingly higher SNR.

319 Parameter ranges chosen for each model were extracted from a limited set of sources and mea-
320 surement techniques (Table . As a result, the ranges highlighted for each parameter may possess
321 intrinsic biases. Moreover, a broad range of both healthy and diseased values was used for each
322 sensitivity analysis technique without differentiating between disease type and stage of progression.
323 The analysis of stratified disease groups for both models would permit the evaluation of model
324 sensitivity to disease classification and progression.

325 Both models demonstrate higher sensitivity to TR measurements between 0 - 200 ms. Different
326 studies in the literature have evaluated ?*Xe signals over different TR ranges. For example, (6} [22)

327 assessed the Patz and MOXE models at TR < 200 ms, with a range of TR measurements (TR <
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;28 200 ms and TR > 200 ms) being more common generally in other studies (4;[19; [15). These results
320 suggest that future studies would benefit from performing comparable simulations before finalising
330 their experimental protocols.

331 It is possible that further sensitivity analyses may yield additional useful information. The
332 main objectives of the presented sensitivity analysis of the Patz and MOXE models were parameter
333 ranking and screening; however, mapping - which observes areas within the parameter input space
s34 producing extreme output values - was not evaluated. The inclusion of mapping methods such
335 as the distance-based generalised sensitivity analysis (DGSA) (10) in conjunction with the prior

336 methods may provide a further understanding of model sensitivity.

s Conclusions

338 The sensitivity analysis of the Patz model demonstrated a higher signal sensitivity to both SVR
330 and d than to 7.. Similarly, the sensitivity analysis of the MOXE model also displayed sensitivity
a0 to SVR and d, whilst also demonstrating sensitivity to HCT and 7. In contrast, a much lower
31 sensitivity to § was identified. Sensitivity variation as a result of delay time increased between the
322 first 200 ms for both models due mainly to the underlying processes surrounding saturation of the
a3 tissue and blood flow. Consequently, multiple measurements taken within periods between 0 - 200
3aa  ms were highlighted as advantageous in optimising model sensitivity due to the intrinsic parameter
a5 variation highlighted in both the signal percent change and scatter plot analyses. Interaction effects
a6 within the Patz and MOXE model were also shown to have an effect on the likely specificity of
347 changes in signal to changes in the underlying parameters. These findings demonstrate the likely
aas  ability of two hyperpolarised 2?Xe diffusion models to identify differences in lung microstructure

340 and function.
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e Figures and Tables

Table 1: Symbol, meaning, range, typical healthy values, and units of parameters used within the

Patz and MOXE models.

Symbol Meaning Range (mean =+ st. dev.) Healthy Units (citations)
SVR Surface area to volume ratio 196 + 175 256 em~! (5)

d Septal wall thickness 11.35 4+ 3.25 8.8 pm (45 [17))

Te Capillary transit time 1.3+ 0.8 1.3 s (21)

T Exchange time constant 0.039 £ 0.026 0.026 ms (45 [17)
HCT Haematocrit 0.225 £ 0.085 0.265 % (4;119)

o Alveolar-capillary barrier thickness 1.2065 + 0.4445 1.0 pm (3;19)
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Figure 1: Block diagrams of the MOXE and Patz diffusion systems with 12°Xe diffusing from both

boundaries alongside corresponding model-derived signal plots. The Patz model is represented by a

single plot of the dissolved phase signal, whereas the MOXE model is a coupled equation containing

plots for both the tissue and RBC compartments. Plug flow diagrams (a and b) highlight defined

spatial regions of blood quantifying blood flow.
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Figure 2: Univariate sensitivity analysis plots of the Patz parameters spanning the allowed range,

where the black dashed lines are the outputs associated with input Patz model values for a healthy

individual (Table|1) (11). Colour bars correspond to the defined range of each parameter.
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Figure 3: Univariate sensitivity analysis plots of the MOXE parameters spanning the allowed range

(tissue phase), where the black dashed lines are the outputs associated with input MOXE model

values for a healthy individual (Table [1)).
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Figure 4: Univariate sensitivity analysis plots of the MOXE parameters spanning the allowed range
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Figure 5: Signal percentage change (SPC) as a function of delay time (TR), highlighting the extremes
of the parameter range for the tissue phase (TP) and RBC compartments of the MOXE model (top
two rows) and for the Patz model dissolved phase (DP) (bottom row, boxed). The upper and lower
limits are the signal percentage change values when using the highest and lowest values within each

individual parameter range.
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Figure 6: 2D Scatter plots showing the signal relationship with each individual parameter whilst

allowing the full variation of the other model parameters.
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Figure 7: 3D plots show the relationship between each parameter considering the range of the
other parameters against the signal output. All simulations were taken at a TR of 400 ms with
the exception of 7,709, which was taken at a TR of 700 ms (red box); demonstrating a dependency

between interaction effects and TR (black boxes).
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Figure 8: Scatter plots illustrate the signal relationship with each parameter individually while
considering the complete variation of the other model parameters for the tissue phase in the MOXE

model.
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Figure 9: Scatter plots showing the signal relationship with each individual parameter whilst allow-

ing the full variation of the other model parameters for the RBC phase in the MOXE model.
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