

1 **Title: Macrophage inhibitor clodronate enhances liver transduction of lentiviral but  
2 not AAV vectors or mRNA lipid nanoparticles *in vivo*.**

3

4 **Authors:** Loukia Touramanidou<sup>1</sup>, Sonam Gurung<sup>1</sup>, Claudiu A. Cozmescu<sup>1</sup>, Dany P.  
5 Perocheau<sup>1</sup>, Dale Moulding<sup>1</sup>, Deborah Ridout<sup>1</sup>, Alex Cavedon<sup>3</sup>, Summar Siddiqui<sup>3</sup>, Lisa  
6 Rice<sup>3</sup>, Patrick F. Finn<sup>3</sup>, Paolo G.V. Martini<sup>3</sup>, Andrea Frassetto<sup>3</sup>, Simon N. Waddington<sup>4,5</sup>, John  
7 R. Counsell<sup>6</sup>, Paul Gissen<sup>1,2</sup>, Julien Baruteau<sup>1,2</sup>□

8

9 **Institutions:** <sup>1</sup> Great Ormond Street Institute of Child Health, University College London,  
10 London, UK, <sup>2</sup> National Institute for Health Research Great Ormond Street Hospital  
11 Biomedical Research Centre, University College London, London, UK, <sup>3</sup> Moderna, Inc.,  
12 Cambridge, MA, USA, <sup>4</sup> Institute for Women's Health, University College London, London,  
13 UK, <sup>5</sup> Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences,  
14 University of Witswatersrand, Johannesburg, South Africa. <sup>6</sup> Research Department of  
15 Targeted Intervention, UCL Division of Surgery and Interventional Science, London, UK.

16

17

18

19

20

21

22

23

24 **Corresponding author:** Dr Julien Baruteau  
25 Genetics & Genomic Medicine Department  
26 Great Ormond Street Institute of Child Health  
27 University College London  
28 30 Guildford Street  
29 WC1N 1EH. London,  
30 +44 (0) 20 7242 9789  
31 [j.baruteau@ucl.ac.uk](mailto:j.baruteau@ucl.ac.uk)  
32  
33 **Conflict of Interest:** JB is in receipt of research funding from Moderna Therapeutics.  
34 Moderna Therapeutics provided mRNA encapsulated lipid nanoparticles tested in this study.  
35  
36 **Funding:** This work was supported by funding from the United Kingdom Medical Research  
37 Council Clinician Scientist Fellowship MR/T008024/1 (JB) and grant research from Moderna  
38 Therapeutics (JB).  
39  
40 **Author approvals:** All authors have seen and approved the manuscript. This manuscript  
41 has not been accepted or published elsewhere.  
42  
43 **Ethics approval statement:** Animal procedures were performed under the UK Home Office  
44 licence PP9223137.  
45

46 **Abstract**

47

48 Recently approved adeno-associated viral (AAV) vectors for liver monogenic diseases  
49 hemophilia A and B are exemplifying the success of liver-directed viral gene therapy. In  
50 parallel, additional strategies are rapidly emerging to overcome some inherent AAV  
51 limitations, such as non-persistence of episomal transgene in rapidly growing liver and  
52 immune response. Integrating lentiviral vectors and non-viral lipid nanoparticles  
53 encapsulating mRNA (LNP-mRNA) are rapidly being developed, currently at preclinical and  
54 clinical stages respectively. Macrophages are first effector cells of the innate immune  
55 response triggered by gene therapy vectors. Macrophage uptake and activation following  
56 administration of viral gene therapy and LNPs has been reported. In this study, we assessed  
57 the biodistribution of AAV, lentiviral and LNP-mRNA gene therapy following inhibition of  
58 tissue macrophages by clodronate liposomes in neonatal and juvenile mice. Juvenile  
59 clodronate-treated mice showed significant increase of lentiviral-transduced hepatocytes,  
60 and increasing trend of transduction was shown in neonatally-injected mice. In contrast,  
61 AAV- and LNP-mRNA-treated neonatal and juvenile animals did not show significant  
62 increase of liver biodistribution following clodronate administration. These findings will have  
63 translational application for liver-targeting gene therapy programmes.

64

65

66

67

68

69

70

71 **Introduction**

72

73 Over the last two decades, gene therapy has transformed the therapeutic landscape of liver  
74 monogenic diseases demonstrating maturity with numerous clinical successes [1-3]. Adeno-  
75 associated viral (AAV) vectors represent the leading gene therapy strategy for targeting liver  
76 showing a favourable outcome between safety and efficacy, especially in adult patients [4-8].  
77 However, systemic administration of high doses of AAV vectors have shown limitations  
78 caused by severe innate and adaptive immune responses [9-12], preventing re-injections in  
79 humans [13]. AAV vectors deliver mainly episomal transgenes, which are not passed to  
80 daughter cells during cell division and liver growth [14-16]. Therefore, sustained clinical  
81 efficacy in a rapidly growing paediatric liver requires alternative gene therapy strategies such  
82 as integrative approaches, e.g. *in vivo* lentiviral vectors [17, 18], gene integration mediated  
83 by nucleases [19, 20] or non-viral technologies [21], , e.g., lipid nanoparticles (LNP)  
84 encapsulating mRNA (LNP-mRNA) [22-27] respectively.

85 Whatever the chosen gene therapy strategy, methods to optimise hepatocyte transduction  
86 are essential for efficacy, safety and cost-effectiveness. In addition, administering a minimal  
87 effective dose improves the safety profile as some viral vectors have shown dose-dependent  
88 severity of adverse events [28]. Macrophages are the first effector cells for innate immunity.  
89 As such, liver-targeting lentiviral gene therapy *in vivo* has shown high uptake by  
90 macrophages in the splenic marginal zone reducing efficacy [17, 18, 29, 30]. Macrophage  
91 activation following AAV vector administration has been reported [31]. Additionally, LNPs can  
92 trigger innate immunity by uptake from antigen presenting cells [32].

93 Clodronate (dichloroethylene-bisphosphonate or CI2MBP) is a bisphosphonate molecule  
94 with market authorisation in cancer. Clodronate-encapsulated liposomes achieve a transient  
95 depletion of circa 90% macrophages in both red pulp of the spleen and Kupffer cells in the  
96 liver at 24 hours after systemic injection (**Supplementary Figure 1**) [33, 34]. Adenoviral and

97 AAV vectors result in the activation of the innate immune system leading to elimination of  
98 transduced cells [35-42]. Resident hepatic and splenic macrophages act as triggers of the  
99 initial non-specific immune response against pathogens and are accountable for the majority  
100 of absorbed vector particles [17, 29, 30, 43-46]. Pre-administration of clodronate liposomes  
101 followed by administration of adenoviral vectors depleted macrophages and allowed higher  
102 liver transduction *in vivo* [47-49]. In contrast, pre-administration of clodronate and AAV vector  
103 injection *in vivo* produced a considerable reduction in transgene expression in the liver [50].  
104 Here we tested the effect of clodronate-mediated macrophage inhibition on liver transduction  
105 *in vivo* in neonatal and juvenile mice prior to administration of three different gene therapy  
106 modalities: lentiviral vector, AAV vector, and non-viral LNP-mRNA. We show that the  
107 induction of macrophage depletion through systemic administration of clodronate liposomes  
108 increases hepatocyte transduction by lentiviral vector but has no benefit for AAV vector and  
109 LNP-mRNA.

110

111 **Results:**

112

113 **Macrophage inhibition enhances lentiviral liver transduction in juvenile mice.**

114 Transient macrophage depletion by systemic pre-administration of clodronate increases  
115 adenoviral-mediated liver transduction [51]. We therefore assessed liver transduction after  
116 systemic administration of clodronate prior to intravenous lentiviral injection in neonatal and  
117 juvenile wild-type mice. CD1 mice received repeated intraperitoneal injections of clodronate-  
118 or PBS-encapsulated liposomes at 30 and 6 hours before a single intravenous injection with  
119 CCL.LP1.GFP vector at the dose of 4e10TU/Kg. Untreated animals were used as negative  
120 controls. One month following vector injection, mice were harvested, and livers were  
121 collected for analysis (**Figure 1A**).

122 In neonates, liver vector genome copy number (VCN) showed an increasing trend of liver  
123 transduction in the clodronate- versus PBS-injected group (**Figure 1B**). Liver  
124 immunostaining also showed an increasing trend in clodronate- versus PBS-treated animals  
125 with 15% and 1.2% of GFP expression respectively (**Figure 1C**). The pattern of hepatocyte  
126 transduction revealed a homogeneous and scattered expression in all injected mice with no  
127 predominant expression in periportal or pericentral hepatocytes (**Figure 1D**). In juvenile  
128 mice, liver VCN showed an increasing trend of liver transduction in clodronate- versus PBS-  
129 group (**Figure 1E**). These results were supported by a significant increase of liver  
130 transduction of GFP immunostaining in clodronate- versus PBS-treated cohorts with 28%  
131 and 12% GFP expression respectively ( $p=0.002$ ) (**Figure 1F, 1G**). Overall, these findings  
132 demonstrated an enhanced liver lentiviral-mediated transduction after pre-treatment with  
133 clodronate in both neonatal and juvenile animals, and a significantly increased transduction  
134 of liver in juvenile compared to neonates.

135

136 **Macrophage inhibition decreases splenic transduction and enhances lentiviral-  
137 mediated liver transduction.**

138 To assess reproducibility of enhanced liver transduction mediated by lentiviral vector  
139 following clodronate pre-exposure, the experiment performed in outbred CD1 mice was  
140 replicated with inbred C57BL/6J mice, another common mouse background strain used in  
141 research (**Figure 2A**) [52-54]. CD1 mice had been initially chosen for their superior breeding,  
142 large litters, and cost-effectiveness [55, 56]. We also assessed spleen VCN as an indirect  
143 marker of systemic macrophage depletion as previously published [17]. We confirmed in  
144 neonates the increasing trend of liver VCN (**Figure 2B**) and reducing trend of spleen VCN  
145 (**Figure 2C**) in the clodronate- versus PBS-treated group. PBS-treated group showed values  
146 similar to the untreated negative control values. GFP liver immunostaining further showed an  
147 increasing trend in the clodronate- versus PBS-treated group (**Figure 2D, 2E**). Compared to  
148 PBS-treated group, the clodronate-treated juvenile-injected animals showed significantly

149 increased liver VCN ( $p=0.008$ ) (**Figure 2F**), decreased splenic VCN ( $p=0.0002$ ) (**Figure 2G**),  
150 and increased liver GFP immunostaining ( $p=0.006$ ) (**Figure 2H, 2I**). As observed in CD1  
151 mice, the benefit of clodronate pre-treatment in lentiviral-mediated liver transduction was  
152 higher in juvenile compared to neonatal C57BL/6J mice. These results demonstrate that by  
153 reducing macrophage uptake of lentiviral particles via clodronate pre-treatment can enhance  
154 lentiviral mediated liver transduction. The significantly enhanced liver transduction was  
155 observed in juvenile mice in both outbred and inbred strains with comparable levels and  
156 effect observed for both liver VCN and immunostaining.

157

158 **Macrophage inhibition does not influence AAV-mediated liver transduction.**

159 Neonatal and juvenile CD1 mice received intraperitoneal injections of clodronate or PBS  
160 liposomes at 30 and 6 hours before they received intravenous injection of 1e13VG/Kg of  
161 AAV8.LP1.GFP vector. Untreated animals were used as negative controls. Animals were  
162 harvested at 4 weeks post-AAV administration (**Figure 3A**).

163 In neonates, liver VCN and GFP immunostaining showed similar results between clodronate-  
164 and PBS-treated control groups (**Figure 3B-D**). In juvenile animals, liver VCN and GFP  
165 immunostaining did not show significant differences between clodronate- versus PBS-  
166 treated groups (**Figure 3E-G**). The GFP immunostaining was <1% and 2.4% in neonates  
167 and juvenile animals, respectively. These results are consistent with AAV-mediated episomal  
168 transgene biodistribution in rapidly growing livers, with presence of clusters of transduced  
169 hepatocytes likely associated with rare integration events. Overall, these data show no  
170 benefit of clodronate pre-treatment and transient macrophage depletion for AAV-mediated  
171 hepatocyte transduction.

172

173

174

175 **LNP-mRNA mediated liver transduction does not benefit from macrophage inhibition.**

176 Although LNPs naturally accumulate in the liver following systemic administration [26], there  
177 is still a lack of understanding of how LNPs could interact with Kupffer cells and splenic  
178 resident macrophages, which could result in off-target uptake. We tested the hypothesis that  
179 LNP-mRNA mediated liver transduction could benefit from clodronate pre-treatment.  
180 Neonatal and juvenile CD1 mice were pre-treated intraperitoneally with either PBS or  
181 clodronate encapsulated liposomes 30 and 6 hours before the intravenous administration of  
182 engineered LNP encapsulating GFP mRNA (**Figure 4A**). mRNA expression is transient and  
183 can occur as early as 30 minutes and have a peak of expression at 24 hours following  
184 systemic administration, followed by progressive decline in expression [2]. As such the  
185 animals were harvested at 24 hours following systemic injection of LNP-mRNA. Untreated  
186 mice were used as negative controls.

187 In neonates (**Figure 4B-D**) and juvenile (**Figure 4E-G**) mice, both liver GFP western blot and  
188 immunostaining did not show enhanced expression between PBS and clodronate treated  
189 groups, suggesting no benefit of macrophage depletion in liver LNP uptake. In neonates,  
190 liver GFP immunostaining showed a decreasing trend in expression, suggesting reduced  
191 vector liver uptake. For all animals receiving LNP-mRNA, the transduction was  
192 homogeneous and diffuse. These data show that macrophage depletion has no or marginal  
193 effect on liver transduction mediated by LNP-mRNA.

194

195 **Discussion:**

196 Here we show that clodronate-mediated transient macrophage inhibition significantly  
197 increases lentiviral-mediated liver transduction in juvenile mice and shows increasing trend  
198 in neonatal mice in both outbred and inbred strains. The decreased uptake of lentiviral  
199 vectors by macrophages mechanically likely increased the vector pool for on-target liver

200 transduction. Conversely hepatotropic AAV and LNP-mRNA did not show any enhancement  
201 in liver transduction following macrophage inhibition.

202 The first line of defence against viral infections consists of the innate immune response  
203 induced by the complement pathway and circulating and tissue-resident macrophages.  
204 Vesicular stomatitis virus (VSV-G)-pseudotyped lentiviral vectors are opsonised by  
205 complement-mediated inactivation in human serum, likely due to the cross-reacting, not  
206 neutralizing, and complement-fixing anti-VSV-G antibodies in humans [57-59]. Lentiviral-  
207 binding antibodies and complement proteins can opsonize lentiviral vector particles for  
208 phagocytosis by liver and spleen macrophages and professional antigen presenting cells  
209 [60-62]. Due to immune response and complement activation upon systemic administration,  
210 high amounts of lentiviral vector are uptaken by liver and splenic macrophages instead of  
211 hepatocytes. It has been shown that following intravenous injection, lentiviral vectors  
212 preferentially transduce Kupffer cells and tissue resident macrophages before hepatocytes  
213 [63]. High uptake of lentiviral vector by macrophages has previously been reported in liver  
214 and spleen, with over 70% of lentiviral DNA integrated in non-parenchymal cells in 8-week  
215 old-injected C57BL/6 mice. Fifty percent of lentiviral vector is uptaken by the spleen in non-  
216 human primates [17]. The preferential gene transfer to the spleen by VSV-G pseudotyped  
217 lentiviral vector, despite systemic administration and the well-described VSV-G pantropism,  
218 may be due to the abundant blood supply to such filtering organ [64]. Following preferential  
219 uptake by macrophages, lentiviral vectors activate the innate immune system by eliciting an  
220 inflammatory response early after vector administration [37, 65-68].

221 Therefore, avoiding macrophage uptake is an appealing strategy to increase the vector pool  
222 available for hepatocytes. This strategy was successfully tested *in vivo* by overexpressing  
223 the “don’t eat me” CD47 antigen signal at the capsid surface of lentiviral vectors [17]. In this  
224 study, transient depletion of macrophages by a macrophage inhibitor, clodronate liposomes,  
225 successfully benefited liver transduction mediated by lentiviral vector. Clodronate is a  
226 hydrophilic molecule that can be entrapped between concentric phospholipid bilayers to form

227 artificial spheres or liposomes [69]. Free clodronate has a short half-life and is rapidly  
228 cleared from the circulation by the kidney while the liposome-encapsulated clodronate is  
229 preferentially taken up by macrophages [33]. Following degradation of phospholipid bilayers  
230 by lysosomal phospholipases, clodronate is metabolised intracellularly to cytotoxic  
231 adenosine triphosphate (ATP) analogue,  $\beta,\gamma$ -Dichloromethylene ATP, leading to macrophage  
232 apoptosis [70]. Clodronate, a molecule from the bisphosphonate family, is routinely  
233 prescribed in clinical settings to prevent bone resorption in cancer [71-73]. Clodronate is  
234 generally well tolerated, with few adverse events such as transient gastrointestinal  
235 disturbances, transient increase in serum creatinine and parathyroid hormone levels [71].  
236 This short-term and selective depletion of macrophages has shown benefit in adenoviral-  
237 mediated delivery with increased adenoviral-mediated liver transduction and reduced  
238 humoral immune response against the transgenic protein [74]. Similar to lentiviral vectors,  
239 adenoviral vectors activate strong innate immune response through both Toll-like receptor  
240 (TLR)-dependent and independent pathways resulting in upregulation of type I Interferons  
241 (IFNs) and inflammatory cytokines [75-77]. Adenoviral vectors activate the complement-  
242 mediated innate immune response via antibodies in individuals having pre-existing immunity  
243 [78].

244 At doses aimed for liver-targeting, AAV vectors induce a mild but detectable innate immune  
245 response. This however occurs at a lesser extent than the ones triggered by adenoviral and  
246 lentiviral vectors [79-83]. The innate immune response against AAV vectors is largely  
247 mediated by proinflammatory cytokines and chemokines in the transduced tissue as a result  
248 of TLR engagement, but is limited and highly transient [84, 85]. These molecules in turn  
249 promote immune cell induction and activation allowing the initiation and expansion of anti-  
250 transgene and/or anti-capsid adaptive immune cells, primarily CD8+ T cells [86-88]. In line  
251 with our findings, the absence of AAV-mediated enhanced liver transduction following  
252 clodronate-induced macrophage inhibition was previously reported in 8-week-old C57BL6/J  
253 mice [50]. The different observations between lentiviral and AAV-mediated liver transduction

254 following macrophage inhibition by clodronate could be explained by the different innate  
255 immune responses triggered by each capsid.

256 Liver targeting typically LNPs have high affinity for hepatocytes facilitated by incorporation of  
257 apolipoprotein E (ApoE), which mediates rapid hepatocyte uptake via low-density lipoprotein  
258 receptor (LDLr) interaction [89]. As such macrophages likely play a limited role in LNP  
259 uptake or clearance. Though macrophage depletion could theoretically still provide an  
260 incremental benefit as varying lipid composition such as amino lipids, can facilitate different  
261 cell tropism within the liver microenvironment [90]. Modifying the cholesterol structure can  
262 also increase delivery to the hepatic endothelial and Kupffer cells at doses as low as  
263 0.05mg/kg [91]. However we did not observe any enhanced liver transduction following  
264 transient macrophage inhibition, suggesting limited role of macrophage depletion on LNP  
265 mediated transduction. This could also be an indication of limited endosomal escape of the  
266 cargo which is independent of macrophage function.

267 In conclusion, our study shows that clodronate-induced macrophage inhibition enhances  
268 lentiviral-mediated liver transduction *in vivo*. Macrophage inhibition has no effect on AAV or  
269 LNP-mRNA mediated liver targeting gene therapy. These findings have direct translational  
270 benefit for *in vivo* lentiviral gene therapy to achieve a minimal effective dose and improve  
271 safety.

272

## 273 **Materials and Methods**

274

## 275 **Experimental design**

276 Neonatal and 2.5-week-old animals received systemic administration of clodronate  
277 liposomes (F70101C-N-FOR and F70101-NL-FOR, Stratech, Ely, UK) by repeated  
278 intraperitoneal injections at 6 and 30 hours as per manufacturer's dose recommendation (0.2

279 mL for 20g animal body weight) prior to intravenous injection of viral or non-viral gene  
280 therapy vectors. Vector administration was carried out by intravenous superficial temporal  
281 vein or tail vein injection for neonatal and 2.5-weeks-old mice, respectively. Lentiviral vector  
282 dose was 4e10TU/Kg for all treated animals while 1e13Vg/Kg and 1mg/Kg was the dose for  
283 AAV and LNP-mRNA injections, respectively. Lentiviral vector was produced in house  
284 following third-generation lentiviral vector production system. Serotype 8 AAV vector was  
285 purchased by Vector Biosystems Inc (Malvern, PA, US) and LNP-mRNA were provided by  
286 Moderna Therapeutics (Massachusetts, US). Lentiviral and AAV vector-injected mice were  
287 harvested at 4 weeks following vector injection while LNP-mRNA-injected animals were  
288 harvested at 24 hours post vector injection.

289

## 290 **Animals**

291 Animal procedures were approved by institutional ethical review and performed per UK  
292 home office licenses PP9223137, compliant with ARRIVE and NC3R guidelines. Wild-type  
293 C57BL/6 and CD1 mice were purchased by Charles River (Harlow, UK) and maintained on  
294 standard rodent chow (Harlan 2018, Teklab Diets, Madison, WI) with free access to water in  
295 a 12-hour light/12-hour dark environment.

296

## 297 **Vector production and formulation**

298 VSV.G-pseudotyped third-generation self-inactivating (SIN) lentiviral vectors carrying the  
299 Green fluorescent protein (GFP) transgene were produced by transient transfection into  
300 HEK293T cells. Producer cells were transfected with a solution containing the selected  
301 lentiviral vector transgene backbone, the packaging plasmids pMDLg/pRRE and pCMV.REV,  
302 pMD2.G (Plasmid Factory, Bielefeld, Germany) and polyethylenimine (PEI) (24765,  
303 Polysciences, Warrington, US). Transfection media was changes after 4 hours, and  
304 supernatant was collected 48 hours after media change. Lentiviral vector-enriched

305 supernatant was then sterilized through a 0.22 $\mu$ m filter and ultracentrifuged at 23,000rpm for  
306 2 hours. Pellet containing the vector particles was then resuspended in small volumes of  
307 phosphate buffer saline (PBS), aliquoted, and stored in -80°C. After virus collection, a  
308 titration step was performed by transduction of HEK293T cells with the lentiviral vector at  
309 different dilutions. Seven days later, the transduced cells were collected, and qPCR was  
310 performed for quantification of vector genomes per mL. The AAV vector, presented the  
311 following sequence: a GFP transgene under the transcriptional activity of the LP1 promoter  
312 and with the Woodchuck Post-Regulatory Element (WPRE) downstream the transgene. GFP  
313 encoding LNP-mRNA provided by Moderna Therapeutics (Cambridge, USA) were produced  
314 using their proprietary technology.

315

### 316 **Vector copy number**

317 Following liver perfusion, liver and spleen samples from lentiviral and AAV vector-injected  
318 mice were rapidly frozen using dry ice and stored at -80°C until genomic DNA extraction.  
319 The QIAgen DNeasy Blood & Tissue Kit (69504, QIAgen, Hilden, Germany) was used for  
320 genomic DNA extraction, following manufacturer's guidelines. The plasmid standard curve  
321 was prepared by the serial dilutions ranging from 10<sup>7</sup> copies/5 $\mu$ L to 10<sup>3</sup> copies/5 $\mu$ L of a  
322 plasmid, containing for titin, and WPRE sequences. For lentiviral vector genome copies, the  
323 WPRE sequence was used with the following set of primers 5'- TGGATTCTGCGCGGGA -3'  
324 (forward), 5'- GAAGGAAGGTCCGCTGGATT -3' (reverse), 5'-  
325 FAMCTTCTGCTACGTCCCTTCGGCCCT-TAMRA -3' (probe). The housekeeping gene *titin*  
326 was used for quantification of cell was used to normalize the results, using the following  
327 primers; for titin: 5'- AAAACGAGCAGTGACGTGAGC -3' (forward), 5'-  
328 TTCAGTCATGCTGCTAGCGC -3' (reverse), 5'- 56-FAM/  
329 TGCACGGAAGCGTCTCGTCTCAGTC/3HQ\_1 -3' (probe). TaqMan Universal PCR Master  
330 Mix (4304437, Thermo Fisher, Dartford, UK) was used to amplify the region of interest. The  
331 standard cycling conditions were used, starting with an initial step at 50°C for 2 minutes,

332 followed by a 10-minute activation step at 95°C, and then 40 cycles of denaturation at 95°C  
333 for 15 seconds, annealing primers at 72°C for 1 minute, and extension at 60°C for 1 minute  
334 in a qPCR machine (4376357, Thermo Fisher, Dartford, UK).

335

336 **Immunohistochemical staining**

337 At harvest, liver and spleen samples were fixed in 10% formalin solution, left at room  
338 temperature for 48 hours before transfer and storage in 70% ethanol at 4°C. The liver was  
339 paraffin-embedded and sectioned at 5µM thickness. The resulting slides were then kept at  
340 room temperature until staining. Sections were dewaxed in Histoclear (NAT1330, Scientific  
341 Laboratory Supplies, Nottingham, UK), dehydrated through a series graded ethanol solution  
342 to water followed by incubated in 1% H<sub>2</sub>O<sub>2</sub> diluted in Methanol for 30 minutes to remove  
343 blood stains. Antigen retrieval was performed in boiling 0.01M citrate buffer for 20 minutes  
344 and then cooled to room temperature. Slides were blocked for non-specific binding by  
345 adding 15% goat serum (ab7481-10ml, Abcam, Cambridge, UK) diluted in 1x Tris-buffered  
346 saline with 0.1% tween-20 (TBS-T) followed by incubation in a moist chamber for 30  
347 minutes. After washing, primary rabbit polyclonal anti-GFP (Abcam, Cambridge, UK ab290  
348 1:1000), diluted in 10% goat serum, was added to sections, and incubated overnight at 4°C.  
349 Following 3x washing with TBS-T, 3,3'-Diaminobenzidine (DAB) staining was performed  
350 using Polink-2 Plus HRP Polymer and AP Polymer detection for Rb antibody kit (D39-18,  
351 Origene, Washington, USA) following manufacturer's instructions. The slides were then  
352 dehydrated with increasing gradient of ethanol to water followed by a final step with  
353 Histoclear. The slides were mounted with water-free mounting medium (100579, Merk,  
354 Darmstadt, Germany) and dried overnight. Images of liver samples with DAB staining were  
355 obtained using a microscope camera (DFC420, Leica Microsystems, Milton Keynes, UK)  
356 and software (Image Analysis; Leica Microsystems, Wetzlar, Germany) was utilized to  
357 capture representative images. Quantitative analysis was performed by threshold analysis  
358 using the Image J software (Maryland, USA) (**Supplementary macro 1**).

359 **Western blot**

360 30mg of liver was homogenised in ice-cold 1x RIPA buffer (Cell Signalling, Leiden,  
361 Netherlands) using Precellys homogenising tube and homogeniser, centrifuged at 10,000g  
362 for 20 minutes at 4°C. Protein concentration was measured using BCA Protein Assay kit  
363 (23227, Thermo Fisher Scientific, Dartford, UK). For each sample, 40µg of protein was  
364 diluted 1:1 with 2x Laemmli sample buffer (containing 10% 2-β-mercaptoethanol (β-ME))  
365 making up 40µL total volume, followed by vortexing and heating to 95°C for 10 minutes.  
366 SDS-PAGE was used to separate the proteins at 100V for 1 hour and wet transfer of  
367 proteins into an immobilin PVDF membrane was performed at 400mA for 1 hour. The  
368 membrane was blocked in 5% non-fat milk powder in PBS-T followed by overnight  
369 incubation at 4°C with primary antibodies (anti-GFP; Abcam ab290 1:1000, anti-GAPDH;  
370 Abcam ab9485 1:10000, Cambridge, UK) 3x 5 minute washes with PBS-T, 1 hour incubation  
371 with fluorescent secondary antibodies (IRDye® 800CW Goat anti-Rabbit IgG 1:1000, 926-  
372 32210 and IRDye® 680RD Donkey anti-Mouse IgG, 923-68072, Licor, Nebraska, USA) and  
373 3x 5 minutes washes with PBS-T. Image acquisition and analysis was performed using Licor  
374 Odyssey and image analysed using Licor ImageStudio Lite software (Nebraska, USA).

375

376 **Statistical analysis:** Data was analysed and represented using Graphpad Prism 9.0  
377 software (San Diego, CA, USA). Graphs display the mean ± standard deviation.  
378 Comparison were made between independent groups using one-way ANOVA with Tukey's  
379 multiple comparisons test.

380

381 **Author Contributions:** JB and LT designed the study. LT and SG conducted most of the  
382 experimental work. DP and CC, SW, DM, and DR contributed to technical assistance in  
383 experimental work. PFF, AC, SS, LR, PGVM, AF provided the *GFP* mRNA construct. LT, SG  
384 and JB wrote the manuscript. All authors reviewed and approved the manuscript.

385 **Acknowledgements:** The authors thank Samantha Richards, Rebecca Towns, Katherine  
386 Howett, Mirabela Bandol and the staff from UCL Biological Services for their help with animal  
387 breeding and maintenance at University College London.

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407 **References:**

408 1. Duff, C., I.E. Alexander, and J. Baruteau, *Gene therapy for urea cycle defects: An*  
409 *update from historical perspectives to future prospects.* J Inherit Metab Dis, 2023.

410 2. Gurung, S., et al., *mRNA therapy restores ureagenesis and corrects glutathione*  
411 *metabolism in argininosuccinic aciduria.* bioRxiv, 2022: p. 2022.10.19.512931.

412 3. Ashley, S.N., et al., *Adeno-associated viral gene therapy corrects a mouse model of*  
413 *argininosuccinic aciduria.* Molecular Genetics and Metabolism, 2018. **125**(3): p. 241-  
414 250.

415 4. Manno, C.S., et al., *Successful transduction of liver in hemophilia by AAV-Factor IX*  
416 *and limitations imposed by the host immune response.* Nature medicine, 2006. **12**(3):  
417 p. 342-347.

418 5. Nathwani, A.C., et al., *Adenovirus-associated virus vector-mediated gene transfer in*  
419 *hemophilia B.* New England Journal of Medicine, 2011. **365**(25): p. 2357-2365.

420 6. George, L.A., et al., *Hemophilia B gene therapy with a high-specific-activity factor IX*  
421 *variant.* New England Journal of Medicine, 2017. **377**(23): p. 2215-2227.

422 7. Miesbach, W., et al., *Gene therapy with adeno-associated virus vector 5-human*  
423 *factor IX in adults with hemophilia B.* Blood, The Journal of the American Society of  
424 Hematology, 2018. **131**(9): p. 1022-1031.

425 8. Rangarajan, S., et al., *AAV5-factor VIII gene transfer in severe hemophilia A.* New  
426 England Journal of Medicine, 2017. **377**(26): p. 2519-2530.

427 9. Calcedo, R., et al., *Worldwide Epidemiology of Neutralizing Antibodies to Adeno-*  
428 *Associated Viruses.* The Journal of Infectious Diseases, 2009. **199**(3): p. 381-390.

429 10. Wang, L., et al., *The Pleiotropic Effects of Natural AAV Infections on Liver-directed*  
430 *Gene Transfer in Macaques.* Molecular Therapy, 2010. **18**(1): p. 126-134.

431 11. Perocheau, D.P., et al., *Age-Related Seroprevalence of Antibodies Against AAV-LK03*  
432 *in a UK Population Cohort.* Human Gene Therapy, 2018. **30**(1): p. 79-87.

433 12. Fitzpatrick, Z., et al., *Influence of Pre-existing Anti-capsid Neutralizing and Binding*  
434 *Antibodies on AAV Vector Transduction*. Molecular Therapy - Methods & Clinical  
435 Development, 2018. **9**: p. 119-129.

436 13. Mingozzi, F. and K.A. High, *Overcoming the host immune response to adeno-*  
437 *associated virus gene delivery vectors: the race between clearance, tolerance,*  
438 *neutralization, and escape*. Annual review of virology, 2017. **4**: p. 511-534.

439 14. Penuaud-Budloo, M., et al., *Adeno-associated virus vector genomes persist as*  
440 *episomal chromatin in primate muscle*. J Virol, 2008. **82**(16): p. 7875-85.

441 15. Deyle, D.R. and D.W. Russell, *Adeno-associated virus vector integration*. Curr Opin  
442 Mol Ther, 2009. **11**(4): p. 442-7.

443 16. Dalwadi, D.A., et al., *AAV integration in human hepatocytes*. Mol Ther, 2021. **29**(10):  
444 p. 2898-2909.

445 17. Milani, M., et al., *Phagocytosis-shielded lentiviral vectors improve liver gene therapy*  
446 *in nonhuman primates*. Science Translational Medicine, 2019. **11**(493): p. eaav7325.

447 18. Milani, M., et al., *Liver-directed lentiviral gene therapy corrects hemophilia A mice*  
448 *and achieves normal-range factor VIII activity in non-human primates*. Nat Commun,  
449 2022. **13**(1): p. 2454.

450 19. Cunningham, S.C., et al., *Modeling correction of severe urea cycle defects in the*  
451 *growing murine liver using a hybrid recombinant adeno-associated virus/piggyBac*  
452 *transposase gene delivery system*. Hepatology, 2015. **62**(2): p. 417-28.

453 20. Yang, Y., et al., *A dual AAV system enables the Cas9-mediated correction of a*  
454 *metabolic liver disease in newborn mice*. Nature Biotechnology, 2016. **34**(3): p. 334-  
455 338.

456 21. Barzel, A., et al., *Promoterless gene targeting without nucleases ameliorates*  
457 *haemophilia B in mice*. Nature, 2015. **517**(7534): p. 360-4.

458 22. Hackett, P.B., *Integrating DNA vectors for gene therapy*. Mol Ther, 2007. **15**(1): p. 10-  
459 2.

460 23. Schagen, F.H.E., et al., *Insertion vectors for gene therapy*. Gene Therapy, 2000. **7**(4):  
461 p. 271-272.

462 24. Buchschacher, G.L., Jr. and F. Wong-Staal, *Development of lentiviral vectors for*  
463 *gene therapy for human diseases*. Blood, 2000. **95**(8): p. 2499-2504.

464 25. Martini, P.G.V. and L.T. Guey, *A New Era for Rare Genetic Diseases: Messenger*  
465 *RNA Therapy*. Hum Gene Ther, 2019. **30**(10): p. 1180-1189.

466 26. Hajj, K.A. and K.A. Whitehead, *Tools for translation: non-viral materials for*  
467 *therapeutic mRNA delivery*. Nature Reviews Materials, 2017. **2**(10): p. 17056.

468 27. Jung, H.N., et al., *Lipid nanoparticles for delivery of RNA therapeutics: Current status*  
469 *and the role of in vivo imaging*. Theranostics, 2022. **12**(17): p. 7509-7531.

470 28. Kishimoto, T.K. and R.J. Samulski, *Addressing high dose AAV toxicity - 'one and*  
471 *done' or 'slower and lower'?* Expert Opin Biol Ther, 2022. **22**(9): p. 1067-1071.

472 29. Noelia, A. and A. Castrillo, *Origin and specialization of splenic macrophages*. Cellular  
473 immunology, 2018. **330**: p. 151-158.

474 30. Kashimura, M., *The human spleen as the center of the blood defense system*.  
475 International Journal of Hematology, 2020. **112**(2): p. 147-158.

476 31. Muhuri, M., et al., *Overcoming innate immune barriers that impede AAV gene therapy*  
477 *vectors*. J Clin Invest, 2021. **131**(1).

478 32. Connors, J., et al., *Lipid nanoparticles (LNP) induce activation and maturation of*  
479 *antigen presenting cells in young and aged individuals*. Communications Biology,  
480 2023. **6**(1): p. 188.

481 33. van Rooijen, N. and E. van Kesteren-Hendrikx, *CLODRONATE LIPOSOMES:*  
482 *PERSPECTIVES IN RESEARCH AND THERAPEUTICS*. Journal of Liposome  
483 Research, 2002. **12**(1-2): p. 81-94.

484 34. Van Rooijen, N. and A. Sanders, *Liposome mediated depletion of macrophages:*  
485 *mechanism of action, preparation of liposomes and applications*. J Immunol Methods,  
486 1994. **174**(1-2): p. 83-93.

487 35. Yang, Y., et al., *Cellular immunity to viral antigens limits E1-deleted adenoviruses for*  
488 *gene therapy*. Proceedings of the National Academy of Sciences, 1994. **91**(10): p.  
489 4407-4411.

490 36. Yang, Y., et al., *Immune responses to viral antigens versus transgene product in the*  
491 *elimination of recombinant adenovirus-infected hepatocytes in vivo*. Gene therapy,  
492 1996. **3**(2): p. 137-144.

493 37. Crystal, R.G., et al., *Administration of an adenovirus containing the human CFTR*  
494 *cDNA to the respiratory tract of individuals with cystic fibrosis*. Nature genetics, 1994.  
495 **8**(1): p. 42-51.

496 38. Zhang, H.-G., et al., *Inhibition of tumor necrosis factor  $\alpha$  decreases inflammation and*  
497 *prolongs adenovirus gene expression in lung and liver*. Human gene therapy, 1998.  
498 **9**(13): p. 1875-1884.

499 39. Raper, S.E., et al., *A pilot study of in vivo liver-directed gene transfer with an*  
500 *adenoviral vector in partial ornithine transcarbamylase deficiency*. Human gene  
501 therapy, 2002. **13**(1): p. 163-175.

502 40. Tuohy, G.P. and R. Megaw, *A systematic review and meta-analyses of interventional*  
503 *clinical trial studies for gene therapies for the inherited retinal degenerations (IRDs)*.  
504 Biomolecules, 2021. **11**(5): p. 760.

505 41. Halbert, C.L., et al., *Capsid-expressing DNA in AAV vectors and its elimination by*  
506 *use of an oversize capsid gene for vector production*. Gene therapy, 2011. **18**(4): p.  
507 411-417.

508 42. Russell, S., et al., *Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in*  
509 *patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled,*  
510 *open-label, phase 3 trial*. The Lancet, 2017. **390**(10097): p. 849-860.

511 43. Den Haan, J.M. and G. Kraal, *Innate immune functions of macrophage*  
512 *subpopulations in the spleen*. Journal of innate immunity, 2012. **4**(5-6): p. 437-445.

513 44. Di Paolo, N.C., et al., *Virus binding to a plasma membrane receptor triggers*  
514 *interleukin-1 $\alpha$ -mediated proinflammatory macrophage response in vivo*. *Immunity*,  
515 2009. **31**(1): p. 110-121.

516 45. Worgall, S., et al., *Innate immune mechanisms dominate elimination of adenoviral*  
517 *vectors following in vivo administration*. *Human gene therapy*, 1997. **8**(1): p. 37-44.

518 46. Alemany, R., K. Suzuki, and D.T. Curiel, *Blood clearance rates of adenovirus type 5*  
519 *in mice*. *Journal of General Virology*, 2000. **81**(11): p. 2605-2609.

520 47. Wang, S., et al., *Effect of clodronate on macrophage depletion and adenoviral-*  
521 *mediated transgene expression in salivary glands*. *J Oral Pathol Med*, 1999. **28**(4): p.  
522 145-51.

523 48. Alzuguren, P., et al., *Transient depletion of specific immune cell populations to*  
524 *improve adenovirus-mediated transgene expression in the liver*. *Liver International*,  
525 2015. **35**(4): p. 1274-1289.

526 49. Wolff, G., et al., *Enhancement of in vivo adenovirus-mediated gene transfer and*  
527 *expression by prior depletion of tissue macrophages in the target organ*. *Journal of*  
528 *virology*, 1997. **71**(1): p. 624-629.

529 50. Yu, D.L., et al., *Macrophage Depletion via Clodronate Pretreatment Reduces*  
530 *Transgene Expression from AAV Vectors In Vivo*. *Viruses*, 2021. **13**(10).

531 51. Schiedner, G., et al., *Selective depletion or blockade of Kupffer cells leads to*  
532 *enhanced and prolonged hepatic transgene expression using high-capacity*  
533 *adenoviral vectors*. *Molecular Therapy*, 2003. **7**(1): p. 35-43.

534 52. Silver, L., *Inbred Strain*, in *Brenner's Encyclopedia of Genetics (Second Edition)*, S.  
535 Maloy and K. Hughes, Editors. 2001, Academic Press: San Diego. p. 53.

536 53. Casellas, J., *Inbred mouse strains and genetic stability: a review*. *Animal*, 2011. **5**(1):  
537 p. 1-7.

538 54. Roderick, T.H., *Mouse*, in *Brenner's Encyclopedia of Genetics (Second Edition)*, S.  
539 Maloy and K. Hughes, Editors. 2013, Academic Press: San Diego. p. 482-485.

540 55. Hsieh, L.S., et al., *Outbred CD1 mice are as suitable as inbred C57BL/6J mice in*  
541 *performing social tasks.* *Neurosci Lett*, 2017. **637**: p. 142-147.

542 56. Gad, S.C., *Diesel Fuel*, in *Encyclopedia of Toxicology (Third Edition)*, P. Wexler,  
543 Editor. 2014, Academic Press: Oxford. p. 115-118.

544 57. Annoni, A., et al., *Modulation of immune responses in lentiviral vector-mediated gene*  
545 *transfer.* *Cell Immunol*, 2019. **342**: p. 103802.

546 58. DePolo, N.J., et al., *VSV-G pseudotyped lentiviral vector particles produced in*  
547 *human cells are inactivated by human serum.* *Mol Ther*, 2000. **2**(3): p. 218-22.

548 59. Annoni, A., et al., *Liver gene therapy by lentiviral vectors reverses anti-factor IX pre-*  
549 *existing immunity in haemophilic mice.* *EMBO Mol Med*, 2013. **5**(11): p. 1684-97.

550 60. Kawai, T. and S. Akira, *Innate immune recognition of viral infection.* *Nature*  
551 *immunology*, 2006. **7**(2): p. 131-137.

552 61. Brown, B.D. and D. Lillicrap, *Dangerous liaisons: the role of “danger” signals in the*  
553 *immune response to gene therapy.* *Blood*, The Journal of the American Society of  
554 *Hematology*, 2002. **100**(4): p. 1133-1140.

555 62. Akira, S., S. Uematsu, and O. Takeuchi, *Pathogen recognition and innate immunity.*  
556 *Cell*, 2006. **124**(4): p. 783-801.

557 63. Follenzi, A., L. Santambrogio, and A. Annoni, *Immune responses to lentiviral vectors.*  
558 *Curr Gene Ther*, 2007. **7**(5): p. 306-15.

559 64. Finkelshtein, D., et al., *LDL receptor and its family members serve as the cellular*  
560 *receptors for vesicular stomatitis virus.* *Proceedings of the National Academy of*  
561 *Sciences*, 2013. **110**(18): p. 7306-7311.

562 65. Benihoud, K., et al., *Efficient, repeated adenovirus-mediated gene transfer in mice*  
563 *lacking both tumor necrosis factor alpha and lymphotoxin α.* *Journal of virology*, 1998.  
564 **72**(12): p. 9514-9525.

565 66. Zhang, H.G., et al., *Inhibition of tumor necrosis factor alpha decreases inflammation*  
566 *and prolongs adenovirus gene expression in lung and liver.* *Hum Gene Ther*, 1998.  
567 **9**(13): p. 1875-84.

568 67. Muruve, D.A., et al., *Adenoviral gene therapy leads to rapid induction of multiple*  
569 *chemokines and acute neutrophil-dependent hepatic injury in vivo*. Human gene  
570 therapy, 1999. **10**(6): p. 965-976.

571 68. Schnell, M.A., et al., *Activation of innate immunity in nonhuman primates following*  
572 *intraportal administration of adenoviral vectors*. Molecular Therapy, 2001. **3**(5): p.  
573 708-722.

574 69. Akbarzadeh, A., et al., *Liposome: classification, preparation, and applications*.  
575 Nanoscale Res Lett, 2013. **8**(1): p. 102.

576 70. van Rooijen, N., A. Sanders, and T.K. van den Berg, *Apoptosis of macrophages*  
577 *induced by liposome-mediated intracellular delivery of clodronate and propamidine*. J  
578 Immunol Methods, 1996. **193**(1): p. 93-9.

579 71. Hurst, M. and S. Noble, *Clodronate*. Drugs & Aging, 1999. **15**(2): p. 143-167.

580 72. Green, J.R., *Antitumor effects of bisphosphonates*. Cancer, 2003. **97**(3 Suppl): p.  
581 840-7.

582 73. Santini, D., et al., *The antineoplastic role of bisphosphonates: from basic research to*  
583 *clinical evidence*. Ann Oncol, 2003. **14**(10): p. 1468-76.

584 74. Schiedner, G., et al., *Selective depletion or blockade of Kupffer cells leads to*  
585 *enhanced and prolonged hepatic transgene expression using high-capacity*  
586 *adenoviral vectors*. Mol Ther, 2003. **7**(1): p. 35-43.

587 75. Yamaguchi, T., et al., *Role of MyD88 and TLR9 in the innate immune response*  
588 *elicited by serotype 5 adenoviral vectors*. Human gene therapy, 2007. **18**(8): p. 753-  
589 762.

590 76. Huang, X. and Y. Yang, *Innate immune recognition of viruses and viral vectors*.  
591 Human gene therapy, 2009. **20**(4): p. 293-301.

592 77. Minari, J., S. Mochizuki, and K. Sakurai, *Enhanced cytokine secretion owing to*  
593 *multiple CpG side chains of DNA duplex*. Oligonucleotides, 2008. **18**(4): p. 337-344.

594 78. Appledorn, D., et al., *Complex interactions with several arms of the complement*  
595 *system dictate innate and humoral immunity to adenoviral vectors*. Gene therapy,  
596 2008. **15**(24): p. 1606-1617.

597 79. Carestia, A., et al., *Modulation of the liver immune microenvironment by the adeno-*  
598 *associated virus serotype 8 gene therapy vector*. Mol Ther Methods Clin Dev, 2021.  
599 **20**: p. 95-108.

600 80. Büeler, H., *Adeno-associated viral vectors for gene transfer and gene therapy*.  
601 Biological chemistry, 1999. **380**(6): p. 613-622.

602 81. Kay, M.A., J.C. Glorioso, and L. Naldini, *Viral vectors for gene therapy: the art of*  
603 *turning infectious agents into vehicles of therapeutics*. Nature medicine, 2001. **7**(1):  
604 p. 33-40.

605 82. Carter, P. and R. Samulski, *Adeno-associated viral vectors as gene delivery vehicles*.  
606 International journal of molecular medicine, 2000. **6**(1): p. 17-44.

607 83. Zaiss, A.K., et al., *Differential activation of innate immune responses by adenovirus*  
608 *and adeno-associated virus vectors*. J Virol, 2002. **76**(9): p. 4580-90.

609 84. Zhu, J., X. Huang, and Y. Yang, *The TLR9-MyD88 pathway is critical for adaptive*  
610 *immune responses to adeno-associated virus gene therapy vectors in mice*. The  
611 Journal of clinical investigation, 2009. **119**(8): p. 2388-2398.

612 85. Zaiss, A.K., et al., *Complement is an essential component of the immune response to*  
613 *adeno-associated virus vectors*. Journal of virology, 2008. **82**(6): p. 2727-2740.

614 86. Ertl, H.C. and K.A. High, *Impact of AAV capsid-specific T-cell responses on design*  
615 *and outcome of clinical gene transfer trials with recombinant adeno-associated viral*  
616 *vectors: an evolving controversy*. Human gene therapy, 2017. **28**(4): p. 328-337.

617 87. Rogers, G.L., et al., *Innate immune responses to AAV vectors*. Frontiers in  
618 microbiology, 2011. **2**: p. 194.

619 88. Hösel, M., et al., *Toll-like receptor 2-mediated innate immune response in human*  
620 *nonparenchymal liver cells toward adeno-associated viral vectors*. Hepatology, 2012.  
621 **55**(1): p. 287-297.

622 89. Akinc, A., et al., *Targeted delivery of RNAi therapeutics with endogenous and*  
623 *exogenous ligand-based mechanisms*. Mol Ther, 2010. **18**(7): p. 1357-64.

624 90. Sago, C.D., et al., *Cell subtypes within the liver microenvironment differentially*  
625 *interact with lipid nanoparticles*. Cellular and Molecular Bioengineering, 2019. **12**: p.  
626 389-397.

627 91. Paunovska, K., et al., *Nanoparticles containing oxidized cholesterol deliver mRNA to*  
628 *the liver microenvironment at clinically relevant doses*. Advanced materials, 2019.  
629 **31**(14): p. 1807748.

630

631 **Figures legends**

632

633 **Figure 1. Macrophage inhibition enhances lentiviral liver transduction in juvenile**  
634 **mice. (A)** Schematic representation of the experimental design testing lentiviral vector  
635 transduction following pre-treatment with clodronate liposomes in CD1 mice. **(B)** Lentiviral  
636 vector genome copies per cell in liver, **(C)** quantification of GFP immunostaining, **(D)**  
637 representative images of GFP immunostaining in liver sections of neonatally-injected CD1  
638 mice. **(E)** Lentiviral vector genome copies per cell in liver, **(F)** quantification of GFP  
639 immunostaining, **(G)** representative images of GFP immunostaining in liver sections of 2.5-  
640 weeks-old-injected CD1 mice. **(B,C,E,F)**: Horizontal lines display the mean  $\pm$  standard  
641 deviation. One-way ANOVA with Tukey's multiple comparisons test, ns: not significant, \*\*  
642  $p<0.01$ , \*\*\*\*  $p<0.0001$ ; untreated (n=3), PBS + LV (n=4), clod + LV (n=4). **(D,G)**: Scale bars  
643 are 100 $\mu$ m and 50 $\mu$ m for x10 and x20 magnification, respectively. Clod: clodronate  
644 liposomes; LV: lentivirus; PBS: Phosphate Buffer Solution; VCN: vector copy number.

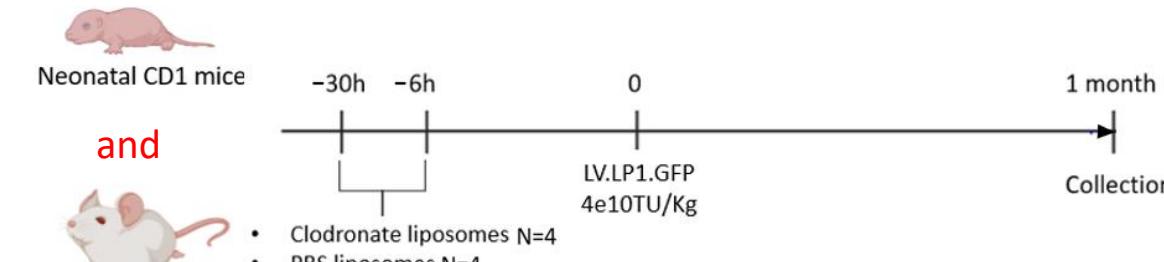
645

646 **Figure 2. Macrophage inhibition decreases splenic transduction and enhances**  
647 **lentiviral-mediated liver transduction. (A)** Schematic representation of the experimental

648 design testing lentiviral vector transduction following pre-treatment with clodronate  
649 liposomes in CD1 mice. **(B)** Lentiviral vector genome copies per cell in liver, **(C)** vector  
650 genome copies per cell in spleen; **(D)** quantification of GFP immunostaining, **(E)**  
651 representative images of GFP immunostaining in liver sections of neonatally-injected CD1  
652 mice. **(F)** Lentiviral vector genome copies per cell in liver, **(G)** vector genome copies per cell  
653 in spleen; **(H)** quantification of GFP immunostaining, **(I)** representative images of GFP  
654 immunostaining in liver sections of 2.5 weeks old-injected CD1 mice. **(B-H)**: Horizontal lines  
655 display the mean  $\pm$  standard deviation. One-way ANOVA with Tukey's multiple comparisons  
656 test, ns: not significant, \*  $p<0.05$ , \*\*  $p<0.01$ , \*\*\*  $p<0.001$ , \*\*\*\*  $p<0.0001$ ; untreated (n=4-5),  
657 PBS + LV (n=6), clod + LV (n=6). **(E,I)**: Scale bars are 100 $\mu$ m and 50 $\mu$ m for x10 and x20  
658 magnification, respectively. Clod: clodronate liposomes; LV: lentivirus; PBS: Phosphate  
659 Buffer Solution; VCN: vector copy number.

660

661 **Figure 3. Macrophage inhibition does not influence AAV-mediated liver transduction.**  
662 **(A)** Schematic representation of the experimental design testing AAV vector transduction  
663 following pre-treatment with clodronate liposomes in CD1 mice. **(B)** AAV vector genome  
664 copies per cell in liver, **(C)** quantification of GFP immunostaining, **(D)** representative images  
665 of GFP immunostaining in liver sections of neonatally-injected CD1 mice. **(E)** AAV vector  
666 genome copies per cell in liver, **(F)** quantification of GFP immunostaining, **(G)** representative  
667 images of GFP immunostaining in liver sections of 2.5 weeks old-injected CD1 mice.  
668 **(B,C,E,F)**: Horizontal lines display the mean  $\pm$  standard deviation. One-way ANOVA with  
669 Tukey's multiple comparisons test, ns: not significant, \*\*  $p<0.01$ , \*\*\*  $p<0.001$ , \*\*\*\*  $p<0.0001$ ;  
670 untreated (n=4-5), PBS + AAV (n=6), clod + AAV (n=6). **(D,G)**: Scale bars are 100 $\mu$ m and  
671 50 $\mu$ m for x10 and x20 magnification, respectively. AAV: adeno-associated virus, Clod:  
672 clodronate liposomes; PBS: Phosphate Buffer Solution; VCN: vector copy number.


673

674 **Figure 4. LNP-mRNA mediated liver transduction does not benefit from macrophage**  
675 **inhibition. (A)** Schematic representation of the experimental design testing liver uptake of  
676 LNP.GFP following pre-treatment with clodronate liposomes in CD1 mice. **(B)** quantification  
677 of GFP western blot of livers against housekeeping control GAPDH. **(C)** quantification of  
678 GFP immunostaining, **(D)** representative images of GFP immunostaining in liver sections of  
679 neonatally-injected CD1 mice. **(E)** Quantification of GFP western blot of livers against  
680 housekeeping control GAPDH. **(F)** Quantification of GFP immunostaining, **(G)** representative  
681 images of GFP immunostaining in liver sections of juvenile-injected CD1 mice. **(B,C,E,F):**  
682 Horizontal lines display the mean  $\pm$  standard deviation. One-way ANOVA with Tukey's  
683 multiple comparisons test, ns: not significant, \* $p<0.05$ , \*\* $p<0.01$ ; untreated (n=3-5), PBS +  
684 LNP (n=5-6), clod + LNP (n=6). **(D,G):** Scale bars are 100 $\mu$ m and 50 $\mu$ m for x10 and x20  
685 magnification, respectively. Clod: clodronate liposomes; LNP: Lipid nanoparticles; PBS:  
686 Phosphate Buffer Solution.

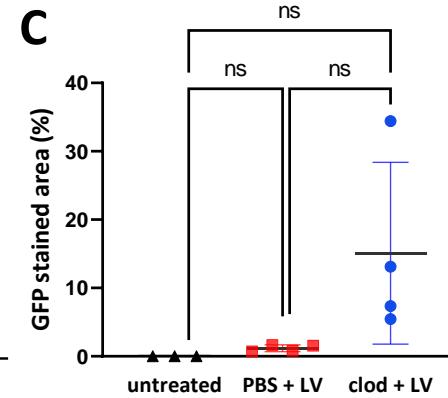
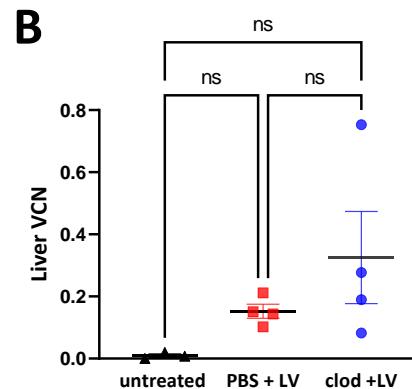
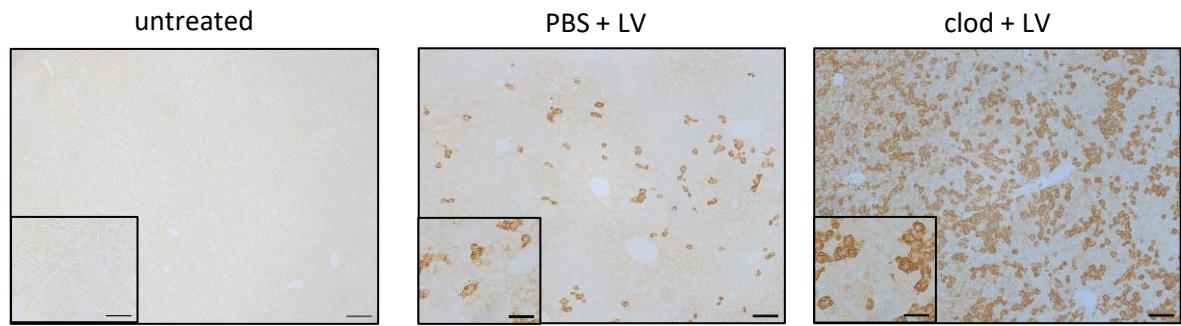
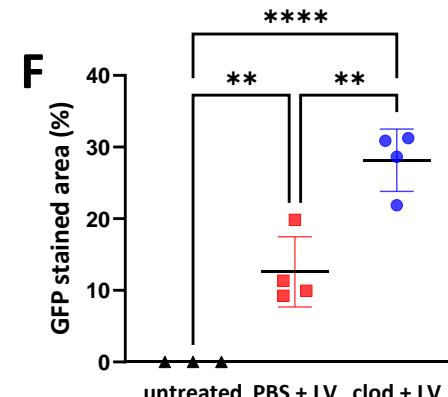
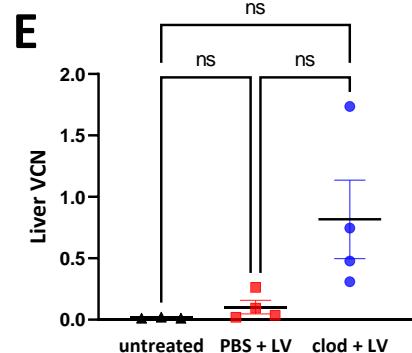


687

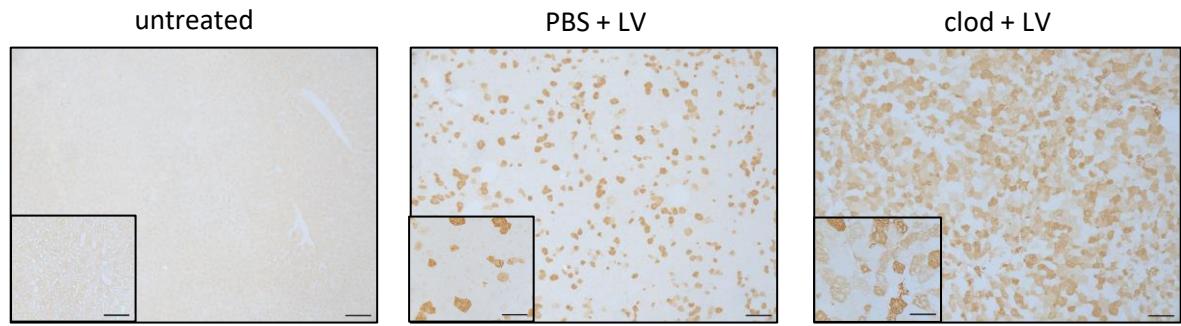
Figure 1. Macrophage inhibition enhances lentiviral liver transduction in juvenile mice.


**A**





2.5-weeks old CD1 mice




**D**



Neonatal CD1 mice

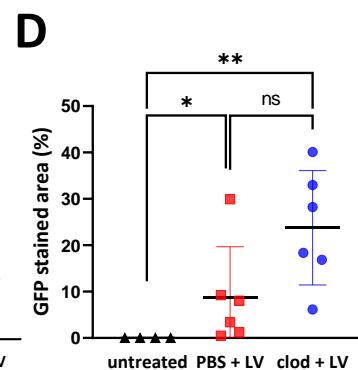
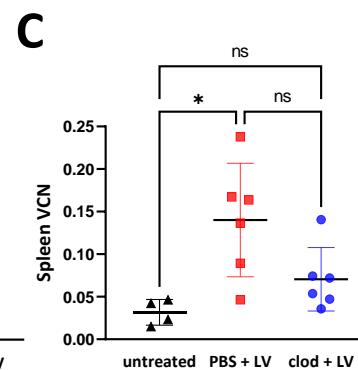
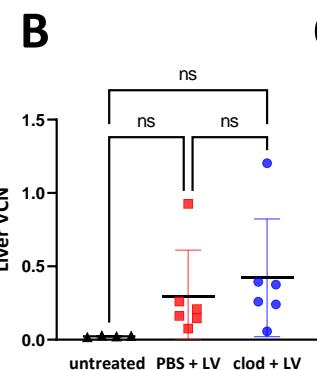
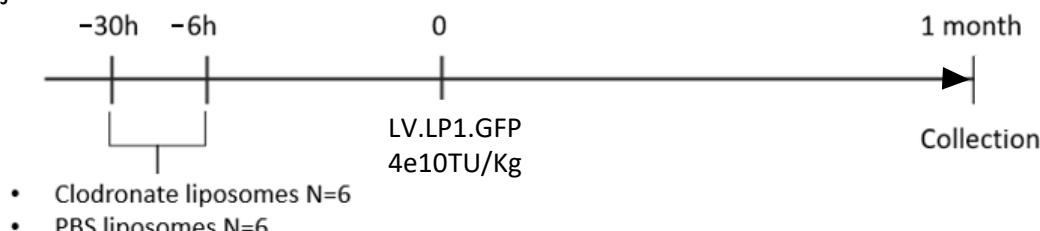


**G**



2.5-weeks old CD1 mice

Figure 2. Macrophage inhibition decreases splenic transduction and enhances lentiviral-mediated liver transduction.


Neonatal C57BL/6J  
mice

and



2.5-weeks old  
C57BL/6J mice



2.5-weeks old  
C57BL/6J mice

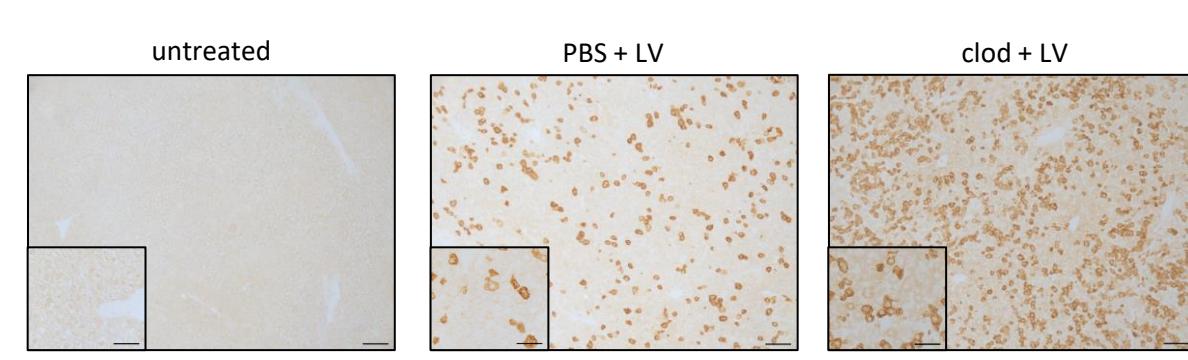
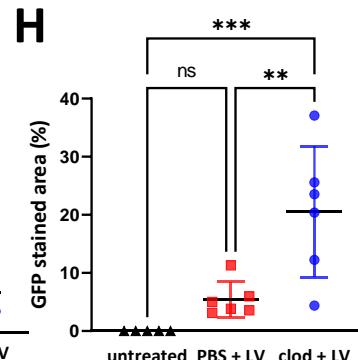
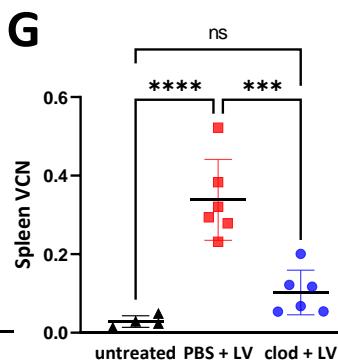
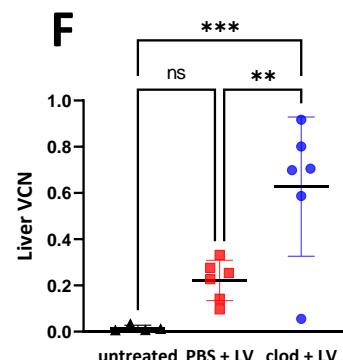
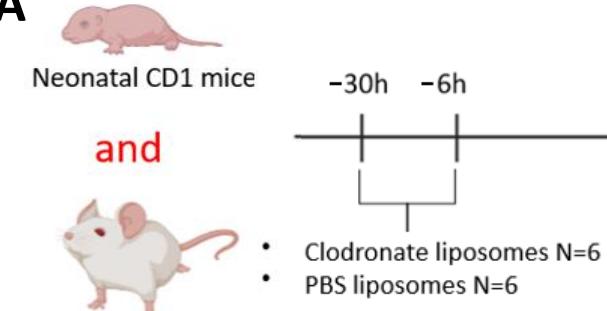
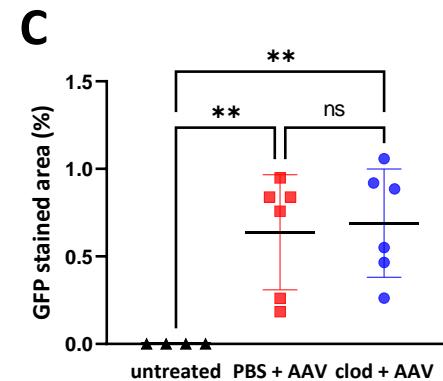
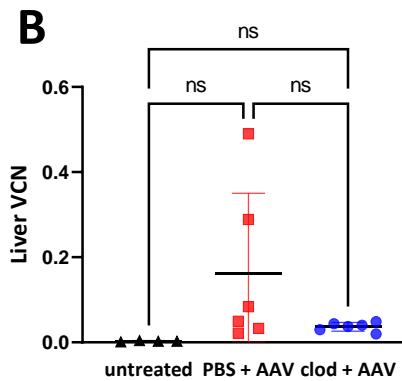
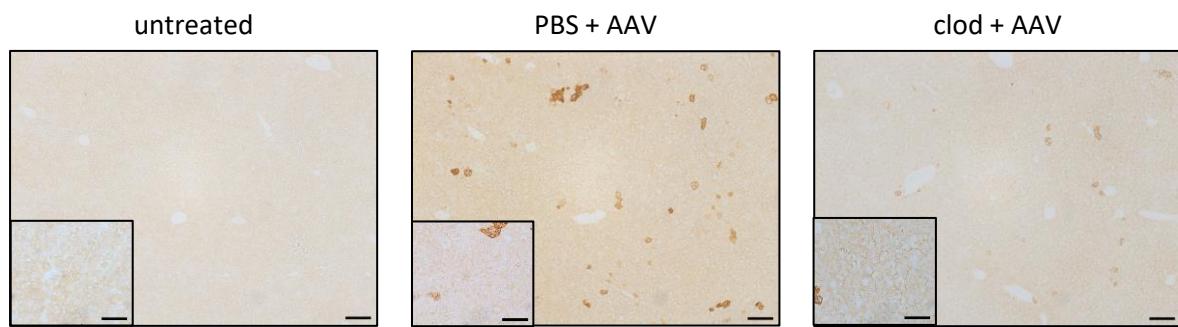
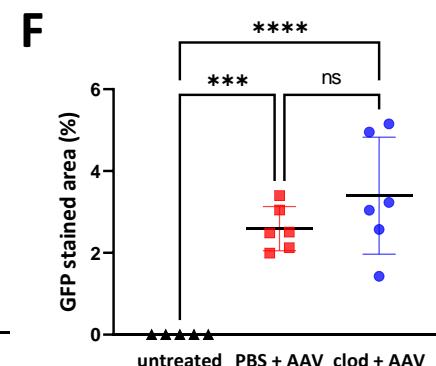
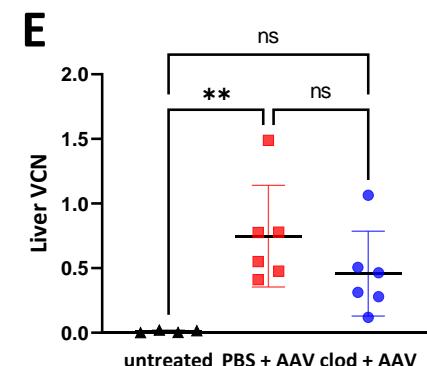








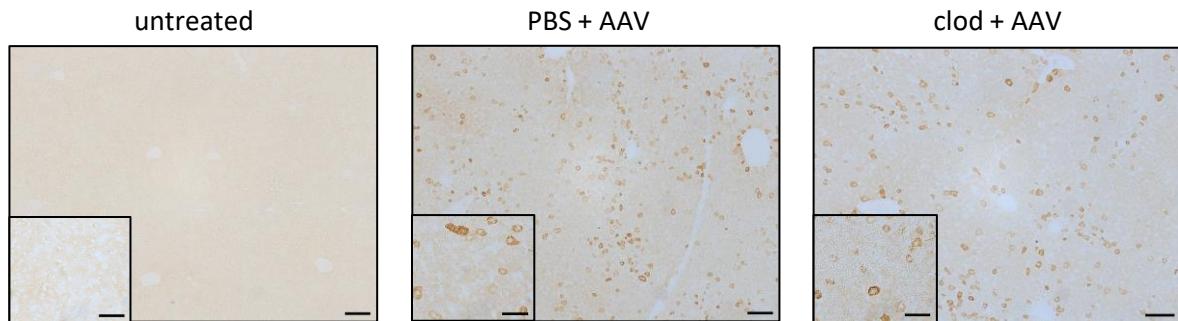

Figure 3. Macrophage inhibition does not influence AAV-mediated liver transduction.


**A**





2.5-weeks old CD1 mice

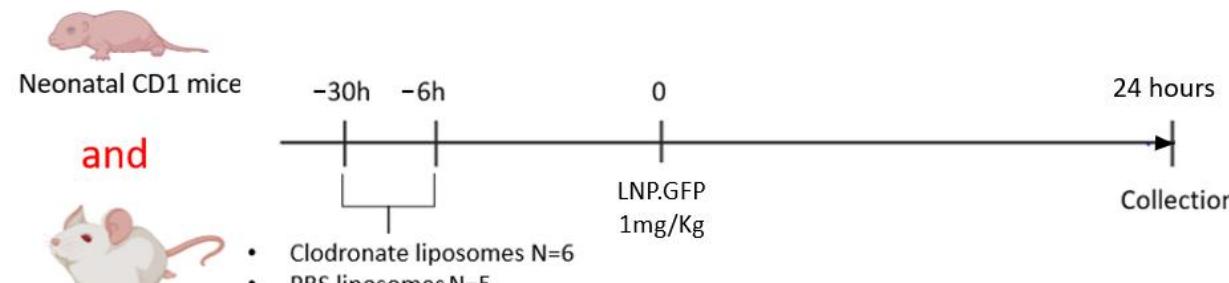



**D**



Neonatal CD1 mice




**G**

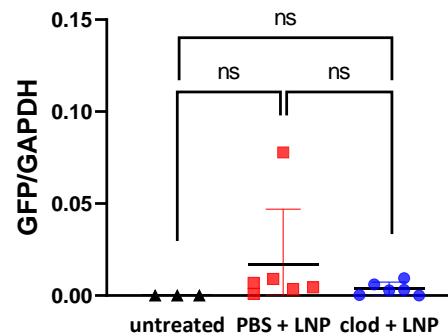


2.5-weeks old CD1 mice

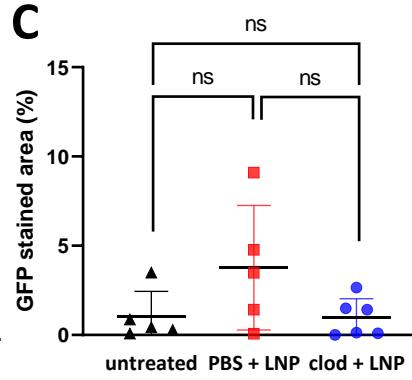
Figure 4. LNP-mRNA mediated liver transduction does not benefit from macrophage inhibition.

**A**

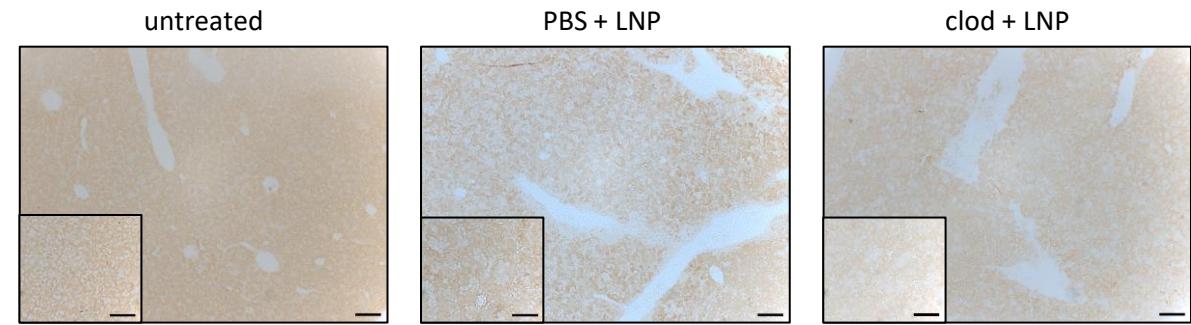



2.5-weeks old CD1 mice

and




Neonatal CD1 mice

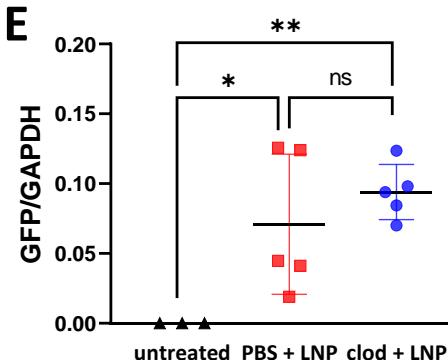

**B**



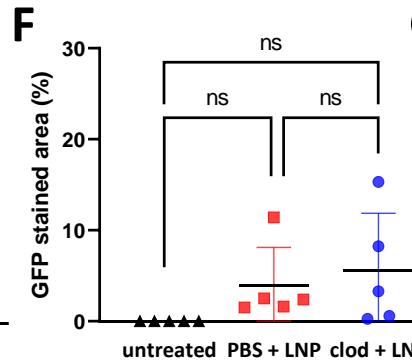
**C**



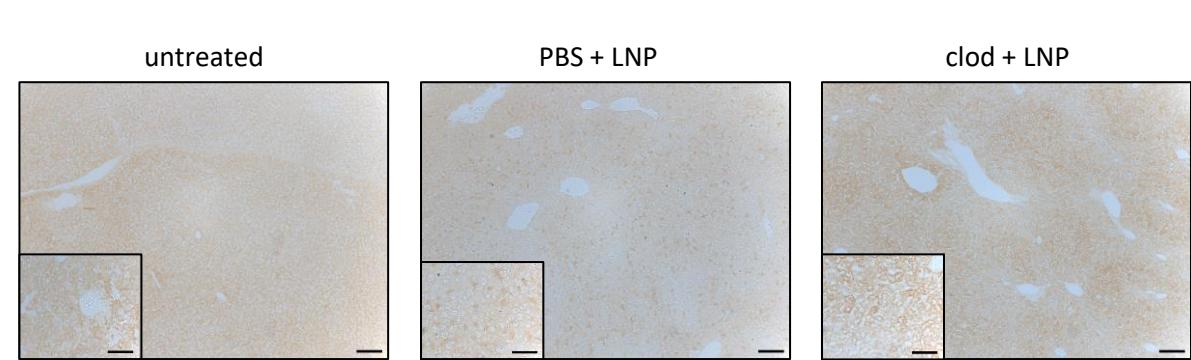
**D**




2.5-weeks old CD1 mice


and




**E**



**F**



**G**

