

1 **Disease-associated gut microbiome and metabolome changes in chronic low back**
2 **pain patients with bone marrow lesions**

3

4 Wentian Li¹, Ji Tu¹, Jinjian Zheng², Abhirup Das¹, Qi Yan³, Xiaotao Jiang⁴,
5 Wenyuan Ding^{5,6}, Xupeng Bai^{7,8}, Kaitao Lai^{9,10}, Sidong Yang^{5,11}, Cao Yang¹², Jun
6 Zou^{3#}, Ashish D Diwan^{1,13#}, Zhaomin Zheng^{2,1#}

7

8 ¹Spine Labs, St. George and Sutherland Clinical School, University of New South
9 Wales, Kogarah, NSW 2217, Australia.

10 ²Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University,
11 Guangzhou, China.

12 ³Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow
13 University, Suzhou, Jiangsu 215006, China.

14 ⁴UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses,
15 School of Clinical Medicine, UNSW Medicine and Health, The University of New
16 South Wales, Sydney, NSW 2052, Australia.

17 ⁵Department of Spinal Surgery, The Third Hospital of Hebei Medical University, 139
18 Ziqiang Road, Shijiazhuang 050051, China.

19 ⁶Hebei Joint International Research Centre for Spinal Diseases.

20 ⁷Center for Innovation & Translational Medicine, the First Affiliated Hospital,
21 Zhejiang University School of Medicine, Hangzhou, China.

22 ⁸Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated
23 Hospital, Zhejiang University School of Medicine, Hangzhou, China.

24 ⁹Charles Perkins Centre and School of Medical Sciences, University of Sydney, Sydney,
25 Australia.

26 ¹⁰ANZAC Research Institute, Concord Hospital, Sydney, Australia.

27 ¹¹Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for
28 Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia,
29 4072, Queensland, Australia.

30 ¹²Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong
31 University of Science and Technology, Wuhan 430022, China.

32 ¹³Spine Service, Department of Orthopedic Surgery, St. George Hospital, Kogarah,
33 NSW 2217, Australia.

34

35 [#]Correspondence to ZMZ (zhengzm1@163.com) or ADD (a.diwan@unsw.edu.au) or
36 JZ (jzou@suda.edu.cn).

37

38

39

40

41

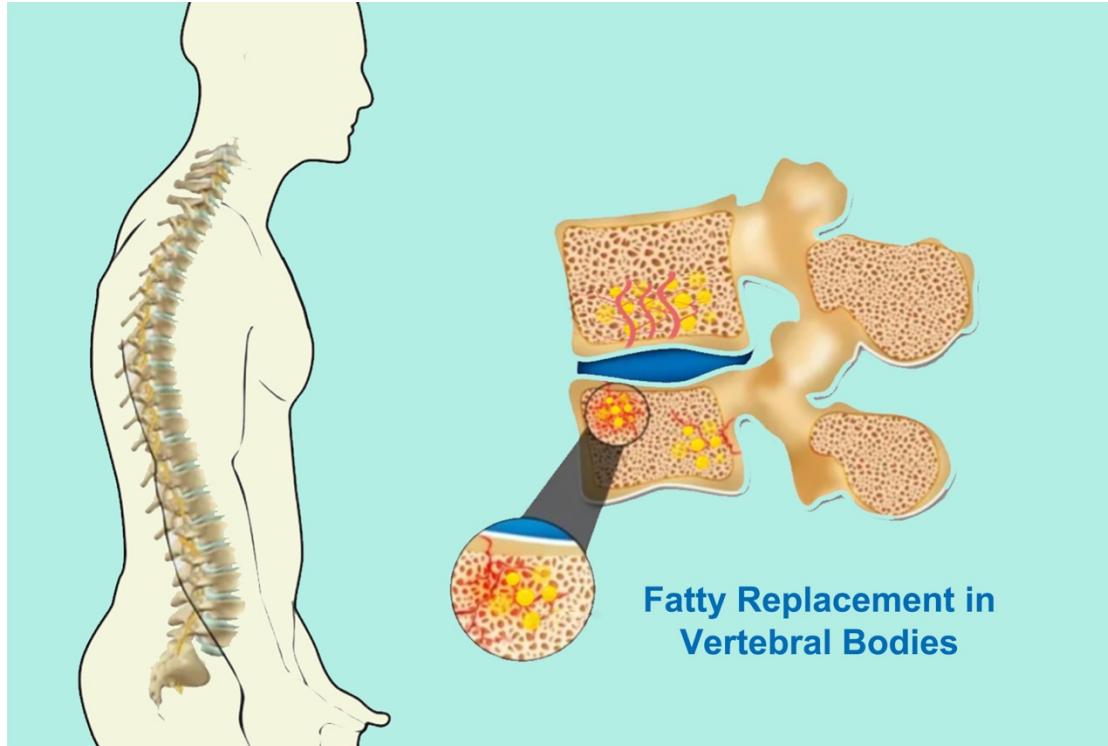
42

43 **Abstract**

44 Chronic low back pain (LBP) is the leading cause of global disability. Vertebral bone
45 marrow lesions (BMLs), one etiological factor for chronic LBP, are MRI signal changes
46 in the vertebral bone marrow that extend from the disc endplate. The adipogenesis of
47 bone marrow mesenchymal stem cells (BM-MSCs) could explain fatty replacement
48 (FR) in normal bone marrow. FR is the most common type of BMLs. Here we show
49 how the gut microbiome and serum metabolome change and how they interact in LBP
50 patients with or without FR. The serum metabolome of chronic LBP patients with FR
51 is characterized by decreased levels of branched-chain amino acids (BCAAs), which
52 correlate with a gut microbiome that has important capability to regulate BCAA
53 degradation pathway. *Ruminococcus gnavus*, *Roseburia hominis* and *Lachnospiraceae*
54 *bacterium 8 1 57FAA* are identified as the main species driving the association between
55 biosynthesis of BCAAs and BM-MSCs metabolism in LBP with FR individuals. *In*
56 *vitro* work demonstrates that BCAAs can induce the adipogenesis of BM-MSCs by
57 activating the SIRT4 pathway. Our findings provide a deep insight into understanding
58 the role of the disturbed gut ecosystem in FR and LBP.

59

60 **Keywords:** Chronic low back pain, Bone marrow lesions, Fatty replacement, Gut
61 microbiome, Serum metabolomics, BM-MSCs.


62

63

64 **Introduction**

65 Chronic low back pain (LBP) is a common and debilitating condition worldwide, with
66 the Lancet group calling for action¹. Although chronic LBP relates to different spinal
67 pathologies, vertebral bone marrow lesions (BMLs) on magnetic resonance imaging
68 (MRI) have a high specificity for discogenic LBP². Vertebral BMLs are pathological
69 changes in the bone marrow composition in vertebral bodies. A meta-analysis by Jensen
70 et al. established that the prevalence of BMLs and the association with chronic LBP
71 estimated the median prevalence of LBP types in symptomatic populations at 43%
72 compared to only 6% in non-symptomatic populations³. Fatty replacement (FR) of
73 normal bone marrow is the most frequent in vertebral BML appearances accounting for
74 up to 90% of BMLs observed^{4,5}. Currently, the pathogenesis of vertebral BMLs remains
75 unclear. FR happens in the vertebral bodies, specifically, in the bone marrow adjacent
76 to the endplate. (Supplementary figure 1)

77

78

79 **Supplementary figure 1: Illustration of chronic low back pain with fatty**
80 **replacement.**

81

82 The bone marrow microenvironment is filled with mesenchymal stem cells (BM-
83 MSCs). BM-MSCs are multipotent stem cells that can differentiate into several mature
84 cells, such as adipocytes and osteoblasts. As common progenitor cells of adipocytes
85 and osteoblasts, BM-MSCs have delicately balanced the differentiation of osteogenesis
86 and adipogenesis in the bone marrow.⁶ Chronic LBP with FR was visualized as a fat
87 replacement in vertebral bone marrow on MRI.⁷ Metabolism is vitally significant in
88 BM-MSCs' fate determination and differentiation.⁸ Thus, we hypothesize that chronic
89 LBP with FR result from dysfunction of BM-MSC differentiation regulated by cellular
90 metabolism.

91

92 Our understanding of the microbiome that lives in our gut, its functions, and its roles in
93 human health and disease has advanced significantly over the last decade, aided by
94 rapid technological advancement. Gut-bone axis was proposed to play a significant role
95 in the onset of several bone-joint diseases such as osteoporosis, rheumatoid arthritis
96 and spinal cord multiple sclerosis⁹. Previous studies indicated that gut microbiome
97 communicated with bone marrow, regulating disease pathogenesis¹⁰. As the FR are
98 alterations in the bone marrow milieu in patients with chronic LBP, such as increased
99 bone marrow adiposity, whether the gut microbiome impacts these alterations is still
100 unknown.

101

102 Longstreth and Yao drew attention to an excess of back surgery in patients with irritable
103 bowel syndrome (IBS).^{11,12} It has been shown that back pain is associated with altered
104 gut microbiota composition.¹³Recent research showed that LBP with BMLs could be
105 caused by one specific microbiota (formerly known as *Propionibacterium acnes*, *P.*
106 *acnes*).¹⁴ This type of bacteria is an aerotolerant Gram-positive and a common skin
107 commensal. Several animal models have found that *P. acnes* could exist in the
108 degenerated discs and cause BMLs¹⁵. Considering the close relationship between LBP
109 and BMLs, it is rational to hypothesize the potential roles of human microbiome in
110 BMLs. However, thus far, no research has been done to detect whether gut microbiome
111 disturbance accompanies BMLs.

112

113 There might be three potential mechanisms by which the gut microbiota could induce
114 intervertebral disc (IVD) degeneration and cause chronic LBP with BMLs:(a) bacteria
115 translocate across the gut epithelial barrier and arrive at IVDs or bone marrow. IVDs
116 provide an excellent environment for anaerobic bacteria growth because of the low
117 oxygen tension and the absence of immune surveillance; (b) translocation of the
118 bacteria could regulate the mucosal and systemic immune systems; (c) the nutrients and
119 metabolites formatted in the gut epithelium diffuse into the IVDs or bone marrow, and
120 then cause FR.¹⁶

121

122 The human gut microbiota produces numerous metabolites. These metabolites could be
123 accumulated in the bloodstream, which can have systemic effects on the host¹⁷. Serum
124 levels of amino acids, most consistently the BCAAs¹⁸, were the most consumed
125 metabolites in BM-MSCs differentiated into adipocytes. Interestingly, mature
126 adipocytes have been shown to utilize BCAAs for acetyl-coenzyme A (CoA)
127 production for lipogenesis¹⁹. However, the correlation between the gut microbiome and
128 serum metabolome in LBP patients is unknown.

129

130 To bridge the abovementioned gaps, we conducted 16S and shotgun metagenomics
131 analysis of fecal samples from 107 chronic LBP patients with or without FR and 31
132 healthy volunteers to define their composition of gut microbiota. We first combined

133 shotgun metagenomics and metabolic analysis to uncover the gut microbiome's
134 functional and taxonomic characteristics in chronic LBP patients with or without FR
135 and healthy volunteers. After that, we evaluated microbiomes' influence on the
136 capabilities of BM-MSC differentiation. By integrating these multilevel omics results,
137 we defined and characterized the different gut microbiome and metabolites and their
138 combination and interaction in the gut-bone marrow ecosystem of chronic LBP with
139 FR.

140

141 **Results:**

142 **1. Clinical characteristics of the participants.**

143 We recruited 107 chronic LBP patients and 31 healthy controls (HC). In 107 LBP
144 patients, 54 participants had LBP with FA, and 53 patients were LBP (LBP without
145 FR). Hence, we focused on the microbiome analysis of LBP+FR, LBP (LBP without
146 FR), and HC. There was no significant difference in gender, age, body mass index
147 (BMI), total Cholesterol Levels, and Triglycerides Levels between the three groups.
148 We found that the LBP+FR cohort showed significantly higher Visual Analog Scale
149 (VAS) and Oswestry Disability Index (ODI) scores than the LBP and HC cohorts.
150 (Table 1) These well-matched samples were used to identify molecular signatures in
151 the gut microbiome that modulate host metabolism.

152

153 **Table 1 Characteristics of the study population.**

	LBP+FR (n= 54)	LBP (n= 53)	HC (n= 31)	P-value
Age (years)	45.67 ± 6.27	45.91 ± 8.72	42.10 ± 9.50	Ns
Gender (F/M)	26 / 28	29 / 24	13 / 18	Ns
BMI, mean (Kg/m²)	22.20 ± 5.01	23.83 ± 2.44	23.10 ± 2.10	Ns
VAS (1-10)	5.31 ± 1.84	4.43 ± 2.03	~	0.02
ODI (%)	46.2 ± 19.1%	38.5 ± 17.7%	~	0.03
Total cholesterol level (mmol/L)	4.55 ± 1.08	4.42 ± 1.04	4.47 ± 0.71	Ns
Total triglycerides level (mmol/L)	1.40 ± 0.72	1.43 ± 0.89	1.45 ± 0.72	Ns
Diet	Ad libitum diet	Ad libitum diet	Ad libitum diet	

154

155 Values are presented as mean ± standard deviation. HC = Healthy Controls; LBP+FR

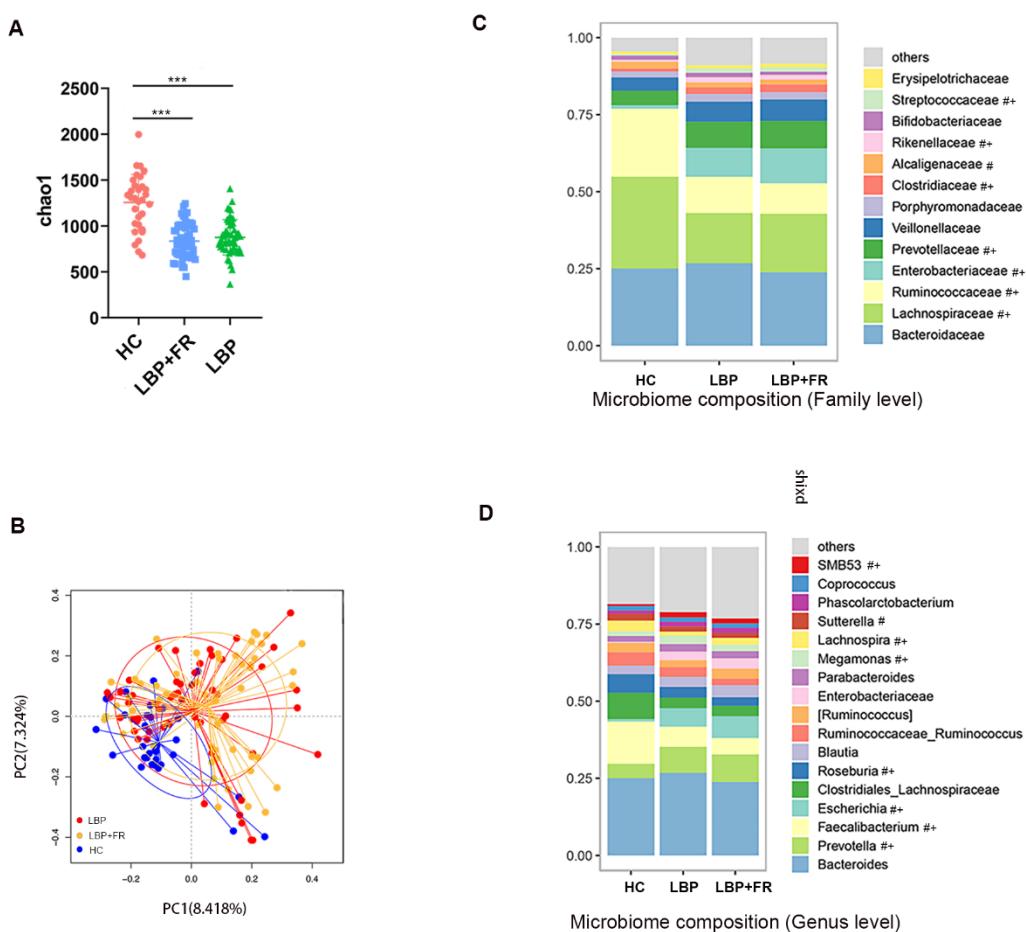
156 = Low back Pain with Fatty Replacement; LBP = Low Back Pain without Fatty

157 Replacement; BMI = Body Mass Index; VAS = Visual Analog Scale for pain; ODI =

158 Oswestry Disability Index.

159

160 **2. Fecal microbiome taxonomic indicators of LBP with FR using 16S rRNA gene**
161 **sequencing.**


162 To compare the gut bacterial community composition between LBP with FA, LBP
163 patients and healthy controls, we first performed 16S rRNA sequencing for all 138 fecal
164 samples. 16S rRNA sequencing confirmed a dysbiosis in LBP+FR and LBP compared
165 to HC (Fig. 1A, B). Initially, alpha-diversity analysis of gut microbiome indicated
166 samples from LBP+FR and LBP had decreased alpha-diversity index: Chao-1-richness
167 index (Fig. 1A), Observed-otus, Shannon's diversity index and PD-whole-tree index
168 (Supplementary Fig. 2A-C), compared with samples from HC group. Besides, bacterial
169 alpha-diversity analysis showed no significant difference among these indexes between
170 LBP+FR and LBP groups.

171 Next, β -diversity analysis was used to explore patients' overall gut microbiome
172 phenotypes between three patient groups. Principal coordinate analysis (PCoA) showed
173 that bacterial signatures between LBP+FR and LBP when compared to HC group were
174 significantly distinct when using the Bray_Curtis distance ($P = 0.01$) (Fig. 2B),
175 Unweighted_UniFrac and Weighted_UniFrac distances (Supplementary Fig. 2D-E).

176 Here, we identified 343 discriminative bacterial species between three groups
177 (Supplementary Table 1). Compared with HC cohort, LBP+FR and LBP cohorts were
178 characterized by presence of five enriched families (Streptococcaceae, Prevotellaceae,
179 Rikenellaceae, Clostridiaceae and Enterobacteriaceae) and by three depleted families
180 (Ruminococcaceae, Alcaligenaceae and Lachnospiraceae) (Fig. 1C). No other

181 differences were observed between the LBP with FR and LBP groups at the family
182 level. Further, at the genus level, compared with HC, LBP+FR and LBP were
183 confirmed by four enriched genera (Prevotella, Escherichia, Megamonas and SMB53)
184 and four depleted genera (Fecalibacterium, Roseburia, Lachnospira and Sutterella)
185 (Fig. 1D).

186

187

188 **Figure 1. Distinct fecal microbiota profiles of subjects with LBP+FR, LBP and HC
189 by using 16S rRNA gene amplicon sequencing.**

190 (A) Comparison of alpha-diversity indices (Chao-1-richness index) between HC,
191 LBP+FR and LBP groups.

192 (B) Principal coordinate analysis (PCoA) based on Bray Curtis distances demonstrating
193 the separation of HC, LBP+FR and LBP groups.
194 (C) Microbiome composition at family level in HC, LBP+FR and LBP fecal samples.
195 (D) Microbiome composition at genus level showing the top 17 most abundant genus
196 HC, LBP+FR and LBP fecal samples. Data in C-D are presented as mean relative
197 abundance, with differences between groups shown as $\#P < 0.05$ for LBP+FR
198 compared to HC control, and $+P < 0.05$ for LBP compared to HC control, with exact P
199 values shown in Supplementary Table 2.

200

201 **3. Fecal microbiome taxonomic indicators of LBP with FR using metagenomics.**
202 Having identified distinct FR-associated fecal taxa using 16S rRNA gene sequencing,
203 we sought to increase the resolution of these findings via metagenomic sequencing.
204 Only a portion of the gut microbiota population identified by shotgun sequencing could
205 be detected by 16S rRNA gene sequencing. Shotgun sequencing out-performs 16S
206 sequencing in identifying fewer common species when a significant number of reads
207 are available. We chose a two-stage design (16S, first-stage; metagenomics, second-
208 stage) in this study which is recommended by previous researchers.^{20,21} 36 samples
209 from 3 groups (LBP+FR, LBP and HC) were chosen for metagenomic sequencing.
210 Alpha diversity analysis showed that there was no significant difference among these
211 indexes (Observed-otus, Chao-1-richness index and Shannon's diversity index)
212 between any two groups (Supplementary Fig. 3A). PCoA based on Jaccard dissimilarity

213 distances showed a significant difference between LBP+FR and LBP compared to HC
214 controls ($P = 0.002$) (Supplementary Fig. 3B).

215 To further identify which bacterial taxa were distinct between the LBP+FR and LBP,
216 we performed the linear discriminant analysis of effect size (LEfSe analysis). We
217 identified 11 genera showing significant differences at the species level (Fig. 2A and
218 Supplementary Fig. 3C-M). The abundance comparisons of predominant genera
219 showed that *Fusobacterium mortiferum*, *Ruminococcus gnavus*, *Granulicatella*
220 *adiacens* and *Streptococcus sanguinis* were significantly enriched, whereas
221 *Bacteroides coprocola*, *Prevotella copri*, *Alistipes putredinis*, *Bacteroides plebeius*,
222 *Paraprevotella*, *Lachnospiraceae bacterium 8 1 57FAA* and *Roseburia hominis* were
223 depleted in patients with LBP+FR compared to LBP group (Supplementary Fig. 3C-
224 M).

225 Moreover, examination of the microbiome at the species level identified a consortium
226 of common bacterial species significantly depleted in both LBP+FR and LBP compared
227 to HC groups (Fig. 2B-H). These included *Bilophila unclassified*, *Eubacterium hallii*,
228 *Adlercreutzia equolifaciens* and *Lachnospiraceae bacterium 5 1 63FAA* (Fig. 2B-E).
229 Furthermore, three species were found to discriminate LBP+FR from LBP and HC:
230 enriched *Ruminococcus gnavus*, depleted *Roseburia hominis* and reduced
231 *Lachnospiraceae bacterium 8 1 57FAA* (Fig. 2F-H). Enriched *Ruminococcus gnavus*
232 was also seen at LEfSe analysis between three groups (Supplementary Fig. 3N), thereby
233 confirming that *Ruminococcus gnavus* is specifically enriched in LBP+FR compared to

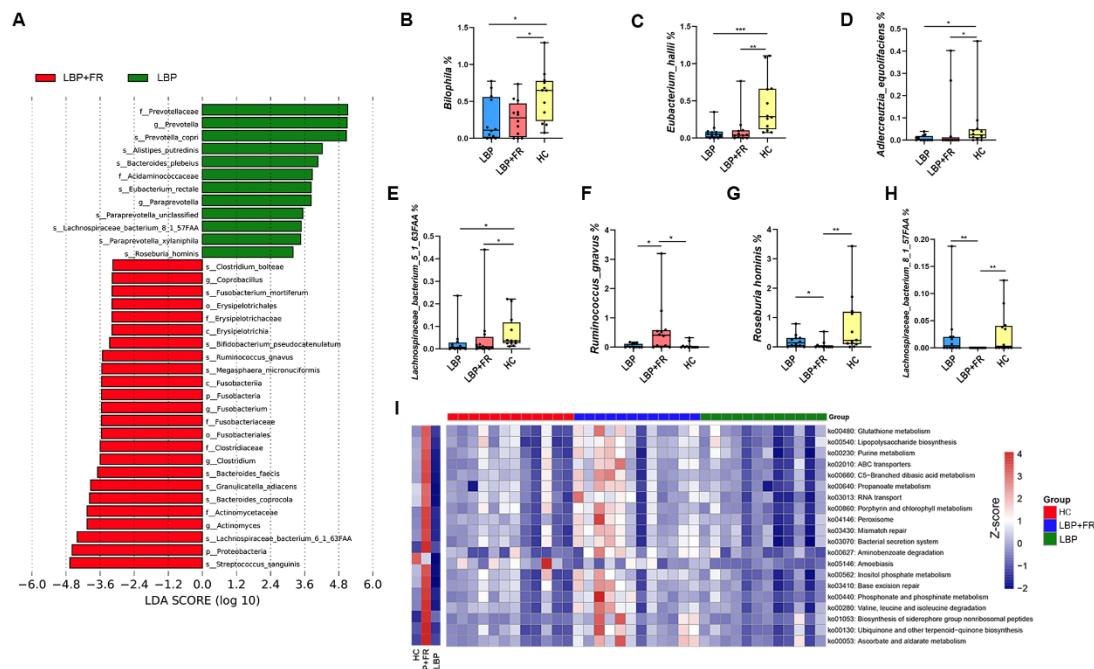
234 LBP and HC controls (LDA \log_{10} 3.5).

235 We also compared the functionality of the fecal Microbiome in LBP+FR, LBP and HC

236 groups based on metagenomics sequencing. We confirmed the twenty most abundant

237 KO (KEGG ORTHOLOGY) pathways in LBP+FR group (Fig. 2I). The top five

238 pathways were associated with ascorbate and aldarate metabolism (ko00053),


239 ubiquinone and other terpenoid-quinone biosynthesis (ko00130), biosynthesis of

240 siderophore group nonribosomal peptides (ko01053), valine, leucine and isoleucine

241 degradation (ko00280) and phosphonate and phosphinate metabolism (ko00440) (Fig.

242 2I and Supplementary Table 3).

243

244

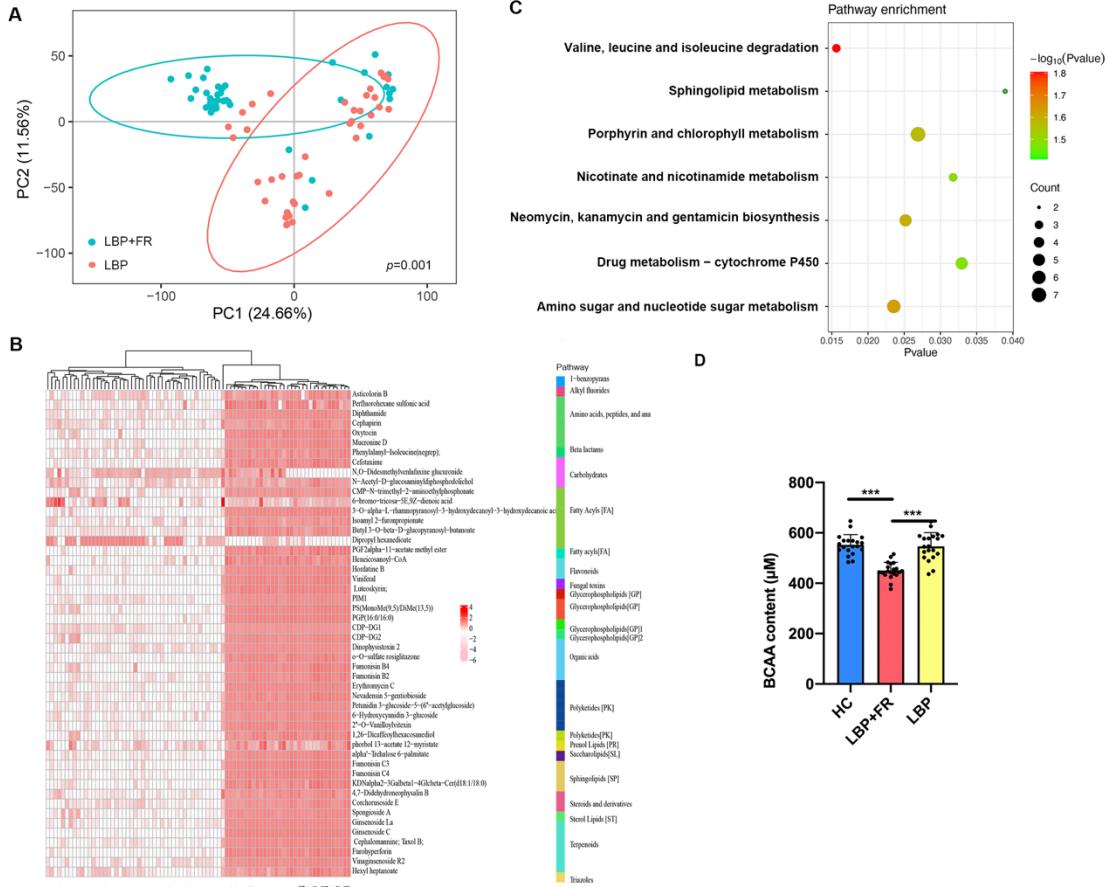
245 **Figure 2. The fecal microbiota of LBP+FR patients can be distinguished from that**
246 **of LBP and HC individuals in metagenomic analysis.**

247 (A) Linear discriminant analysis effect size identified the most differentially abundant

248 taxa between the LBP+FR and LBP groups. LBP-enriched taxa are indicated with a
249 positive LDA score, and taxa enriched in LBP+FR groups have a negative score. Only
250 taxa meeting an LDA significant threshold of >2 are shown.

251 (B-H) The relative abundances at species level of *Bilophila*, *Eubacterium hallii*,
252 *Adlercreutzia equolifaciens*, *Lachnospiraceae bacterium 5 1 63FAA*, *Ruminococcus*
253 *gnavus*, *Roseburia hominis* and *Lachnospiraceae bacterium 8 1 57FAA* between
254 LBP+FR, LBP and HC groups. * indicates $p < 0.05$; ** indicates $p < 0.01$; and ***
255 indicates $p < 0.001$ by Wilcoxon rank-sum test.

256 (I) Heatmap of functional capacity profiles showed the top 20 enrichments in the
257 LBP+FR group by metagenomic sequencing analysis.


258

259 **4. Functional indicators of the LBP+FR fecal metabolome.**

260 To find the microbe-host interaction in chronic LBP with FR, we collected 120 serum
261 samples from 138 participants. We tried to discriminate the metabolic profiles between
262 LBP+FR ($n = 40$), LBP ($n = 40$) and HC ($n = 30$). The overwhelming mass of research
263 supports that gut microbiome could produce some end products of fermentation. These
264 products may enter our circulation system by blood and influence our physiology. The
265 serum metabolome can provide the functional readout of the gut microbiome.²²

266 In this study, principal component analysis (PCA) revealed a significant but incomplete
267 separation of LBP+FR and LBP (PERMANOVA, $P = 0.001$; Fig. 3A). Moreover, PCA
268 also revealed incomplete separation between LBP+FR, LBP and HC (Supplementary

269 Fig. 4). In LBP+FR and LBP groups, we detected a total of 745 biochemicals that
270 differed significantly with importance in project (VIP) >1. The LBP+FR group showed
271 depletion in 185 metabolites and enrichment in 560 metabolites compared to the LBP
272 group. Of the top fifty indicator metabolites with the highest variable VIP score
273 separating LBP+FR from LBP samples, these altered metabolites were mainly involved
274 in Amino acid metabolism, Carbohydrate metabolism, Fatty Acyls metabolism,
275 Glycerophospholipids metabolism, and Sphingolipids metabolism. (Fig. 3B)
276 Furthermore, based on the KEGG database, we conducted a metabolic pathway analysis
277 to help us understand the major biochemical metabolic pathways and signal
278 transduction pathways involved in metabolites. The result showed that patients with
279 LBP+FR were mainly characterized by disturbances of Valine, leucine and isoleucine
280 degradation (BCAAs degradation), Sphingolipid metabolism, Porphyrin and
281 chlorophyll metabolism, Nicotinate and nicotinamide metabolism, Neomycin,
282 kanamycin and gentamicin biosynthesis, Drug metabolism - cytochrome P450, Amino
283 sugar and nucleotide sugar metabolism. (Fig. 3C and Supplementary Table 4) Among
284 these metabolisms, BCAAs degradation was the most significant ($P = 0.0156$). Then,
285 we measured the absolute qualification of BCAAs in serum samples. The level of
286 BCAA in LBP+FR decreased significantly compared with LBP and HC groups. (Fig.
287 3D) Integration of these findings showed that disturbance of BCAAs metabolism was
288 particularly relevant to LBP+FR.
289

290

291 **Figure 3. Blood metabolites that discriminate HC, LBP+FR and LBP.**

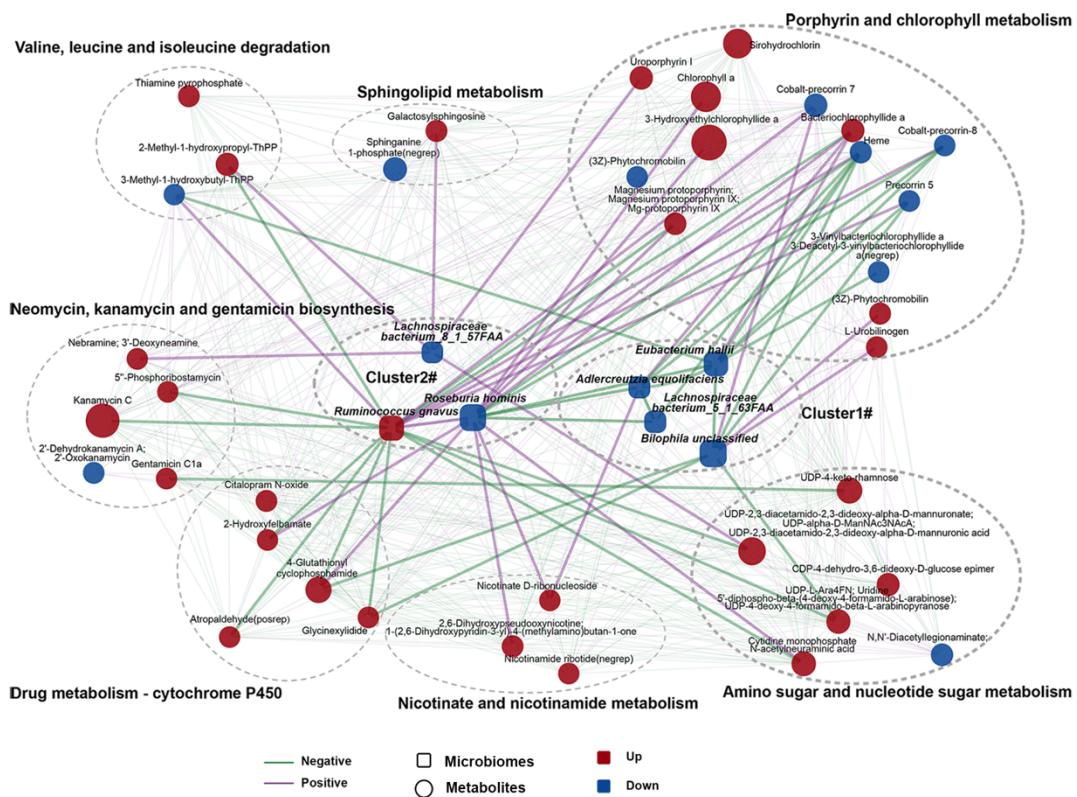
292 (A) Metabolic signatures of LBP+FR subjects were significantly distinguished from
293 LBP (PERMANOVA, $P = 0.001$). Discovery set: LBP+FR, $n = 40$; LBP, $n = 40$.
294 (B) Relative abundances of 50 blood metabolites differentiating between the two
295 groups. Compared with LBP, the LBP+FR group was characterized by 16 up-regulated
296 and 34 down-regulated metabolites. These metabolites were mainly involved in Amino
297 acid metabolism, Carbohydrate metabolism, Fatty Acyls metabolism,
298 Glycerophospholipids metabolism, and Sphingolipids metabolism.
299 (C) Metabolomics pathway enrichment analysis identified seven significantly over-
300 represented sub-pathways among the differential metabolites.

301 (D) The absolute qualification of BCAAs in serum samples between LBP+FR (n = 20),
302 LBP (n = 20) and HC groups (n = 20). * indicates $p < 0.05$; ** indicates $p < 0.01$; and
303 *** indicates $p < 0.001$ by Wilcoxon rank-sum test.

304

305 **5. Co-occurrence analysis among the gut microbiome and metabolites.**

306 Co-occurrence analysis was used to explore the potential relationships between
307 different microbiome species and serum metabolites. The analysis showed that the
308 bacterial species formed strong and broad co-occurring relationships with serum
309 metabolites. (Fig. 4)


310 Within this co-expression network, these differential bacterial species were separated
311 into two clusters (clusters 1 and 2). In the LBP with or without FR group relative to the
312 HC group, cluster 1 was composed of four depleted bacterial species; (*Bilophila*
313 *unclassified*, *Eubacterium hallii*, *Adlercreutzia equolifaciens* and *Lachnospiraceae*
314 *bacterium 5 1 63FAA*). Cluster 2 mainly included three species (*Ruminococcus gnavus*,
315 *Roseburia hominis* and *Lachnospiraceae bacterium 8 1 57FAA*) to distinguish LBP+FR
316 group from LBP and HC groups. Within cluster 1, *Bilophila unclassified*, *Eubacterium*
317 *hallii*, *Adlercreutzia equolifaciens* and *Lachnospiraceae bacterium 5 1 63FAA* showed
318 negative correlation with each other, except for the connection between *Bilophila*
319 *unclassified* and *Lachnospiraceae bacterium 5 1 63FAA*. Clusters 1 and 2 were linked
320 by a common node (*Roseburia hominis*). In cluster 2, *Roseburia hominis* positively
321 correlated with *Ruminococcus gnavus*. Besides, some members from cluster 1

322 (*Eubacterium hallii*, *Adlercreutzia equolifaciens* and *Lachnospiraceae bacterium 5* 1
323 *63FAA*) showed negative correlations with the members from cluster 2 (*Roseburia*
324 *hominis*). These findings suggest that those important differential bacterial species may
325 form a synergistic relationship in patients with LBP, LBP+FR and HC.

326 Regarding the correlation between microbiome and metabolites, the first network
327 indicated associations between cluster 1 and a group of 14 metabolites in Porphyrin and
328 chlorophyll metabolism. In our multivariate analysis, each of these 14 metabolites was
329 identified as different between LBP (with/without FR) and HC group. The second
330 network showed the connection between cluster 2 and numerous metabolites from 7
331 enriched pathways (Valine, leucine and isoleucine degradation, Sphingolipid
332 metabolism, Porphyrin and chlorophyll metabolism, Nicotinate and nicotinamide
333 metabolism, Neomycin, kanamycin and gentamicin biosynthesis, Drug metabolism -
334 cytochrome P450 and Amino sugar and nucleotide sugar metabolism) (Fig. 3C).
335 Significantly, Porphyrin and chlorophyll metabolism showed a strong correlation with
336 both the cluster 1 species and cluster 2 species, which helps explain the close
337 relationship of this pathway between LBP and related species. Moreover, the
338 metabolites from the most significantly enriched pathway: Valine, leucine and
339 isoleucine degradation (Fig. 3C), showed a positive correlation with *Ruminococcus*
340 *gnavus* and *Lachnospiraceae bacterium 8* 1 *57FAA*, and a negative connection with
341 *Ruminococcus gnavus*. Meanwhile, in cluster 2, *Ruminococcus gnavus* showed a more
342 negative relationship with other metabolites, but *Roseburia hominis* and

343 *Lachnospiraceae bacterium 8_1_57FAA* present a more positive connection with other
344 metabolites. It suggested the different functions of these three species in the
345 development of FR. Although our study found a potential interaction of gut microbiome
346 with metabolites in LBP+FR, it remains to be further determined whether these
347 metabolic products can influence the LBP+FR pathogenesis directly.

348

349

350 **Figure 4. A co-occurrence network constructed from the relative abundances of**
351 **differential bacteria, and serum metabolites in LBP+FR/LBP subjects versus**
352 **HCs.**

353 The discriminating bacterial species are mainly separated into two clusters. Cluster 1
354 was composed of 4 depleted species (*Bilophila unclassified*, *Eubacterium hallii*,

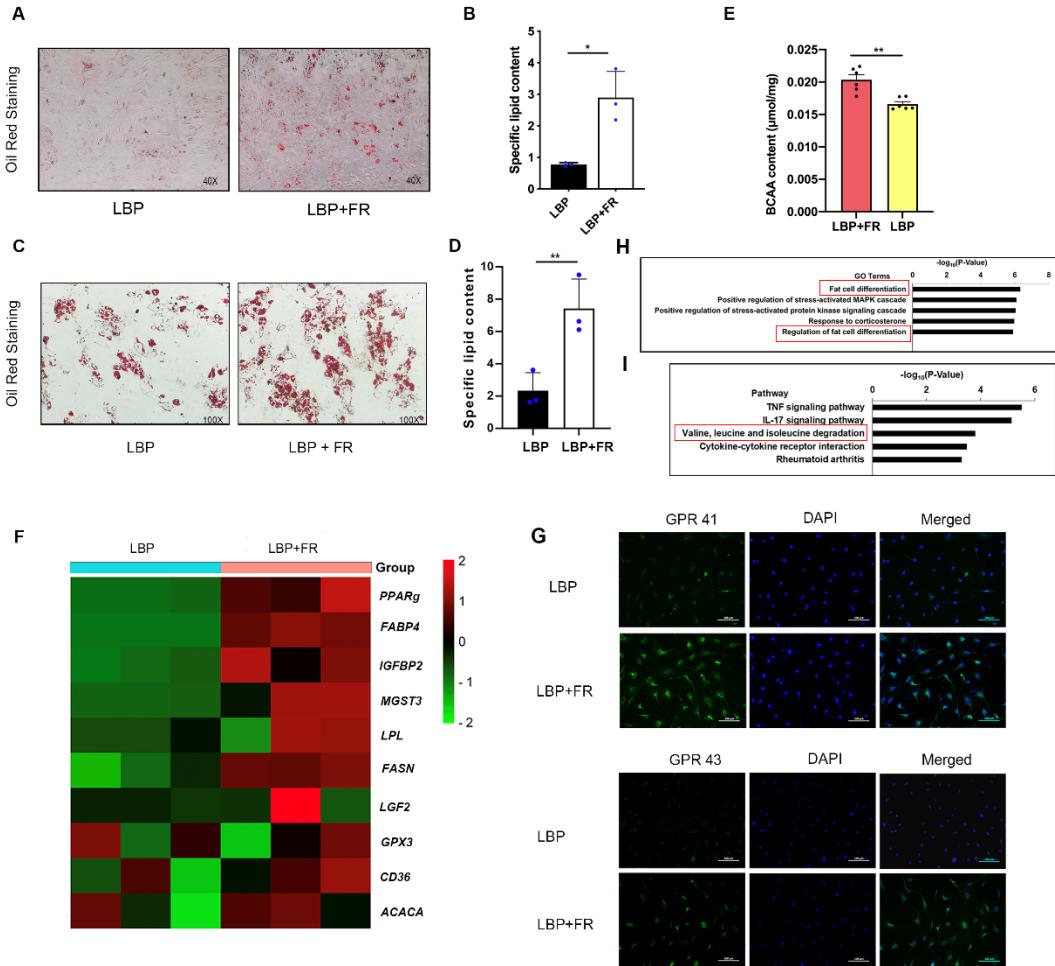
355 *Adlercreutzia equolifaciens* and *Lachnospiraceae bacterium 5 1 63FAA*) in LBP
356 (with/without FR) subjects compared to HC group. Cluster 2 comprised three species
357 (increased *Ruminococcus gnavus*, reduced *Roseburia hominis* and decreased
358 *Lachnospiraceae bacterium 8 1 57FAA*). Within cluster 1, *Bilophila unclassified*,
359 *Eubacterium hallii*, *Adlercreutzia equolifaciens* and *Lachnospiraceae bacterium 5 1*
360 63FAA showed negative correlation with each other, except the connection between
361 *Bilophila unclassified* and *Lachnospiraceae bacterium 5 1 63FAA*. In cluster 2,
362 *Ruminococcus gnavus* positively correlated with *Roseburia hominis*. Besides, some
363 members from cluster 1 (*Eubacterium hallii*, *Adlercreutzia equolifaciens* and
364 *Lachnospiraceae bacterium 5 1 63FAA*) showed negative correlations with the
365 members from cluster 2 (*Roseburia hominis*).
366 In this network, altered metabolites in clusters 1 and 2 were mainly involved in
367 Porphyrin and chlorophyll metabolism. Valine, leucine and isoleucine degradation
368 positively correlated with *Ruminococcus gnavus* and *Lachnospiraceae bacterium 8 1*
369 57FAA, and a negative connection with *Ruminococcus gnavus*. The size of the nodes
370 represents the abundance of these variables. Red and blue dots indicate the increased
371 and decreased relative abundances of variables in LBP+FR/LBP subject relative to HC.
372 Edges between nodes indicate Spearman's negative (light green) or positive (light purple)
373 correlation.
374

375 **6. BM-MSCs from patients with LBP+FR exhibit a strong adipogenesis capability.**

376 After characterizing the gut microbiome composition and related metabolomics in
377 LBP+FR and LBP, we tried to detect the effects of the gut microbiota on the BM-MSCs'
378 function in an ex vivo cell culture. We isolated in vitro BM-MSCs from the control,
379 LBP+FR patients and LBP patients. Firstly, BM-MSCs were immune-phenotypically
380 characterized by flow cytometry for the expression of mesenchymal, hematopoietic and
381 neuronal markers. BM-MSCs were positive for CD105 and CD29, negative for CD34
382 and CD45 (Supplementary Fig. 5).

383 We stimulated BM-MSCs from healthy control groups with individual bacterial extract
384 (BE) from each LBP+FR (n = 10) and LBP (n = 10) subject under various conditions
385 for 48h. These BE were prepared from the least diverse fecal samples, based on α -
386 diversity in LBP+FR and LBP groups. Then BM-MSCs from two groups were cultured
387 in an adipogenesis medium for 14 days. Oil Red staining results revealed that BM-
388 MSCs stimulated with BE from LBP+FR subjects promoted lipid droplet formation
389 (Fig. 5A-B).

390 To examine the BM-MSCs' differentiated potential in LBP+FR and LBP groups, BM-
391 MSCs from these two groups were also cultured in an adipogenesis medium for 14 days.
392 Oil Red staining showed that BM-MSCs from LBP+FR facilitated lipid droplet
393 formation (Fig. 5C-D). We also measured the absolute qualification of BCAAs in BM-
394 MSCs from LBP+FR and LBP groups. The level of BCAA in LBP+FR increased
395 significantly compared with LBP groups. (Fig. 5E) Besides, RT-qPCR also confirmed
396 the mRNA expression of adipogenic genes in BM-MSCs' adipogenesis differentiation.


397 The expression of peroxisome proliferator – activated receptor- γ (Ppar-gama/PPAR γ)
398 and fatty acid binding protein 4 (FABP4), 2 key markers of adipocyte differentiation,
399 including other adipogenic differentiation markers (IGFBP2, MGST3, LPL and FASN)
400 in BM-MSCs from LBP+FR patients, were higher than the BM-MSCs from LBP
401 patients (Fig. 5F).

402 Besides, we found the fatty acids related to cell receptor G-protein-coupled receptor 41
403 (GPR41), also called free fatty acid receptor 3 (FFAR3) and G-protein-coupled receptor
404 43 (GPR43/FFAR2) is a $\text{G}\alpha_i$ -coupled receptor activated by SCFAs mainly produced
405 from dietary complex carbohydrate fibers in the large intestine as products of
406 fermentation by microbiota. This result showed that the BM-MSCs from LBP+FR
407 patients had a stronger GPR41/43 immunostaining, which means BM-MSCs from
408 LBP+FR patients were easily influenced by fatty acids. (Fig. 5G)

409 To further confirm the obtained results on the transcriptomic scale, whole transcriptome
410 RNA sequencing was performed for the cells cultured in adipogenesis media solutions.
411 Using gene ontology (GO) enrichment analysis, we observed that there were some
412 enrichments in GO terms associated with fat cell differentiation and regulation of fat
413 cell differentiation, this result illustrated that the BM-MSCs from LBP+FR patients
414 have a promoted initiation of adipogenesis. (Fig. 5H) Furthermore, a KEGG pathway
415 analysis in the upregulated gene group was also carried out. The top five related
416 pathways of upregulated genes for the two groups are shown in Fig. 5I, including: TNF
417 signaling pathway, IL-17 signaling pathway, Valine, leucine and isoleucine

418 degradation, Cytokine-cytokine receptor interaction and Rheumatoid arthritis. It should
419 be noted that the pathway about valine, leucine and isoleucine degradation was
420 mentioned again, this pathway has been confirmed to have a close relationship with gut
421 microbiome and serum metabolome in LBP+FR patients. Detailed results of GO and
422 KEGG enrichment analysis are summarized in Supplementary Table 5.
423 These results show that BE from LBP+FR accelerates BM-MSCs' adipogenesis, and
424 BM-MSCs from LBP+FR group have stronger differentiated capability. These results
425 kept consistent with the MRI pathology characteristics and indicated that BM-MSCs'
426 differentiation ability had a close relationship with the FR process. The BCAA
427 degradation pathway was indicated to affect the development of FR positively.

428

429

430 **Figure 5. BM-MSCs from LBP subjects with FR exhibit a strong differentiation**
431 **capability.**

432 (A-B) Representative images of Oil Red O staining of lipids (A) and quantification of
433 the number of oil spots (B) in BM-MSCs under the bacterial extract's stimulation from
434 LBP+FR and LBP subjects.

435 (C-D) Representative images of Oil Red O staining of lipids (C) and (D) quantification
436 of the number of oil spots in BM-MSCs cultured in adipogenic induction medium for
437 14 days. 100 \times magnification. * indicates $p < 0.05$; ** indicates $p < 0.01$; and ***
438 indicates $p < 0.001$ by Wilcoxon rank-sum test.

439 (E) The absolute qualification of BCAAs in BM-MSCs' samples between LBP+FR (n
440 = 6), LBP (n = 6) and HC groups (n = 6).

441 (F) qRT-PCR analysis results of dysregulated adipogenic genes in LBP+FR and LBP
442 derived BM-MSCs cultured in adipogenesis induction medium for 48 hours.

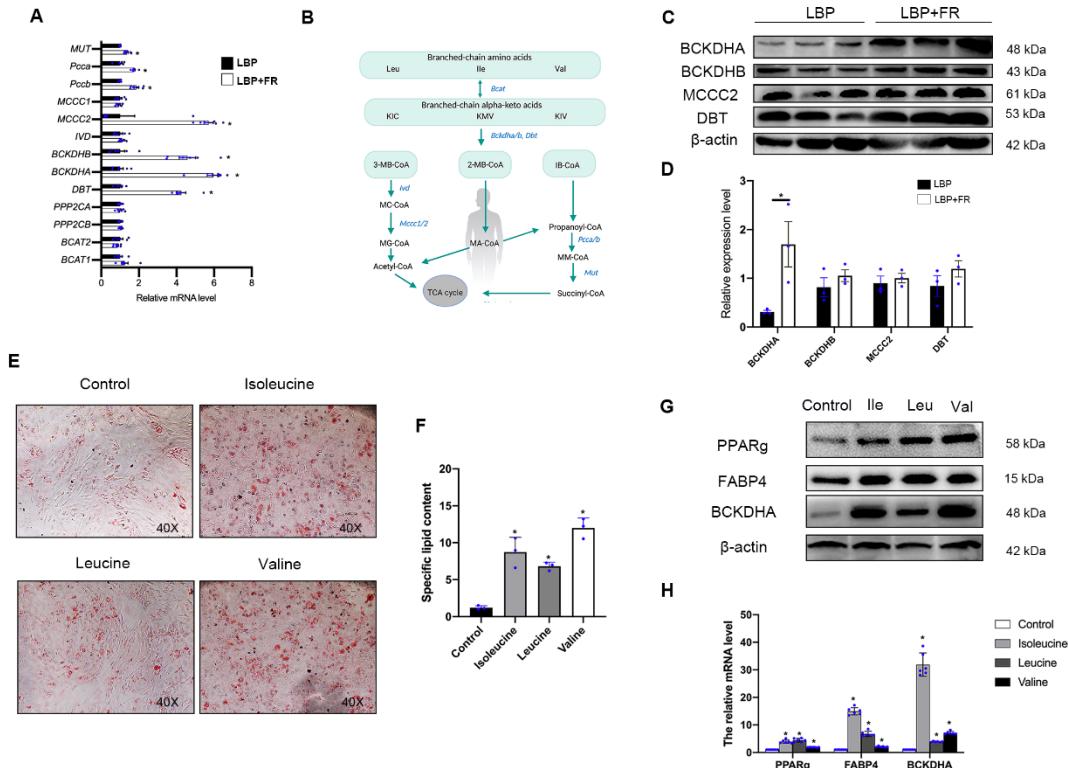
443 (G) Immunocytochemistry of G protein-coupled receptor 41 (GPR41) and G-protein-
444 coupled receptor 43 (GPR43) in BM-MSC. Scale bar = 100 μ m.

445 (H-I) GO and KEGG pathway enrichment analysis in LBP+FR (n = 6) and LBP groups
446 (n = 6).

447

448 **7. BCAA degradation promotes BM-MSC's adipogenic differentiation.**

449 We next detected the regulatory mechanisms of BCAAs on BM-MSC's adipogenic
450 differentiation. Genes related to BCAA degradation, including BCKDHA, BCKDHB,
451 DBT, MCCC2, Pccb, Pcca and MUT were upregulated in BM-MSCs from LBP+FR.


452 (Fig. 6A) As shown in Fig. 6B, the BCAA degradation pathway's schematic illustration
453 helps us know the roles of different enzymes involved in the BCAA pathway. Then,
454 the changes of these key enzymes (BCKDHA, BCKDHB, DBT, MCCC2) were
455 identified by immunoblot (Fig. 6C-D). Among them, the protein levels of BCKDHA
456 complex, an important enzyme that controls the committed and initial steps of BCAA
457 degradation to branched-chain acylcoA, was significantly upregulated in the LBP+FR
458 group. Taken together, BCKDH's activity was regarded as the most direct factor
459 affecting the BCAA degradation in LBP+FR.

460 To detect the correlations and functions of BCKDHA and BCAA in BM-MSCs'
461 differentiation, we tested the effect of the BCAA in an ex vivo cell culture model. We
462 used three BCAAs (valine, isoleucine, leucine) to stimulate the BM-MSCs separately
463 (Supplementary Fig. 6). BM-MSCs from BCAA treatment group exhibited increased
464 adipogenesis (Fig. 6E-F), accompanied by increased protein levels and mRNA levels
465 of PPAR γ and FABP4 (Fig. 6G-H). Moreover, BCKDHA protein and mRNA levels
466 were significantly higher in the BCCA group compared with the control group. (Fig.
467 6G-H)

468 Notably, the untargeted metabolomics analysis of serum samples that show two
469 metabolites (Thiamine pyrophosphate (Thpp) and 2-Methyl-1-hydroxypropyl-ThPP)
470 related to the BCAAs degradation pathway were mainly enriched in the LBP+FR
471 compared with the LBP. (Fig. 3 and Supplementary Table. 4) These two metabolites,
472 especially the ThPP, could be required as a coenzyme for the E1 component of the
473 BCKDH complex and can also activate the complex by inhibiting BCKDH kinase
474 (BDK).²³ Taken together, BCKDHA contributes significantly to the LBP+FR process.
475 Thus, these observations strongly suggest that amino acid metabolism (mainly
476 intracellular BCAA degradation) and the critical enzyme BCKDHA play an essential
477 role in BM-MSC's adipogenesis in LBP+FR.

478

479

480

481 **Figure 6. BCAA degradation positively regulates BM-MSC's adipogenic
482 differentiation.**

483 (A) RT-qPCR analyses of selected BCAA degradation genes in LBP+FR and LBP. (**p*

484 < 0.05, LBP+FR vs LBP, *n* = 6).

485 MUT, Methylmalonyl Coenzyme A Mutase; Pcca, Propionyl Coenzyme A Carboxylase,

486 Alpha Polypeptide; Pccb, Propionyl Coenzyme A Carboxylase, Beta Polypeptide;

487 MCCC1, Methylcrotonoyl-CoA Carboxylase 1; MCCC2, Methylcrotonoyl-CoA

488 Carboxylase 2; IVD, Isovaleryl-CoA Dehydrogenase; BCKDHB, Branched Chain Keto

489 Acid Dehydrogenase E1 Subunit Beta; BCKDHA, Branched Chain Keto Acid

490 Dehydrogenase E1 Subunit Alpha; DBT, Dihydrolipoamide Branched-chain

491 Transacylase E2; PPP2CA, Protein Phosphatase 2 Catalytic Subunit Alpha; PPP2CB,

492 Protein Phosphatase 2 Catalytic Subunit Beta; BCAT2, Branched Chain Amino Acid

493 Transaminase 2; BCAT1, Branched Chain Amino Acid Transaminase 1.

494 (B) Schematic illustration of the BCAA degradation pathway.

495 Enzymes examined in Fig. 6A are shown in blue. Degradation of Leu, Ile, and Val share

496 the same initial steps catalyzed by Bcat2, Bckdha, Bckdhb and Dbt. Leu leucine, Ile

497 isoleucine, Val valine, KIV α -ketoisovalerate, 3-MB-CoA 3-Methylbutanoyl-CoA, 2-

498 MB-CoA 2-Methylbutanoyl-CoA, IB-CoA Isobutyryl-CoA, MC-CoA 2-

499 Methylcrotonyl-CoA, MG-CoA 2-Methylglutaconyl-CoA, MA-CoA 2-

500 Methylbutanoyl-CoA, MM-CoA Methylmalonyl-CoA.

501 (C-D) Representative immunoblots of BCKDHA, BCKDHB, MCCC2, DBT and β -

502 actin in BM-MSCs from LBP+FR and LBP groups (C) and statistical analyses of

503 densitometric measurements of BCKDHA, BCKDHB, MCCC2 and DBT (D) are

504 shown (* $p < 0.05$).

505 (E-F) Representative images of Oil Red O staining of lipids (E) and quantification of

506 the number of oil spots (F) in BM-MSCs from control and BCAA groups cultured in

507 adipogenesis induction medium for 14 days. 40 \times magnification

508 (G) Representative immunoblots of PPARg, FABP4, BCKDHA and β -actin in BM-

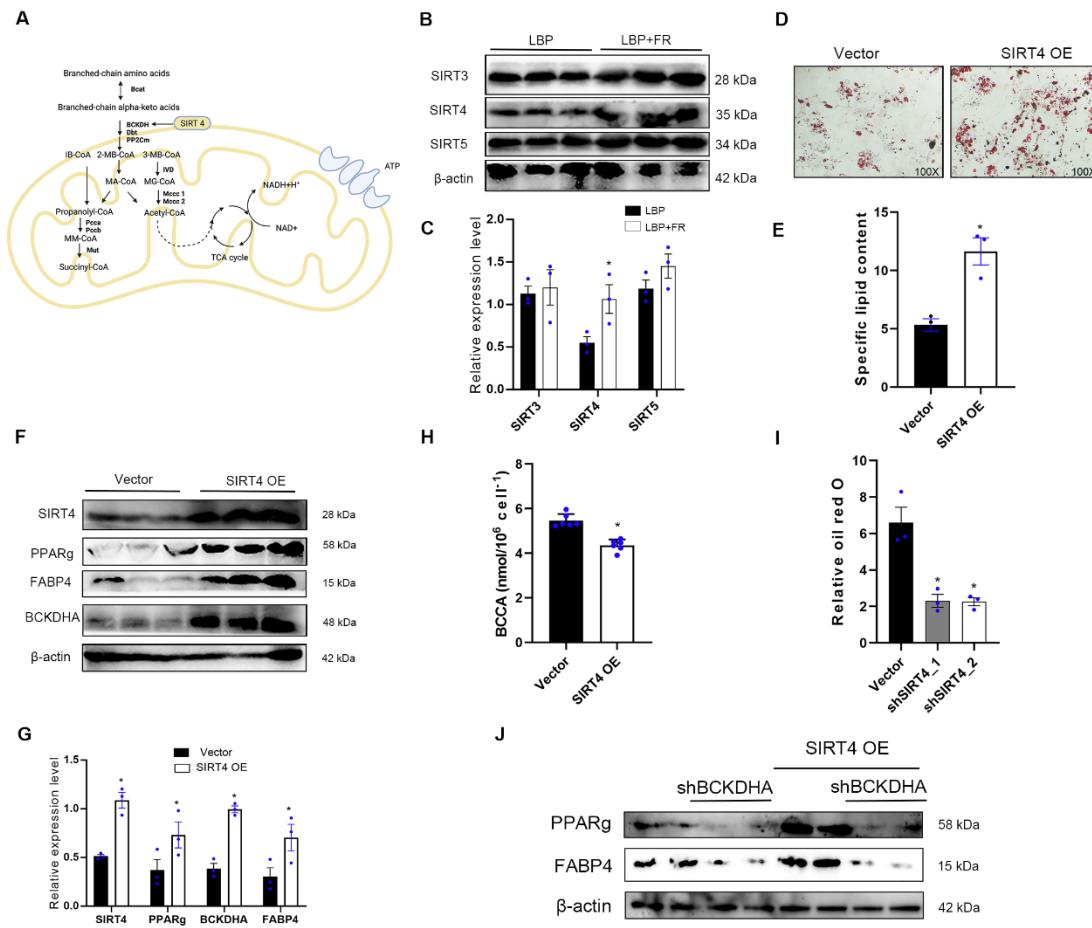
509 MSCs from the BCAA group.

510 (H) RT-qPCR analysis results of PPARg, FABP4 and BCKDHA in BCAA derived BM-

511 MSCs cultured in adipogenesis induction medium for 14 days. (* $P < 0.05$).

512

513 **8. SIRT4 boosts adipogenesis and the expression of BCKDHA.**


514 Next, we explored the upstream regulatory mechanisms mediating the BCAA
515 degradation pathway. Sirtuins are NAD⁺-dependent enzymes conserved from bacteria
516 to human¹³ and three sirtuins-SIRT3, SIRT4 and SIRT5 localize to the mitochondrial
517 matrix, are critical regulators of mitochondrial metabolic enzymes^{24,25}. Furthermore,
518 proteomics research on fibroblasts has found SIRT4 can alter mitochondrial activity by
519 binding to BCAA catabolic enzymes BCAT²⁶ and MCCC1^{27,28}. Given that BCAA
520 degradation is a mitochondrial process, we hypothesized that sirtuins might increase
521 BM-MSC adipogenesis by regulating BCAA degradation (Fig. 7A).

522 After testing by RT-PCR and WB, we found a largest increase in SIRT4 expression
523 on protein and mRNA compared with the expression of SIRT3 and SIRT5 in BM-
524 MSCs of LBP+FR patients (Supplementary Fig. 7A and Fig. 7B-C). To interrogate the
525 role of mitochondrial SIRT4 in BM-MSCs' differentiation, we overexpressed SIRT4
526 in normal BM-MSCs. SIRT4 overexpression caused a significant increase in
527 adipogenesis, as assessed by oil red O staining (Fig. 7D-E). Besides, SIRT4
528 overexpression increased expression of genes and proteins related to adipogenesis
529 (PPAR γ and FABP4) and BCKDHA (Supplementary Fig. 7B and Fig. 7F-G).

530 Given the established relationship between BCAA degradation and SIRT4, we
531 hypothesized that SIRT4 might promote BM-MSC's adipogenesis by regulating BCAA
532 catabolism. We detected that SIRT4 overexpression decreased the BCAA content in
533 BM-MSC after 14 days of adipo-differentiation (Fig. 7H). Moreover, we used two
534 different shRNAs to knockdown SIRT4 (shSIRT4) and found that the loss of SIRT4

535 impaired adipocyte differentiation (Fig. 7I and Supplementary Fig. 7C). We also found
536 that SIRT4 knockdown cells had significantly decreased protein and mRNA levels of
537 BCKDHA compared to control BM-MSCs (Supplementary Fig. 7D and 7E). To further
538 detect if BCKDHA is necessary for SIRT4-mediated adipogenesis in BM-MSCs,
539 knocked down BCKDHA was used in the context of SIRT4 overexpression. We found
540 that BCKDHA knockdown suppresses SIRT4-mediated increases of PPAR γ and
541 FABP4 at protein level, suggesting that SIRT4 promotes adipogenesis through
542 BCKDHA (Fig. 7J). Overall, these observations strongly suggest that SIRT4 positively
543 regulates BCAA degradation and adipogenesis in BM-MSCs.

544

545

546 **Figure 7. SIRT4 promotes adipogenesis and BCKDHA.**

547 (A) Model for SIRT4 regulation of BCAA catabolism.

548 (B-C) Representative immunoblots of SIRT3, SIRT4, SIRT5 and β -actin in BM-MSCs
549 from LBP+FR and LBP groups (B) and statistical analyses of densitometric
550 measurements of SIRT3, SIRT4 and SIRT5 (C) are shown (* $p < 0.05$).

551 (D-E) Representative images of Oil Red O staining of lipids (D) and quantification of
552 the number of oil spots (E) in BM-MSCs from vector and SIRT4-overexpressing group
553 cultured in adipogenesis induction medium for 14 days. 100 \times magnification

554 (F-G) Representative immunoblots of SIRT4, PPAR γ , FABP4, BCKDHA and β -actin
555 in BM-MSCs from vector and SIRT4-overexpressing groups (F) and statistical analyses
556 of densitometric measurements of SIRT4, PPAR γ , FABP4 and BCKDHA (G) are
557 shown (* $p < 0.05$).

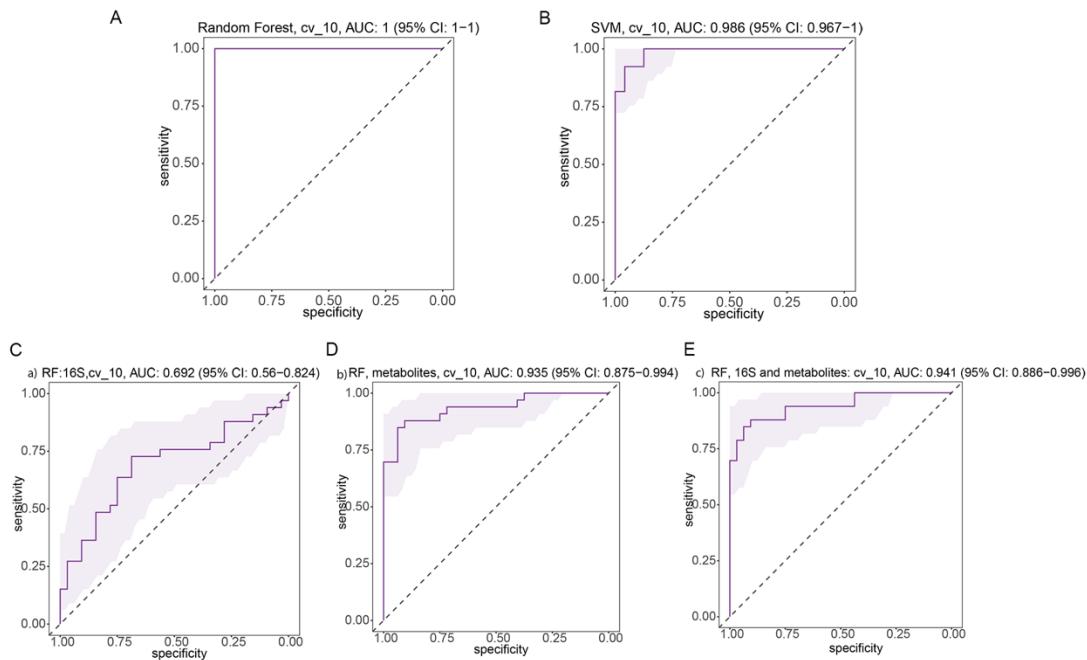
558 (H) The BCAA content in BM-MSCs from control and SIRT4-overexpressing groups
559 after adipo-differentiation (* $p < 0.05$).

560 (I) Quantification of relative oil red O in vector, shSIRT4_1 and shSIRT4_2 BM-MSCs
561 differentiated for 14 days (* $p < 0.05$).

562 (J) Western blot analysis of PPAR γ and FABP4 in BM-MSCs differentiated in 14 days
563 overexpressing SIRT4 or control vector and shBCKDHA or control plasmid.

564

565 **9. Gut microbiome- and metabolome-based prediction of LBP and FR.**


566 To determine whether differences in gut microbiome composition can be regarded as

567 recognition biomarkers for distinguishing LBP patients from healthy participants, we
568 trained Radom Forest (RF) classifiers on relative abundances of 16S tag sequences
569 shared between the two LBP and HC groups. RF model was generated, and the
570 corresponding receiver operating characteristic (ROC) curve was drawn to evaluate its
571 distinguishing ability. As shown in Figures 8A and 8B, the classifiers yielded nearly
572 perfect predictions (95% area under the ROC curve [AUC]) of LBP. This result shows
573 that the random forest model based on fecal microbiota can distinguish LBP patients
574 from healthy individuals, indicating that intestinal microbiota information can be used
575 to identify LBP patients. In addition, a second RF classifier was trained to predict LBP
576 with FR by the top 20 genus (16S genus) and the top 61 metabolites selected by all data
577 constructed models. 10-fold cross-validation was applied to reduce the over-fitting
578 effects. By combining the 16S top genera and the top 61 metabolites, the prediction
579 power can achieve as high as an AUC of 0.94, demonstrating that microbial signatures
580 and metabolites can accurately predict the FR in LBP patients. (Fig. 8C-E)

581 We also found that RF model could discriminate LBP patients with FR from LBP
582 subjects with an area under the curve ranging from 0.69 to 0.94 (all 16S genus, AUC =
583 0.69; all 10,000 metabolites, AUC = 0.935; combination of all 16S genus and
584 metabolites, AUC = 0.94; Supplementary Fig. 8A-C).

585 The 16S has a very low AUC of around 0.6, but the metabolites can accurately predict
586 types of LBP with an AUC of 0.88. While combining them together for all the data, the
587 prediction power does not improve too much compared with metabolites only. These

588 results demonstrated that these models based on gut microbiome and serum metabolites
589 could distinguish LBP patients from healthy individuals and differentiated LBP patients
590 with FR from LBP patients without FR in our cohort, suggesting that the gut
591 microbiome and serum metabolite information could be applied to identify patients.

592

593 **Figure 8. Random forest models to predict LBP and FR.**

594 (A-B) Prediction models to predict LBP to healthy control. The microbial signatures of
595 16S genera have AUC of 1 with 10-fold cross-validations for random forest, for support
596 vector machine model, it has an AUC of 0.986.

597 (C-E) Random Forest models to predict LBP types by top 20 16S genus and top 61
598 metabolites selected by all data constructed model.

599

600 **Discussion**

601 Researchers found chronic LBP with FR shares similar basic pathogenetic
602 characteristics with osteoarthritic (OA), including MRI modalities, prevalence, pain,
603 joint degeneration, risk factors, suggested etiologies and natural history with bone
604 marrow lesions.²⁹

605

606 There has been abundant evidence to support that gut microbiota, and its metabolites
607 have been proposed as cofactors in OA³⁰. However, few studies have directly examined
608 gut dysbiosis's effects on BMLs^{13,31}. Here, we outlined the landscapes and interaction
609 networks of differential bacterial species and serum metabolites in the LBP with FR
610 gut ecosystem. Disturbance of amino acid metabolism was a hallmark in the gut
611 ecosystem of LBP with FR. Moreover, we utilised an ex vivo cell culture model to
612 demonstrate an LBP+FR-specific effect of microbiota and metabolites on the BM-
613 MSC's adipogenesis differentiation, showing important clinical implications. Previous
614 gut microbiome studies focused on the differential bacteria between LBP and non-
615 LBP¹³ and did not clarify how the gut microbiome affects disease development. Our
616 research compared the microbiome composition between LBP+FR, LBP and healthy
617 controls using two methods: 16S rRNA and metagenomics sequencing. 16S rRNA
618 sequencing and metagenomic sequencing were prerequisites for screening the critical
619 species associated with LBP with/without FR onset and identifying diagnostic markers
620 for clinical applications.

621

622 16S rRNA sequencing results showed that the bacterial composition of LBP
623 with/without FR differed from that in HC. LBP was characterized by enriched families
624 Streptococcaceae, Prevotellaceae, Rikenellaceae, Alcaligenaceae, Clostridiaceae and
625 Enterobacteriaceae; reduced families Ruminococcaceae and Lachnospiraceae. At the
626 genus level, LBP with/without FR was distinguished from HC by the expansion of
627 Prevotella, Escherichia, Megamonas and SMB53, and the reduction in Fecalibacterium,
628 Roseburia, Lachnospira and Sutterella. Even though we did not find the different
629 microbiome composition at family and genus level in the top abundant species between
630 the LBP+FR group and LBP group, abundance comparisons of other not prominent
631 genera showed that enriched Atopobium, Catenibacterium and Eubacterium and
632 reduced Aggregatibacter in LBP+FR patients compared to LBP. Only a portion of the
633 gut microbiota community revealed by shotgun sequencing could be detected by 16S
634 rRNA gene sequencing.³² Shotgun sequencing, in particular, has more remarkable
635 sensitive ability to identify taxa with less abundant than 16S rRNA gene sequencing
636 when a sufficient number of reads are available. Furthermore, the alterations in
637 metagenomes relate to disease features, the results involved could be utilized as
638 therapeutic targets or the outputs used as fecal biomarkers, although this would need
639 clinical and experimental validation. We demonstrated that the less abundant genera
640 detected only by shotgun sequencing are biologically meaningful and can discriminate
641 between three groups.

642

643 Our metagenomic analysis identified seven bacterial species linked with LBP (LBP
644 with/without FR). Metagenomic microbiome sequencing data support an emerging core
645 microbiome signature that LBP was characterized by reduced species of *Bilophila*
646 *unclassified*, *Eubacterium hallii*, *Adlercreutzia equolifaciens* and *Lachnospiraceae*
647 *bacterium 5 I 63FAA* compared to HC. *Adlercreutzia equolifaciens* has been proven to
648 play a significant role in gut microbiota–host interactions, especially LBP¹³.
649 *Adlercreutzia equolifaciens* is a well-known species that produce equol.³³ In
650 menopausal and postmenopausal women, equol has been proven critical in reducing
651 bone loss and alleviating muscle and joint pain.³⁴ Besides, Marloes et al.¹³ used 16S
652 rRNA analyses of fecal specimens in a group of 36 overweight or obese people who
653 had or had not back pain. In contrast to our findings, Marloes et al. reported that the
654 genera *Adlercreutzia* was found in greater abundance in people with back pain than in
655 people who did not have back pain ($P = 0.0008$). These disparate findings are plausibly
656 due to significant differences in the study cohorts. In Marloes's study, all participants
657 were overweight or obese people who additionally had a higher BMI ($\geq 25 \text{ kg/m}^2$),
658 compared to our study cohort with a common BMI ($\leq 24 \text{ kg/m}^2$). In addition, other
659 characteristics, including demographic, clinical, biochemical characteristics, diet, and
660 physical activity, are different between Marloes's study and our research.
661
662 *Bilophila* belongs to the Desulfovibrionaceae family, which produces hydrogen
663 sulphide (H_2S). Metabolises sulphated substances to create H_2S , which can cause

664 inflammation, cause epithelial cell genotoxicity and cytotoxicity, and disrupt intestinal
665 barrier function³⁵. Importantly, H₂S has been reported to exert antinociceptive effects
666³⁶ and sulfidogenic bacteria have recently been linked to the aetiology of chronic
667 metabolic diseases³⁷. *Eubacterium hallii* and *Lachnospiraceae bacterium 5 I 63FAA*,
668 with its ability to create large levels of SCFAs such as butyrate and propionate, have
669 been hypothesised to be vital in maintaining gut microbial metabolic health and
670 homoeostasis.^{38,39} Although there is no clear evidence about the effects of SCFAs on
671 LBP, SCFAs have been demonstrated to affect the inhibition of bone resorption or
672 osteoclast formation either via activation of G Protein-Coupled Receptors (GPCR) or
673 through histone deacetylase (HDAC) inhibition.⁴⁰ Obviously, sufficiently powered
674 studies in large cohorts are still needed to determine the specific alterations of the
675 microbiome with LBP.

676
677 This paper focused on the differentiated species between LBP+FR and LBP. Three
678 species, including identified enriched *Ruminococcus gnavus*, depleted *Roseburia*
679 *hominis* and *Lachnospiraceae bacterium 8 I 57FAA* to distinguish LBP+FR from LBP
680 and HC groups. *Ruminococcus gnavus* is the only enriched species in LBP+FR
681 compared to LBP and HC groups. In most studies about *Ruminococcus gnavus*, an
682 increased relative abundance of *Ruminococcus gnavus* was mainly linked with Crohn's
683 disease (CD), a major inflammatory bowel disease.⁴¹ It is worth noting that
684 musculoskeletal pain occurs in 9–53% of IBD patients and is considered the most

685 common extraintestinal manifestations.⁴² Although it is hard to connect the
686 musculoskeletal pain and IBD through the current knowledge about *Ruminococcus*
687 *gnavus*, these research findings provide the key to understanding the potential function
688 of *Ruminococcus gnavus* in musculoskeletal diseases. Despite numerous studies
689 associating *Ruminococcus gnavus* with various inflammatory diseases,^{43,44} no
690 molecular mechanisms to explain these correlations have been developed, and here we
691 identified a possible mechanism for LBP+FR and *Ruminococcus gnavus*. Further
692 proving that these critical species in the gut microbiome played a driving role in FR
693 requires more *in vivo* experiments such as fecal microbiota transplant (FMT).

694

695 Gut bacteria are now well recognized as having a considerable influence on various
696 metabolic pathways in the host. Both statistical correlation (co-expression network) and
697 metabolic function support this conclusion in our study. In co-occurrence analysis
698 among the gut microbiome and metabolites, changed microbiome species,
699 *Ruminococcus gnavus* and *Roseburia hominis*, were substantially correlated with serum
700 metabolites involved in most pathways (Fig. 4). Co-occurrence analysis showed the
701 connection between BCAA degradation and *Ruminococcus gnavus/Lachnospiraceae*
702 *bacterium 8 1 57FAA*. Besides, in metabolic analysis, the BCAs degradation pathway
703 was the most enriched pathway in LBP+FR group. This finding is consistent with the
704 functional analysis of fecal microbiome based on metagenomics sequencing (Fig. 2I),
705 KEGG pathway analysis showed BCAA pathway with functions related to metabolic

706 pathways and signal transduction in LBP+FR group. Functional assignments and
707 network analysis revealed that BCAA degradation pathway serves as the metabolic
708 mediator for the cross-talk between the host and the microbiome. Thus, BCAA related
709 pathways would differ in the disease condition compared to the healthy state. BCAA
710 have key physiological roles in regulating protein synthesis, metabolism, food intake
711 and ageing.⁴⁵ BCAA also strongly correlates with metabolic diseases, including
712 metabolic syndrome, type 2 diabetes, and urea cycle disorders.^{45,46} LBP with FR could
713 be characterised as a lipid metabolism disorder in the bone marrow. Even though we
714 have demonstrated the relationship between BCAA and gut microbiome through co-
715 occurrence analysis of the metagenomic sequencing and untargeted metabolome, more
716 direct evidence is needed to establish their correlation.

717

718 Interestingly, Marloes et al. also found that overweight or obese individuals with back
719 pain had a higher abundance of the genera Roseburia than those without back pain.¹³
720 On the one hand, this result confirms the prominent role of Roseburia in LBP. On the
721 other hand, combined with the results of our study, the enrichment of Roseburia was
722 changeable in different LBP conditions, like LBP+obesity or LBP+FR, which means
723 Roseburia abundance could affect various metabolic pathways in LBP. Besides,
724 Roseburia has been detected to associate with several diseases, including irritable bowel
725 syndrome, ulcerative colitis, obesity, type 2 diabetes, nervous system disorders, and
726 allergies. ^{47,48} However, it must be acknowledged that these clinical findings are

727 preliminary, and the impact of environmental and demographic factors cannot be ruled
728 out.

729

730 Co-occurrence analysis found that the different microbial species and serum
731 metabolites in LBP group were consistently mapped into Porphyrin and chlorophyll
732 metabolism. Porphyrins are a class of metabolites that play a role in manufacturing life-
733 sustaining chemicals⁴⁹. The levels of bacterial porphyrin on the skin were shown to be
734 substantially greater in acne vulgaris (acne) patients⁵⁰. The dominant porphyrin species
735 produced by *P. acnes*, coproporphyrin III, was shown to induce *Staphylococcus aureus*
736 aggregation and biofilm formation in the nostrils⁵¹, which means *P. acnes* could be a
737 preliminary cause of severe sepsis caused by *Staphylococcus aureus*. All information
738 points to the connection between *P. acnes* and Porphyrin and chlorophyll metabolism.

739 More interesting, researchers have found evidence that supported the close relationship
740 between the LBP (especially the LBP+FR group) and *P. acnes*.⁵² In fact, there have
741 always been doubts that the *P. acnes* in disc samples from LBP patients belong to
742 sample contamination.⁵³ Our results provide possible clues and future directions about
743 serum metabolites clues in the relationship between LBP and *P. acnes*. However, skin
744 microbial communities' functions, metabolic activities, and host interactions are still
745 not well understood.

746

747 The MRI signal intensity of the bone marrow in LBP with FR reflects a lipid conversion.

748 BM-MSCs are stem cells and can differentiate into adipocytes or osteoblasts in the bone
749 marrow.⁵⁴ BM-MSCs tend to differentiate into adipocytes rather than osteoblasts with
750 ageing, leading to progressive fat accumulation and bone loss.⁵⁵ We demonstrated that
751 BE from LBP+FR and LBP patients have different ability to induce BM-MSCs
752 adipogenesis. And BM-MSCs from patients with LBP+FR exhibit a strong
753 adipogenesis capability. Connected to the characteristics of MRI image and RNA
754 sequencing results, BM-MSCs' differentiated function plays a critical role in fatty
755 replacement in bone marrow from LBP+FR patients. Moreover, we found that the
756 expression of fatty-acids related cell receptor GPR 41/43 on BM-MSCs from LBP+FR
757 patients was higher than the BM-MSCs from LBP patients. BM-MSCs from LBP+FR
758 patients were easier to influence by some fatty acids produced by the gut microbiome.
759 Notably, the differentiated microbiome in LBP+FR, *Ruminococcus gnavus* belongs to
760 the family Ruminococcaceae, and *Roseburia hominis*, *Lachnospiraceae bacterium 8 1*
761 57FAA, belong to family Lachnospiraceae, are proved to be the main butyrate
762 producing-bacteria in the human gut.⁵⁶ These results shown gut microbiome in
763 LBP+FR patients has the potential to regulate BM-MSCs adipogenesis through SCFAs.
764 We did not find evidence of SCFAs from untargeted blood metabolism. To further
765 detect the relationship between SCFAs and FR in LBP, targeted metabolomics about
766 SCFAs should be done in the future.
767
768 Even though BM-MSCs' differentiate in response to many factors, little is known about

769 how metabolism drives differentiation. Here, we demonstrated that certain amino acids,
770 particularly BCAAs, are consumed during BM-MSCs' differentiation. BCAA
771 catabolism supports mitochondrial respiration at this stage of BM-MSCs' adipogenesis.
772 The process of BM-MSCs differentiated into adipocytes in bone marrow was ATP-
773 dependent. BCAA-induced mitochondrial respiration in adipogenesis may facilitate
774 ATP generation for lipogenesis. These observations point to the importance of
775 mitochondria in BM-MSCs' differentiation process. Our study highlights the
776 fundamental role of mitochondria as the site of providing enough energy to BM-MSCs'
777 adipogenesis.

778 Importantly, SIRT4 and induction of BCAA catabolism amplify the expression of
779 PPAR γ and FABP4 and its targets, including BCAA catabolism enzymes: BCKDHA.
780 Although, it is unclear how SIRT4 function in the mitochondria impacts transcriptional
781 activity of PPAR γ and FABP4. The work from Laurent et al. showed that the loss of
782 SIRT4 increases expression of PPAR α target genes in fatty acid catabolism⁵⁷.
783 Mechanistically, in the absence of SIRT4, NAD $^+$ levels are elevated and activate
784 SIRT1, which can then be recruited to PPAR α and co-regulate transcription. Previous
785 work identified the link between SIRT4 and BCAA catabolism through MCCC1 in the
786 liver⁵⁸. Here, we find that SIRT4 enhances BCKDHA activity in BM-MSCS and that
787 loss of this regulation results in decreased adipogenesis. SIRT4 has been reported to
788 bind to numerous substrates involved in BCAA catabolism, including MCCC1,
789 BCKDHA, DBT and dihydrolipoyl dehydrogenase (DLD)^{28,58}, raising the possibility

790 that SIRT4 engages this pathway at multiple enzymatic nodes. Additional investigation
791 is required to determine which SIRT4-BCAA catabolism enzyme interactions are most
792 important for promoting adipogenesis in BM-MSCs from LBP+FR patients. Given that
793 numerous enzymatic activities of SIRT4 have been revealed⁵⁹, SIRT4 may augment
794 BCKDHA activity in BM-MSCs through a previously unidentified activity.

795

796 In summary, using multi omics data, we have presented evidence that LBP or LBP+FR
797 were characterized by gut bacterial disturbances and serum metabolites, representing
798 the overall disturbances of LBP or LBP+FR gut ecology. Furthermore, disturbance of
799 microbial amino acid metabolism (BCAA degradation pathway) was a potential source
800 of disease biomarkers in LBP+FR. Moreover, this work identifies a significant process
801 in adipogenesis regulated by SIRT4-mediated stimulation of BCAA metabolism with
802 important developmental implications in BM-MSCs. These findings provide new
803 directions to uncover pathogenesis and develop novel diagnostic strategies for chronic
804 LBP with FR.

805

806 **Material and methods**

807 **Patients' samples**

808 We recruited 107 chronic LBP Patients with/without FR and 31 healthy controls. The
809 ethics approval was obtained from the Human Research and Ethics Committee of the
810 First Affiliated Hospital (no: 2021-270), Sun Yat-sen University, China. For the

811 chronic LBP group, participants were recruited for this project if they were any gender
812 aged between 20-70 years, willing to undergo an MRI of the lumbar spine for
813 diagnosing FR, had chronic LBP at least half the day in the past six months, and no
814 previous low back surgery, and had not been diagnosed with ankylosing spondylitis,
815 osteoporotic vertebral fracture, multiple myeloma, metastatic carcinoma, and psoas
816 abscess. Healthy individuals were adults with no history of LBP and FR or spinal
817 disease. We placed the advertisement for participant recruitment (participants with LBP
818 or NO LBP) at the First Affiliated Hospital. Participants were excluded from the project
819 if they had any antibiotics or oral corticosteroids in the past month; known
820 gastrointestinal disease; previous gastrointestinal surgery; regular proton-pump
821 inhibitor, or lactulose therapy. These drugs and therapies will interfere with the gut
822 microbiome composition.

823

824 **Specimen collection and library preparation**

825 All participants were given a fecal collection kit and guided to generate their faces
826 within two days. All fecal samples were frozen and stored at -80°C. Microbial DNA
827 was extracted from stool by MOBIO PowerSoil® DNA Isolation kit (MOBIO
828 Laboratories, Carlsbad, CA, USA) with bases-beating step following the
829 manufacturer's protocol. Sequencing libraries were generated using NEB Next®
830 Ultra™ DNA Library Prep Kit for Illumina® (New England Biolabs, MA, USA)
831 following the manufacturer's recommendations and index codes were added. The

832 library was sequenced on an Illumina NovaSeq 6000 platform and 150 bp paired end
833 reads were generated.

834

835 **16S rRNA gene sequencing analysis**

836 We merged, applied quality control and clustered the 16S rRNA gene reads into
837 operational taxonomic units (OTUs) using QIIME 2 Taxonomic groups were based on
838 the Greengenes Database V.13_8 using closed reference to perform referenced-based
839 OTU clustering.^{60,61} Values for alpha diversity (Chao1 Index, Shannon's Index,
840 Phylogenetic Diversity (PD) Whole Tree Index and observed OTUs), beta diversity
841 (Unweighted UniFrac distance metrics) and principal coordinate analysis (PCoA)
842 employed based on the Bray_Curtis distance, Unweighted_Unifrac and
843 Weighted_Unifrac distance were generated by QIIME 2 Permutational multivariate
844 analysis of variance was performed to determine if the compositions of microbiota
845 differed between groups. Linear discriminant analysis effect size (LEfSe) was
846 performed to determine the features most likely to explain the differences between
847 groups.

848

849 **Metagenomic sequencing analysis**

850 The raw data processing using Trimmomatic⁶² (v.0.36) was conducted to acquire the
851 Clean Data for subsequent analysis. MEGAHIT (Version v1.0.6) was used to assemble
852 the metagenomics Clean Data. ScafTigs were obtained by mixing assembled scaffolds

853 from N connection. The contigs with a length of or more than 500 bp were selected as
854 the final assembling result. Open reading frames were predicted from both single and
855 mixed ScafTigs using MetaGeneMark (Version 3.38) and filtered the length information
856 shorter than 90 nt from the predicted result with default parameters. Then CD HIT
857 (Version:4.7) is adopted to remove redundancy and obtain the unique initial gene
858 catalogue. All predicted genes with a 95% sequence identity and 90% coverage were
859 clustered. Reads and number of reads in each sample were obtained by using BBMAP
860 software.

861 We annotated gene sets using DIAMOND software based on the NCBI NR database.
862 Each gene is assigned to the highest-scoring taxonomy based on a unified database.
863 This achieves simultaneous assessment of the gut microbiome of LBP patients with or
864 without FR. The DIAMOND software is adopted to blast Unigenes to KEGG
865 annotation. Alpha-diversity analysis, including Chao-1-richness index, Observed-otus,
866 Shannon's diversity index and PD-whole-tree index was utilized conducted and
867 visualized using the fossil and vegan packages in R. PCoA was used to visually evaluate
868 the overall difference and similarity of gut bacterial communities between the LBP
869 patients with or without FR and HC groups.

870 Group differences were tested by using the PERMANOVA. The differential bacterial
871 species between the three groups were identified using LEfSe with linear discriminant
872 analysis (LDA) score >2. Furthermore, Wilcoxon rank-sum test was used to identify

873 the differential species and metabolites between different groups (false discovery rate,
874 <0.05). Then, the correlated microbial genes in the KEGG pathway were detected.

875

876 **Serum and BM-MSCs preparation**

877 Serum samples were collected from the whole blood by serum-separator tubes, and
878 serum samples should be stored at -80°C within 2 hours. BM-MSCs samples were
879 immediately separated from the bone marrow and stored at -80°C. Sample treatments
880 followed the recommended processing guides for untargeted metabolomic study.

881

882 **Metabolomics measured by LC-MC**

883 Untargeted metabolomics Profiles were performed by the Beijing Genomics institution
884 (BGI). Advanced mass spectrometer Xevo G2-XS QTOF (Waters, UK) was used to
885 compare the three groups' serum metabolites signatures. Commercial software
886 Progenesis QI (version 2.2) (Waters, UK) and the BGI's metabolomics software
887 package metaX were used for mass spectrometry data analysis, wherein identification
888 was based on the KEGG database. PCoA was applied to discriminate the samples from
889 different groups visually. The cluster analysis was performed to group the selected
890 differential metabolites. Metabolic pathway in which the differential metabolites
891 involved were enriched referred to the KEGG pathway and database.

892

893 **Metabolomic and metagenomic data integration**

894 Correlation analysis between metagenomic and metabolomic data was undertaken
895 using genomes and metabolites identified as significantly different between LBP+FR,
896 LBP and healthy samples incorporating adjustment for age, sex and BMI. The co-
897 occurrence among the gut microbiome and serum metabolites was calculated based on
898 the relative abundances by Spearman's rank correlation coefficient ($P < 0.05$). The
899 network layout was calculated and visualized using a circular layout by the Cytoscape
900 software. Only edges with correlations greater than 0.5 were shown in the bacteria and
901 serum metabolites, and unconnected nodes were omitted. Correlation coefficients with
902 a magnitude of 0.5 or above were selected for visualization in Cytoscape.

903

904 **Branched chain amino acid assay**

905 Following the manufacturer's instructions, a commercial colorimetric measurement kit
906 (ab83374, Abcam, United Kingdom) was utilized to quantify the BCAA levels in serum
907 and cell culture media samples. The serum samples were diluted 2.5 times and
908 incubated at room temperature for 30 minutes. The absorption at 450 nm was measured
909 with a microplate reader, and then the BCAA's level was calculated using the standard
910 curve.

911

912 **BM-MSCs-isolation and ex vivo culture**

913 The mononuclear cells (MNCs) were extracted from the marrow cavity of the
914 intervertebral body according to a widely used protocol.⁶³ Briefly, the collected bone

915 marrow was gently mixed with PBS (1:2). The mixture was equally layered onto an
916 equal volume of Ficoll (1,077 g/m, GE health care, Chicago, USA) and collected buffy
917 coat by using a density gradient centrifugation. Then the isolated buffy coat was washed
918 twice with PBS and spun with centrifugation. The gotten red blood cells were seeded
919 in DMEM low glucose with 10% FBS (Gibco, Life Technologies Ltd, Paisley, UK) at
920 a density of 160,000/cm². All non-adherent cells were removed. The culture medium
921 was changed twice a week, and the BM-MSCs could be harvested by the trypsin
922 (Thermofisher, USA) after about 3~5 days and transferred to a new flask.

923

924 **Bacterial extract preparation for stimulation of BM-MSCs**

925 50 mg of fresh fecal was suspended in 1.5 mL of PBS and filtered through a 40 µm cell
926 strainer to get bacterial extracts (BE). Fecal samples were obtained from subjects with
927 LBP+FR and LBP controls. After that, samples were reconstituted in 1.5 mL of PBS
928 containing protease inhibitor (Roche) and phosphatase inhibitor (Roche) supplements.
929 After 10 minutes, samples were heat-inactivated at 65 °C for 1 hour after sonication.
930 According to the manufacturer's instructions, the protein concentration in the resulting
931 suspension was determined using the Pierce BCA protein assay kit (Thermo Scientific),
932 and the LPS levels were determined using the Pierce Chromogenic Endotoxin
933 Quantification Kit (ThermoFisher).

934 Prior to BM-MSCs' stimulation, all BE were prepared to protein concentration of 10
935 mg/mL, as higher concentrations were shown in dose-titration experiments to

936 compromise BM-MSCs viability to <90%. Each subject's individual BE was used to
937 stimulate each BM-MSCs sample (i.e. self and non-self BE stimulation).

938

939 **Immune-Phenotype**

940 BM-MSCs were counted and divided 1x10⁵/ tube and then re-suspended in 100 µL of
941 antibodies mix. Subsequently, cells were incubated for 30 minutes at 4 degrees, washed
942 and analysed with a FACSCanto flow cytometer (BD PharMingen) and with the
943 FACSDiva software (Tree Star, Inc. Ashland, OR). BM-MSCs have characterized with
944 some special monoclonal antibodies again CD105, CD29, CD34 and CD45 (Cyagen,
945 #HUXMX-09011) associated with different fluorochromes.

946

947 **Oil Red O staining and quantification**

948 BM-MSCs were cultured in the adipogenesis induction medium (α-MEM containing
949 0.5 mM 3-isobutyl-1-methylxanthine, 1 µM dexamethasone, 5 µg/ml insulin, and 10%
950 FCS) for 14 days. The medium was replaced twice a week. Oil Red O was performed
951 to detect the mature adipocytes. Briefly, BM-MSCs were washed twice in PBS, fixed
952 with 3.7% formalin, washed with 60% isopropanol, and stained with 0.3% Oil Red O
953 solution. The excess stain was removed by washing the cells with sterile water, and
954 cells were then dried for imaging. For quantification, lipid droplets were solubilized in
955 100% isopropanol and quantified by determining the resultant absorbance at 492nm.

956 Cells were counterstained with 0.01% crystal violet and extracted with 100% methanol,
957 and absorbance was measured at 570 nm.

958

959 **Gene expression analysis by RNA sequencing**

960 Total RNA extraction was done from BM-MSCs after different treatments with TRIzol
961 reagent. Subsequently, the RNA samples were sent to BGI Co., LTD (Shenzhen, China),
962 and BGISEQ-500 platform was applied to perform RNA-sequencing. Differentially
963 expressed genes were determined based on Q value (Adjusted P-value) <= 0.05.

964

965 **qRT-PCR analysis**

966 Total RNA from BM-MSCs was extracted by the TRIzol reagent (Invitrogen). The
967 RNA concentration was measured by the Nanodrop 2100, and reverse transcription was
968 performed using 1 µg total RNA. Total RNA was reverse-transcribed into the first-
969 strand cDNA using the Superscript First-Strand Synthesis Kit (Invitrogen). cDNA
970 transcripts were quantified by Rotor Gene Real-Time PCR System (Qiagen) using
971 SYBR Green (Biorad). Primer sequences were shown in Table 2.

972

Table 2. The Primer Sequences Used for Quantitative Real-Time PCR

Primer	Forward Primer (5'→3')	Reverse Prime (3'→5')
--------	------------------------	-----------------------

h-PPAR γ	GATGCCAGCGACTTGAC	ACCCACGTCACTTCAGG
(NM_0011726)	TC	GA
98)		
h-FABP4	ACTGGGCCAGGAATTGAC	CTCGTGGAAAGTGACGCCT
(NM_001442)	CG	T
h-IGFBP2	GACAATGGCGATGACCAC	CAGCTCCTTCATACCCGA
(NM_000597)	TCA	CTT
h-MGST3	GGCCCACCTAGCCATCAA	CGCTGAATGCAGTTGAAG
(NM_004528)	TG	ATGT
h-LPL		GGCCACAAAGTTTGGCAC
(NM_000237)	TCATTCCCGGAGTAGCAG	C
	AGT	
h-FASN	AAGGACCTGTCTAGGTT	TGGCTTCATAGGTGACTT
(NM_004104)	GATGC	CCA
h-IGF2	GTGGCATCGTTGAGGAGT	CACGTCCCTCTCGGACTT
(NM_0010071)	G	G
39)		
h-GPX3	AGAGCCGGGGACAAGAGA	ATTGCCAGCATACTGCT
(NM_002084)	A	TGA
h-CD36	GGCTGTGACCGGAACGT	AGGTCTCCAACCTGGCATT
(NM_000072)	G	AGAA
h-ACACA	ATGTCTGGCTTGCACCTAG	CCCCAAAGCGAGTAACAA
(NM_198838)	TA	ATTCT
h-BCAT1	GTGGAGTGGTCCTCAGAG	AGCCAGGGTGCAATGACA
(NM_005504)	TTT	G

h-BCAT2 (NM_001190)	GCTAACATGGACCGGAT G	CCGCACATAGAGGCTGGT G
h-PP2CB (NM_0010095 52)	CTGAACGAGAACCAAGTG CG	ACGAACCTCTTGCACATT TGA
h-PP2CA (NM_002715)	CAAAAGAACATCCAACGTGC AAGAG	CGTTCACGGTAACGAACC TT
h-BCKDHA (NM_0011647 83)	CTACAAGAGCATGACACT GCTT	CCCTCCTCACCATAGTTG GTC
h-BCKDHB (NM_000056)	TGGAGTCTTAGATGCACT GTTG	CGCAATTCCGATTCCAAA TCCAA
h-DBT (NM_001918)	CAGTCGCCGTCTGGCAAT	CCTGTGAATACCGGAGGT TTTG
h-IVD (NM_002225)	ATGGCAGAGATGGCGACT G	TAGCCCATTGATTGCATC GTC
h-MCCC2 (NM_022132)	AAAGCCCGAGCACTTCAC ATA	TCCAATGCCTGTAATAAT GCCAC
h-MCCC1 (NM_020166)	GCTGCACAGGCTATCCAT CC	CACCATGATAACCCTCCA CAAC
h-Pccb (NM_000532)	AACGAACGCATCGAAAAC AAG	CCTGGCTGTTAGCTTCCT CG
h-Pcca (NM_0011276 92)	GCAAGAAGATGGGCATTA AGACA	GCCAACACAGACAGCCTC AT

h-MUT	AGAAGACCTAATATGGCA	ATGGTCCAGGGCCTAAAG
(NM_000255)	CACCC	GTA
h-SIRT3	ACCCAGTGGCATTCCAGA	GGCTTGGGGTTGTGAAAG
(NM_0010175)	C	AAG
24)		
h-SIRT4	GCTTGCGTTGACTTCAG	CCAATGGAGGCTTCGAG
(NM_012240)	GT	CA
h-SIRT5	GCCATAGCCGAGTGTGAG	CAACTCCACAAGAGGTAC
(NM_0011932)	AC	ATCG
67)		
h-GAPDH	CATGTTCGTCATGGGTGTG	GGCATGGACTGTGGTCAT
(NM_0012567)	AA	GAG
99.3)		
h-, human		

973

974 **BM-MSC Transfection**

975 BM-MSCs were transfected by short hairpin RNAs (shRNAs). For overexpression
976 studies, BM-MSCs' overexpressing SIRT4 were established by the Lentiviral
977 Packaging Kits (TR30037; ORIGEN) according to the manufacturer's protocol. Stable
978 overexpression of SIRT4 was achieved by infecting BM-MSCs with lentiviruses for 72
979 h followed by culturing in medium with 2 µg/ml puromycin (Beyotime Institute of
980 Biotechnology, Haimen, China) at 37 °C and 5% CO₂ for 2 weeks.

981

982 **Immunocytochemistry**

983 BM-MSCs were washed with phosphate-buffered saline (PBS) three times, fixed with
984 4% paraformaldehyde for 15 min, permeabilized in 0.3% Triton X-100 for 10 min and
985 blocked with 10% normal goat serum for 1 hour at room temperature. The following
986 antibodies were used as primary antibodies: FFAR 3 (1: 100, #PA5-97745, Invitrogen)
987 and GPR 43(1: 200, #BS-13536R, Thermo Scientific). Alexa Fluor 488 Dye-
988 conjugated secondary antibody (Invitrogen) was used for detecting indirect
989 fluorescence and then mounted on glass slides with Vectashield (Vector laboratories).

990

991 **SDS Page Immunoblot**

992 BM-MSC lysates were prepared by RIPA lysis buffer (catalogue #P0013B; Beyotime
993 Biotechnology, Shanghai, China) supplemented with PMSF protease inhibitor on ice
994 for 30 min. Bicinchoninic acid (BCA) protein assay kit (catalogue #P0010S; Beyotime
995 Biotechnology) was used to quantify the protein concentration according to the
996 instruction. Cell proteins were isolated by the SDS-PAGE blotted on PVDF membranes
997 (Millipore). And then blocked with 5% fat-free dry milk at RT for 1 h. The PVDF
998 membranes were incubated with specific antibodies to related genes at 4 °C. Next
999 incubated with appropriate HRP-conjugated secondary antibodies and exposed to x-ray
1000 films.

1001

1002 **Statistical analysis**

1003 The number of independent experiments can be found in the relevant figure legends.

1004 One-way analysis of variance (ANOVA) was used to compare continuous variables,

1005 which were displayed as means \pm SD. Data of metagenome and metabolome were

1006 presented as means \pm standard error of the mean (SEM). GraphPad Prism and excel

1007 were used for statistical analysis. The statistical significance level was set at a *P* value

1008 of < 0.05 .

1009

1010 **Data availability**

1011 The 16S rRNA amplicon and metagenomic sequencing data have been deposited in

1012 National Center for Biotechnology Information (NCBI) with the primary accession

1013 code: PRJNA822996. The mass spectrometry raw data have been deposited on the

1014 MetaboLights (ID: MTBLS4644). The remaining data are available within the article,

1015 supplementary information or available from the authors upon request.

1016

1017 **Acknowledgements**

1018 We appreciate the department of Spine Surgery (The First Affiliated Hospital, Sun Yat-

1019 Sen University, Guangzhou) and the Department of Orthopedic Surgery (The First

1020 Affiliated Hospital of Soochow University, Suzhou, Jiangsu) for providing funding

1021 support.

1022 We thank Dr. Kyle Sheldrick for his guidance and kind help to Wentian about human

1023 ethics application. SpineLabs is supported by in-kind support from St George Private

1024 Hospital and unrestricted donations from Nuvasive Australia and Baxter Australasia.

1025 Spine Service receives education and training grants from Globus Medical.

1026

1027 **Author Contributions**

1028 W.T.L conceptualized the project and planned, executed, and prepared the work for

1029 publication. ADD & AD initiated the study and along with Z.Z.M provided supports,

1030 supervision. W.T.L., J.T., J.J.Z., Q.Y., W.Y.D., S.D.Y., C.Y. and J.Z. collected samples,

1031 JZ's lab and X.T.J provided analytical support. W.T.L and J.T. performed all

1032 experiments and produced all figures and tables. X.P.B. and K.T.L. helped to analyze

1033 the data.

1034

1035 **Conflicts of Interest**

1036 The authors declare no conflict of interest.

1037

1038 **References**

1039

1040 1. Knezevic, N. N., Candido, K. D., Vlaeyen, J. W. S., Van Zundert, J., and Cohen, S. P. (2021). Low back pain. *Lancet* *398*, 78–92. 10.1016/s0140-6736(21)00733-9.

1041 2. Thompson, K. J., Dagher, A. P., Eckel, T. S., Clark, M., and Reinig, J. W. (2009). Modic changes on MR images as studied with provocative diskography: clinical relevance—a retrospective study of 2457 disks. *Radiology* *250*, 849–855. 10.1148/radiol.2503080474.

1042 3. Jensen, T. S., Karppinen, J., Sorensen, J. S., Niinimäki, J., and Leboeuf-Yde, C. (2008). Vertebral endplate signal changes (Modic change): a systematic literature review of prevalence

1051 and association with non-specific low back pain. *Eur Spine J*
1052 17, 1407–1422. 10.1007/s00586-008-0770-2.

1053 4. Kuisma, M., Karppinen, J., Niinimäki, J., Ojala, R., Haapea,
1054 M., Heliövaara, M., Korpelainen, R., Taimela, S., Natri, A.,
1055 and Tervonen, O. (2007). Modic changes in endplates of lumbar
1056 vertebral bodies: prevalence and association with low back and
1057 sciatic pain among middle-aged male workers. *Spine (Phila Pa
1058 1976)* 32, 1116–1122. 10.1097/01.brs.0000261561.12944. ff.

1059 5. Kuisma, M., Karppinen, J., Niinimäki, J., Kurunlahti, M.,
1060 Haapea, M., Vanharanta, H., and Tervonen, O. (2006). A three-
1061 year follow-up of lumbar spine endplate (Modic) changes. *Spine
1062 (Phila Pa 1976)* 31, 1714–1718.
1063 10.1097/01.brs.0000224167.18483. 14.

1064 6. Chen, Q., Shou, P., Zheng, C., Jiang, M., Cao, G., Yang, Q.,
1065 Cao, J., Xie, N., Velletri, T., Zhang, X., et al. (2016). Fate
1066 decision of mesenchymal stem cells: adipocytes or osteoblasts?
1067 *Cell Death Differ* 23, 1128–1139. 10.1038/cdd.2015.168.

1068 7. Dudli, S., Fields, A.J., Samartzis, D., Karppinen, J., and
1069 Lotz, J.C. (2016). Pathobiology of Modic changes. *Eur Spine J*
1070 25, 3723–3734. 10.1007/s00586-016-4459-7.

1071 8. van Gastel, N., and Carmeliet, G. (2021). Metabolic regulation
1072 of skeletal cell fate and function in physiology and disease.
1073 *Nature Metabolism* 3, 11–20. 10.1038/s42255-020-00321-3.

1074 9. Tajik, N., Frech, M., Schulz, O., Schälter, F., Lucas, S.,
1075 Azizov, V., Dürholz, K., Steffen, F., Omata, Y., Rings, A., et
1076 al. (2020). Targeting zonulin and intestinal epithelial barrier
1077 function to prevent onset of arthritis. *Nat Commun* 11, 1995.
1078 10.1038/s41467-020-15831-7.

1079 10. Li, J., Raizada, M.K., and Richards, E.M. (2021). Gut–brain–
1080 bone marrow axis in hypertension. *Curr Opin Nephrol Hypertens*
1081 30, 159–165. 10.1097/mnh.0000000000000678.

1082 11. Longstreth, G.F., and Yao, J.F. (2004). Irritable bowel
1083 syndrome and surgery: a multivariable analysis.
1084 *Gastroenterology* 126, 1665–1673. 10.1053/j.gastro.2004.02.020.

1085 12. Whorwell, P.J. (2004). Back pain and irritable bowel syndrome.
1086 *Gastroenterology* 127, 1648–1649. 10.1053/j.gastro.2004.09.071.

1087 13. Dekker Nitert, M., Mousa, A., Barrett, H.L., Naderpoor, N., and
1088 de Courten, B. (2020). Altered Gut Microbiota Composition Is
1089 Associated With Back Pain in Overweight and Obese Individuals.
1090 *Front Endocrinol (Lausanne)* 11, 605. 10.3389/fendo.2020.00605.

1091 14. Urquhart, D.M., Zheng, Y., Cheng, A.C., Rosenfeld, J.V., Chan,
1092 P., Liew, S., Hussain, S.M., and Cicuttini, F.M. (2015). Could

1093 low grade bacterial infection contribute to low back pain? A
1094 systematic review. *BMC Med* *13*, 13. 10.1186/s12916-015-0267-x.

1095 15. Li, B., Dong, Z., Wu, Y., Zeng, J., Zheng, Q., Xiao, B., Cai,
1096 X., and Xiao, Z. (2016). Association Between Lumbar Disc
1097 Degeneration and Propionibacterium acnes Infection: Clinical
1098 Research and Preliminary Exploration of Animal Experiment.
1099 *Spine (Phila Pa 1976)* *41*, E764–e769.
1100 10.1097/brs.0000000000001383.

1101 16. Li, W., Lai, K., Chopra, N., Zheng, Z., Das, A., and Diwan,
1102 A.D. (2022). Gut–disc axis: A cause of intervertebral disc
1103 degeneration and low back pain? *European Spine Journal* *31*, 917–
1104 925. 10.1007/s00586-022-07152-8.

1105 17. Dodd, D., Spitzer, M.H., Van Treuren, W., Merrill, B.D.,
1106 Hryckowian, A.J., Higginbottom, S.K., Le, A., Cowan, T.M.,
1107 Nolan, G.P., Fischbach, M.A., and Sonnenburg, J.L. (2017). A
1108 gut bacterial pathway metabolizes aromatic amino acids into
1109 nine circulating metabolites. *Nature* *551*, 648–652.
1110 10.1038/nature24661.

1111 18. Wang, T.J., Larson, M.G., Vasan, R.S., Cheng, S., Rhee, E.P.,
1112 McCabe, E., Lewis, G.D., Fox, C.S., Jacques, P.F., Fernandez,
1113 C., et al. (2011). Metabolite profiles and the risk of
1114 developing diabetes. *Nat Med* *17*, 448–453. 10.1038/nm.2307.

1115 19. Green, C.R., Wallace, M., Divakaruni, A.S., Phillips, S.A.,
1116 Murphy, A.N., Ciaraldi, T.P., and Metallo, C.M. (2016).
1117 Branched-chain amino acid catabolism fuels adipocyte
1118 differentiation and lipogenesis. *Nature chemical biology* *12*,
1119 15–21. 10.1038/nchembio.1961.

1120 20. Quince, C., Walker, A.W., Simpson, J.T., Loman, N.J., and
1121 Segata, N. (2017). Shotgun metagenomics, from sampling to
1122 analysis. *Nature Biotechnology* *35*, 833–844. 10.1038/nbt.3935.

1123 21. Tickle, T.L., Segata, N., Waldron, L., Weingart, U., and
1124 Huttenhower, C. (2013). Two-stage microbial community
1125 experimental design. *The ISME Journal* *7*, 2330–2339.
1126 10.1038/ismej.2013.139.

1127 22. Clos-Garcia, M., Andrés-Marin, N., Fernández-Eulate, G.,
1128 Abecia, L., Lavín, J.L., van Liempd, S., Cabrera, D., Royo, F.,
1129 Valero, A., Errazquin, N., et al. (2019). Gut microbiome and
1130 serum metabolome analyses identify molecular biomarkers and
1131 altered glutamate metabolism in fibromyalgia. *EBioMedicine* *46*,
1132 499–511. 10.1016/j.ebiom.2019.07.031.

1133 23. Noguchi, S., Kondo, Y., Ito, R., Katayama, T., Kazama, S.,
1134 Kadota, Y., Kitaura, Y., Harris, R.A., and Shimomura, Y.

1135 (2018). Ca(2+)-dependent inhibition of branched-chain α -
1136 ketoacid dehydrogenase kinase by thiamine pyrophosphate.
1137 *Biochem Biophys Res Commun* *504*, 916–920.
1138 10.1016/j.bbrc.2018.09.038.

1139 24. Vassilopoulos, A., Fritz, K.S., Petersen, D.R., and Gius, D.
1140 (2011). The human sirtuin family: evolutionary divergences and
1141 functions. *Hum Genomics* *5*, 485–496. 10.1186/1479-7364-5-485.

1142 25. Giblin, W., Skinner, M.E., and Lombard, D.B. (2014). Sirtuins:
1143 guardians of mammalian healthspan. *Trends Genet* *30*, 271–286.
1144 10.1016/j.tig.2014.04.007.

1145 26. Lei, M.Z., Li, X.X., Zhang, Y., Li, J.T., Zhang, F., Wang,
1146 Y.P., Yin, M., Qu, J., and Lei, Q.Y. (2020). Acetylation
1147 promotes BCAT2 degradation to suppress BCAA catabolism and
1148 pancreatic cancer growth. *Signal Transduct Target Ther* *5*, 70.
1149 10.1038/s41392-020-0168-0.

1150 27. Wirth, M., Karaca, S., Wenzel, D., Ho, L., Tishkoff, D.,
1151 Lombard, D.B., Verdin, E., Urlaub, H., Jedrusik-Bode, M., and
1152 Fischle, W. (2013). Mitochondrial SIRT4-type proteins in
1153 *Caenorhabditis elegans* and mammals interact with pyruvate
1154 carboxylase and other acetylated biotin-dependent carboxylases.
1155 *Mitochondrion* *13*, 705–720. 10.1016/j.mito.2013.02.002.

1156 28. Mathias, R.A., Greco, T.M., Oberstein, A., Budayeva, H.G.,
1157 Chakrabarti, R., Rowland, E.A., Kang, Y., Shenk, T., and
1158 Cristea, I.M. (2014). Sirtuin 4 is a lipoamidase regulating
1159 pyruvate dehydrogenase complex activity. *Cell* *159*, 1615–1625.
1160 10.1016/j.cell.2014.11.046.

1161 29. Felson, D.T., Niu, J., Guermazi, A., Roemer, F., Aliabadi, P.,
1162 Clancy, M., Torner, J., Lewis, C.E., and Nevitt, M.C. (2007).
1163 Correlation of the development of knee pain with enlarging bone
1164 marrow lesions on magnetic resonance imaging. *Arthritis Rheum*
1165 *56*, 2986–2992. 10.1002/art.22851.

1166 30. Li, Y., Xiao, W., Luo, W., Zeng, C., Deng, Z., Ren, W., Wu, G.,
1167 and Lei, G. (2016). Alterations of amino acid metabolism in
1168 osteoarthritis: its implications for nutrition and health.
1169 *Amino Acids* *48*, 907–914. 10.1007/s00726-015-2168-x.

1170 31. Rajasekaran, S., Soundararajan, D.C.R., Tangavel, C.,
1171 Muthurajan, R., Sri Vijay Anand, K.S., Matchado, M.S., Nayagam,
1172 S.M., Shetty, A.P., Kanna, R.M., and Dharmalingam, K. (2020).
1173 Human intervertebral discs harbour a unique microbiome and
1174 dysbiosis determines health and disease. *Eur Spine J* *29*, 1621–
1175 1640. 10.1007/s00586-020-06446-z.

1176 32. Durazzi, F., Sala, C., Castellani, G., Manfreda, G., Remondini,
1177 D., and De Cesare, A. (2021). Comparison between 16S rRNA and
1178 shotgun sequencing data for the taxonomic characterization of
1179 the gut microbiota. *Sci Rep* *11*, 3030. 10.1038/s41598-021-82726-
1180 y.

1181 33. Vázquez, L., Flórez, A.B., Redruello, B., and Mayo, B. (2020).
1182 Metabolism of Soy Isoflavones by Intestinal Bacteria: Genome
1183 Analysis of an *Adlercreutzia Equolifaciens* Strain That Does Not
1184 Produce Equol. *Biomolecules* *10*. 10.3390/biom10060950.

1185 34. Jenks, B.H., Iwashita, S., Nakagawa, Y., Ragland, K., Lee, J.,
1186 Carson, W.H., Ueno, T., and Uchiyama, S. (2012). A pilot study
1187 on the effects of S-equol compared to soy isoflavones on
1188 menopausal hot flash frequency. *J Womens Health (Larchmt)* *21*,
1189 674–682. 10.1089/jwh.2011.3153.

1190 35. Scanlan, P.D., Shanahan, F., and Marchesi, J.R. (2009).
1191 Culture-independent analysis of desulfovibrios in the human
1192 distal colon of healthy, colorectal cancer and polypectomized
1193 individuals. *FEMS Microbiol Ecol* *69*, 213–221. 10.1111/j.1574-
1194 6941.2009.00709.x.

1195 36. Distrutti, E. (2011). Hydrogen sulphide and pain. *Inflamm
1196 Allergy Drug Targets* *10*, 123–132. 10.2174/187152811794776240.

1197 37. Yazici, C., Wolf, P.G., Kim, H., Cross, T.L., Vermillion, K.,
1198 Carroll, T., Augustus, G.J., Mutlu, E., Tussing-Humphreys, L.,
1199 Braunschweig, C., et al. (2017). Race-dependent association of
1200 sulfidogenic bacteria with colorectal cancer. *Gut* *66*, 1983–
1201 1994. 10.1136/gutjnl-2016-313321.

1202 38. Engels, C., Ruscheweyh, H.J., Beerenwinkel, N., Lacroix, C.,
1203 and Schwab, C. (2016). The Common Gut Microbe *Eubacterium
1204 hallii* also Contributes to Intestinal Propionate Formation.
1205 *Front Microbiol* *7*, 713. 10.3389/fmicb.2016.00713.

1206 39. Roth-Schulze, A.J., Penno, M.A.S., Ngui, K.M., Oakey, H.,
1207 Bandala-Sanchez, E., Smith, A.D., Allnutt, T.R., Thomson, R.L.,
1208 Vuillermin, P.J., Craig, M.E., et al. (2021). Type 1 diabetes
1209 in pregnancy is associated with distinct changes in the
1210 composition and function of the gut microbiome. *Microbiome* *9*,
1211 167. 10.1186/s40168-021-01104-y.

1212 40. Grant, M.P., Epure, L.M., Bokhari, R., Roughley, P., Antoniou,
1213 J., and Mwale, F. (2016). Human cartilaginous endplate
1214 degeneration is induced by calcium and the extracellular
1215 calcium-sensing receptor in the intervertebral disc. *Eur Cell
1216 Mater* *32*, 137–151. 10.22203/ecm.v032a09.

1217 41. Henke, M. T., Kenny, D. J., Cassilly, C. D., Vlamakis, H., Xavier,
1218 R. J., and Clardy, J. (2019). *Ruminococcus gnavus*, a member of
1219 the human gut microbiome associated with Crohn's disease,
1220 produces an inflammatory polysaccharide. *Proc Natl Acad Sci U S*
1221 *A* *116*, 12672–12677. 10.1073/pnas.1904099116.

1222 42. Bernstein, C. N., Blanchard, J. F., Rawsthorne, P., and Yu, N.
1223 (2001). The prevalence of extraintestinal diseases in
1224 inflammatory bowel disease: a population-based study. *Am J*
1225 *Gastroenterol* *96*, 1116–1122. 10.1111/j.1572-0241.2001.03756.x.

1226 43. Breban, M., Tap, J., Leboime, A., Said-Nahal, R., Langella, P.,
1227 Chiocchia, G., Furet, J. P., and Sokol, H. (2017). Faecal
1228 microbiota study reveals specific dysbiosis in
1229 spondyloarthritis. *Ann Rheum Dis* *76*, 1614–1622.
1230 10.1136/annrheumdis-2016-211064.

1231 44. Machiels, K., Sabino, J., Vandermosten, L., Joossens, M.,
1232 Arijs, I., de Bruyn, M., Eeckhaut, V., Van Assche, G.,
1233 Ferrante, M., Verhaegen, J., et al. (2017). Specific members of
1234 the predominant gut microbiota predict pouchitis following
1235 colectomy and IPAA in UC. *Gut* *66*, 79–88. 10.1136/gutjnl-2015-
1236 309398.

1237 45. Zeng, S. L., Li, S. Z., Xiao, P. T., Cai, Y. Y., Chu, C., Chen,
1238 B. Z., Li, P., Li, J., and Liu, E. H. (2020). Citrus
1239 polymethoxyflavones attenuate metabolic syndrome by regulating
1240 gut microbiome and amino acid metabolism. *Sci Adv* *6*, eaax6208.
1241 10.1126/sciadv.aax6208.

1242 46. Bloomgarden, Z. (2018). Diabetes and branched-chain amino
1243 acids: What is the link? *J Diabetes* *10*, 350–352. 10.1111/1753-
1244 0407.12645.

1245 47. Tamanai-Shacoori, Z., Smida, I., Bousarghin, L., Loreal, O.,
1246 Meuric, V., Fong, S. B., Bonnaure-Mallet, M., and Jolivet-
1247 Gougeon, A. (2017). *Roseburia* spp.: a marker of health? *Future*
1248 *Microbiol* *12*, 157–170. 10.2217/fmb-2016-0130.

1249 48. Machiels, K., Joossens, M., Sabino, J., De Preter, V., Arijs,
1250 I., Eeckhaut, V., Ballet, V., Claes, K., Van Immerseel, F.,
1251 Verbeke, K., et al. (2014). A decrease of the butyrate-
1252 producing species *Roseburia hominis* and *Faecalibacterium*
1253 *prausnitzii* defines dysbiosis in patients with ulcerative
1254 colitis. *Gut* *63*, 1275–1283. 10.1136/gutjnl-2013-304833.

1255 49. Lim, C. K., Rideout, J. M., and Wright, D. J. (1983). High-
1256 performance liquid chromatography of naturally occurring 8-,
1257 7-, 6-, 5- and 4-carboxylic porphyrin isomers. *J Chromatogr*
1258 *282*, 629–641. 10.1016/s0021-9673(00)91640-6.

1259 50. Borelli, C., Merk, K., Schaller, M., Jacob, K., Vogeser, M.,
1260 Weindl, G., Berger, U., and Plewig, G. (2006). In vivo
1261 porphyrin production by *P. acnes* in untreated acne patients and
1262 its modulation by acne treatment. *Acta Derm Venereol* *86*, 316–
1263 319. 10.2340/00015555-0088.

1264 51. Wollenberg, M.S., Claesen, J., Escapa, I.F., Aldridge, K.L.,
1265 Fischbach, M.A., and Lemon, K.P. (2014). *Propionibacterium*-
1266 produced coproporphyrin III induces *Staphylococcus aureus*
1267 aggregation and biofilm formation. *mBio* *5*, e01286–01214.
1268 10.1128/mBio.01286-14.

1269 52. Aghazadeh, J., Salehpour, F., Ziaeii, E., Javanshir, N.,
1270 Samadi, A., Sadeghi, J., Mirzaei, F., and Naseri Alavi, S.A.
1271 (2017). Modic changes in the adjacent vertebrae due to disc
1272 material infection with *Propionibacterium acnes* in patients
1273 with lumbar disc herniation. *Eur Spine J* *26*, 3129–3134.
1274 10.1007/s00586-016-4887-4.

1275 53. Carricajo, A., Nuti, C., Aubert, E., Hatem, O., Fonsale, N.,
1276 Mallaval, F.O., Vautrin, A.C., Brunon, J., and Aubert, G.
1277 (2007). *Propionibacterium acnes* contamination in lumbar disc
1278 surgery. *J Hosp Infect* *66*, 275–277. 10.1016/j.jhin.2007.04.007.

1279 54. Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K.,
1280 Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W.,
1281 Craig, S., and Marshak, D.R. (1999). Multilineage potential of
1282 adult human mesenchymal stem cells. *Science* *284*, 143–147.
1283 10.1126/science.284.5411.143.

1284 55. Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis,
1285 mechanism, and function. *Cell* *116*, 281–297. 10.1016/s0092-
1286 8674(04)00045-5.

1287 56. Louis, P., and Flint, H.J. (2017). Formation of propionate and
1288 butyrate by the human colonic microbiota. *Environ Microbiol* *19*,
1289 29–41. 10.1111/1462-2920.13589.

1290 57. Laurent, G., German, N.J., Saha, A.K., de Boer, V.C., Davies,
1291 M., Koves, T.R., Dephoure, N., Fischer, F., Boanca, G.,
1292 Vaitheesvaran, B., et al. (2013). SIRT4 coordinates the balance
1293 between lipid synthesis and catabolism by repressing malonyl
1294 CoA decarboxylase. *Mol Cell* *50*, 686–698.
1295 10.1016/j.molcel.2013.05.012.

1296 58. Anderson, K.A., Huynh, F.K., Fisher-Wellman, K., Stuart, J.D.,
1297 Peterson, B.S., Douros, J.D., Wagner, G.R., Thompson, J.W.,
1298 Madsen, A.S., Green, M.F., et al. (2017). SIRT4 Is a Lysine
1299 Deacylase that Controls Leucine Metabolism and Insulin

