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Abstract 18 

Biological aging can be defined as a gradual loss of homeostasis across various aspects of molecular 19 
and cellular function. Aging is a complex and dynamic process which influences distinct cell types in a 20 
myriad of ways. The cellular architecture of the mammalian brain is heterogeneous and diverse, making 21 
it challenging to identify precise areas and cell types of the brain that are more susceptible to aging 22 
than others. Here, we present a high-resolution single-cell RNA sequencing dataset containing ~1.2 23 
million high-quality single-cell transcriptomic profiles of brain cells from young adult and aged mice 24 
across both sexes, including areas spanning the forebrain, midbrain, and hindbrain. We find age-25 
associated gene expression signatures across nearly all 130+ neuronal and non-neuronal cell 26 
subclasses we identified. We detect the greatest gene expression changes in non-neuronal cell types, 27 
suggesting that different cell types in the brain vary in their susceptibility to aging. We identify specific, 28 
age-enriched clusters within specific glial, vascular, and immune cell types from both cortical and 29 
subcortical regions of the brain, and specific gene expression changes associated with cell 30 
senescence, inflammation, decrease in new myelination, and decreased vasculature integrity. We also 31 
identify genes with expression changes across multiple cell subclasses, pointing to certain mechanisms 32 
of aging that may occur across wide regions or broad cell types of the brain. Finally, we discover the 33 
greatest gene expression changes in cell types localized to the third ventricle of the hypothalamus, 34 
including tanycytes, ependymal cells, and Tbx3+ neurons found in the arcuate nucleus that are part of 35 
the neuronal circuits regulating food intake and energy homeostasis. These findings suggest that the 36 
area surrounding the third ventricle in the hypothalamus may be a hub for aging in the mouse brain. 37 
Overall, we reveal a dynamic landscape of cell-type-specific transcriptomic changes in the brain 38 
associated with normal aging that will serve as a foundation for the investigation of functional changes 39 
in the aging process and the interaction of aging and diseases. 40 
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Introduction 42 

Mammalian brains can display remarkable stability and vulnerability to aging-related decline. Various 43 
aspects of behaviors remain robust as animals age, while other functions exhibit marked age-44 
associated decline. The decline in proficiency and performance, including many motor and cognitive 45 
tasks, can be dramatically exacerbated by neurodegenerative diseases1. Furthermore, age is the major 46 
risk factor for these neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s 47 
disease1.  48 

Defining and distinguishing global, region-specific, as well as cell-type specific functional 49 
changes with age is an essential step towards understanding both the normal aging process and the 50 
interaction between normal aging and pathology. In the past decade, there have been concerted efforts 51 
to document and catalogue various molecular and cellular hallmarks of aging that are conserved across 52 
different model systems2,3. Indeed, emerging studies of brain aging and neurodegeneration are 53 
beginning to reveal the presence of some of these hallmarks of aging across the brain, including 54 
chronic inflammation mediated by microglia and other glial types in the brain4,5, cellular senescence6, 55 
and others3. While these hallmarks provide a crucial foundational understanding of how individual cells 56 
age, our understanding of how a multicellular tissue as complex and heterogeneous as the brain ages 57 
is still rudimentary. We have barely begun to uncover the cellular hallmarks of aging at the cell-type 58 
level, and how these changes ultimately contribute to the decline in health of the entire organism.  59 

 To address these challenges, many have turned toward single-cell resolution sequencing 60 
approaches. In recent years, several studies profiled transcriptomic changes during normal aging 61 
across the broad regions of the mouse brain at single-cell level7,8, and many more studies profiled more 62 
targeted, specific regions or cell types4,9–15. While these studies varied in approach and scale, they 63 
consistently demonstrated heterogeneity in transcriptomic changes that different cell types display with 64 
age. As such, detailed annotation and interrogation of all cell types in the brain will be crucial to fully 65 
characterize how different cell types, both neuronal and non-neuronal, change and interact with one 66 
another during aging. 67 

Despite tremendous advances in single-cell brain aging research, many challenges remain. 68 
Studies on the whole brain or very large portions of the brain often lacked cell type resolution and 69 
sequencing depth to cover diverse cell types. On the other hand, studies targeting smaller brain regions 70 
were usually conducted by different groups under variable conditions, making it difficult to compare and 71 
integrate the studies into a consistent view. Most recently, scaling single-cell transcriptomic approaches 72 
to the whole mouse brain has allowed us to define cell types in the brain at an unprecedented 73 
resolution and comprehensiveness, revealing the tremendous diversity of neuronal and non-neuronal 74 
cell types and their gene expression profiles throughout the adult mouse brain16–19. These studies 75 
present a timely opportunity to obtain a systematic and comprehensive understanding of how the brain 76 
changes with age at molecular and cellular levels.  77 

Here, we use single-cell RNA sequencing (scRNA-seq) to profile a wide range of brain regions 78 
covering major parts of the brain that have complex cell type compositions, in young adult (2 months 79 
old) and aged (18 months old) mice in both sexes. Together, these profiled regions cover approximately 80 
35% of the entire volume of the mouse brain. The total dataset includes ~1.2 million high-quality single-81 
cell transcriptomes from young adult and aged mice that have been annotated using the Allen whole 82 
mouse brain cell type atlas (companion paper Yao et. al.17), allowing us to identify over 130 unique 83 
transcriptomic subclasses (which can be further subdivided into many more supertypes and clusters) 84 
and interrogate them for age-associated gene expression changes. We also present two spatial 85 
transcriptomics datasets that focus on specific cell types in specific regions of interest.  86 
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In this study, we confirm and extend upon previous studies observing greatest gene expression 87 
changes with age in many non-neuronal types. In addition, we discover changes in types that have not 88 
been majorly implicated in brain aging in the past. In particular, we find a large number of age-89 
associated gene expression changes in both neuronal and non-neuronal types surrounding the third 90 
ventricle of the hypothalamus, including tanycytes, ependymal cells, and neurons in the arcuate 91 
nucleus (ARH). Many of the cell types with the greatest gene expression changes are known for their 92 
roles in nutrient and energy homeostasis, including neuronal types that express Agrp and Pomc, 93 
markers of neurons involved in the central melanocortin signaling circuit. Taken together, our results 94 
systematically reveal a wide range of cell-type specific patterns of aging, identify age-specific cell type 95 
clusters that show unique gene expression changes, and highlight the third ventricle area of the 96 
hypothalamus as a potential hot spot for brain aging, likely via its role in dysregulation of nutrient 97 
sensing and homeostasis, one of the known hallmarks of aging2.  98 

 99 

Results 100 

Brain-wide single-cell and in situ RNA profiling in aged and adult mouse brain 101 

To evaluate cell-type specific transcriptomic changes with age, we profiled 16 broadly dissected regions 102 
across the young adult (P56; 2-month-old) and aged (P540; 18-month-old) female and male mouse 103 
brains using 10x Genomics Chromium platform based on version 3 chemistry (10xv3). These 16 broad 104 
regions (Figure 1a) were selected due to their known sensitivity to age and age-associated diseases in 105 
the literature20. They were grouped into six major brain structures: 1) isocortex, which includes 106 
prelimbic area + infralimbic area + orbital area (PL + ILA + ORB), agranular insular area (AI), anterior 107 
cingulate area (ACA), and retrosplenial area (RSP); 2) hippocampal formation (HPF), which includes 108 
hippocampus (HIP), parasubiculum + postsubiculum + presubiculum + prosubiculum + subiculum (PAR 109 
+ POST + PRE + ProS + SUB), and lateral and medial entorhinal areas (ENT); 3) hypothalamus (HY); 110 
4) cerebral nuclei (CNU), which includes the dorsal and ventral striatum (STRd, STRv), pallidum (PAL), 111 
and striatum-like amygdalar nuclei (sAMY); 5) midbrain, which includes periaqueductal gray + midbrain 112 
raphe nuclei (PAG + RAmb) as well as substantia nigra + ventral tegmental area (SNr + SNc + VTA); 6) 113 
hindbrain, which includes the anterior or posterior part of the combined pons, motor related and 114 
behavioral state related areas (Pmot/sat–A; Pmot/sat-P). Brain regions for profiling and boundaries for 115 
dissections were defined by Allen Mouse Brain Common Coordinate Framework version 3 (CCFv3)21 116 
as previously described16 (Figure 1a,b). Based on three-dimensional volumes as estimated by CCFv3, 117 
we estimate that these 16 broad dissection regions, encompassing ~110 CCF-defined brain regions, 118 
cover approximately 35% of all grey matter areas within the whole mouse brain. 119 

Our final dataset includes single-cell transcriptomes from 272 unique 10xv3 libraries, which 120 
were collected from a total of 96 mice (Supplementary Table 1). To ensure good representation of 121 
both neurons and non-neuronal cells, we employed multiple forms of fluorescence-activated cell sorting 122 
(FACS) and unbiased cell sampling (labeled as “No FACS”; Methods). All neuron-enriched libraries 123 
were FACS-isolated from the pan-neuronal Snap25-IRES2-Cre/wt;Ai14/wt transgenic mice, whereas 124 
the unbiased libraries were isolated from a mixture of transgene-positive and negative mice 125 
(Supplementary Table 1).  126 

Low-quality transcriptomes were removed based on a combination of quality control (QC) 127 
criteria (e.g., gene detection, qc score, and doublet score, see Methods; Extended Data Figure 1a). 128 
After the QC-filtering, we obtained 1,185,204 high-quality cells, of which ~59% (695,109 cells) 129 
originated from aged, and the rest (490,095 cells) from young adult brain tissue (Extended Data 130 
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Figure 1a). Post QC-filtering, we assessed a variety of quality scores, including gene detection, QC 131 
score, and mitochondrial RNA percentage (mito score) and observed little variation between aged and 132 
adult cells for most cell classes (Extended Data Figure 1b-d), giving us confidence that tissue age did 133 
not significantly affect the quality of sequencing libraries. We only observed differences in these metrics 134 
for a small number of cell classes, such as higher gene detection in adult IMN-GC (immature neurons 135 
and granule cells) compared to aged IMN-GC (Extended Data Figure 1b).  136 

Following QC, we performed de novo clustering of all adult and aged cells together (Methods; 137 
Extended Data Figure 1a). Briefly, all the adult cells in this study had been thoroughly annotated as 138 
part of our recent mouse whole brain taxonomy17, allowing us to leverage the existing cell type 139 
annotations to help annotate the aged cells. Aged cells that co-clustered with an adult cell type that 140 
made up greater than 10% of the cluster were assigned the majority identity from the adult cells at the 141 
subclass level. All cells in this study have at least 3 levels of annotation: 1) cell category (the broadest 142 
level of annotation), 2) class, and 3) subclass. The subsequent figures of this study will highlight certain 143 
populations of cells for which additional clustering was performed and finer-level cell type annotations 144 
were assigned including 4) supertype, and 5) cluster, which is the finest level of annotation we use. 145 

Out of the total 306 subclasses defined in our whole mouse brain cell atlas17, we identified a 146 
total of 185 unique subclasses in the combined aged and adult dataset. Of those 185 subclasses, 132 147 
subclasses met our criteria to include in downstream analysis for age differential gene expression 148 
(Methods). These 132 subclasses spanned 18 different cell classes (Figure 1c; Supplementary 149 
Table 2) and displayed specific marker gene expression (Extended Data Figure 2). Slightly more than 150 
half of all cells in this study were non-neuronal, and their proportion varied by brain region 151 
(Supplementary Table 2; Extended Data Figure 1e). Most non-neuronal cell types were shared 152 
between brain regions, whereas neurons differed among brain regions (Figure 1b,c; Figure 2). We 153 
also observed that not all subclasses were perfectly balanced between ages and sexes, as is expected 154 
for this type of data (Figure 1b, Figure 2; Supplementary Table 2). The ratios of age and sex for each 155 
subclass are summarized in Figure 2 and Supplementary Table 2. 156 

To complement the scRNA-seq data, we collected two separate Molecular Cartography 157 
datasets (a form of in situ spatial RNA profiling from Resolve Biosciences) to visualize and validate 158 
results discovered by scRNA-seq. For each spatial dataset, we selected a panel of 100 genes to profile 159 
pre-selected region(s) in male and female mouse coronal brain sections. These two datasets span a 160 
variety of different areas including regions in the isocortex, striatum, hindbrain, midbrain, and 161 
hypothalamus, and will be referred to in the remainder of the text as Resolve spatial transcriptomics 162 
experiments 1 and 2 (RSTE1,2 in Extended Data Figure 3a,b). 163 

 164 

Analysis of age-associated differential gene expression across subclasses 165 

To examine and model age-associated differentially expressed genes (age-DE genes) within each 166 
subclass, we used Model-based Analysis of Single-cell Transcriptomics (MAST22) with two different 167 
statistical models as described in Methods. Briefly, due to the variability of FACS population plans and 168 
genotypes across aged and adult libraries (Extended Data Figure 4a), and the fact that cells from 169 
different FACS population plans were observed to have an effect on quality metrics such as gene 170 
detection and QC score (Extended Data Figure 4b,c), we used two different statistical models with 171 
different covariates to try to account for these differences (Methods). Age effect size, which can be 172 
interpreted as an estimate of log2 fold change with age, and adjusted p-value were calculated from the 173 
model. Age effect sizes as estimated by these two models were found to vary for certain subclasses, 174 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2023. ; https://doi.org/10.1101/2023.07.26.550355doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.26.550355
http://creativecommons.org/licenses/by-nc/4.0/


   
 

5 
 

with neuronal subclasses showing a greater variation than non-neuronal ones, likely due to the smaller 175 
number of libraries contributing to each neuronal subclass (Extended Data Figure 4d; Supplementary 176 
Table 3). As a result, we implemented a stringent set of significance criteria – only genes found to be 177 
significant with an |age effect size| > 1 and p-value < 0.01 under both models were considered 178 
significant and reported here. Positive age effect sizes (> 1) roughly correspond to an increase of more 179 
than two-fold in that gene with age, while negative age effect sizes (< -1) roughly correspond to a 180 
decrease of more than 50%. Age effect sizes and p-values from both models for each significant gene 181 
are reported in Supplementary Table 3. 182 

Across the 132 subclasses included in this analysis, we found over 1,200 unique age-DE genes, 183 
many of which in non-neuronal subclasses, and comparatively fewer within most neuronal subclasses 184 
(Figure 2; Supplementary Tables 2,3). Within the non-neuronal subclasses, the greatest numbers of 185 
age-DE genes were found in tanycytes and ependymal cells, which both belong to the Astro-Epen cell 186 
class. Across the neuronal subclasses, the greatest numbers of age-DE genes were found in 187 
hypothalamic subclasses (Figure 2; Supplementary Tables 2,3).  188 

Across all subclasses, we found that the vast majority of age-DE genes were significant in only 189 
one or two subclasses (Extended Data Figure 5a), suggesting that most age-DE genes were cell type 190 
specific. We also found a handful of age-DE genes with significant changes in many subclasses 191 
(Extended Data Figure 5a), and many of these genes displayed region and/or cell-type specific 192 
differential expression. For example, 3222401L13Rik (a long intergenic non-coding RNA23 surrounded 193 
by protocadherins in the genome) and Slc5a5 (a gene encoding a sodium/iodide cotransporter) were 194 
significantly upregulated in 70 and 48 subclasses, respectively, almost all of which were midbrain, 195 
hindbrain, and hypothalamic neuronal types (Extended Data Figure 5b). We also observed increased 196 
expression of AC149090.1 in an even wider array of regions and types (54 subclasses), including 197 
cortical neurons and glial types (Extended Data Figure 5b). AC149090.1 is an ortholog of Pisd which 198 
encodes phosphatidylserine decarboxylase, an enzyme involved in lipid metabolism24 linked to 199 
mitochondrial disease25. AC149090.1 was also the top contributing gene in a recent study that built cell-200 
type specific transcriptomic age clocks from scRNA seq data in mouse subventricular zone14. We also 201 
observed genes that decreased with age across multiple subclasses, including Ccnd1 and Ccnd2 that 202 
encode cell cycle regulator proteins cyclin D1 and D2 respectively, decreasing with age in various 203 
hypothalamic neuronal subclasses, particularly ones localized to the periventricular area of the 204 
hypothalamus including the dorsomedial nucleus (DMH) and ARH (Extended Data Figure 5b). 205 
Altogether, these observations suggest that different subclasses demonstrate unique combinations of 206 
gene expression profiles that are influenced by age. 207 

 208 

Changes in OPCs and Oligodendrocytes with age 209 

Mature oligodendrocytes are the myelinating cells of the brain. They make up most of the white matter 210 
in the brain by creating and maintaining the myelin sheaths that encase and protect axons within the 211 
central nervous system. Oligodendrocytes develop from oligodendrocyte precursor cells (OPCs). Brain-212 
wide decrease in white matter volume with normal aging has been well-characterized26,27 and correlates 213 
with cognitive decline28,29. 214 

We profiled 88,535 OPCs and 165,858 oligodendrocytes in our scRNA-seq dataset. To obtain 215 
cell identities at the finer supertype level, we mapped our oligodendrocyte population to an scRNA-seq 216 
dataset generated by Marques et al.30. We resolved our oligodendrocyte population into the following 217 
supertypes: committed oligodendrocyte precursors (COP), newly formed oligodendrocytes (NFOL), 218 
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myelin-forming oligodendrocytes (MFOL), and mature oligodendrocytes (MOL). We saw a smooth 219 
transition from OPC to MOL in the UMAP space (Figure 3a), as well as separation of cells by age and 220 
region. Separation by age was most striking within the MOL cell population, whereas the separation by 221 
region was more apparent in OPCs (Figure 3a).  222 

We found the greatest number of age-DE genes in MOL, followed by OPC, and then MFOL 223 
(Figure 3b). The signatures of age-DE genes between OPC and COP resembled each other, while 224 
those between MFOL and MOL most resembled each other. This is consistent with their developmental 225 
trajectory and relatedness to one another in the UMAP space (Figure 3a,c). Amongst these age-DE 226 
genes, there was a strong increase in expression of Abca8a and Dpyd across MOL (Figure 3c), which 227 
was confirmed with spatial transcriptomics dataset RSTE1 (Figure 3d). Abca8a is the mouse homolog 228 
of human ABCA8, a gene known for its ability to stimulate sphingomyelin production and regulate lipid 229 
metabolism in oligodendrocytes in humans31. Dpyd encodes an enzyme involved in the breakdown of 230 
pyrimidines, and has also been shown to play a role in lipid degradation32. Increase in expression of 231 
both genes with age points to an alteration in myelin maintenance capacity in MOL with age. We also 232 
observed and spatially confirmed the increased expression of Maf and Nr6a1 in OPC (Figure 3c,d). 233 
Maf encodes a transcription factor that heterodimerizes with transcription factor Nrf2, a master regulator 234 
of redox status, antioxidative, and anti-inflammatory response33. Altered levels of Nrf2 and Maf 235 
expression in the brain have been associated with cognitive impairment and OPC senescence33,34.  236 

We tested whether any gene ontology (GO) terms were enriched in genes that were significantly 237 
up- or down regulated across different supertypes. We found an enrichment in ion channel activity in 238 
downregulated age-DE genes in OPCs, while genes involved in transporter activity and metal ion 239 
transport were upregulated in MFOL with age (Extended Data Figure 6a; Supplementary Table 4). In 240 
MOL, we observed an enrichment of GO terms related to locomotory behavior and neuronal structure-241 
related terms such as synaptic cleft and dendrite development in genes upregulated with age, as well 242 
as enrichment of GO terms related to myelin sheath in genes that decreased with age, suggesting that 243 
myelin sheath integrity may be compromised with age (Extended Data Figure 6a; Supplementary 244 
Table 4), a pattern that has also been observed in the transcriptomes of human Alzheimer’s disease 245 
brain cells35. 246 

We further clustered the data to explore finer (cluster-level) cell types within OPCs and 247 
oligodendrocytes. This resulted in 13 transcriptionally distinctive clusters, 3 of which were OPCs, 4 that 248 
were MOLs, and the remaining 6 from the transitioning supertypes (Figure 3e). To assess whether any 249 
of the clusters were age- (>80% adjusted age proportion) or adult-biased (<20% adjusted age 250 
proportion), we calculated the adjusted age proportion of each cluster by normalizing to the subclass-251 
wide age proportion (Methods). We observed that all transitioning supertypes (COP, NFOL, MFOL) 252 
were composed of fewer than 30% aged cells, with NFOL and MFOL clusters being more adult-biased 253 
than COP (Figure 3e,f). This is consistent with the reported decrease in OPC differentiation with 254 
age36,37. To confirm these changes in abundance of oligodendrocyte supertypes in the brain with age in 255 
situ, we calculated the proportion of each supertype in spatial transcriptomics dataset RSTE1 from 256 
cortex, striatum, midbrain, and hindbrain (Extended Data Figure 6b). We found that while there was 257 
no significant change in OPC proportions across regions with age, there was a significant decrease in 258 
the proportions of cells in transitionary oligodendrocyte supertypes (COP, NFOL, and MFOL) with age 259 
(Extended Data Figure 6b), consistent with age proportions observed in scRNA-seq oligodendrocyte 260 
clusters (Figure 3e,f). In contrast, we observed significant increase in MOL proportions across all 261 
imaged brain regions with age in the spatial data (Extended Data Figure 6b) as well as the MOL 262 
proportions calculated from unbiased scRNA seq libraries (Extended Data Figure 6c), consistent with 263 
observations of increased MOL accumulation with age made by others38,39. 264 
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Upon examining marker genes for clusters, we observed expected expression of canonical OPC 265 
marker genes such as Cspg4 (NG2 in humans) across all OPC clusters, Apod and Prr5l across MFOL 266 
and MOL clusters, and increasing Mbp expression as OPCs develop on their path to maturity (Figure 267 
3g). Across the 3 OPC clusters, we found a graded decrease in DNA repair/chromatin binding genes 268 
such as Hells, Atad2, and Mms22l that correlated with the age proportion of each cluster. In MOL, we 269 
found two clusters, 3463 and 3481, that were both enriched for hindbrain cells, consistent with 270 
increased expression of Pmp22, a peripheral myelin gene, high levels of which are typically associated 271 
with the myelinating Schwann cells of the peripheral nervous system, and at relatively lower levels in 272 
the hindbrain and spinal cord40 (Figure 3g). Unexpectedly, these hindbrain MOL clusters do not 273 
express Opalin, a gene commonly considered as a MFOL and MOL-specific marker41,42 (Figure 3g). 274 
Furthermore, both clusters express unique markers that are absent from other MOL clusters, including 275 
Hopx and Anxa5. One of these MOL clusters, 3481, is an age-biased cluster (Figure 3f) and expresses 276 
a unique gene marker, Art3. We confirmed this age-related enrichment of Art3 by spatial 277 
transcriptomics (Figure 3h). This observation suggests that MOLs from the hindbrain regions may age 278 
differently from MOLs in other brain areas. Also of note, cluster 3481 shows high expression of cell 279 
cycle gene Cdkn1a (Figure 3g), also known as p21, whose increased expression is often associated 280 
with cellular senescence3,43. While senescent astrocytes and microglia have been observed in the 281 
aging brain, whether or not oligodendrocytes undergo cellular senescence in the aged brain remains 282 
unclear6. As such, cluster 3481 may be a novel, previously uncharacterized type of MOL related to 283 
senescence. We also observed a MOL cluster (3668) that is enriched for canonical microglia markers 284 
including Cx3cr1, Ctss, and C1qa (Figure 3g), possibly representing a cluster of cells with increased 285 
inflammation signals and recruitment of microglia. This cluster was detected in spatial dataset RSTE1 286 
across all 4 profiled regions. The proportion of this cluster within the MOL supertype increased with age 287 
(Extended Data Figure 6c) as well as expression of microglia marker Ctss compared to other MOL 288 
clusters (Figure 3h). Altogether, this analysis confirms previously observed decrease in MOL 289 
development with age, as well as identifies, to our knowledge, two novel Opalin-negative MOL clusters 290 
that are enriched in the hindbrain, one of which is specifically enriched in aged hindbrain and displays 291 
markers of cellular senescence. 292 

 293 

Changes in microglia and macrophages with age 294 

In our scRNA-seq dataset, we annotated microglia, border-associated macrophages (BAM), lymphoid 295 
cells, and dendritic cells, all belonging to the Immune cell class (Figure 4a). Due to limited numbers of 296 
lymphoid and dendritic cells, we focused the analysis of immune cells on microglia and BAM. Although 297 
we detected far fewer BAMs (n = 3,109 cells) than microglia (n = 69,258 cells) in the scRNA-seq 298 
dataset, we observed a greater number of age-DE genes in BAMs than microglia (Figure 2). At the 299 
subclass level, BAMs showed coordinated upregulation of many Cd209 genes, which code for lectins 300 
that function in cell adhesion and pathogen recognition (Figure 4b). From GO analysis, we found 301 
upregulated terms with age, enriched in Cd209 genes including carbohydrate binding, lymphocyte 302 
proliferation, virus receptor activity, and others (Figure 4d, Supplementary Table 4). An increase in 303 
Cd209a and Cd209b with age was confirmed by spatial transcriptomics (dataset RSTE1, Figure 4c).  304 

In microglia with age, we observed upregulation of genes related to GO terms involving 305 
inflammatory response, response to bacteria, and others (Figure 4d). We also confirmed expression 306 
changes of genes observed by other single-cell studies of aging in microglia, including upregulation of 307 
Ildr2 and Upk1b and downregulation of Rgs7bp5,12,44 with age (Figure 4b,c). Upk1b is a gene that 308 
encodes for uroplakin-1b and is included in the microglia “sensome”, a signature of genes expressed in 309 
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microglia which encode proteins that sense endogenous ligands and microbes45. Ildr2 is amongst GO 310 
terms related to protein localization to extracellular regions, which are enriched in genes that increase 311 
with age in microglia (Supplementary Table 4). 312 

Upon further clustering of aged and adult brain immune cells, we identified 6 transcriptionally 313 
distinct clusters, 5 of which belong to microglia (Figure 4e,f). All microglia clusters expressed canonical 314 
microglia markers, including Cx3cr1, P2ry12, Nav3, and Trem2 (Figure 4g). The largest microglia 315 
cluster (6_Microglia) contained 18,606 cells and was likely composed of the homeostatic microglia 316 
observed in both aged, adult, male, and female brains (Figure 4h). The four other microglia clusters 317 
were much smaller than cluster 6 (Figure 4e,f) and possibly represented different states of activated 318 
microglia. One of these clusters, cluster 5_Microglia, was very region and sex biased. It was found 319 
mostly in male CNU (specifically dorsal striatum) and uniquely expressed many genes including Kcnd2 320 
and proinflammatory Fgf14 (Figure 4g,h). GO analysis revealed that genes involved in transporter and 321 
ion channel complex, as well as synapse related terms were amongst genes uniquely expressed in 322 
cluster 5_Microglia (Figure 4i).  323 

We identified two age-biased clusters, 7_Microglia and 8_Microglia (Figure 4h). Both clusters 324 
show increased expression of the antiapoptotic Bcl-2 family members Bcl2a1a, and Bcl2a1d, which 325 
have been shown to increase in a variety of cell types with cell senescence46, as well as increased 326 
expression of cell senescence marker Cdkn1a (Figure 4g), consistent with prior studies detecting the 327 
accumulation of senescent microglia in aged mouse brain47,48. In addition, we found cluster-specific 328 
markers resembling those found by Hammond et al. in their scRNA-seq study profiling microglia 329 
throughout mouse lifespan4. Specifically, these authors found two age-enriched microglia clusters, OA2 330 
and OA3, which expressed inflammatory markers and interferon-response genes, respectively4. By 331 
performing label transfer from their dataset to ours based on gene expression (Methods), we aligned 332 
our clusters 7_Microglia and 8_Microglia to Hammond’s OA3 and OA2 clusters, respectively (bottom 333 
bar of Figure 4h). We also found expression of similar cluster-specific genes in these two age-biased 334 
clusters, including increased expression of Ifit2, Ifit3, Oasl2, and other interferon-response genes in 335 
7_Microglia, as well as increased expression of inflammatory markers such as Cst7 and Lpl in cluster 336 
8_Microglia, suggesting that these two clusters are likely the same cell types that were identified by 337 
Hammond et al. (Figure 4g,h). Of note, both these age-enriched clusters were mostly derived from 338 
hindbrain and midbrain. Marker genes for cluster 7 showed enrichment of GO terms related to 339 
interferon and virus response, while marker genes for cluster 8 showed enrichment of GO terms related 340 
to immune cell proliferation and activation (Figure 4i). Interferon signaling phenotypes were also 341 
observed in activated microglia from a mouse model of severe neurodegeneration49, suggesting the 342 
clusters we observe here may be precursors to microglia that are associated with neurodegenerative 343 
pathology.  344 

Finally, to investigate whether proportions or size of microglia changed significantly with age 345 
throughout the brain, we estimated proportions and mean cell soma area (as estimated by 346 
segmentation) of microglia in 4 broad regions across the brain (Figure 4j,k) with spatial transcriptomics 347 
(dataset RSTE1). We found a significant increase in overall proportions of microglia in hindbrain and 348 
midbrain areas, no change in the striatum, and decrease in the cortex. We also observed an increase in 349 
the mean cell soma area of microglia in midbrain, hindbrain, and striatum, but not in the cortex (Figure 350 
4k). These findings are partly consistent with prior findings of an increase in microglia counts with age 351 
in mouse VTA50, a decrease in microglia counts in mouse cortex44, and an increase in soma volume 352 
with age in microglia in the mouse somatosensory cortex51. However, overall, reports of changes in 353 
absolute numbers of microglia in rodents vary by region and study44,51–53. As such, our data support the 354 
idea that changes in microglia morphology and abundance with age vary by brain region. 355 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2023. ; https://doi.org/10.1101/2023.07.26.550355doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.26.550355
http://creativecommons.org/licenses/by-nc/4.0/


   
 

9 
 

 356 

Changes in brain vascular cell types with age 357 

Aging leads to loss of integrity and function of the brain microvasculature54,55. We characterized age-358 
associated changes in the vascular cell subclasses found in our dataset, including arachnoid barrier 359 
cells (ABC; n = 546), vascular leptomeningeal cells (VLMC; n = 5,347), endothelial cells (n = 51,454), 360 
smooth muscle cells (SMC; n = 10,187), and pericytes (n = 17,187), which all display age-related DE 361 
genes (Figure 2). When plotted together in UMAP space, all vascular subclasses are transcriptionally 362 
highly distinct from one another (Figure 4a). Across these subclasses, endothelial cells showed the 363 
greatest number of age-DE genes, followed by pericytes, SMC, VLMC, and ABC (Figure 2). Due to the 364 
low number of ABCs in our dataset, we focus on the other 4 subclasses in the remainder of this section. 365 

 For endothelial cells, we found strong upregulation of Hdac9 with age (Extended Data Figure 366 
7a), and confirmed it by spatial transcriptomics (Extended Data Figure 7b). Hdac9 gene and protein 367 
upregulation was previously observed in the ischemic brain and it exacerbates endothelial injury56, 368 
suggesting that normal endothelial cell function and thus oxygenation efficiency may be compromised 369 
in the brain with age. We also observed upregulation of many genes that encode proteins that are part 370 
of the MHC class I protein complex including H2-Q7 and H2-Q6, as well as genes contributing to GO 371 
terms involving immune responses related to MHC class I upregulation and CD8 receptor binding 372 
(Extended Data Figure 7a,c). Together these findings suggest that there is an increase in antigen-373 
presenting activity derived from intracellular proteins in endothelial cells with age. We also observed 374 
upregulation of similar MHC class I GO terms in VLMCs with age, although they appear to be driven by 375 
a different gene (H2-D1) (Extended Data Figure 7a,c).  376 

VLMCs are fibroblast-like cells found in the brain. Across the VLMC subclass, we observed 377 
downregulation of genes that are involved in biomineralization and collagen extracellular matrix 378 
including collagens Col11a1 and Col3a1 (Extended Data Figure 7a,c), pointing to a decrease in 379 
structural integrity in this specialized cell type. Likewise, in SMC and pericytes, we observed 380 
downregulation of genes related to collagen extracellular matrix organization, although these changes 381 
were driven by different collagen genes, Col4a1 and Col4a2 (Extended Data Figure 7a,c). We 382 
confirmed downregulation of Col4a2 in SMC and pericytes by spatial transcriptomics (Extended Data 383 
Figure 7b). Taken together, these results suggest loss of collagen expression and therefore, loss of 384 
extracellular matrix organization may be major contributors to the decreased structural integrity 385 
observed in brain vasculature with age. To assess potential changes in numbers of vascular cells with 386 
age, we calculated the proportion of each vascular cell type from spatial dataset RSTE1 (Extended 387 
Data Figure 7d). We found a significant decrease in the proportion of endothelial cells in the striatum, 388 
as well as a decrease in pericytes in the striatum and hindbrain regions. Interestingly, we observed an 389 
increase in the proportion of VLMCs in the hindbrain with age. 390 

 391 

Changes in astrocyte and ependymal cell class with age 392 

Next, we investigated the Astro-Epen class of non-neuronal cells, which include telencephalic and non-393 
telencephalic astrocytes (Astro-TE and Astro-NT, n = 143,167 and 118,221, respectively), 394 
astroependymal cells (n = 571), hypendymal cells (n = 164), tanycytes (n = 1,432), and ependymal 395 
cells (n = 2,923). When examining these cells in the UMAP space, we observed clear separation of the 396 
main Astro-TE and Astro-NT types by broad brain region, and the other smaller subclasses derived 397 
from specific brain regions as expected17,57 – for example, tanycytes were derived from the 398 
hypothalamus, whereas the ependymal cells came mostly from hindbrain and midbrain (Figure 5a). 399 
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Across all subclasses found in the scRNA-seq dataset, tanycytes and ependymal cells showed the 400 
greatest numbers of age-DE genes (Figure 2). This was surprising, particularly given the relatively 401 
smaller cell numbers for these subclasses compared to the others (Figure 5a).  402 

 Within the two main subclasses of astrocytes, Astro-TE and Astro-NT, we observed fewer age-403 
DE genes (Figure 2). Furthermore, the types of age-DE genes differed between these two subclasses 404 
of astrocytes (Extended Data Figure 8a,b). In Astro-TE, there was an age-dependent downregulation 405 
of genes involved in neuron function-related terms such as axonogenesis and postsynaptic density, 406 
including Dcc, Kcnd2, and Sema6d (Extended Data Figure 8b; Supplementary Table 4). In Astro-NT, 407 
there was an age-dependent downregulation of genes involved in ion channel regulator activity, 408 
including Kcnip4 and Dpp6 (Extended Data Figure 8b; Supplementary Table 4). Using spatial 409 
transcriptomics, we found no significant change in astrocyte proportions with age, except for Astro-NT 410 
in the hindbrain region (Extended Data Figure 8c).  411 

 412 

Changes in third-ventricle tanycytes and ependymal cells with age 413 

Ependymal cells are a type of ciliated glial cells that line the ventricles within the brain and the central 414 
canal of spinal cord. They assist in the circulation of cerebrospinal fluid throughout the ventricular 415 
system58. Tanycytes are a specialized form of ependymal cells that line the ventral and ventrolateral 416 
sides of the third ventricle (3V) in the hypothalamus and possess a single long protrusion that projects 417 
into the parenchyma of the hypothalamus59. Tanycytes are involved in regulating nutrient sensing and 418 
hormone signaling59. Tanycytes have also been shown to display adult neurogenic ability that may act 419 
as an adaptive mechanism in response to external factors such as physical activity and diet60. When we 420 
examined individual age-DE genes across these two subclasses, we found similar sets of age-DE 421 
genes and GO terms enriched with age across both subclasses, but not the other Astro-Epen 422 
subclasses (Figure 5b, c).  423 

Using spatial transcriptomics, we clearly identified tanycytes and ependymal cells lining the third 424 
ventricle (dataset RSTE2, Figure 5d). We observed a dorsal-to-ventral transition between the two cell 425 
subclasses based on marker genes including Gpr50 for tanycytes and Tm4sf1 for ependymal cells 426 
(Figure 5d), allowing us to visually confirm and interrogate gene expression changes with age (center 427 
panels of Figure 5e).  428 

Overall with age, there was an increase in many interferon response genes, such as Ifi27, Ifit1, 429 
Ifit3, and Oasl2, across ependymal cells, and to a fewer and less significant extent, in tanycytes (Figure 430 
5b; Supplementary Table 3). There was also an increase in genes involved in the MHC class I 431 
response pathway, including B2m, H2-K1 and H2-D1, across both ependymal cells and tanycytes 432 
(Figure 5b; Supplementary Table 3). These age-DE genes contributed to an enrichment of GO terms 433 
related to interferon-beta and virus responses, and MHC class I protein complex (Figure 5c; 434 
Supplementary Table 4). We confirmed increased expression of Oasl2 and Ifit1 with spatial 435 
transcriptomics (dataset RSTE2, Figure 5e). 436 

Among the genes that decreased most strongly with age in both cell subclasses are the cell 437 
cycle gene Ccnd2 and cadherin-associated protein gene Ctnna2 (Figure 5b,e). Ccnd2 has been shown 438 
to play an important role in adult neurogenesis61. Ctnna2 is involved in the regulation of neuron 439 
migration and neuron projection development62. GO analysis revealed enrichment of terms related to 440 
neuronal structure and function in genes that were decreasing with age in both tanycytes and 441 
ependymal cells (Figure 5c; Supplementary Table 4). We also observed enrichment of terms related 442 
to negative regulation of neurogenesis and cell development in genes that were increasing with age 443 
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(Figure 5c; Supplementary Table 4), which may suggest a decrease in neurogenic potential in 444 
tanycytes with age. 445 

To investigate changes with age at the finer cell-type level, we further clustered both tanycytes 446 
and ependymal cells. Because our original tanycyte scRNA-seq dataset was unbalanced towards a 447 
larger number of aged cells, we included additional cells from the adult whole mouse brain dataset17 448 
that were originally excluded because they came from a slightly different dissection region (Methods). 449 
After clustering, we defined 6 tanycyte and 3 ependymal clusters (Figure 5f,g). Three ependymal 450 
clusters displayed unique gene markers (Figure 5i) and came from different regions of the brain, with 451 
cluster 1_Ependymal found in both midbrain and hindbrain, 4_Ependymal found in mostly midbrain and 452 
hypothalamus, and 5_Ependymal mostly found in midbrain (Figure 5f,j). After calculating the adjusted 453 
age proportion, we found that one of these ependymal clusters (5_Ependymal) consisted almost 454 
entirely of aged cells, and as such, we consider this cluster age-biased (Figure 5h,j). Unique marker 455 
genes for this cluster include interferon response genes Iigp1 and Irf7 (Figure 5i), further supporting 456 
increased interferon signaling with age in ependymal cells. 457 

The six tanycyte clusters all displayed unique sets of marker genes (Figure 5i) mostly aligning 458 
with different known types of tanycytes59,63. To estimate the spatial location of each tanycyte cluster, we 459 
examined cluster labels from the thoroughly annotated adult tanycyte cells and their location on the 460 
corresponding Allen whole mouse brain spatial atlas17 (Figure 5j,k). We found representation of nearly 461 
all adult whole brain tanycyte clusters: 8_Tanycyte represents tanycytes from rostral 3V, 10_Tanycyte 462 
represents the most dorsal α1 subtype (aligned with the dorsomedial and ventromedial nuclei of the 463 
hypothalamus, DMH and VMH), 9_Tanycyte and 11_Tanycyte represent α2 subtypes (aligned with 464 
dorsal ARH) which are ventral to α1, and 12_Tanycyte and 13_Tanycyte represent the most ventral 465 
tanycyte subtypes, β1 (aligned with ventral ARH) and β2 (aligned with the median eminence, ME), 466 
respectively (Figure 5j,k). 467 

Amongst the tanycyte clusters, we observed one cluster that appeared to be adult-biased, 468 
cluster 10_Tanycyte (Figure 5h), likely the cluster representing α1 tanycytes (Figure 5j,k). Marker 469 
genes for cluster 10_Tanycyte include Slc17a8 and Cpne5 (Figure 5i). We also confirmed decreased 470 
expression of Slc17a8 in the dorsal tanycytes of the 3V in the spatial data (Figure 5l). Slc17a8 is 471 
regarded as a marker for α1 tanycytes63, so loss of Slc17a8 with age suggests that tanycyte types may 472 
become less distinctive with age. 473 

 474 

Changes in hypothalamic Tbx3+ neurons with age  475 

Across the neuronal subclasses identified in our dataset, those with the greatest numbers of age-DE 476 
genes were hypothalamic neurons (Figure 2). There were four classes of hypothalamic neurons in our 477 
dataset, including HY GABA, HY Glut, CNU-HYa Glut, and HY MM Glut (MM standing for medial 478 
mammillary nucleus), which were confirmed by Slc32a1 and Slc17a6 expression (Figure 6a). Under 479 
these classes, there were 29 subclasses that displayed unique marker gene expression (Extended 480 
Data Figure 2, Figure 6b, Supplementary Table 2; neuronal subclass names were transferred from 481 
the Allen Mouse Whole Brain Atlas17, where they were named for the most dominant brain region 482 
localization and transcription factor expression), altogether capturing the vast cell type complexity we 483 
previously reported in the adult mouse hypothalamus17.  484 

Across the 29 hypothalamic neuronal subclasses, the subclasses with the greatest numbers of 485 
age-DE genes were ones associated with hypothalamic regions proximal to the third ventricle, including 486 
the arcuate nucleus (ARH), posterior periventricular nucleus (PVp), dorsal tuberomammillary nucleus 487 
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(TMd), and dorsomedial nucleus (DMH) (Figure 6c). Remarkably, the 4 subclasses with the greatest 488 
numbers of age-DE genes, i.e., ARH-PVp Tbx3 Glut (n = 1,134 cells), TU-ARH Otp Six6 Gaba (n = 489 
1,191), TMd Foxd2 Gaba (n = 711), and ARH-PVp Tbx3 Gaba (n = 1,031), all had highly specific 490 
expression of the transcription factor Tbx3 (Figure 6d). Interestingly, we also observed distinctive Tbx3 491 
expression in ventral tanycytes, but not in the more rostrally and dorsally located tanycytes (Figure 5i).  492 

The cell bodies of these four subclasses were all located directly proximal to the third ventricle, 493 
with the ARH subclasses interacting directly with the ventral β-type tanycytes (spatial dataset RSTE2; 494 
Figure 6e). These four Tbx3 positive (Tbx3+) subclasses also demonstrated highly distinct signatures 495 
of aging, as reflected by the different sets of age-DE genes (Figure 6f) that contained subsets of age-496 
DE genes either unique to each subclass or shared among multiple or all subclasses (Figure 6g). All 497 
four subclasses demonstrated an increase in Snhg9, a non-coding small nucleolar RNA host gene that 498 
has bene implicated in the development of obesity64 and as a biomarker for various cancers65,66. We 499 
observed downregulation of many genes coding for cell-adhesion contactin and contactin associated 500 
proteins, specifically of family member 5 (Cntn5, Cntnap5a, Cntnap5b, Cntnap5c), across one or more 501 
subclasses. We also observed an increase in Ptpn5 with age, a biomarker of many neurodegenerative 502 
and neuropsychiatric disorders including Alzheimer’s, Parkinson’s, Huntington’s, schizophrenia, and 503 
others67. 504 

Next, we investigated these Tbx3+ neurons at the cluster level. Using de novo clustering, we 505 
split these four subclasses into the following sets of clusters (Figure 6h): 3 ARH-PVp Tbx3 Glut 506 
clusters (labeled as clusters 8, 9, and 10), 2 ARH-PVp Tbx3 GABA clusters (clusters 6 and 7), and 2 507 
TU-ARH Otp Six6 Gaba clusters (clusters 62 and 63). TMd Foxd2 Gaba cells remained as one 508 
population and were not split into additional clusters. Each cluster was relatively balanced in age and 509 
sex distributions and displayed unique expression of combinations of marker genes, including 510 
expression of namesake transcription factors Tbx3, Otp, Six6, and Foxd2 (Figure 6i). Different clusters 511 
within each subclass exhibited unique sets of DE genes related to age. Additionally, specific clusters 512 
within a subclass appeared to predominantly contribute to the age-associated gene expression 513 
changes observed at the subclass level (Figure 6j, k). For example, between the two ARH-PVp Tbx3 514 
Gaba clusters, cluster 7 demonstrated the greatest number of age-DE genes across all Tbx3+ clusters, 515 
while cluster 6 had far fewer age-DE genes. Similarly, among the 3 ARH-PVp Tbx3 Glut clusters, most 516 
age-associated changes were observed in clusters 8 and 9, but not 10. Interestingly, hierarchical 517 
clustering based on age effect sizes of the top age-DE genes across clusters grouped clusters 7, 8, and 518 
9 in one branch, suggesting that despite being from different Glut and GABA subclasses, these 3 519 
clusters appear to age more similarly than other Tbx3+ clusters (Figure 6k).  520 

Neurons in the ARH are known for, among many functions, the critical role they play in 521 
modulation of energy homeostasis. For example, the well-characterized agouti-related peptide (AgRP) 522 
and proopiomelanocortin (POMC) neurons stimulate or inhibit food intake, respectively68,69 and are 523 
among the neuronal types that show the greatest numbers of gene expression changes under diet 524 
perturbation, including fasting and high fat diets70. AgRP neurons are characterized by expression of 525 
Npy and Agrp, while POMC neurons are characterized by expression of Pomc. In our Tbx3+ clusters, 526 
cluster 63_TU-ARH Otp Six6 Gaba shows highly specific expression of Npy and Agrp, while cluster 527 
8_ARH-PVp Tbx3 Glut shows specific expression of Pomc (Figure 6i), suggesting these two clusters 528 
may participate in the canonical neuronal circuit that regulates food intake.  529 

When we performed GO analysis on cluster age-DE genes, we found enrichment of genes 530 
related to cAMP-mediated signaling in Pomc+ cluster 8, a pathway implicated in many biological 531 
processes, including anti-aging pathways71,72 (Figure 6l; Supplementary Table 4). We also observed 532 
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significant increase in expression of Rxfp1 with age (Figure 6k; Supplementary Table 3), a gene 533 
encoding a G-protein coupled receptor that binds the highly evolutionarily conserved peptide relaxin-3 534 
that mainly signals through the cAMP pathway73. Relaxin-3, which is encoded by the gene Rln3, is 535 
involved in various physiological processes such as feeding, arousal, stress response, and cognition. It 536 
is widely distributed throughout the brain as well as peripheral tissues74. We also observed increased 537 
expression of Rxfp1 with age in cluster 7_ARH-PVp Tbx3 Gaba, as well as at the subclass level in both 538 
ARH-PVp Tbx Glut and GABA types, suggesting that clusters 7 and 8 are driving the increase in Rxfp1 539 
at the subclass level. In cluster 7, we observed significant enrichment of upregulated endoplasmic 540 
reticulum-localized heat shock protein genes, including Hspa5, Dnajb9, and Dnajc10 (Figure 6k,l; 541 
Supplementary Table 4), an aging signature that appears to be specific to this cluster only. 542 
Furthermore, in cluster 7, the age-DE gene with the strongest age effect size was Nhlh2, which was 543 
also uniquely changing with age only in cluster 7 (Figure 6k). Nhlh2 is a transcription factor that has 544 
been implicated in regulating processes related to obesity and fertility75.Amongst genes increasing with 545 
age in the Agrp+ cluster 63_ TU−ARH Otp Six6 Gaba, we found enrichment of terms related to 546 
monoaminergic neurotransmitter secretion and circadian regulation of gene expression (Figure 6l; 547 
Supplementary Table 4). Included in the circadian and rhythmic process related genes, we observed 548 
Bhlhe40, Bhlhe41, Nr1d2, and Per3 increasing with age only in the Agrp+ cluster (Figure 6k; 549 
Supplementary Table 3), suggesting that temporal and rhythmic control of behaviors like feeding, a 550 
known function of Agrp+ neurons76, may become altered with age. Amongst genes uniquely decreasing 551 
with age in cluster 63 was Ccnd2, which we also observed decreasing in tanycytes and ependymal 552 
cells (Figure 5b; Extended Data Figure 5b). Taken together, we find that there are strikingly diverse 553 
differences in cluster-level aging signatures in Tbx3+ hypothalamic neurons, even within the same 554 
subclass, lending additional credence to a single-cell approach for investigating age-specific changes 555 
across cell types in the brain. 556 

 557 

Discussion 558 

A gradual loss of homeostasis across many aspects of cellular and organismal function occurs with 559 
aging. Many of these themes, or hallmarks, of aging, including genomic instability, epigenetic alteration, 560 
chronic inflammation, cellular senescence, deregulated nutrient-signaling, etc., have been observed in 561 
multiple invertebrate and vertebrate species2,3. However, the mechanisms that govern systemic aging 562 
at the organismal level across complex tissue types and organ systems remain unclear. Certain cell 563 
types are more vulnerable to specific aspects of aging than others, and likely communicate and interact 564 
with other cell and tissue types to integrate both intrinsic and extrinsic signals that ultimately contribute 565 
to decline in cellular and organismal health. As such, a single-cell approach to characterizing 566 
transcriptional changes in the brain-wide neural network is a critical step towards fully understanding 567 
brain-wide, and eventually, organismal aging.  568 

In this study, we present a large-scale, comprehensive single-cell transcriptomic atlas and 569 
comparative analysis of the young adult and aged mouse brains. Large cell numbers, high quality of 570 
transcriptomes, brain-wide coverage, and detailed annotation of cell types using our newly created 571 
Allen whole mouse brain cell types atlas17 enabled us to precisely pinpoint the regions and cell types in 572 
the brain that may be particularly vulnerable to aging. We find evidence for conservation of many of the 573 
canonical hallmarks of aging across various cell types within the aged mouse brain. This includes 1) 574 
increased expression of cell senescence markers in age-enriched oligodendrocyte and microglia 575 
clusters (Figure 3, 4), 2) increased systemic inflammation as suggested by the identification of age-576 
enriched proinflammatory microglia clusters, 3) oligodendrocyte clusters with increased inflammation 577 
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signals and recruitment of microglia, 4) ependymal clusters with increased interferon signaling (Figure 578 
3-5), 5) decrease in new myelination as indicated by the depletion of immature oligodendrocyte cell 579 
types in the aged brain (Figure 3), and 6) decrease of structural integrity in the brain vasculature as 580 
indicated by the downregulation of extracellular matrix genes in the smooth muscle and endothelial cell 581 
types (Extended Data Figure 6). Interestingly, many of these changes are found to be more 582 
pronounced in hindbrain and midbrain regions. Although not investigated in detail here, we also 583 
observe signs of deterioration of neuronal function with aging, including altered gene expression in a 584 
number of cortical and hippocampal neuronal types (Figure 2), changes in immature neuronal types 585 
that are involved in adult neurogenesis (Figure 2), as well as potentially altered neuron-astrocyte 586 
interactions (Extended Data Figure 8). Most prominently, we observe evidence of altered regulation of 587 
nutrient-sensing and energy homeostasis via many gene expression changes in tanycytes, ependymal 588 
cells, and Tbx3+ neurons localized around the arcuate nucleus and third ventricle of the hypothalamus, 589 
site of the canonical melanocortin circuit of the brain that regulates energy homeostasis (Figure 5, 6). 590 

Deregulated nutrient sensing and the gradual loss of energy homeostasis is one of the most 591 
extensively investigated aspects in aging and longevity research. Moreover, caloric restriction and 592 
intermittent fasting have been shown to delay aging-associated structural and functional decline and 593 
increase longevity across several animal species77. The somatotrophic axis – one of the most highly 594 
conserved signaling axis observed over evolution – involves growth hormone (GH)-mediated 595 
stimulation of insulin growth factor and mammalian target of rapamycin (MTOR) signaling network, 596 
manipulation of which increases lifespan and health span across all organisms tested78,79.  597 

The area surrounding the third ventricle of the hypothalamus, including the arcuate nucleus, is 598 
commonly regarded as one of the circumventricular organs of the brain: it contains a more permissive 599 
blood vascular system than the rest of the brain, allowing nutrients and hormones from blood to interact 600 
more freely with neurons and glia in that region80. MTOR activity increases during aging in 601 
hypothalamic neurons, contributing to age-related obesity, which is reversed by direct infusion of 602 
rapamycin to the hypothalamus81. In addition to the MTOR pathway, the ALK signaling pathway, 603 
another nutrient-sensing pathway, is induced in the hypothalamus by feeding82, and hypothalamus-604 
specific deletion of Alk in mice promotes resistance against diet-induced obesity, a common age-605 
associated phenotype82.  606 

We find that Tbx3+ cell types in the hypothalamus, both neurons and tanycytes, may be more 607 
susceptible to age-related changes than other cells in the brain. We observe highly diverse gene 608 
expression changes among these cell types that are concentrated around the 3rd ventricle (Figure 6), 609 
suggesting differential roles these cell types play and their complex interactions in the aging process. 610 
As of yet, we do not know whether these changes are driven by cellular programs that are protective 611 
against or susceptible to aging, or both. There is evidence to suggest that in mouse embryonic 612 
fibroblasts, Tbx3 expression may suppress cell senescence83, a key contributor to cellular aging. Tbx3 613 
is also differentially expressed at high levels in many enteric neurons that govern the function of the 614 
gastrointestinal tract84, suggesting that there may be common expression patterns between 615 
hypothalamus and the enteric nervous system that may be relevant to metabolic homeostasis and 616 
aging. In addition to many hypothalamic neurons, tanycytes are also regarded as a key integrator of 617 
nutrient and sex hormone signaling within the brain59. Tanycytes have also demonstrated adult 618 
neurogenic and gliogenic ability, possibly in response to changes in diet85.  619 

Given the proximity of both tanycytes, ependymal cells, and Tbx3+ neurons to the third 620 
ventricle, our results suggest that cells surrounding the third ventricle in the hypothalamus, may 621 
represent a critical focal point of the accumulation of age-associated changes in the brain. Furthermore, 622 
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the highly conserved role POMC and AgRP neurons play in appetite regulation and energy 623 
homeostasis, as well as the role tanycytes play in nutrient sensing, coupled with the extensive body of 624 
literature implicating nutrient dysregulation in aging biology86 suggest that this region of the brain may 625 
act as a key systemic integrator of nutrient and energy signaling across the entire organism that heavily 626 
influences cellular and/or organismal aging. 627 

The dataset we present here represents the most extensive and comprehensive transcriptomic 628 
analysis of the normal aged mouse brain that we know of to date. The identification of a variety of 629 
robust and highly significant gene expression changes with aging across many neuronal and non-630 
neuronal cell types throughout the brain demonstrates the power and necessity of single-cell 631 
approaches to revealing the mechanisms that govern complex systemic phenotypes like aging. The 632 
results and insights from this work will serve as a foundational resource for the neuroscience and aging 633 
research communities to facilitate detailed investigation of age-associated phenotypes in the brain and 634 
the body and the interaction between aging and various diseases.  635 

 636 

 637 

Methods 638 

 639 

Mouse breeding and husbandry 640 

All procedures were carried out in accordance with Institutional Animal Care and Use Committee 641 
protocols at the Allen Institute for Brain Science. Mice were provided food and water ad libitum and 642 
were maintained on a regular 14:10 hour day/night cycle at no more than five adult animals of the same 643 
sex per cage. Mice were maintained on the C57BL/6J background. We excluded any mice with 644 
dermatitis, anophthalmia, microphthalmia, seizures, or abdominal masses. 645 

We used 44 aged mice (20 female, 22 male) and 52 adult mice (25 female, 27 male) to collect 646 
2,777,165 cells for 10xv3 scRNA-seq. All adult animals were also included in the Allen whole mouse 647 
brain cell type atlas17. Aged animals were euthanized at P540-553 (approximately 18 months) and adult 648 
animals were euthanized at P53-69 (approximately 2 months). No statistical methods were used to 649 
predetermine sample size. All donor animals used in this study are listed in Supplementary Table 1. 650 

We isolated a total of 272 libraries from 96 animals – each animal contributed 1-6 libraries. All 651 
libraries are listed in Supplementary Table 1. Transgenic driver lines were used for fluorescence-652 
positive cell isolation by FACS to enrich for neurons. Approximately half the libraries (n = 133) were 653 
sorted for neurons from the pan-neuronal Snap25-IRES2-Cre line (JAX strain #023525) crossed to the 654 
Ai14-tdTomato reporter (JAX strain #007914) 87,88 (Supplementary Table 1). For unbiased sampling 655 
without FACS, we used either Snap25-IRES2-Cre/wt;Ai14/wt mice, Ai14/wt mice, or in very few cases 656 
wildtype C57BL/6J mice. The transgenic Snap25-IRES2-Cre line was backcrossed to C57BL/6J for at 657 
least 10 generations before crossing and can be considered congenic. The transgenic Ai14 line was 658 
backcrossed to C57BL/6J for at least 5 generations before crossing and can be considered incipient 659 
congenic. 660 

 661 

10X single-cell RNA sequencing 662 

Single-cell isolation 663 
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We used the Allen Mouse Brain Common Coordinate Framework version 3 (CCFv3; RRID: 664 
SCR_002978) ontology21 (http://atlas.brain-map.org/) to define brain regions for profiling and 665 
boundaries for dissection. We covered all regions of the brain by sampling at top-ontology level with 666 
judicious joining of neighboring regions. These choices were guided by the fact that microdissections of 667 
small regions are difficult. Therefore, joint dissection of neighboring regions was sometimes necessary 668 
to obtain sufficient numbers of cells for profiling. 669 

Single cells were isolated by adapting previously described procedures16,89. The brain was 670 
dissected, submerged in ACSF, embedded in 2% agarose, and sliced into 350-μm coronal sections on 671 
a compresstome (Precisionary Instruments). Block-face images were captured during slicing. Regions 672 
of interest (ROIs) were then microdissected from the slices and dissociated into single cells as 673 
previously described16,89. Fluorescent images of each slice before and after ROI dissection were taken 674 
at the dissection microscope. These images were used to document the precise location of the ROIs 675 
using annotated coronal plates of CCFv3 as reference.  676 

Dissected tissue pieces were digested with 30 U/ml papain (Worthington PAP2) in ACSF for 30 677 
minutes at 30°C. Due to the short incubation period in a dry oven, we set the oven temperature to 35°C 678 
to compensate for the indirect heat exchange, with a target solution temperature of 30°C. Enzymatic 679 
digestion was quenched by exchanging the papain solution three times with quenching buffer (ACSF 680 
with 1% FBS and 0.2% BSA). Samples were incubated on ice for 5 minutes before trituration. The 681 
tissue pieces in the quenching buffer were triturated through a fire-polished pipette with 600-µm 682 
diameter opening approximately 20 times. The tissue pieces were allowed to settle and the 683 
supernatant, which now contained suspended single cells, was transferred to a new tube. Fresh 684 
quenching buffer was added to the settled tissue pieces, and trituration and supernatant transfer were 685 
repeated using 300-µm and 150-µm fire polished pipettes. The single cell suspension was passed 686 
through a 70-µm filter into a 15-ml conical tube with 500 µl of high BSA buffer (ACSF with 1% FBS and 687 
1% BSA) at the bottom to help cushion the cells during centrifugation at 100 x g in a swinging bucket 688 
centrifuge for 10 minutes. The supernatant was discarded, and the cell pellet was resuspended in the 689 
quenching buffer. We collected 1,508,284 cells without performing FACS. The concentration of the 690 
resuspended cells was quantified, and cells were immediately loaded onto the 10x Genomics 691 
Chromium controller. 692 

To enrich for neurons or live cells, cells were collected by fluorescence-activated cell sorting 693 
(FACS, BD Aria II) using a 130-μm nozzle. Cells were prepared for sorting by passing the suspension 694 
through a 70-µm filter and adding Hoechst or DAPI (to a final concentration of 2 ng/ml). Sorting strategy 695 
was as previously described16,17, with most cells collected using the tdTomato-positive label. 30,000 696 
cells were sorted within 10 minutes into a tube containing 500 µl of quenching buffer. We found that 697 
sorting more cells into one tube diluted the ACSF in the collection buffer, causing cell death. We also 698 
observed decreased cell viability for longer sorts. Each aliquot of sorted 30,000 cells was gently layered 699 
on top of 200 µl of high BSA buffer and immediately centrifuged at 230 x g for 10 minutes in a 700 
centrifuge with a swinging bucket rotor (the high BSA buffer at the bottom of the tube slows down the 701 
cells as they reach the bottom, minimizing cell death). No pellet could be seen with this small number of 702 
cells, so we removed the supernatant and left behind 35 µl of buffer, in which we resuspended the 703 
cells. Immediate centrifugation and resuspension allowed the cells to be temporarily stored in a high 704 
BSA buffer with minimal ACSF dilution. The resuspended cells were stored at 4°C until all samples 705 
were collected, usually within 30 minutes. Samples from the same ROI were pooled, cell concentration 706 
quantified, and immediately loaded onto the 10x Genomics Chromium controller.  707 

 708 
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cDNA amplification and library construction   709 

For 10x v3 processing, we used the Chromium Single Cell 3′ Reagent Kit v3 (1000075, 10x Genomics). 710 
We followed the manufacturer’s instructions for cell capture, barcoding, reverse transcription, cDNA 711 
amplification and library construction. We targeted a sequencing depth of 120,000 reads per cell; the 712 
actual average achieved was 80,118 ± 35,612 (mean ± SD) reads per cell across 272 libraries 713 
(Supplementary Table 1). 714 

 715 

Sequencing data pre-processing 716 

All libraries were 10xv3 samples and processed as previously described16,17. All libraries were 717 
sequenced on Illumina NovaSeq6000 and sequencing reads were aligned to the mouse reference 718 
(mm10/gencode.vM23) using the 10x Genomics CellRanger pipeline (version 6.0.0) with the –include 719 
introns argument to include intronicaly mapped reads.  720 

To remove low quality cells, we used a stringent QC process. Cells were first filtered by a broad 721 
set of quality cutoffs based on gene detection, qc score, and doublet score. As we previously 722 
described17, the qc score was calculated by summing the log-transformed expression of a set of genes, 723 
whose expression level is decreased significantly in poor quality cells. Briefly, these are housekeeping 724 
genes that are strongly expressed in nearly all cells with a very tight co-expression pattern that is anti-725 
correlated with the nucleus-enriched transcript Malat1. We use this qc score to quantify the integrity of 726 
cytoplasmic mRNA content. Doublets were identified using a modified version of the DoubletFinder 727 
algorithm90. For this preliminary round of filtering, we included cells with gene detection > 1000, qc 728 
score > 50, and doublet score < 0.3. Using these thresholds, 1,999,976 cells remained in the dataset 729 
(Extended Data Fig 1a).  730 

 731 

Clustering single cell RNA-seq data 732 

Following the initial round of filtering described above, adult and aged single-cell transcriptomes were 733 
co-clustered over two rounds of clustering. The goal for the first round of clustering was to assign a cell 734 
class identity to every unlabeled (aged) cell and filter out low-quality (noise) clusters. The goal of the 735 
second round of clustering was to assign a subclass identity to every unlabeled (aged) cell and filter out 736 
additional low-quality clusters. All adult cells in the dataset already had labels because they are also 737 
part of the Allen whole mouse brain cell type taxonomy17. For both rounds, clustering was performed 738 
independently with the in-house developed R package scrattch.bigcat as was previously described17 739 
(available via github https://github.com/AllenInstitute/scrattch.bigcat),. This package is version of R 740 
package scrattch.hicat16  that can cluster large datasets. Detailed functionality of scrattch.bigcat was 741 
discussed in our previous paper17. We used the automatic iterative clustering method, iter_clust_big, to 742 
peform clustering in a top-down manner into cell types of increasingly finer resolution. This method 743 
performs clustering without human intervention, while ensuring that all pairs of clusters, even at the 744 
finest level, were separable by differential gene expression criteria (q1.th = 0.4, q.diff.th = 0.7, 745 
de.score.th = 300, min.cells = 50) for both rounds of clustering. Following each round of clustering 746 
using iter_clust_big, we used the function merge_cl to merge clusters based on total number and 747 
significance of shared DE genes. For round 1, the criteria used for merge_cl were identical to those 748 
previously described for clustering. For round 2, the criteria used for merge_cl were almost identical 749 
with the exception of increasing min.cells = 100.  750 

 751 
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Assigning labels to aged cells and removing low-quality clusters  752 

We observed 2,467 clusters after the first round of clustering. At this point, all cells were assigned a cell 753 
category (Glut, GABA, Dopa, Sero, IMN or NN). Since the adult cells have been previously published 754 
and annotated17, cell annotations for aged cells were assigned based on cluster membership with 755 
annotated adult cells. Specifically, clusters that contained >5% of annotated adult cells were assigned 756 
that cell category. Category-labeled clusters were then filtered based on cell category-specific cluster-757 
level thresholds (Supplementary Table 5, Extended Data Fig 1a). Clusters with >80% contribution 758 
from a single library were also filtered out to minimize donor bias in the final dataset. Clusters with <5% 759 
adult cells were retained in the dataset and carried over into the next round of clustering. Since adult 760 
cells that were previously deemed to be low quality17 were also included in clustering, clusters with the 761 
majority of low-quality cells were also filtered out. In total, 1,197 clusters were removed based on these 762 
criteria after the first round of clustering (n = 779,838 cells removed). This resulted in the dataset of 763 
1,220,138 cells, which were carried over into the second round of clustering (Extended Data Fig 1a). 764 

After the second round of clustering, we observed 928 clusters. All clusters were then assigned 765 
subclass identities in a process similar to that described above. Clusters with <5% adult cells were now 766 
mapped directly to the Allen whole mouse brain cell type taxonomy17 (see “Label transfer via mapping” 767 
section below) and entire clusters were assigned to the most common subclass within the group of cells 768 
that made up that cluster. Annotated clusters were then filtered using class-level quality metrics and 769 
other quality metrics similar to those in the above paragraph (Supplementary Table 5, Extended Data 770 
Fig 1a). After this second round of cluster-level filtering, 31 clusters were removed (n = 34,934 cells 771 
removed) and 1,185,204 cells remained in the dataset. Remaining cells and resultant subclass 772 
annotations were used for all downstream analysis (Extended Data Fig 1a).  773 

 774 

Label transfer via mapping 775 

For assigning identities of cells in clusters with >95% aged cells, we mapped them to a reference 776 
taxonomy as previously described17. Briefly, we assigned their cell type identities by mapping them to 777 
the nearest cluster centroid in the reference taxonomy using the corresponding Annoy index as 778 
implemented in the R package scrattch.mapping. We also used this approach for assigning cell type 779 
identities for cells segmented from Resolve spatial data to the Allen whole mouse brain cell type 780 
taxonomy17 or external datasets as reference, using different gene lists based on the contexts. For 781 
mapping to the oligodendrocyte dataset from Marques et. al.30, we used a list of 195 genes. For 782 
mapping to the microglia dataset from Hammond et. al.4, we used a list of 72 genes. For both external 783 
datasets, gene lists were assembled based on prominent marker genes from each external reference 784 
cluster. When mapping confidence score was needed, we sampled 80% genes from the marker list 785 
randomly, and performed mapping 100 times. We define the fraction of times a cell is assigned to a 786 
given cell type as the mapping probability to that type.  787 

 788 

Identifying age-associated DE genes 789 

Age-associated DE genes were calculated using the R package MAST22, a widely used statistical 790 
framework designed for modeling biological effects from scRNA-seq data. Briefly, MAST fits a two-part 791 
generalized linear model and also allows for adaptive thresholding of gene expression data to account 792 
for dropout rate. Upon inspection using MAST’s thresholdSCRNACountMatrix function, we found that 793 
for most cases, genes expressed at a frequency of at least 10% did not reveal many genes with non-794 
zero bimodal bins, so we did not implement any adaptive thresholding in our DE gene analysis. 795 
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DE genes were calculated at the subclass, supertype, and cluster level. For all tests, only genes 796 
that were expressed at a frequency of >10% were tested (i.e., only genes expressed in at least 10% of 797 
query cells were included). Only subclasses with at least 50 aged and 50 adult cells were evaluated for 798 
DE genes. To decrease running time, for large subclasses, we subsampled them to a maximum of 799 
1,000 cells per age. 800 

At the subclass level, we used the following two statistical models to model they effect of age on 801 
gene y including various covariates: 802 

Model 1: y ~ age + sex + genotype + z(log(gc)) + z(log(qc)) + intercept 803 

Model 2: y ~ age + z(log(gc)) + z(log(qc)) + intercept 804 

where age, sex, and genotype are all categorical variable with 2, 2, and 3 levels, respectively, and gene 805 
detection (gc) and QC score (qc) are log transformed and then z-score normalized. We included both 806 
gene detection and QC score in each model to account for potential effects that various FACS 807 
population plans had on library quality (Extended Data Figure 4a). A likelihood ratio test was 808 
computed between each model with and without the age term to generate p-values. These p-values 809 
were corrected for multiple hypothesis testing with the Bonferonni correction. The effect size estimate 810 
for the age term for each model can be interpreted as the log2-fold change (logFC) of each gene. 811 
However, due to the additional covariates, logFC estimated by the models often varied widely from 812 
those calculated without covariate adjustment. As such, we refer to this term as “age effect size” 813 
throughout the main body of the text, rather than logFC.  814 

Since age effect sizes estimated by these two models differed widely for certain cell types, 815 
particularly smaller neuronal populations, we chose to consider a gene significant if and only if it 816 
exceeded statistical cutoffs (p < 0.01 & age effect size > 1 or < -1) for both Model 1 and 2. For all 817 
figures that plot heatmaps of age effect sizes of subclass age-DE genes, age effect sizes from Model 1 818 
were used. At the supertype and cluster level, only results from Model 1 are presented. 819 

For the vast majority of age-DE genes presented here, the directionality of age effect sizes 820 
between the two models agrees with one another. However, for a very small number of genes (6 out of 821 
1,253 unique genes), the directionality disagrees, with most of these being changes in expression of 822 
the X-inactivation gene Xist across various hypothalamic neuron types (Extended Data Figure 5b; 823 
Supplementary Table 3) which may be due to the imbalance between libraries of different FACS 824 
population plans, sex, and age (Extended Data Figure 4a). However, as a recent study showed that 825 
Xist expression increases in aged female hypothalamic neurons11, in all figures, we display the age 826 
effect size of the model that estimated an increase in Xist expression with age (Model 1). We also 827 
looked for age-DE genes at the class level using only RFP+ neuron enriched libraries (thus removing 828 
any potential confounding of FACS population plan). We found that all neuronal subclasses have 829 
positive age effect sizes (Extended Data Figure 4e), supporting the ideal that the age effect size 830 
estimates from Model 1 are more accurate for the gene Xist. The reason we did not do this initially at 831 
the subclass level was due to lack of coverage of an adequate number of subclasses using only RFP+ 832 
libraries. As such, we chose to include libraries from many different FACS population plan collection 833 
strategies to maximize cell counts. 834 

 835 

Adjusted age proportion calculation 836 

We calculated the adjusted age proportion of each cluster by normalizing to the subclass-wide age 837 
proportion, as different brain regions profiled in this dataset vary in their proportions of aged versus 838 
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adult cells (Figure 2). To do this, we subtracted the subclass-wide age proportion from the cluster-wide 839 
age proportion, and then added 0.5. 840 

 841 

UMAP projection 842 

We used principal components (PCs) calculated from PCA to calculate UMAPs for different groups of 843 
cells91. For UMAPs with >100,000 cells, we performed PCA based on the imputed gene expression 844 
matrix of genes based on top marker genes from each cluster within each grouping of cells as we have 845 
implemented previously17. For UMAPs with <100,000 cells, no imputation was used. Three parameters 846 
that can be adjusted when generating UMAPs include 1) number of PCs which are used to calculated 847 
projections, 2) nn.neighbors: the size of the local neighborhood of cells the UMAP will look at when 848 
trying to learn the structure of the data, 3) md: the minimum distance apart that cells are allowed to be 849 
in low dimensional resolution. For all UMAPs, the top 150 PCs were then selected, and PCs with >0.7 850 
correlation were removed based on the technical bias vector, defined as log2(gene count) for each cell. 851 
Each PCA was run with unique gene list and each UMAP was run with a different set of nn.neighbors 852 
and md parameters. The parameters used for each PCA/UMAP are as follows: 6,446 genes, 853 
nn.neighbors = 10, md = 0.4 for the global UMAP (Figure 1); 984 genes, nn.neighbors = 20, md = 0.5 854 
for the OPC-Oligo UMAP (Figure 3); 1,884 genes, nn.neighbors = 5, md = 0.5 for the Immune/Vasvular 855 
UMAP (Figure 4); 1,806 genes, nn.neighbors = 20, md = 0.5 for the Astro-Epen UMAP (Figure 5); 401 856 
genes, nn.neighbors = 5, md = 0.5 for the tanycyte/ependymal cell UMAP (Figure 5); 1,169 genes, 857 
nn.neighbors = 5, md = 0.5 for the HY neuron UMAP (Figure 6). 858 

 859 

Constellation plot 860 

The global relatedness between cell types was visualized with constellation plots, which we had 861 
implemented previously16,17. To generate the constellation plot, each transcriptomic cluster was 862 
represented by a node (circle), whose surface area reflected the number of cells within the subclass in 863 
log10 scale. The position of each node was based on the centroid position of the corresponding cluster 864 
in UMAP coordinates. The relationships between nodes were indicated by edges that were calculated 865 
as follows. For each cell, 15 nearest neighbors in reduced dimension space were determined and 866 
summarized by cluster. For each cluster, we then calculated the fraction of nearest neighbors that were 867 
assigned to other clusters. The edges connected two nodes in which at least one of the nodes had > 868 
5% of nearest neighbors in the connecting node. The width of the edge at the node reflected the 869 
fraction of nearest neighbors that were assigned to the connecting node and was scaled to node size. 870 
For all nodes in the plot, we then determined the maximum fraction of “outside” neighbors and set this 871 
as edge width = 100% of node width. The function for creating these plots, plot_constellation included 872 
in the R package scrattch.bigcat. 873 

 874 

Gene ontology analysis 875 

Gene ontology term enrichment was performed using the R package clusterProfiler 4.092 and 876 
gprofiler293. The function gconvert from gprofiler2 was used to convert gene IDs to their Ensmbl IDs. 877 
The functions enrichGO and simplify from clusterProfiler were then used to enrich for gene ontology 878 
terms from all three GO databases (molecular function, biological process, and cellular component). A 879 
p-value cutoff of 0.05 was used to determine significant GO terms. 880 

 881 
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In situ spatial transcriptomics 882 

Resolve Molecular Cartography overview 883 

All in situ spatial RNA data shown here were generated by Resolve Biosciences with their commercially 884 
available Molecular Cartography platform. Two total Molecular Cartography experiments were 885 
performed (RSTE1-2), each with a different panel of 100 genes and targeting different region(s) of the 886 
brain (Extended Data Figure 3). For RSTE1, 4 different regions of the brain (cortex, striatum, midbrain, 887 
and hindbrain) were imaged in both sexes and both ages (2- and 18-month), with 2 replicate brains per 888 
condition and 2 technical replicates per brain. The technical replicates were plotted and analyzed as 889 
independent replicates in all figures. For RSTE2, the hypothalamus was imaged in both sexes and both 890 
ages, with 4 replicate brains per condition. Brain dissection and cryosectioning for Molecular 891 
Cartography experiments were performed at the Allen Institute for Brain Science in Seattle, WA, 892 
samples were stored at -80°C for 1-3 days, and then shipped overnight to Resolve Biosciences in San 893 
Jose, CA, where the Molecular Cartography protocol was performed. Spot data were then made 894 
available 1-2 weeks after receipt of tissue. Data analysis was performed at the Allen Institute using 895 
methods detailed below. Briefly, transcript data were segmented into cells, cells were filtered based on 896 
quality metrics generated from segmentation and mapping, and downstream analysis and visualization 897 
was performed.  898 

 899 

Brain dissection and freezing 900 

Mice used for spatial experiments were housed and kept in same conditions to those used for scRNA-901 
seq described above. Mice were transferred from the vivarium to the procedure room with efforts to 902 
minimize stress during transfer. Mice were anesthetized with 5% isoflurane. A grid-lined freezing 903 
chamber was designed to allow for standardized placement of the brain within the block in order to 904 
minimize variation in sectioning plane. Chilled OCT was placed in the chamber, and a thin layer of OCT 905 
was frozen along the bottom by brief placement of the chamber in a dry ice/ethanol bath. The brain was 906 
rapidly dissected and placed into the prechilled OCT for approximately 2 minutes to acclimate to the 907 
cold prior to freezing. The orientation of the brain was adjusted under a dissecting scope, and the 908 
freezing chamber containing OCT and brains was placed into a dry ice/ethanol bath for freezing. After 909 
freezing, the brains were vacuum sealed and stored at -80°C. 910 

 911 

Cryosectioning 912 

The fresh-frozen adult and aged brains were sectioned at 10-µm on Leica 3050 S cryostats. The OCT 913 
block containing a fresh frozen brain was trimmed in the cryostat until reaching the desired region of 914 
interest. Sections were placed onto coverslips provided by Resolve Biosciences. Two replicate sections 915 
were collected sequentially – one as the primary sample and the other as a backup.  916 

 917 

Gene panel design 918 

The Molecular Cartography platform allows 100 genes per experiment for spatial RNA profiling. Each of 919 
the 2 Molecular Cartography experiments we ran was designed to target different regions and cell types 920 
in the adult and aged brains. Therefore, for each experiment we used different gene panels, which were 921 
compiled through a combination of automated and manual processes. Glutamatergic and GABAergic 922 
neuronal class markers Slc17a7, Slc17a6, Gad1, and Gad2 and major non-neuronal subclass markers 923 
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Aqp4, Apod, Sox10, Pdgfra, Enpp6, Opalin, Dcn, Pecam1, Ctss, Mrc1, Kcnj8, Pdgfrb, and Acta2 were 924 
included for all 2 Resolve experiments. The remaining genes in each panel were then customized for 925 
each of the 2 experiments. RSTE1 targeted non-neuronal types in different parts of the brain. RSTE2 926 
targeted tanycytes and ependymal cells in the third ventricle of the hypothalamus. The function 927 
select_N_markers included in the R package scrattch.hicat was used to select markers for all relevant 928 
subclasses and clusters in each experiment. Top age-DE genes were also included for relevant 929 
subclasses within each panel, as well as additional genes of interest selected from prior literature.  930 

 931 

Cell segmentation 932 

Cells were segmented using a combination of open source software Cellpose94 and Baysor95. 933 
Cellpose employs a generalist algorithm for segmenting cells from images of cellular stains as input. 934 
Baysor uses a transcript-driven algorithm to draw cell boundaries based on transcript data alone while 935 
also having the option of integrating prior knowledge from stained images into the process. First, 936 
images of DAPI stains from each of the tissue samples were used as input for Cellpose using the 937 
following parameters: --pretrained_model = nuclei, --diameter = 0. The output of Cellpose was saved as 938 
a TIF and used as a prior for the Baysor segmentation algorithm. Baysor was run with the following 939 
input parameters: -m 30, -s 50.  940 

 941 

In situ data pre-processing 942 

All segmented cells were mapped to the Allen whole mouse brain cell type taxonomy17 with the same 943 
method used for scRNA-seq data as described above. The 2 RSTE datasets were filtered for high-944 
quality cells using a combination of thresholds for mapping confidence score, segmentation confidence 945 
score (from Baysor), number of transcripts, and gene detection. Due to the variable gene panels and 946 
brain regions across the two RSTE datasets, we used a different set of filter criteria for each 947 
experiment. These cutoffs are detailed in Supplementary Table 6 and cell counts before and after 948 
quality filtering are diagramed in Extended Data Figure 3. 949 
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Figure legends 1179 

Figure 1. Transcriptomic cell types in the aged and adult mouse brain. (a) Schematic of dissected 1180 
brain regions profiled in this study, colored by major brain structure. (b-c) UMAP representation of n = 1181 
1,185,204 cells included in this study, colored by major brain structure (b) and cell class (c). Mouse 1182 
depictions in (a) are created with BioRender.com. 1183 
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Figure 2. Differentially expressed genes across cell subclasses in the aged and adult mouse 1185 
brain. Summary of the number and effect size of all age-DE genes identified at the subclass level. Far 1186 
right: The total number of age-DE genes within each subclass, colored by cell class and ordered based 1187 
on broad categories. Center: Bar charts that summarize the breakdown of each subclass by major brain 1188 
structure, age, and sex. Far left: Age effect sizes of all age-DE genes for each subclass. 1189 
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Figure 3. Age-associated changes in OPCs and oligodendrocytes. (a) UMAP of all OPC and 1191 
oligodendrocyte transcriptomes colored by supertype, age, and major brain structure. (b) Age effect 1192 
sizes of age-DE genes within OPCs and oligodendrocyte supertypes, with significant age-DE genes 1193 
colored (absolute age effect size >1 and P < 0.01). (c) Heatmap of age effect sizes of top age-DE 1194 
genes within OPCs and oligodendrocyte supertypes. Asterisks denote statistical significance. (d) Violin 1195 
plots of expression of Abca8a and Dpyd in MOL and Maf and Nr6a1 in OPC from scRNA-seq and 1196 
spatial RSTE1 datasets. (e) Constellation plot representing OPC and oligodendrocyte clusters using 1197 
UMAP coordinates shown in (a). Node (cluster) size is proportional to cell number. Edge thickness is 1198 
proportional to the fraction of nearest neighbors that were assigned to the connecting node scaled to 1199 
node size. Cluster color represents the percent of aged or adult cells. (f) Adjusted age proportion of 1200 
each cluster from (e), colored and grouped by supertype. (g) Dendrogram and dot plot of cluster marker 1201 
genes. Below dot plot are bar summaries of each cluster broken down by major brain structure, sex, 1202 
and age. Dendrogram is calculated from cluster DE genes. (h) Violin plot expression of Hopx, Art3, and 1203 
Ctss in MOL clusters from scRNA-seq and spatial dataset RSTE1. 1204 
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Figure 4. Age-associated changes in microglia and macrophages. (a)  UMAP of all vascular and 1206 
immune cell transcriptomes colored by subclass, sex, and age. (b) Heatmap of age effect sizes of top 1207 
age-DE genes in BAM and microglia. Asterisk denotes statistical significance (see subclass level 1208 
criteria in Methods). (c) Violin plot expression of Cd209a and Cd209b in BAM and Ildr2 and Upk1b in 1209 
microglia in scRNA-seq and spatial RSTE1 datasets. (d) Heatmap of the statistical significance of top 1210 
GO terms enriched in top age-DE genes from BAM and microglia. Numbers in the plot represent  1211 
-log10(p-value) of each term. Positive numbers are terms enriched in genes that increase with age and 1212 
negative numbers are terms enriched in genes that decrease with age. (e) UMAP of immune cells 1213 
including microglia and BAM, colored by cluster label, brain structure, sex, and age. (f) Constellation 1214 
plot of microglia clusters colored by cluster created as described previously. (g) Marker gene 1215 
expression in immune cell types organized in a dendrogram calculated from cluster DE genes. (h) Bar 1216 
plot summaries for each cluster colored by brain structure, sex, age, and mapping label from Hammond 1217 
et al. 2019 dataset. (i) Heatmap of statistical significance of top GO terms enriched in marker genes 1218 
from non-homeostatic microglia clusters. (j) Changes in microglia created as in Figure 3e age 1219 
calculated from spatial dataset RSTE1. (k) Changes in mean soma area of microglia cells with age as 1220 
estimated from Baysor segmentation. Statistical significance for (j) and (k) are calculated with Student’s 1221 
t-test. Each point represents a single replicate mouse sample. 1222 
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Figure 5. Age-associated changes in third ventricle tanycytes and ependymal cells. (a) UMAP of 1224 
all Astro-Epen cell types colored by subclass and major brain structure. (b) Heatmap of age effect sizes 1225 
of top age-DE genes in tanycytes and ependymal cells. Asterisk denotes statistical significance (see 1226 
subclass level criteria in Methods). (c) Heatmap of the statistical significance of top GO terms enriched 1227 
in top age-DE genes from tanycytes and ependymal cells. Numbers in the plot represent -log10(p-value) 1228 
of each term. Positive numbers are terms enriched in genes that increase with age and negative 1229 
numbers are terms enriched in genes that decrease with age. (d) Tanycyte and ependymal cell body 1230 
locations in select samples from spatial dataset RSTE2, colored by subclass label (top), Gpr50 (center), 1231 
and Tm4sf1 (bottom) expression. (e) Gene expression of Ccnd2, Ctnna2, Oasl2, and Ifit1 across 1232 
tanycytes (left) and ependymal cells (right) from scRNA-seq and spatial dataset RSTE2 represented by 1233 
violin plots. Select adult and aged spatial RSTE2 samples are displayed in the center, colored by 1234 
expression of each gene in tanycytes and ependymal cells. (f) UMAP of tanycytes and ependymal cell 1235 
transcriptomes with additional adult cells from Yao et al. 2023 included, colored by cluster, subclass, 1236 
age, and brain structure. (g) Constellation plot of clusters in (f), created as described previously. (h) 1237 
Adjusted age proportion of each cluster from (g) colored by cluster and grouped by subclass. (i) Marker 1238 
gene expression in tanycyte and ependymal cell clusters organized in a dendrogram calculated from 1239 
cluster DE genes. (j) Bar plot summaries for each cluster colored by brain structure, sex, age, and adult 1240 
cell label (see k) from Yao et al. 2023. (k) Location of tanycyte clusters in the Allen whole mouse brain 1241 
cell type atlas17. (l) Visualization of Slc17a8 gene expression changes in tanycytes and ependymal cells 1242 
with age (Slc17a8 gene expression was binarized in representative samples from spatial RSTE2 1243 
dataset). 1244 
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Figure 6. Age-associated changes in Tbx3+ hypothalamic neurons. (a-b) UMAP of all 1246 
hypothalamic (HY) neurons colored by (a) class, Slc32a1 and Slc17a6 expression, and (b) subclass. 1247 
(c) Age effect sizes of age-DE genes from hypothalamic neuronal subclasses ordered by the number of 1248 
age-DE genes, with significant age-DE genes colored. Labels for the top 4 subclasses are emphasized 1249 
with darker font on the left. (d) Subclasses with the greatest numbers of age-DE genes highlighted and 1250 
Tbx3 expression shown in the same UMAP space as (a). (e) Neurons, tanycyte and ependymal cell 1251 
body locations in a representative sample from spatial dataset RSTE2 demonstrating colocalization of 1252 
subclasses from (d) around the third ventricle. (f) Heatmap of age effect sizes of all age-DE genes in 1253 
Tbx3+ neuronal subclasses. Asterisks denote statistical significance. Dendrogram represents 1254 
hierarchical clustering of subclasses based on age effect sizes. Genes discussed in text are labeled. 1255 
(g) Upset plot of overlapping age-DE genes between the four Tbx3+ neuronal subclasses. Genes 1256 
colored in red increase with age while genes colored in blue decrease with age in scRNA-seq data. (h) 1257 
Tbx3+ neuronal clusters colored in the same UMAP space as (a). (i) Marker gene expression in Tbx3+ 1258 
neuronal clusters organized in a dendrogram calculated from cluster DE genes. Bar plot summaries of 1259 
each cluster colored by sex and age are below. (j) Age effect sizes of age-DE genes from Tbx3+ 1260 
clusters ordered from the greatest to least number of age-DE genes, with significant age-DE genes 1261 
colored. (k) Heatmap of age effect sizes from all age-DE genes from Tbx3+ clusters. Asterisks denote 1262 
statistical significance (Methods). Dendrogram represents hierarchical clustering of clusters based on 1263 
age effect sizes. Genes discussed in text are labeled. (l) Heatmap of statistical significance of top GO 1264 
terms enriched in marker genes from all Tbx3+ neuronal clusters. 1265 

 1266 
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Extended Data Figure 1: Data pre-processing workflow and quality control. (a) Workflow for pre-1269 
processing of scRNA-seq data. Cells retained at each step are indicated in pink. (b-d) Normalized 1270 
density distribution of gene detection (b), QC score (c), and mito. score (d) per cell across different cell 1271 
classes and ages. (e) Proportion of cell categories across all regions and within each major brain 1272 
structure. Cell category: Dopa, dopaminergic neurons; GABA, GABAergic neurons; Glut, glutamatergic 1273 
neurons; IMN, immature neurons; NN, non-neuronal cells; Sero, serotonergic neurons.  1274 
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Extended Data Figure 2: Subclass marker genes. Dot plot of marker gene expression for 132 1276 
individual subclasses of cell types analyzed in this study. Dot size and color indicate proportion of 1277 
expressing cells and average expression level in each subclass, respectively. Subclass labels are 1278 
colored by cell class.  1279 
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Extended Data Figure 3: Summary of spatial transcriptomics datasets. (a-b) Diagram of brain 1281 
regions profiled, gene panels, and pre- and post-filtered cell counts of Resolve spatial transcriptomic 1282 
datasets 1 (RSTE1; a) and 2 (RSTE2; b).  1283 
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Extended Data Figure 4: Library breakdown and DE gene model. (a) Summary of the numbers of 1285 
libraries colored by FACS population plan and grouped by genotype (x-axis), age (rows), and ROI 1286 
(columns). (b-c) Violin plot summary of gene detection (b) and QC score (c) grouped by FACS 1287 
population plan (x-axis) and major cell category. (d) Two-dimensional density scatter plots of age effect 1288 
sizes (coef) from simple and complex DE gene models plotted against one another for tanycytes only, 1289 
ARH-PVp Tbx3 Glut neurons only, or all subclasses. Greater density is marked by lighter blue color. 1290 
Dotted lines indicate significant cutoffs used in this study. Genes that pass these cutoffs are included in 1291 
this study and summarized in Figure 2. (e) Bar plot of the age effect sizes of the gene Xist in 1292 
decreasing order for all classes with n > 50 cells from each age and sex from RFP+, DAPI- libraries 1293 
only. Significant changes (age effect size > 1 & p < 0.01) are colored in red. 1294 
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Extended Data Figure 5: Common age-DE genes across subclasses. (a) Histogram of the number 1296 
of subclasses an age DE gene is significant for. (b) Summary of the most commonly observed age-DE 1297 
genes across all subclasses. Top: Summary of total age-DE genes colored and ordered by cell class, 1298 
identical to that shown in Figure 2. Bottom: Heatmap of age effect sizes of the most common significant 1299 
age-DE genes. DE genes that are significant in >5 subclasses are included. Genes are hierarchically 1300 
clustered based on age effect size and their relatedness represented by the dendrogram.  1301 
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Extended Data Figure 6: GO terms and changes in proportions in oligodendrocyte supertypes. 1303 
(a) Heatmap of the statistical significance of top GO terms enriched in top age-DE genes from 1304 
oligodendrocyte supertypes. Terms that are enriched in genes that increase with age are colored 1305 
redder, while terms enriched in genes that decrease with age are colored bluer. Numbers in the plot 1306 
represent -log10(p-value) of each term. (b) Relative changes in abundance of different supertypes and 1307 
MOL clusters with age, calculated from spatial dataset RSTE1. A cutoff of p < 0.01 was used to 1308 
determine statistical significance (Student’s t-test; NS, not significant). Each point corresponds to a 1309 
replicate mouse sample. (c) Proportional changes of MOL with age, calculated from unbiased scRNA-1310 
seq libraries (i.e., libraries processed with the “No FACS” method). Each point represents one scRNA-1311 
seq library. 1312 
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Extended Data Figure 7: Age-associated changes in vascular types. (a) Heatmap of age effect 1314 
sizes of top age-DE genes in Endo, VLMC, SMC, and Peri subclasses. Asterisk denotes statistical 1315 
significance. Subclasses are hierarchically clustered based on age effect sizes and represented by the 1316 
top dendrogram. (b) Violin plot expression of Col4a2 in SMC and Peri subclasses, and Hdac9 and 1317 
Rasgrf2 in Endo in scRNA-seq and spatial RSTE1 datasets. (c) Heatmap of the statistical significance 1318 
of top GO terms enriched in top age-DE genes from vascular subclasses. Terms that are enriched in 1319 
genes that increase with age are colored redder, while terms enriched in genes that decrease with age 1320 
are colored bluer. Numbers in the plot represent -log10(p-value) of each term. Subclasses are 1321 
hierarchically clustered based on scores and their relatedness represented by the dendrogram. (d) 1322 
Proportional changes of vascular cell types with age calculated from spatial dataset RSTE1. Statistical 1323 
significance is calculated with student’s t-test. Each point represents a single spatial replicate mouse 1324 
sample. 1325 

  1326 
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Extended Data Figure 8: Age-associated changes in astrocytes. a) Heatmap of age effect sizes of 1327 
top age-DE genes from Astro-TE and Astro-NT subclasses. Other Astro-Epen subclasses are included 1328 
for reference. Asterisk denotes statistical significance. Subclasses are hierarchically clustered based on 1329 
age effect sizes and represented by the top dendrogram. (b) Heatmap of the statistical significance of 1330 
top GO terms enriched in top age-DE genes from Astro-TE and Astro-NT. All terms are enriched from 1331 
genes that decrease with age. (c) Proportional changes of Astro-TE and Astro-NT cells with age 1332 
calculated from spatial dataset RSTE1. Statistical significance is calculated with student’s t-test. Each 1333 
point represents a single spatial replicate mouse sample. 1334 
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