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Abstract

Biological aging can be defined as a gradual loss of homeostasis across various aspects of molecular
and cellular function. Aging is a complex and dynamic process which influences distinct cell types in a
myriad of ways. The cellular architecture of the mammalian brain is heterogeneous and diverse, making
it challenging to identify precise areas and cell types of the brain that are more susceptible to aging
than others. Here, we present a high-resolution single-cell RNA sequencing dataset containing ~1.2
million high-quality single-cell transcriptomic profiles of brain cells from young adult and aged mice
across both sexes, including areas spanning the forebrain, midbrain, and hindbrain. We find age-
associated gene expression signatures across nearly all 130+ neuronal and non-neuronal cell
subclasses we identified. We detect the greatest gene expression changes in non-neuronal cell types,
suggesting that different cell types in the brain vary in their susceptibility to aging. We identify specific,
age-enriched clusters within specific glial, vascular, and immune cell types from both cortical and
subcortical regions of the brain, and specific gene expression changes associated with cell
senescence, inflammation, decrease in new myelination, and decreased vasculature integrity. We also
identify genes with expression changes across multiple cell subclasses, pointing to certain mechanisms
of aging that may occur across wide regions or broad cell types of the brain. Finally, we discover the
greatest gene expression changes in cell types localized to the third ventricle of the hypothalamus,
including tanycytes, ependymal cells, and Thx3+ neurons found in the arcuate nucleus that are part of
the neuronal circuits regulating food intake and energy homeostasis. These findings suggest that the
area surrounding the third ventricle in the hypothalamus may be a hub for aging in the mouse brain.
Overall, we reveal a dynamic landscape of cell-type-specific transcriptomic changes in the brain
associated with normal aging that will serve as a foundation for the investigation of functional changes
in the aging process and the interaction of aging and diseases.


mailto:bosiljkat@alleninstitute.org
mailto:hongkuiz@alleninstitute.org
https://doi.org/10.1101/2023.07.26.550355
http://creativecommons.org/licenses/by-nc/4.0/

42

43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59

60
61
62
63
64
65
66
67

68
69
70
71
72
73
74
75
76
77

78
79
80
81
82
83
84
85
86

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.26.550355; this version posted July 27, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Introduction

Mammalian brains can display remarkable stability and vulnerability to aging-related decline. Various
aspects of behaviors remain robust as animals age, while other functions exhibit marked age-
associated decline. The decline in proficiency and performance, including many motor and cognitive
tasks, can be dramatically exacerbated by neurodegenerative diseases'. Furthermore, age is the major
risk factor for these neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s
disease’.

Defining and distinguishing global, region-specific, as well as cell-type specific functional
changes with age is an essential step towards understanding both the normal aging process and the
interaction between normal aging and pathology. In the past decade, there have been concerted efforts
to document and catalogue various molecular and cellular hallmarks of aging that are conserved across
different model systems??3. Indeed, emerging studies of brain aging and neurodegeneration are
beginning to reveal the presence of some of these hallmarks of aging across the brain, including
chronic inflammation mediated by microglia and other glial types in the brain*®, cellular senescence®,
and others®. While these hallmarks provide a crucial foundational understanding of how individual cells
age, our understanding of how a multicellular tissue as complex and heterogeneous as the brain ages
is still rudimentary. We have barely begun to uncover the cellular hallmarks of aging at the cell-type
level, and how these changes ultimately contribute to the decline in health of the entire organism.

To address these challenges, many have turned toward single-cell resolution sequencing
approaches. In recent years, several studies profiled transcriptomic changes during normal aging
across the broad regions of the mouse brain at single-cell level’®, and many more studies profiled more
targeted, specific regions or cell types*®-1°. While these studies varied in approach and scale, they
consistently demonstrated heterogeneity in transcriptomic changes that different cell types display with
age. As such, detailed annotation and interrogation of all cell types in the brain will be crucial to fully
characterize how different cell types, both neuronal and non-neuronal, change and interact with one
another during aging.

Despite tremendous advances in single-cell brain aging research, many challenges remain.
Studies on the whole brain or very large portions of the brain often lacked cell type resolution and
sequencing depth to cover diverse cell types. On the other hand, studies targeting smaller brain regions
were usually conducted by different groups under variable conditions, making it difficult to compare and
integrate the studies into a consistent view. Most recently, scaling single-cell transcriptomic approaches
to the whole mouse brain has allowed us to define cell types in the brain at an unprecedented
resolution and comprehensiveness, revealing the tremendous diversity of neuronal and non-neuronal
cell types and their gene expression profiles throughout the adult mouse brain'®-'°. These studies
present a timely opportunity to obtain a systematic and comprehensive understanding of how the brain
changes with age at molecular and cellular levels.

Here, we use single-cell RNA sequencing (scRNA-seq) to profile a wide range of brain regions
covering major parts of the brain that have complex cell type compositions, in young adult (2 months
old) and aged (18 months old) mice in both sexes. Together, these profiled regions cover approximately
35% of the entire volume of the mouse brain. The total dataset includes ~1.2 million high-quality single-
cell transcriptomes from young adult and aged mice that have been annotated using the Allen whole
mouse brain cell type atlas (companion paper Yao et. al.'”), allowing us to identify over 130 unique
transcriptomic subclasses (which can be further subdivided into many more supertypes and clusters)
and interrogate them for age-associated gene expression changes. We also present two spatial
transcriptomics datasets that focus on specific cell types in specific regions of interest.

2


https://doi.org/10.1101/2023.07.26.550355
http://creativecommons.org/licenses/by-nc/4.0/

87
88
89
90
91
92
93
94
95
96
97
98

99
100
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

120
121
122
123
124
125
126

127
128
129
130

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.26.550355; this version posted July 27, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

In this study, we confirm and extend upon previous studies observing greatest gene expression
changes with age in many non-neuronal types. In addition, we discover changes in types that have not
been majorly implicated in brain aging in the past. In particular, we find a large number of age-
associated gene expression changes in both neuronal and non-neuronal types surrounding the third
ventricle of the hypothalamus, including tanycytes, ependymal cells, and neurons in the arcuate
nucleus (ARH). Many of the cell types with the greatest gene expression changes are known for their
roles in nutrient and energy homeostasis, including neuronal types that express Agrp and Pomc,
markers of neurons involved in the central melanocortin signaling circuit. Taken together, our results
systematically reveal a wide range of cell-type specific patterns of aging, identify age-specific cell type
clusters that show unique gene expression changes, and highlight the third ventricle area of the
hypothalamus as a potential hot spot for brain aging, likely via its role in dysregulation of nutrient
sensing and homeostasis, one of the known hallmarks of aging?.

Results
Brain-wide single-cell and in situ RNA profiling in aged and adult mouse brain

To evaluate cell-type specific transcriptomic changes with age, we profiled 16 broadly dissected regions
across the young adult (P56; 2-month-old) and aged (P540; 18-month-old) female and male mouse
brains using 10x Genomics Chromium platform based on version 3 chemistry (10xv3). These 16 broad
regions (Figure 1a) were selected due to their known sensitivity to age and age-associated diseases in
the literature?. They were grouped into six major brain structures: 1) isocortex, which includes
prelimbic area + infralimbic area + orbital area (PL + ILA + ORB), agranular insular area (Al), anterior
cingulate area (ACA), and retrosplenial area (RSP); 2) hippocampal formation (HPF), which includes
hippocampus (HIP), parasubiculum + postsubiculum + presubiculum + prosubiculum + subiculum (PAR
+ POST + PRE + ProS + SUB), and lateral and medial entorhinal areas (ENT); 3) hypothalamus (HY);
4) cerebral nuclei (CNU), which includes the dorsal and ventral striatum (STRd, STRv), pallidum (PAL),
and striatum-like amygdalar nuclei (sAMY); 5) midbrain, which includes periaqueductal gray + midbrain
raphe nuclei (PAG + RAmb) as well as substantia nigra + ventral tegmental area (SNr + SNc + VTA); 6)
hindbrain, which includes the anterior or posterior part of the combined pons, motor related and
behavioral state related areas (Pmot/sat—A; Pmot/sat-P). Brain regions for profiling and boundaries for
dissections were defined by Allen Mouse Brain Common Coordinate Framework version 3 (CCFv3)>?'
as previously described'® (Figure 1a,b). Based on three-dimensional volumes as estimated by CCFv3,
we estimate that these 16 broad dissection regions, encompassing ~110 CCF-defined brain regions,
cover approximately 35% of all grey matter areas within the whole mouse brain.

Our final dataset includes single-cell transcriptomes from 272 unique 10xv3 libraries, which
were collected from a total of 96 mice (Supplementary Table 1). To ensure good representation of
both neurons and non-neuronal cells, we employed multiple forms of fluorescence-activated cell sorting
(FACS) and unbiased cell sampling (labeled as “No FACS”; Methods). All neuron-enriched libraries
were FACS-isolated from the pan-neuronal Snap25-IRES2-Cre/wt;Ai14/wt transgenic mice, whereas
the unbiased libraries were isolated from a mixture of transgene-positive and negative mice
(Supplementary Table 1).

Low-quality transcriptomes were removed based on a combination of quality control (QC)
criteria (e.g., gene detection, qc score, and doublet score, see Methods; Extended Data Figure 1a).
After the QC-filtering, we obtained 1,185,204 high-quality cells, of which ~59% (695,109 cells)
originated from aged, and the rest (490,095 cells) from young adult brain tissue (Extended Data
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Figure 1a). Post QC-filtering, we assessed a variety of quality scores, including gene detection, QC
score, and mitochondrial RNA percentage (mito score) and observed little variation between aged and
adult cells for most cell classes (Extended Data Figure 1b-d), giving us confidence that tissue age did
not significantly affect the quality of sequencing libraries. We only observed differences in these metrics
for a small number of cell classes, such as higher gene detection in adult IMN-GC (immature neurons
and granule cells) compared to aged IMN-GC (Extended Data Figure 1b).

Following QC, we performed de novo clustering of all adult and aged cells together (Methods;
Extended Data Figure 1a). Briefly, all the adult cells in this study had been thoroughly annotated as
part of our recent mouse whole brain taxonomy'’, allowing us to leverage the existing cell type
annotations to help annotate the aged cells. Aged cells that co-clustered with an adult cell type that
made up greater than 10% of the cluster were assigned the majority identity from the adult cells at the
subclass level. All cells in this study have at least 3 levels of annotation: 1) cell category (the broadest
level of annotation), 2) class, and 3) subclass. The subsequent figures of this study will highlight certain
populations of cells for which additional clustering was performed and finer-level cell type annotations
were assigned including 4) supertype, and 5) cluster, which is the finest level of annotation we use.

Out of the total 306 subclasses defined in our whole mouse brain cell atlas'’, we identified a
total of 185 unique subclasses in the combined aged and adult dataset. Of those 185 subclasses, 132
subclasses met our criteria to include in downstream analysis for age differential gene expression
(Methods). These 132 subclasses spanned 18 different cell classes (Figure 1c; Supplementary
Table 2) and displayed specific marker gene expression (Extended Data Figure 2). Slightly more than
half of all cells in this study were non-neuronal, and their proportion varied by brain region
(Supplementary Table 2; Extended Data Figure 1e). Most non-neuronal cell types were shared
between brain regions, whereas neurons differed among brain regions (Figure 1b,c; Figure 2). We
also observed that not all subclasses were perfectly balanced between ages and sexes, as is expected
for this type of data (Figure 1b, Figure 2; Supplementary Table 2). The ratios of age and sex for each
subclass are summarized in Figure 2 and Supplementary Table 2.

To complement the scRNA-seq data, we collected two separate Molecular Cartography
datasets (a form of in situ spatial RNA profiling from Resolve Biosciences) to visualize and validate
results discovered by scRNA-seq. For each spatial dataset, we selected a panel of 100 genes to profile
pre-selected region(s) in male and female mouse coronal brain sections. These two datasets span a
variety of different areas including regions in the isocortex, striatum, hindbrain, midbrain, and
hypothalamus, and will be referred to in the remainder of the text as Resolve spatial transcriptomics
experiments 1 and 2 (RSTE1,2 in Extended Data Figure 3a,b).

Analysis of age-associated differential gene expression across subclasses

To examine and model age-associated differentially expressed genes (age-DE genes) within each
subclass, we used Model-based Analysis of Single-cell Transcriptomics (MAST??) with two different
statistical models as described in Methods. Briefly, due to the variability of FACS population plans and
genotypes across aged and adult libraries (Extended Data Figure 4a), and the fact that cells from
different FACS population plans were observed to have an effect on quality metrics such as gene
detection and QC score (Extended Data Figure 4b,c), we used two different statistical models with
different covariates to try to account for these differences (Methods). Age effect size, which can be
interpreted as an estimate of log, fold change with age, and adjusted p-value were calculated from the
model. Age effect sizes as estimated by these two models were found to vary for certain subclasses,
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with neuronal subclasses showing a greater variation than non-neuronal ones, likely due to the smaller
number of libraries contributing to each neuronal subclass (Extended Data Figure 4d; Supplementary
Table 3). As a result, we implemented a stringent set of significance criteria — only genes found to be
significant with an |age effect size| > 1 and p-value < 0.01 under both models were considered
significant and reported here. Positive age effect sizes (> 1) roughly correspond to an increase of more
than two-fold in that gene with age, while negative age effect sizes (< -1) roughly correspond to a
decrease of more than 50%. Age effect sizes and p-values from both models for each significant gene
are reported in Supplementary Table 3.

Across the 132 subclasses included in this analysis, we found over 1,200 unique age-DE genes,
many of which in non-neuronal subclasses, and comparatively fewer within most neuronal subclasses
(Figure 2; Supplementary Tables 2,3). Within the non-neuronal subclasses, the greatest numbers of
age-DE genes were found in tanycytes and ependymal cells, which both belong to the Astro-Epen cell
class. Across the neuronal subclasses, the greatest numbers of age-DE genes were found in
hypothalamic subclasses (Figure 2; Supplementary Tables 2,3).

Across all subclasses, we found that the vast majority of age-DE genes were significant in only
one or two subclasses (Extended Data Figure 5a), suggesting that most age-DE genes were cell type
specific. We also found a handful of age-DE genes with significant changes in many subclasses
(Extended Data Figure 5a), and many of these genes displayed region and/or cell-type specific
differential expression. For example, 3222401L13Rik (a long intergenic non-coding RNA?® surrounded
by protocadherins in the genome) and Sicba5 (a gene encoding a sodium/iodide cotransporter) were
significantly upregulated in 70 and 48 subclasses, respectively, almost all of which were midbrain,
hindbrain, and hypothalamic neuronal types (Extended Data Figure 5b). We also observed increased
expression of AC149090.1 in an even wider array of regions and types (54 subclasses), including
cortical neurons and glial types (Extended Data Figure 5b). AC749090.1 is an ortholog of Pisd which
encodes phosphatidylserine decarboxylase, an enzyme involved in lipid metabolism?* linked to
mitochondrial disease?®. AC7149090.1 was also the top contributing gene in a recent study that built cell-
type specific transcriptomic age clocks from scRNA seq data in mouse subventricular zone'. We also
observed genes that decreased with age across multiple subclasses, including Ccnd1 and Ccnd?2 that
encode cell cycle regulator proteins cyclin D1 and D2 respectively, decreasing with age in various
hypothalamic neuronal subclasses, particularly ones localized to the periventricular area of the
hypothalamus including the dorsomedial nucleus (DMH) and ARH (Extended Data Figure 5b).
Altogether, these observations suggest that different subclasses demonstrate unique combinations of
gene expression profiles that are influenced by age.

Changes in OPCs and Oligodendrocytes with age

Mature oligodendrocytes are the myelinating cells of the brain. They make up most of the white matter
in the brain by creating and maintaining the myelin sheaths that encase and protect axons within the
central nervous system. Oligodendrocytes develop from oligodendrocyte precursor cells (OPCs). Brain-
wide decrease in white matter volume with normal aging has been well-characterized?®?” and correlates
with cognitive decline?2°,

We profiled 88,535 OPCs and 165,858 oligodendrocytes in our scRNA-seq dataset. To obtain
cell identities at the finer supertype level, we mapped our oligodendrocyte population to an scRNA-seq
dataset generated by Marques et al.*°. We resolved our oligodendrocyte population into the following
supertypes: committed oligodendrocyte precursors (COP), newly formed oligodendrocytes (NFOL),
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myelin-forming oligodendrocytes (MFOL), and mature oligodendrocytes (MOL). We saw a smooth
transition from OPC to MOL in the UMAP space (Figure 3a), as well as separation of cells by age and
region. Separation by age was most striking within the MOL cell population, whereas the separation by
region was more apparent in OPCs (Figure 3a).

We found the greatest number of age-DE genes in MOL, followed by OPC, and then MFOL
(Figure 3b). The signatures of age-DE genes between OPC and COP resembled each other, while
those between MFOL and MOL most resembled each other. This is consistent with their developmental
trajectory and relatedness to one another in the UMAP space (Figure 3a,c). Amongst these age-DE
genes, there was a strong increase in expression of Abca8a and Dpyd across MOL (Figure 3c¢), which
was confirmed with spatial transcriptomics dataset RSTE1 (Figure 3d). Abca8a is the mouse homolog
of human ABCAS, a gene known for its ability to stimulate sphingomyelin production and regulate lipid
metabolism in oligodendrocytes in humans3'. Dpyd encodes an enzyme involved in the breakdown of
pyrimidines, and has also been shown to play a role in lipid degradation®. Increase in expression of
both genes with age points to an alteration in myelin maintenance capacity in MOL with age. We also
observed and spatially confirmed the increased expression of Maf and Nr6a1 in OPC (Figure 3c,d).
Maf encodes a transcription factor that heterodimerizes with transcription factor Nrf2, a master regulator
of redox status, antioxidative, and anti-inflammatory response®. Altered levels of Nrf2 and Maf
expression in the brain have been associated with cognitive impairment and OPC senescence®3*,

We tested whether any gene ontology (GO) terms were enriched in genes that were significantly
up- or down regulated across different supertypes. We found an enrichment in ion channel activity in
downregulated age-DE genes in OPCs, while genes involved in transporter activity and metal ion
transport were upregulated in MFOL with age (Extended Data Figure 6a; Supplementary Table 4). In
MOL, we observed an enrichment of GO terms related to locomotory behavior and neuronal structure-
related terms such as synaptic cleft and dendrite development in genes upregulated with age, as well
as enrichment of GO terms related to myelin sheath in genes that decreased with age, suggesting that
myelin sheath integrity may be compromised with age (Extended Data Figure 6a; Supplementary
Table 4), a pattern that has also been observed in the transcriptomes of human Alzheimer’s disease
brain cells®.

We further clustered the data to explore finer (cluster-level) cell types within OPCs and
oligodendrocytes. This resulted in 13 transcriptionally distinctive clusters, 3 of which were OPCs, 4 that
were MOLs, and the remaining 6 from the transitioning supertypes (Figure 3e). To assess whether any
of the clusters were age- (>80% adjusted age proportion) or adult-biased (<20% adjusted age
proportion), we calculated the adjusted age proportion of each cluster by normalizing to the subclass-
wide age proportion (Methods). We observed that all transitioning supertypes (COP, NFOL, MFOL)
were composed of fewer than 30% aged cells, with NFOL and MFOL clusters being more adult-biased
than COP (Figure 3e,f). This is consistent with the reported decrease in OPC differentiation with
age®*?’. To confirm these changes in abundance of oligodendrocyte supertypes in the brain with age in
situ, we calculated the proportion of each supertype in spatial transcriptomics dataset RSTE1 from
cortex, striatum, midbrain, and hindbrain (Extended Data Figure 6b). We found that while there was
no significant change in OPC proportions across regions with age, there was a significant decrease in
the proportions of cells in transitionary oligodendrocyte supertypes (COP, NFOL, and MFOL) with age
(Extended Data Figure 6b), consistent with age proportions observed in scRNA-seq oligodendrocyte
clusters (Figure 3e,f). In contrast, we observed significant increase in MOL proportions across all
imaged brain regions with age in the spatial data (Extended Data Figure 6b) as well as the MOL
proportions calculated from unbiased scRNA seq libraries (Extended Data Figure 6c), consistent with
observations of increased MOL accumulation with age made by others38,
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Upon examining marker genes for clusters, we observed expected expression of canonical OPC
marker genes such as Cspg4 (NG2 in humans) across all OPC clusters, Apod and Prr5/ across MFOL
and MOL clusters, and increasing Mbp expression as OPCs develop on their path to maturity (Figure
39). Across the 3 OPC clusters, we found a graded decrease in DNA repair/chromatin binding genes
such as Hells, Atad2, and Mms22I that correlated with the age proportion of each cluster. In MOL, we
found two clusters, 3463 and 3481, that were both enriched for hindbrain cells, consistent with
increased expression of Pmp22, a peripheral myelin gene, high levels of which are typically associated
with the myelinating Schwann cells of the peripheral nervous system, and at relatively lower levels in
the hindbrain and spinal cord*° (Figure 3g). Unexpectedly, these hindbrain MOL clusters do not
express Opalin, a gene commonly considered as a MFOL and MOL-specific marker*'#? (Figure 3g).
Furthermore, both clusters express unique markers that are absent from other MOL clusters, including
Hopx and Anxab. One of these MOL clusters, 3481, is an age-biased cluster (Figure 3f) and expresses
a unique gene marker, Art3. We confirmed this age-related enrichment of Art3 by spatial
transcriptomics (Figure 3h). This observation suggests that MOLs from the hindbrain regions may age
differently from MOLs in other brain areas. Also of note, cluster 3481 shows high expression of cell
cycle gene Cdkn1a (Figure 3g), also known as p21, whose increased expression is often associated
with cellular senescence®**. While senescent astrocytes and microglia have been observed in the
aging brain, whether or not oligodendrocytes undergo cellular senescence in the aged brain remains
unclear®. As such, cluster 3481 may be a novel, previously uncharacterized type of MOL related to
senescence. We also observed a MOL cluster (3668) that is enriched for canonical microglia markers
including Cx3cr1, Ctss, and C1qa (Figure 3g), possibly representing a cluster of cells with increased
inflammation signals and recruitment of microglia. This cluster was detected in spatial dataset RSTE1
across all 4 profiled regions. The proportion of this cluster within the MOL supertype increased with age
(Extended Data Figure 6¢) as well as expression of microglia marker Ctss compared to other MOL
clusters (Figure 3h). Altogether, this analysis confirms previously observed decrease in MOL
development with age, as well as identifies, to our knowledge, two novel Opalin-negative MOL clusters
that are enriched in the hindbrain, one of which is specifically enriched in aged hindbrain and displays
markers of cellular senescence.

Changes in microglia and macrophages with age

In our scRNA-seq dataset, we annotated microglia, border-associated macrophages (BAM), lymphoid
cells, and dendritic cells, all belonging to the Immune cell class (Figure 4a). Due to limited numbers of
lymphoid and dendritic cells, we focused the analysis of immune cells on microglia and BAM. Although
we detected far fewer BAMs (n = 3,109 cells) than microglia (n = 69,258 cells) in the scRNA-seq
dataset, we observed a greater number of age-DE genes in BAMs than microglia (Figure 2). At the
subclass level, BAMs showed coordinated upregulation of many Cd209 genes, which code for lectins
that function in cell adhesion and pathogen recognition (Figure 4b). From GO analysis, we found
upregulated terms with age, enriched in Cd209 genes including carbohydrate binding, lymphocyte
proliferation, virus receptor activity, and others (Figure 4d, Supplementary Table 4). An increase in
Cd209a and Cd209b with age was confirmed by spatial transcriptomics (dataset RSTE1, Figure 4c).

In microglia with age, we observed upregulation of genes related to GO terms involving
inflammatory response, response to bacteria, and others (Figure 4d). We also confirmed expression
changes of genes observed by other single-cell studies of aging in microglia, including upregulation of
lldr2 and Upk1b and downregulation of Rgs7bp®'?4* with age (Figure 4b,c). Upk1b is a gene that
encodes for uroplakin-1b and is included in the microglia “sensome”, a signature of genes expressed in
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microglia which encode proteins that sense endogenous ligands and microbes*. /ldr2 is amongst GO
terms related to protein localization to extracellular regions, which are enriched in genes that increase
with age in microglia (Supplementary Table 4).

Upon further clustering of aged and adult brain immune cells, we identified 6 transcriptionally
distinct clusters, 5 of which belong to microglia (Figure 4e,f). All microglia clusters expressed canonical
microglia markers, including Cx3cr1, P2ry12, Nav3, and Trem2 (Figure 4g). The largest microglia
cluster (6_Microglia) contained 18,606 cells and was likely composed of the homeostatic microglia
observed in both aged, adult, male, and female brains (Figure 4h). The four other microglia clusters
were much smaller than cluster 6 (Figure 4e,f) and possibly represented different states of activated
microglia. One of these clusters, cluster 5_Microglia, was very region and sex biased. It was found
mostly in male CNU (specifically dorsal striatum) and uniquely expressed many genes including Kcnd2
and proinflammatory Fgf14 (Figure 4g,h). GO analysis revealed that genes involved in transporter and
ion channel complex, as well as synapse related terms were amongst genes uniquely expressed in
cluster 5_Microglia (Figure 4i).

We identified two age-biased clusters, 7_Microglia and 8_Microglia (Figure 4h). Both clusters
show increased expression of the antiapoptotic Bcl-2 family members Bcl2a1a, and Bcel2a1d, which
have been shown to increase in a variety of cell types with cell senescence?*®, as well as increased
expression of cell senescence marker Cdkn1a (Figure 4g), consistent with prior studies detecting the
accumulation of senescent microglia in aged mouse brain*’#8, In addition, we found cluster-specific
markers resembling those found by Hammond et al. in their scRNA-seq study profiling microglia
throughout mouse lifespan®. Specifically, these authors found two age-enriched microglia clusters, OA2
and OA3, which expressed inflammatory markers and interferon-response genes, respectively*. By
performing label transfer from their dataset to ours based on gene expression (Methods), we aligned
our clusters 7_Microglia and 8 Microglia to Hammond’s OA3 and OAZ2 clusters, respectively (bottom
bar of Figure 4h). We also found expression of similar cluster-specific genes in these two age-biased
clusters, including increased expression of [fit2, Ifit3, Oasl2, and other interferon-response genes in
7 _Microglia, as well as increased expression of inflammatory markers such as Cst7 and Lp/ in cluster
8_Microglia, suggesting that these two clusters are likely the same cell types that were identified by
Hammond et al. (Figure 4g,h). Of note, both these age-enriched clusters were mostly derived from
hindbrain and midbrain. Marker genes for cluster 7 showed enrichment of GO terms related to
interferon and virus response, while marker genes for cluster 8 showed enrichment of GO terms related
to immune cell proliferation and activation (Figure 4i). Interferon signaling phenotypes were also
observed in activated microglia from a mouse model of severe neurodegeneration*®, suggesting the
clusters we observe here may be precursors to microglia that are associated with neurodegenerative
pathology.

Finally, to investigate whether proportions or size of microglia changed significantly with age
throughout the brain, we estimated proportions and mean cell soma area (as estimated by
segmentation) of microglia in 4 broad regions across the brain (Figure 4j,k) with spatial transcriptomics
(dataset RSTE1). We found a significant increase in overall proportions of microglia in hindbrain and
midbrain areas, no change in the striatum, and decrease in the cortex. We also observed an increase in
the mean cell soma area of microglia in midbrain, hindbrain, and striatum, but not in the cortex (Figure
4k). These findings are partly consistent with prior findings of an increase in microglia counts with age
in mouse VTA, a decrease in microglia counts in mouse cortex*, and an increase in soma volume
with age in microglia in the mouse somatosensory cortex®'. However, overall, reports of changes in
absolute numbers of microglia in rodents vary by region and study***'-53. As such, our data support the
idea that changes in microglia morphology and abundance with age vary by brain region.
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Changes in brain vascular cell types with age

Aging leads to loss of integrity and function of the brain microvasculature®°. We characterized age-
associated changes in the vascular cell subclasses found in our dataset, including arachnoid barrier
cells (ABC; n = 546), vascular leptomeningeal cells (VLMC; n = 5,347), endothelial cells (n = 51,454),
smooth muscle cells (SMC; n = 10,187), and pericytes (n = 17,187), which all display age-related DE
genes (Figure 2). When plotted together in UMAP space, all vascular subclasses are transcriptionally
highly distinct from one another (Figure 4a). Across these subclasses, endothelial cells showed the
greatest number of age-DE genes, followed by pericytes, SMC, VLMC, and ABC (Figure 2). Due to the
low number of ABCs in our dataset, we focus on the other 4 subclasses in the remainder of this section.

For endothelial cells, we found strong upregulation of Hdac9 with age (Extended Data Figure
7a), and confirmed it by spatial transcriptomics (Extended Data Figure 7b). Hdac9 gene and protein
upregulation was previously observed in the ischemic brain and it exacerbates endothelial injury®®,
suggesting that normal endothelial cell function and thus oxygenation efficiency may be compromised
in the brain with age. We also observed upregulation of many genes that encode proteins that are part
of the MHC class | protein complex including H2-Q7 and H2-Q6, as well as genes contributing to GO
terms involving immune responses related to MHC class | upregulation and CD8 receptor binding
(Extended Data Figure 7a,c). Together these findings suggest that there is an increase in antigen-
presenting activity derived from intracellular proteins in endothelial cells with age. We also observed
upregulation of similar MHC class | GO terms in VLMCs with age, although they appear to be driven by
a different gene (H2-D1) (Extended Data Figure 7a,c).

VLMCs are fibroblast-like cells found in the brain. Across the VLMC subclass, we observed
downregulation of genes that are involved in biomineralization and collagen extracellular matrix
including collagens Col11a1 and Col3a1 (Extended Data Figure 7a,c), pointing to a decrease in
structural integrity in this specialized cell type. Likewise, in SMC and pericytes, we observed
downregulation of genes related to collagen extracellular matrix organization, although these changes
were driven by different collagen genes, Col4a1 and Col4a2 (Extended Data Figure 7a,c). We
confirmed downregulation of Col4a2 in SMC and pericytes by spatial transcriptomics (Extended Data
Figure 7b). Taken together, these results suggest loss of collagen expression and therefore, loss of
extracellular matrix organization may be major contributors to the decreased structural integrity
observed in brain vasculature with age. To assess potential changes in numbers of vascular cells with
age, we calculated the proportion of each vascular cell type from spatial dataset RSTE1 (Extended
Data Figure 7d). We found a significant decrease in the proportion of endothelial cells in the striatum,
as well as a decrease in pericytes in the striatum and hindbrain regions. Interestingly, we observed an
increase in the proportion of VLMCs in the hindbrain with age.

Changes in astrocyte and ependymal cell class with age

Next, we investigated the Astro-Epen class of non-neuronal cells, which include telencephalic and non-
telencephalic astrocytes (Astro-TE and Astro-NT, n = 143,167 and 118,221, respectively),
astroependymal cells (n = 571), hypendymal cells (n = 164), tanycytes (n = 1,432), and ependymal
cells (n = 2,923). When examining these cells in the UMAP space, we observed clear separation of the
main Astro-TE and Astro-NT types by broad brain region, and the other smaller subclasses derived
from specific brain regions as expected'”%” — for example, tanycytes were derived from the
hypothalamus, whereas the ependymal cells came mostly from hindbrain and midbrain (Figure 5a).
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Across all subclasses found in the scRNA-seq dataset, tanycytes and ependymal cells showed the
greatest numbers of age-DE genes (Figure 2). This was surprising, particularly given the relatively
smaller cell numbers for these subclasses compared to the others (Figure 5a).

Within the two main subclasses of astrocytes, Astro-TE and Astro-NT, we observed fewer age-
DE genes (Figure 2). Furthermore, the types of age-DE genes differed between these two subclasses
of astrocytes (Extended Data Figure 8a,b). In Astro-TE, there was an age-dependent downregulation
of genes involved in neuron function-related terms such as axonogenesis and postsynaptic density,
including Dcc, Kend2, and Sema6d (Extended Data Figure 8b; Supplementary Table 4). In Astro-NT,
there was an age-dependent downregulation of genes involved in ion channel regulator activity,
including Kcnip4 and Dpp6 (Extended Data Figure 8b; Supplementary Table 4). Using spatial
transcriptomics, we found no significant change in astrocyte proportions with age, except for Astro-NT
in the hindbrain region (Extended Data Figure 8c).

Changes in third-ventricle tanycytes and ependymal cells with age

Ependymal cells are a type of ciliated glial cells that line the ventricles within the brain and the central
canal of spinal cord. They assist in the circulation of cerebrospinal fluid throughout the ventricular
system®8. Tanycytes are a specialized form of ependymal cells that line the ventral and ventrolateral
sides of the third ventricle (3V) in the hypothalamus and possess a single long protrusion that projects
into the parenchyma of the hypothalamus®. Tanycytes are involved in regulating nutrient sensing and
hormone signaling®®. Tanycytes have also been shown to display adult neurogenic ability that may act
as an adaptive mechanism in response to external factors such as physical activity and diet®®. When we
examined individual age-DE genes across these two subclasses, we found similar sets of age-DE
genes and GO terms enriched with age across both subclasses, but not the other Astro-Epen
subclasses (Figure 5b, c).

Using spatial transcriptomics, we clearly identified tanycytes and ependymal cells lining the third
ventricle (dataset RSTEZ2, Figure 5d). We observed a dorsal-to-ventral transition between the two cell
subclasses based on marker genes including Gpr50 for tanycytes and Tm4sf1 for ependymal cells
(Figure 5d), allowing us to visually confirm and interrogate gene expression changes with age (center
panels of Figure 5e).

Overall with age, there was an increase in many interferon response genes, such as [fi27, Ifit1,
Ifit3, and Oasl2, across ependymal cells, and to a fewer and less significant extent, in tanycytes (Figure
5b; Supplementary Table 3). There was also an increase in genes involved in the MHC class |
response pathway, including B2m, H2-K1 and H2-D1, across both ependymal cells and tanycytes
(Figure 5b; Supplementary Table 3). These age-DE genes contributed to an enrichment of GO terms
related to interferon-beta and virus responses, and MHC class | protein complex (Figure 5c¢;
Supplementary Table 4). We confirmed increased expression of Oas/2 and /fit1 with spatial
transcriptomics (dataset RSTE2, Figure 5e).

Among the genes that decreased most strongly with age in both cell subclasses are the cell
cycle gene Ccnd2 and cadherin-associated protein gene Ctnna2 (Figure 5b,e). Ccnd2 has been shown
to play an important role in adult neurogenesis®'. Ctnna2 is involved in the regulation of neuron
migration and neuron projection development®2. GO analysis revealed enrichment of terms related to
neuronal structure and function in genes that were decreasing with age in both tanycytes and
ependymal cells (Figure 5¢; Supplementary Table 4). We also observed enrichment of terms related
to negative regulation of neurogenesis and cell development in genes that were increasing with age
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(Figure 5c; Supplementary Table 4), which may suggest a decrease in neurogenic potential in
tanycytes with age.

To investigate changes with age at the finer cell-type level, we further clustered both tanycytes
and ependymal cells. Because our original tanycyte scRNA-seq dataset was unbalanced towards a
larger number of aged cells, we included additional cells from the adult whole mouse brain dataset!”
that were originally excluded because they came from a slightly different dissection region (Methods).
After clustering, we defined 6 tanycyte and 3 ependymal clusters (Figure 5f,g). Three ependymal
clusters displayed unique gene markers (Figure 5i) and came from different regions of the brain, with
cluster 1_Ependymal found in both midbrain and hindbrain, 4 Ependymal found in mostly midbrain and
hypothalamus, and 5_Ependymal mostly found in midbrain (Figure 5f,j). After calculating the adjusted
age proportion, we found that one of these ependymal clusters (5_Ependymal) consisted almost
entirely of aged cells, and as such, we consider this cluster age-biased (Figure 5h.,j). Unique marker
genes for this cluster include interferon response genes ligp1 and Irf7 (Figure 5i), further supporting
increased interferon signaling with age in ependymal cells.

The six tanycyte clusters all displayed unique sets of marker genes (Figure 5i) mostly aligning
with different known types of tanycytes®%%3. To estimate the spatial location of each tanycyte cluster, we
examined cluster labels from the thoroughly annotated adult tanycyte cells and their location on the
corresponding Allen whole mouse brain spatial atlas' (Figure 5j,k). We found representation of nearly
all adult whole brain tanycyte clusters: 8 Tanycyte represents tanycytes from rostral 3V, 10_Tanycyte
represents the most dorsal a1 subtype (aligned with the dorsomedial and ventromedial nuclei of the
hypothalamus, DMH and VMH), 9_Tanycyte and 11_Tanycyte represent a2 subtypes (aligned with
dorsal ARH) which are ventral to a1, and 12_Tanycyte and 13_Tanycyte represent the most ventral
tanycyte subtypes, B1 (aligned with ventral ARH) and 32 (aligned with the median eminence, ME),
respectively (Figure 5j,k).

Amongst the tanycyte clusters, we observed one cluster that appeared to be adult-biased,
cluster 10_Tanycyte (Figure 5h), likely the cluster representing a1 tanycytes (Figure 5j,k). Marker
genes for cluster 10_Tanycyte include Sic17a8 and Cpne5 (Figure 5i). We also confirmed decreased
expression of Slc17a8 in the dorsal tanycytes of the 3V in the spatial data (Figure 5l). Slc17a8 is
regarded as a marker for a1 tanycytes®, so loss of Slc17a8 with age suggests that tanycyte types may
become less distinctive with age.

Changes in hypothalamic Thx3+ neurons with age

Across the neuronal subclasses identified in our dataset, those with the greatest numbers of age-DE
genes were hypothalamic neurons (Figure 2). There were four classes of hypothalamic neurons in our
dataset, including HY GABA, HY Glut, CNU-HYa Glut, and HY MM Glut (MM standing for medial
mammillary nucleus), which were confirmed by Sic32a1 and Sic17a6 expression (Figure 6a). Under
these classes, there were 29 subclasses that displayed unique marker gene expression (Extended
Data Figure 2, Figure 6b, Supplementary Table 2; neuronal subclass names were transferred from
the Allen Mouse Whole Brain Atlas'’, where they were named for the most dominant brain region
localization and transcription factor expression), altogether capturing the vast cell type complexity we
previously reported in the adult mouse hypothalamus?’.

Across the 29 hypothalamic neuronal subclasses, the subclasses with the greatest numbers of
age-DE genes were ones associated with hypothalamic regions proximal to the third ventricle, including
the arcuate nucleus (ARH), posterior periventricular nucleus (PVp), dorsal tuberomammillary nucleus
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(TMd), and dorsomedial nucleus (DMH) (Figure 6c). Remarkably, the 4 subclasses with the greatest
numbers of age-DE genes, i.e., ARH-PVp Tbx3 Glut (n = 1,134 cells), TU-ARH Otp Six6 Gaba (n =
1,191), TMd Foxd2 Gaba (n = 711), and ARH-PVp Tbx3 Gaba (n = 1,031), all had highly specific
expression of the transcription factor Tbx3 (Figure 6d). Interestingly, we also observed distinctive Thx3
expression in ventral tanycytes, but not in the more rostrally and dorsally located tanycytes (Figure 5i).

The cell bodies of these four subclasses were all located directly proximal to the third ventricle,
with the ARH subclasses interacting directly with the ventral B-type tanycytes (spatial dataset RSTEZ2;
Figure 6e). These four Tbx3 positive (Thx3+) subclasses also demonstrated highly distinct signatures
of aging, as reflected by the different sets of age-DE genes (Figure 6f) that contained subsets of age-
DE genes either unique to each subclass or shared among multiple or all subclasses (Figure 6g). All
four subclasses demonstrated an increase in Snhg9, a non-coding small nucleolar RNA host gene that
has bene implicated in the development of obesity®* and as a biomarker for various cancers®. We
observed downregulation of many genes coding for cell-adhesion contactin and contactin associated
proteins, specifically of family member 5 (Cntn5, Cntnapba, Cntnap5b, Cntnap5c), across one or more
subclasses. We also observed an increase in Ptpn5 with age, a biomarker of many neurodegenerative
and neuropsychiatric disorders including Alzheimer’s, Parkinson’s, Huntington’s, schizophrenia, and
others®’.

Next, we investigated these Tbx3+ neurons at the cluster level. Using de novo clustering, we
split these four subclasses into the following sets of clusters (Figure 6h): 3 ARH-PVp Tbx3 Glut
clusters (labeled as clusters 8, 9, and 10), 2 ARH-PVp Tbx3 GABA clusters (clusters 6 and 7), and 2
TU-ARH Otp Six6 Gaba clusters (clusters 62 and 63). TMd Foxd2 Gaba cells remained as one
population and were not split into additional clusters. Each cluster was relatively balanced in age and
sex distributions and displayed unique expression of combinations of marker genes, including
expression of namesake transcription factors Tbx3, Otp, Six6, and Foxd2 (Figure 6i). Different clusters
within each subclass exhibited unique sets of DE genes related to age. Additionally, specific clusters
within a subclass appeared to predominantly contribute to the age-associated gene expression
changes observed at the subclass level (Figure 6j, k). For example, between the two ARH-PVp Tbx3
Gaba clusters, cluster 7 demonstrated the greatest number of age-DE genes across all Tbx3+ clusters,
while cluster 6 had far fewer age-DE genes. Similarly, among the 3 ARH-PVp Tbx3 Glut clusters, most
age-associated changes were observed in clusters 8 and 9, but not 10. Interestingly, hierarchical
clustering based on age effect sizes of the top age-DE genes across clusters grouped clusters 7, 8, and
9 in one branch, suggesting that despite being from different Glut and GABA subclasses, these 3
clusters appear to age more similarly than other Tbx3+ clusters (Figure 6k).

Neurons in the ARH are known for, among many functions, the critical role they play in
modulation of energy homeostasis. For example, the well-characterized agouti-related peptide (AgRP)
and proopiomelanocortin (POMC) neurons stimulate or inhibit food intake, respectively®®®® and are
among the neuronal types that show the greatest numbers of gene expression changes under diet
perturbation, including fasting and high fat diets’®. AGQRP neurons are characterized by expression of
Npy and Agrp, while POMC neurons are characterized by expression of Pomc. In our Thx3+ clusters,
cluster 63_TU-ARH Otp Six6 Gaba shows highly specific expression of Npy and Agrp, while cluster
8 ARH-PVp Tbx3 Glut shows specific expression of Pomc (Figure 6i), suggesting these two clusters
may participate in the canonical neuronal circuit that regulates food intake.

When we performed GO analysis on cluster age-DE genes, we found enrichment of genes
related to cAMP-mediated signaling in Pomc+ cluster 8, a pathway implicated in many biological
processes, including anti-aging pathways’"’? (Figure 61; Supplementary Table 4). We also observed
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significant increase in expression of Rxfp1 with age (Figure 6k; Supplementary Table 3), a gene
encoding a G-protein coupled receptor that binds the highly evolutionarily conserved peptide relaxin-3
that mainly signals through the cAMP pathway’®. Relaxin-3, which is encoded by the gene RIn3, is
involved in various physiological processes such as feeding, arousal, stress response, and cognition. It
is widely distributed throughout the brain as well as peripheral tissues’*. We also observed increased
expression of Rxfp1 with age in cluster 7_ARH-PVp Tbx3 Gaba, as well as at the subclass level in both
ARH-PVp Tbx Glut and GABA types, suggesting that clusters 7 and 8 are driving the increase in Rxfp1
at the subclass level. In cluster 7, we observed significant enrichment of upregulated endoplasmic
reticulum-localized heat shock protein genes, including Hspa5b, Dnajb9, and Dnajc10 (Figure 6k,|;
Supplementary Table 4), an aging signature that appears to be specific to this cluster only.
Furthermore, in cluster 7, the age-DE gene with the strongest age effect size was Nhlh2, which was
also uniquely changing with age only in cluster 7 (Figure 6k). Nh/h2 is a transcription factor that has
been implicated in regulating processes related to obesity and fertility’>.Amongst genes increasing with
age in the Agrp+ cluster 63_ TU-ARH Otp Six6 Gaba, we found enrichment of terms related to
monoaminergic neurotransmitter secretion and circadian regulation of gene expression (Figure 6l;
Supplementary Table 4). Included in the circadian and rhythmic process related genes, we observed
Bhihe40, Bhlhe41, Nr1d2, and Per3 increasing with age only in the Agrp+ cluster (Figure 6k;
Supplementary Table 3), suggesting that temporal and rhythmic control of behaviors like feeding, a
known function of Agrp+ neurons’®, may become altered with age. Amongst genes uniquely decreasing
with age in cluster 63 was Ccnd2, which we also observed decreasing in tanycytes and ependymal
cells (Figure 5b; Extended Data Figure 5b). Taken together, we find that there are strikingly diverse
differences in cluster-level aging signatures in Tbx3+ hypothalamic neurons, even within the same
subclass, lending additional credence to a single-cell approach for investigating age-specific changes
across cell types in the brain.

Discussion

A gradual loss of homeostasis across many aspects of cellular and organismal function occurs with
aging. Many of these themes, or hallmarks, of aging, including genomic instability, epigenetic alteration,
chronic inflammation, cellular senescence, deregulated nutrient-signaling, etc., have been observed in
multiple invertebrate and vertebrate species?3. However, the mechanisms that govern systemic aging
at the organismal level across complex tissue types and organ systems remain unclear. Certain cell
types are more vulnerable to specific aspects of aging than others, and likely communicate and interact
with other cell and tissue types to integrate both intrinsic and extrinsic signals that ultimately contribute
to decline in cellular and organismal health. As such, a single-cell approach to characterizing
transcriptional changes in the brain-wide neural network is a critical step towards fully understanding
brain-wide, and eventually, organismal aging.

In this study, we present a large-scale, comprehensive single-cell transcriptomic atlas and
comparative analysis of the young adult and aged mouse brains. Large cell numbers, high quality of
transcriptomes, brain-wide coverage, and detailed annotation of cell types using our newly created
Allen whole mouse brain cell types atlas'” enabled us to precisely pinpoint the regions and cell types in
the brain that may be particularly vulnerable to aging. We find evidence for conservation of many of the
canonical hallmarks of aging across various cell types within the aged mouse brain. This includes 1)
increased expression of cell senescence markers in age-enriched oligodendrocyte and microglia
clusters (Figure 3, 4), 2) increased systemic inflammation as suggested by the identification of age-
enriched proinflammatory microglia clusters, 3) oligodendrocyte clusters with increased inflammation
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signals and recruitment of microglia, 4) ependymal clusters with increased interferon signaling (Figure
3-5), 5) decrease in new myelination as indicated by the depletion of immature oligodendrocyte cell
types in the aged brain (Figure 3), and 6) decrease of structural integrity in the brain vasculature as
indicated by the downregulation of extracellular matrix genes in the smooth muscle and endothelial cell
types (Extended Data Figure 6). Interestingly, many of these changes are found to be more
pronounced in hindbrain and midbrain regions. Although not investigated in detail here, we also
observe signs of deterioration of neuronal function with aging, including altered gene expression in a
number of cortical and hippocampal neuronal types (Figure 2), changes in immature neuronal types
that are involved in adult neurogenesis (Figure 2), as well as potentially altered neuron-astrocyte
interactions (Extended Data Figure 8). Most prominently, we observe evidence of altered regulation of
nutrient-sensing and energy homeostasis via many gene expression changes in tanycytes, ependymal
cells, and Tbx3+ neurons localized around the arcuate nucleus and third ventricle of the hypothalamus,
site of the canonical melanocortin circuit of the brain that regulates energy homeostasis (Figure 5, 6).

Deregulated nutrient sensing and the gradual loss of energy homeostasis is one of the most
extensively investigated aspects in aging and longevity research. Moreover, caloric restriction and
intermittent fasting have been shown to delay aging-associated structural and functional decline and
increase longevity across several animal species’’. The somatotrophic axis — one of the most highly
conserved signaling axis observed over evolution — involves growth hormone (GH)-mediated
stimulation of insulin growth factor and mammalian target of rapamycin (MTOR) signaling network,
manipulation of which increases lifespan and health span across all organisms tested’®"°.

The area surrounding the third ventricle of the hypothalamus, including the arcuate nucleus, is
commonly regarded as one of the circumventricular organs of the brain: it contains a more permissive
blood vascular system than the rest of the brain, allowing nutrients and hormones from blood to interact
more freely with neurons and glia in that region®. MTOR activity increases during aging in
hypothalamic neurons, contributing to age-related obesity, which is reversed by direct infusion of
rapamycin to the hypothalamus?®'. In addition to the MTOR pathway, the ALK signaling pathway,
another nutrient-sensing pathway, is induced in the hypothalamus by feeding®?, and hypothalamus-
specific deletion of Alk in mice promotes resistance against diet-induced obesity, a common age-
associated phenotype®?.

We find that Thx3+ cell types in the hypothalamus, both neurons and tanycytes, may be more
susceptible to age-related changes than other cells in the brain. We observe highly diverse gene
expression changes among these cell types that are concentrated around the 3™ ventricle (Figure 6),
suggesting differential roles these cell types play and their complex interactions in the aging process.
As of yet, we do not know whether these changes are driven by cellular programs that are protective
against or susceptible to aging, or both. There is evidence to suggest that in mouse embryonic
fibroblasts, Thbx3 expression may suppress cell senescence®®, a key contributor to cellular aging. Thx3
is also differentially expressed at high levels in many enteric neurons that govern the function of the
gastrointestinal tract®*, suggesting that there may be common expression patterns between
hypothalamus and the enteric nervous system that may be relevant to metabolic homeostasis and
aging. In addition to many hypothalamic neurons, tanycytes are also regarded as a key integrator of
nutrient and sex hormone signaling within the brain®®. Tanycytes have also demonstrated adult
neurogenic and gliogenic ability, possibly in response to changes in diet®.

Given the proximity of both tanycytes, ependymal cells, and Tbx3+ neurons to the third
ventricle, our results suggest that cells surrounding the third ventricle in the hypothalamus, may
represent a critical focal point of the accumulation of age-associated changes in the brain. Furthermore,
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the highly conserved role POMC and AgRP neurons play in appetite regulation and energy
homeostasis, as well as the role tanycytes play in nutrient sensing, coupled with the extensive body of
literature implicating nutrient dysregulation in aging biology®® suggest that this region of the brain may
act as a key systemic integrator of nutrient and energy signaling across the entire organism that heavily
influences cellular and/or organismal aging.

The dataset we present here represents the most extensive and comprehensive transcriptomic
analysis of the normal aged mouse brain that we know of to date. The identification of a variety of
robust and highly significant gene expression changes with aging across many neuronal and non-
neuronal cell types throughout the brain demonstrates the power and necessity of single-cell
approaches to revealing the mechanisms that govern complex systemic phenotypes like aging. The
results and insights from this work will serve as a foundational resource for the neuroscience and aging
research communities to facilitate detailed investigation of age-associated phenotypes in the brain and
the body and the interaction between aging and various diseases.

Methods

Mouse breeding and husbandry

All procedures were carried out in accordance with Institutional Animal Care and Use Committee
protocols at the Allen Institute for Brain Science. Mice were provided food and water ad /libitum and
were maintained on a regular 14:10 hour day/night cycle at no more than five adult animals of the same
sex per cage. Mice were maintained on the C57BL/6J background. We excluded any mice with
dermatitis, anophthalmia, microphthalmia, seizures, or abdominal masses.

We used 44 aged mice (20 female, 22 male) and 52 adult mice (25 female, 27 male) to collect
2,777,165 cells for 10xv3 scRNA-seq. All adult animals were also included in the Allen whole mouse
brain cell type atlas'’. Aged animals were euthanized at P540-553 (approximately 18 months) and adult
animals were euthanized at P53-69 (approximately 2 months). No statistical methods were used to
predetermine sample size. All donor animals used in this study are listed in Supplementary Table 1.

We isolated a total of 272 libraries from 96 animals — each animal contributed 1-6 libraries. All
libraries are listed in Supplementary Table 1. Transgenic driver lines were used for fluorescence-
positive cell isolation by FACS to enrich for neurons. Approximately half the libraries (n = 133) were
sorted for neurons from the pan-neuronal Snap25-IRES2-Cre line (JAX strain #023525) crossed to the
Ai14-tdTomato reporter (JAX strain #007914) 878 (Supplementary Table 1). For unbiased sampling
without FACS, we used either Snap25-IRES2-Cre/wt;Ai14/wt mice, Ai14/wt mice, or in very few cases
wildtype C57BL/6J mice. The transgenic Snap25-IRES2-Cre line was backcrossed to C57BL/6J for at
least 10 generations before crossing and can be considered congenic. The transgenic Ai14 line was
backcrossed to C57BL/6J for at least 5 generations before crossing and can be considered incipient
congenic.

10X single-cell RNA sequencing

Single-cell isolation
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We used the Allen Mouse Brain Common Coordinate Framework version 3 (CCFv3; RRID:
SCR_002978) ontology?' (http:/atlas.brain-map.org/) to define brain regions for profiling and
boundaries for dissection. We covered all regions of the brain by sampling at top-ontology level with
judicious joining of neighboring regions. These choices were guided by the fact that microdissections of
small regions are difficult. Therefore, joint dissection of neighboring regions was sometimes necessary
to obtain sufficient numbers of cells for profiling.

Single cells were isolated by adapting previously described procedures'®®®. The brain was
dissected, submerged in ACSF, embedded in 2% agarose, and sliced into 350-um coronal sections on
a compresstome (Precisionary Instruments). Block-face images were captured during slicing. Regions
of interest (ROIs) were then microdissected from the slices and dissociated into single cells as
previously described'®®°. Fluorescent images of each slice before and after ROI dissection were taken
at the dissection microscope. These images were used to document the precise location of the ROls
using annotated coronal plates of CCFv3 as reference.

Dissected tissue pieces were digested with 30 U/ml papain (Worthington PAP2) in ACSF for 30
minutes at 30°C. Due to the short incubation period in a dry oven, we set the oven temperature to 35°C
to compensate for the indirect heat exchange, with a target solution temperature of 30°C. Enzymatic
digestion was quenched by exchanging the papain solution three times with quenching buffer (ACSF
with 1% FBS and 0.2% BSA). Samples were incubated on ice for 5 minutes before trituration. The
tissue pieces in the quenching buffer were triturated through a fire-polished pipette with 600-um
diameter opening approximately 20 times. The tissue pieces were allowed to settle and the
supernatant, which now contained suspended single cells, was transferred to a new tube. Fresh
quenching buffer was added to the settled tissue pieces, and trituration and supernatant transfer were
repeated using 300-um and 150-um fire polished pipettes. The single cell suspension was passed
through a 70-pm filter into a 15-ml conical tube with 500 pl of high BSA buffer (ACSF with 1% FBS and
1% BSA) at the bottom to help cushion the cells during centrifugation at 100 x g in a swinging bucket
centrifuge for 10 minutes. The supernatant was discarded, and the cell pellet was resuspended in the
quenching buffer. We collected 1,508,284 cells without performing FACS. The concentration of the
resuspended cells was quantified, and cells were immediately loaded onto the 10x Genomics
Chromium controller.

To enrich for neurons or live cells, cells were collected by fluorescence-activated cell sorting
(FACS, BD Aria Il) using a 130-uym nozzle. Cells were prepared for sorting by passing the suspension
through a 70-um filter and adding Hoechst or DAPI (to a final concentration of 2 ng/ml). Sorting strategy
was as previously described'®'”, with most cells collected using the tdTomato-positive label. 30,000
cells were sorted within 10 minutes into a tube containing 500 pl of quenching buffer. We found that
sorting more cells into one tube diluted the ACSF in the collection buffer, causing cell death. We also
observed decreased cell viability for longer sorts. Each aliquot of sorted 30,000 cells was gently layered
on top of 200 pl of high BSA buffer and immediately centrifuged at 230 x g for 10 minutes in a
centrifuge with a swinging bucket rotor (the high BSA buffer at the bottom of the tube slows down the
cells as they reach the bottom, minimizing cell death). No pellet could be seen with this small number of
cells, so we removed the supernatant and left behind 35 pl of buffer, in which we resuspended the
cells. Immediate centrifugation and resuspension allowed the cells to be temporarily stored in a high
BSA buffer with minimal ACSF dilution. The resuspended cells were stored at 4°C until all samples
were collected, usually within 30 minutes. Samples from the same ROI were pooled, cell concentration
quantified, and immediately loaded onto the 10x Genomics Chromium controller.
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cDNA amplification and library construction

For 10x v3 processing, we used the Chromium Single Cell 3' Reagent Kit v3 (1000075, 10x Genomics).
We followed the manufacturer’s instructions for cell capture, barcoding, reverse transcription, cDNA
amplification and library construction. We targeted a sequencing depth of 120,000 reads per cell; the
actual average achieved was 80,118 + 35,612 (mean + SD) reads per cell across 272 libraries
(Supplementary Table 1).

Sequencing data pre-processing

Al libraries were 10xv3 samples and processed as previously described'®'”. All libraries were
sequenced on lllumina NovaSeq6000 and sequencing reads were aligned to the mouse reference
(mm10/gencode.vM23) using the 10x Genomics CellRanger pipeline (version 6.0.0) with the —include
introns argument to include intronicaly mapped reads.

To remove low quality cells, we used a stringent QC process. Cells were first filtered by a broad
set of quality cutoffs based on gene detection, qc score, and doublet score. As we previously
described'’, the qc score was calculated by summing the log-transformed expression of a set of genes,
whose expression level is decreased significantly in poor quality cells. Briefly, these are housekeeping
genes that are strongly expressed in nearly all cells with a very tight co-expression pattern that is anti-
correlated with the nucleus-enriched transcript Malat1. We use this qc score to quantify the integrity of
cytoplasmic mRNA content. Doublets were identified using a modified version of the DoubletFinder
algorithm®. For this preliminary round of filtering, we included cells with gene detection > 1000, qc
score > 50, and doublet score < 0.3. Using these thresholds, 1,999,976 cells remained in the dataset
(Extended Data Fig 1a).

Clustering single cell RNA-seq data

Following the initial round of filtering described above, adult and aged single-cell transcriptomes were
co-clustered over two rounds of clustering. The goal for the first round of clustering was to assign a cell
class identity to every unlabeled (aged) cell and filter out low-quality (noise) clusters. The goal of the
second round of clustering was to assign a subclass identity to every unlabeled (aged) cell and filter out
additional low-quality clusters. All adult cells in the dataset already had labels because they are also
part of the Allen whole mouse brain cell type taxonomy'’. For both rounds, clustering was performed
independently with the in-house developed R package scrattch.bigcat as was previously described'”
(available via github https://github.com/Alleninstitute/scrattch.bigcat),. This package is version of R
package scrattch.hicat'® that can cluster large datasets. Detailed functionality of scrattch.bigcat was
discussed in our previous paper'’. We used the automatic iterative clustering method, iter_clust_big, to
peform clustering in a top-down manner into cell types of increasingly finer resolution. This method
performs clustering without human intervention, while ensuring that all pairs of clusters, even at the
finest level, were separable by differential gene expression criteria (q1.th = 0.4, q.diff.th = 0.7,
de.score.th = 300, min.cells = 50) for both rounds of clustering. Following each round of clustering
using iter_clust_big, we used the function merge_cl to merge clusters based on total number and
significance of shared DE genes. For round 1, the criteria used for merge_cl were identical to those
previously described for clustering. For round 2, the criteria used for merge_cl were almost identical
with the exception of increasing min.cells = 100.
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Assigning labels to aged cells and removing low-quality clusters

We observed 2,467 clusters after the first round of clustering. At this point, all cells were assigned a cell
category (Glut, GABA, Dopa, Sero, IMN or NN). Since the adult cells have been previously published
and annotated'’, cell annotations for aged cells were assigned based on cluster membership with
annotated adult cells. Specifically, clusters that contained >5% of annotated adult cells were assigned
that cell category. Category-labeled clusters were then filtered based on cell category-specific cluster-
level thresholds (Supplementary Table 5, Extended Data Fig 1a). Clusters with >80% contribution
from a single library were also filtered out to minimize donor bias in the final dataset. Clusters with <5%
adult cells were retained in the dataset and carried over into the next round of clustering. Since adult
cells that were previously deemed to be low quality'” were also included in clustering, clusters with the
majority of low-quality cells were also filtered out. In total, 1,197 clusters were removed based on these
criteria after the first round of clustering (n = 779,838 cells removed). This resulted in the dataset of
1,220,138 cells, which were carried over into the second round of clustering (Extended Data Fig 1a).

After the second round of clustering, we observed 928 clusters. All clusters were then assigned
subclass identities in a process similar to that described above. Clusters with <5% adult cells were now
mapped directly to the Allen whole mouse brain cell type taxonomy'” (see “Label transfer via mapping”
section below) and entire clusters were assigned to the most common subclass within the group of cells
that made up that cluster. Annotated clusters were then filtered using class-level quality metrics and
other quality metrics similar to those in the above paragraph (Supplementary Table 5, Extended Data
Fig 1a). After this second round of cluster-level filtering, 31 clusters were removed (n = 34,934 cells
removed) and 1,185,204 cells remained in the dataset. Remaining cells and resultant subclass
annotations were used for all downstream analysis (Extended Data Fig 1a).

Label transfer via mapping

For assigning identities of cells in clusters with >95% aged cells, we mapped them to a reference
taxonomy as previously described'”. Briefly, we assigned their cell type identities by mapping them to
the nearest cluster centroid in the reference taxonomy using the corresponding Annoy index as
implemented in the R package scrattch.mapping. We also used this approach for assigning cell type
identities for cells segmented from Resolve spatial data to the Allen whole mouse brain cell type
taxonomy'” or external datasets as reference, using different gene lists based on the contexts. For
mapping to the oligodendrocyte dataset from Marques et. al.*°, we used a list of 195 genes. For
mapping to the microglia dataset from Hammond et. al., we used a list of 72 genes. For both external
datasets, gene lists were assembled based on prominent marker genes from each external reference
cluster. When mapping confidence score was needed, we sampled 80% genes from the marker list
randomly, and performed mapping 100 times. We define the fraction of times a cell is assigned to a
given cell type as the mapping probability to that type.

Identifying age-associated DE genes

Age-associated DE genes were calculated using the R package MAST??, a widely used statistical
framework designed for modeling biological effects from scRNA-seq data. Briefly, MAST fits a two-part
generalized linear model and also allows for adaptive thresholding of gene expression data to account
for dropout rate. Upon inspection using MAST’s thresholdSCRNACountMatrix function, we found that
for most cases, genes expressed at a frequency of at least 10% did not reveal many genes with non-
zero bimodal bins, so we did not implement any adaptive thresholding in our DE gene analysis.
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DE genes were calculated at the subclass, supertype, and cluster level. For all tests, only genes
that were expressed at a frequency of >10% were tested (i.e., only genes expressed in at least 10% of
query cells were included). Only subclasses with at least 50 aged and 50 adult cells were evaluated for
DE genes. To decrease running time, for large subclasses, we subsampled them to a maximum of
1,000 cells per age.

At the subclass level, we used the following two statistical models to model they effect of age on
gene y including various covariates:

Model 1: y ~ age + sex + genotype + z(log(gc)) + z(log(qc)) + intercept
Model 2: y ~ age + z(log(gc)) + z(log(qc)) + intercept

where age, sex, and genotype are all categorical variable with 2, 2, and 3 levels, respectively, and gene
detection (gc) and QC score (qc) are log transformed and then z-score normalized. We included both
gene detection and QC score in each model to account for potential effects that various FACS
population plans had on library quality (Extended Data Figure 4a). A likelihood ratio test was
computed between each model with and without the age term to generate p-values. These p-values
were corrected for multiple hypothesis testing with the Bonferonni correction. The effect size estimate
for the age term for each model can be interpreted as the log.-fold change (logFC) of each gene.
However, due to the additional covariates, logFC estimated by the models often varied widely from
those calculated without covariate adjustment. As such, we refer to this term as “age effect size”
throughout the main body of the text, rather than logFC.

Since age effect sizes estimated by these two models differed widely for certain cell types,
particularly smaller neuronal populations, we chose to consider a gene significant if and only if it
exceeded statistical cutoffs (p < 0.01 & age effect size > 1 or < -1) for both Model 1 and 2. For all
figures that plot heatmaps of age effect sizes of subclass age-DE genes, age effect sizes from Model 1
were used. At the supertype and cluster level, only results from Model 1 are presented.

For the vast majority of age-DE genes presented here, the directionality of age effect sizes
between the two models agrees with one another. However, for a very small number of genes (6 out of
1,253 unique genes), the directionality disagrees, with most of these being changes in expression of
the X-inactivation gene Xist across various hypothalamic neuron types (Extended Data Figure 5b;
Supplementary Table 3) which may be due to the imbalance between libraries of different FACS
population plans, sex, and age (Extended Data Figure 4a). However, as a recent study showed that
Xist expression increases in aged female hypothalamic neurons', in all figures, we display the age
effect size of the model that estimated an increase in Xist expression with age (Model 1). We also
looked for age-DE genes at the class level using only RFP+ neuron enriched libraries (thus removing
any potential confounding of FACS population plan). We found that all neuronal subclasses have
positive age effect sizes (Extended Data Figure 4e), supporting the ideal that the age effect size
estimates from Model 1 are more accurate for the gene Xist. The reason we did not do this initially at
the subclass level was due to lack of coverage of an adequate number of subclasses using only RFP+
libraries. As such, we chose to include libraries from many different FACS population plan collection
strategies to maximize cell counts.

Adjusted age proportion calculation

We calculated the adjusted age proportion of each cluster by normalizing to the subclass-wide age
proportion, as different brain regions profiled in this dataset vary in their proportions of aged versus
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adult cells (Figure 2). To do this, we subtracted the subclass-wide age proportion from the cluster-wide
age proportion, and then added 0.5.

UMAP projection

We used principal components (PCs) calculated from PCA to calculate UMAPSs for different groups of
cells®. For UMAPs with >100,000 cells, we performed PCA based on the imputed gene expression
matrix of genes based on top marker genes from each cluster within each grouping of cells as we have
implemented previously'. For UMAPs with <100,000 cells, no imputation was used. Three parameters
that can be adjusted when generating UMAPs include 1) number of PCs which are used to calculated
projections, 2) nn.neighbors: the size of the local neighborhood of cells the UMAP will look at when
trying to learn the structure of the data, 3) md: the minimum distance apart that cells are allowed to be
in low dimensional resolution. For all UMAPs, the top 150 PCs were then selected, and PCs with >0.7
correlation were removed based on the technical bias vector, defined as logz(gene count) for each cell.
Each PCA was run with unique gene list and each UMAP was run with a different set of nn.neighbors
and md parameters. The parameters used for each PCA/UMAP are as follows: 6,446 genes,
nn.neighbors = 10, md = 0.4 for the global UMAP (Figure 1); 984 genes, nn.neighbors = 20, md = 0.5
for the OPC-Oligo UMAP (Figure 3); 1,884 genes, nn.neighbors = 5, md = 0.5 for the Immune/Vasvular
UMAP (Figure 4); 1,806 genes, nn.neighbors = 20, md = 0.5 for the Astro-Epen UMAP (Figure 5); 401
genes, nn.neighbors = 5, md = 0.5 for the tanycyte/ependymal cell UMAP (Figure 5); 1,169 genes,
nn.neighbors = 5, md = 0.5 for the HY neuron UMAP (Figure 6).

Constellation plot

The global relatedness between cell types was visualized with constellation plots, which we had
implemented previously'®'7. To generate the constellation plot, each transcriptomic cluster was
represented by a node (circle), whose surface area reflected the number of cells within the subclass in
logio scale. The position of each node was based on the centroid position of the corresponding cluster
in UMAP coordinates. The relationships between nodes were indicated by edges that were calculated
as follows. For each cell, 15 nearest neighbors in reduced dimension space were determined and
summarized by cluster. For each cluster, we then calculated the fraction of nearest neighbors that were
assigned to other clusters. The edges connected two nodes in which at least one of the nodes had >
5% of nearest neighbors in the connecting node. The width of the edge at the node reflected the
fraction of nearest neighbors that were assigned to the connecting node and was scaled to node size.
For all nodes in the plot, we then determined the maximum fraction of “outside” neighbors and set this
as edge width = 100% of node width. The function for creating these plots, plot_constellation included
in the R package scrattch.bigcat.

Gene ontology analysis

Gene ontology term enrichment was performed using the R package clusterProfiler 4.0° and
gprofiler2®. The function gconvert from gprofiler2 was used to convert gene IDs to their Ensmbl IDs.
The functions enrichGO and simplify from clusterProfiler were then used to enrich for gene ontology
terms from all three GO databases (molecular function, biological process, and cellular component). A
p-value cutoff of 0.05 was used to determine significant GO terms.
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In situ spatial transcriptomics

Resolve Molecular Cartography overview

All in situ spatial RNA data shown here were generated by Resolve Biosciences with their commercially
available Molecular Cartography platform. Two total Molecular Cartography experiments were
performed (RSTE1-2), each with a different panel of 100 genes and targeting different region(s) of the
brain (Extended Data Figure 3). For RSTE1, 4 different regions of the brain (cortex, striatum, midbrain,
and hindbrain) were imaged in both sexes and both ages (2- and 18-month), with 2 replicate brains per
condition and 2 technical replicates per brain. The technical replicates were plotted and analyzed as
independent replicates in all figures. For RSTE2, the hypothalamus was imaged in both sexes and both
ages, with 4 replicate brains per condition. Brain dissection and cryosectioning for Molecular
Cartography experiments were performed at the Allen Institute for Brain Science in Seattle, WA,
samples were stored at -80°C for 1-3 days, and then shipped overnight to Resolve Biosciences in San
Jose, CA, where the Molecular Cartography protocol was performed. Spot data were then made
available 1-2 weeks after receipt of tissue. Data analysis was performed at the Allen Institute using
methods detailed below. Briefly, transcript data were segmented into cells, cells were filtered based on
quality metrics generated from segmentation and mapping, and downstream analysis and visualization
was performed.

Brain dissection and freezing

Mice used for spatial experiments were housed and kept in same conditions to those used for scRNA-
seq described above. Mice were transferred from the vivarium to the procedure room with efforts to
minimize stress during transfer. Mice were anesthetized with 5% isoflurane. A grid-lined freezing
chamber was designed to allow for standardized placement of the brain within the block in order to
minimize variation in sectioning plane. Chilled OCT was placed in the chamber, and a thin layer of OCT
was frozen along the bottom by brief placement of the chamber in a dry ice/ethanol bath. The brain was
rapidly dissected and placed into the prechilled OCT for approximately 2 minutes to acclimate to the
cold prior to freezing. The orientation of the brain was adjusted under a dissecting scope, and the
freezing chamber containing OCT and brains was placed into a dry ice/ethanol bath for freezing. After
freezing, the brains were vacuum sealed and stored at -80°C.

Cryosectioning

The fresh-frozen adult and aged brains were sectioned at 10-um on Leica 3050 S cryostats. The OCT
block containing a fresh frozen brain was trimmed in the cryostat until reaching the desired region of
interest. Sections were placed onto coverslips provided by Resolve Biosciences. Two replicate sections
were collected sequentially — one as the primary sample and the other as a backup.

Gene panel design

The Molecular Cartography platform allows 100 genes per experiment for spatial RNA profiling. Each of
the 2 Molecular Cartography experiments we ran was designed to target different regions and cell types
in the adult and aged brains. Therefore, for each experiment we used different gene panels, which were
compiled through a combination of automated and manual processes. Glutamatergic and GABAergic
neuronal class markers Sic17a7, Slc17a6, Gad1, and Gad2 and major non-neuronal subclass markers
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Aqp4, Apod, Sox10, Pdgfra, Enpp6, Opalin, Dcn, Pecam1, Ctss, Mrc1, Kcnj8, Pdgfrb, and ActaZ2 were
included for all 2 Resolve experiments. The remaining genes in each panel were then customized for
each of the 2 experiments. RSTE1 targeted non-neuronal types in different parts of the brain. RSTE2
targeted tanycytes and ependymal cells in the third ventricle of the hypothalamus. The function
select_N_markers included in the R package scrattch.hicat was used to select markers for all relevant
subclasses and clusters in each experiment. Top age-DE genes were also included for relevant
subclasses within each panel, as well as additional genes of interest selected from prior literature.

Cell segmentation

Cells were segmented using a combination of open source software Cellpose® and Baysor®.
Cellpose employs a generalist algorithm for segmenting cells from images of cellular stains as input.
Baysor uses a transcript-driven algorithm to draw cell boundaries based on transcript data alone while
also having the option of integrating prior knowledge from stained images into the process. First,
images of DAPI stains from each of the tissue samples were used as input for Cellpose using the
following parameters: --pretrained_model = nuclei, --diameter = 0. The output of Cellpose was saved as
a TIF and used as a prior for the Baysor segmentation algorithm. Baysor was run with the following
input parameters: -m 30, -s 50.

In situ data pre-processing

All segmented cells were mapped to the Allen whole mouse brain cell type taxonomy'” with the same
method used for scRNA-seq data as described above. The 2 RSTE datasets were filtered for high-
quality cells using a combination of thresholds for mapping confidence score, segmentation confidence
score (from Baysor), number of transcripts, and gene detection. Due to the variable gene panels and
brain regions across the two RSTE datasets, we used a different set of filter criteria for each
experiment. These cutoffs are detailed in Supplementary Table 6 and cell counts before and after
quality filtering are diagramed in Extended Data Figure 3.
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Figure legends

Figure 1. Transcriptomic cell types in the aged and adult mouse brain. (a) Schematic of dissected
brain regions profiled in this study, colored by major brain structure. (b-c) UMAP representation of n =
1,185,204 cells included in this study, colored by major brain structure (b) and cell class (c). Mouse
depictions in (a) are created with BioRender.com.
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Figure 2. Differentially expressed genes across cell subclasses in the aged and adult mouse
brain. Summary of the number and effect size of all age-DE genes identified at the subclass level. Far
right: The total number of age-DE genes within each subclass, colored by cell class and ordered based
on broad categories. Center: Bar charts that summarize the breakdown of each subclass by major brain
structure, age, and sex. Far left: Age effect sizes of all age-DE genes for each subclass.

31


https://doi.org/10.1101/2023.07.26.550355
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.26.550355; this version posted July 27, 2023. The copyright holder for this preprint (which

Jin Figure 3

Supertype
OPC 4
[cop
BINFOL
MFOL
EwmoL
4 .
5% . .
© 2(
N - ooee
ce | hE =2
g5
© ¢ 0
v Q
<
W o
) <
A | o )
s 5§ 2 § 2
= ] s O =
scRNA Spatial tx
[ P<aE295. | P<3E316
9 4.
g ?
© 6
-8 3 2]
<
0 0-
5 .
10.0 P < 4E-295 3 P < 3E-316
Q75 3
by
&50 2
25 1
0.0 0
adult aged adult aged
OPC
scRNA Spatial tx
10.0 P =9.4E-22 5 P =6.5E-14
L 75 g
I 50
2 ’
= 2 ! l
0.0 0
10.0 < 4E-295 4 P=81E-12
KRR
© s
< 25 4 l
0.0 —— 0 —d—
adult aged adult aged

available under aCC-BY-NC 4.0 International license.

* * ok
P ok
* ok
e
* *
*
T
wxk
Fr -
ok
P —
wnk ok
ok
-
PR
ok
R
Pr——
FrEE—
P ok
FETR—— *
E
- *
ek
ek
k%
* ek

x| wkx *

ok

o
o _____| ok
* wx
ok
ok
ok ek
* ok
ok
ok
ok
*
* *
* * *
*
T
* won

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Gsn
Hmgcs1

0do

COP
e 3386 NFOL f
1.00
MFOL
3366 378 5 3481
s 3514 7]
2
3 b
[ adult 5 0.75+
M aged aQ
100% Aged 5 3668 o
‘ £ 3363 gig? H
0.50
s :
a
100% Adult [0)
3350 g)
C)P(: g 0.25,
=,
M Isocortex 3348 Fraction of ed 2_‘
I HPF raction of edges | 3514
: . to node 0.00 3379
Hindbrain | | | |
Midbrain - 47
- 24 o =
-2 Supertype 3 3
o
e
ca8a
Gsim 22 &&o0o00020323 02
Slc4a10 O O O O O L L L L = = = =
*** Dmd o o o o o A% EI E‘ e
poos g’s,,egf,’ Adj. P-val 388882k ggss
o SPock3 . g.01-1E-10 ©oee e 33 38 °°
b g}‘,’,ﬁm o 1E-10- 1E-20 Pdgfra ° o
.
o Rg’z%‘?," wax <1E-20 cgﬁ?“f ® o o
*** Nav3 o
w5 | CAh8 Mms22/ 0 Gene .
. Epdr1 Atad2 p on
Sef Hells lMax
Maf —~—<«— Arhgap24 []
§g,‘%a3 Sema5a- g s o e
Tubb3 Age effect size NckapS []
*ax E’/ﬁ?m increasing gzl’;!g :; @ @ o o — Min
Samd9! with age Cemip2
Spar(é‘l Pro£1 I o
Lims. i
Pcdhb3 Synpr Cell expressing (%)
Matn1 Opalin 5
ganis 2 Mbp o o e o ® ® 25
ATipd3 Apod 0 0 450
Eviga 1 Prr5l o o 75
** Skap2 —> Ctss L]
o gglc7a2d1 Cx3crt ° @ 100
Nt — 0 Clqa °
Pcdhb9 1133 e @ o
=i cdh19 -1 —> Hopx []
o ﬁg%m | Anxa5 []
e hrrc{? I—2 - :ﬁg e o ®
wr B ) ’
Fa£1 decreasin —> Pmp22{ ® e o o Major Brain
. 9 Structure
L. N with age — Cdknta HHY
*** S100al 1. CNU
= Hmgn 0.5 = M isocort
- Ea_m13c o @ 00-.------_- }-Siggo e
kR Jan, o g Hindbrai
2510 indbrain
o g Beio T T ] R
Crfrtlé%oSb ) g.’ 0o
'saza
**  Semaba 5810 Sex_ Age
S 05 B F [ adut
B Cldn11 0.0 M . aged
2 Goloas
0
il h
7% Nuat4 . .
- %%1 1 scRNA Spatial tx scRNA Spatial tx
6.
* Ugt8a
= %%r:‘siZDXZI 9 * \ 10
X
Slcddal 4 1)
xx rf” I% 6 8 s 4
Eif4at 3 2. © 2
Rpl41
ab10
s OS2 0 0- ol 4 4 0
= U 1 1 1 U i T i x o \’
- gﬁs%n O 4O 4 O O O (O (O R IR A R o
= Bhe53 %&6\/ @,’b/ 5P %6%/ %&6'\ 2 %gs/%@\ /36@,%/ PR AN T e S
Pg%s *** *kk *kk Hkk
. Rnpeplt *kk *kk *kk *kk
o 52\37?3 kkk *kk kK *kk
scRNA Spatial tx
10.0. 5
* 4 *%% P < 1E-50
75
) 3
T 50 2
25 4
0.0{ 4 J 0

O @O WO WO+

RSP N q;g/%&g\/ 2
*kk * %k

*kk *kk

*kk

o O RO


https://doi.org/10.1101/2023.07.26.550355
http://creativecommons.org/licenses/by-nc/4.0/

1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204

1205

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.26.550355; this version posted July 27, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Figure 3. Age-associated changes in OPCs and oligodendrocytes. (a) UMAP of all OPC and
oligodendrocyte transcriptomes colored by supertype, age, and major brain structure. (b) Age effect
sizes of age-DE genes within OPCs and oligodendrocyte supertypes, with significant age-DE genes
colored (absolute age effect size >1 and P < 0.01). (¢) Heatmap of age effect sizes of top age-DE
genes within OPCs and oligodendrocyte supertypes. Asterisks denote statistical significance. (d) Violin
plots of expression of Abca8a and Dpyd in MOL and Maf and Nr6a1 in OPC from scRNA-seq and
spatial RSTE1 datasets. (e) Constellation plot representing OPC and oligodendrocyte clusters using
UMAP coordinates shown in (a). Node (cluster) size is proportional to cell number. Edge thickness is
proportional to the fraction of nearest neighbors that were assigned to the connecting node scaled to
node size. Cluster color represents the percent of aged or adult cells. (f) Adjusted age proportion of
each cluster from (e), colored and grouped by supertype. (g) Dendrogram and dot plot of cluster marker
genes. Below dot plot are bar summaries of each cluster broken down by major brain structure, sex,
and age. Dendrogram is calculated from cluster DE genes. (h) Violin plot expression of Hopx, Art3, and
Ctss in MOL clusters from scRNA-seq and spatial dataset RSTE1.
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Figure 4. Age-associated changes in microglia and macrophages. (a) UMAP of all vascular and
immune cell transcriptomes colored by subclass, sex, and age. (b) Heatmap of age effect sizes of top
age-DE genes in BAM and microglia. Asterisk denotes statistical significance (see subclass level
criteria in Methods). (c) Violin plot expression of Cd209a and Cd209b in BAM and /ldr2 and Upk1b in
microglia in scRNA-seq and spatial RSTE1 datasets. (d) Heatmap of the statistical significance of top
GO terms enriched in top age-DE genes from BAM and microglia. Numbers in the plot represent
-log1o(p-value) of each term. Positive numbers are terms enriched in genes that increase with age and
negative numbers are terms enriched in genes that decrease with age. (e) UMAP of immune cells
including microglia and BAM, colored by cluster label, brain structure, sex, and age. (f) Constellation
plot of microglia clusters colored by cluster created as described previously. (g) Marker gene
expression in immune cell types organized in a dendrogram calculated from cluster DE genes. (h) Bar
plot summaries for each cluster colored by brain structure, sex, age, and mapping label from Hammond
et al. 2019 dataset. (i) Heatmap of statistical significance of top GO terms enriched in marker genes
from non-homeostatic microglia clusters. (j) Changes in microglia created as in Figure 3e age
calculated from spatial dataset RSTE1. (k) Changes in mean soma area of microglia cells with age as
estimated from Baysor segmentation. Statistical significance for (j) and (k) are calculated with Student’s
t-test. Each point represents a single replicate mouse sample.
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Figure 5. Age-associated changes in third ventricle tanycytes and ependymal cells. (a) UMAP of
all Astro-Epen cell types colored by subclass and major brain structure. (b) Heatmap of age effect sizes
of top age-DE genes in tanycytes and ependymal cells. Asterisk denotes statistical significance (see
subclass level criteria in Methods). (c) Heatmap of the statistical significance of top GO terms enriched
in top age-DE genes from tanycytes and ependymal cells. Numbers in the plot represent -logio(p-value)
of each term. Positive numbers are terms enriched in genes that increase with age and negative
numbers are terms enriched in genes that decrease with age. (d) Tanycyte and ependymal cell body
locations in select samples from spatial dataset RSTEZ2, colored by subclass label (top), Gpr50 (center),
and Tm4sf1 (bottom) expression. (e) Gene expression of Ccnd2, Ctnna2, Oasl2, and [fit1 across
tanycytes (left) and ependymal cells (right) from scRNA-seq and spatial dataset RSTE2 represented by
violin plots. Select adult and aged spatial RSTE2 samples are displayed in the center, colored by
expression of each gene in tanycytes and ependymal cells. (f) UMAP of tanycytes and ependymal cell
transcriptomes with additional adult cells from Yao et al. 2023 included, colored by cluster, subclass,
age, and brain structure. (g) Constellation plot of clusters in (f), created as described previously. (h)
Adjusted age proportion of each cluster from (g) colored by cluster and grouped by subclass. (i) Marker
gene expression in tanycyte and ependymal cell clusters organized in a dendrogram calculated from
cluster DE genes. (j) Bar plot summaries for each cluster colored by brain structure, sex, age, and adult
cell label (see k) from Yao et al. 2023. (k) Location of tanycyte clusters in the Allen whole mouse brain
cell type atlas™. (1) Visualization of Slc17a8 gene expression changes in tanycytes and ependymal cells
with age (Slc17a8 gene expression was binarized in representative samples from spatial RSTE2
dataset).
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Figure 6. Age-associated changes in Thx3+ hypothalamic neurons. (a-b) UMAP of all
hypothalamic (HY) neurons colored by (a) class, S/c32a1 and Sic17a6 expression, and (b) subclass.
(c) Age effect sizes of age-DE genes from hypothalamic neuronal subclasses ordered by the number of
age-DE genes, with significant age-DE genes colored. Labels for the top 4 subclasses are emphasized
with darker font on the left. (d) Subclasses with the greatest numbers of age-DE genes highlighted and
Thx3 expression shown in the same UMAP space as (a). (e) Neurons, tanycyte and ependymal cell
body locations in a representative sample from spatial dataset RSTE2 demonstrating colocalization of
subclasses from (d) around the third ventricle. (f) Heatmap of age effect sizes of all age-DE genes in
Thbx3+ neuronal subclasses. Asterisks denote statistical significance. Dendrogram represents
hierarchical clustering of subclasses based on age effect sizes. Genes discussed in text are labeled.
(9) Upset plot of overlapping age-DE genes between the four Thx3+ neuronal subclasses. Genes
colored in red increase with age while genes colored in blue decrease with age in scRNA-seq data. (h)
Thx3+ neuronal clusters colored in the same UMAP space as (a). (i) Marker gene expression in Thx3+
neuronal clusters organized in a dendrogram calculated from cluster DE genes. Bar plot summaries of
each cluster colored by sex and age are below. (j) Age effect sizes of age-DE genes from Tbx3+
clusters ordered from the greatest to least number of age-DE genes, with significant age-DE genes
colored. (k) Heatmap of age effect sizes from all age-DE genes from Tbx3+ clusters. Asterisks denote
statistical significance (Methods). Dendrogram represents hierarchical clustering of clusters based on
age effect sizes. Genes discussed in text are labeled. (I) Heatmap of statistical significance of top GO
terms enriched in marker genes from all Tbx3+ neuronal clusters.
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Extended Data Figure 1: Data pre-processing workflow and quality control. (a) Workflow for pre-
processing of scRNA-seq data. Cells retained at each step are indicated in pink. (b-d) Normalized
density distribution of gene detection (b), QC score (c), and mito. score (d) per cell across different cell
classes and ages. (e) Proportion of cell categories across all regions and within each major brain
structure. Cell category: Dopa, dopaminergic neurons; GABA, GABAergic neurons; Glut, glutamatergic
neurons; IMN, immature neurons; NN, non-neuronal cells; Sero, serotonergic neurons.
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Extended Data Figure 2: Subclass marker genes. Dot plot of marker gene expression for 132
individual subclasses of cell types analyzed in this study. Dot size and color indicate proportion of
expressing cells and average expression level in each subclass, respectively. Subclass labels are
colored by cell class.
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Jin Extended Data Figure 3
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Extended Data Figure 3: Summary of spatial transcriptomics datasets. (a-b) Diagram of brain
regions profiled, gene panels, and pre- and post-filtered cell counts of Resolve spatial transcriptomic
datasets 1 (RSTE1; a) and 2 (RSTEZ2; b).
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Extended Data Figure 4: Library breakdown and DE gene model. (a) Summary of the numbers of
libraries colored by FACS population plan and grouped by genotype (x-axis), age (rows), and ROI
(columns). (b-c) Violin plot summary of gene detection (b) and QC score (c) grouped by FACS
population plan (x-axis) and major cell category. (d) Two-dimensional density scatter plots of age effect
sizes (coef) from simple and complex DE gene models plotted against one another for tanycytes only,
ARH-PVp Tbx3 Glut neurons only, or all subclasses. Greater density is marked by lighter blue color.
Dotted lines indicate significant cutoffs used in this study. Genes that pass these cutoffs are included in
this study and summarized in Figure 2. (e) Bar plot of the age effect sizes of the gene Xist in
decreasing order for all classes with n > 50 cells from each age and sex from RFP+, DAPI- libraries
only. Significant changes (age effect size > 1 & p < 0.01) are colored in red.
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Extended Data Figure 5: Common age-DE genes across subclasses. (a) Histogram of the number
of subclasses an age DE gene is significant for. (b) Summary of the most commonly observed age-DE
genes across all subclasses. Top: Summary of total age-DE genes colored and ordered by cell class,
identical to that shown in Figure 2. Bottom: Heatmap of age effect sizes of the most common significant
age-DE genes. DE genes that are significant in >5 subclasses are included. Genes are hierarchically
clustered based on age effect size and their relatedness represented by the dendrogram.
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Jin Extended Data Figure 6
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Extended Data Figure 6: GO terms and changes in proportions in oligodendrocyte supertypes.
(a) Heatmap of the statistical significance of top GO terms enriched in top age-DE genes from
oligodendrocyte supertypes. Terms that are enriched in genes that increase with age are colored
redder, while terms enriched in genes that decrease with age are colored bluer. Numbers in the plot
represent -log10(p-value) of each term. (b) Relative changes in abundance of different supertypes and
MOL clusters with age, calculated from spatial dataset RSTE1. A cutoff of p < 0.01 was used to
determine statistical significance (Student’s t-test; NS, not significant). Each point corresponds to a
replicate mouse sample. (¢) Proportional changes of MOL with age, calculated from unbiased scRNA-
seq libraries (i.e., libraries processed with the “No FACS” method). Each point represents one scRNA-
seq library.
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Jin Extended Data Figure 7
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Extended Data Figure 7: Age-associated changes in vascular types. (a) Heatmap of age effect
sizes of top age-DE genes in Endo, VLMC, SMC, and Peri subclasses. Asterisk denotes statistical
significance. Subclasses are hierarchically clustered based on age effect sizes and represented by the
top dendrogram. (b) Violin plot expression of Col4a2 in SMC and Peri subclasses, and Hdac9 and
Rasgrf2 in Endo in scRNA-seq and spatial RSTE1 datasets. (¢) Heatmap of the statistical significance
of top GO terms enriched in top age-DE genes from vascular subclasses. Terms that are enriched in
genes that increase with age are colored redder, while terms enriched in genes that decrease with age
are colored bluer. Numbers in the plot represent -log10(p-value) of each term. Subclasses are
hierarchically clustered based on scores and their relatedness represented by the dendrogram. (d)
Proportional changes of vascular cell types with age calculated from spatial dataset RSTE1. Statistical
significance is calculated with student’s t-test. Each point represents a single spatial replicate mouse
sample.
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Extended Data Figure 8: Age-associated changes in astrocytes. a) Heatmap of age effect sizes of
top age-DE genes from Astro-TE and Astro-NT subclasses. Other Astro-Epen subclasses are included
for reference. Asterisk denotes statistical significance. Subclasses are hierarchically clustered based on
age effect sizes and represented by the top dendrogram. (b) Heatmap of the statistical significance of
top GO terms enriched in top age-DE genes from Astro-TE and Astro-NT. All terms are enriched from
genes that decrease with age. (¢) Proportional changes of Astro-TE and Astro-NT cells with age
calculated from spatial dataset RSTE1. Statistical significance is calculated with student’s t-test. Each
point represents a single spatial replicate mouse sample.
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