

1 Cell-type specific molecular signatures of aging revealed in a brain-wide 2 transcriptomic cell-type atlas

3

4 Kelly Jin¹, Zizhen Yao¹, Cindy T. J. van Velthoven¹, Eitan S. Kaplan¹, Katie Glattfelder¹, Samuel T.
5 Barlow¹, Gabriella Boyer¹, Daniel Carey¹, Tamara Casper¹, Anish Bhaswanth Chakka¹, Rushil
6 Chakrabarty¹, Michael Clark¹, Max Departee¹, Marie Desierto¹, Amanda Gary¹, Jessica Gloe¹, Jeff
7 Goldy¹, Nathan Guilford¹, Junitta Guzman¹, Daniel Hirschstein¹, Changkyu Lee¹, Elizabeth Liang¹,
8 Trangthanh Pham¹, Melissa Reding¹, Kara Ronellenfitch¹, Augustin Ruiz¹, Josh Sevigny¹, Nadiya
9 Shapovalova¹, Lyudmila Shulga¹, Josef Sulc¹, Amy Torkelson¹, Herman Tung¹, Boaz Levi¹, Susan M.
10 Sunkin¹, Nick Dee¹, Luke Esposito¹, Kimberly Smith¹, Bosiljka Tasic^{1,*}, and Hongkui Zeng^{1,*}

11

12 ¹Allen Institute for Brain Science, Seattle, WA, USA

13

14 *Corresponding authors: Bosiljka Tasic (bosiljkat@alleninstitute.org) and Hongkui Zeng
15 (hongkuiz@alleninstitute.org)

16

17

18 Abstract

19 Biological aging can be defined as a gradual loss of homeostasis across various aspects of molecular
20 and cellular function. Aging is a complex and dynamic process which influences distinct cell types in a
21 myriad of ways. The cellular architecture of the mammalian brain is heterogeneous and diverse, making
22 it challenging to identify precise areas and cell types of the brain that are more susceptible to aging
23 than others. Here, we present a high-resolution single-cell RNA sequencing dataset containing ~1.2
24 million high-quality single-cell transcriptomic profiles of brain cells from young adult and aged mice
25 across both sexes, including areas spanning the forebrain, midbrain, and hindbrain. We find age-
26 associated gene expression signatures across nearly all 130+ neuronal and non-neuronal cell
27 subclasses we identified. We detect the greatest gene expression changes in non-neuronal cell types,
28 suggesting that different cell types in the brain vary in their susceptibility to aging. We identify specific,
29 age-enriched clusters within specific glial, vascular, and immune cell types from both cortical and
30 subcortical regions of the brain, and specific gene expression changes associated with cell
31 senescence, inflammation, decrease in new myelination, and decreased vasculature integrity. We also
32 identify genes with expression changes across multiple cell subclasses, pointing to certain mechanisms
33 of aging that may occur across wide regions or broad cell types of the brain. Finally, we discover the
34 greatest gene expression changes in cell types localized to the third ventricle of the hypothalamus,
35 including tanycytes, ependymal cells, and *Tbx3*⁺ neurons found in the arcuate nucleus that are part of
36 the neuronal circuits regulating food intake and energy homeostasis. These findings suggest that the
37 area surrounding the third ventricle in the hypothalamus may be a hub for aging in the mouse brain.
38 Overall, we reveal a dynamic landscape of cell-type-specific transcriptomic changes in the brain
39 associated with normal aging that will serve as a foundation for the investigation of functional changes
40 in the aging process and the interaction of aging and diseases.

41

42 **Introduction**

43 Mammalian brains can display remarkable stability and vulnerability to aging-related decline. Various
44 aspects of behaviors remain robust as animals age, while other functions exhibit marked age-
45 associated decline. The decline in proficiency and performance, including many motor and cognitive
46 tasks, can be dramatically exacerbated by neurodegenerative diseases¹. Furthermore, age is the major
47 risk factor for these neurodegenerative diseases, such as Alzheimer's disease and Parkinson's
48 disease¹.

49 Defining and distinguishing global, region-specific, as well as cell-type specific functional
50 changes with age is an essential step towards understanding both the normal aging process and the
51 interaction between normal aging and pathology. In the past decade, there have been concerted efforts
52 to document and catalogue various molecular and cellular hallmarks of aging that are conserved across
53 different model systems^{2,3}. Indeed, emerging studies of brain aging and neurodegeneration are
54 beginning to reveal the presence of some of these hallmarks of aging across the brain, including
55 chronic inflammation mediated by microglia and other glial types in the brain^{4,5}, cellular senescence⁶,
56 and others³. While these hallmarks provide a crucial foundational understanding of how individual cells
57 age, our understanding of how a multicellular tissue as complex and heterogeneous as the brain ages
58 is still rudimentary. We have barely begun to uncover the cellular hallmarks of aging at the cell-type
59 level, and how these changes ultimately contribute to the decline in health of the entire organism.

60 To address these challenges, many have turned toward single-cell resolution sequencing
61 approaches. In recent years, several studies profiled transcriptomic changes during normal aging
62 across the broad regions of the mouse brain at single-cell level^{7,8}, and many more studies profiled more
63 targeted, specific regions or cell types^{4,9–15}. While these studies varied in approach and scale, they
64 consistently demonstrated heterogeneity in transcriptomic changes that different cell types display with
65 age. As such, detailed annotation and interrogation of all cell types in the brain will be crucial to fully
66 characterize how different cell types, both neuronal and non-neuronal, change and interact with one
67 another during aging.

68 Despite tremendous advances in single-cell brain aging research, many challenges remain.
69 Studies on the whole brain or very large portions of the brain often lacked cell type resolution and
70 sequencing depth to cover diverse cell types. On the other hand, studies targeting smaller brain regions
71 were usually conducted by different groups under variable conditions, making it difficult to compare and
72 integrate the studies into a consistent view. Most recently, scaling single-cell transcriptomic approaches
73 to the whole mouse brain has allowed us to define cell types in the brain at an unprecedented
74 resolution and comprehensiveness, revealing the tremendous diversity of neuronal and non-neuronal
75 cell types and their gene expression profiles throughout the adult mouse brain^{16–19}. These studies
76 present a timely opportunity to obtain a systematic and comprehensive understanding of how the brain
77 changes with age at molecular and cellular levels.

78 Here, we use single-cell RNA sequencing (scRNA-seq) to profile a wide range of brain regions
79 covering major parts of the brain that have complex cell type compositions, in young adult (2 months
80 old) and aged (18 months old) mice in both sexes. Together, these profiled regions cover approximately
81 35% of the entire volume of the mouse brain. The total dataset includes ~1.2 million high-quality single-
82 cell transcriptomes from young adult and aged mice that have been annotated using the Allen whole
83 mouse brain cell type atlas (companion paper Yao *et. al.*¹⁷), allowing us to identify over 130 unique
84 transcriptomic subclasses (which can be further subdivided into many more supertypes and clusters)
85 and interrogate them for age-associated gene expression changes. We also present two spatial
86 transcriptomics datasets that focus on specific cell types in specific regions of interest.

87 In this study, we confirm and extend upon previous studies observing greatest gene expression
88 changes with age in many non-neuronal types. In addition, we discover changes in types that have not
89 been majorly implicated in brain aging in the past. In particular, we find a large number of age-
90 associated gene expression changes in both neuronal and non-neuronal types surrounding the third
91 ventricle of the hypothalamus, including tanycytes, ependymal cells, and neurons in the arcuate
92 nucleus (ARH). Many of the cell types with the greatest gene expression changes are known for their
93 roles in nutrient and energy homeostasis, including neuronal types that express *Agrp* and *Pomc*,
94 markers of neurons involved in the central melanocortin signaling circuit. Taken together, our results
95 systematically reveal a wide range of cell-type specific patterns of aging, identify age-specific cell type
96 clusters that show unique gene expression changes, and highlight the third ventricle area of the
97 hypothalamus as a potential hot spot for brain aging, likely via its role in dysregulation of nutrient
98 sensing and homeostasis, one of the known hallmarks of aging².

99

100 Results

101 Brain-wide single-cell and *in situ* RNA profiling in aged and adult mouse brain

102 To evaluate cell-type specific transcriptomic changes with age, we profiled 16 broadly dissected regions
103 across the young adult (P56; 2-month-old) and aged (P540; 18-month-old) female and male mouse
104 brains using 10x Genomics Chromium platform based on version 3 chemistry (10xv3). These 16 broad
105 regions (**Figure 1a**) were selected due to their known sensitivity to age and age-associated diseases in
106 the literature²⁰. They were grouped into six major brain structures: 1) isocortex, which includes
107 prelimbic area + infralimbic area + orbital area (PL + ILA + ORB), agranular insular area (AI), anterior
108 cingulate area (ACA), and retrosplenial area (RSP); 2) hippocampal formation (HPF), which includes
109 hippocampus (HIP), parasubiculum + postsubiculum + presubiculum + prosubiculum + subiculum (PAR
110 + POST + PRE + ProS + SUB), and lateral and medial entorhinal areas (ENT); 3) hypothalamus (HY);
111 4) cerebral nuclei (CNU), which includes the dorsal and ventral striatum (STRd, STRv), pallidum (PAL),
112 and striatum-like amygdalar nuclei (sAMY); 5) midbrain, which includes periaqueductal gray + midbrain
113 raphe nuclei (PAG + RAmB) as well as substantia nigra + ventral tegmental area (SNr + SNC + VTA); 6)
114 hindbrain, which includes the anterior or posterior part of the combined pons, motor related and
115 behavioral state related areas (Pmot/sat-A; Pmot/sat-P). Brain regions for profiling and boundaries for
116 dissections were defined by Allen Mouse Brain Common Coordinate Framework version 3 (CCFv3)²¹
117 as previously described¹⁶ (**Figure 1a,b**). Based on three-dimensional volumes as estimated by CCFv3,
118 we estimate that these 16 broad dissection regions, encompassing ~110 CCF-defined brain regions,
119 cover approximately 35% of all grey matter areas within the whole mouse brain.

120 Our final dataset includes single-cell transcriptomes from 272 unique 10xv3 libraries, which
121 were collected from a total of 96 mice (**Supplementary Table 1**). To ensure good representation of
122 both neurons and non-neuronal cells, we employed multiple forms of fluorescence-activated cell sorting
123 (FACS) and unbiased cell sampling (labeled as “No FACS”; **Methods**). All neuron-enriched libraries
124 were FACS-isolated from the pan-neuronal *Snap25-IRES2-Cre/wt;Ai14/wt* transgenic mice, whereas
125 the unbiased libraries were isolated from a mixture of transgene-positive and negative mice
126 (**Supplementary Table 1**).

127 Low-quality transcriptomes were removed based on a combination of quality control (QC)
128 criteria (e.g., gene detection, qc score, and doublet score, see **Methods; Extended Data Figure 1a**).
129 After the QC-filtering, we obtained 1,185,204 high-quality cells, of which ~59% (695,109 cells)
130 originated from aged, and the rest (490,095 cells) from young adult brain tissue (**Extended Data**

131 **Figure 1a).** Post QC-filtering, we assessed a variety of quality scores, including gene detection, QC
132 score, and mitochondrial RNA percentage (mito score) and observed little variation between aged and
133 adult cells for most cell classes (**Extended Data Figure 1b-d**), giving us confidence that tissue age did
134 not significantly affect the quality of sequencing libraries. We only observed differences in these metrics
135 for a small number of cell classes, such as higher gene detection in adult IMN-GC (immature neurons
136 and granule cells) compared to aged IMN-GC (**Extended Data Figure 1b**).

137 Following QC, we performed *de novo* clustering of all adult and aged cells together (**Methods**;
138 **Extended Data Figure 1a**). Briefly, all the adult cells in this study had been thoroughly annotated as
139 part of our recent mouse whole brain taxonomy¹⁷, allowing us to leverage the existing cell type
140 annotations to help annotate the aged cells. Aged cells that co-clustered with an adult cell type that
141 made up greater than 10% of the cluster were assigned the majority identity from the adult cells at the
142 subclass level. All cells in this study have at least 3 levels of annotation: 1) cell category (the broadest
143 level of annotation), 2) class, and 3) subclass. The subsequent figures of this study will highlight certain
144 populations of cells for which additional clustering was performed and finer-level cell type annotations
145 were assigned including 4) supertype, and 5) cluster, which is the finest level of annotation we use.

146 Out of the total 306 subclasses defined in our whole mouse brain cell atlas¹⁷, we identified a
147 total of 185 unique subclasses in the combined aged and adult dataset. Of those 185 subclasses, 132
148 subclasses met our criteria to include in downstream analysis for age differential gene expression
149 (**Methods**). These 132 subclasses spanned 18 different cell classes (**Figure 1c; Supplementary**
150 **Table 2**) and displayed specific marker gene expression (**Extended Data Figure 2**). Slightly more than
151 half of all cells in this study were non-neuronal, and their proportion varied by brain region
152 (**Supplementary Table 2; Extended Data Figure 1e**). Most non-neuronal cell types were shared
153 between brain regions, whereas neurons differed among brain regions (**Figure 1b,c; Figure 2**). We
154 also observed that not all subclasses were perfectly balanced between ages and sexes, as is expected
155 for this type of data (**Figure 1b, Figure 2; Supplementary Table 2**). The ratios of age and sex for each
156 subclass are summarized in **Figure 2** and **Supplementary Table 2**.

157 To complement the scRNA-seq data, we collected two separate Molecular Cartography
158 datasets (a form of *in situ* spatial RNA profiling from Resolve Biosciences) to visualize and validate
159 results discovered by scRNA-seq. For each spatial dataset, we selected a panel of 100 genes to profile
160 pre-selected region(s) in male and female mouse coronal brain sections. These two datasets span a
161 variety of different areas including regions in the isocortex, striatum, hindbrain, midbrain, and
162 hypothalamus, and will be referred to in the remainder of the text as Resolve spatial transcriptomics
163 experiments 1 and 2 (RSTE1,2 in **Extended Data Figure 3a,b**).

164

165 **Analysis of age-associated differential gene expression across subclasses**

166 To examine and model age-associated differentially expressed genes (age-DE genes) within each
167 subclass, we used Model-based Analysis of Single-cell Transcriptomics (MAST²²) with two different
168 statistical models as described in **Methods**. Briefly, due to the variability of FACS population plans and
169 genotypes across aged and adult libraries (**Extended Data Figure 4a**), and the fact that cells from
170 different FACS population plans were observed to have an effect on quality metrics such as gene
171 detection and QC score (**Extended Data Figure 4b,c**), we used two different statistical models with
172 different covariates to try to account for these differences (**Methods**). Age effect size, which can be
173 interpreted as an estimate of \log_2 fold change with age, and adjusted p-value were calculated from the
174 model. Age effect sizes as estimated by these two models were found to vary for certain subclasses,

175 with neuronal subclasses showing a greater variation than non-neuronal ones, likely due to the smaller
176 number of libraries contributing to each neuronal subclass (**Extended Data Figure 4d; Supplementary**
177 **Table 3**). As a result, we implemented a stringent set of significance criteria – only genes found to be
178 significant with an $|\text{age effect size}| > 1$ and $p\text{-value} < 0.01$ under both models were considered
179 significant and reported here. Positive age effect sizes (> 1) roughly correspond to an increase of more
180 than two-fold in that gene with age, while negative age effect sizes (< -1) roughly correspond to a
181 decrease of more than 50%. Age effect sizes and p -values from both models for each significant gene
182 are reported in **Supplementary Table 3**.

183 Across the 132 subclasses included in this analysis, we found over 1,200 unique age-DE genes,
184 many of which in non-neuronal subclasses, and comparatively fewer within most neuronal subclasses
185 (**Figure 2; Supplementary Tables 2,3**). Within the non-neuronal subclasses, the greatest numbers of
186 age-DE genes were found in tanycytes and ependymal cells, which both belong to the Astro-Epen cell
187 class. Across the neuronal subclasses, the greatest numbers of age-DE genes were found in
188 hypothalamic subclasses (**Figure 2; Supplementary Tables 2,3**).

189 Across all subclasses, we found that the vast majority of age-DE genes were significant in only
190 one or two subclasses (**Extended Data Figure 5a**), suggesting that most age-DE genes were cell type
191 specific. We also found a handful of age-DE genes with significant changes in many subclasses
192 (**Extended Data Figure 5a**), and many of these genes displayed region and/or cell-type specific
193 differential expression. For example, *3222401L13Rik* (a long intergenic non-coding RNA²³ surrounded
194 by protocadherins in the genome) and *Slc5a5* (a gene encoding a sodium/iodide cotransporter) were
195 significantly upregulated in 70 and 48 subclasses, respectively, almost all of which were midbrain,
196 hindbrain, and hypothalamic neuronal types (**Extended Data Figure 5b**). We also observed increased
197 expression of *AC149090.1* in an even wider array of regions and types (54 subclasses), including
198 cortical neurons and glial types (**Extended Data Figure 5b**). *AC149090.1* is an ortholog of *Pisd* which
199 encodes phosphatidylserine decarboxylase, an enzyme involved in lipid metabolism²⁴ linked to
200 mitochondrial disease²⁵. *AC149090.1* was also the top contributing gene in a recent study that built cell-
201 type specific transcriptomic age clocks from scRNA seq data in mouse subventricular zone¹⁴. We also
202 observed genes that decreased with age across multiple subclasses, including *Ccnd1* and *Ccnd2* that
203 encode cell cycle regulator proteins cyclin D1 and D2 respectively, decreasing with age in various
204 hypothalamic neuronal subclasses, particularly ones localized to the periventricular area of the
205 hypothalamus including the dorsomedial nucleus (DMH) and ARH (**Extended Data Figure 5b**).
206 Altogether, these observations suggest that different subclasses demonstrate unique combinations of
207 gene expression profiles that are influenced by age.

208

209 Changes in OPCs and Oligodendrocytes with age

210 Mature oligodendrocytes are the myelinating cells of the brain. They make up most of the white matter
211 in the brain by creating and maintaining the myelin sheaths that encase and protect axons within the
212 central nervous system. Oligodendrocytes develop from oligodendrocyte precursor cells (OPCs). Brain-
213 wide decrease in white matter volume with normal aging has been well-characterized^{26,27} and correlates
214 with cognitive decline^{28,29}.

215 We profiled 88,535 OPCs and 165,858 oligodendrocytes in our scRNA-seq dataset. To obtain
216 cell identities at the finer supertype level, we mapped our oligodendrocyte population to an scRNA-seq
217 dataset generated by Marques *et al.*³⁰. We resolved our oligodendrocyte population into the following
218 supertypes: committed oligodendrocyte precursors (COP), newly formed oligodendrocytes (NFOL),

219 myelin-forming oligodendrocytes (MFOL), and mature oligodendrocytes (MOL). We saw a smooth
220 transition from OPC to MOL in the UMAP space (**Figure 3a**), as well as separation of cells by age and
221 region. Separation by age was most striking within the MOL cell population, whereas the separation by
222 region was more apparent in OPCs (**Figure 3a**).

223 We found the greatest number of age-DE genes in MOL, followed by OPC, and then MFOL
224 (**Figure 3b**). The signatures of age-DE genes between OPC and COP resembled each other, while
225 those between MFOL and MOL most resembled each other. This is consistent with their developmental
226 trajectory and relatedness to one another in the UMAP space (**Figure 3a,c**). Amongst these age-DE
227 genes, there was a strong increase in expression of *Abca8a* and *Dpyd* across MOL (**Figure 3c**), which
228 was confirmed with spatial transcriptomics dataset RSTE1 (**Figure 3d**). *Abca8a* is the mouse homolog
229 of human ABCA8, a gene known for its ability to stimulate sphingomyelin production and regulate lipid
230 metabolism in oligodendrocytes in humans³¹. *Dpyd* encodes an enzyme involved in the breakdown of
231 pyrimidines, and has also been shown to play a role in lipid degradation³². Increase in expression of
232 both genes with age points to an alteration in myelin maintenance capacity in MOL with age. We also
233 observed and spatially confirmed the increased expression of *Maf* and *Nrf6a1* in OPC (**Figure 3c,d**).
234 *Maf* encodes a transcription factor that heterodimerizes with transcription factor *Nrf2*, a master regulator
235 of redox status, antioxidative, and anti-inflammatory response³³. Altered levels of *Nrf2* and *Maf*
236 expression in the brain have been associated with cognitive impairment and OPC senescence^{33,34}.

237 We tested whether any gene ontology (GO) terms were enriched in genes that were significantly
238 up- or down regulated across different supertypes. We found an enrichment in ion channel activity in
239 downregulated age-DE genes in OPCs, while genes involved in transporter activity and metal ion
240 transport were upregulated in MFOL with age (**Extended Data Figure 6a; Supplementary Table 4**). In
241 MOL, we observed an enrichment of GO terms related to locomotory behavior and neuronal structure-
242 related terms such as synaptic cleft and dendrite development in genes upregulated with age, as well
243 as enrichment of GO terms related to myelin sheath in genes that decreased with age, suggesting that
244 myelin sheath integrity may be compromised with age (**Extended Data Figure 6a; Supplementary**
245 **Table 4**), a pattern that has also been observed in the transcriptomes of human Alzheimer's disease
246 brain cells³⁵.

247 We further clustered the data to explore finer (cluster-level) cell types within OPCs and
248 oligodendrocytes. This resulted in 13 transcriptionally distinctive clusters, 3 of which were OPCs, 4 that
249 were MOLs, and the remaining 6 from the transitioning supertypes (**Figure 3e**). To assess whether any
250 of the clusters were age- (>80% adjusted age proportion) or adult-biased (<20% adjusted age
251 proportion), we calculated the adjusted age proportion of each cluster by normalizing to the subclass-
252 wide age proportion (**Methods**). We observed that all transitioning supertypes (COP, NFOL, MFOL)
253 were composed of fewer than 30% aged cells, with NFOL and MFOL clusters being more adult-biased
254 than COP (**Figure 3e,f**). This is consistent with the reported decrease in OPC differentiation with
255 age^{36,37}. To confirm these changes in abundance of oligodendrocyte supertypes in the brain with age *in*
256 *situ*, we calculated the proportion of each supertype in spatial transcriptomics dataset RSTE1 from
257 cortex, striatum, midbrain, and hindbrain (**Extended Data Figure 6b**). We found that while there was
258 no significant change in OPC proportions across regions with age, there was a significant decrease in
259 the proportions of cells in transitioning oligodendrocyte supertypes (COP, NFOL, and MFOL) with age
260 (**Extended Data Figure 6b**), consistent with age proportions observed in scRNA-seq oligodendrocyte
261 clusters (**Figure 3e,f**). In contrast, we observed significant increase in MOL proportions across all
262 imaged brain regions with age in the spatial data (**Extended Data Figure 6b**) as well as the MOL
263 proportions calculated from unbiased scRNA seq libraries (**Extended Data Figure 6c**), consistent with
264 observations of increased MOL accumulation with age made by others^{38,39}.

Upon examining marker genes for clusters, we observed expected expression of canonical OPC marker genes such as *Cspg4* (NG2 in humans) across all OPC clusters, *Apod* and *Prr5l* across MFOL and MOL clusters, and increasing *Mbp* expression as OPCs develop on their path to maturity (**Figure 3g**). Across the 3 OPC clusters, we found a graded decrease in DNA repair/chromatin binding genes such as *Hells*, *Atad2*, and *Mms22l* that correlated with the age proportion of each cluster. In MOL, we found two clusters, 3463 and 3481, that were both enriched for hindbrain cells, consistent with increased expression of *Pmp22*, a peripheral myelin gene, high levels of which are typically associated with the myelinating Schwann cells of the peripheral nervous system, and at relatively lower levels in the hindbrain and spinal cord⁴⁰ (**Figure 3g**). Unexpectedly, these hindbrain MOL clusters do not express *Opalin*, a gene commonly considered as a MFOL and MOL-specific marker^{41,42} (**Figure 3g**). Furthermore, both clusters express unique markers that are absent from other MOL clusters, including *Hopx* and *Anxa5*. One of these MOL clusters, 3481, is an age-biased cluster (**Figure 3f**) and expresses a unique gene marker, *Art3*. We confirmed this age-related enrichment of *Art3* by spatial transcriptomics (**Figure 3h**). This observation suggests that MOLs from the hindbrain regions may age differently from MOLs in other brain areas. Also of note, cluster 3481 shows high expression of cell cycle gene *Cdkn1a* (**Figure 3g**), also known as p21, whose increased expression is often associated with cellular senescence^{3,43}. While senescent astrocytes and microglia have been observed in the aging brain, whether or not oligodendrocytes undergo cellular senescence in the aged brain remains unclear⁶. As such, cluster 3481 may be a novel, previously uncharacterized type of MOL related to senescence. We also observed a MOL cluster (3668) that is enriched for canonical microglia markers including *Cx3cr1*, *Ctss*, and *C1qa* (**Figure 3g**), possibly representing a cluster of cells with increased inflammation signals and recruitment of microglia. This cluster was detected in spatial dataset RSTE1 across all 4 profiled regions. The proportion of this cluster within the MOL supertype increased with age (**Extended Data Figure 6c**) as well as expression of microglia marker *Ctss* compared to other MOL clusters (**Figure 3h**). Altogether, this analysis confirms previously observed decrease in MOL development with age, as well as identifies, to our knowledge, two novel *Opalin*-negative MOL clusters that are enriched in the hindbrain, one of which is specifically enriched in aged hindbrain and displays markers of cellular senescence.

293

294 Changes in microglia and macrophages with age

295 In our scRNA-seq dataset, we annotated microglia, border-associated macrophages (BAM), lymphoid
296 cells, and dendritic cells, all belonging to the Immune cell class (**Figure 4a**). Due to limited numbers of
297 lymphoid and dendritic cells, we focused the analysis of immune cells on microglia and BAM. Although
298 we detected far fewer BAMs ($n = 3,109$ cells) than microglia ($n = 69,258$ cells) in the scRNA-seq
299 dataset, we observed a greater number of age-DE genes in BAMs than microglia (**Figure 2**). At the
300 subclass level, BAMs showed coordinated upregulation of many *Cd209* genes, which code for lectins
301 that function in cell adhesion and pathogen recognition (**Figure 4b**). From GO analysis, we found
302 upregulated terms with age, enriched in *Cd209* genes including carbohydrate binding, lymphocyte
303 proliferation, virus receptor activity, and others (**Figure 4d, Supplementary Table 4**). An increase in
304 *Cd209a* and *Cd209b* with age was confirmed by spatial transcriptomics (dataset RSTE1, **Figure 4c**).

305 In microglia with age, we observed upregulation of genes related to GO terms involving
306 inflammatory response, response to bacteria, and others (**Figure 4d**). We also confirmed expression
307 changes of genes observed by other single-cell studies of aging in microglia, including upregulation of
308 *Il1dr2* and *Upk1b* and downregulation of *Rgs7bp*^{5,12,44} with age (**Figure 4b,c**). *Upk1b* is a gene that
309 encodes for uroplakin-1b and is included in the microglia “sensome”, a signature of genes expressed in

310 microglia which encode proteins that sense endogenous ligands and microbes⁴⁵. *Il1r2* is amongst GO
311 terms related to protein localization to extracellular regions, which are enriched in genes that increase
312 with age in microglia (**Supplementary Table 4**).

313 Upon further clustering of aged and adult brain immune cells, we identified 6 transcriptionally
314 distinct clusters, 5 of which belong to microglia (**Figure 4e,f**). All microglia clusters expressed canonical
315 microglia markers, including *Cx3cr1*, *P2ry12*, *Nav3*, and *Trem2* (**Figure 4g**). The largest microglia
316 cluster (6_Microglia) contained 18,606 cells and was likely composed of the homeostatic microglia
317 observed in both aged, adult, male, and female brains (**Figure 4h**). The four other microglia clusters
318 were much smaller than cluster 6 (**Figure 4e,f**) and possibly represented different states of activated
319 microglia. One of these clusters, cluster 5_Microglia, was very region and sex biased. It was found
320 mostly in male CNU (specifically dorsal striatum) and uniquely expressed many genes including *Kcnd2*
321 and proinflammatory *Fgf14* (**Figure 4g,h**). GO analysis revealed that genes involved in transporter and
322 ion channel complex, as well as synapse related terms were amongst genes uniquely expressed in
323 cluster 5_Microglia (**Figure 4i**).

324 We identified two age-biased clusters, 7_Microglia and 8_Microglia (**Figure 4h**). Both clusters
325 show increased expression of the antiapoptotic Bcl-2 family members *Bcl2a1a*, and *Bcl2a1d*, which
326 have been shown to increase in a variety of cell types with cell senescence⁴⁶, as well as increased
327 expression of cell senescence marker *Cdkn1a* (**Figure 4g**), consistent with prior studies detecting the
328 accumulation of senescent microglia in aged mouse brain^{47,48}. In addition, we found cluster-specific
329 markers resembling those found by Hammond *et al.* in their scRNA-seq study profiling microglia
330 throughout mouse lifespan⁴. Specifically, these authors found two age-enriched microglia clusters, OA2
331 and OA3, which expressed inflammatory markers and interferon-response genes, respectively⁴. By
332 performing label transfer from their dataset to ours based on gene expression (**Methods**), we aligned
333 our clusters 7_Microglia and 8_Microglia to Hammond's OA3 and OA2 clusters, respectively (bottom
334 bar of **Figure 4h**). We also found expression of similar cluster-specific genes in these two age-biased
335 clusters, including increased expression of *Ifit2*, *Ifit3*, *Oas12*, and other interferon-response genes in
336 7_Microglia, as well as increased expression of inflammatory markers such as *Cst7* and *Lpl* in cluster
337 8_Microglia, suggesting that these two clusters are likely the same cell types that were identified by
338 Hammond *et al.* (**Figure 4g,h**). Of note, both these age-enriched clusters were mostly derived from
339 hindbrain and midbrain. Marker genes for cluster 7 showed enrichment of GO terms related to
340 interferon and virus response, while marker genes for cluster 8 showed enrichment of GO terms related
341 to immune cell proliferation and activation (**Figure 4i**). Interferon signaling phenotypes were also
342 observed in activated microglia from a mouse model of severe neurodegeneration⁴⁹, suggesting the
343 clusters we observe here may be precursors to microglia that are associated with neurodegenerative
344 pathology.

345 Finally, to investigate whether proportions or size of microglia changed significantly with age
346 throughout the brain, we estimated proportions and mean cell soma area (as estimated by
347 segmentation) of microglia in 4 broad regions across the brain (**Figure 4j,k**) with spatial transcriptomics
348 (dataset RSTE1). We found a significant increase in overall proportions of microglia in hindbrain and
349 midbrain areas, no change in the striatum, and decrease in the cortex. We also observed an increase in
350 the mean cell soma area of microglia in midbrain, hindbrain, and striatum, but not in the cortex (**Figure**
351 **4k**). These findings are partly consistent with prior findings of an increase in microglia counts with age
352 in mouse VTA⁵⁰, a decrease in microglia counts in mouse cortex⁴⁴, and an increase in soma volume
353 with age in microglia in the mouse somatosensory cortex⁵¹. However, overall, reports of changes in
354 absolute numbers of microglia in rodents vary by region and study^{44,51-53}. As such, our data support the
355 idea that changes in microglia morphology and abundance with age vary by brain region.

356

357 **Changes in brain vascular cell types with age**

358 Aging leads to loss of integrity and function of the brain microvasculature^{54,55}. We characterized age-
359 associated changes in the vascular cell subclasses found in our dataset, including arachnoid barrier
360 cells (ABC; n = 546), vascular leptomeningeal cells (VLMC; n = 5,347), endothelial cells (n = 51,454),
361 smooth muscle cells (SMC; n = 10,187), and pericytes (n = 17,187), which all display age-related DE
362 genes (**Figure 2**). When plotted together in UMAP space, all vascular subclasses are transcriptionally
363 highly distinct from one another (**Figure 4a**). Across these subclasses, endothelial cells showed the
364 greatest number of age-DE genes, followed by pericytes, SMC, VLMC, and ABC (**Figure 2**). Due to the
365 low number of ABCs in our dataset, we focus on the other 4 subclasses in the remainder of this section.

366 For endothelial cells, we found strong upregulation of *Hdac9* with age (**Extended Data Figure**
367 **7a**), and confirmed it by spatial transcriptomics (**Extended Data Figure 7b**). *Hdac9* gene and protein
368 upregulation was previously observed in the ischemic brain and it exacerbates endothelial injury⁵⁶,
369 suggesting that normal endothelial cell function and thus oxygenation efficiency may be compromised
370 in the brain with age. We also observed upregulation of many genes that encode proteins that are part
371 of the MHC class I protein complex including *H2-Q7* and *H2-Q6*, as well as genes contributing to GO
372 terms involving immune responses related to MHC class I upregulation and CD8 receptor binding
373 (**Extended Data Figure 7a,c**). Together these findings suggest that there is an increase in antigen-
374 presenting activity derived from intracellular proteins in endothelial cells with age. We also observed
375 upregulation of similar MHC class I GO terms in VLMCs with age, although they appear to be driven by
376 a different gene (*H2-D1*) (**Extended Data Figure 7a,c**).

377 VLMCs are fibroblast-like cells found in the brain. Across the VLMC subclass, we observed
378 downregulation of genes that are involved in biominerization and collagen extracellular matrix
379 including collagens *Col11a1* and *Col3a1* (**Extended Data Figure 7a,c**), pointing to a decrease in
380 structural integrity in this specialized cell type. Likewise, in SMC and pericytes, we observed
381 downregulation of genes related to collagen extracellular matrix organization, although these changes
382 were driven by different collagen genes, *Col4a1* and *Col4a2* (**Extended Data Figure 7a,c**). We
383 confirmed downregulation of *Col4a2* in SMC and pericytes by spatial transcriptomics (**Extended Data**
384 **Figure 7b**). Taken together, these results suggest loss of collagen expression and therefore, loss of
385 extracellular matrix organization may be major contributors to the decreased structural integrity
386 observed in brain vasculature with age. To assess potential changes in numbers of vascular cells with
387 age, we calculated the proportion of each vascular cell type from spatial dataset RSTE1 (**Extended**
388 **Data Figure 7d**). We found a significant decrease in the proportion of endothelial cells in the striatum,
389 as well as a decrease in pericytes in the striatum and hindbrain regions. Interestingly, we observed an
390 increase in the proportion of VLMCs in the hindbrain with age.

391

392 **Changes in astrocyte and ependymal cell class with age**

393 Next, we investigated the Astro-Epen class of non-neuronal cells, which include telencephalic and non-
394 telencephalic astrocytes (Astro-TE and Astro-NT, n = 143,167 and 118,221, respectively),
395 astroependymal cells (n = 571), hypendymal cells (n = 164), tanyocytes (n = 1,432), and ependymal
396 cells (n = 2,923). When examining these cells in the UMAP space, we observed clear separation of the
397 main Astro-TE and Astro-NT types by broad brain region, and the other smaller subclasses derived
398 from specific brain regions as expected^{17,57} – for example, tanyocytes were derived from the
399 hypothalamus, whereas the ependymal cells came mostly from hindbrain and midbrain (**Figure 5a**).

400 Across all subclasses found in the scRNA-seq dataset, tanyocytes and ependymal cells showed the
401 greatest numbers of age-DE genes (**Figure 2**). This was surprising, particularly given the relatively
402 smaller cell numbers for these subclasses compared to the others (**Figure 5a**).

403 Within the two main subclasses of astrocytes, Astro-TE and Astro-NT, we observed fewer age-
404 DE genes (**Figure 2**). Furthermore, the types of age-DE genes differed between these two subclasses
405 of astrocytes (**Extended Data Figure 8a,b**). In Astro-TE, there was an age-dependent downregulation
406 of genes involved in neuron function-related terms such as axonogenesis and postsynaptic density,
407 including *Dcc*, *Kcnd2*, and *Sema6d* (**Extended Data Figure 8b; Supplementary Table 4**). In Astro-NT,
408 there was an age-dependent downregulation of genes involved in ion channel regulator activity,
409 including *Kcnip4* and *Dpp6* (**Extended Data Figure 8b; Supplementary Table 4**). Using spatial
410 transcriptomics, we found no significant change in astrocyte proportions with age, except for Astro-NT
411 in the hindbrain region (**Extended Data Figure 8c**).

412

413 **Changes in third-ventricle tanyocytes and ependymal cells with age**

414 Ependymal cells are a type of ciliated glial cells that line the ventricles within the brain and the central
415 canal of spinal cord. They assist in the circulation of cerebrospinal fluid throughout the ventricular
416 system⁵⁸. Tanyocytes are a specialized form of ependymal cells that line the ventral and ventrolateral
417 sides of the third ventricle (3V) in the hypothalamus and possess a single long protrusion that projects
418 into the parenchyma of the hypothalamus⁵⁹. Tanyocytes are involved in regulating nutrient sensing and
419 hormone signaling⁵⁹. Tanyocytes have also been shown to display adult neurogenic ability that may act
420 as an adaptive mechanism in response to external factors such as physical activity and diet⁶⁰. When we
421 examined individual age-DE genes across these two subclasses, we found similar sets of age-DE
422 genes and GO terms enriched with age across both subclasses, but not the other Astro-Epen
423 subclasses (**Figure 5b, c**).

424 Using spatial transcriptomics, we clearly identified tanyocytes and ependymal cells lining the third
425 ventricle (dataset RSTE2, **Figure 5d**). We observed a dorsal-to-ventral transition between the two cell
426 subclasses based on marker genes including *Gpr50* for tanyocytes and *Tm4sf1* for ependymal cells
427 (**Figure 5d**), allowing us to visually confirm and interrogate gene expression changes with age (center
428 panels of **Figure 5e**).

429 Overall with age, there was an increase in many interferon response genes, such as *Ifi27*, *Ifit1*,
430 *Ifit3*, and *Oas12*, across ependymal cells, and to a fewer and less significant extent, in tanyocytes (**Figure**
431 **5b; Supplementary Table 3**). There was also an increase in genes involved in the MHC class I
432 response pathway, including *B2m*, *H2-K1* and *H2-D1*, across both ependymal cells and tanyocytes
433 (**Figure 5b; Supplementary Table 3**). These age-DE genes contributed to an enrichment of GO terms
434 related to interferon-beta and virus responses, and MHC class I protein complex (**Figure 5c;**
435 **Supplementary Table 4**). We confirmed increased expression of *Oas12* and *Ifit1* with spatial
436 transcriptomics (dataset RSTE2, **Figure 5e**).

437 Among the genes that decreased most strongly with age in both cell subclasses are the cell
438 cycle gene *Ccnd2* and cadherin-associated protein gene *Ctnna2* (**Figure 5b,e**). *Ccnd2* has been shown
439 to play an important role in adult neurogenesis⁶¹. *Ctnna2* is involved in the regulation of neuron
440 migration and neuron projection development⁶². GO analysis revealed enrichment of terms related to
441 neuronal structure and function in genes that were decreasing with age in both tanyocytes and
442 ependymal cells (**Figure 5c; Supplementary Table 4**). We also observed enrichment of terms related
443 to negative regulation of neurogenesis and cell development in genes that were increasing with age

444 (Figure 5c; Supplementary Table 4), which may suggest a decrease in neurogenic potential in
445 tanycytes with age.

446 To investigate changes with age at the finer cell-type level, we further clustered both tanycytes
447 and ependymal cells. Because our original tanycyte scRNA-seq dataset was unbalanced towards a
448 larger number of aged cells, we included additional cells from the adult whole mouse brain dataset¹⁷
449 that were originally excluded because they came from a slightly different dissection region (Methods).
450 After clustering, we defined 6 tanycyte and 3 ependymal clusters (Figure 5f,g). Three ependymal
451 clusters displayed unique gene markers (Figure 5i) and came from different regions of the brain, with
452 cluster 1_Ependymal found in both midbrain and hindbrain, 4_Ependymal found in mostly midbrain and
453 hypothalamus, and 5_Ependymal mostly found in midbrain (Figure 5f,j). After calculating the adjusted
454 age proportion, we found that one of these ependymal clusters (5_Ependymal) consisted almost
455 entirely of aged cells, and as such, we consider this cluster age-biased (Figure 5h,j). Unique marker
456 genes for this cluster include interferon response genes *lifp1* and *Irf7* (Figure 5i), further supporting
457 increased interferon signaling with age in ependymal cells.

458 The six tanycyte clusters all displayed unique sets of marker genes (Figure 5i) mostly aligning
459 with different known types of tanycytes^{59,63}. To estimate the spatial location of each tanycyte cluster, we
460 examined cluster labels from the thoroughly annotated adult tanycyte cells and their location on the
461 corresponding Allen whole mouse brain spatial atlas¹⁷ (Figure 5j,k). We found representation of nearly
462 all adult whole brain tanycyte clusters: 8_Tanycyte represents tanycytes from rostral 3V, 10_Tanycyte
463 represents the most dorsal α 1 subtype (aligned with the dorsomedial and ventromedial nuclei of the
464 hypothalamus, DMH and VMH), 9_Tanycyte and 11_Tanycyte represent α 2 subtypes (aligned with
465 dorsal ARH) which are ventral to α 1, and 12_Tanycyte and 13_Tanycyte represent the most ventral
466 tanycyte subtypes, β 1 (aligned with ventral ARH) and β 2 (aligned with the median eminence, ME),
467 respectively (Figure 5j,k).

468 Amongst the tanycyte clusters, we observed one cluster that appeared to be adult-biased,
469 cluster 10_Tanycyte (Figure 5h), likely the cluster representing α 1 tanycytes (Figure 5j,k). Marker
470 genes for cluster 10_Tanycyte include *Slc17a8* and *Cpne5* (Figure 5i). We also confirmed decreased
471 expression of *Slc17a8* in the dorsal tanycytes of the 3V in the spatial data (Figure 5l). *Slc17a8* is
472 regarded as a marker for α 1 tanycytes⁶³, so loss of *Slc17a8* with age suggests that tanycyte types may
473 become less distinctive with age.

474

475 Changes in hypothalamic *Tbx3*+ neurons with age

476 Across the neuronal subclasses identified in our dataset, those with the greatest numbers of age-DE
477 genes were hypothalamic neurons (Figure 2). There were four classes of hypothalamic neurons in our
478 dataset, including HY GABA, HY Glut, CNU-HYa Glut, and HY MM Glut (MM standing for medial
479 mammillary nucleus), which were confirmed by *Slc32a1* and *Slc17a6* expression (Figure 6a). Under
480 these classes, there were 29 subclasses that displayed unique marker gene expression (Extended
481 Data Figure 2, Figure 6b, Supplementary Table 2; neuronal subclass names were transferred from
482 the Allen Mouse Whole Brain Atlas¹⁷, where they were named for the most dominant brain region
483 localization and transcription factor expression), altogether capturing the vast cell type complexity we
484 previously reported in the adult mouse hypothalamus¹⁷.

485 Across the 29 hypothalamic neuronal subclasses, the subclasses with the greatest numbers of
486 age-DE genes were ones associated with hypothalamic regions proximal to the third ventricle, including
487 the arcuate nucleus (ARH), posterior periventricular nucleus (PVp), dorsal tuberomammillary nucleus

488 (TMd), and dorsomedial nucleus (DMH) (**Figure 6c**). Remarkably, the 4 subclasses with the greatest
489 numbers of age-DE genes, i.e., ARH-PVp Tbx3 Glut (n = 1,134 cells), TU-ARH Otp Six6 Gaba (n =
490 1,191), TMd Foxd2 Gaba (n = 711), and ARH-PVp Tbx3 Gaba (n = 1,031), all had highly specific
491 expression of the transcription factor *Tbx3* (**Figure 6d**). Interestingly, we also observed distinctive *Tbx3*
492 expression in ventral tanycytes, but not in the more rostrally and dorsally located tanycytes (**Figure 5i**).

493 The cell bodies of these four subclasses were all located directly proximal to the third ventricle,
494 with the ARH subclasses interacting directly with the ventral β -type tanycytes (spatial dataset RSTE2;
495 **Figure 6e**). These four *Tbx3* positive (*Tbx3*+) subclasses also demonstrated highly distinct signatures
496 of aging, as reflected by the different sets of age-DE genes (**Figure 6f**) that contained subsets of age-
497 DE genes either unique to each subclass or shared among multiple or all subclasses (**Figure 6g**). All
498 four subclasses demonstrated an increase in *Snhg9*, a non-coding small nucleolar RNA host gene that
499 has been implicated in the development of obesity⁶⁴ and as a biomarker for various cancers^{65,66}. We
500 observed downregulation of many genes coding for cell-adhesion contactin and contactin associated
501 proteins, specifically of family member 5 (*Cntn5*, *Cntnap5a*, *Cntnap5b*, *Cntnap5c*), across one or more
502 subclasses. We also observed an increase in *Ptpn5* with age, a biomarker of many neurodegenerative
503 and neuropsychiatric disorders including Alzheimer's, Parkinson's, Huntington's, schizophrenia, and
504 others⁶⁷.

505 Next, we investigated these *Tbx3*+ neurons at the cluster level. Using *de novo* clustering, we
506 split these four subclasses into the following sets of clusters (**Figure 6h**): 3 ARH-PVp Tbx3 Glut
507 clusters (labeled as clusters 8, 9, and 10), 2 ARH-PVp Tbx3 GABA clusters (clusters 6 and 7), and 2
508 TU-ARH Otp Six6 Gaba clusters (clusters 62 and 63). TMd Foxd2 Gaba cells remained as one
509 population and were not split into additional clusters. Each cluster was relatively balanced in age and
510 sex distributions and displayed unique expression of combinations of marker genes, including
511 expression of namesake transcription factors *Tbx3*, *Otp*, *Six6*, and *Foxd2* (**Figure 6i**). Different clusters
512 within each subclass exhibited unique sets of DE genes related to age. Additionally, specific clusters
513 within a subclass appeared to predominantly contribute to the age-associated gene expression
514 changes observed at the subclass level (**Figure 6j, k**). For example, between the two ARH-PVp Tbx3
515 Gaba clusters, cluster 7 demonstrated the greatest number of age-DE genes across all *Tbx3*+ clusters,
516 while cluster 6 had far fewer age-DE genes. Similarly, among the 3 ARH-PVp Tbx3 Glut clusters, most
517 age-associated changes were observed in clusters 8 and 9, but not 10. Interestingly, hierarchical
518 clustering based on age effect sizes of the top age-DE genes across clusters grouped clusters 7, 8, and
519 9 in one branch, suggesting that despite being from different Glut and GABA subclasses, these 3
520 clusters appear to age more similarly than other *Tbx3*+ clusters (**Figure 6k**).

521 Neurons in the ARH are known for, among many functions, the critical role they play in
522 modulation of energy homeostasis. For example, the well-characterized agouti-related peptide (AgRP)
523 and proopiomelanocortin (POMC) neurons stimulate or inhibit food intake, respectively^{68,69} and are
524 among the neuronal types that show the greatest numbers of gene expression changes under diet
525 perturbation, including fasting and high fat diets⁷⁰. AgRP neurons are characterized by expression of
526 *Npy* and *Agrp*, while POMC neurons are characterized by expression of *Pomc*. In our *Tbx3*+ clusters,
527 cluster 63_TU-ARH Otp Six6 Gaba shows highly specific expression of *Npy* and *Agrp*, while cluster
528 8_ARH-PVp Tbx3 Glut shows specific expression of *Pomc* (**Figure 6i**), suggesting these two clusters
529 may participate in the canonical neuronal circuit that regulates food intake.

530 When we performed GO analysis on cluster age-DE genes, we found enrichment of genes
531 related to cAMP-mediated signaling in *Pomc*+ cluster 8, a pathway implicated in many biological
532 processes, including anti-aging pathways^{71,72} (**Figure 6l; Supplementary Table 4**). We also observed

533 significant increase in expression of *Rxfp1* with age (**Figure 6k; Supplementary Table 3**), a gene
534 encoding a G-protein coupled receptor that binds the highly evolutionarily conserved peptide relaxin-3
535 that mainly signals through the cAMP pathway⁷³. Relaxin-3, which is encoded by the gene *Rlh3*, is
536 involved in various physiological processes such as feeding, arousal, stress response, and cognition. It
537 is widely distributed throughout the brain as well as peripheral tissues⁷⁴. We also observed increased
538 expression of *Rxfp1* with age in cluster 7_ARH-PVp Tbx3 Gaba, as well as at the subclass level in both
539 ARH-PVp Tbx Glut and GABA types, suggesting that clusters 7 and 8 are driving the increase in *Rxfp1*
540 at the subclass level. In cluster 7, we observed significant enrichment of upregulated endoplasmic
541 reticulum-localized heat shock protein genes, including *Hspa5*, *Dnajb9*, and *Dnajc10* (**Figure 6k,l;**
542 **Supplementary Table 4**), an aging signature that appears to be specific to this cluster only.
543 Furthermore, in cluster 7, the age-DE gene with the strongest age effect size was *Nhlh2*, which was
544 also uniquely changing with age only in cluster 7 (**Figure 6k**). *Nhlh2* is a transcription factor that has
545 been implicated in regulating processes related to obesity and fertility⁷⁵. Amongst genes increasing with
546 age in the *Agrp*+ cluster 63_TU-ARH Otp Six6 Gaba, we found enrichment of terms related to
547 monoaminergic neurotransmitter secretion and circadian regulation of gene expression (**Figure 6l;**
548 **Supplementary Table 4**). Included in the circadian and rhythmic process related genes, we observed
549 *Bhlhe40*, *Bhlhe41*, *Nr1d2*, and *Per3* increasing with age only in the *Agrp*+ cluster (**Figure 6k;**
550 **Supplementary Table 3**), suggesting that temporal and rhythmic control of behaviors like feeding, a
551 known function of *Agrp*+ neurons⁷⁶, may become altered with age. Amongst genes uniquely decreasing
552 with age in cluster 63 was *Ccnd2*, which we also observed decreasing in tanycytes and ependymal
553 cells (**Figure 5b; Extended Data Figure 5b**). Taken together, we find that there are strikingly diverse
554 differences in cluster-level aging signatures in *Tbx3*+ hypothalamic neurons, even within the same
555 subclass, lending additional credence to a single-cell approach for investigating age-specific changes
556 across cell types in the brain.

557

558 Discussion

559 A gradual loss of homeostasis across many aspects of cellular and organismal function occurs with
560 aging. Many of these themes, or hallmarks, of aging, including genomic instability, epigenetic alteration,
561 chronic inflammation, cellular senescence, deregulated nutrient-signaling, etc., have been observed in
562 multiple invertebrate and vertebrate species^{2,3}. However, the mechanisms that govern systemic aging
563 at the organismal level across complex tissue types and organ systems remain unclear. Certain cell
564 types are more vulnerable to specific aspects of aging than others, and likely communicate and interact
565 with other cell and tissue types to integrate both intrinsic and extrinsic signals that ultimately contribute
566 to decline in cellular and organismal health. As such, a single-cell approach to characterizing
567 transcriptional changes in the brain-wide neural network is a critical step towards fully understanding
568 brain-wide, and eventually, organismal aging.

569 In this study, we present a large-scale, comprehensive single-cell transcriptomic atlas and
570 comparative analysis of the young adult and aged mouse brains. Large cell numbers, high quality of
571 transcriptomes, brain-wide coverage, and detailed annotation of cell types using our newly created
572 Allen whole mouse brain cell types atlas¹⁷ enabled us to precisely pinpoint the regions and cell types in
573 the brain that may be particularly vulnerable to aging. We find evidence for conservation of many of the
574 canonical hallmarks of aging across various cell types within the aged mouse brain. This includes 1)
575 increased expression of cell senescence markers in age-enriched oligodendrocyte and microglia
576 clusters (**Figure 3, 4**), 2) increased systemic inflammation as suggested by the identification of age-
577 enriched proinflammatory microglia clusters, 3) oligodendrocyte clusters with increased inflammation

578 signals and recruitment of microglia, 4) ependymal clusters with increased interferon signaling (**Figure**
579 **3-5**), 5) decrease in new myelination as indicated by the depletion of immature oligodendrocyte cell
580 types in the aged brain (**Figure 3**), and 6) decrease of structural integrity in the brain vasculature as
581 indicated by the downregulation of extracellular matrix genes in the smooth muscle and endothelial cell
582 types (**Extended Data Figure 6**). Interestingly, many of these changes are found to be more
583 pronounced in hindbrain and midbrain regions. Although not investigated in detail here, we also
584 observe signs of deterioration of neuronal function with aging, including altered gene expression in a
585 number of cortical and hippocampal neuronal types (**Figure 2**), changes in immature neuronal types
586 that are involved in adult neurogenesis (**Figure 2**), as well as potentially altered neuron-astrocyte
587 interactions (**Extended Data Figure 8**). Most prominently, we observe evidence of altered regulation of
588 nutrient-sensing and energy homeostasis via many gene expression changes in tanyocytes, ependymal
589 cells, and *Tbx3*⁺ neurons localized around the arcuate nucleus and third ventricle of the hypothalamus,
590 site of the canonical melanocortin circuit of the brain that regulates energy homeostasis (**Figure 5, 6**).

591 Deregulated nutrient sensing and the gradual loss of energy homeostasis is one of the most
592 extensively investigated aspects in aging and longevity research. Moreover, caloric restriction and
593 intermittent fasting have been shown to delay aging-associated structural and functional decline and
594 increase longevity across several animal species⁷⁷. The somatotropic axis – one of the most highly
595 conserved signaling axis observed over evolution – involves growth hormone (GH)-mediated
596 stimulation of insulin growth factor and mammalian target of rapamycin (MTOR) signaling network,
597 manipulation of which increases lifespan and health span across all organisms tested^{78,79}.

598 The area surrounding the third ventricle of the hypothalamus, including the arcuate nucleus, is
599 commonly regarded as one of the circumventricular organs of the brain: it contains a more permissive
600 blood vascular system than the rest of the brain, allowing nutrients and hormones from blood to interact
601 more freely with neurons and glia in that region⁸⁰. MTOR activity increases during aging in
602 hypothalamic neurons, contributing to age-related obesity, which is reversed by direct infusion of
603 rapamycin to the hypothalamus⁸¹. In addition to the MTOR pathway, the ALK signaling pathway,
604 another nutrient-sensing pathway, is induced in the hypothalamus by feeding⁸², and hypothalamus-
605 specific deletion of *Alk* in mice promotes resistance against diet-induced obesity, a common age-
606 associated phenotype⁸².

607 We find that *Tbx3*⁺ cell types in the hypothalamus, both neurons and tanyocytes, may be more
608 susceptible to age-related changes than other cells in the brain. We observe highly diverse gene
609 expression changes among these cell types that are concentrated around the 3rd ventricle (**Figure 6**),
610 suggesting differential roles these cell types play and their complex interactions in the aging process.
611 As of yet, we do not know whether these changes are driven by cellular programs that are protective
612 against or susceptible to aging, or both. There is evidence to suggest that in mouse embryonic
613 fibroblasts, *Tbx3* expression may suppress cell senescence⁸³, a key contributor to cellular aging. *Tbx3*
614 is also differentially expressed at high levels in many enteric neurons that govern the function of the
615 gastrointestinal tract⁸⁴, suggesting that there may be common expression patterns between
616 hypothalamus and the enteric nervous system that may be relevant to metabolic homeostasis and
617 aging. In addition to many hypothalamic neurons, tanyocytes are also regarded as a key integrator of
618 nutrient and sex hormone signaling within the brain⁵⁹. Tanyocytes have also demonstrated adult
619 neurogenic and gliogenic ability, possibly in response to changes in diet⁸⁵.

620 Given the proximity of both tanyocytes, ependymal cells, and *Tbx3*⁺ neurons to the third
621 ventricle, our results suggest that cells surrounding the third ventricle in the hypothalamus, may
622 represent a critical focal point of the accumulation of age-associated changes in the brain. Furthermore,

623 the highly conserved role POMC and AgRP neurons play in appetite regulation and energy
624 homeostasis, as well as the role tanycytes play in nutrient sensing, coupled with the extensive body of
625 literature implicating nutrient dysregulation in aging biology⁸⁶ suggest that this region of the brain may
626 act as a key systemic integrator of nutrient and energy signaling across the entire organism that heavily
627 influences cellular and/or organismal aging.

628 The dataset we present here represents the most extensive and comprehensive transcriptomic
629 analysis of the normal aged mouse brain that we know of to date. The identification of a variety of
630 robust and highly significant gene expression changes with aging across many neuronal and non-
631 neuronal cell types throughout the brain demonstrates the power and necessity of single-cell
632 approaches to revealing the mechanisms that govern complex systemic phenotypes like aging. The
633 results and insights from this work will serve as a foundational resource for the neuroscience and aging
634 research communities to facilitate detailed investigation of age-associated phenotypes in the brain and
635 the body and the interaction between aging and various diseases.

636

637

638 **Methods**

639

640 **Mouse breeding and husbandry**

641 All procedures were carried out in accordance with Institutional Animal Care and Use Committee
642 protocols at the Allen Institute for Brain Science. Mice were provided food and water *ad libitum* and
643 were maintained on a regular 14:10 hour day/night cycle at no more than five adult animals of the same
644 sex per cage. Mice were maintained on the C57BL/6J background. We excluded any mice with
645 dermatitis, anophthalmia, microphthalmia, seizures, or abdominal masses.

646 We used 44 aged mice (20 female, 22 male) and 52 adult mice (25 female, 27 male) to collect
647 2,777,165 cells for 10xv3 scRNA-seq. All adult animals were also included in the Allen whole mouse
648 brain cell type atlas¹⁷. Aged animals were euthanized at P540-553 (approximately 18 months) and adult
649 animals were euthanized at P53-69 (approximately 2 months). No statistical methods were used to
650 predetermine sample size. All donor animals used in this study are listed in **Supplementary Table 1**.

651 We isolated a total of 272 libraries from 96 animals – each animal contributed 1-6 libraries. All
652 libraries are listed in **Supplementary Table 1**. Transgenic driver lines were used for fluorescence-
653 positive cell isolation by FACS to enrich for neurons. Approximately half the libraries (n = 133) were
654 sorted for neurons from the pan-neuronal *Snap25-IRES2-Cre* line (JAX strain #023525) crossed to the
655 *Ai14-tdTomato* reporter (JAX strain #007914)^{87,88} (**Supplementary Table 1**). For unbiased sampling
656 without FACS, we used either *Snap25-IRES2-Cre/wt;Ai14/wt* mice, *Ai14/wt* mice, or in very few cases
657 wildtype C57BL/6J mice. The transgenic *Snap25-IRES2-Cre* line was backcrossed to C57BL/6J for at
658 least 10 generations before crossing and can be considered congenic. The transgenic *Ai14* line was
659 backcrossed to C57BL/6J for at least 5 generations before crossing and can be considered incipient
660 congenic.

661

662 **10X single-cell RNA sequencing**

663 **Single-cell isolation**

664 We used the Allen Mouse Brain Common Coordinate Framework version 3 (CCFv3; RRID:
665 SCR_002978) ontology²¹ (<http://atlas.brain-map.org/>) to define brain regions for profiling and
666 boundaries for dissection. We covered all regions of the brain by sampling at top-ontology level with
667 judicious joining of neighboring regions. These choices were guided by the fact that microdissections of
668 small regions are difficult. Therefore, joint dissection of neighboring regions was sometimes necessary
669 to obtain sufficient numbers of cells for profiling.

670 Single cells were isolated by adapting previously described procedures^{16,89}. The brain was
671 dissected, submerged in ACSF, embedded in 2% agarose, and sliced into 350- μ m coronal sections on
672 a compresstome (Precisionary Instruments). Block-face images were captured during slicing. Regions
673 of interest (ROIs) were then microdissected from the slices and dissociated into single cells as
674 previously described^{16,89}. Fluorescent images of each slice before and after ROI dissection were taken
675 at the dissection microscope. These images were used to document the precise location of the ROIs
676 using annotated coronal plates of CCFv3 as reference.

677 Dissected tissue pieces were digested with 30 U/ml papain (Worthington PAP2) in ACSF for 30
678 minutes at 30°C. Due to the short incubation period in a dry oven, we set the oven temperature to 35°C
679 to compensate for the indirect heat exchange, with a target solution temperature of 30°C. Enzymatic
680 digestion was quenched by exchanging the papain solution three times with quenching buffer (ACSF
681 with 1% FBS and 0.2% BSA). Samples were incubated on ice for 5 minutes before trituration. The
682 tissue pieces in the quenching buffer were triturated through a fire-polished pipette with 600- μ m
683 diameter opening approximately 20 times. The tissue pieces were allowed to settle and the
684 supernatant, which now contained suspended single cells, was transferred to a new tube. Fresh
685 quenching buffer was added to the settled tissue pieces, and trituration and supernatant transfer were
686 repeated using 300- μ m and 150- μ m fire polished pipettes. The single cell suspension was passed
687 through a 70- μ m filter into a 15-ml conical tube with 500 μ l of high BSA buffer (ACSF with 1% FBS and
688 1% BSA) at the bottom to help cushion the cells during centrifugation at 100 x g in a swinging bucket
689 centrifuge for 10 minutes. The supernatant was discarded, and the cell pellet was resuspended in the
690 quenching buffer. We collected 1,508,284 cells without performing FACS. The concentration of the
691 resuspended cells was quantified, and cells were immediately loaded onto the 10x Genomics
692 Chromium controller.

693 To enrich for neurons or live cells, cells were collected by fluorescence-activated cell sorting
694 (FACS, BD Aria II) using a 130- μ m nozzle. Cells were prepared for sorting by passing the suspension
695 through a 70- μ m filter and adding Hoechst or DAPI (to a final concentration of 2 ng/ml). Sorting strategy
696 was as previously described^{16,17}, with most cells collected using the tdTomato-positive label. 30,000
697 cells were sorted within 10 minutes into a tube containing 500 μ l of quenching buffer. We found that
698 sorting more cells into one tube diluted the ACSF in the collection buffer, causing cell death. We also
699 observed decreased cell viability for longer sorts. Each aliquot of sorted 30,000 cells was gently layered
700 on top of 200 μ l of high BSA buffer and immediately centrifuged at 230 x g for 10 minutes in a
701 centrifuge with a swinging bucket rotor (the high BSA buffer at the bottom of the tube slows down the
702 cells as they reach the bottom, minimizing cell death). No pellet could be seen with this small number of
703 cells, so we removed the supernatant and left behind 35 μ l of buffer, in which we resuspended the
704 cells. Immediate centrifugation and resuspension allowed the cells to be temporarily stored in a high
705 BSA buffer with minimal ACSF dilution. The resuspended cells were stored at 4°C until all samples
706 were collected, usually within 30 minutes. Samples from the same ROI were pooled, cell concentration
707 quantified, and immediately loaded onto the 10x Genomics Chromium controller.

708

709 **cDNA amplification and library construction**

710 For 10x v3 processing, we used the Chromium Single Cell 3' Reagent Kit v3 (1000075, 10x Genomics).
711 We followed the manufacturer's instructions for cell capture, barcoding, reverse transcription, cDNA
712 amplification and library construction. We targeted a sequencing depth of 120,000 reads per cell; the
713 actual average achieved was $80,118 \pm 35,612$ (mean \pm SD) reads per cell across 272 libraries
714 (**Supplementary Table 1**).

715

716 **Sequencing data pre-processing**

717 All libraries were 10xv3 samples and processed as previously described^{16,17}. All libraries were
718 sequenced on Illumina NovaSeq6000 and sequencing reads were aligned to the mouse reference
719 (mm10/gencode.vM23) using the 10x Genomics CellRanger pipeline (version 6.0.0) with the *–include*
720 *introns* argument to include intronically mapped reads.

721 To remove low quality cells, we used a stringent QC process. Cells were first filtered by a broad
722 set of quality cutoffs based on gene detection, qc score, and doublet score. As we previously
723 described¹⁷, the qc score was calculated by summing the log-transformed expression of a set of genes,
724 whose expression level is decreased significantly in poor quality cells. Briefly, these are housekeeping
725 genes that are strongly expressed in nearly all cells with a very tight co-expression pattern that is anti-
726 correlated with the nucleus-enriched transcript *Malat1*. We use this qc score to quantify the integrity of
727 cytoplasmic mRNA content. Doublets were identified using a modified version of the **DoubletFinder**
728 algorithm⁹⁰. For this preliminary round of filtering, we included cells with gene detection > 1000 , qc
729 score > 50 , and doublet score < 0.3 . Using these thresholds, 1,999,976 cells remained in the dataset
730 (**Extended Data Fig 1a**).

731

732 **Clustering single cell RNA-seq data**

733 Following the initial round of filtering described above, adult and aged single-cell transcriptomes were
734 co-clustered over two rounds of clustering. The goal for the first round of clustering was to assign a cell
735 class identity to every unlabeled (aged) cell and filter out low-quality (noise) clusters. The goal of the
736 second round of clustering was to assign a subclass identity to every unlabeled (aged) cell and filter out
737 additional low-quality clusters. All adult cells in the dataset already had labels because they are also
738 part of the Allen whole mouse brain cell type taxonomy¹⁷. For both rounds, clustering was performed
739 independently with the in-house developed R package **scrattch.bigcat** as was previously described¹⁷
740 (available via github <https://github.com/AllenInstitute/scrattch.bigcat>). This package is version of R
741 package **scrattch.hicat**¹⁶ that can cluster large datasets. Detailed functionality of scrattch.bigcat was
742 discussed in our previous paper¹⁷. We used the automatic iterative clustering method, *iter_clust_big*, to
743 perform clustering in a top-down manner into cell types of increasingly finer resolution. This method
744 performs clustering without human intervention, while ensuring that all pairs of clusters, even at the
745 finest level, were separable by differential gene expression criteria (*q1.th* = 0.4, *q.diff.th* = 0.7,
746 *de.score.th* = 300, *min.cells* = 50) for both rounds of clustering. Following each round of clustering
747 using *iter_clust_big*, we used the function *merge_cl* to merge clusters based on total number and
748 significance of shared DE genes. For round 1, the criteria used for *merge_cl* were identical to those
749 previously described for clustering. For round 2, the criteria used for *merge_cl* were almost identical
750 with the exception of increasing *min.cells* = 100.

751

752 **Assigning labels to aged cells and removing low-quality clusters**

753 We observed 2,467 clusters after the first round of clustering. At this point, all cells were assigned a cell
754 category (Glut, GABA, Dopa, Sero, IMN or NN). Since the adult cells have been previously published
755 and annotated¹⁷, cell annotations for aged cells were assigned based on cluster membership with
756 annotated adult cells. Specifically, clusters that contained >5% of annotated adult cells were assigned
757 that cell category. Category-labeled clusters were then filtered based on cell category-specific cluster-
758 level thresholds (**Supplementary Table 5, Extended Data Fig 1a**). Clusters with >80% contribution
759 from a single library were also filtered out to minimize donor bias in the final dataset. Clusters with <5%
760 adult cells were retained in the dataset and carried over into the next round of clustering. Since adult
761 cells that were previously deemed to be low quality¹⁷ were also included in clustering, clusters with the
762 majority of low-quality cells were also filtered out. In total, 1,197 clusters were removed based on these
763 criteria after the first round of clustering (n = 779,838 cells removed). This resulted in the dataset of
764 1,220,138 cells, which were carried over into the second round of clustering (**Extended Data Fig 1a**).

765 After the second round of clustering, we observed 928 clusters. All clusters were then assigned
766 subclass identities in a process similar to that described above. Clusters with <5% adult cells were now
767 mapped directly to the Allen whole mouse brain cell type taxonomy¹⁷ (see “Label transfer via mapping”
768 section below) and entire clusters were assigned to the most common subclass within the group of cells
769 that made up that cluster. Annotated clusters were then filtered using class-level quality metrics and
770 other quality metrics similar to those in the above paragraph (**Supplementary Table 5, Extended Data**
771 **Fig 1a**). After this second round of cluster-level filtering, 31 clusters were removed (n = 34,934 cells
772 removed) and 1,185,204 cells remained in the dataset. Remaining cells and resultant subclass
773 annotations were used for all downstream analysis (**Extended Data Fig 1a**).

774

775 **Label transfer via mapping**

776 For assigning identities of cells in clusters with >95% aged cells, we mapped them to a reference
777 taxonomy as previously described¹⁷. Briefly, we assigned their cell type identities by mapping them to
778 the nearest cluster centroid in the reference taxonomy using the corresponding Annoy index as
779 implemented in the R package **scrattch.mapping**. We also used this approach for assigning cell type
780 identities for cells segmented from Resolve spatial data to the Allen whole mouse brain cell type
781 taxonomy¹⁷ or external datasets as reference, using different gene lists based on the contexts. For
782 mapping to the oligodendrocyte dataset from Marques *et. al.*³⁰, we used a list of 195 genes. For
783 mapping to the microglia dataset from Hammond *et. al.*⁴, we used a list of 72 genes. For both external
784 datasets, gene lists were assembled based on prominent marker genes from each external reference
785 cluster. When mapping confidence score was needed, we sampled 80% genes from the marker list
786 randomly, and performed mapping 100 times. We define the fraction of times a cell is assigned to a
787 given cell type as the mapping probability to that type.

788

789 **Identifying age-associated DE genes**

790 Age-associated DE genes were calculated using the R package **MAST**²², a widely used statistical
791 framework designed for modeling biological effects from scRNA-seq data. Briefly, MAST fits a two-part
792 generalized linear model and also allows for adaptive thresholding of gene expression data to account
793 for dropout rate. Upon inspection using MAST’s thresholdSCRNACountMatrix function, we found that
794 for most cases, genes expressed at a frequency of at least 10% did not reveal many genes with non-
795 zero bimodal bins, so we did not implement any adaptive thresholding in our DE gene analysis.

796 DE genes were calculated at the subclass, supertype, and cluster level. For all tests, only genes
797 that were expressed at a frequency of >10% were tested (i.e., only genes expressed in at least 10% of
798 query cells were included). Only subclasses with at least 50 aged and 50 adult cells were evaluated for
799 DE genes. To decrease running time, for large subclasses, we subsampled them to a maximum of
800 1,000 cells per age.

801 At the subclass level, we used the following two statistical models to model the effect of age on
802 gene y including various covariates:

803 *Model 1: $y \sim \text{age} + \text{sex} + \text{genotype} + z(\log(gc)) + z(\log(qc)) + \text{intercept}$*

804 *Model 2: $y \sim \text{age} + z(\log(gc)) + z(\log(qc)) + \text{intercept}$*

805 where age, sex, and genotype are all categorical variable with 2, 2, and 3 levels, respectively, and gene
806 detection (gc) and QC score (qc) are log transformed and then z-score normalized. We included both
807 gene detection and QC score in each model to account for potential effects that various FACS
808 population plans had on library quality (**Extended Data Figure 4a**). A likelihood ratio test was
809 computed between each model with and without the age term to generate p-values. These p-values
810 were corrected for multiple hypothesis testing with the Bonferroni correction. The effect size estimate
811 for the age term for each model can be interpreted as the log₂-fold change (logFC) of each gene.
812 However, due to the additional covariates, logFC estimated by the models often varied widely from
813 those calculated without covariate adjustment. As such, we refer to this term as “age effect size”
814 throughout the main body of the text, rather than logFC.

815 Since age effect sizes estimated by these two models differed widely for certain cell types,
816 particularly smaller neuronal populations, we chose to consider a gene significant if and only if it
817 exceeded statistical cutoffs ($p < 0.01$ & age effect size > 1 or < -1) for both Model 1 and 2. For all
818 figures that plot heatmaps of age effect sizes of subclass age-DE genes, age effect sizes from Model 1
819 were used. At the supertype and cluster level, only results from Model 1 are presented.

820 For the vast majority of age-DE genes presented here, the directionality of age effect sizes
821 between the two models agrees with one another. However, for a very small number of genes (6 out of
822 1,253 unique genes), the directionality disagrees, with most of these being changes in expression of
823 the X-inactivation gene *Xist* across various hypothalamic neuron types (**Extended Data Figure 5b**;
824 **Supplementary Table 3**) which may be due to the imbalance between libraries of different FACS
825 population plans, sex, and age (**Extended Data Figure 4a**). However, as a recent study showed that
826 *Xist* expression increases in aged female hypothalamic neurons¹¹, in all figures, we display the age
827 effect size of the model that estimated an increase in *Xist* expression with age (Model 1). We also
828 looked for age-DE genes at the class level using only RFP+ neuron enriched libraries (thus removing
829 any potential confounding of FACS population plan). We found that all neuronal subclasses have
830 positive age effect sizes (**Extended Data Figure 4e**), supporting the ideal that the age effect size
831 estimates from Model 1 are more accurate for the gene *Xist*. The reason we did not do this initially at
832 the subclass level was due to lack of coverage of an adequate number of subclasses using only RFP+
833 libraries. As such, we chose to include libraries from many different FACS population plan collection
834 strategies to maximize cell counts.

835

836 **Adjusted age proportion calculation**

837 We calculated the adjusted age proportion of each cluster by normalizing to the subclass-wide age
838 proportion, as different brain regions profiled in this dataset vary in their proportions of aged versus

839 adult cells (**Figure 2**). To do this, we subtracted the subclass-wide age proportion from the cluster-wide
840 age proportion, and then added 0.5.

841

842 UMAP projection

843 We used principal components (PCs) calculated from PCA to calculate UMAPs for different groups of
844 cells⁹¹. For UMAPs with >100,000 cells, we performed PCA based on the imputed gene expression
845 matrix of genes based on top marker genes from each cluster within each grouping of cells as we have
846 implemented previously¹⁷. For UMAPs with <100,000 cells, no imputation was used. Three parameters
847 that can be adjusted when generating UMAPs include 1) number of PCs which are used to calculate
848 projections, 2) nn.neighbors: the size of the local neighborhood of cells the UMAP will look at when
849 trying to learn the structure of the data, 3) md: the minimum distance apart that cells are allowed to be
850 in low dimensional resolution. For all UMAPs, the top 150 PCs were then selected, and PCs with >0.7
851 correlation were removed based on the technical bias vector, defined as $\log_2(\text{gene count})$ for each cell.
852 Each PCA was run with unique gene list and each UMAP was run with a different set of nn.neighbors
853 and md parameters. The parameters used for each PCA/UMAP are as follows: 6,446 genes,
854 nn.neighbors = 10, md = 0.4 for the global UMAP (**Figure 1**); 984 genes, nn.neighbors = 20, md = 0.5
855 for the OPC-Oligo UMAP (**Figure 3**); 1,884 genes, nn.neighbors = 5, md = 0.5 for the Immune/Vascular
856 UMAP (**Figure 4**); 1,806 genes, nn.neighbors = 20, md = 0.5 for the Astro-Epen UMAP (**Figure 5**); 401
857 genes, nn.neighbors = 5, md = 0.5 for the tanycyte/ependymal cell UMAP (**Figure 5**); 1,169 genes,
858 nn.neighbors = 5, md = 0.5 for the HY neuron UMAP (**Figure 6**).

859

860 Constellation plot

861 The global relatedness between cell types was visualized with constellation plots, which we had
862 implemented previously^{16,17}. To generate the constellation plot, each transcriptomic cluster was
863 represented by a node (circle), whose surface area reflected the number of cells within the subclass in
864 \log_{10} scale. The position of each node was based on the centroid position of the corresponding cluster
865 in UMAP coordinates. The relationships between nodes were indicated by edges that were calculated
866 as follows. For each cell, 15 nearest neighbors in reduced dimension space were determined and
867 summarized by cluster. For each cluster, we then calculated the fraction of nearest neighbors that were
868 assigned to other clusters. The edges connected two nodes in which at least one of the nodes had >
869 5% of nearest neighbors in the connecting node. The width of the edge at the node reflected the
870 fraction of nearest neighbors that were assigned to the connecting node and was scaled to node size.
871 For all nodes in the plot, we then determined the maximum fraction of “outside” neighbors and set this
872 as edge width = 100% of node width. The function for creating these plots, *plot_constellation* included
873 in the R package *scrattch.bigcat*.

874

875 Gene ontology analysis

876 Gene ontology term enrichment was performed using the R package **clusterProfiler 4.0**⁹² and
877 **gprofiler2**⁹³. The function *gconvert* from gprofiler2 was used to convert gene IDs to their Ensembl IDs.
878 The functions *enrichGO* and *simplify* from clusterProfiler were then used to enrich for gene ontology
879 terms from all three GO databases (molecular function, biological process, and cellular component). A
880 p-value cutoff of 0.05 was used to determine significant GO terms.

881

882 **In situ spatial transcriptomics**

883 **Resolve Molecular Cartography overview**

884 All *in situ* spatial RNA data shown here were generated by Resolve Biosciences with their commercially
885 available Molecular Cartography platform. Two total Molecular Cartography experiments were
886 performed (RSTE1-2), each with a different panel of 100 genes and targeting different region(s) of the
887 brain (**Extended Data Figure 3**). For RSTE1, 4 different regions of the brain (cortex, striatum, midbrain,
888 and hindbrain) were imaged in both sexes and both ages (2- and 18-month), with 2 replicate brains per
889 condition and 2 technical replicates per brain. The technical replicates were plotted and analyzed as
890 independent replicates in all figures. For RSTE2, the hypothalamus was imaged in both sexes and both
891 ages, with 4 replicate brains per condition. Brain dissection and cryosectioning for Molecular
892 Cartography experiments were performed at the Allen Institute for Brain Science in Seattle, WA,
893 samples were stored at -80°C for 1-3 days, and then shipped overnight to Resolve Biosciences in San
894 Jose, CA, where the Molecular Cartography protocol was performed. Spot data were then made
895 available 1-2 weeks after receipt of tissue. Data analysis was performed at the Allen Institute using
896 methods detailed below. Briefly, transcript data were segmented into cells, cells were filtered based on
897 quality metrics generated from segmentation and mapping, and downstream analysis and visualization
898 was performed.

899

900 **Brain dissection and freezing**

901 Mice used for spatial experiments were housed and kept in same conditions to those used for scRNA-
902 seq described above. Mice were transferred from the vivarium to the procedure room with efforts to
903 minimize stress during transfer. Mice were anesthetized with 5% isoflurane. A grid-lined freezing
904 chamber was designed to allow for standardized placement of the brain within the block in order to
905 minimize variation in sectioning plane. Chilled OCT was placed in the chamber, and a thin layer of OCT
906 was frozen along the bottom by brief placement of the chamber in a dry ice/ethanol bath. The brain was
907 rapidly dissected and placed into the prechilled OCT for approximately 2 minutes to acclimate to the
908 cold prior to freezing. The orientation of the brain was adjusted under a dissecting scope, and the
909 freezing chamber containing OCT and brains was placed into a dry ice/ethanol bath for freezing. After
910 freezing, the brains were vacuum sealed and stored at -80°C.

911

912 **Cryosectioning**

913 The fresh-frozen adult and aged brains were sectioned at 10-µm on Leica 3050 S cryostats. The OCT
914 block containing a fresh frozen brain was trimmed in the cryostat until reaching the desired region of
915 interest. Sections were placed onto coverslips provided by Resolve Biosciences. Two replicate sections
916 were collected sequentially – one as the primary sample and the other as a backup.

917

918 **Gene panel design**

919 The Molecular Cartography platform allows 100 genes per experiment for spatial RNA profiling. Each of
920 the 2 Molecular Cartography experiments we ran was designed to target different regions and cell types
921 in the adult and aged brains. Therefore, for each experiment we used different gene panels, which were
922 compiled through a combination of automated and manual processes. Glutamatergic and GABAergic
923 neuronal class markers *Slc17a7*, *Slc17a6*, *Gad1*, and *Gad2* and major non-neuronal subclass markers

924 *Aqp4, Apod, Sox10, Pdgfra, Enpp6, Opalin, Dcn, Pecam1, Ctss, Mrc1, Kcnj8, Pdgfrb, and Acta2* were
925 included for all 2 Resolve experiments. The remaining genes in each panel were then customized for
926 each of the 2 experiments. RSTE1 targeted non-neuronal types in different parts of the brain. RSTE2
927 targeted tanyocytes and ependymal cells in the third ventricle of the hypothalamus. The function
928 *select_N_markers* included in the R package *scrattch.hicat* was used to select markers for all relevant
929 subclasses and clusters in each experiment. Top age-DE genes were also included for relevant
930 subclasses within each panel, as well as additional genes of interest selected from prior literature.

931

932 **Cell segmentation**

933 Cells were segmented using a combination of open source software **Cellpose**⁹⁴ and **Baysor**⁹⁵.
934 Cellpose employs a generalist algorithm for segmenting cells from images of cellular stains as input.
935 Baysor uses a transcript-driven algorithm to draw cell boundaries based on transcript data alone while
936 also having the option of integrating prior knowledge from stained images into the process. First,
937 images of DAPI stains from each of the tissue samples were used as input for Cellpose using the
938 following parameters: *--pretrained_model = nuclei*, *--diameter = 0*. The output of Cellpose was saved as
939 a TIF and used as a prior for the Baysor segmentation algorithm. Baysor was run with the following
940 input parameters: *-m 30, -s 50*.

941

942 ***In situ* data pre-processing**

943 All segmented cells were mapped to the Allen whole mouse brain cell type taxonomy¹⁷ with the same
944 method used for scRNA-seq data as described above. The 2 RSTE datasets were filtered for high-
945 quality cells using a combination of thresholds for mapping confidence score, segmentation confidence
946 score (from Baysor), number of transcripts, and gene detection. Due to the variable gene panels and
947 brain regions across the two RSTE datasets, we used a different set of filter criteria for each
948 experiment. These cutoffs are detailed in **Supplementary Table 6** and cell counts before and after
949 quality filtering are diagramed in **Extended Data Figure 3**.

950

951 **Acknowledgments**

952 We are grateful to the Transgenic Colony Management, Lab Animal Services, Molecular Biology,
953 Tissue Processing, and Histology teams at the Allen Institute for technical support. We thank Dong-
954 Wook Kim, John Mich, and JoAnn Buchanan for their feedback on the manuscript. The research was
955 funded by grants from the National Institutes of Health (NIH), specifically, grant R01AG066027 from
956 National Institute on Aging to H.Z. and B.T., and BRAIN Initiative grant U19MH114830 from National
957 Institute of Mental Health to H.Z. The content is solely the responsibility of the authors and does not
958 necessarily represent the official views of NIH and its subsidiary institutes. This work was also
959 supported by the Allen Institute for Brain Science. The authors thank the Allen Institute founder, Paul G.
960 Allen, for his vision, encouragement, and support.

961

962 **Author Contributions**

963 Conceptualization: H.Z., B.T. Data generation and analysis lead: K.J. Data generation (scRNA-seq):
964 K.J., Z.Y., C.T.J.vV., S.T.B., E.B., D.C., T.C., M.C., M. Departee, M. Desierto, J. Gloe, N.G., J.
965 Guzman, D.H., E.L., T.P., M.R., K.R., J. Sevigny, N.S., L.S., J. Sulc, A.T., H.T., B.L., N.D., K.A.S., B.T.,

966 H.Z. Data processing and analysis (scRNA-seq): K.J., Z.Y., C.T.J.vV., A.B.C., R.C., J. Goldy, C.L.,
967 K.A.S., B.T., H.Z. Data generation (Resolve): K.J., A.G., A.R., B.T., H.Z. Data processing and analysis
968 (Resolve): K.J., Z.Y., B.T., H.Z. Project management: E.S.K., K.G., S.M.S., K.A.S., L.E. Management
969 and supervision: Z.Y., C.T.J.vV., B.L., S.M.S., N.D., L.E., K.A.S., B.T., H.Z. Manuscript writing and
970 figure generation: K.J., Z.Y., C.T.J.vV., B.T., H.Z. Manuscript review and editing: K.J., Z.Y., C.T.J.vV.,
971 E.S.K., B.T., H.Z.

972

973 **Competing Interests**

974 H.Z. is on the scientific advisory board of MapLight Therapeutics, Inc. The other authors declare no
975 competing interests.

976

977 **Additional Information**

978 Correspondence and inquiries about data and materials should be addressed to: H.Z.
979 (hongkuiz@alleninstitute.org) or B.T. (bosiljkat@alleninstitute.org).

980

981 **Data Availability**

982 Primary data will be deposited to the Neuroscience Multi-omic Data Archive (NeMO),
983 <https://nemoarchive.org/>.

984

985 **Code Availability**

986 Analysis methods used in the manuscript from R package **scrattch.hicat** and **scrattch.bigcat**, are
987 available via github <https://github.com/AllenInstitute/scrattch.bigcat>.

988

989

990 **References**

- 991 1. Niccoli, T. & Partridge, L. Ageing as a Risk Factor for Disease. *Curr. Biol.* **22**, R741–R752 (2012).
- 992 2. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: An expanding
993 universe. *Cell* **186**, 243–278 (2023).
- 994 3. Mattson, M. P. & Arumugam, T. V. Hallmarks of Brain Aging: Adaptive and Pathological Modification by
995 Metabolic States. *Cell Metab* **27**, 1176–1199 (2018).
- 996 4. Hammond, T. R. *et al.* Single-Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in
997 the Injured Brain Reveals Complex Cell-State Changes. *Immunity* **50**, 253–271.e6 (2019).
- 998 5. Pan, J., Ma, N., Yu, B., Zhang, W. & Wan, J. Transcriptomic profiling of microglia and astrocytes
999 throughout aging. *J. Neuroinflammation* **17**, 97 (2020).
- 1000 6. Sikora, E. *et al.* Cellular Senescence in Brain Aging. *Front. Aging Neurosci.* **13**, 646924 (2021).
- 1001 7. Ximerakis, M. *et al.* Single-cell transcriptomic profiling of the aging mouse brain. *Nat Neurosci* **22**, 1696–
1002 1708 (2019).
- 1003 8. Almanzar, N. *et al.* A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. *Nature*
1004 **583**, 590–595 (2020).
- 1005 9. Benayoun, B. A. *et al.* Remodeling of epigenome and transcriptome landscapes with aging in mice
1006 reveals widespread induction of inflammatory responses. *Genome Res.* **29**, 697–709 (2019).
- 1007 10. Kiss, T. *et al.* Single-cell RNA sequencing identifies senescent cerebromicrovascular endothelial cells in
1008 the aged mouse brain. *Geroscience* **42**, 429–444 (2020).
- 1009 11. Hajdarovic, K. H. *et al.* Single-cell analysis of the aging female mouse hypothalamus. *Nat. Aging* **2**, 662–
1010 678 (2022).
- 1011 12. Allen, W. E., Blosser, T. R., Sullivan, Z. A., Dulac, C. & Zhuang, X. Molecular and spatial signatures of
1012 mouse brain aging at single-cell resolution. *Cell* **186**, 194–208.e18 (2023).
- 1013 13. Kaya, T. *et al.* CD8+ T cells induce interferon-responsive oligodendrocytes and microglia in white matter
1014 aging. *Nat. Neurosci.* **25**, 1446–1457 (2022).
- 1015 14. Buckley, M. T. *et al.* Cell-type-specific aging clocks to quantify aging and rejuvenation in neurogenic
1016 regions of the brain. *Nat. Aging* **3**, 121–137 (2023).
- 1017 15. Park, H. *et al.* Single-cell RNA-sequencing identifies disease-associated oligodendrocytes in male APP NL-
1018 G-F and 5XFAD mice. *Nat. Commun.* **14**, 802 (2023).
- 1019 16. Yao, Z. *et al.* A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation.
1020 *Cell* **184**, 3222–3241.e26 (2021).
- 1021 17. Yao, Z. *et al.* A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain.
1022 2023.03.06.531121 Preprint at <https://doi.org/10.1101/2023.03.06.531121> (2023).
- 1023 18. Zhang, M. *et al.* A molecularly defined and spatially resolved cell atlas of the whole mouse brain.
1024 2023.03.06.531348 Preprint at <https://doi.org/10.1101/2023.03.06.531348> (2023).

1025 19. Langlieb, J. *et al.* The cell type composition of the adult mouse brain revealed by single cell and spatial
1026 genomics. 2023.03.06.531307 Preprint at <https://doi.org/10.1101/2023.03.06.531307> (2023).

1027 20. DeTure, M. A. & Dickson, D. W. The neuropathological diagnosis of Alzheimer's disease. *Mol.*
1028 *Neurodegener.* **14**, 32 (2019).

1029 21. Wang, Q. *et al.* The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas. *Cell* **181**,
1030 936-953.e20 (2020).

1031 22. Finak, G. *et al.* MAST: a flexible statistical framework for assessing transcriptional changes and
1032 characterizing heterogeneity in single-cell RNA sequencing data. *Genome Biol.* **16**, 278 (2015).

1033 23. Guttman, M. *et al.* Chromatin signature reveals over a thousand highly conserved large non-coding RNAs
1034 in mammals. *Nature* **458**, 223–227 (2009).

1035 24. Schuiki, I. & Daum, G. Phosphatidylserine decarboxylases, key enzymes of lipid metabolism. *IUBMB Life*
1036 **61**, 151–162 (2009).

1037 25. Zhao, T. *et al.* PISD is a mitochondrial disease gene causing skeletal dysplasia, cataracts, and white
1038 matter changes. *Life Sci. Alliance* **2**, e201900353 (2019).

1039 26. Lintl, P. & Braak, H. Loss of intracortical myelinated fibers: A distinctive age-related alteration in the
1040 human striate area. *Acta Neuropathol. (Berl.)* **61**, 178–182 (1983).

1041 27. Charlton, R. A., Schiavone, F., Barrick, T. R., Morris, R. G. & Markus, H. S. Diffusion tensor imaging
1042 detects age related white matter change over a 2 year follow-up which is associated with working memory
1043 decline. *J. Neurol. Neurosurg. Psychiatry* **81**, 13–19 (2010).

1044 28. Chopra, S. *et al.* More highly myelinated white matter tracts are associated with faster processing speed
1045 in healthy adults. *NeuroImage* **171**, 332–340 (2018).

1046 29. Bartzokis, G. *et al.* Heterogeneous age-related breakdown of white matter structural integrity:
1047 Implications for cortical 'disconnection' in aging and Alzheimer's disease. *Neurobiol. Aging* **25**, 843–851 (2004).

1048 30. Marques, S. *et al.* Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous
1049 system. *Science* **352**, 1326–1329 (2016).

1050 31. Kim, W. S. *et al.* ABCA8 stimulates sphingomyelin production in oligodendrocytes. *Biochem J* **452**, 401–
1051 410 (2013).

1052 32. Schirmer, L. *et al.* Neuronal vulnerability and multilineage diversity in multiple sclerosis. *Nature* **573**, 75–
1053 82 (2019).

1054 33. Yang, T. & Zhang, F. Targeting Transcription Factor Nrf2 (Nuclear Factor Erythroid 2-Related Factor 2) for
1055 the Intervention of Vascular Cognitive Impairment and Dementia. *Arterioscler. Thromb. Vasc. Biol.* **41**, 97–116
1056 (2021).

1057 34. Kujuro, Y., Suzuki, N. & Kondo, T. Esophageal cancer-related gene 4 is a secreted inducer of cell
1058 senescence expressed by aged CNS precursor cells. *Proc. Natl. Acad. Sci.* **107**, 8259–8264 (2010).

1059 35. Mathys, H. *et al.* Single-cell transcriptomic analysis of Alzheimer's disease. *Nature* **570**, 332–337 (2019).

1060 36. Sim, F. J., Zhao, C., Penderis, J. & Franklin, R. J. M. The age-related decrease in CNS remyelination
1061 efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation. *J.*
1062 *Neurosci. Off. J. Soc. Neurosci.* **22**, 2451–2459 (2002).

1063 37. Dimovasili, C. *et al.* Aging compromises oligodendrocyte precursor cell maturation and efficient
1064 remyelination in the monkey brain. *GeroScience* **45**, 249–264 (2022).

1065 38. Hill, R. A., Li, A. M. & Grutzendler, J. Lifelong cortical myelin plasticity and age-related degeneration in
1066 the live mammalian brain. *Nat. Neurosci.* **21**, 683–695 (2018).

1067 39. Peters, A. The effects of normal aging on myelinated nerve fibers in monkey central nervous system.
1068 *Front. Neuroanat.* **3**, (2009).

1069 40. Li, J., Parker, B., Martyn, C., Natarajan, C. & Guo, J. The PMP22 Gene and Its Related Diseases. *Mol.*
1070 *Neurobiol.* **47**, 673–698 (2013).

1071 41. Golan, N. *et al.* Identification of Tmem10/Opalin as an oligodendrocyte enriched gene using expression
1072 profiling combined with genetic cell ablation. *Glia* **56**, 1176–1186 (2008).

1073 42. de Faria, O. *et al.* TMEM10 Promotes Oligodendrocyte Differentiation and is Expressed by
1074 Oligodendrocytes in Human Remyelinating Multiple Sclerosis Plaques. *Sci. Rep.* **9**, 3606 (2019).

1075 43. Passos, J. F. *et al.* Feedback between p21 and reactive oxygen production is necessary for cell
1076 senescence. *Mol. Syst. Biol.* **6**, 347 (2010).

1077 44. Zöller, T., Attaai, A., Potru, P. S., Ruß, T. & Spittau, B. Aged Mouse Cortical Microglia Display an
1078 Activation Profile Suggesting Immunotolerogenic Functions. *Int. J. Mol. Sci.* **19**, 706 (2018).

1079 45. Hickman, S. E. *et al.* The microglial sensome revealed by direct RNA sequencing. *Nat. Neurosci.* **16**,
1080 1896–1905 (2013).

1081 46. Yosef, R. *et al.* Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. *Nat. Commun.*
1082 **7**, 11190 (2016).

1083 47. Ogrodnik, M. *et al.* Whole-body senescent cell clearance alleviates age-related brain inflammation and
1084 cognitive impairment in mice. *Aging Cell* **20**, e13296 (2021).

1085 48. Ritzel, R. M. *et al.* Old age increases microglial senescence, exacerbates secondary neuroinflammation,
1086 and worsens neurological outcomes following acute traumatic brain injury in mice. *Neurobiol. Aging* **77**, 194–
1087 206 (2019).

1088 49. Mathys, H. *et al.* Temporal Tracking of Microglia Activation in Neurodegeneration at Single-Cell
1089 Resolution. *Cell Rep.* **21**, 366–380 (2017).

1090 50. Moca, E. N. *et al.* Microglia Drive Pockets of Neuroinflammation in Middle Age. *J. Neurosci.* **42**, 3896–
1091 3918 (2022).

1092 51. Hefendehl, J. K. *et al.* Homeostatic and injury-induced microglia behavior in the aging brain. *Aging Cell*
1093 **13**, 60–69 (2014).

1094 52. Vaughan, D. W. & Peters, A. Neuroglial cells in the cerebral cortex of rats from young adulthood to old
1095 age: An electron microscope study. *J. Neurocytol.* **3**, 405–429 (1974).

1096 53. Long, J. M. *et al.* Stereological analysis of astrocyte and microglia in aging mouse hippocampus.
1097 *Neurobiol. Aging* **19**, 497–503 (1998).

1098 54. Watanabe, C. *et al.* Aging of the Vascular System and Neural Diseases. *Front. Aging Neurosci.* **12**, (2020).

1099 55. Bennett, H. C. & Kim, Y. Pericytes Across the Lifetime in the Central Nervous System. *Front. Cell.*
1100 *Neurosci.* **15**, (2021).

1101 56. Shi, W. *et al.* HDAC9 exacerbates endothelial injury in cerebral ischaemia/reperfusion injury. *J. Cell. Mol.*
1102 *Med.* **20**, 1139–1149 (2016).

1103 57. Zeisel, A. *et al.* Molecular Architecture of the Mouse Nervous System. *Cell* **174**, 999-1014 e22 (2018).

1104 58. Del Bigio, M. R. Ependymal cells: biology and pathology. *Acta Neuropathol* **119**, 55–73 (2010).

1105 59. Prevot, V. *et al.* The Versatile Tanycyte: A Hypothalamic Integrator of Reproduction and Energy
1106 Metabolism. *Endocr. Rev.* **39**, 333–368 (2018).

1107 60. Recabal, A., Caprile, T. & García-Robles, M. de los A. Hypothalamic Neurogenesis as an Adaptive
1108 Metabolic Mechanism. *Front. Neurosci.* **11**, (2017).

1109 61. Kowalczyk, A. *et al.* The critical role of cyclin D2 in adult neurogenesis. *J. Cell Biol.* **167**, 209–213 (2004).

1110 62. Schaffer, A. E. *et al.* Biallelic loss of human CTNNA2, encoding α N-catenin, leads to ARP2/3 complex
1111 overactivity and disordered cortical neuronal migration. *Nat. Genet.* **50**, 1093–1101 (2018).

1112 63. Chen, R., Wu, X., Jiang, L. & Zhang, Y. Single-Cell RNA-Seq Reveals Hypothalamic Cell Diversity. *Cell Rep.*
1113 **18**, 3227–3241 (2017).

1114 64. Chen, K., Xie, S. & Jin, W. Crucial lncRNAs associated with adipocyte differentiation from human adipose-
1115 derived stem cells based on co-expression and ceRNA network analyses. *PeerJ* **7**, e7544 (2019).

1116 65. Zhang, H., Qin, D., Jiang, Z. & Zhang, J. SNHG9/miR-199a-5p/Wnt2 Axis Regulates Cell Growth and
1117 Aerobic Glycolysis in Glioblastoma. *J. Neuropathol. Exp. Neurol.* **78**, 939–948 (2019).

1118 66. Ye, S. & Ni, Y. lncRNA SNHG9 Promotes Cell Proliferation, Migration, and Invasion in Human
1119 Hepatocellular Carcinoma Cells by Increasing GSTP1 Methylation, as Revealed by CRISPR-dCas9. *Front. Mol.*
1120 *Biosci.* **8**, (2021).

1121 67. Goebel-Goody, S. M. *et al.* Therapeutic Implications for Striatal-Enriched Protein Tyrosine Phosphatase
1122 (STEP) in Neuropsychiatric Disorders. *Pharmacol. Rev.* **64**, 65–87 (2012).

1123 68. Cone, R. D. Anatomy and regulation of the central melanocortin system. *Nat. Neurosci.* **8**, 571–578
1124 (2005).

1125 69. Mercer, A., Hentges, S., Meshul, C. & Low, M. Unraveling the Central Proopiomelanocortin Neural
1126 Circuits. *Front. Neurosci.* **7**, (2013).

1127 70. Campbell, J. N. *et al.* A molecular census of arcuate hypothalamus and median eminence cell types. *Nat. Neurosci.* **20**, 484–496 (2017).

1128

1129 71. Wang, Z. *et al.* Cyclic AMP Mimics the Anti-ageing Effects of Calorie Restriction by Up-Regulating Sirtuin. *Sci. Rep.* **5**, 12012 (2015).

1130

1131 72. Gerhart-Hines, Z. *et al.* The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD+. *Mol. Cell* **44**, 851–863 (2011).

1132

1133 73. Sudo, S. *et al.* H3 Relaxin Is a Specific Ligand for LGR7 and Activates the Receptor by Interacting with Both the Ectodomain and the Exoloop 2 *. *J. Biol. Chem.* **278**, 7855–7862 (2003).

1134

1135 74. Ganella, D., Ma, S. & Gundlach, A. Relaxin-3/RXFP3 Signaling and Neuroendocrine Function – A Perspective on Extrinsic Hypothalamic Control. *Front. Endocrinol.* **4**, (2013).

1136

1137 75. Good, D. J. & Braun, T. NHLH2: At the intersection of obesity and fertility. *Trends Endocrinol. Metab. TEM* **24**, 385–390 (2013).

1138

1139 76. Cedernaes, J. *et al.* Transcriptional Basis for Rhythmic Control of Hunger and Metabolism within the AgRP Neuron. *Cell Metab.* **29**, 1078-1091.e5 (2019).

1140

1141 77. Mattson, M. P., Moehl, K., Ghena, N., Schmaedick, M. & Cheng, A. Intermittent metabolic switching, neuroplasticity and brain health. *Nat. Rev. Neurosci.* **19**, 63–80 (2018).

1142

1143 78. Johnson, S. C., Rabinovitch, P. S. & Kaeberlein, M. mTOR is a key modulator of ageing and age-related disease. *Nature* **493**, 338–345 (2013).

1144

1145 79. Green, C. L., Lamming, D. W. & Fontana, L. Molecular mechanisms of dietary restriction promoting health and longevity. *Nat. Rev. Mol. Cell Biol.* **23**, 56–73 (2022).

1146

1147 80. Kiecker, C. The origins of the circumventricular organs. *J. Anat.* **232**, 540–553 (2018).

1148

1149 81. Yang, S.-B. *et al.* Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons. *Neuron* **75**, 425–436 (2012).

1150

1151 82. Orthofer, M. *et al.* Identification of ALK in Thinness. *Cell* **181**, 1246-1262.e22 (2020).

1152

1153 83. Brummelkamp, T. R. *et al.* TBX-3, the Gene Mutated in Ulnar-Mammary Syndrome, Is a Negative Regulator of p19ARF and Inhibits Senescence*. *J. Biol. Chem.* **277**, 6567–6572 (2002).

1154

1155 84. Wright, C. M. *et al.* scRNA-Seq Reveals New Enteric Nervous System Roles for GDNF, NRTN, and TBX3. *Cell. Mol. Gastroenterol. Hepatol.* **11**, 1548-1592.e1 (2021).

1156

1157 85. Lee, D. A. *et al.* Tanyocytes of the Hypothalamic Median Eminence Form a Diet-Responsive Neurogenic Niche. *Nat. Neurosci.* **15**, 700–702 (2012).

1158

1159 86. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The Hallmarks of Aging. *Cell* **153**, 1194–1217 (2013).

1160

1161 87. Daigle, T. L. *et al.* A Suite of Transgenic Driver and Reporter Mouse Lines with Enhanced Brain-Cell-Type Targeting and Functionality. *Cell* **174**, 465-480.e22 (2018).

1161 88. Madisen, L. *et al.* A robust and high-throughput Cre reporting and characterization system for the whole
1162 mouse brain. *Nat. Neurosci.* **13**, 133–140 (2010).

1163 89. Tasic, B. *et al.* Shared and distinct transcriptomic cell types across neocortical areas. *Nature* **563**, 72–78
1164 (2018).

1165 90. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: Doublet Detection in Single-Cell RNA
1166 Sequencing Data Using Artificial Nearest Neighbors. *Cell Syst* **8**, 329–337.e4 (2019).

1167 91. McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: Uniform Manifold Approximation and Projection.
1168 *J. Open Source Softw.* **3**, 861 (2018).

1169 92. Wu, T. *et al.* clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. *The Innovation*
1170 **2**, 100141 (2021).

1171 93. Raudvere, U. *et al.* g:Profiler: a web server for functional enrichment analysis and conversions of gene
1172 lists (2019 update). *Nucleic Acids Res.* **47**, W191–W198 (2019).

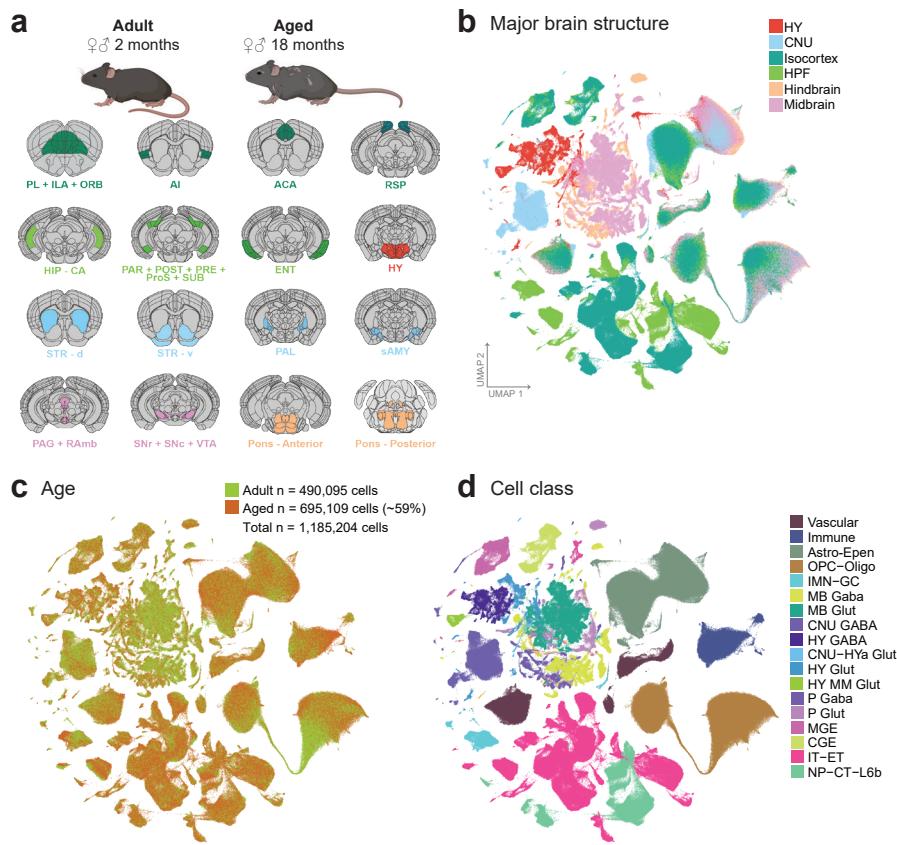
1173 94. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular
1174 segmentation. *Nat. Methods* **18**, 100–106 (2021).

1175 95. Petukhov, V. *et al.* Cell segmentation in imaging-based spatial transcriptomics. *Nat. Biotechnol.* **40**, 345–
1176 354 (2022).

1177

1178

Jin Figure 1

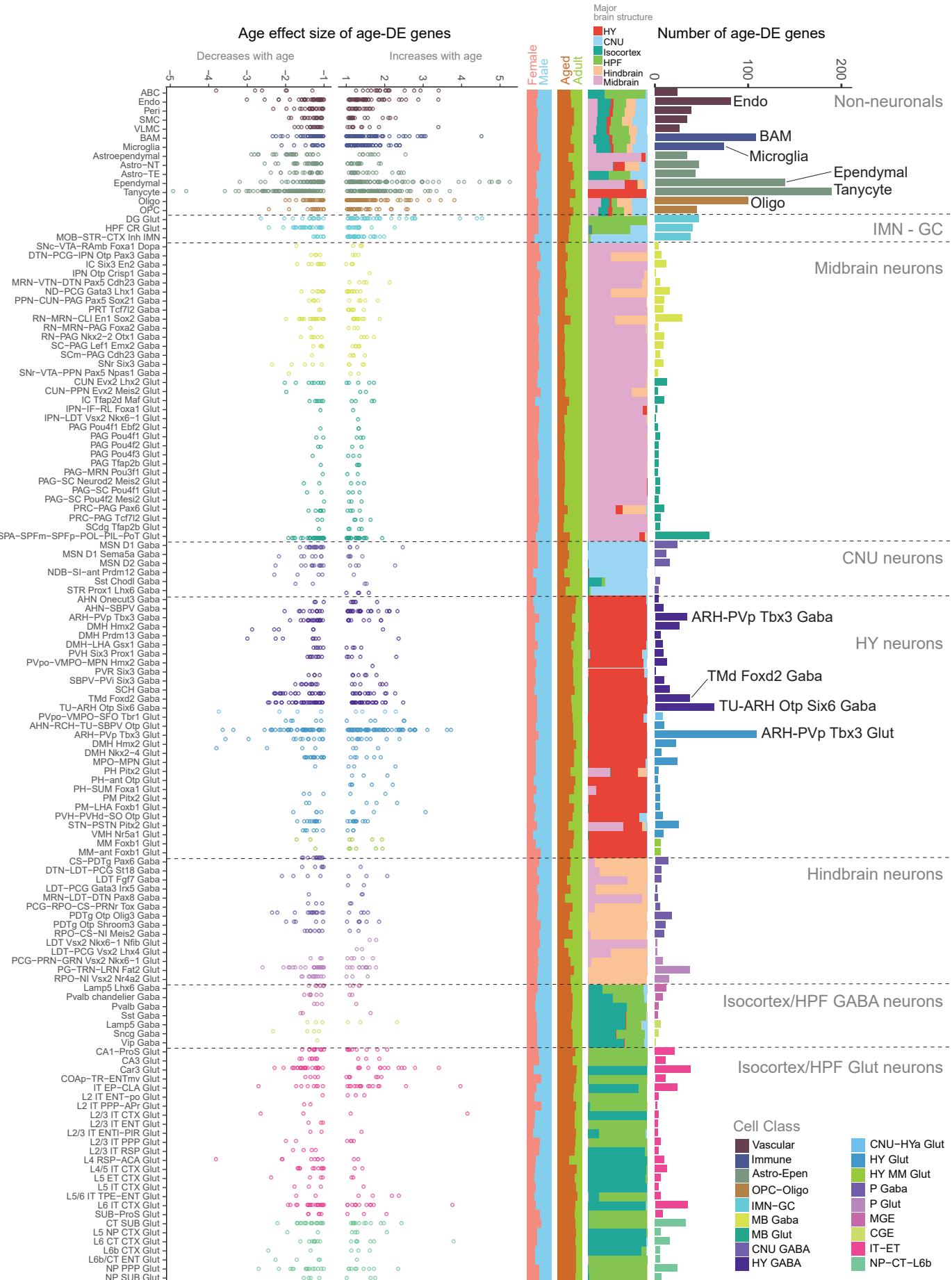


1179 **Figure legends**

1180 **Figure 1. Transcriptomic cell types in the aged and adult mouse brain.** (a) Schematic of dissected
1181 brain regions profiled in this study, colored by major brain structure. (b-c) UMAP representation of n =
1182 1,185,204 cells included in this study, colored by major brain structure (b) and cell class (c). Mouse
1183 depictions in (a) are created with BioRender.com.

1184

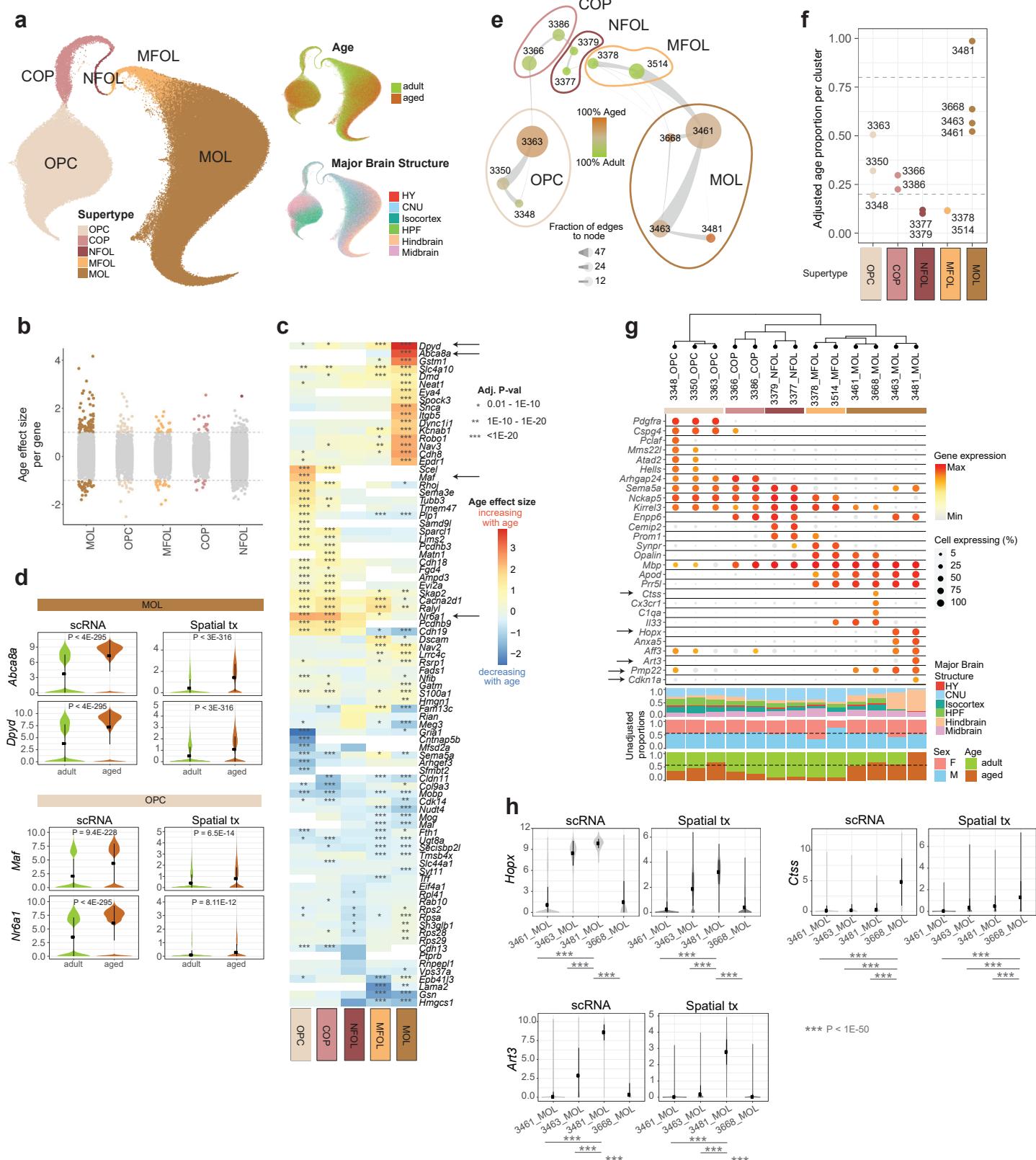
Jin Figure 2



1185 **Figure 2. Differentially expressed genes across cell subclasses in the aged and adult mouse**
1186 **brain.** Summary of the number and effect size of all age-DE genes identified at the subclass level. Far
1187 right: The total number of age-DE genes within each subclass, colored by cell class and ordered based
1188 on broad categories. Center: Bar charts that summarize the breakdown of each subclass by major brain
1189 structure, age, and sex. Far left: Age effect sizes of all age-DE genes for each subclass.

1190

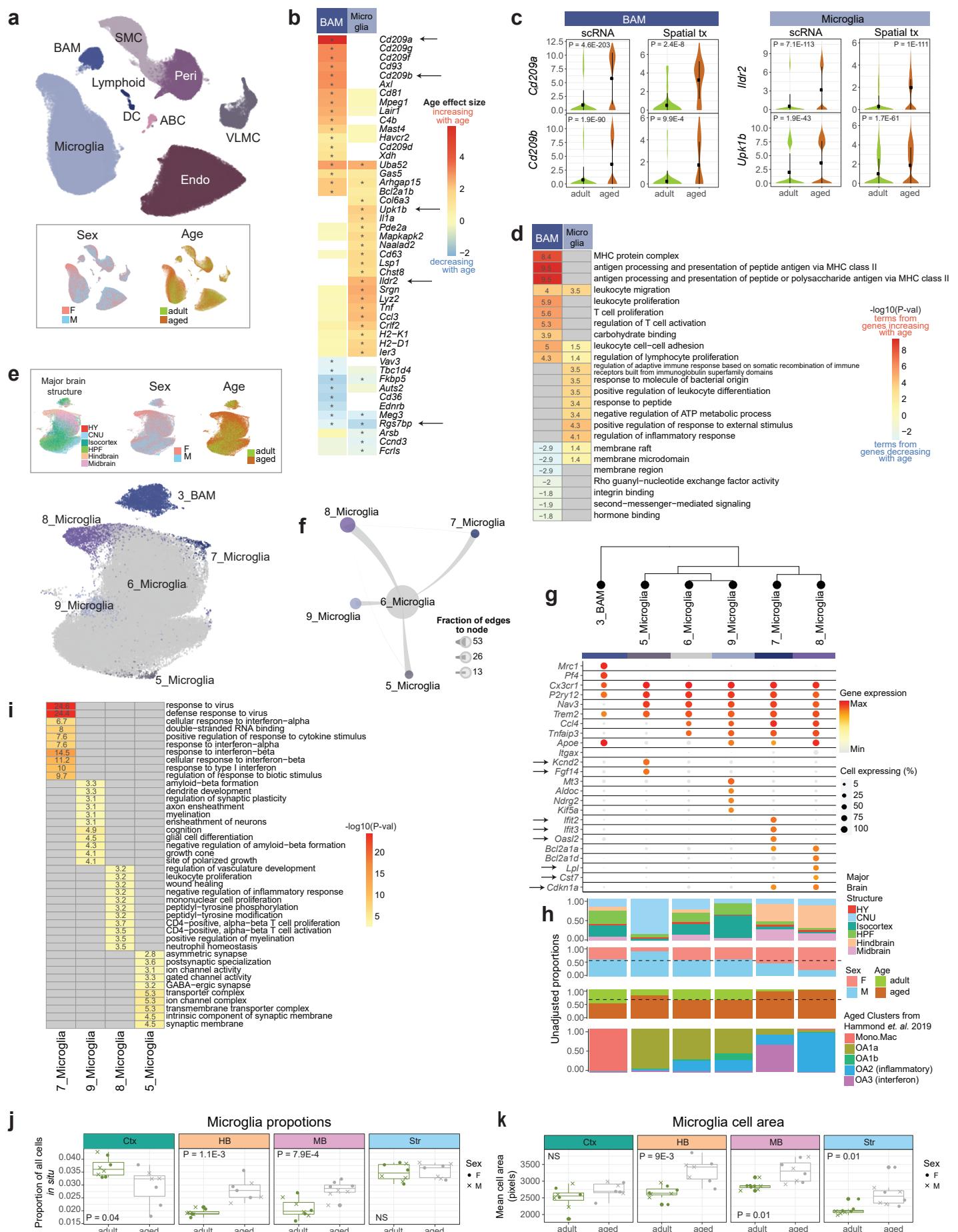
Jin Figure 3



1191 **Figure 3. Age-associated changes in OPCs and oligodendrocytes.** (a) UMAP of all OPC and
1192 oligodendrocyte transcriptomes colored by supertype, age, and major brain structure. (b) Age effect
1193 sizes of age-DE genes within OPCs and oligodendrocyte supertypes, with significant age-DE genes
1194 colored (absolute age effect size >1 and $P < 0.01$). (c) Heatmap of age effect sizes of top age-DE
1195 genes within OPCs and oligodendrocyte supertypes. Asterisks denote statistical significance. (d) Violin
1196 plots of expression of *Abca8a* and *Dpyd* in MOL and *Maf* and *Nr6a1* in OPC from scRNA-seq and
1197 spatial RSTE1 datasets. (e) Constellation plot representing OPC and oligodendrocyte clusters using
1198 UMAP coordinates shown in (a). Node (cluster) size is proportional to cell number. Edge thickness is
1199 proportional to the fraction of nearest neighbors that were assigned to the connecting node scaled to
1200 node size. Cluster color represents the percent of aged or adult cells. (f) Adjusted age proportion of
1201 each cluster from (e), colored and grouped by supertype. (g) Dendrogram and dot plot of cluster marker
1202 genes. Below dot plot are bar summaries of each cluster broken down by major brain structure, sex,
1203 and age. Dendrogram is calculated from cluster DE genes. (h) Violin plot expression of *Hopx*, *Art3*, and
1204 *Ctss* in MOL clusters from scRNA-seq and spatial dataset RSTE1.

1205

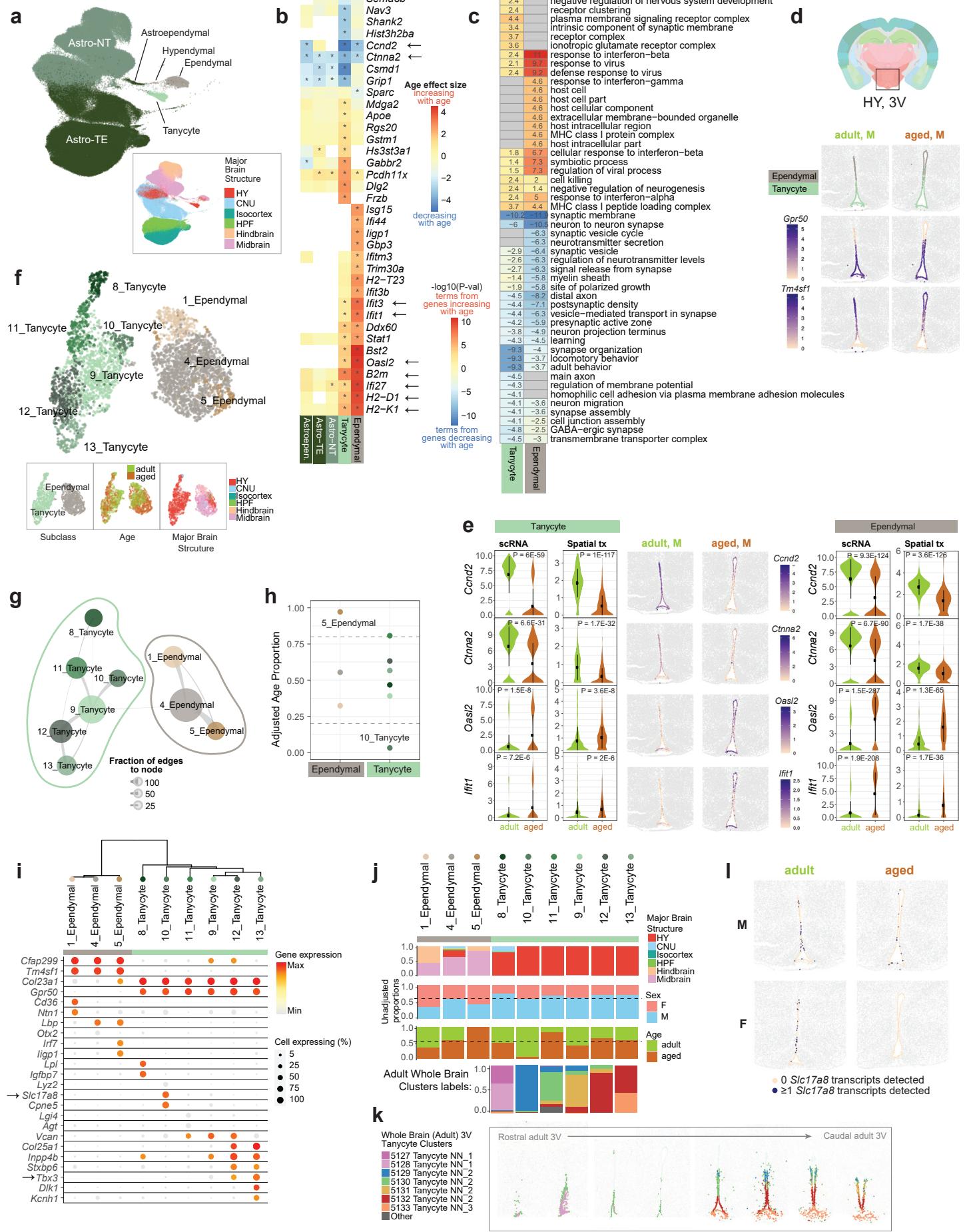
Jin Figure 4



1206 **Figure 4. Age-associated changes in microglia and macrophages.** (a) UMAP of all vascular and
1207 immune cell transcriptomes colored by subclass, sex, and age. (b) Heatmap of age effect sizes of top
1208 age-DE genes in BAM and microglia. Asterisk denotes statistical significance (see subclass level
1209 criteria in Methods). (c) Violin plot expression of *Cd209a* and *Cd209b* in BAM and *Il1dr2* and *Upk1b* in
1210 microglia in scRNA-seq and spatial RSTE1 datasets. (d) Heatmap of the statistical significance of top
1211 GO terms enriched in top age-DE genes from BAM and microglia. Numbers in the plot represent
1212 $-\log_{10}(p\text{-value})$ of each term. Positive numbers are terms enriched in genes that increase with age and
1213 negative numbers are terms enriched in genes that decrease with age. (e) UMAP of immune cells
1214 including microglia and BAM, colored by cluster label, brain structure, sex, and age. (f) Constellation
1215 plot of microglia clusters colored by cluster created as described previously. (g) Marker gene
1216 expression in immune cell types organized in a dendrogram calculated from cluster DE genes. (h) Bar
1217 plot summaries for each cluster colored by brain structure, sex, age, and mapping label from Hammond
1218 et al. 2019 dataset. (i) Heatmap of statistical significance of top GO terms enriched in marker genes
1219 from non-homeostatic microglia clusters. (j) Changes in microglia created as in Figure 3e age
1220 calculated from spatial dataset RSTE1. (k) Changes in mean soma area of microglia cells with age as
1221 estimated from Baysor segmentation. Statistical significance for (j) and (k) are calculated with Student's
1222 t-test. Each point represents a single replicate mouse sample.

1223

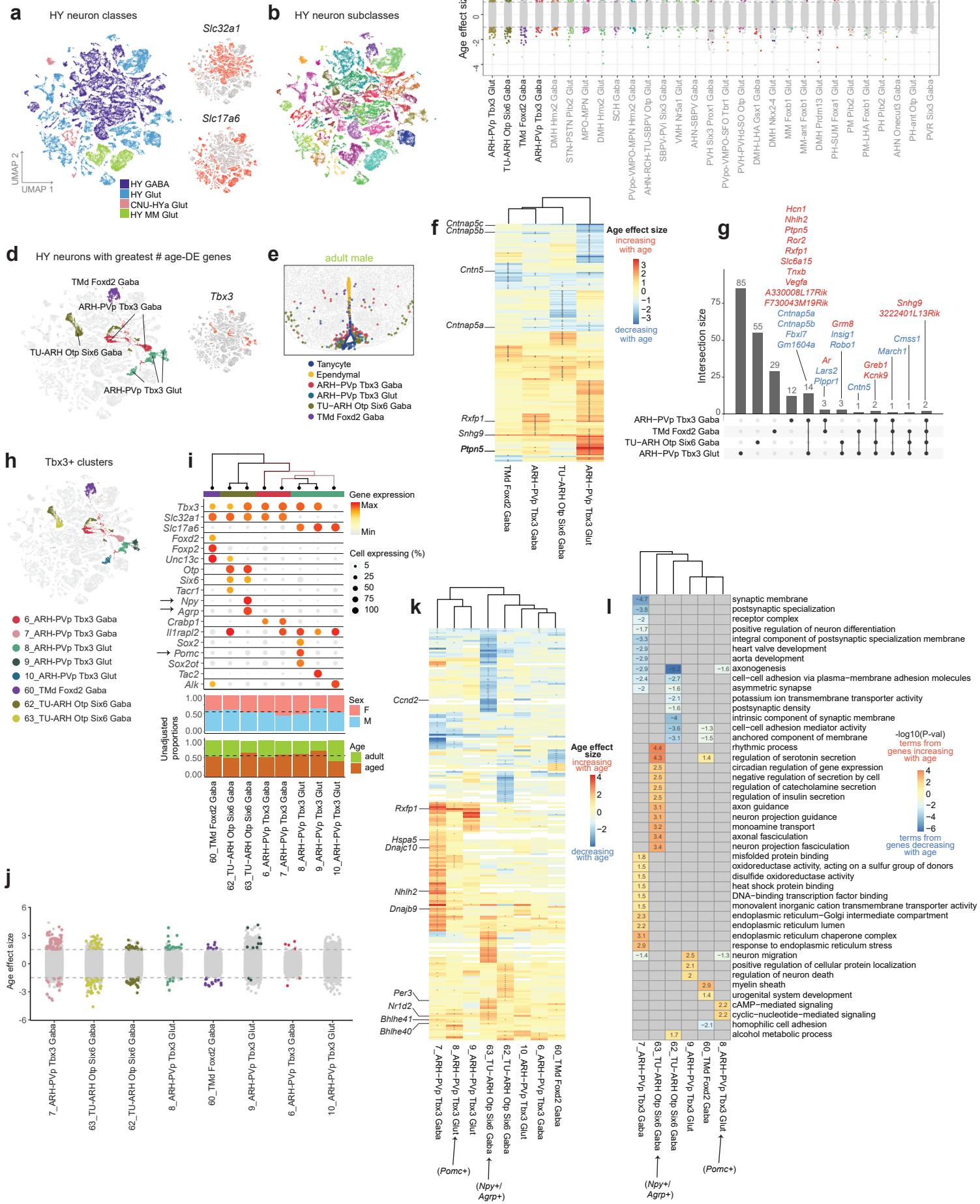
Jin Figure 5



1224 **Figure 5. Age-associated changes in third ventricle tanycytes and ependymal cells. (a)** UMAP of
1225 all Astro-Epen cell types colored by subclass and major brain structure. **(b)** Heatmap of age effect sizes
1226 of top age-DE genes in tanycytes and ependymal cells. Asterisk denotes statistical significance (see
1227 subclass level criteria in Methods). **(c)** Heatmap of the statistical significance of top GO terms enriched
1228 in top age-DE genes from tanycytes and ependymal cells. Numbers in the plot represent $-\log_{10}(p\text{-value})$
1229 of each term. Positive numbers are terms enriched in genes that increase with age and negative
1230 numbers are terms enriched in genes that decrease with age. **(d)** Tanycyte and ependymal cell body
1231 locations in select samples from spatial dataset RSTE2, colored by subclass label (top), *Gpr50* (center),
1232 and *Tm4sf1* (bottom) expression. **(e)** Gene expression of *Ccnd2*, *Ctnna2*, *Oasl2*, and *Ifit1* across
1233 tanycytes (left) and ependymal cells (right) from scRNA-seq and spatial dataset RSTE2 represented by
1234 violin plots. Select adult and aged spatial RSTE2 samples are displayed in the center, colored by
1235 expression of each gene in tanycytes and ependymal cells. **(f)** UMAP of tanycytes and ependymal cell
1236 transcriptomes with additional adult cells from Yao *et al.* 2023 included, colored by cluster, subclass,
1237 age, and brain structure. **(g)** Constellation plot of clusters in (f), created as described previously. **(h)**
1238 Adjusted age proportion of each cluster from (g) colored by cluster and grouped by subclass. **(i)** Marker
1239 gene expression in tanycyte and ependymal cell clusters organized in a dendrogram calculated from
1240 cluster DE genes. **(j)** Bar plot summaries for each cluster colored by brain structure, sex, age, and adult
1241 cell label (see k) from Yao *et al.* 2023. **(k)** Location of tanycyte clusters in the Allen whole mouse brain
1242 cell type atlas¹⁷. **(l)** Visualization of *Slc17a8* gene expression changes in tanycytes and ependymal cells
1243 with age (*Slc17a8* gene expression was binarized in representative samples from spatial RSTE2
1244 dataset).

1245

Jin Figure 6



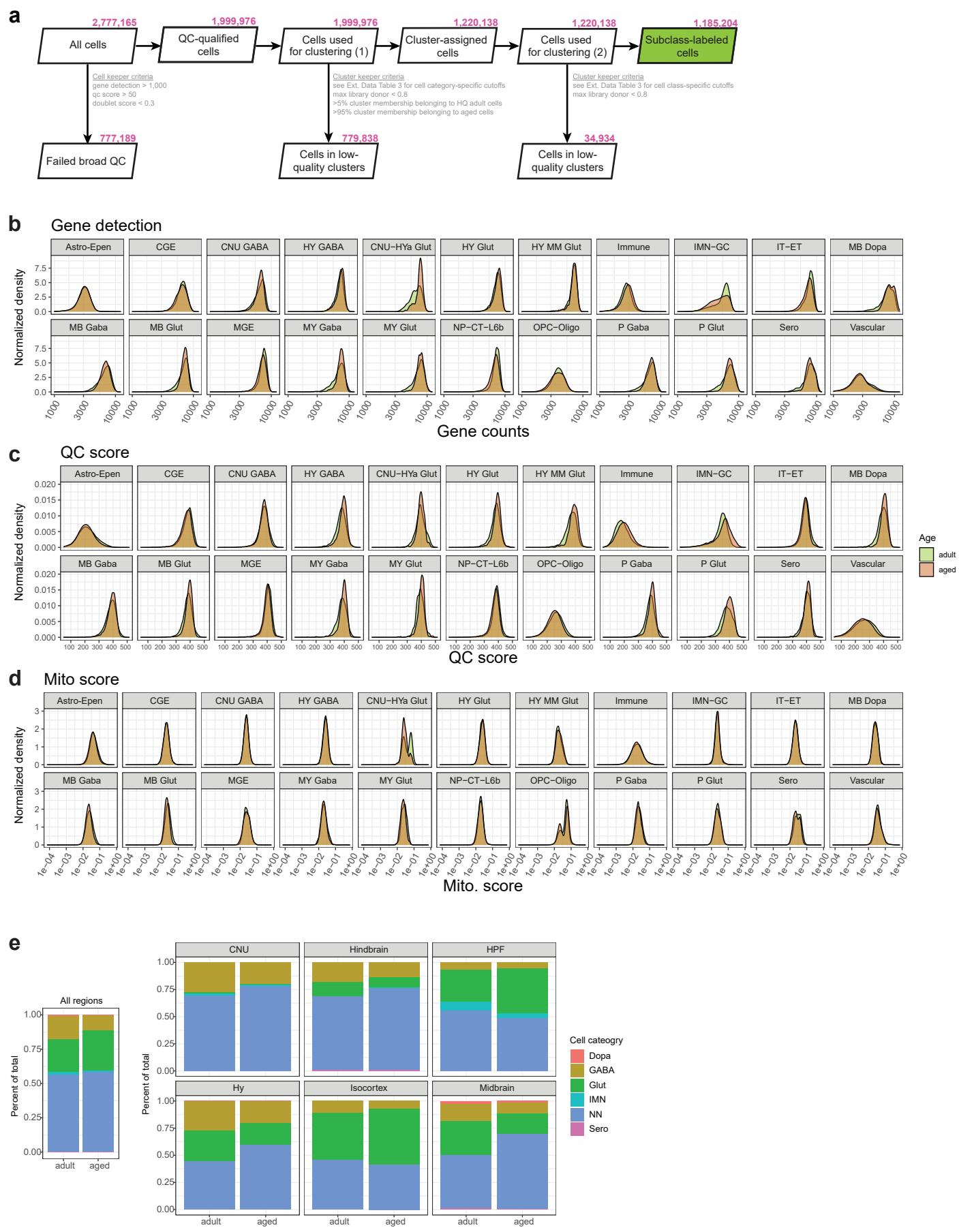
1246 **Figure 6. Age-associated changes in *Tbx3*+** hypothalamic neurons. **(a-b)** UMAP of all
1247 hypothalamic (HY) neurons colored by (a) class, *Slc32a1* and *Slc17a6* expression, and (b) subclass.
1248 **(c)** Age effect sizes of age-DE genes from hypothalamic neuronal subclasses ordered by the number of
1249 age-DE genes, with significant age-DE genes colored. Labels for the top 4 subclasses are emphasized
1250 with darker font on the left. **(d)** Subclasses with the greatest numbers of age-DE genes highlighted and
1251 *Tbx3* expression shown in the same UMAP space as (a). **(e)** Neurons, tanyocyte and ependymal cell
1252 body locations in a representative sample from spatial dataset RSTE2 demonstrating colocalization of
1253 subclasses from (d) around the third ventricle. **(f)** Heatmap of age effect sizes of all age-DE genes in
1254 *Tbx3*+ neuronal subclasses. Asterisks denote statistical significance. Dendrogram represents
1255 hierarchical clustering of subclasses based on age effect sizes. Genes discussed in text are labeled.
1256 **(g)** Upset plot of overlapping age-DE genes between the four *Tbx3*+ neuronal subclasses. Genes
1257 colored in red increase with age while genes colored in blue decrease with age in scRNA-seq data. **(h)**
1258 *Tbx3*+ neuronal clusters colored in the same UMAP space as (a). **(i)** Marker gene expression in *Tbx3*+
1259 neuronal clusters organized in a dendrogram calculated from cluster DE genes. Bar plot summaries of
1260 each cluster colored by sex and age are below. **(j)** Age effect sizes of age-DE genes from *Tbx3*+
1261 clusters ordered from the greatest to least number of age-DE genes, with significant age-DE genes
1262 colored. **(k)** Heatmap of age effect sizes from all age-DE genes from *Tbx3*+ clusters. Asterisks denote
1263 statistical significance (Methods). Dendrogram represents hierarchical clustering of clusters based on
1264 age effect sizes. Genes discussed in text are labeled. **(l)** Heatmap of statistical significance of top GO
1265 terms enriched in marker genes from all *Tbx3*+ neuronal clusters.

1266

1267

1268

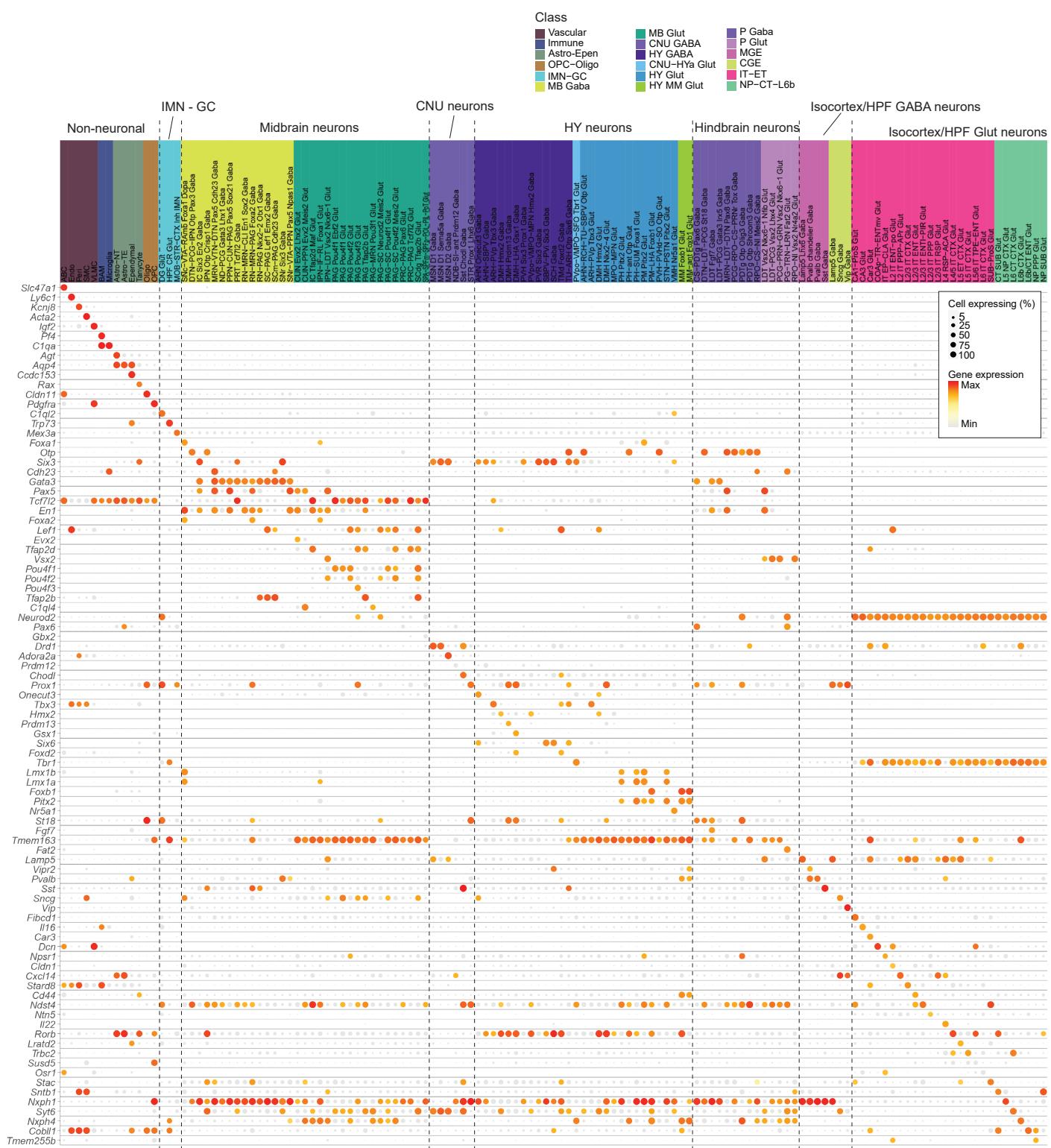
Jin Extended Data Figure 1



1269 **Extended Data Figure 1: Data pre-processing workflow and quality control.** (a) Workflow for pre-
1270 processing of scRNA-seq data. Cells retained at each step are indicated in pink. (b-d) Normalized
1271 density distribution of gene detection (b), QC score (c), and mito. score (d) per cell across different cell
1272 classes and ages. (e) Proportion of cell categories across all regions and within each major brain
1273 structure. Cell category: Dopa, dopaminergic neurons; GABA, GABAergic neurons; Glut, glutamatergic
1274 neurons; IMN, immature neurons; NN, non-neuronal cells; Sero, serotonergic neurons.

1275

Jin Extended Data Figure 2

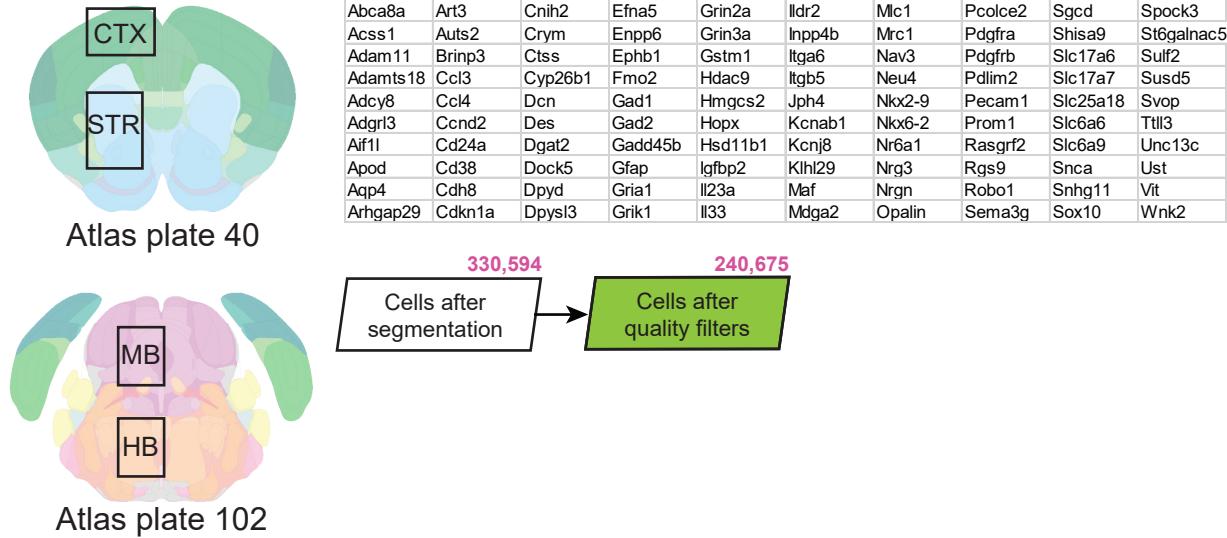


1276 **Extended Data Figure 2: Subclass marker genes.** Dot plot of marker gene expression for 132
1277 individual subclasses of cell types analyzed in this study. Dot size and color indicate proportion of
1278 expressing cells and average expression level in each subclass, respectively. Subclass labels are
1279 colored by cell class.

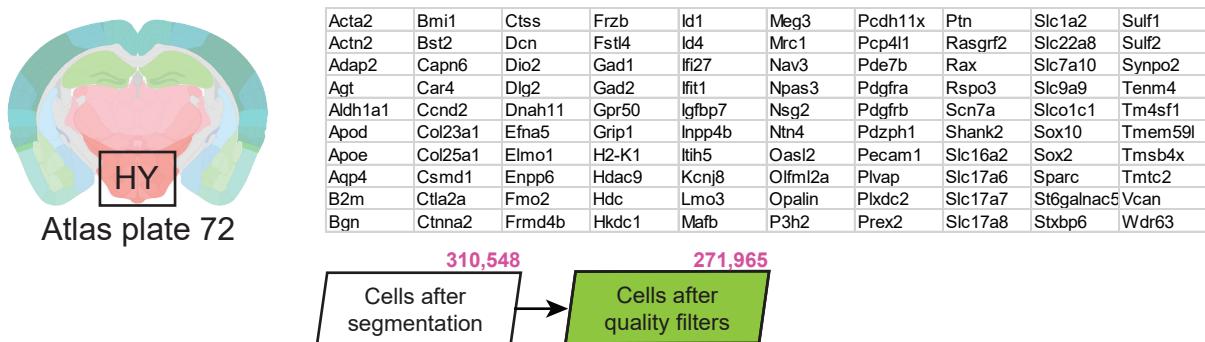
1280

Jin Extended Data Figure 3

a RSTE #1: 4 regions - CTX, STR, HB, MB



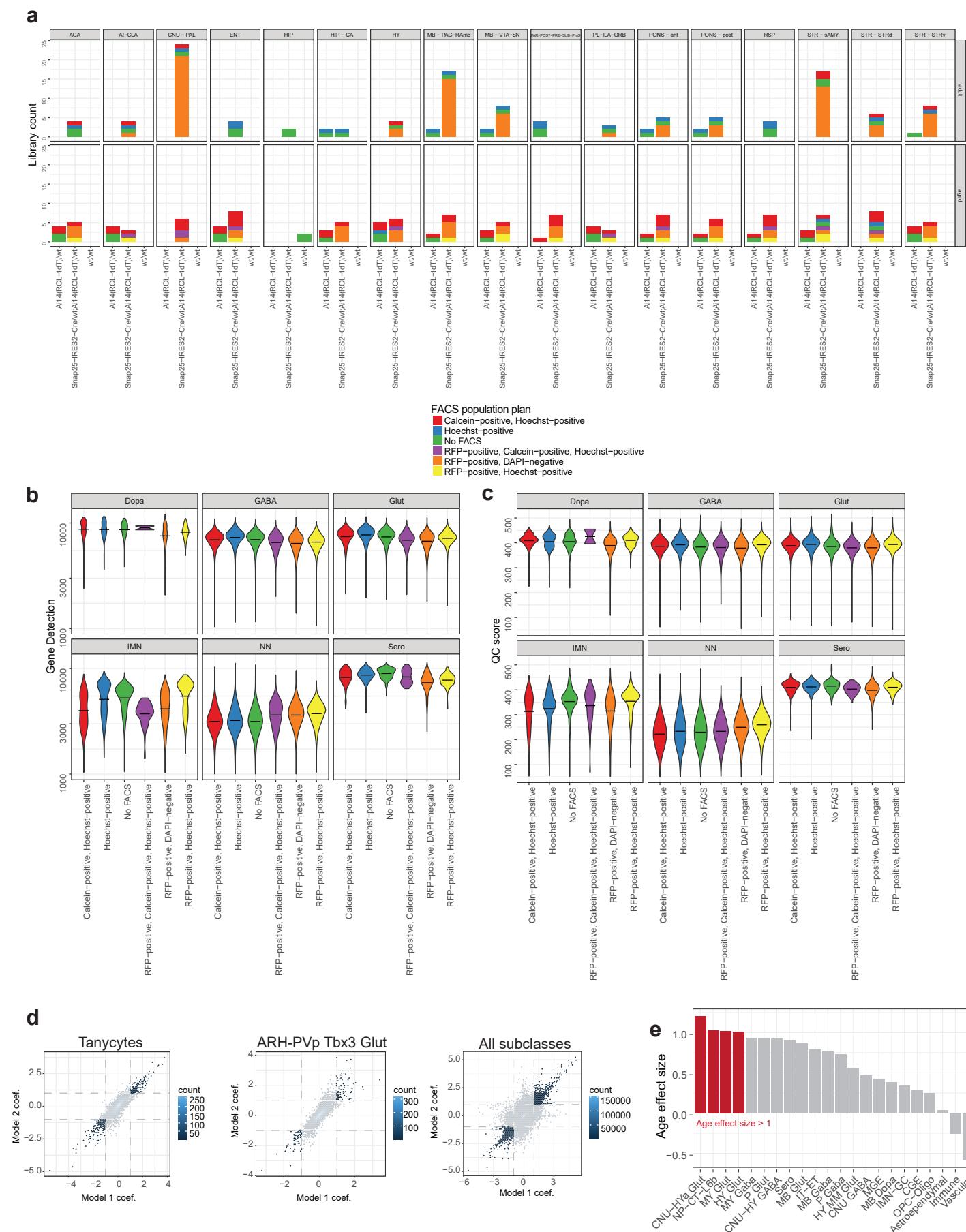
b RSTE #2: 1 region - HY



1281 **Extended Data Figure 3: Summary of spatial transcriptomics datasets. (a-b)** Diagram of brain
1282 regions profiled, gene panels, and pre- and post-filtered cell counts of Resolve spatial transcriptomic
1283 datasets 1 (RSTE1; a) and 2 (RSTE2; b).

1284

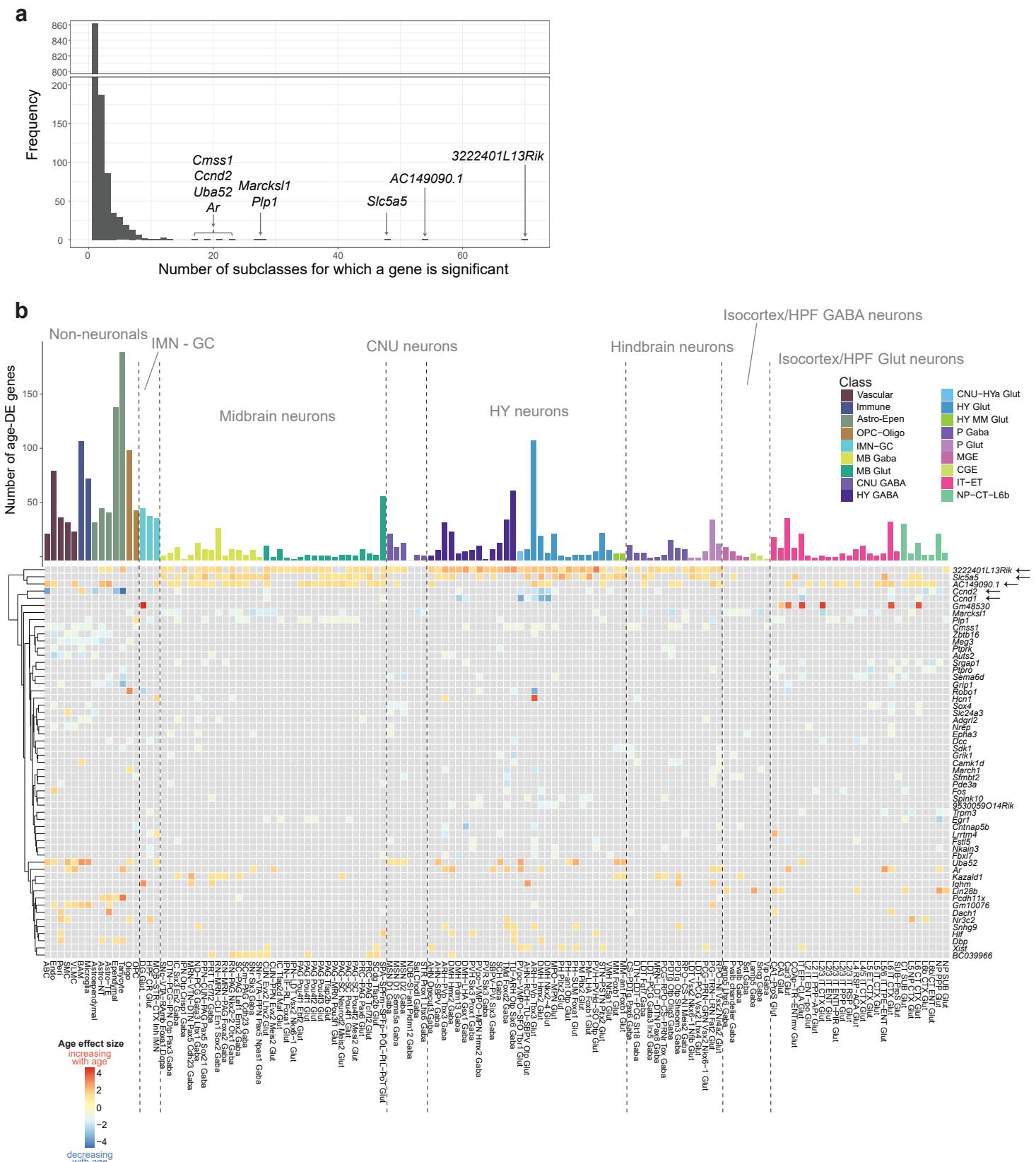
Jin Extended Data Figure 4



1285 **Extended Data Figure 4: Library breakdown and DE gene model.** **(a)** Summary of the numbers of
1286 libraries colored by FACS population plan and grouped by genotype (x-axis), age (rows), and ROI
1287 (columns). **(b-c)** Violin plot summary of gene detection (b) and QC score (c) grouped by FACS
1288 population plan (x-axis) and major cell category. **(d)** Two-dimensional density scatter plots of age effect
1289 sizes (coef) from simple and complex DE gene models plotted against one another for tanycytes only,
1290 ARH-PVp Tbx3 Glut neurons only, or all subclasses. Greater density is marked by lighter blue color.
1291 Dotted lines indicate significant cutoffs used in this study. Genes that pass these cutoffs are included in
1292 this study and summarized in Figure 2. **(e)** Bar plot of the age effect sizes of the gene *Xist* in
1293 decreasing order for all classes with $n > 50$ cells from each age and sex from RFP+, DAPI- libraries
1294 only. Significant changes (age effect size > 1 & $p < 0.01$) are colored in red.

1295

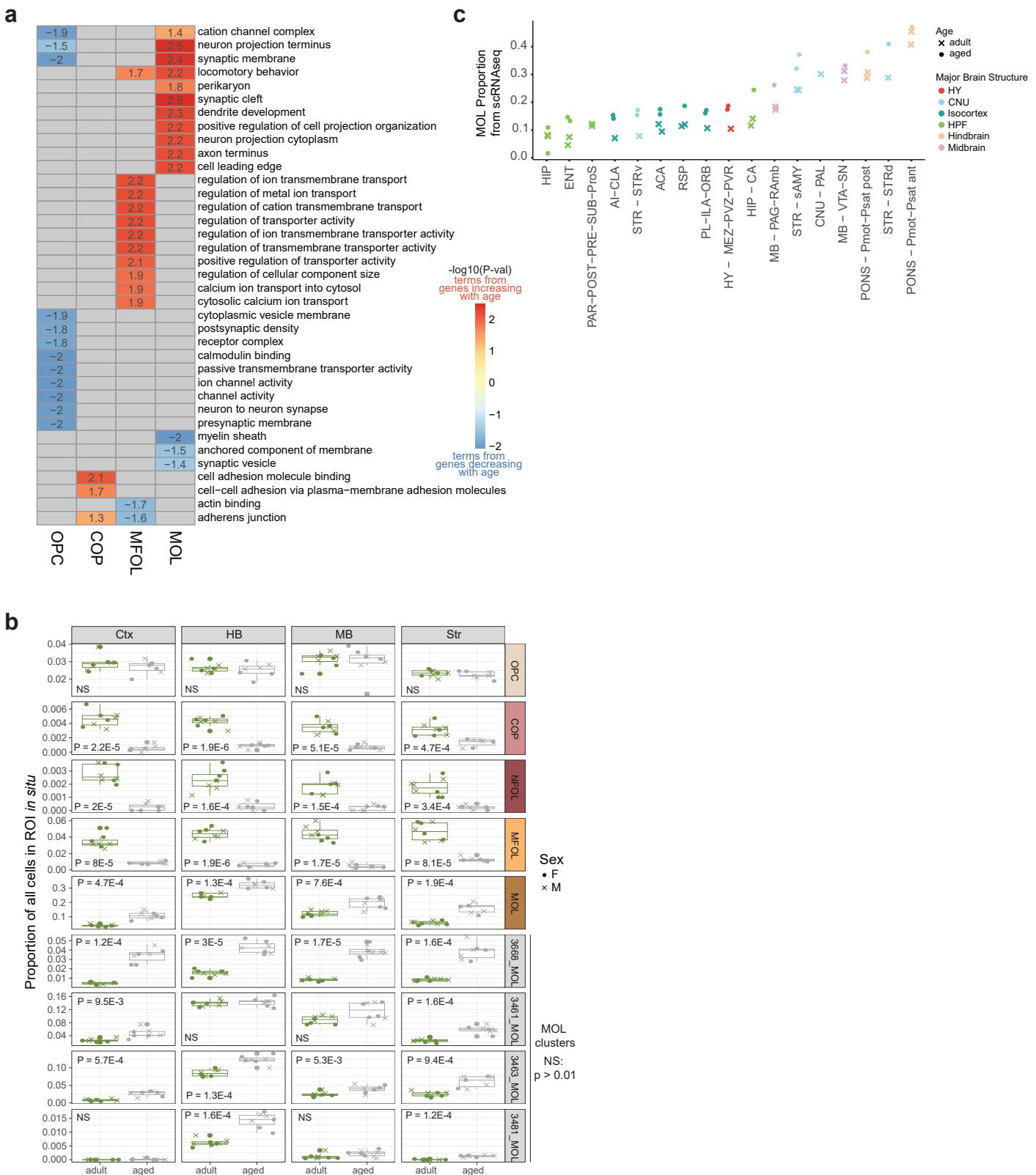
Jin Extended Data Figure 5



1296 **Extended Data Figure 5: Common age-DE genes across subclasses.** (a) Histogram of the number
1297 of subclasses an age DE gene is significant for. (b) Summary of the most commonly observed age-DE
1298 genes across all subclasses. Top: Summary of total age-DE genes colored and ordered by cell class,
1299 identical to that shown in Figure 2. Bottom: Heatmap of age effect sizes of the most common significant
1300 age-DE genes. DE genes that are significant in >5 subclasses are included. Genes are hierarchically
1301 clustered based on age effect size and their relatedness represented by the dendrogram.

1302

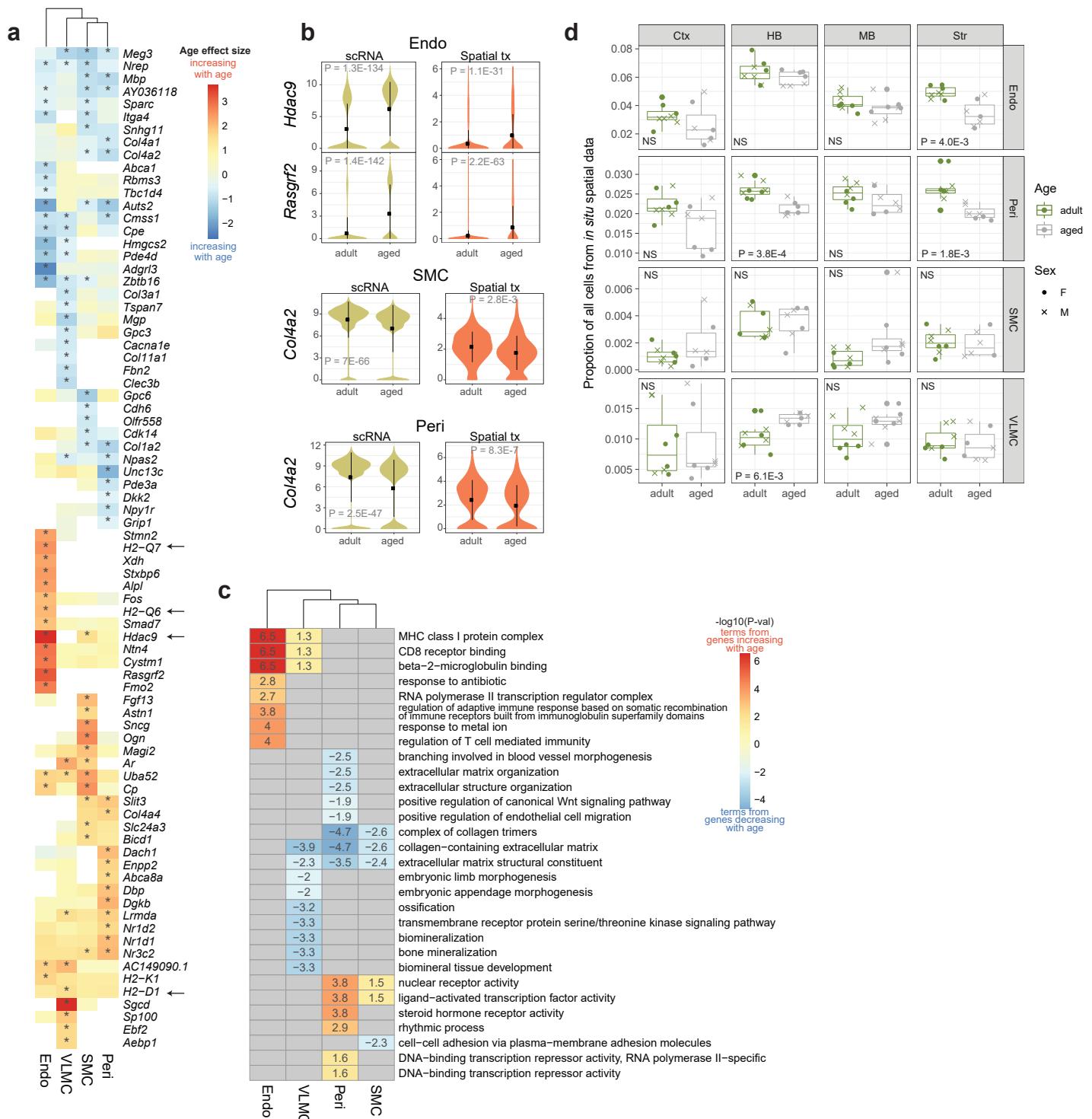
Jin Extended Data Figure 6



1303 **Extended Data Figure 6: GO terms and changes in proportions in oligodendrocyte supertypes.**
1304 **(a)** Heatmap of the statistical significance of top GO terms enriched in top age-DE genes from
1305 oligodendrocyte supertypes. Terms that are enriched in genes that increase with age are colored
1306 redder, while terms enriched in genes that decrease with age are colored bluer. Numbers in the plot
1307 represent $-\log_{10}(p\text{-value})$ of each term. **(b)** Relative changes in abundance of different supertypes and
1308 MOL clusters with age, calculated from spatial dataset RSTE1. A cutoff of $p < 0.01$ was used to
1309 determine statistical significance (Student's t-test; NS, not significant). Each point corresponds to a
1310 replicate mouse sample. **(c)** Proportional changes of MOL with age, calculated from unbiased scRNA-
1311 seq libraries (i.e., libraries processed with the "No FACS" method). Each point represents one scRNA-
1312 seq library.

1313

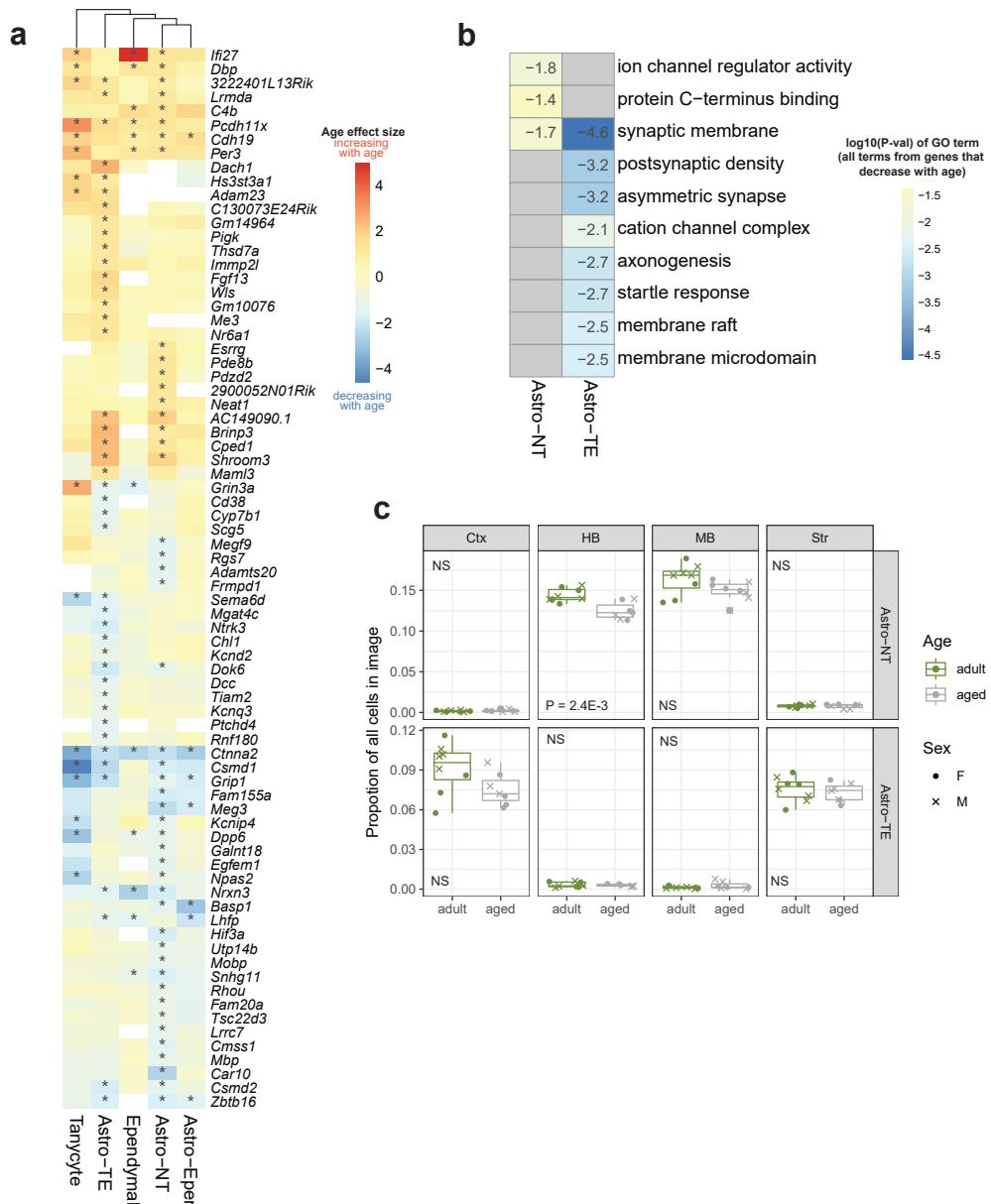
Jin Extended Data Figure 7



1314 **Extended Data Figure 7: Age-associated changes in vascular types.** (a) Heatmap of age effect
1315 sizes of top age-DE genes in Endo, VLMC, SMC, and Peri subclasses. Asterisk denotes statistical
1316 significance. Subclasses are hierarchically clustered based on age effect sizes and represented by the
1317 top dendrogram. (b) Violin plot expression of *Col4a2* in SMC and Peri subclasses, and *Hdac9* and
1318 *Rasgrf2* in Endo in scRNA-seq and spatial RSTE1 datasets. (c) Heatmap of the statistical significance
1319 of top GO terms enriched in top age-DE genes from vascular subclasses. Terms that are enriched in
1320 genes that increase with age are colored redder, while terms enriched in genes that decrease with age
1321 are colored bluer. Numbers in the plot represent $-\log_{10}(p\text{-value})$ of each term. Subclasses are
1322 hierarchically clustered based on scores and their relatedness represented by the dendrogram. (d)
1323 Proportional changes of vascular cell types with age calculated from spatial dataset RSTE1. Statistical
1324 significance is calculated with student's t-test. Each point represents a single spatial replicate mouse
1325 sample.

1326

Jin Extended Data Figure 8



1327 **Extended Data Figure 8: Age-associated changes in astrocytes.** **a)** Heatmap of age effect sizes of
1328 top age-DE genes from Astro-TE and Astro-NT subclasses. Other Astro-Epen subclasses are included
1329 for reference. Asterisk denotes statistical significance. Subclasses are hierarchically clustered based on
1330 age effect sizes and represented by the top dendrogram. **(b)** Heatmap of the statistical significance of
1331 top GO terms enriched in top age-DE genes from Astro-TE and Astro-NT. All terms are enriched from
1332 genes that decrease with age. **(c)** Proportional changes of Astro-TE and Astro-NT cells with age
1333 calculated from spatial dataset RSTE1. Statistical significance is calculated with student's t-test. Each
1334 point represents a single spatial replicate mouse sample.

1335

1336 **Supplementary tables**

1337 Supplementary Table 1: scRNA-seq library list

1338 Supplementary Table 2: All cell subclasses analyzed in this study

1339 Supplementary Table 3: All significant age-DE genes across subclasses, supertypes or clusters

1340 Supplementary Table 4: All significant GO terms by sign at subclass, supertype or cluster levels

1341 Supplementary Table 5: scRNA-seq cluster-level QC parameter cutoffs by cell type groupings

1342 Supplementary Table 6: Resolve spatial transcriptomics cell-level QC parameter cutoffs by cell type
1343 groupings

1344