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Short Summary:

DeepMap is a deep learning-based breeder-friendly python package to perform genomic
prediction. It utilizes epistatic interactions for data augmentation and outperforms the existing
state-of-the-art machine/deep learning models such as Bayesian LASSO, GBLUP, DeepGS,
and dualCNN. DeepMap developed for rice and tested across crops such as maize, wheat,

soybean etc.
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ABSTRACT

Prediction of phenotype through genotyping data using the emerging machine or deep
learning technology has been proven successful in genomic prediction. We present here a
graphical processing unit (GPU) enabled DeepMap configurable deep learning-based python
package for the genomic prediction of quantitative phenotype traits. We found that deep
learning captures non-linear patterns more efficiently than conventional statistical methods.
Furthermore, we suggest an additional module inclusion of epistasis interactions and training
of the model on Graphical Processing Units (GPUS) in addition to Central Processing Unit
(CPU) to enhance efficiency and increase the model’s performance. We developed and
demonstrated the application of DeepMap using a 3K rice genome panel and 1K-Rice
Custom Amplicon (1kRiCA) data for severa phenotypic traits including days to 50%
flowering (DTF), number of productive tillers (NPT), panicle length (PL), plant height (PH),
and plot yield (PY). We have found that DeepMap outperformed the best existing state-of -
the-art models by giving higher predictive correlation and low mean squared error for the
datasets studied. This prediction performance was higher than other compared models in the
range of 13-31%. Similarly for Dataset-2, significantly higher predictions were observed than
the compared models (16-20% higher prediction ability). On Dataset-3, we have also shown
the better and versatile performance of our model across crops (wheat, maize, and soybean)
for yield and yield-related traits. This demonstrates the potentiality of the framework and ease
of use for future research in crop improvement. The DeepMap is accessible at

https://test.pypi.org/project/DeepMap-1.0/.

K eywor ds. DeepMap, Deep Learning, GPU, Quantitative phenotype prediction, Rice.
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INTRODUCTION

To be able to keep pace with the expected increase in food demand in the coming years, crop
breeding must deliver the highest rates of genetic gains to maximize agricultural productivity.
Deep Learning (DL) has emerged as a powerful tool in crop science, offering various
applications such as predicting yield or quality traits from genotypes across different
environments, plant disease recognition using Convolutional Neural Networks (CNNs), and
image-based phenotyping using drones and edge computing devices (Albawi et a., 2017; Zou
et al., 2019; Yaguchi et al., 2019). Harnessing the latent potential of DL's non-linear and
weighted architecture is a crucial step in leveraging DL for crop breeding applications. DL is
a subset of Machine Learning (ML) methods that can identify complex patterns in large
datasets and includes architectures such as Multi-Layer Perceptron (MLP), Deep Neural
Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN),
Auto-encoders (AE), and Generative Adversarial Networks (GANSs) (Goodfellow et a., 2014,
McDowell et al., 2016).

Each DL architecture is designed for specific applications, with CNNs being particularly
well-suited for image processing tasks such as object identification, document analysis,
climate forecasting, medical image analysis, disease diagnosis, drug design, and protein
structure prediction (Lundervold and Lundervold, 2019; Callaway, 2022; Renaud et al.,
2021). RNNs, on the other hand, excel in handling sequential and temporal data, such as text
or videos. Deep Neural Networks offer the ability to capture additional input features, while
GANs and AE are used to generate new data from existing examples, increasing the sample
size and improving model accuracy and performance. DL algorithms, as non-parametric
methods, are more efficient in identifying non-linear patterns compared to traditional
genome-based machine learning methods (Pratley, 2003; Pérez-Rodriguez et a., 2012;
Montesinos-Lépez et al., 2021; van Dijk et al., 2021; Li et al., 2021).

DL provides the flexibility to map complex associations between data and output, relying on
high-quality and sufficiently large training data. Over the past decades, various pattern
recognition models have been employed for genotype-to-phenotype prediction, including
Bayesian Artificial Neural Networks (BNNs), Regularized Neural Networks, Deep Belief
Network (DBN), Reproducing Kernel Hilbert Space (RKHS), Bayesian LASSO (B-LASSO),
Best Linear Unbiased Prediction (BLUP), and deep convolutional neural network (dCNN)
(Gianolaet a., 2011; Rachmatia et al., 2017; Maet al., 2018). Ensemble methods, such asthe
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Stacking Ensemble Learning Framework (SELF) and combinations of statistical techniques
and machine learning models, have been shown to improve model performance (Guzzetta et
a., 2010; Endelman 2011, Liang et al., 2021; Munneb and Henschel, 2021).

Deep neura networks have the advantage of being able to learn from millions of data points
without reaching a performance plateau. This computational tractability is achieved by
leveraging accelerators such as Graphical Processing Units (GPUs), Tensor Processing Units
(TPUs), and Information Processing Units (IPUs), as well as parallel file system technologies
(Renaud et a., 2021). While genomic prediction (GP) methods have been developed and
made available through scripts and CRAN packages, there is a need to optimize these
algorithms with evolving deep learning techniques for the ease of use by non-coding
communities. Thus, the development of a user-friendly Python package named DeepMap,
consisting of just four lines of code, would be highly beneficial for both core researchers and

interdisciplinary communities.

In this manuscript, we describe the structure of the DeepMap framework and demonstrate its
applicability and potential for genomic prediction using three rice datasets. Our results show
improved accuracy in terms of Pearson correlation on Dataset-1 (IRRI-SAH) by 9-30%, on
Dataset-2 (IRRI-SARC) by 11-26%, and on Dataset-3 (1kRiCA) by 23-33% compared to
existing state-of-the-art ML and DL models. Furthermore, DeepMap has the versatility to be

applied across different crops and for both qualitative and quantitative traits.
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RESULTS

Description of DeepM ap

DeepMap is a deep learning-based prediction model built with a python3™ that allows end-
to-end model training and prediction of quantitative phenotypic trait value from the
genotyping data. The four-line code takes genotypic and phenotypic data in the required
format. Then, it calls the main function to train the model and give the output in comma-
separated files for ‘k’ cross-validations of predicted values, model training/validation loss,
and scatter plot of actual vs. predicted plots. Conceptually, the SNPs information along with
the epistatic interaction is passed to the fully connected seven layer deep neural network
architecture that leads to the single neural unit output of predicted phenotypic trait value. The
parameters can be changed and passed through a function call which gives flexibility to the
function and gives a scope of optimization. The overall workflow from data generation to

model prediction can be found in Figure 1.

The framework consists of five major steps, which are as follows:

Data input. The phenotypic values are generated for the trait of interest after following the
experimental design. The corresponding genomic information can be generated through
either sequencing (whole genome, exome sequencing) or genotyping (GBS, SNP chip). Since
most significant crops are sequenced and available in open source, the genomic information
can be downloaded from their respective databases. The genotypic data and its corresponding
phenotyped trait values are passed to the model for prediction.

Data preprocessing. As per raw genotypic and phenotypic data comprehends an ample
amount of manual (human) and field errors. Therefore, data pre-processing is one of the
major steps to clean up the data by removing missing values and unexpected observations.
The genotypic data should be cleaned for Minor Allele Frequency (MAF), missingness
percentage, and can be reduced further based on the LD (Linkage Disequilibrium) or co-
linearity between the markers. Further, conversions are performed on genotypic data to
convert the raw data into model-required format (converting plink file (PLINK 2.00 alpha
accessed through link: https://www.cog-genomics.org/plink/2.0/ ) format into .bed (PLINK
binary biallelic genotype table), .oim (PLINK extended MAP file), and .fam (PLINK sample
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information file) files). The proposed model requires four input files that include, three files
of marker genotypic data (Single Nucleotide Polymorphisms (SNPs) datain numerical format
(Table S1), additive (Table S2), and dominance (Table S3) interactions) and a single file of
observed phenotypic trait data (Table $4). Figure 1 shows a dataset of ‘n” number of
Genotypic Lines (GL) with ‘m’ number of SNPs. SNPs encoded as ‘0’ represent homozygous
alele 2, ‘1’ represents heterozygous alele, and ‘-1' represents homozygous alele 1.

The *-1' was also represented for missing aleles, as the frequency was very low in the
dataset. The observed phenotypic trait values were passed as a single column [P = {Py, P,,
Ps,...., Pa}, for each GL] through the model. The processed dataset was then divided into two
groups called training set (80%) and validation set (20%) using the K-fold algorithm of
sklearn (Garreta, 2013) python package (percentage of train and validation set can be altered
while calling the function for each dataset). Subsequently, the training set genotypic and
phenotypic data undergo a downstream pipeline to train the model, and the validation set is
unseen to the model which we use to predict the phenotypes and correlates with actual

phenotypic trait values of the validation set.

Data augmentation. In this step, epistatic interactions are augmented using additive and
dominance matrix information provided along with the SNPs data as an input to the model. In
Figure 1, the additive information (A) and dominance information (D) are used to generate
additive-additive interactions (AxA), dominance-dominance interactions (DxD), and
additive-dominance interactions (AxD). These five epistatic interactions are used to train the
model.

Model training. The training dataset contains both the phenotypic and genotypic data given
to the model for learning the genomic patterns corresponding to the phenotypic trait value.
For i"™ genotypic line, GL' = {g1i,g2i,931i,..,gni} where gni is the epistatic
interaction of i™ and n™ genotypic line, and ‘n’ is the number of genotypic lines. The model
was trained using a deep neural network algorithm and the hyperparameter (based on grid
search; further information is available in the methods section) is optimized to increase the
model's performance and reliability. As per the phenotypic trait of interest, the predicted
output might be quantitative or qualitative. In DeepMap, we have used ten-cross validations
for quantitative complex phenotypic traits for the prediction. The proposed model can be used
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for the qualitative trait of interest by changing the output function to a sigmoid or softmax

activation function in the output layer.

Model prediction. The validation dataset contains only genotypic information and is given
to the model to check the model's performance by comparing the predicted phenotypic
value with the actual value. The performance of the model could be optimized by
changing the hyperparameters of the model.

Evaluation of model perfor mance

We independently trained the model on three different rice datasets (Dataset-1, Dataset-2, and
Dataset-3). To check the versatility of our model to use for other crops, we trained and
validated DeepMap with datasets of wheat, maize, and soybean. For the performance
evaluation, we compared the predictive ability of DeepMap with Bayesian LASSO, rrBLUP,
DeepGS, and dualCNN in all the selected data sets.

DeepMap application in Dataset-1

A set of 2,229 rice varieties from 3K rice panel (3K RGP, 2014) phenotyped at International
Rice Research Ingtitute — South Asia Hub (IRRI-SAH) (Hyderabad, India), have been used as
the first dataset to train and evaluate DeepMap. We selected five yield and yield related traits
(DTF, NPT, PL, PH, and PY) because they showed significant variation among themselves
and had higher heritability, making them highly suitable for GP (Table 1).

The experiment was performed on DeepMap for ten-cross validations on these five
phenotypic traits of IRRI-SAH location (Supplementary Table S5 to Table S14 for
prediction performance and cross-validation results). Average Pearson Correlation
Coefficient between the predicted and observed phenotypic values for the validation dataset
was 0.74, 0.65, 0.67, 0.76, and 0.70 for DTF, NPT, PL, PH, and PY (Figure 2a),
respectively. The DeepMap outperformed (Table 2) standard best-performing methods by
14%, 19%, 25%, 13%, and 31% for the DTF, NPT, PL, PH, and PY traits, respectively. In
Table 3, states the metric of model evaluation for model performance where, Mean Squared
Error (MSE) is 0.52, 0.71, 0.67, 0.47, and 1.98 on DTF, NPT, PL, PH, and PY respectively
(Figure 2d), obtained on 10,000 epochs. As there is no upper limit of MSE, but the lower
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M SE represents the lower error in predicted phenotypic trait values. Thus, minimized error
(less than one) in DTF, NPT, PL, PH shows significant predictions, and MSE > 1 in PY
shows that phenotypic trait is complex to predict, where MSE can be further reduced by
hyperparameter optimization. The stretched bound of Pearson correlation and MSE of NPT
shows the diversity in mapping and complexity of prediction. The Coefficient of
determination metric is an additional statistical measure for the regresson model and the
corresponding scoring for DTF, NPT, PL, PH, and PY are 0.49, 0.03, 0.24, 0.55, and 0.43,
respectively. In Figure Sl, the training and validation dataset shows the convergence of
training and validation (testing) loss that substantiates the model’s prediction ability. The
training and validation loss converges at the 1433 epoch for DTF, 148" epoch for NPT,
587" epoch for PH, 377" epoch for PL, and 3987" epoch for PY. Comparatively, plot yield
(PY) takes more iteration and time to converge the losses. The predicted vs actual value

graph (Figure S2) reveals the prediction performance of the model.

DeepMap application in Dataset-2

A set of 2,145 rice varieties from 3K rice panel (3K RGP, 2014) phenotyped at International
Rice Research Institute - South Asia Regional Centre (ISARC) (Varanas, India), have been
used as the dataset 2 for the model training and evaluation. The same yield and yield related
traits as in Dataset-1 were used here as well (Supplementary Table S15 to Table S24 for
prediction performance and cross-validation results). An average Pearson Correlation
Coefficient (r) were found to be 0.84, 0.58, 0.70, 0.73, and 0.72 for DTF, NPT, PL, PH, and
PY, respectively (as shown in Figure 2b) in the unseen/validation dataset. The DeepMap
outperformed (Shown in Table 2) standard best-performing methods by 15%, 25%, 29%,
19%, and 27% for the DTF, NPT, PL, PH, and PY traits. Table 3 states the metric of model
evaluation for model performance where, Mean Squared Error (MSE) is 0.35, 0.88, 0.70,
0.54, and 1.96 on DTF, NPT, PL, PH, and PY, respectively (as shown in Figure 2e), obtained
on 10,000 epochs. Thus, minimized error (less than one) in DTF, NPT, PL, and PH shows
significant predictions, and MSE > 1 in PY shows that phenotypic trait is complex to predict,
where MSE can be further reduced by hyperparameter optimization. The stretched bound of
Pearson correlation and MSE of NPT phenotypic trait shows the diversity in mapping and
complexity of prediction. The Coefficient of determination for the regression model is 0.65,
0.02, 0.48, 0.43, and 0.46 for DTF, NPT, PL, PH, and PY, respectively. As seen in Dataset-1,
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(the prediction ability of our model is high for this dataset too, which was validated through
the convergence of training and validation (testing) loss (Figure Sl). The training and
validation loss converges at the 864" epoch for DTF, 206" epoch for NPT, 945" epoch for
PH, 3488™ epoch for PL, and 6245™ epoch for PY. Since we have chosen the common
germplasm for al the traits in Datasets-1 and -2, the results showed a similar trend for the
traits. The complex phenotypes such as PY are difficult to predict, comparatively. The
predicted vs actual value graph (Figure S2) reveals the prediction performance of the model
for Dataset-2.

DeepMap application in Dataset-3

This dataset consists of 353 accessions genotyped using the 1K-Rica (Arbelaez et al., 2019)
Custom Amplicon (1k-RiCA), arobust custom sequencing-based amplicon of 967 SNPs. We
considered three phenotypic traits, flowering time, grain yield, and plant height to calculate
the predictive ability of DeepMap. The reported predictive abilities of the best performing
model (RKHS G+A) based on genomic selection were 0.71, 0.36, and 0.65 for Flowering
time, grain yield, and plant height, respectively (as shown in Figure 2c). The DeepMap
reported 0.94, 0.76, and 0.98 for Flowering time, grain yield, and plant height, respectively,
and outperformed the state-of-the-art genomic prediction models in the range of 23-40%
(Supplementary Table S25 to Table S30 for prediction performance and cross-validation
results). Table S25 states the metric of model evaluation for performance where the Mean
Squared Error (MSE) is 0.11, 0.49, and 0.01 on the corresponding phenotypic traits as shown
in Figure 2f.

Validation of DeepM ap acr oss crops

We have also performed the genomic prediction across crops including wheat, maize, and
soybean. The 1275 genotypes of wheat were considered with 5741 SNPs for spike grain
number (SGN) and time young microspore (TYN). The Pearson correlation for SGN and
TYM obtained was 0.48 and 0.85 (9-12% increase with DeepMap). The 309 genotypes of
maize were used with 309 SNPs for DTF and Grain Yield (GY). The predictive ability
achieved was 0.54 and 0.73 (14-19% increase). The soybean’s 5558 genotypic lines with
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5140 SNPs for phenotypic traits including yield, protein and height were considered. The
Pearson correlation achieved was 0.56, 0.80 and 0.86 (11-24% increase with DeepMap).

DISCUSSION

We have presented our DeepMap framework, demonstrating its uses and performance on

three case study datasets. Its main advantages are as follows:

1. From the user’s perspective, DeepMap is hosted on Python Package Interface (PyPI
accessed using link https:.//pypi.org/) (DeepMap PyPl link is in code availability

section) and the four-line-code execution of the pipeline in a single program run
makes it easy to use, unlike previously available lengthy R scripts. It works as a black
box for the non-coding communities and, gives a scope of hyper parameterization to
increase the performance by changing the function call parameters. The generalized
architecture of DeepMap for genotype to phenotype prediction makes it directly

applicable to arange of genomic selection challenges.

2. From a developer’s perspective, DeepMap is an open-source deep |earning-based
python package with version control, continuous integration, and easy addition of new
features hosted on GitHub (Link is available in code availability section). This
flexibility increases the maintainability and future developments in DeepMap by the

community, for example, the addition of crop data like maize, wheat, and Soybean.

3. Computational efficiency: DeepMap is developed to leverage Graphical Processing
Units (GPUs) for faster training and better prediction accuracy. However, it can also
work on Central Processing Units (CPUs) but it would take more training time. The
future of DeepMap’s computational power is to deploy on Amazon Web Services
(AWS) and utilize cutting-edge hardware accelerators like GPUs, TPUs, and 1PUs.

4. Finadly, the competing performance and ability to outperform the state-of-the-art
methods (Table 2) demonstrate that the utilization of a non-linear deep learning
framework and inclusion of epistasis interactions improves the model's prediction
ability.

In summary, DeepMap is the first python package based on deep learning for genotype to
phenotype prediction. It features a four-line code for genomic selection for quantitative

phenotypes. Compared with other well-known machine and deep |earning methods (Bayesian
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methods, GBLUP (Tuberosa and Crossa, 2019) , rfBLUP , and DeepGS), DeepMap shows
higher prediction accuracy for the quantitative phenotypic prediction (Table 2). The
DeepMap can aso be employed for qualitative (categorical) phenotype prediction by
changing the output activation function in the last layer. The accuracy of the model can be
increased by developing region-based (location-based) or variety-based (crop/species-based)

prediction models that would open doors to widen genomic prediction challenges.

In the future, we plan to extend our model's scope by incorporating multiple input factors
such as environmental (Montesinos-Lopez et a., 2018) information, soil information, and
image-based phenotyping data. We will expand the package to support automated deep
learning (AutoDL) to automatically adjust hyperparameters for ease of use for non-coding
communities and extend the use of prediction-based breeding across crops/species. These
features will be available in the upcoming version of DeepMap. We have used epistatic
interactions that shows our model is working better than the standard machine/deep learning
models. We have used our model on various crops like maize, wheat, and soybean that shows
that it is applicable to other crops also. We have used three datasets of rice of different

|ocations that show it can be used for different environments locations.
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MATERIALSAND METHODS

Generation of plant datasets

Two of the datasets (Dataset-1 & Dataset-2) used in our study are from 3K rice panels. The
Dataset-1 consists of 2,229 rice accessions and had been evaluated at International Rice
Research Institute — South Asia Hub (IRRI-SAH), Hyderabad, India (17.4993° N, 78.2759°
E). Dataset-2 is a set of 2,145 rice accessions and had been evaluated at International Rice
Research Institute - South Asia Regional Centre (ISARC), Varanas, India (25.3024° N,
82.9491° E). Both subsets were grown under irrigated-Transplanted Rice (TPR) condition
during wet season-2019 (commenced on 18th July 2019) with an objective to evaluate
various yield and yield related traits. The plants were organized in an Augmented
Randomized Complete Block Design (RCBD) with four checks repeated in each block.

The selected five traits (DTF, NPT, PL, PH, and PY) were analyzed individually using
residual maximum likelihood (REML) in GenStat 17 (https://www.vsni.co.uk/) in a mixed

model approach considering genotypes as random effect and block as a fixed effect. The

REML analysis of Dataset-1 showed that variances due to genotypes (o°g) were significant
for al the traits, indicating the presence of significant variability among genotypes. The range
in each trait was high, and high broad heritability (H%) > 60% for altogether studied traits
were reported in al experiments with a range of 0.72 to 0.91. The mixed model REML
analysis of variance revealed a significant variation among the lines for all traits. The
Dataset-2 also showed high range of heritability (0.71 to 0.88) for all the five traits (Table 1).
Best linear unbiased predictors (BLUPSs) were obtained for each accession's traits for both the
datasets. The phenotypic and genotypic data for the Dataset-3 was directly taken from the
1K-RiCA®,

Epistasisinteraction and DeepMap architecture

The elementary neural network architecture comprises of ‘u’- input variables (I = {gi, 02,
0s... 94}), ‘h’- hidden layers, and ‘I’ - output layers (where, ‘u’, ‘h’ and ‘I’ € N (Set of Natural
Numbers)). The genotypic input along with epistasis interactions that include, Additive (A),
Dominance (D), Additive x Additive (A x A), Dominance x Dominance (D x D), Additive x
Dominance (A x D), are given to the model in the form of tensors/array. The genotypic lineis

mapped with quantitative/qualitative phenotypic output as,

(@™, @9, @97, )
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where g" is the i"-germplasm input containing g1i,92i,931i,..,gni} Where‘n' isthe
number of genotypic lines mapped with an associated p® phenotypic trait value for ‘m’
number of SNPs germplasm/genotypes. The prediction on the training set is,

Z0=o W'+ b)

where Z" is the prediction output obtained from an activation function applied on W'
transpose of weighted matrix wg) W1(,i) wz(i),...,w,(,f) , | is a matrix of input containing
genotypes and phenotypes for ‘n’ germplasm and ‘m’ SNPs, and b is taken as a bias. The
Rectified Linear Unit (ReLU) (Garreta, 2013) activation function is used in hidden layers of
DeepMap, and the Linear activation function (Garreta, 2013) is used in the output layer for
complex quantitative phenotypes, while sigmoid/SoftMax can be used for qualitative output.

The error function for predicted and actual values is subjected to minimize,
L (§) =- (y.logy + (1-y).log(1-¥))
Where, L (§,y) = —log—$), ify=0 L(§,y)=—logy, ify=1

That states if y = 1 then we have to minimize the logy to keep ¥ closeto y. conversely, if y =
0, then we have to increase log(1- §) given the fact to plummet . Where L is an error
function implemented on y (actual phenotypic trait value) and y (predicted phenotypic trait

value). The combined error function (CEF) for all training examplesiis,

CEF w,b) = — 1/mz [y(@).logy(i) + (1 —y(D)-log(1 - ()]
i=0

The CEF tends to minimize genotypic patterns through training to the model. The proposed
model is based on Dense Neural Networks (DNNSs) as shown in Figure 2.

Genotypic input preparation

The genotypic data were pre-processed using R-script provided in the DeepMap package
(https://github.com/IRRISouthAsiaHub/DeepM ap/) where snpStats (Clayton, 2021), rrBLUP,
and sommer (Covarrubias-Pazaran, 2016) were utilized for additive and dominance matrix
generation from the plink genotypic data (consists of .bed, .bim, and .fam file formats). This
genotypic information is changed into a numeric format: SNPs encoded as ‘O’ represent
homozygous allele 2, ‘1’ represents heterozygous allele, and ‘-1’ represents homozygous

alele 1. The ‘-1’ was also represented for missing alleles, as the frequency was very low in
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the dataset. The epistasis interactions are given to the model to train the neural weights and
reduce the error loss. After grid search optimization, the DeepMap model has primed with
seven hidden layers with 512, 512, 512, 512, 256, 32, and one neural unit, respectively, a
single output is anticipated. The functional python programming (Van Rossum, 2010)
approach is employed to prevent the shared state, mutable variables and support the
construction of pure functions for the model development using open-source libraries,
including Keras (Gulli and Pal, 2017), sklearn (Garreta, 2013), scipy (Virtanen et al., 2020),
pandas (McKinney, 2010), numpy (Harris et al., 2020) and math.

The core function is main(), which further calls its corresponding subfunctions
data_preprocessing(), DeepMap(), plot() and scatter_plot() functions for independent call by
value execution. The model is trained on NVIDIA GeForce GTX 1050Ti GPU, having
2200M transistors on 14nm technology with 4096MB memory size configured with CUDA
10.2. The detaled software and hardware information is mentioned in the supplementary.
The genotypic data for Datasets-1 and -2 are taken from https://snp-seek.irri.org/ for the 3K
rice panel dataset (3380 SNPs). The number of genotypes for both datasets is taken common
encompasses 532 for DTF, 1316 for NPT, 1223 for PL, 963 for PH, and 1163 for PY. Each
dataset is divided into training and validation set with 4:1 and to uphold the reliability of
performance, both sets were split into k-folds cross-validation, where k was taken ten

(reference). The training set consisted of nine folds, and validation had one-fold.

Training and evaluation:

The architecture of the DNNs used in our experiment is shown in Figure 1. We used ReLU
and linear activation functions in the network with the Adam optimizer. The minimum
learning rate was set to 0.001 with a factor of 0.5 and patience as 1. The early stopping was
placed on validation loss with patience 20. The training set was executed for 10,000 epochs
with 2143 batch size on 24GB random access memory. These values are used as a default for

the corresponding parameters in our model.

Following the training phase, the model undergoes validation on certain performance
parameters, including mean squared error (M SE), root mean squared error (RMSE), R*Error,
and scatter plot of normalized predicted vs actual values, and training loss function graph to

ensure convergence. The genotyping and phenotyping information for Dataset-3 is available
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a 1K-RiCA_Data for 353 germplasms and 967 SNPs. The data was trained with default
hyper-parameters of DeepMap on the Training set (80%) and validated on the Validation set
(20%).

DATA AVAILABILITY

The genotypic data of 3K Rice can be downloaded from https://snp-seek.irri.org/, and
phenotypic data is available at the DeepMap’s GitHub repository. Moreover, the region
(Hyderabad and Varanasi) and trait (DTF, NPT, PL, PH, and PY) based models, results,

outputs, and validation parameters is also available in the GitHub.

CODE AVAILABILITY

The DeepMap software has been released to the Python Package Index at
https:.//test.pypi.org/project/DeepM ap-1.0/. Its source code and documentation are freely
available at https://github.com/IRRISouthAsiaHub/DeepMap, and aso in figshare
https://figshare.com/articles/software/DeepGS python_py/23532063. Data pre-processing

R-script is available a GitHub repository. Moreover, the region/variety-based
models/outputs are available at Result directory of GitHub repository and code for
standard GS models is available at Models directory of GitHub repository (including the
DeepGS python version).

ACKNOWLEDGMENTS

The authors express sincere thanks to the Department of Biotechnology (DBT),
Government of India for financial support under the project of ‘Development of superior
haplotype-based near-isogenic lines (Haplo-NILs) for enhanced genetic gainin rice’ grant
(BT/PR32853/AGill/103/1159/2019).

AUTHOR CONTRIBUTIONS

P.S., and V.K.S. conceived the idea and supervised the study. P.S,, V.K.S., A. Kumar and
K.T.S. interpreted the results and wrote the first draft of the manuscript. A. Kumar.
contributed to the development and evaluation of DeepMap. A.K., K.T.S. and N.G.


https://doi.org/10.1101/2023.07.26.550275
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.26.550275; this version posted July 29, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

contributed to the statistical analysis of the genotypic data. U.M.S., C.V. and K.J.P. generated
the phenotypic data in IRRI-SAH and ISARC locations. P.J.P. pre-processed and analysed
the phenotypic data. P. S., V. K. S., A. Kohli, W.H., B.M. and S.B provided comments on the
manuscript and edited the MS. All authors read and approved of the final manuscript.

CONFLICT OF INTEREST

The authors declare no competing interests.

ADDITIONAL INFORMATION

The supplementary file for this research manuscript is attached.


https://doi.org/10.1101/2023.07.26.550275
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.26.550275; this version posted July 29, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

REFERENCES
3K RGP. (2014). The 3,000 rice genomes project. GigaScience, 3(1), 2047-217X.

Albawi, S, Mohammed, T. A., & Al-Zawi, S. (2017). Understanding of a convolutional
neural network. In 2017 International Conference on Engineering and Technology (ICET)
(pp. 1-6). IEEE.

Arbelaez, J. D., Dwiyanti, M. S., Tandayu, E., Llantada, K., Jarana, A., Ignacio, J. C., Platten,
J. D., Cobb, J., Rutkoski, J. E., Thomson, M. J., & Kretzschmar, T. (2019). 1k-RiCA (1K-
Rice Custom Amplicon): a novel genotyping amplicon-based SNP assay for genetics and
breeding applicationsinrice. Rice, 12(1), 1-15.

Callaway, E. (2020). 'It will change everything: DeepMind's Al makes gigantic leap in
solving protein structures. Nature, 588(7837), 203-204. doi: 10.1038/d41586-020-03348-4.
PMID: 33257889.

Clayton, D. (2021). snpsStats: SnpMatrix and XSnpMatrix classes and methods R package
version 1.44.0.

Covarrubias-Pazaran, G. (2016). Genome assisted prediction of quantitative traits using the R
package sommer. PLoS One, 11, 1-15.

Endelman, J. B. (2011). Ridge Regression and Other Kernels for Genomic Selection with R
Package rrBLUP. The Plant Genome, 4(3), 250-255.

Garreta, R. (2013). Learning scikit-learn: Machine Learning in Python. Packt Publishing.

Gianola, D., Okut, H., Weigel, K. A., & Rosa, G. J. (2011). Predicting complex quantitative
traits with Bayesian neural networks: a case study with Jersey cows and wheat. BMC
Genetics, 12, 87.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., & Bengio, Y. (2014). Generative adversarial nets. In Advances in Neura Information
Processing Systems (pp. 2672-2680).

Gulli, A., & Pal, S. (2017). Deep learning with Keras. Packt Publishing Ltd.

Guzzetta, G., Jurman, G., & Furlanello, C. (2010). A machine learning pipeline for
guantitative phenotype prediction from genotype data. BMC Bioinformatics, 11(Suppl 7), S3.

Harris, C. R., Millman, K. J., Van Der Walt, S. J.,, Gommers, R., Virtanen, P., Cournapeau,
D., Wieser, E., Taylor, J.,, Berg, S., Smith, N. J., & Kern, R. (2020). Array programming with
NumPy. Nature, 585(7825), 357-362.

Li, L., Zhang, S, & Wang, B. (2021). Plant disease detection and classification by deep
learning—areview. |[EEE Access, 9, 56683-56698.

Liang, M., Chang, T., An, B., Duan, X., Du, L., Wang, X., Miao, J., Xu, L., Gao, X., Zhang,
L., & Li, J. (2021). A stacking ensemble learning framework for genomic prediction.
Frontiers in Genetics, 12, 600040.

Lundervold, A. S, & Lundervold, A. (2019). An overview of deep learning in medical
imaging focusing on MRI. Zeitschrift fur Medizinische Physik, 29(2), 102-127.


https://doi.org/10.1101/2023.07.26.550275
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.26.550275; this version posted July 29, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Ma, W., Qiu, Z., Song, J., Li, J., Cheng, Q., Zhai, J., & Ma, C. (2018). A deep convolutional
neural network approach for predicting phenotypes from genotypes. Planta, 248, 1307-1318.

McDowell, R. M. (2016). Genomic Selection with Deep Neural Networks. lowa State
University, Digital Repository. doi:10.31274/etd-180810-5600.

McKinney, W. (2010). Data structures for statistical computing in Python. In Proceedings of
the 9th Python in Science Conference (Vol. 445, No. 1, pp. 51-56).

Montesinos-Lopez, A., Montesinos-Lépez, O. A., Gianola, D., Crossa, J., & Hernandez-
Suarez, C. M. (2018). Multi-environment Genomic Prediction of Plant Traits Using Deep
Learners With Dense Architecture. G3: Genes, Genomes, Genetics, 8(12), 3813-3828.

Montesinos-Lépez, O. A., Montesinos-Lopez, A., Pérez-Rodriguez, P., Barron-Lopez, J. A.,
Martini, J. W. R., Fajardo-Flores, S. B., Gaytan-Lugo, L. S., Santana-Mancilla, P. C., &
Crossa, J. (2021). A review of deep learning applications for genomic selection. BMC
Genomics, 22, 1-23.

Muneeb, M., & Henschel, A. (2021). Eye-color and Type-2 diabetes phenotype prediction
from genotype data using deep learning methods. BM C Bioinformatics, 22, 198.

Pérez-Rodriguez, P., Gianola, D., Gonzdlez-Camacho, J. M., Crossa, J.,, Manes, Y., &
Dreisigacker, S. (2012). Comparison between linear and non-parametric regression models
for genome-enabled prediction in wheat. G3: Genes, Genomes, Genetics, 2(12), 1595-1605.

Pratley, J. E. Principles of field crop production. Oxford University Press, 2003.

Rachmatia, H., Kusuma, W. A., & Hasibuan, L. S. (2017). Prediction of maize phenotype
based on whole-genome single nucleotide polymorphisms using deep belief networks.
Journal of Physics: Conference Series, 835, 012003.

Renaud, N., Geng, C., Georgievska, S., Ambrosetti, F., Ridder, L., Marzella, D. F., Réau, M.
F., Bonvin, A. M. J. J, & Xue, L. C. (2021). DeepRank: a deep learning framework for data
mining 3D protein-protein interfaces. Nature Communications, 12(1), 7068.

Tuberosa, R., & Crossa, J. (2019). Genomic Prediction of Durum Wheat With Genomic Best
Linear Unbiased Predictor and Deep Learning Methods. Frontiersin Plant Science, 10, 1-12.

van Dijk, A. D. J, Kootstra, G., Kruijer, W., & de Ridder, D. (2021). Machine learning in
plant science and plant breeding. iScience, 24, 101890.

Van Rossum, G. (2020). The Python Library Reference, release 3.8.2. Python Software
Foundation.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., & Van Der Walt, S. J. (2020). SciPy
1.0: fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261-
272.

Yaguchi, A., Suzuki, T., Nitta, S., Sakata, Y., & Tanizawa, A. (2019). Scalable Deep Neural
Networks via Low-Rank Matrix Factorization.


https://doi.org/10.1101/2023.07.26.550275
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.26.550275; this version posted July 29, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Zou, J.,, Wang, Y., Jiang, M., Chen, W., & Bai, C. (2019). A primer on deep learning in
genomics. Nature Genetics, 51(1), 12-18.

TABLES

Table 1. Descriptive statistics of 3K rice accessions phenotyped in two locations

Datasets Trait Noof lines  H? Mean’ SD
Dataset-1 DTF 532 0.89 96.87 11.46
IRRI-SAH NPT 1,316 0.82 10.44 2.32
(27.2046° N, 77.4977° E) PL 1,223 0.77 19.24 1.73
PH 963 0.91 111.17 19.22
PY 1,163 0.72 209.15 87.66
Dataset-2 DTF 532 0.88 87.62 15.70
ISARC NPT 1,316 0.76 7.89 1.34
(25.3024° N, 82.9491° E) PL 1,223 0.83 24.09 2.54
PH 963 0.85 141.94 21.94
PY 1,163 0.71 254.40 91.85

Abbreviations: PY: plot yield (gram); PH: plant height (cm); PL: panicle length (cm);
NPT: number of productive tillers; DTF: days to 50% flowering (number of days); N*
number of phenotyped rice varieties; H% broad-sense heritability; SD: standard deviation.
IRRI: International Rice Research Institute, ISARC: IRRI South Asia Regional Centre.

*Mean and SD are calculated on BLUPs.
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Table 2. Pearson correlation coefficient of five models performed for two datasets for five
phenotypic traits. Fitted models were Bayesian LASSO, rrBLUP, DeepGS, dualCNN, and
DeepMap. The results are performed on ten cross-vaidations for all models and the

correlation coefficient is observed on unseen genotyped rice lines to the trained model.

Datasets Trait Bayesian rmBLUP DeepGS duaCNN  Deep

LASSO Map

Dataset-1 DTF 0.37 0.35 041 0.60 0.74

IRRI-SAH NPT 0.45 0.46 0.35 0.40 0.65

(27.2046° N, PL 041 0.42 0.33 0.42 0.67
77.4977° E)

PH 0.63 0.62 0.59 0.61 0.76

PY 0.32 0.34 0.27 0.39 0.70

Dataset-2 DTF 0.68 0.68 0.67 0.25 0.84

ISARC NPT 0.31 0.32 021 0.32 0.58

(25.3024° N, PL 0.40 041 0.19 0.25 0.70
82.9491° E)

PH 0.48 0.48 045 0.54 0.73

PY 0.34 0.36 0.45 0.44 0.72

Abbreviations. Bayesian LASSO: Bayesian least absolute shrinkage and selection
operation, rrBLUP: ridge-regression best linear unbiased prediction, DeepGS. Deep

genomic selection, dual CNN: dual convolutional neural network.
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Table 3. Model evaluation parameters Pearson Correlation Coefficient, mean squared error,
root mean squared error, and Coefficient of determination is calculated on the validation

dataset (unseen to the model) for discerning the performance of the model.

Dataset Trait r MSE RMSE R2
Dataset-1 DTF 0.74 0.52 0.68 0.49
IRRI-SAH NPT 0.65 0.71 0.78 0.03
(27.2046° N, 77.4977° E) PL 0.67 0.67 0.78 0.24
PH 0.76 0.47 0.66 0.55
PY 0.70 1.98 141 0.43
Dataset-2 DTF 0.84 0.35 0.53 0.65
ISARC NPT 0.58 0.88 0.88 0.02
(25.3024° N, 82.9491° E) PL 0.70 0.70 0.74 0.48
PH 0.73 054 072 0.43
PY 0.72 1.96 1.40 0.46

Abbreviations: MSE: mean squared error; RMSE: root mean squared error; R2: Coefficient
of determination; r: Pearson correlation coefficient.
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Figure 1 The DeepMap framewor k — The DeepMap framework is divided into continuous
step processes from data generation to model prediction. 1) data input. Starting from
genotyping and phenotyping of anticipated crop and observed phenotyping trait of interest for
mapping. 2) data pre-processing. Organized genotyping and phenotyping data and convert
alelesinto ‘0" representing homozygous allele-2, ‘1’ is representing heterozygous alele and
‘-1’ is representing homozygous allele-1/missing alleles for n genotyping lines (GL). Further,
data converts into additive and dominance interactions. 3) data augmentation. In this step,
epistasis interactions are augmented using additive and dominance matrix information
provided along with the SNPs data as an input to the model. The additive interactions (Al)
and dominance interactions (DI) are used to generate additive-additive interactions (AlxAl),
dominance-dominance interactions (DIxDI), and additive-dominance interactions (AlxDI).
These five epigtatic interactions are used to train the model. 4) model training. The training
dataset is given to the model for learning genomic patterns. For each genotypic line, G' = { g1,
02, Us.... gm} Where ‘m’ is the number of epistatic interactions amid genotypic lines for ‘n’
SNPs. As per the phenotypic trait of interest, the predicted output might be quantitative or
qualitative. The proposed model can be used for the qualitative trait of interest by changing
the output function to sigmoid or SoftMax activation function in the output layer. 5) model
prediction. The validation dataset is given to the model to check the performance of the
model on an unseen dataset. The trained model can be used to predict phenotypic trait value
prediction by giving SNPs and epistatic interactions to the trained model. The performance of
the model could be optimized by changing the hyperparameters of the mode.

Abbreviations: SNPs: single nucleotide polymorphism; GL: genotypic line; Al: additive
interactions; DI: dominance interactions; AlxAl: additive-additive interactions; DIXDI:

dominance-dominance interactions; AlxDI: additive-dominance interactions; h: hidden layer.
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Figure 2. Pearson correlation and Mean Squared Error (MSE) on case datasets. )
Pearson correlation of ten-cross validation for five phenotypic traits DTF, NPT, PH, PL, PY
on Dataset-1 IRRI-SAH. b) Pearson correlation of ten-cross validation for five phenotypic
traits DTF, NPT, PH, PL, PY on Dataset-2 ISARC. ¢) Pearson correlation of ten-cross
validation for three phenotypic traits FLW, GY, PH on Dataset-3 1kRiCA. d) mean squared
error (MSE) of ten-cross validation for five phenotypic traits DTF, NPT, PH, PL, PY on
Dataset-1 IRRI-SAH. €) MSE of ten-cross validation for five phenotypic traits DTF, NPT,
PH, PL, PY on Dataset-2 ISARC. f) MSE of ten-cross validation for three phenotypic traits
FLW, GY, PH on Dataset-3 1kRiCA.

Abbreviations: DTF-days to 50% flowering (number of days); FLW: flowering time
(number of days for flowering); NPT-number of productive tillers (numbers); PH-plant
height (cm); PL-panicle length (cm); PY-plot yield (kg/hectare); GY-grain yield (gram/plot).
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Figure 3. Model comparison. a) The five phenotypic traits of Dataset-1 IRRI-SAH Pearson
correlation is compared among DeepMap and standard ML-DL methods, including Bayesian-
LASSO, rrBLUP, DeepGS, and dualCNN. b) The five phenotypic traits of Dataset-2 ISARC
Pearson correlation is compared among DeepMap and standard ML-DL methods, including
Bayesian-LASSO, rrBLUP, DeepGS, and duaCNN. c) The three phenotypic traits of
Dataset-3 1kRiCA pearson correlation are compared with the performance of DeepMap and
the best-reported model (RKHS G+P).

Abbreviations: ML: machine learning; DL: deep learning; dualCNN: dua convolutional
neural network; DeepGS: deep genomic selection; rrBLUP: ridge-regression bayesian linear
unbiased prediction; LASSO: least absolute shrinkage and selection operator. RKHS:
reproducing kernel hilbert space. 1kRiCA: 1K-Rice custom Amplicon; IRRI-SAH:
International Rice Research Institute (IRRI) South Asia Hub; ISARC- IRRI South Asia
Regional Centre.
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Supporting information

Supplementary figures

Figure Legends

Figure S1. Training and testing lossfor Dataset-1 and Dataset-2. Training and testing loss
for five phenotypic traits of IRRI-SAH (Hyderabad) and ISARC (Varanasi) location iterated
for 10,000 epochs (a) training and testing loss converging after 1,433 epoch on days to
flowering (DTF) dataset (b) training and testing loss converging after 148" epoch on NPT
dataset (c) training and testing loss converging after 587" epoch on PH dataset (d) training
and testing loss converging after 377" epoch on PL dataset e. training and testing loss
converging after 3,987" epoch on PY dataset (f) training and testing loss converging after
864™ epoch on DTF dataset (g) training and testing loss converging after 206" epoch on NPT
dataset (h) training and testing loss converging after 945" epoch on PH dataset (i) training
and testing loss converging after 3,488"™ epoch on PL dataset (j) training and testing loss
converging after 6,245 epoch on PY dataset.

Figure S2. Scatterplot for actual vs predicted values. The actual and predicted quantitative
phenotypic trait value for five traits of two locations (a) for Hyderabad location, DTF trait
showed 0.74 correlation on 266 predicted lines, NPT showed 0.65 correlation with 658 lines,
PH showed 0.76 correlation with 612 lines, PL showed 0.66 correlation with 266 lines, PY
showed 0.70 correlation with 582 lines (b) For Varanasi location, DTF trait showed 0.84
correlation on 266 predicted lines, NPT showed 0.55 correlation with 658 lines, PH showed
0.72 correlation with 612 lines, PL showed 0.60 correlation with 266 lines, PY showed 0.71

correlation with 582 lines.
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Supplementary tables (Supplementary tables are in Excel file)

Table S1. Input file 1 - Single Nucleotide Polymorphisms (SNPs) for 'n' genotypic lines and
'm' markers

Table S2. Input file 2 - Generated additive information for 'n' genotypic lines and 'm'
markers.

Table S3. Input file 3 - Generated dominance information for 'n' genotypic lines and 'm'
markers

Table $4. Input file 4 - Phenotypic trait values for 'n' genotypic lines

Table S5. Prediction performance of DeepMap for 3K rice panel accessions on days to 50%
flowering (DTF) in IRRI-SAH location

Table S6. Cross-vaidation (CV) performance on DeepMap for 3K rice panel accessions on
days to 50% flowering (DTF) in IRRI-SAH location

Table S7. Prediction performance of DeepMap for 3K rice panel accessions on days to 50%
flowering (dtf) in ISARC location

Table S8. Cross-vaidation (CV) performance on DeepMap for 3K rice panel accessions on
days to 50% flowering (dtf) in ISARC location

Table S9. Prediction performance of DeepMap for 3K rice panel accessions on number of
productivetillers (NPT) in IRRI-SAH location

Table S10. Cross-validation (CV) performance on DeepMap for 3K rice panel accessions on
number of productivetillers (NPT) in IRRI-SAH location

Table S11. Prediction performance of DeepMap for 3K rice panel accessions on number of
productivetillers (NPT) in ISARC location

Table S12. Cross-validation (CV) performance on DeepMap for 3K rice panel accessions on
number of productivetillers (NPT) in ISARC location

Table S13. Prediction performance of DegpMap for 3K rice panel accessions on plant height
(PH) in IRRI-SAH location

Table S14. Cross-validation (CV) performance on DeepMap for 3K rice panel accessions on
plant height (PH) in IRRI-SAH location

Table S15. Prediction performance of DeegpMap for 3K rice panel accessions on plant height
(PH) in ISARC location

Table S16. Cross-validation (CV) performance on DeepMap for 3K rice panel accessions on
plant height (PH) in ISARC location

Table S17. Prediction performance of DeepMap for 3K rice panel accessions on panicle
length (PL) in IRRI-SAH location
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Table S18. Cross-validation (CV) performance on DegpMap for 3K rice panel accessions on
panicle length (PL) in IRRI-SAH location

Table S19. Prediction performance of DeepMap for 3K rice panel accessions on panicle
length (PL) in ISARC location

Table S20. Cross-validation (CV) performance on DeepMap for 3K rice panel accessions on
panicle length (PL) in ISARC location

Table S21. Prediction performance of DeepMap for 3K rice panel accessions on plot yield
(PY) in IRRI-SAH location

Table S22. Cross-validation (CV) performance on DeepMap for 3K rice panel accessions on
Plot Yield (PY) in IRRI-SAH location

Table S23. Prediction performance of DeepMap for 3K rice panel accessions on plot yield
(PY) in ISARC location

Table S24. Cross-validation (CV) performance on DeepMap for 3K rice panel accessions on
plot yield (PY) in ISARC location

Table S25. Prediction performance of DeepMap on flowering time (FLW) of 1k-RiCA
dataset

Table S26. Cross-validation (CV) performance of DeepMap on flowering time (FLW) of 1k-
RiCA dataset

Table S27. Prediction performance of DeepMap on grain yield (GY) of 1kRiCA dataset
Table S28. Cross-validation (CV) performance of DeepMap on grain yield (GY) of 1kRiCA
dataset

Table S29. Prediction performance of DegpMap on plant height (PH) of 1k-RiCA dataset
Table S30. Cross-validation (CV) performance of DeepMap on plant height (PH) of 1k-
RiCA dataset

Table S31. Validation of DeepMap in other crops (wheat, maize and soyabean)
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