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Short Summary:  

 

DeepMap is a deep learning-based breeder-friendly python package to perform genomic 

prediction. It utilizes epistatic interactions for data augmentation and outperforms the existing 

state-of-the-art machine/deep learning models such as Bayesian LASSO, GBLUP, DeepGS, 

and dualCNN. DeepMap developed for rice and tested across crops such as maize, wheat, 

soybean etc. 
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ABSTRACT 

Prediction of phenotype through genotyping data using the emerging machine or deep 

learning technology has been proven successful in genomic prediction. We present here a 

graphical processing unit (GPU) enabled DeepMap configurable deep learning-based python 

package for the genomic prediction of quantitative phenotype traits. We found that deep 

learning captures non-linear patterns more efficiently than conventional statistical methods. 

Furthermore, we suggest an additional module inclusion of epistasis interactions and training 

of the model on Graphical Processing Units (GPUs) in addition to Central Processing Unit 

(CPU) to enhance efficiency and increase the model’s performance. We developed and 

demonstrated the application of DeepMap using a 3K rice genome panel and 1K-Rice 

Custom Amplicon (1kRiCA) data for several phenotypic traits including days to 50% 

flowering (DTF), number of productive tillers (NPT), panicle length (PL), plant height (PH), 

and plot yield (PY). We have found that DeepMap outperformed the best existing state-of-

the-art models by giving higher predictive correlation and low mean squared error for the 

datasets studied. This prediction performance was higher than other compared models in the 

range of 13-31%. Similarly for Dataset-2, significantly higher predictions were observed than 

the compared models (16-20% higher prediction ability). On Dataset-3, we have also shown 

the better and versatile performance of our model across crops (wheat, maize, and soybean) 

for yield and yield-related traits. This demonstrates the potentiality of the framework and ease 

of use for future research in crop improvement. The DeepMap is accessible at 

https://test.pypi.org/project/DeepMap-1.0/. 

Keywords: DeepMap, Deep Learning, GPU, Quantitative phenotype prediction, Rice. 
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INTRODUCTION 

To be able to keep pace with the expected increase in food demand in the coming years, crop 

breeding must deliver the highest rates of genetic gains to maximize agricultural productivity. 

Deep Learning (DL) has emerged as a powerful tool in crop science, offering various 

applications such as predicting yield or quality traits from genotypes across different 

environments, plant disease recognition using Convolutional Neural Networks (CNNs), and 

image-based phenotyping using drones and edge computing devices (Albawi et al., 2017; Zou 

et al., 2019; Yaguchi et al., 2019). Harnessing the latent potential of DL's non-linear and 

weighted architecture is a crucial step in leveraging DL for crop breeding applications. DL is 

a subset of Machine Learning (ML) methods that can identify complex patterns in large 

datasets and includes architectures such as Multi-Layer Perceptron (MLP), Deep Neural 

Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), 

Auto-encoders (AE), and Generative Adversarial Networks (GANs) (Goodfellow et al., 2014; 

McDowell et al., 2016). 

Each DL architecture is designed for specific applications, with CNNs being particularly 

well-suited for image processing tasks such as object identification, document analysis, 

climate forecasting, medical image analysis, disease diagnosis, drug design, and protein 

structure prediction (Lundervold and Lundervold, 2019; Callaway, 2022; Renaud et al., 

2021). RNNs, on the other hand, excel in handling sequential and temporal data, such as text 

or videos. Deep Neural Networks offer the ability to capture additional input features, while 

GANs and AE are used to generate new data from existing examples, increasing the sample 

size and improving model accuracy and performance. DL algorithms, as non-parametric 

methods, are more efficient in identifying non-linear patterns compared to traditional 

genome-based machine learning methods (Pratley, 2003; Pérez-Rodríguez et al., 2012; 

Montesinos-López et al., 2021; van Dijk et al., 2021; Li et al., 2021). 

DL provides the flexibility to map complex associations between data and output, relying on 

high-quality and sufficiently large training data. Over the past decades, various pattern 

recognition models have been employed for genotype-to-phenotype prediction, including 

Bayesian Artificial Neural Networks (BNNs), Regularized Neural Networks, Deep Belief 

Network (DBN), Reproducing Kernel Hilbert Space (RKHS), Bayesian LASSO (B-LASSO), 

Best Linear Unbiased Prediction (BLUP), and deep convolutional neural network (dCNN) 

(Gianola et al., 2011; Rachmatia et al., 2017; Ma et al., 2018). Ensemble methods, such as the 
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Stacking Ensemble Learning Framework (SELF) and combinations of statistical techniques 

and machine learning models, have been shown to improve model performance (Guzzetta et 

al., 2010; Endelman 2011, Liang et al., 2021; Munneb and Henschel, 2021). 

Deep neural networks have the advantage of being able to learn from millions of data points 

without reaching a performance plateau. This computational tractability is achieved by 

leveraging accelerators such as Graphical Processing Units (GPUs), Tensor Processing Units 

(TPUs), and Information Processing Units (IPUs), as well as parallel file system technologies 

(Renaud et al., 2021). While genomic prediction (GP) methods have been developed and 

made available through scripts and CRAN packages, there is a need to optimize these 

algorithms with evolving deep learning techniques for the ease of use by non-coding 

communities. Thus, the development of a user-friendly Python package named DeepMap, 

consisting of just four lines of code, would be highly beneficial for both core researchers and 

interdisciplinary communities. 

In this manuscript, we describe the structure of the DeepMap framework and demonstrate its 

applicability and potential for genomic prediction using three rice datasets. Our results show 

improved accuracy in terms of Pearson correlation on Dataset-1 (IRRI-SAH) by 9-30%, on 

Dataset-2 (IRRI-SARC) by 11-26%, and on Dataset-3 (1kRiCA) by 23-33% compared to 

existing state-of-the-art ML and DL models. Furthermore, DeepMap has the versatility to be 

applied across different crops and for both qualitative and quantitative traits. 
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RESULTS  
 

Description of DeepMap  

DeepMap is a deep learning-based prediction model built with a python321 that allows end-

to-end model training and prediction of quantitative phenotypic trait value from the 

genotyping data. The four-line code takes genotypic and phenotypic data in the required 

format. Then, it calls the main function to train the model and give the output in comma-

separated files for ‘k’ cross-validations of predicted values, model training/validation loss, 

and scatter plot of actual vs. predicted plots. Conceptually, the SNPs information along with 

the epistatic interaction is passed to the fully connected seven layer deep neural network 

architecture that leads to the single neural unit output of predicted phenotypic trait value. The 

parameters can be changed and passed through a function call which gives flexibility to the 

function and gives a scope of optimization. The overall workflow from data generation to 

model prediction can be found in Figure 1.      

 

The framework consists of five major steps, which are as follows: 

Data input. The phenotypic values are generated for the trait of interest after following the 

experimental design. The corresponding genomic information can be generated through 

either sequencing (whole genome, exome sequencing) or genotyping (GBS, SNP chip). Since 

most significant crops are sequenced and available in open source, the genomic information 

can be downloaded from their respective databases. The genotypic data and its corresponding 

phenotyped trait values are passed to the model for prediction. 

 

Data preprocessing. As per raw genotypic and phenotypic data comprehends an ample 

amount of manual (human) and field errors. Therefore, data pre-processing is one of the 

major steps to clean up the data by removing missing values and unexpected observations. 

The genotypic data should be cleaned for Minor Allele Frequency (MAF), missingness 

percentage, and can be reduced further based on the LD (Linkage Disequilibrium) or co-

linearity between the markers. Further, conversions are performed on genotypic data to 

convert the raw data into model-required format (converting plink file (PLINK 2.00 alpha 

accessed through link: https://www.cog-genomics.org/plink/2.0/ ) format into .bed (PLINK 

binary biallelic genotype table), .bim (PLINK extended MAP file), and .fam (PLINK sample 
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information file) files). The proposed model requires four input files that include, three files 

of marker genotypic data (Single Nucleotide Polymorphisms (SNPs) data in numerical format 

(Table S1), additive (Table S2), and dominance (Table S3) interactions) and a single file of 

observed phenotypic trait data (Table S4). Figure 1 shows a dataset of ‘n’ number of 

Genotypic Lines (GL) with ‘m’ number of SNPs. SNPs encoded as ‘0’ represent homozygous 

allele 2, ‘1’ represents heterozygous allele, and ‘-1’ represents homozygous allele 1. 

The ‘-1’ was also represented for missing alleles, as the frequency was very low in the 

dataset. The observed phenotypic trait values were passed as a single column [P = {P1, P2, 

P3,…., Pn}, for each GL] through the model. The processed dataset was then divided into two 

groups called training set (80%) and validation set (20%) using the K-fold algorithm of 

sklearn (Garreta, 2013) python package (percentage of train and validation set can be altered 

while calling the function for each dataset). Subsequently, the training set genotypic and 

phenotypic data undergo a downstream pipeline to train the model, and the validation set is 

unseen to the model which we use to predict the phenotypes and correlates with actual 

phenotypic trait values of the validation set. 

 

Data augmentation. In this step, epistatic interactions are augmented using additive and 

dominance matrix information provided along with the SNPs data as an input to the model. In 

Figure 1, the additive information (A) and dominance information (D) are used to generate 

additive-additive interactions (A×A), dominance-dominance interactions (D×D), and 

additive-dominance interactions (A×D). These five epistatic interactions are used to train the 

model. 

 

Model training. The training dataset contains both the phenotypic and genotypic data given 

to the model for learning the genomic patterns corresponding to the phenotypic trait value. 

For ith genotypic line, GLi = {�1 � , �2 � , �3 � , … , �� � } where �� �   is the epistatic 

interaction of ith and nth genotypic line, and ‘n’ is the number of genotypic lines. The model 

was trained using a deep neural network algorithm and the hyperparameter (based on grid 

search; further information is available in the methods section) is optimized to increase the 

model's performance and reliability. As per the phenotypic trait of interest, the predicted 

output might be quantitative or qualitative. In DeepMap, we have used ten-cross validations 

for quantitative complex phenotypic traits for the prediction. The proposed model can be used 
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for the qualitative trait of interest by changing the output function to a sigmoid or softmax 

activation function in the output layer.  

Model prediction. The validation dataset contains only genotypic information and is given 

to the model to check the model's performance by comparing the predicted phenotypic 

value with the actual value. The performance of the model could be optimized by 

changing the hyperparameters of the model.  

 

Evaluation of model performance 

We independently trained the model on three different rice datasets (Dataset-1, Dataset-2, and 

Dataset-3). To check the versatility of our model to use for other crops, we trained and 

validated DeepMap with datasets of wheat, maize, and soybean. For the performance 

evaluation, we compared the predictive ability of DeepMap with Bayesian LASSO, rrBLUP, 

DeepGS, and dualCNN in all the selected data sets. 

 

DeepMap application in Dataset-1  

 

A set of 2,229 rice varieties from 3K rice panel (3K RGP, 2014) phenotyped at International 

Rice Research Institute – South Asia Hub (IRRI-SAH) (Hyderabad, India), have been used as 

the first dataset to train and evaluate DeepMap. We selected five yield and yield related traits 

(DTF, NPT, PL, PH, and PY) because they showed significant variation among themselves 

and had higher heritability, making them highly suitable for GP (Table 1).  

 

The experiment was performed on DeepMap for ten-cross validations on these five 

phenotypic traits of IRRI-SAH location (Supplementary Table S5 to Table S14 for 

prediction performance and cross-validation results). Average Pearson Correlation 

Coefficient between the predicted and observed phenotypic values for the validation dataset   

was 0.74, 0.65, 0.67, 0.76, and 0.70 for DTF, NPT, PL, PH, and PY (Figure 2a), 

respectively. The DeepMap outperformed (Table 2) standard best-performing methods by 

14%, 19%, 25%, 13%, and 31% for the DTF, NPT, PL, PH, and PY traits, respectively. In 

Table 3, states the metric of model evaluation for model performance where, Mean Squared 

Error (MSE) is 0.52, 0.71, 0.67, 0.47, and 1.98 on DTF, NPT, PL, PH, and PY respectively 

(Figure 2d), obtained on 10,000 epochs. As there is no upper limit of MSE, but the lower 
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MSE represents the lower error in predicted phenotypic trait values. Thus, minimized error 

(less than one) in DTF, NPT, PL, PH shows significant predictions, and MSE > 1 in PY 

shows that phenotypic trait is complex to predict, where MSE can be further reduced by 

hyperparameter optimization. The stretched bound of Pearson correlation and MSE of NPT 

shows the diversity in mapping and complexity of prediction. The Coefficient of 

determination metric is an additional statistical measure for the regression model and the 

corresponding scoring for DTF, NPT, PL, PH, and PY are 0.49, 0.03, 0.24, 0.55, and 0.43, 

respectively. In Figure S1, the training and validation dataset shows the convergence of 

training and validation (testing) loss that substantiates the model’s prediction ability. The 

training and validation loss converges at the 1433rd epoch for DTF, 148th epoch for NPT, 

587th epoch for PH, 377th epoch for PL, and 3987th epoch for PY. Comparatively, plot yield 

(PY) takes more iteration and time to converge the losses. The predicted vs actual value 

graph (Figure S2) reveals the prediction performance of the model. 

 

DeepMap application in Dataset-2  

 

A set of 2,145 rice varieties from 3K rice panel (3K RGP, 2014) phenotyped at International 

Rice Research Institute - South Asia Regional Centre (ISARC) (Varanasi, India), have been 

used as the dataset 2 for the model training and evaluation. The same yield and yield related 

traits as in Dataset-1 were used here as well (Supplementary Table S15 to Table S24 for 

prediction performance and cross-validation results). An average Pearson Correlation 

Coefficient (r) were found to be 0.84, 0.58, 0.70, 0.73, and 0.72 for DTF, NPT, PL, PH, and 

PY, respectively (as shown in Figure 2b) in the unseen/validation dataset. The DeepMap 

outperformed (Shown in Table 2) standard best-performing methods by 15%, 25%, 29%, 

19%, and 27% for the DTF, NPT, PL, PH, and PY traits. Table 3 states the metric of model 

evaluation for model performance where, Mean Squared Error (MSE) is 0.35, 0.88, 0.70, 

0.54, and 1.96 on DTF, NPT, PL, PH, and PY, respectively (as shown in Figure 2e), obtained 

on 10,000 epochs. Thus, minimized error (less than one) in DTF, NPT, PL, and PH shows 

significant predictions, and MSE > 1 in PY shows that phenotypic trait is complex to predict, 

where MSE can be further reduced by hyperparameter optimization. The stretched bound of 

Pearson correlation and MSE of NPT phenotypic trait shows the diversity in mapping and 

complexity of prediction. The Coefficient of determination for the regression model is 0.65, 

0.02, 0.48, 0.43, and 0.46 for DTF, NPT, PL, PH, and PY, respectively. As seen in Dataset-1, 
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(the prediction ability of our model is high for this dataset too, which was validated through 

the convergence of training and validation (testing) loss (Figure S1). The training and 

validation loss converges at the 864th epoch for DTF, 206th epoch for NPT, 945th epoch for 

PH, 3488th epoch for PL, and 6245th epoch for PY. Since we have chosen the common 

germplasm for all the traits in Datasets-1 and -2, the results showed a similar trend for the 

traits. The complex phenotypes such as PY are difficult to predict, comparatively. The 

predicted vs actual value graph (Figure S2) reveals the prediction performance of the model 

for Dataset-2. 

 

DeepMap application in Dataset-3  

 

This dataset consists of 353 accessions genotyped using the 1K-Rica (Arbelaez et al., 2019) 

Custom Amplicon (1k-RiCA), a robust custom sequencing-based amplicon of 967 SNPs. We 

considered three phenotypic traits, flowering time, grain yield, and plant height to calculate 

the predictive ability of DeepMap. The reported predictive abilities of the best performing 

model (RKHS G+A) based on genomic selection were 0.71, 0.36, and 0.65 for Flowering 

time, grain yield, and plant height, respectively (as shown in Figure 2c). The DeepMap 

reported 0.94, 0.76, and 0.98 for Flowering time, grain yield, and plant height, respectively, 

and outperformed the state-of-the-art genomic prediction models in the range of 23-40% 

(Supplementary Table S25 to Table S30 for prediction performance and cross-validation 

results). Table S25 states the metric of model evaluation for performance where the Mean 

Squared Error (MSE) is 0.11, 0.49, and 0.01 on the corresponding phenotypic traits as shown 

in Figure 2f.  

 

Validation of DeepMap across crops 

 

We have also performed the genomic prediction across crops including wheat, maize, and 

soybean. The 1275 genotypes of wheat were considered with 5741 SNPs for spike grain 

number (SGN) and time young microspore (TYN). The Pearson correlation for SGN and 

TYM obtained was 0.48 and 0.85 (9-12% increase with DeepMap). The 309 genotypes of 

maize were used with 309 SNPs for DTF and Grain Yield (GY). The predictive ability 

achieved was 0.54 and 0.73 (14-19% increase). The soybean’s 5558 genotypic lines with 
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5140 SNPs for phenotypic traits including yield, protein and height were considered. The 

Pearson correlation achieved was 0.56, 0.80 and 0.86 (11-24% increase with DeepMap).  

DISCUSSION 

 

We have presented our DeepMap framework, demonstrating its uses and performance on 

three case study datasets. Its main advantages are as follows: 

1. From the user’s perspective, DeepMap is hosted on Python Package Interface (PyPI 

accessed using link https://pypi.org/) (DeepMap PyPI link is in code availability 

section) and the four-line-code execution of the pipeline in a single program run 

makes it easy to use, unlike previously available lengthy R scripts. It works as a black 

box for the non-coding communities and, gives a scope of hyper parameterization to 

increase the performance by changing the function call parameters. The generalized 

architecture of DeepMap for genotype to phenotype prediction makes it directly 

applicable to a range of genomic selection challenges. 

2. From a developer’s perspective, DeepMap is an open-source deep learning-based 

python package with version control, continuous integration, and easy addition of new 

features hosted on GitHub (Link is available in code availability section). This 

flexibility increases the maintainability and future developments in DeepMap by the 

community, for example, the addition of crop data like maize, wheat, and Soybean. 

3. Computational efficiency: DeepMap is developed to leverage Graphical Processing 

Units (GPUs) for faster training and better prediction accuracy. However, it can also 

work on Central Processing Units (CPUs) but it would take more training time. The 

future of DeepMap’s computational power is to deploy on Amazon Web Services 

(AWS) and utilize cutting-edge hardware accelerators like GPUs, TPUs, and IPUs. 

4. Finally, the competing performance and ability to outperform the state-of-the-art 

methods (Table 2) demonstrate that the utilization of a non-linear deep learning 

framework and inclusion of epistasis interactions improves the model's prediction 

ability. 

In summary, DeepMap is the first python package based on deep learning for genotype to 

phenotype prediction. It features a four-line code for genomic selection for quantitative 

phenotypes. Compared with other well-known machine and deep learning methods (Bayesian 
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methods, GBLUP (Tuberosa and Crossa, 2019) , rrBLUP , and DeepGS), DeepMap shows 

higher prediction accuracy for the quantitative phenotypic prediction (Table 2). The 

DeepMap can also be employed for qualitative (categorical) phenotype prediction by 

changing the output activation function in the last layer. The accuracy of the model can be 

increased by developing region-based (location-based) or variety-based (crop/species-based) 

prediction models that would open doors to widen genomic prediction challenges.  

In the future, we plan to extend our model's scope by incorporating multiple input factors 

such as environmental (Montesinos-López et al., 2018) information, soil information, and 

image-based phenotyping data. We will expand the package to support automated deep 

learning (AutoDL) to automatically adjust hyperparameters for ease of use for non-coding 

communities and extend the use of prediction-based breeding across crops/species. These 

features will be available in the upcoming version of DeepMap. We have used epistatic 

interactions that shows our model is working better than the standard machine/deep learning 

models. We have used our model on various crops like maize, wheat, and soybean that shows 

that it is applicable to other crops also. We have used three datasets of rice of different 

locations that show it can be used for different environments/ locations. 
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MATERIALS AND METHODS 

 

Generation of plant datasets 

Two of the datasets (Dataset-1 & Dataset-2) used in our study are from 3K rice panels. The 

Dataset-1 consists of 2,229 rice accessions and had been evaluated at International Rice 

Research Institute – South Asia Hub (IRRI-SAH), Hyderabad, India (17.4993° N, 78.2759° 

E). Dataset-2 is a set of 2,145 rice accessions and had been evaluated at International Rice 

Research Institute - South Asia Regional Centre (ISARC), Varanasi, India (25.3024° N, 

82.9491° E). Both subsets were grown under irrigated-Transplanted Rice (TPR) condition 

during wet season-2019 (commenced on 18th July 2019) with an objective to evaluate 

various yield and yield related traits. The plants were organized in an Augmented 

Randomized Complete Block Design (RCBD) with four checks repeated in each block.  

The selected five traits (DTF, NPT, PL, PH, and PY) were analyzed individually using 

residual maximum likelihood (REML) in GenStat 17 (https://www.vsni.co.uk/) in a mixed 

model approach considering genotypes as random effect and block as a fixed effect. The 

REML analysis of Dataset-1 showed that variances due to genotypes (σ2g) were significant 

for all the traits, indicating the presence of significant variability among genotypes. The range 

in each trait was high, and high broad heritability (H2) > 60% for altogether studied traits 

were reported in all experiments with a range of 0.72 to 0.91. The mixed model REML 

analysis of variance revealed a significant variation among the lines for all traits. The 

Dataset-2 also showed high range of heritability (0.71 to 0.88) for all the five traits (Table 1). 

Best linear unbiased predictors (BLUPs) were obtained for each accession's traits for both the 

datasets. The phenotypic and genotypic data for the Dataset-3 was directly taken from the 

1K-RiCA26. 

 

Epistasis interaction and DeepMap architecture 

The elementary neural network architecture comprises of ‘u’- input variables (I = {g1, g2, 

g3,…, gu}), ‘h’- hidden layers, and ‘l’- output layers (where, ‘u’, ‘h’ and ‘l’ ∈ N (Set of Natural 

Numbers)). The genotypic input along with epistasis interactions that include, Additive (A), 

Dominance (D), Additive × Additive (A × A), Dominance × Dominance (D × D), Additive × 

Dominance (A × D), are given to the model in the form of tensors/array. The genotypic line is 

mapped with quantitative/qualitative phenotypic output as,  

{(g (1),p(1)), (g(2),p(2)), (g(3),p(3)),……….., (g(n),p(n))} 
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where g(i) is the ith-germplasm input containing �1 � , �2 � , �3 � , … , �� � }  Where ‘n’ is the 

number of genotypic lines mapped with an associated p(i) phenotypic trait value for ‘m’ 

number of SNPs germplasm/genotypes. The prediction on the training set is, 

Z(i) = σ (WT I(i) + b) 

where Z(i) is the prediction output obtained from an activation function applied on WT 

transpose of weighted matrix 	�,

��� 	�,

��� 	�

���, … , 	�
��� , I is a matrix of input containing 

genotypes and phenotypes for ‘n’ germplasm and ‘m’ SNPs, and b is taken as a bias. The 

Rectified Linear Unit (ReLU) (Garreta, 2013) activation function is used in hidden layers of 

DeepMap, and the Linear activation function (Garreta, 2013) is used in the output layer for 

complex quantitative phenotypes, while sigmoid/SoftMax can be used for qualitative output. 

The error function for predicted and actual values is subjected to minimize, 

L (ŷ) = - (y.logŷ  + (1-y).log(1- ŷ )) 

 Where,  �� �ŷ , 
� �  �����1 �  ŷ�,     �	 
 � 0       � �ŷ , 
� �  ���� ŷ ,            �	 
 � 1  

That states if y = 1 then we have to minimize the logŷ to keep ŷ close to y. conversely, if y = 

0, then we have to increase log(1- ŷ) given the fact to plummet ŷ. Where L is an error 

function implemented on y (actual phenotypic trait value) and ŷ (predicted phenotypic trait 

value). The combined error function (CEF) for all training examples is, 

��� �	, ��  � � 1/� �
�

�	�

�
���. ���ŷ���  � �1 � 
����. ����1 �  ŷ��� �� 

The CEF tends to minimize genotypic patterns through training to the model. The proposed 

model is based on Dense Neural Networks (DNNs) as shown in Figure 2.  

 

Genotypic input preparation 

The genotypic data were pre-processed using R-script provided in the DeepMap package 

(https://github.com/IRRISouthAsiaHub/DeepMap/) where snpStats (Clayton, 2021), rrBLUP, 

and sommer (Covarrubias-Pazaran, 2016) were utilized for additive and dominance matrix 

generation from the plink genotypic data (consists of .bed, .bim, and .fam file formats). This 

genotypic information is changed into a numeric format: SNPs encoded as ‘0’ represent 

homozygous allele 2, ‘1’ represents heterozygous allele, and ‘-1’ represents homozygous 

allele 1. The ‘-1’ was also represented for missing alleles, as the frequency was very low in 
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the dataset. The epistasis interactions are given to the model to train the neural weights and 

reduce the error loss. After grid search optimization, the DeepMap model has primed with 

seven hidden layers with 512, 512, 512, 512, 256, 32, and one neural unit, respectively, a 

single output is anticipated. The functional python programming (Van Rossum, 2010) 

approach is employed to prevent the shared state, mutable variables and support the 

construction of pure functions for the model development using open-source libraries, 

including Keras (Gulli and Pal, 2017), sklearn (Garreta, 2013), scipy (Virtanen et al., 2020), 

pandas (McKinney, 2010), numpy (Harris et al., 2020) and math.  

 

The core function is main(), which further calls its corresponding subfunctions 

data_preprocessing(), DeepMap(), plot() and scatter_plot() functions for independent call by 

value execution. The model is trained on NVIDIA GeForce GTX 1050Ti GPU, having 

2200M transistors on 14nm technology with 4096MB memory size configured with CUDA 

10.2. The detailed software and hardware information is mentioned in the supplementary. 

The genotypic data for Datasets-1 and -2 are taken from https://snp-seek.irri.org/ for the 3K 

rice panel dataset (3380 SNPs). The number of genotypes for both datasets is taken common 

encompasses 532 for DTF, 1316 for NPT, 1223 for PL, 963 for PH, and 1163 for PY. Each 

dataset is divided into training and validation set with 4:1 and to uphold the reliability of 

performance, both sets were split into k-folds cross-validation, where k was taken ten 

(reference). The training set consisted of nine folds, and validation had one-fold. 

 

Training and evaluation:  

The architecture of the DNNs used in our experiment is shown in Figure 1. We used ReLU 

and linear activation functions in the network with the Adam optimizer. The minimum 

learning rate was set to 0.001 with a factor of 0.5 and patience as 1. The early stopping was 

placed on validation loss with patience 20. The training set was executed for 10,000 epochs 

with 2143 batch size on 24GB random access memory. These values are used as a default for 

the corresponding parameters in our model. 

Following the training phase, the model undergoes validation on certain performance 

parameters, including mean squared error (MSE), root mean squared error (RMSE), R2-Error, 

and scatter plot of normalized predicted vs actual values, and training loss function graph to 

ensure convergence. The genotyping and phenotyping information for Dataset-3 is available 
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at 1K-RiCA_Data for 353 germplasms and 967 SNPs. The data was trained with default 

hyper-parameters of DeepMap on the Training set (80%) and validated on the Validation set 

(20%).  

 

DATA AVAILABILITY 

The genotypic data of 3K Rice can be downloaded from https://snp-seek.irri.org/, and 

phenotypic data is available at the DeepMap’s GitHub repository. Moreover, the region 

(Hyderabad and Varanasi) and trait (DTF, NPT, PL, PH, and PY) based models, results, 

outputs, and validation parameters is also available in the GitHub. 

 

CODE AVAILABILITY 

The DeepMap software has been released to the Python Package Index at 

https://test.pypi.org/project/DeepMap-1.0/. Its source code and documentation are freely 

available at https://github.com/IRRISouthAsiaHub/DeepMap, and also in figshare 

https://figshare.com/articles/software/DeepGS_python_py/23532063. Data pre-processing 

R-script is available at GitHub repository. Moreover, the region/variety-based 

models/outputs are available at Result directory of GitHub repository and code for 

standard GS models is available at Models directory of GitHub repository (including the 

DeepGS python version). 
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TABLES  

 

Table 1. Descriptive statistics of 3K rice accessions phenotyped in two locations 

Datasets Trait No of lines H2 Mean* SD* 
      

Dataset-1 DTF 532 0.89 96.87 11.46 
IRRI-SAH NPT 1,316 0.82 10.44 2.32 
(27.2046° N, 77.4977° E) PL 1,223 0.77 19.24 1.73 
 PH 963 0.91 111.17 19.22 
 PY 1,163 0.72 209.15 87.66 
      
Dataset-2 DTF 532 0.88 87.62 15.70 
ISARC NPT 1,316 0.76 7.89 1.34 
(25.3024° N, 82.9491° E) PL 1,223 0.83 24.09 2.54 
 PH 963 0.85 141.94 21.94 
 PY 1,163 0.71 254.40 91.85 

Abbreviations: PY: plot yield (gram); PH: plant height (cm); PL: panicle length (cm); 

NPT: number of productive tillers; DTF: days to 50% flowering (number of days); Na:  

number of phenotyped rice varieties; H2: broad-sense heritability; SD: standard deviation. 

IRRI: International Rice Research Institute, ISARC: IRRI South Asia Regional Centre. 

*Mean and SD are calculated on BLUPs. 
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Table 2. Pearson correlation coefficient of five models performed for two datasets for five 

phenotypic traits. Fitted models were Bayesian LASSO, rrBLUP, DeepGS, dualCNN, and 

DeepMap. The results are performed on ten cross-validations for all models and the 

correlation coefficient is observed on unseen genotyped rice lines to the trained model.  

 

Datasets Trait Bayesian 
LASSO 

rrBLUP DeepGS dualCNN  Deep
Map 

       
Dataset-1 DTF 0.37 0.35 0.41 0.60 0.74 
IRRI-SAH NPT 0.45 0.46 0.35 0.40 0.65 
(27.2046° N, 
77.4977° E) 

PL 0.41 0.42 0.33 0.42 0.67 

 PH 0.63 0.62 0.59 0.61 0.76 
 PY 0.32 0.34 0.27 0.39 0.70 
       
Dataset-2 DTF 0.68 0.68 0.67 0.25 0.84 
ISARC NPT 0.31 0.32 0.21 0.32 0.58 
(25.3024° N, 
82.9491° E) 

PL 0.40 0.41 0.19 0.25 0.70 

 PH 0.48 0.48 0.45 0.54 0.73 
 PY 0.34 0.36 0.45 0.44 0.72 

Abbreviations: Bayesian LASSO: Bayesian least absolute shrinkage and selection 

operation, rrBLUP: ridge-regression best linear unbiased prediction, DeepGS: Deep 

genomic selection, dualCNN: dual convolutional neural network. 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2023. ; https://doi.org/10.1101/2023.07.26.550275doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.26.550275
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Table 3. Model evaluation parameters Pearson Correlation Coefficient, mean squared error, 

root mean squared error, and Coefficient of determination is calculated on the validation 

dataset (unseen to the model) for discerning the performance of the model. 

 

Dataset Trait  r MSE RMSE R2 
      
Dataset-1 DTF 0.74 0.52 0.68 0.49 
IRRI-SAH NPT 0.65 0.71 0.78 0.03 
(27.2046° N, 77.4977° E) PL 0.67 0.67 0.78 0.24 
 PH 0.76 0.47 0.66 0.55 
 PY 0.70 1.98 1.41 0.43 
      
Dataset-2 DTF 0.84 0.35 0.53 0.65 
ISARC NPT 0.58 0.88 0.88 0.02 
(25.3024° N, 82.9491° E) PL 0.70 0.70 0.74 0.48 
 PH 0.73 0.54 0.72 0.43 
 PY 0.72 1.96 1.40 0.46 
 

Abbreviations: MSE: mean squared error; RMSE: root mean squared error; R2: Coefficient 
of determination; r: Pearson correlation coefficient. 
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Figure 1 The DeepMap framework – The DeepMap framework is divided into continuous 

step processes from data generation to model prediction. 1) data input. Starting from 

genotyping and phenotyping of anticipated crop and observed phenotyping trait of interest for 

mapping. 2) data pre-processing. Organized genotyping and phenotyping data and convert 

alleles into ‘0’ representing homozygous allele-2, ‘1’ is representing heterozygous allele and 

‘-1’ is representing homozygous allele-1/missing alleles for n genotyping lines (GL). Further, 

data converts into additive and dominance interactions. 3) data augmentation. In this step, 

epistasis interactions are augmented using additive and dominance matrix information 

provided along with the SNPs data as an input to the model. The additive interactions (AI) 

and dominance interactions (DI) are used to generate additive-additive interactions (AI×AI), 

dominance-dominance interactions (DI×DI), and additive-dominance interactions (AI×DI). 

These five epistatic interactions are used to train the model. 4) model training. The training 

dataset is given to the model for learning genomic patterns. For each genotypic line, Gi = {g1, 

g2, g3,…, gm} where ‘m’ is the number of epistatic interactions amid genotypic lines for ‘n’ 

SNPs. As per the phenotypic trait of interest, the predicted output might be quantitative or 

qualitative. The proposed model can be used for the qualitative trait of interest by changing 

the output function to sigmoid or SoftMax activation function in the output layer. 5) model 

prediction. The validation dataset is given to the model to check the performance of the 

model on an unseen dataset. The trained model can be used to predict phenotypic trait value 

prediction by giving SNPs and epistatic interactions to the trained model. The performance of 

the model could be optimized by changing the hyperparameters of the model. 

Abbreviations: SNPs: single nucleotide polymorphism; GL: genotypic line; AI: additive 

interactions; DI: dominance interactions; AI×AI: additive-additive interactions; DI×DI: 

dominance-dominance interactions; AI×DI: additive-dominance interactions; h: hidden layer. 
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Figure 2. Pearson correlation and Mean Squared Error (MSE) on case datasets. a) 

Pearson correlation of ten-cross validation for five phenotypic traits DTF, NPT, PH, PL, PY 

on Dataset-1 IRRI-SAH. b) Pearson correlation of ten-cross validation for five phenotypic 

traits DTF, NPT, PH, PL, PY on Dataset-2 ISARC. c) Pearson correlation of ten-cross 

validation for three phenotypic traits FLW, GY, PH on Dataset-3 1kRiCA. d) mean squared 

error (MSE) of ten-cross validation for five phenotypic traits DTF, NPT, PH, PL, PY on 

Dataset-1 IRRI-SAH. e) MSE of ten-cross validation for five phenotypic traits DTF, NPT, 

PH, PL, PY on Dataset-2 ISARC. f) MSE of ten-cross validation for three phenotypic traits 

FLW, GY, PH on Dataset-3 1kRiCA. 

Abbreviations: DTF-days to 50% flowering (number of days); FLW: flowering time 

(number of days for flowering); NPT-number of productive tillers (numbers); PH-plant 

height (cm); PL-panicle length (cm); PY-plot yield (kg/hectare); GY-grain yield (gram/plot).  
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Figure 3. Model comparison. a) The five phenotypic traits of Dataset-1 IRRI-SAH Pearson 

correlation is compared among DeepMap and standard ML-DL methods, including Bayesian-

LASSO, rrBLUP, DeepGS, and dualCNN. b) The five phenotypic traits of Dataset-2 ISARC 

Pearson correlation is compared among DeepMap and standard ML-DL methods, including 

Bayesian-LASSO, rrBLUP, DeepGS, and dualCNN. c) The three phenotypic traits of 

Dataset-3 1kRiCA pearson correlation are compared with the performance of DeepMap and 

the best-reported model (RKHS G+P). 

Abbreviations: ML: machine learning; DL: deep learning; dualCNN: dual convolutional 

neural network; DeepGS: deep genomic selection; rrBLUP: ridge-regression bayesian linear 

unbiased prediction; LASSO: least absolute shrinkage and selection operator. RKHS: 

reproducing kernel hilbert space. 1kRiCA: 1K-Rice custom Amplicon; IRRI-SAH: 

International Rice Research Institute (IRRI) South Asia Hub; ISARC- IRRI South Asia 

Regional Centre. 
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Supporting information 

Supplementary figures 

 

Figure Legends 

Figure S1. Training and testing loss for Dataset-1 and Dataset-2. Training and testing loss 

for five phenotypic traits of IRRI-SAH (Hyderabad) and ISARC (Varanasi) location iterated 

for 10,000 epochs (a) training and testing loss converging after 1,433rd epoch on days to 

flowering (DTF) dataset (b) training and testing loss converging after 148th epoch on NPT 

dataset (c) training and testing loss converging after 587th epoch on PH dataset (d) training 

and testing loss converging after 377th epoch on PL dataset e. training and testing loss 

converging after 3,987th epoch on PY dataset (f) training and testing loss converging after 

864th epoch on DTF dataset (g) training and testing loss converging after 206th epoch on NPT 

dataset (h) training and testing loss converging after 945th epoch on PH dataset (i) training 

and testing loss converging after 3,488th epoch on PL dataset (j) training and testing loss 

converging after 6,245th epoch on PY dataset. 

 

Figure S2. Scatterplot for actual vs predicted values. The actual and predicted quantitative 

phenotypic trait value for five traits of two locations (a) for Hyderabad location, DTF trait 

showed 0.74 correlation on 266 predicted lines, NPT showed 0.65 correlation with 658 lines, 

PH showed 0.76 correlation with 612 lines, PL showed 0.66 correlation with 266 lines, PY 

showed 0.70 correlation with 582 lines (b) For Varanasi location, DTF trait showed 0.84 

correlation on 266 predicted lines, NPT showed 0.55 correlation with 658 lines, PH showed 

0.72 correlation with 612 lines, PL showed 0.60 correlation with 266 lines, PY showed 0.71 

correlation with 582 lines. 
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Supplementary tables (Supplementary tables are in Excel file) 

Table S1. Input file 1 - Single Nucleotide Polymorphisms (SNPs) for 'n' genotypic lines and 

'm' markers 

Table S2. Input file 2 - Generated additive information for 'n' genotypic lines and 'm' 

markers. 

Table S3. Input file 3 - Generated dominance information for 'n' genotypic lines and 'm' 

markers 

Table S4. Input file 4 - Phenotypic trait values for 'n' genotypic lines 

Table S5. Prediction performance of DeepMap for 3K rice panel accessions on days to 50% 

flowering (DTF) in IRRI-SAH location 

Table S6. Cross-validation (CV) performance on DeepMap for 3K rice panel accessions on 

days to 50% flowering (DTF) in IRRI-SAH location 

Table S7. Prediction performance of DeepMap for 3K rice panel accessions on days to 50% 

flowering (dtf) in ISARC location 

Table S8. Cross-validation (CV) performance on DeepMap for 3K rice panel accessions on 

days to 50% flowering (dtf) in ISARC location 

Table S9. Prediction performance of DeepMap for 3K rice panel accessions on number of 

productive tillers (NPT) in IRRI-SAH location 

Table S10. Cross-validation (CV) performance on DeepMap for 3K rice panel accessions on 

number of productive tillers (NPT) in IRRI-SAH location 

Table S11. Prediction performance of DeepMap for 3K rice panel accessions on number of 

productive tillers (NPT) in ISARC location 

Table S12. Cross-validation (CV) performance on DeepMap for 3K rice panel accessions on 

number of productive tillers (NPT) in ISARC location 

Table S13. Prediction performance of DeepMap for 3K rice panel accessions on plant height 

(PH) in IRRI-SAH location 

Table S14. Cross-validation (CV) performance on DeepMap for 3K rice panel accessions on 

plant height (PH) in IRRI-SAH location 

Table S15. Prediction performance of DeepMap for 3K rice panel accessions on plant height 

(PH) in ISARC location 

Table S16. Cross-validation (CV) performance on DeepMap for 3K rice panel accessions on 

plant height (PH) in ISARC location 

Table S17. Prediction performance of DeepMap for 3K rice panel accessions on panicle 

length (PL) in IRRI-SAH location 
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Table S18. Cross-validation (CV) performance on DeepMap for 3K rice panel accessions on 

panicle length (PL) in IRRI-SAH location 

Table S19. Prediction performance of DeepMap for 3K rice panel accessions on panicle 

length (PL) in ISARC location 

Table S20. Cross-validation (CV) performance on DeepMap for 3K rice panel accessions on 

panicle length (PL) in ISARC location 

Table S21. Prediction performance of DeepMap for 3K rice panel accessions on plot yield 

(PY) in IRRI-SAH location 

Table S22. Cross-validation (CV) performance on DeepMap for 3K rice panel accessions on 

Plot Yield (PY) in IRRI-SAH location 

Table S23. Prediction performance of DeepMap for 3K rice panel accessions on plot yield 

(PY) in ISARC location 

Table S24. Cross-validation (CV) performance on DeepMap for 3K rice panel accessions on 

plot yield (PY) in ISARC location 

Table S25. Prediction performance of DeepMap on flowering time (FLW) of 1k-RiCA 

dataset 

Table S26. Cross-validation (CV) performance of DeepMap on flowering time (FLW) of 1k-

RiCA dataset 

Table S27. Prediction performance of DeepMap on grain yield (GY) of 1kRiCA dataset 

Table S28. Cross-validation (CV) performance of DeepMap on grain yield (GY) of 1kRiCA 

dataset 

Table S29. Prediction performance of DeepMap on plant height (PH) of 1k-RiCA dataset 

Table S30. Cross-validation (CV) performance of DeepMap on plant height (PH) of 1k-

RiCA dataset 

Table S31. Validation of DeepMap in other crops (wheat, maize and soyabean) 
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