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ABSTRACT
Motivation: The goal of protein structure refinement is to enhance
the precision of predicted protein models, particularly at the residue
level of the local structure. Existing refinement approaches primar-
ily rely on physics, whereas molecular simulation methods are
resource-intensive and time-consuming. In this study, we employ
deep learningmethods to extract structural constraints from protein
structure residues to assist in protein structure refinement. We in-
troduce a novel method, AnglesRefine, which focuses on a protein’s
secondary structure and employs a transformer model to refine
various protein structure angles (psi, phi, omega, CA_C_N_angle,
C_N_CA_angle, N_CA_C_angle), ultimately generating a superior
protein model based on the refined angles.
Results: We evaluate our approach against other cutting-edge
protein structure refinement methods using the CASP11-14 and
CASP15 datasets. Experimental outcomes indicate that our method
generally surpasses other techniques on the CASP11-14 test dataset,
while performing comparably or marginally better on the CASP15
test dataset. Our method consistently demonstrates the least likeli-
hood of model quality degradation, e.g., the degradation percentage
of our method is less than 10%, while other methods are about 50%.
Furthermore, as our approach eliminates the need for conforma-
tional search and sampling, it significantly reduces computational
time compared to existing protein structure refinement methods.
Availability: https://github.com/Cao-Labs/AnglesRefine.git
Contact: caora@plu.edu
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1 INTRODUCTION
Proteins are the fundamental building blocks of life, serving as
the primary facilitators of biological processes. Life could not exist
without proteins. Gaining insight into the three-dimensional struc-
ture of proteins is crucial not only for understanding their functions
but also for grasping how they execute their roles. Determining
protein structures is of utmost importance in biological research. In
recent years, protein structure prediction has witnessed significant
advancements [2, 13, 15, 19, 24, 25, 28, 29, 31], particularly with the
emergence of AlphaFold2. Nonetheless, despite AlphaFold2’s high
accuracy [13], a considerable number of predicted protein mod-
els still exhibit substantial deviation from their native structures.
Consequently, refining these predicted models is essential.

Typical protein structure refinement methods apply molecular
dynamics simulation and energy minimization [1, 3, 4, 7–10, 14,
18, 21, 23, 27, 32] to improve protein structures. Molecular dynam-
ics is a physics-based approach that samples multiple molecular
dynamics trajectories based on the physical principles of atomic
interactions, which is computationally large and time-consuming.
Currently, successful refinement methods use large-scale conforma-
tional sampling via molecular dynamics simulations or fragment
assembly. For example, ModRefiner [27] constructed and refined
protein structures from 𝐶𝛼 traces based on a two-step and atomic-
level energy minimization. Besides, RefineD [3] used an integrated
classifier based on deep discriminant learning to predict multires-
olution probabilistic constraints from the starting structure, and
then converted these constraints into Rosetta constraints to guide
conformational sampling during structure refinement. In addition,
3Drefine [4] performed iterative refinement of hydrogen bonding
networks and atomic-level energy minimization of models based
on composite physics-based and knowledge-based force fields to
improve protein structures. Moreover, AIR [23] utilized multiple
energy functions, multiple initial structures and the information
sharing mechanism of the intelligent particle swarm algorithm to
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learn high-quality local structures between each initial structure,
finally filtered the candidate protein structures. Also, ReFOLD3 [1]
refined protein structures by using an iterative refinement protocol
to fix incorrect residue contacts and local errors (including un-
usual bonds and angles) to guide molecular dynamics simulations
to improve performance. And GalaxyRefine2 [14] was an updated
version of GalaxyRefine [10] that improved both local and global
protein structures by iterative conformational sampling.

Recently, deep learning has been applied to improve the geo-
metric properties of protein 3D structures. For example, DeepAcc-
Net [11] used both 3D and 2D convolutional networks to estimate
residual accuracy and inter-residual distance errors, which were
then converted to Rosetta constraints to guide conformational sam-
pling. However, it required large computational resources to refine
the input protein structure even for a single protein model. Be-
sides, GNNRefine [12] used graphical neural networks to refine the
backbone atoms of protein structures, but it relied on Rosetta [6]
tools for full-atom model reconstruction. Although these methods
proved to be effective for refinement of some protein structures,
they required conformational sampling (mostly large-scale sam-
pling) and large computational resources. Recently, a new method
that is not based on conformational sampling has been proposed,
ATOMRefine [26] refined protein structures in the full-atom scale
based on all-atom representation. However, these methods refined
protein models at the global structure level, directly outputting the
refined coordinates for all atoms, which does not allow for the sep-
arate improvement of specific inappropriate local structures within
the protein model. To this end, we introduce a non-physics-based
protein structure refinement approach called AnglesRefine. This
method not only eliminates the need for conformational search and
sampling but also refines protein structures with an emphasis on
local structures.

Specifically, AnglesRefine employs a Transformer model [22]
to refine protein structures based on their secondary structures
and torsion angles. The process begins by identifying inconsis-
tent local structures in the starting model by comparing their
secondary structures with their target secondary structures pre-
dicted by PSIPRED [17]. Next, six torsion angles (psi, phi, omega,
CA_C_N_angle, C_N_CA_angle, N_CA_C_angle) associated with
these local structures are fed into the Transformer model for refine-
ment. Refined protein structures are then generated using the ad-
justed angles. Experimental results demonstrate that AnglesRefine
can improve model quality on average while significantly reduc-
ing computational time compared to existing refinement methods.
This reduction in time is attributed to the elimination of confor-
mational search and sampling requirements. Notably, we propose
Helix_angle-Transformer (see details in Section 2.3) based on Trans-
former, which refines inconsistent local structures into helix struc-
tures using only torsion angles, is an entirely innovative contribu-
tion in this work.

2 METHODS
In this section, we introduce the details of our method including 2.1
input feature, 2.2 Workflow of AnglesRefine, 2.3 Model architec-
ture - Helix_angle-Transformer and 2.4 The spatial translation and
rotation strategy.

2.1 Input feature
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Figure 1: Six angles (𝜓 , 𝜙 , 𝜔 , CA_C_N_angle, C_N_CA_angle,
N_CA_C_angle) in a peptide plane.𝜓 /psi : rotation angle of
peptide plane around 𝐶𝛼-C1 bond; 𝜙/phi: rotation angle of
peptide plane around N-𝐶𝛼 bond; 𝜔/omega: rotation angle
of peptide plane around C-N bond), all have a certain range
of values; CA_C_N_angle: the planar angle composed of 𝐶𝛼
atom, C atom and N atom; C_N_CA_angle: the planar angle
composed of C atom, N atom and 𝐶𝛼 atom; N_CA_C_angle:
the planar angle composed of N atom, 𝐶𝛼 atom and C atom.

Proteins, mainly composed of chemical elements such as carbon,
hydrogen, oxygen and nitrogen, are an important class of biological
macromolecules. All proteins are multimers formed by joining 20
different amino acids. Two amino acids can combine and form a
peptide bond between two amino acids through a condensation
reaction, which is repeated continuously to form a long chain of
residues (i.e., a poly-peptide chain), which are also called residues af-
ter the formation of a protein. The C-N bond between two residues
(i.e., peptide bond) cannot be rotated, so that the groups attached
to the ends of the peptide bond are in a plane, and this plane is
called the peptide plane. The so-called peptide plane is the structure
from one 𝐶𝛼 atom to another 𝐶𝛼 atom in the peptide plane, which
contains six atoms (𝐶𝛼 , C, O, N, H, 𝐶𝛼), and they are in the same
plane together (showed in Figure 1), and the 𝐶𝛼-C bond, C-N bond
and N-𝐶𝛼 bond in the peptide plane constitute the backbone main
chain of the long peptide chain, and𝜓 , 𝜙 and 𝜔 are the correspond-
ing rotational dihedral angles of these three bond axes: peptide
dihedral angle 𝜓 (i.e., psi: rotation angle of peptide plane around
𝐶𝛼-C bond), 𝜙 (i.e., phi: rotation angle of peptide plane around N-
𝐶𝛼 bond) and 𝜔 (i.e., omega: rotation angle of peptide plane around
C-N bond), all have a certain range of values. Once the dihedral
angles of all residues are determined, the main chain conforma-
tion of the protein is also determined. In addition, CA_C_N_angle,
C_N_CA_angle, N_CA_C_angle are three different planar angles:
CA_C_N_angle is the planar angle composed of 𝐶𝛼 atom, C atom
and N atom, C_N_CA_angle is the planar angle composed of C
atom, N atom and 𝐶𝛼 atom, N_CA_C_angle is the planar angle
composed of N atom, 𝐶𝛼 atom and C atom, and these angles also
affect the protein backbone structure. In this paper, we adjust the
protein local structure based on the six backbone angles (𝜓 , 𝜙 , 𝜔 ,
CA_C_N_angle, C_N_CA_angle, N_CA_C_angle) to enhance the
quality of protein structure.
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Figure 2: The process of input feature extraction. (a) PDB2angles: Extracting angles from pdb. (b) Divide angles data to several
different lengths according to target secondary and pick up pre-refined angle sequences by matching its secondary structure
with target secondary structure. (c) Normalize the piked angle sequences to process features which will be input to Helix_angle-
Transformer models. (d) Input the features to corresponding Helix_angle-Transformer models for refinement.

Protein secondary structure refers to the specific conformations
formed by backbone atoms looping or folding around a fixed axis,
encompassing the spatial arrangement of peptide chain backbone
atoms without considering the side chains of residues. The pri-
mary forms of protein secondary structure include 𝛼-helix, 𝛽-sheet,
𝛽-turn, and irregular coil. The 𝛼-helix consists of tightly coiled
peptide bond planes, which rotates around 𝛼-carbon atoms to form
a solid, right-handed helix. PSIPRED [17] is a straightforward and
accurate method for secondary structure prediction, combining
two feedforward neural networks that analyze the PSSM output
from PSI-BLAST [5]. Using a stringent cross-validation approach to
assess performance, PSIPRED predicts secondary structures with
an average accuracy exceeding 80%. In this study, we employ the
latest version, PSIPRED 4.0, to predict the secondary structures of
starting models with unknown native structures. The secondary
structure predicted by PSIPRED 4.0 serves as the target secondary
structure. We segment the protein structure into individual local
structures based on the target secondary structure. These local
structures correspond to angle data with varying types and lengths
of secondary structures (focusing on 𝛼-helix in this case).

The input features of our method are the 3-dimensional atomic
coordinates, the secondary structure of the protein model and the
target secondary structure predicted by PSIPRED 4.0. After in-
putting the atomic coordinates, the six types of angle data, psi,
phi, omega, CA_C_N_angle, C_N_CA_angle, N_CA_C_angle, are
extracted from the coordinates. Then the inconsistent local struc-
tures whose secondary structures do not match with their target
secondary structures are identified, the angle data of these local

structures to be refined are extracted, normalized and integerized
to generate features of different angles and different lengths. And
then the features are input into our specific transformer models
(Helix_angle-Transformer) trained for different angles with differ-
ent helix lengths to generate target angle data (angles of Helix).
After generating the refined local structures from the output an-
gles, the specific spatial translation and rotation strategy of local
structures is used to generate the final refined protein structure.
Figure 2 shows the whole process of feature extraction.

2.2 Workflow of AnglesRefine
The flowchart of our method AnglesRefine is shown in Figure 3.
First, we use PSIPRED [17] to predict the secondary structure of the
protein model from the protein sequence as the target secondary
structure, and match the secondary structure of this model with
the target secondary structure to obtain the mismatched fragments
(here we only pick the mismatched fragments that are predicted to
be helix by PSIPRED). These fragments are the local structures that
are identified to be refined in this protein model. Then, we extract
the angle features of these inconsistent local structures. According
to the angle types (psi, phi, omega, CA_C_N_angle, C_N_CA_angle,
N_CA_C_angle) and lengths ([5,6, ...,37]), features are input to
the corresponding Helix_angle-Transformer to obtain the refined
angles. Finally, the output angles are converted into refined local
structures using Angles2PDB (our in-house tool), and these refined
local structures are embedded into the original position instead of
the original inconsistent local structures, and combined with other
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Figure 3: The flowchart of AnglesRefine including feature extraction, refining local structures based on Transformer and
protein torsion angles, and building refined model by our spatial translation and rotation strategy: this figure only shows
the process of refining one inconsistent local structure to generate the refined model. Generally, several inconsistent local
structures in a protein model generally are identified to be refined.

unchanged local structures of the starting model to generate the
final refined protein model.

As mentioned above, our method mainly focuses on refining
those local structures whose target structures are helix, and is dedi-
cated to refining those local structures from coil or other inconsis-
tent structures into helix using Helix_angle-Transformer (described
in detail in Section 2.3). After refining these local structures, we try
to ensure that these refined local structures are embedded in the
target positions in the starting model without changing the global
structure, so that we can achieve the goal of refining the protein
model by adjusting the inconsistent local structures with the global
structure remains as unchanged as possible. This spatial translation
and rotation strategy is described in detail in Section 2.4.

2.3 Model architecture -
Helix_angle-Transformer

Transformer [22] has been successful in many different NLP tasks,
and it uses the Attention mechanism to automatically capture rela-
tive associations at different locations in the input sequence, and is
good at processing longer text. The model is roughly divided into
two parts, Encoder and Decoder, which correspond to the left and
right parts in Figure 4. The Encoder consists of N identical layers
stacked on top of each other, and each layer has two sub-layers. The
first sub-layer is a Multi-Head Attention (multi-head self-attentive
mechanism), and the second sub-layer is a simple Feed Forward
(fully connected feed-forward network). Both sub-layers add a resid-
ual connection and layer normalization operation. The Decoder of
the model is also stacked with N identical layers, but the structure

of each layer is slightly different from that of the Encoder. For each
layer of the Decoder, in addition to the two sub-layers Multi-Head
Attention and Feed Forward in the Encoder, the Decoder also con-
tains a sub-layer Masked Multi-Head Attention, and each sub-layer
also uses residual and layer normalization. The Encoder takes an
input that is a combination of the input embedding and positional
encoding. On the other hand, the Decoder’s input consists of the
Encoder’s output, positional encoding, as well as a concatenation
of the Decoder’s input and its prediction from the preceding time
step. The output of the model is obtained by simply passing the
output of the Decoder through the linear and softmax layers.

We focused on refining an irregular sequence of angles into a se-
quence that can form a helix. This objective suggests that a seq2seq
model could effectively fulfill our aim. Compared with traditional
seq2seq models, the Transformer’s multi-attention mechanism can
capture more feature-rich information. Moreover, the Transformer
architecture is the most widely used solution for seq2seq problems.
Therefore, we have chosen to base our model on the Transformer
architecture.We extract the angle data from the protein structure us-
ing PDB2Angles (our in-house tool), for Helix_PSI-Transformer(L),
first we normalize these data (reduced to [0,1], originally the range
of PSI angle is [-180,180]), and then for the convenience of training,
we multiply all the data by 1000 and round them up to scale to
[0,1000] as the raw data. The input representation of each angle
data in our model is obtained by adding Word Embedding and Po-
sitional Encoding (based on the PyTorch framework, our method
uses nn.Embedding to generate Word Embedding, and Positional
Encoding is obtained using the computational formula given in the
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Figure 4: The network architecture of Helix_angle-Transformer: Helix_angle-Transformer consists of six types: Helix_psi-
Transformer, Helix_phi-Transformer, Helix_omega-Transformer, Helix_CA_C_N-Transformer, Helix_C_N_CA-Transformer,
Helix_N_CA_C-Transformer which are all composed of six Encoder blocks and six Decoder blocks.

Figure 5: The process of embedding one refined local structure to the model by our spatial translation and rotation strategy.
The red local structure in this diagram represents the local structure identified to refine, the blue one represents the whole
structure before the local structure identified to refine (red) and the yellow one represents the whole structure after the local
structure identified to refine (red). This diagram only shows the process of embedding one refined local structure, several
inconsistent local structures in a protein model generally are identified to be refined generally. For the implementation details
of the spatial translation and rotation strategy, please refer to Algorithm 1.

document “Attention is all you need.” [22]), so that we successfully
embedded the angle sequence of length L embedded into a matrix
(L*512). The main parameters are as follows: d_model = 512 (Em-
bedding dimension), d_ff = 2048 (FeedForward dimension), d_k =
d_q = d_v = 64 (dimension of matrix Q, K, V).

Based on Transformer, we developed Helix_angle-Transformer
(Figure 4) with 6 Encoder blocks and 6 Decoder blocks for pro-
ducing helix angles from irregular angles (We set N to the default
value of 6). Totally 198 (33*6) Helix_angle-Transformer models
are successfully trained including 33 Helix_PSI-Transformer mod-
els, 33 Helix_PHI-Transformer models, 33 Helix_OMEGA-Transf-
ormer models, 33 Helix_CA_C_N_angle-Transformer models, 33
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Algorithm 1 The spatial translation and rotation strategy
[1] Starting model: the input protein structure to be refined;
[2] PRLSS: pre-refined_local_structures, a list contains pdbs of all
inconsistent local structures that are identified to be refined to
corresponding helix using Helix_angle-Transformer;
[3] Refined model: the output refined protein structure;
[4] Helix_angle-Transformer: see details in Section 2.3.
Input:

Starting model[1] ;
PRLSS[2] ;

Output:
Refined model[3]

1: PRLSS_num← the number of local structures identified to refine;
2: model← Starting model;
3: for 𝑖 = 0 to PRLSS_num do
4: current_PRLS← PRLSS[i];
5: SA← the whole structure before current_PRLS of the model;
6: SB← the whole structure after current_PRLS of the model;
7: current_RH← the refined result structure (helix) of current_PRLS

using Helix_angle-Transformer[4] ;
8: current_RH← do a translation operation to current_RH to connect

the tail of SA;
9: current_RH← do a rotation operation to current_RH to connect the

head of SB;
10: current_RH_len← the euclidean distance between the first and last

residue of current_RH;
11: current_PRLS_len← the euclidean distance between the first and

last residue of current_PRLS;
12: if current_RH_len < current_PRLS_len then
13: while current_RH_len < current_PRLS_len do
14: current_RH ← make a stretching change to current_RH to

connect the head of SB;
15: current_RH_len← the euclidean distance between the first

and last residue of current_RH;
16: end while
17: end if
18: model← combine the pdbs of SA, current_RH and SB;
19: end for
20: Refined model← model

Helix_C_N_CA_angle-Transformer models and 33 Helix_N_CA-
_C_angle-Transformer models. For example, Helix_PSI-Transfor-
mer(L) denotes the Transformer model that can produce the psi
angle sequence of helix whose length is L (L belongs to [5,37]).
As for an identified local structure to be refined whose length is
L, Helix_PSI-Transformer(L), Helix_PHI-Transformer(L), Helix_-
OMEGA-Transformer(L), Helix_CA_C_N_angle-Transformer(L),
Helix_C_N_CA_angle-Transformer(L) and Helix_N_CA_C_angle--
Transformer(L) are used respectively to generate the psi, phi, omega,
CA_C_N_angle, C_N_CA_angle and N_CA_C_angle sequences of
helix whose length is L, finally output a helix with length L which
is the target structure of this identified local structure using An-
gles2PDB (our in-house tool).

2.4 The spatial translation and rotation strategy
After refining certain local structures, we need to embed these re-
fined local structures in their original positions and merge them
with other unaltered local structures to generate the final refined

protein structure. In order to ensure that the global structure of
starting model remains unchanged as much as possible, we use a
specific spatial translation and rotation strategy, that is the spatial
translation and rotation strategy, which ensures that the global
structure of original model remains unchanged to the maximum
extent possible to avoid significant quality degradation. The process
of embedding the generated helix of an inconsistent local structure
into its original position instead of itself is performed as shown in
Figure 5: according to the position of the local structure to be refined
called pre-refined_local_structure_i (PRLS_i), the original model
is divided into three local structures, the first one is structure_a_i
(SA_i, the whole structure before PRLS_i), the second one is helix_i
(the result helix of correcting PRLS_i) and the third one is struc-
ture_b_i (SB_i, the whole structure after PRLS_i). First, helix_i does
a translation operation to fit the tail of SA_i. Then taking the head
of the local structure as the center after the translation operation,
rotate it to the nearest position of the head of SB_i. Ideally, the tail
of helix_i fits exactly into the head of SB_i. If the generated helix is
not long enough, we need to make a small stretching change to the
helix structure (starting from the tail residue of the helix and stretch-
ing it until it reaches a sufficient length to fit the head of SB_i), so
as to obtain refined_model_i. Assuming that the original model
has produced L helix structures (helix_1,...,helix_i, helix_i+1,..., he-
lix_L) for those inconsistent local structures (PRLS_1,..., PRLS_i,
PRLS_i+1,..., PRLS_L), first we generate refined_model_1 from the
starting model. By inputting refined_model_1, then perform the
same translation, rotation and possibles stretching operations based
on helix_2 to generate refined_model_2; and so on, until complete
the embedding process, the final refined model which guarantees
the minimum change of the global structure of original model is
generated (described in detail in Algorithm 1).

3 RESULTS AND DISCUSSION
In this section, we present experimental details, experimental re-
sults and software specific usage including 3.1 Evaluation met-
rics, 3.2 Model training, 3.3 The quality of refined local structures
(Helix), 3.4 Performance on the CASP test dataset, 3.5 Case study, 3.6
Running time and 3.7 User autonomy.

3.1 Evaluation metrics
Weuse threemetrics, GDT-TS (Global Distance Test-Total Score) [30],
GDT-HA (Global Distance Test-High Accuracy) [30] and lDDT (the
Local Distance Difference Test score) [16], to evaluate the quality
of the model. We also use "Degradation Percentage" to indicate the
percentage of models with degraded quality to further compare the
performance of comparison methods.

3.2 Model training
The CASP11-14 dataset contains 30,624 models of 177 protein tar-
gets (including 84 regular targets from CASP11, 40 regular targets
from CASP12, 20 regular targets from CASP13, and 33 regular tar-
gets from CASP14). In order to obtain as much training torsion
angles data from protein structures as possible, we randomly se-
lected 1770 models as the final starting models test dataset called
CASP11-14 test dataset (10 models randomly selected for each tar-
get), and the remaining 28,872 protein models were used to train
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our Helix_angle-Transformer. Torsion angles data prepared for
Helix_angle-Transformer were generated from the 28,872 protein
models (70% of them are used as training sets, 20% as validation
sets, and 10% as test sets). We trained the Transformer model based
on the PyTorch [20] framework, where the number of Encoder and
Decode was set to 6, the number of attention heads was set to 8,
and the dropout was set to 0.3. The Stochastic Gradient Descent
(SGD) algorithm was used as the optimization algorithm, with the
learning rate setting to 0.003 and the momentum factor setting to
0.99. We trained 33 Helix_angle-Transformer(L) models for each
of the six angles, where L has 33 values (L belongs to [5,37]), and
the six angles are psi, phi, omega, CA_C_N_angle, C_N_CA_angle,
N_CA_C_angle, so a total of 198 Helix_angle-Transformer(L) mod-
els are trained.

(a) Improved and worse Percentage by GDT score.

(b) Improvement probability of local structures at different quality levels.

Figure 6: Improved quality of refined local structures (Helix)
by AnglesRefine. (a) The improved results of local structures
at different quality levels. (b) The comparison of the im-
provement probability of local structures at different quality
levels.

3.3 The quality of refined local structures
(Helix)

Different from the previous methods that almost directly refine the
global structure of the protein and cannot individually adjust some
inconsistent local structures of the protein, our method AnglesRe-
fine refines the protein model based on correcting local structures.
AnglesRefine uses Transformer to refine the local structures of
the protein using the protein’s backbone angles to achieve the
refinement of the protein model. First, the inconsistent local struc-
tures are identified based on the secondary structure (here only
for the local structure whose target structure is helix). Then, our
Helix_angle-Transformer models are used to refine the inconsistent
local structures to helix structures similar to their natives based on
the protein backbone angles, which is also completely innovative.

Extracting 8,402 local structures whose target structures are he-
lix from the models of 177 CASP11-14 protein targets, we refined
these 8,402 local structures and the results are shown in Figure 6
(a): for the low quality, medium quality and higher quality, the
vast majority of local structures have improved in quality; for local
structure with high quality (90-100), half of the local structures
remain the same, a few of them are improved and some of them are
decreased, which is because these local structures are already helix
and there is only a small difference with the native helix. That is,
our Helix_angle-Transformer model is valid. Besides, Figure 6 (b)
shows a comparison of the probability of improving the quality of
local structures at different quality levels and the results are as we
expected: the probability of quality improvement is about the same
for low quality, average quality, and higher quality and the proba-
bility of quality improvement is the lowest for local structures at
high quality (90-100). Overall, our method can successfully correct
the local structure whose target structure is helix from irregular or
other non-helix structures to the helix.

3.4 Performance on the CASP test dataset
The CASP11-14 dataset contains 30,624 models of 177 protein tar-
gets (including 84 regular targets from CASP11, 40 regular targets
from CASP12, 20 regular targets from CASP13, and 33 regular tar-
gets from CASP14). In order to obtain as much training torsion
angles data from protein structures as possible, we randomly se-
lected 1770 models as the final starting models test dataset called
CASP11-14 test dataset. In addition CASP15 exposes 30 regular pro-
tein targets with a total of 10,368 models, of which 10,264 models
have a GDT_TS above 50. We ran the publicly available methods
GNNRefine [12] , AtomRefine [26], and ModRefiner [27] on the
CASP11-14 and the CASP15 test dataset. ModRefiner took too long
to run (it would take several months to complete refining all CASP15
test models), so on the CASP15 test dataset, we only compared our
methods to GNNRefine and AtomRefine.

We compared our method AnglesRefine with the leading meth-
ods GNNRefine, AtomRefine, and ModRefiner on the CASP11-14
test dataset. Note that ModRefiner has configurable parameter
strengths in [0, 100] to control the strength of the constraints ex-
tracted from the starting model, with strength 0 indicating no con-
straints at all, and strength 100 indicating very tight constraints on
the startingmodel, we set the strength value to 50 to runModRefiner.
As shown in Table 1, our method improves the average GDT-TS and
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Table 1: Performance on the CASP11-14 test dataset.

Methods GDT-TS GDT-HA lDDT Degradation
percentage

Starting 70.72 52.51 61.52 -
AnglesRefine 71.06 52.73 61.58 8%

GNNRefine 66.77 48.24 62.89 62%
AtomRefine 70.74 52.43 61.79 44%
ModRefiner 65.85 47.69 61.28 77%

Note: Bold indicates the best performance in its column.

GDT-HA the most compared with other methods, which means that
our method outperforms the other methods in these two metrics.
However, our method is slightly inferior to other methods in the
lDDT metrics, probably because our method only focuses on the
secondary structure of the protein local structure and does not use
any physical and chemical features or energy features generated
by energy functions as existing methods do, which may lead to
inadequate refinement of local structures. But, it can be seen in
Section 3.3 that our method is able to correct the inconsistent local
structures whose target structure is helix structures, which also
indicates that the refine strategy of local structures in our method
is effective. And our method has the lowest probability of reducing
the quality of the model, which is also due to the fact: different from
the existing refinement methods, our method does not perform any
conformational search and sampling, but only makes local adjust-
ments to refine the model, and the spatial translation and rotation
strategy can also prevent the model from changing drastically and
causing a significant reduction in quality.

However the performance of all methods on the newly publicized
CASP15 test dataset is not outstanding (GDT score only slightly
improved while lDDT slightly reduced). As shown in Table 2, the
average GDT-TS, GDT-HA improvement of our method is also not
much, which is because our method focuses on improving the local
structure of some real structures that are helix, while many models
of CASP15 do not have such inconsistent local structures. However,
the performance of our method is not at a disadvantage compared
to the other two methods. To further observe the degradation for
high quality models, we analyse the refinement results for 10,264
models whose average GDT_TS is 81.52, and the probability of
degrading the model for such high quality models is still around
9%, which is still an advantage compared to other methods. More
notably, since our method does not use conformational search and
sampling but only local adjustment, our method requires much less
running time than other methods, as detailed in Section 3.5.

3.5 Running time
Different from previous refinement methods, AnglesRefine does not
perform any conformational search and sampling, so AnglesRefine
is significantly faster than GNNRefine, AtomRefine andModRefiner.
We tested the run times of AnglesRefine, AtomRefine, GNNRefine,
and ModRefiner on protein targets of different sequence lengths.
Table 3 shows the average running time for protein models of

Table 2: Performance on the CASP15 test dataset.

Methods GDT-TS GDT-HA lDDT Degradation
percentage

Starting 69.53 56.60 78.25 -
AnglesRefine 69.58 56.64 77.92 9%

GNNRefine 63.51 49.34 73.73 79%
AtomRefine 69.55 56.60 77.90 38%

Note: Bold indicates the best performance in its column.

Table 3: Running time.

Methods <100 100-300 >300 Average

AnglesRefine 15s 30s 45s 30s

GNNRefine 30s 100s 230s 120s
AtomRefine 65s 226s 510s 267s
ModRefiner 30m 40m 60m 43m

Note: Bold indicates the best performance in its column.

different lengths. For protein models with only one local structure
to be refined, our method AnglesRefine typically takes 15 seconds to
complete the entire refinement process. As for protein models with
lengths less than 100, between 100 and 300, and more than 300, they
have on average one local structure, two local structures, and three
local structures to be refined respectively, so their average running
times are 15, 30, and 45 seconds respectively. The average running
time of AnglesRefine is 30 seconds , which is about 4 times faster
than GNNRefine, about 9 times faster than AtomRefine and about
86 times faster than ModRefiner. It is worth mentioning that the
larger the protein model is, the greater the running time advantage
of our method compared to the running time of other methods.

3.6 Case study
Figure 7 shows successful refinement examples by AnglesRefine
for targets T0797, T1119 and T1106s1 from CASP11 to CASP15. In
the figure, the starting models are shown in red, the refined models
are shown in blue, and the native structures of these models are
shown in green. As we can see, the secondary structures of the
residues indicated with yellow arrows are irregular structures (coil)
and do not match the target secondary structure (helix). Therefore,
our method identifies those segments as local structures that need
to be corrected and corrects them to helix structures, successfully
refining themodel to a structuremore similar to the native structure,
and the quality is greatly improved.

3.7 User autonomy
As mentioned above, our method first identifies the local structures
to be refined by matching the secondary structure with the target
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Figure 7: 3 successful refinement examples refined by AnglesRefine. (a) CASP11_T0797. (b) CASP15_T1119. (c) CASP15_T1106s1.

Table 4: Autonomous use of AnglesRefine.

CLI Description

IN[1]: AnglesRefine modelA.pdb Input Starting modelmodelA.pdb
OUT[1]: Pre_refine1, Pre_refine2, Pre_refine3 There are 3 local structures to be refined in modelA
IN[2]: AnglesRefine modelA.pdb –show Pre_refine1 Show more information of local structure called Pre_refine1

OUT[2]: 9: [12 , 20] Length:[start_residue, end_residue]
IN[3]: AnglesRefine modelA.pdb –show Pre_refine2 Show more information of local structure called Pre_refine2

OUT[3]: 25: [64 , 88] Length:[start_residue, end_residue]
IN[4]: AnglesRefine modelA.pdb –show Pre_refine3 Show more information of local structure called Pre_refine3

OUT[4]: 18: [95 , 112] Length:[start_residue, end_residue]
IN[5]: AnglesRefine modelA.pdb –select [Pre_refine1, Pre_refine3] Input Starting modelmodelA.pdb

OUT[5]: refined_modelA.pdb saved! Output Refined modelrefined_modelA.pdb

Note: Assuming that the model has 3 local structures to be refined, the user choose the first and the third one to refine here.

secondary structure (in our current method we only focus on lo-
cal structures whose target structure is a helix), and these local
structures are refined and combined with other local structures
into the final refined model. However, usually a starting model is
identified to have more than one such local structure to be refined,
so we made our software into a more user-friendly mode: users can
choose which local structures to refine according to their needs
when using our method, and different refinement models will be
output for different needs (when the default mode is selected, all
identified inconsistent local structures are refined and the most
modified refinement result is output). This user-selectable mode
provides the users with more possible refinement results.

Table 4 briefly shows the steps of our method for autonomous
use: first input the starting model (assuming that the modelA has 3

local structures to be refined), all the local structures identified to
be refined will be output; use ‘-show’ to obtain the local structure’s
position information; then use ‘-select’ to choose which local struc-
tures to be refined, finally output the refined model of refining the
selected local structures. In the default mode, all 3 local structures
are refined to generate the final refined model.

4 CONCLUSION AND FUTUREWORK
In this paper, we proposed a new protein structure refinement
method, AnglesRefine, which is not based on any physical method,
but only on protein secondary structure and torsion angles to cor-
rect the local structures to refine the protein model. AnglesRefine
uses Transformer to correct the original angles to the angles of he-
lix, which can refine inconsistent local structures to the target helix
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structure to improve the quality of protein model while ensuring
that the model’s global structure remains largely unchanged. The re-
sults have shown that our trained Helix_angle-Transformer model
can generate the angle corresponding to the helix structure very
well, which is very effective for the correction of the inconsistent
local structure whose native structure is helix. Since AnglesRe-
fine does not use any physics-based (conformational search and
sampling) methods, its running time has a significant advantage
compared to other methods.

AnglesRefine innovatively corrects the local structures based
on protein secondary structure and torsion angles, but we have
only succeeded in investigating the rules of the angle sequence
of helix, so we can only refine the inconsistent local structures
whose target structures are helix. In the future, we will continue
to study the rules of angle sequence of sheet and train the models
for the local structures whose target structures are sheet structures.
Another point is that the shape of the helix generated by each
Helix_angle-Transformer model we have trained so far is fixed, and
in the future we would like to work out models that can choose to
output helix with different shapes (determined by helix curvature,
etc.), so that we can make better refinement to the local structures
to further improve AnglesRefine. Furthermore, we aim to enhance
AnglesRefine by leveraging various deep learning models, such as
ResNet or VGG, to extract useful features for angle prediction.
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