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Abstract: Biodiversity monitoring depends on reliable species identification, but it can often be
difficult due to detectability or survey constraints, especially for rare and endangered species.
Advances in bioacoustic monitoring and Al-assisted classification are improving our ability to
carry out long-term studies, of a large proportion of the fauna, even in challenging
environments, such as remote tropical rainforests. Al classifiers need training data, and this can
be a challenge when working with tropical animal communities, which are characterized by
high species richness but only a few common species and a long tail of rare species. Here we
compare species identification results using two approaches: convolutional neural networks
(CNN) and Siamese Neural Networks (SNN), a few-shot learning approach. The goal is to
develop methodology that accurately identifies both common and rare species. To do this we
collected more than 600 hours of audio recordings from Barro Colorado Island (BCl), Panama
and we manually annotated calls from 101 bird species to create the training data set. More
than 40% of the species had less than 100 annotated calls and some species had less than 10.
The results showed that Siamese Networks outperformed the more widely used convolutional

neural networks (CNN), especially when the number of annotated calls is low.

Keywords: Bioacoustics, Convolutional Neural networks, Siamese Networks, Data

augmentation, Long-tailed distribution
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I. Introduction

The 21st century is marked by the severe population decline of multiple taxonomic groups due
to habitat loss, climate change, hunting, and introduced species changes (Sanchez-Bayo and
Wyckhuys 2021; Rosenberg et al. 2019; Pacoureau et al. 2021; He et al. 2019; Spooner et al.
2018). To slow the loss of biodiversity, we urgently need to better understand how changes in
climate and other environmental variables are affecting species distributions and abundances.
Unfortunately, monitoring these state variables can be challenging, especially for species of
greatest conservation concern, such as rare and endangered species.

Furthermore, in many ecosystems such as tropical rainforests, high species richness is made up
of a relatively small number of common species and many rare species (Hubbell 2001). From a
conservation or management perspective, these rare species are of utmost important, but up to
now it has been a challenge to collect reliable long-term data for most of these species.

New tools (e.g., inexpensive audio recorders) and technologies (e.g., artificial intelligence) can
greatly improve species identification and discovery. Most research on automating species
identification in audio recordings has focused on producing algorithms specific to a single species
(e.g., Aide et al. 2013). This approach limits the information that can be extracted from
soundscapes, given that many species can be present in a single recording, particularly in species
diverse habitats. In contrast, deep learning algorithms (e.g., neural networks) have been
developed to identify multiple species (e.g., Zhong et al. 2020). These algorithms typically require
a high number of annotated calls (i.e., training data) to achieve satisfactory accuracy. This is
because the deep neural network models usually include millions of parameters and tend to

overfit on small datasets, resulting in poor accuracy. To address the issue of limited training data,
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researchers have developed few-shot learning methods (Koch et al. 2015; Vinyals et al. 2016;
Snell et al. 2017; Sung et al. 2018). These few-shot learning models take a contrastive learning
approach using pairs or triplets of samples as training input. Since triplets of samples are
compared in each training iteration - instead of comparing just one sample with its target label -
the number of unique training samples effectively increases to the number of unique triplets in
the training set (i.e., data augmentation).

Here we compare species identification results using two approaches: convolutional neural
networks (CNN) and Siamese Neural Networks (SNN), a few-shot learning algorithm. The goal is
to develop methodology that accurately identifies both common and rare species.

Il. Data

A. Data Sources and Data Annotation

We collected more than 100,000 one-minute audio recordings from 99 sites on Barro Colorado
Island (BCl), Panama in 2018 (Campos-Cerqueira et al. 2021).

These recordings were used to create a detection history of more than 100 species in the audio
recordings through three steps. First, biological experts manually searched for species in
recordings from 5:00 to 9:00 a.m. from each site and created a call template for each species.
Second, in the RFCx-ARBIMON platform (Aide et al. 2013), we used the template matching
algorithm by providing the system with the species-call template, a playlist of all recordings, and
a correlation threshold (0.1). All detections above the correlation threshold were cropped and
displayed for posterior validation. Third, the experts reviewed the template matching results and

annotated the results as either positive or negative.
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89  For the present study, we created a dataset of approximately 23,000 annotated calls from 101
90 bird species. The duration of most calls (87%) was less than 4 seconds, remaining 13% last
91 between 4 and 7 seconds. The number of annotations varied greatly among species (Table 1).
92 Eleven species had four or fewer annotations, while 55 species had more than 100.

93  TABLE I: Number of annotated calls per species.

Number of Annotated Calls per species Number of bird species
1-4 11
5-99 35
100+ 55

94

95  B. Data for modeling

96  Using custom-written scripts in Python 3.7, Mel-spectrograms were produced from audio files
97  (with NFFT = 1024 and 75% overlap, Hann window). Each mel-spectrogram was generated from
98 a4-s audio segment that contained either one or multiple annotated calls and was resized as
99 384 pixels by 384 pixels with RGB channels (i.e., colored Mel-spectrograms). During the
100 annotation process, we only labelled a single species in each template-matching detection. As a
101  result, for each extracted Mel-spectrogram, the presence or absence of only one species is

102 labeled.

103  Given the long-tail distribution of the labeled data among all studied species, we grouped the
104 11 species with less than five annotations into one category; therefore, our model has 91

105 categories in total. The annotated data were randomly split into training, validation, and testing
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106  sets (which account for 64%, 16%, and 20% of the annotated data, respectively), and the model
107  results were reported and evaluated on the testing set. To make a fair comparison, we used the
108  same backbone architecture (DenseNet121) for both Convolutional Neural Networks (CNN) and

109  Siamese Neural Networks (SNN).

110  lll. Methods
111  We assessed the performance of Convolutional Neural Networks (CNN) and a technique for
112  few-shot learning, Siamese Neural Networks (SNN), to determine which best classified bird

113 calls.

114  A. Classification Models using Convolutional Neural Network (CNN)

115  Convolutional Neural Networks (CNN) have been widely used for image classification tasks, and
116  their success has also been proven in bioacoustic classification applications (Bianco et al. 2019,
117  Zhong et al. 2020, LeBien et al. 2020). Here we used the DenseNet architecture (Huang et al.
118 2016) as a baseline to classify the presence or absence of calls for each species in each 4-s
119  spectrogram. DenseNet was explicitly developed to improve the negative effect on accuracy
120  caused by the vanishing gradient in deep neural networks and has the advantage of improving
121  feature propagation both in a forward and backward fashion. In a DenseNet architecture, the
122 output feature-map of each layer is used as input for each subsequent layer, such that all layers

123  are connected.

124  Since many deep neural network models have parameters in the order of millions, they heavily
125  rely on big data to avoid overfitting (REF). However, almost 40% of species have less than 100

126  labeled calls in our annotated data. As an effective data-space solution to the problem of
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127  limited data, data augmentation refers to the techniques that attempt to artificially increase
128  the size and quality of training datasets such that the models built using them may achieve

129  higher accuracy.

130  Among various data augmentation methods for image processing, some basic ones include

131 flips, rotations, shifts, noise injections, color space transformations, sharpening or blurring, and
132 random erasing or cropping (REF). Specifically, for audio recordings, there are methods such as
133 time-stretching, pitch shifting, and mixing multiple audio files (Salamon and Bello 2016).

134  Beyond them, there are more advanced techniques, such as generative adversarial network
135 (GAN)-based methods (Antoniou et al. 2017), which can generate synthetic images. For this
136  model implementation, as our primary goal is to compare the performance between CNN and
137  few-shot learning models, we did not apply advanced data augmentation techniques, but only
138  two basic techniques instead to increase the size of data that can be used for model training:
139  rotation (up to 5 degrees) and time-frequency shifting (width and height shifting up to 10% of

140  the original spectrogram).

141  B. Classification Models using Siamese Neural Network (SNN)

142  Siamese Neural Networks (SNN) (Koch et al. 2015) are a class of neural network architectures
143  that contain two or more identical subnetworks. “ldentical” here means having the same
144  configuration with the same parameters and weights. Parameter updating is mirrored across
145  both sub-networks. SNN focuses on learning image embeddings in the deeper layers that place

146  the same classes close together. Hence, it can be used to measure the similarity of the inputs by
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147  comparing their feature vectors and deciding whether the two images belong to the same

148  category or different categories.

149  Since training of Siamese networks involves pairwise learning, a cross-entropy loss cannot be
150 used in this case. Instead, we used another loss function called triplet loss (Hoffer and Ailon,
151  2015). This is a loss function where an anchor (baseline) image is compared to a positive image
152  (i.e., an image that is in the same category as the anchor image) and a negative image (i.e., an
153  image that is in a different category as the anchor image). The distance from the anchor image
154  tothe positive image is minimized, and the distance from the anchor image to the negative image
155 is maximized. As shown in formula (1), D (x, y) represents the distance between the learned
156  vector representation of x and y. a is a margin term used to stretch the distance differences
157  between similar and dissimilar pairs in the triplet. The remaining parameters represent the

158  feature embeddings for the anchor (a), positive (p), and negative (n) images.

159 L(a, p, n) = max(0, D(a, p) — D(a, n) + a) (1)

160  During the training process, an image triplet (anchor image, positive image, negative image) is
161 fedinto the model as a single sample (see Fig. 1). The distance between the anchor and positive
162  images should be smaller than that between the anchor and negative images, indicating higher
163  similarity between the anchor and positive images. An extensive training data set is needed for
164  many deep learning models to achieve good performance. While this may not be practical in
165 many real applications, the way how Siamese Networks make good use of all training examples

166  to train embeddings enables these networks to learn from very little data.
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168  FIG. 1. Architecture of Siamese Networks with triplet loss.

169  When triplets are generated for model training, as the training continues, some of the additional
170  triplets are easy to deal with because their loss value is very small or even 0, preventing the
171  network from further improvement. A good training strategy would be to constantly “mine” out
172 those difficult cases (i.e., triplets that distance between the anchor and positive image is larger
173  than the distance between the anchor and negative image) in each epoch, based on the
174  performance of the model’s current snapshot, so that the model will always have a certain
175  percentage of challenging cases in the training loop from which it still struggles to tell the

176  difference. This is similar to the triplet mining in FaceNet (Schroff et al. 2015).

177  After getting the embedding vector for each mel-spectrogram, we measured the similarity (i.e.,
178 L2 distance) for each mel-spectrogram in the test set with those in the training set and assigned

179  the label to the closest species.

180
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lll. Results

To evaluate the model performance on datasets with different categories and sizes, we reported
the model performance when fitting on (1) all species and 2) rare species only. For each dataset,
we reported the top-1, top-3, and top-5 accuracies (top-k accuracy is the accuracy where true
class matches with any one of the k most probable classes predicted by the model), where the
accuracies are calculated as an average of 5 independent runs.

TABLE II: Comparison of classification results for the CNN and SNN models. Results are shown
for all species combined, common species (>=100 annotated calls), and rare species (<100

annotated calls). The highest performance for each measure and species subset is in bold type.

CNN SNN
Top-1 Top-3 Top-5 Top-1 Top-3 Top-5
Species Accuracy Accuracy Accuracy Accuracy  Accuracy Accuracy
All species 89.48% 94.42% 95.54% 88.66% 96.10% 97.35%

common species  91.22% 95.62% 96.59% 89.85% 96.93% 98.08%

rare species 67.12% 79.02% 81.90% 73.37% 85.46% 87.91%

CNN performs slightly better on top-1 accuracy for the overall dataset and common species for
models fitted on the training data from the entire annotated data (Table 2). In comparison, SNN
performs substantially better on three measures for rare species and has higher top-3 and top-5

accuracies for the overall dataset and common species.
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TABLE Ill: Model results for classifying the presence of rare species (i.e., fewer than 100
annotations per species) for the CNN and SNN models. The highest performance for each

measure and species subset is in bold type.

CNN SNN
Top-1 Top-3 Top-5 Top-1 Top-3 Top-5

Species Accuracy Accuracy Accuracy  Accuracy  Accuracy Accuracy
5 —100 annotated calls 83.25% 90.25% 92.21% 85.77 % 93.19% 95.40%
(Includes 35 species)

5—20 annotated calls 53.69% 67.89% 75.79% 73.16% 90.00% 93.69%
(Includes 13 species)

5 —10 annotated calls 35.29% 64.71% 82.35% 60.00% 80.00% 90.59%

(Includes 7 species)

When the analyses are restricted to the species with small training sets (<100 annotations), the
difference in the performance of the two models is even more dramatic. The accuracy of CNN
decreases to a much larger extent than that of SNN (Table IIl).

IV. Discussion

We built models to classify common calls of 101 bird species in the Barro Colorado Island (BCl),
Panama. In comparison to CNNs, which have been successfully used to classify multiple species
in field audio recordings, SNN achieved better performance in this study, when the number of

training samples is limited.
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207  The original manually annotated data includes detections, either positive or negative, indicating
208  the corresponding species’ presence or absence. However, we only used the positively annotated
209  detections in the modeling process due to computational constraints. On the other hand, the
210  negatively labeled detections may be used as “difficult cases” when constructing triplets while
211  training Siamese Networks. With the model that has been trained with only positive detections,
212 we scored all the positive and negative detections in the test set with the hope that the model
213 was able to distinguish cases of presence and absence for each species. The positive samples
214  should have smaller distances (i.e., higher similarities) to the same species in the training set for
215  each species. We can also find the globally optimal distance threshold that can distinguish
216  between positive and negative detections. Our results show that for this dataset, the globally
217  optimal threshold when detecting a species’ call is around 0.3 ( Figure 2). The smaller the distance,
218 the higher confidence we have that the classified species’ call is correct. Further, as different
219  species’ calls have different similarities or uniqueness, it may be even better to choose species-

220  wise distance thresholds.
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222 FIG. 2. Comparison between the positive (TP) and negative (FP) detections at different distance

223  thresholds.
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