

1 **A comparison of convolutional neural networks and few-shot
2 learning in classifying long-tailed distributed tropical bird
3 songs**

4

5 Ming Zhong¹, Jack LeBien², Marconi Campos-Cerdeira², T. Mitchell Aide³, Rahul Dodhia¹, Juan
6 Lavista Ferres¹

7 ¹AI for Good Research Lab, Microsoft, Redmond, WA 98052, USA

8 ²Rainforest Connection, San Francisco, CA 94102, USA

9 ³Department of Biology, University of Puerto Rico-Rio Piedras, San Juan, PR 00931, USA

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26 **Abstract:** Biodiversity monitoring depends on reliable species identification, but it can often be
27 difficult due to detectability or survey constraints, especially for rare and endangered species.
28 Advances in bioacoustic monitoring and AI-assisted classification are improving our ability to
29 carry out long-term studies, of a large proportion of the fauna, even in challenging
30 environments, such as remote tropical rainforests. AI classifiers need training data, and this can
31 be a challenge when working with tropical animal communities, which are characterized by
32 high species richness but only a few common species and a long tail of rare species. Here we
33 compare species identification results using two approaches: convolutional neural networks
34 (CNN) and Siamese Neural Networks (SNN), a few-shot learning approach. The goal is to
35 develop methodology that accurately identifies both common and rare species. To do this we
36 collected more than 600 hours of audio recordings from Barro Colorado Island (BCI), Panama
37 and we manually annotated calls from 101 bird species to create the training data set. More
38 than 40% of the species had less than 100 annotated calls and some species had less than 10.
39 The results showed that Siamese Networks outperformed the more widely used convolutional
40 neural networks (CNN), especially when the number of annotated calls is low.

41

42

43 **Keywords:** Bioacoustics, Convolutional Neural networks, Siamese Networks, Data
44 augmentation, Long-tailed distribution

45

46 **I. Introduction**

47 The 21st century is marked by the severe population decline of multiple taxonomic groups due
48 to habitat loss, climate change, hunting, and introduced species changes (Sánchez-Bayo and
49 Wyckhuys 2021; Rosenberg *et al.* 2019; Pacourea *et al.* 2021; He *et al.* 2019; Spooner *et al.*
50 2018). To slow the loss of biodiversity, we urgently need to better understand how changes in
51 climate and other environmental variables are affecting species distributions and abundances.
52 Unfortunately, monitoring these state variables can be challenging, especially for species of
53 greatest conservation concern, such as rare and endangered species.

54 Furthermore, in many ecosystems such as tropical rainforests, high species richness is made up
55 of a relatively small number of common species and many rare species (Hubbell 2001). From a
56 conservation or management perspective, these rare species are of utmost important, but up to
57 now it has been a challenge to collect reliable long-term data for most of these species.

58 New tools (e.g., inexpensive audio recorders) and technologies (e.g., artificial intelligence) can
59 greatly improve species identification and discovery. Most research on automating species
60 identification in audio recordings has focused on producing algorithms specific to a single species
61 (e.g., Aide *et al.* 2013). This approach limits the information that can be extracted from
62 soundscapes, given that many species can be present in a single recording, particularly in species
63 diverse habitats. In contrast, deep learning algorithms (e.g., neural networks) have been
64 developed to identify multiple species (e.g., Zhong *et al.* 2020). These algorithms typically require
65 a high number of annotated calls (i.e., training data) to achieve satisfactory accuracy. This is
66 because the deep neural network models usually include millions of parameters and tend to
67 overfit on small datasets, resulting in poor accuracy. To address the issue of limited training data,

68 researchers have developed few-shot learning methods (Koch *et al.* 2015; Vinyals *et al.* 2016;
69 Snell *et al.* 2017; Sung *et al.* 2018). These few-shot learning models take a contrastive learning
70 approach using pairs or triplets of samples as training input. Since triplets of samples are
71 compared in each training iteration - instead of comparing just one sample with its target label -
72 the number of unique training samples effectively increases to the number of unique triplets in
73 the training set (i.e., data augmentation).

74 Here we compare species identification results using two approaches: convolutional neural
75 networks (CNN) and Siamese Neural Networks (SNN), a few-shot learning algorithm. The goal is
76 to develop methodology that accurately identifies both common and rare species.

77 **II. Data**

78 *A. Data Sources and Data Annotation*

79 We collected more than 100,000 one-minute audio recordings from 99 sites on Barro Colorado
80 Island (BCI), Panama in 2018 (Campos-Cerqueira *et al.* 2021).
81 These recordings were used to create a detection history of more than 100 species in the audio
82 recordings through three steps. First, biological experts manually searched for species in
83 recordings from 5:00 to 9:00 a.m. from each site and created a call template for each species.
84 Second, in the RFCx-ARBIMON platform (Aide *et al.* 2013), we used the template matching
85 algorithm by providing the system with the species-call template, a playlist of all recordings, and
86 a correlation threshold (0.1). All detections above the correlation threshold were cropped and
87 displayed for posterior validation. Third, the experts reviewed the template matching results and
88 annotated the results as either positive or negative.

89 For the present study, we created a dataset of approximately 23,000 annotated calls from 101
90 bird species. The duration of most calls (87%) was less than 4 seconds, remaining 13% last
91 between 4 and 7 seconds. The number of annotations varied greatly among species (Table 1).
92 Eleven species had four or fewer annotations, while 55 species had more than 100.

93 **TABLE I:** Number of annotated calls per species.

Number of Annotated Calls per species	Number of bird species
1-4	11
5-99	35
100+	55

94
95 *B. Data for modeling*
96 Using custom-written scripts in Python 3.7, Mel-spectrograms were produced from audio files
97 (with NFFT = 1024 and 75% overlap, Hann window). Each mel-spectrogram was generated from
98 a 4-s audio segment that contained either one or multiple annotated calls and was resized as
99 384 pixels by 384 pixels with RGB channels (i.e., colored Mel-spectrograms). During the
100 annotation process, we only labelled a single species in each template-matching detection. As a
101 result, for each extracted Mel-spectrogram, the presence or absence of only one species is
102 labeled.

103 Given the long-tail distribution of the labeled data among all studied species, we grouped the
104 11 species with less than five annotations into one category; therefore, our model has 91
105 categories in total. The annotated data were randomly split into training, validation, and testing

106 sets (which account for 64%, 16%, and 20% of the annotated data, respectively), and the model
107 results were reported and evaluated on the testing set. To make a fair comparison, we used the
108 same backbone architecture (DenseNet121) for both Convolutional Neural Networks (CNN) and
109 Siamese Neural Networks (SNN).

110 **III. Methods**

111 We assessed the performance of Convolutional Neural Networks (CNN) and a technique for
112 few-shot learning, Siamese Neural Networks (SNN), to determine which best classified bird
113 calls.

114 *A. Classification Models using Convolutional Neural Network (CNN)*

115 Convolutional Neural Networks (CNN) have been widely used for image classification tasks, and
116 their success has also been proven in bioacoustic classification applications (Bianco *et al.* 2019,
117 Zhong *et al.* 2020, LeBien *et al.* 2020). Here we used the DenseNet architecture (Huang *et al.*
118 2016) as a baseline to classify the presence or absence of calls for each species in each 4-s
119 spectrogram. DenseNet was explicitly developed to improve the negative effect on accuracy
120 caused by the vanishing gradient in deep neural networks and has the advantage of improving
121 feature propagation both in a forward and backward fashion. In a DenseNet architecture, the
122 output feature-map of each layer is used as input for each subsequent layer, such that all layers
123 are connected.

124 Since many deep neural network models have parameters in the order of millions, they heavily
125 rely on big data to avoid overfitting (REF). However, almost 40% of species have less than 100
126 labeled calls in our annotated data. As an effective data-space solution to the problem of

127 limited data, data augmentation refers to the techniques that attempt to artificially increase
128 the size and quality of training datasets such that the models built using them may achieve
129 higher accuracy.

130 Among various data augmentation methods for image processing, some basic ones include
131 flips, rotations, shifts, noise injections, color space transformations, sharpening or blurring, and
132 random erasing or cropping (REF). Specifically, for audio recordings, there are methods such as
133 time-stretching, pitch shifting, and mixing multiple audio files (Salamon and Bello 2016).

134 Beyond them, there are more advanced techniques, such as generative adversarial network
135 (GAN)-based methods (Antoniou *et al.* 2017), which can generate synthetic images. For this
136 model implementation, as our primary goal is to compare the performance between CNN and
137 few-shot learning models, we did not apply advanced data augmentation techniques, but only
138 two basic techniques instead to increase the size of data that can be used for model training:
139 rotation (up to 5 degrees) and time-frequency shifting (width and height shifting up to 10% of
140 the original spectrogram).

141 *B. Classification Models using Siamese Neural Network (SNN)*

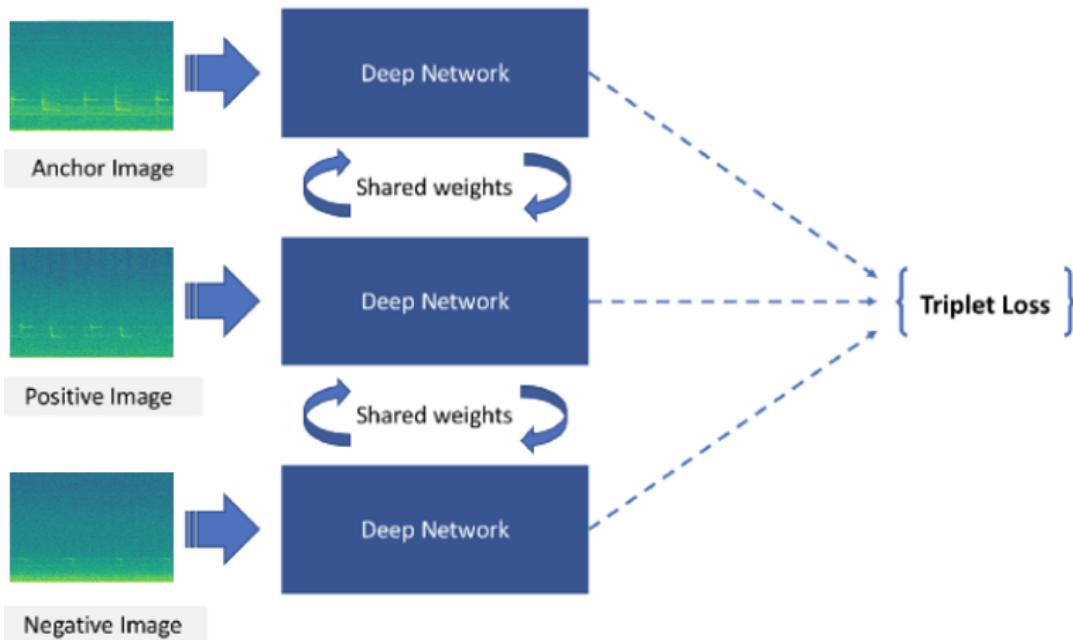
142 Siamese Neural Networks (SNN) (Koch *et al.* 2015) are a class of neural network architectures
143 that contain two or more identical subnetworks. “Identical” here means having the same
144 configuration with the same parameters and weights. Parameter updating is mirrored across
145 both sub-networks. SNN focuses on learning image embeddings in the deeper layers that place
146 the same classes close together. Hence, it can be used to measure the similarity of the inputs by

147 comparing their feature vectors and deciding whether the two images belong to the same
148 category or different categories.

149 Since training of Siamese networks involves pairwise learning, a cross-entropy loss cannot be
150 used in this case. Instead, we used another loss function called triplet loss (Hoffer and Ailon,
151 2015). This is a loss function where an anchor (baseline) image is compared to a positive image
152 (i.e., an image that is in the same category as the anchor image) and a negative image (i.e., an
153 image that is in a different category as the anchor image). The distance from the anchor image
154 to the positive image is minimized, and the distance from the anchor image to the negative image
155 is maximized. As shown in formula (1), $D(x, y)$ represents the distance between the learned
156 vector representation of x and y . α is a margin term used to stretch the distance differences
157 between similar and dissimilar pairs in the triplet. The remaining parameters represent the
158 feature embeddings for the anchor (a), positive (p), and negative (n) images.

$$159 \quad L(a, p, n) = \max(0, D(a, p) - D(a, n) + \alpha) \quad (1)$$

160 During the training process, an image triplet (anchor image, positive image, negative image) is
161 fed into the model as a single sample (see Fig. 1). The distance between the anchor and positive
162 images should be smaller than that between the anchor and negative images, indicating higher
163 similarity between the anchor and positive images. An extensive training data set is needed for
164 many deep learning models to achieve good performance. While this may not be practical in
165 many real applications, the way how Siamese Networks make good use of all training examples
166 to train embeddings enables these networks to learn from very little data.



167

168 **FIG. 1.** Architecture of Siamese Networks with triplet loss.

169 When triplets are generated for model training, as the training continues, some of the additional
170 triplets are easy to deal with because their loss value is very small or even 0 , preventing the
171 network from further improvement. A good training strategy would be to constantly “mine” out
172 those difficult cases (i.e., triplets that distance between the anchor and positive image is larger
173 than the distance between the anchor and negative image) in each epoch, based on the
174 performance of the model’s current snapshot, so that the model will always have a certain
175 percentage of challenging cases in the training loop from which it still struggles to tell the
176 difference. This is similar to the triplet mining in FaceNet (Schroff *et al.* 2015).

177 After getting the embedding vector for each mel-spectrogram, we measured the similarity (i.e.,
178 L2 distance) for each mel-spectrogram in the test set with those in the training set and assigned
179 the label to the closest species.

180

181 **III. Results**

182 To evaluate the model performance on datasets with different categories and sizes, we reported
183 the model performance when fitting on (1) all species and 2) rare species only. For each dataset,
184 we reported the top-1, top-3, and top-5 accuracies (top-k accuracy is the accuracy where true
185 class matches with any one of the k most probable classes predicted by the model), where the
186 accuracies are calculated as an average of 5 independent runs.

187 **TABLE II:** Comparison of classification results for the CNN and SNN models. Results are shown
188 for all species combined, common species (≥ 100 annotated calls), and rare species (< 100
189 annotated calls). The highest performance for each measure and species subset is in bold type.

Species	CNN			SNN		
	Top-1	Top-3	Top-5	Top-1	Top-3	Top-5
	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy
All species	89.48%	94.42%	95.54%	88.66%	96.10%	97.35%
common species	91.22%	95.62%	96.59%	89.85%	96.93%	98.08%
rare species	67.12%	79.02%	81.90%	73.37%	85.46%	87.91%

190

191 CNN performs slightly better on top-1 accuracy for the overall dataset and common species for
192 models fitted on the training data from the entire annotated data (Table 2). In comparison, SNN
193 performs substantially better on three measures for rare species and has higher top-3 and top-5
194 accuracies for the overall dataset and common species.

195 **TABLE III:** Model results for classifying the presence of rare species (i.e., fewer than 100
196 annotations per species) for the CNN and SNN models. The highest performance for each
197 measure and species subset is in bold type.

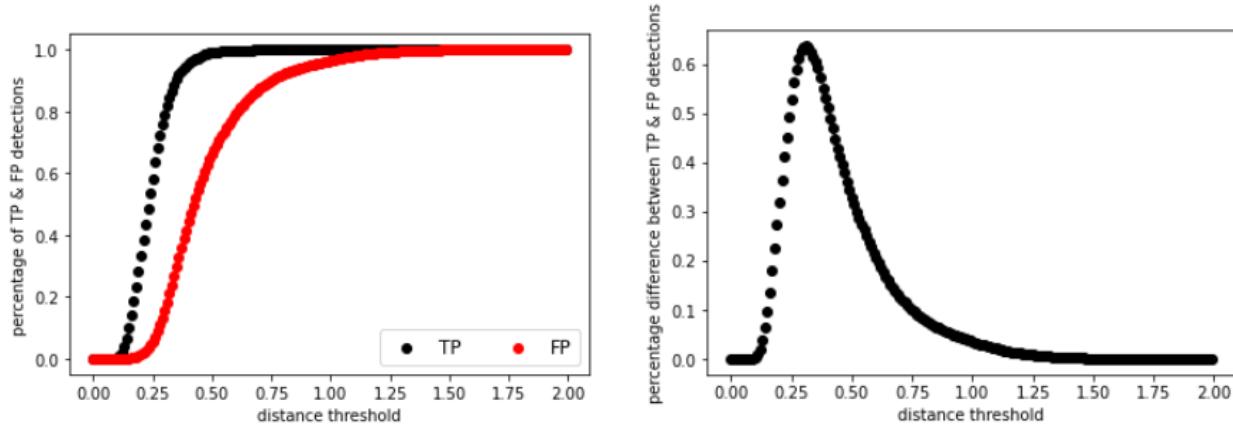
Species	CNN			SNN		
	Top-1	Top-3	Top-5	Top-1	Top-3	Top-5
Accuracy	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy
5 – 100 annotated calls (Includes 35 species)	83.25%	90.25%	92.21%	85.77 %	93.19%	95.40%
5 – 20 annotated calls (Includes 13 species)	53.69%	67.89%	75.79%	73.16%	90.00%	93.69%
5 – 10 annotated calls (Includes 7 species)	35.29%	64.71%	82.35%	60.00%	80.00%	90.59%

198
199 When the analyses are restricted to the species with small training sets (<100 annotations), the
200 difference in the performance of the two models is even more dramatic. The accuracy of CNN
201 decreases to a much larger extent than that of SNN (Table III).

202 **IV. Discussion**

203 We built models to classify common calls of 101 bird species in the Barro Colorado Island (BCI),
204 Panama. In comparison to CNNs, which have been successfully used to classify multiple species
205 in field audio recordings, SNN achieved better performance in this study, when the number of
206 training samples is limited.

207 The original manually annotated data includes detections, either positive or negative, indicating
208 the corresponding species' presence or absence. However, we only used the positively annotated
209 detections in the modeling process due to computational constraints. On the other hand, the
210 negatively labeled detections may be used as "difficult cases" when constructing triplets while
211 training Siamese Networks. With the model that has been trained with only positive detections,
212 we scored all the positive and negative detections in the test set with the hope that the model
213 was able to distinguish cases of presence and absence for each species. The positive samples
214 should have smaller distances (i.e., higher similarities) to the same species in the training set for
215 each species. We can also find the globally optimal distance threshold that can distinguish
216 between positive and negative detections. Our results show that for this dataset, the globally
217 optimal threshold when detecting a species' call is around 0.3 (Figure 2). The smaller the distance,
218 the higher confidence we have that the classified species' call is correct. Further, as different
219 species' calls have different similarities or uniqueness, it may be even better to choose species-
220 wise distance thresholds.



221
222 **FIG. 2.** Comparison between the positive (TP) and negative (FP) detections at different distance
223 thresholds.

224 **References**

225 Aide, T.M., Corrada-Bravo, C., Campos-Cerqueira, M., Milan, C., Vega, G. and Alvarez, R. 2013.
226 Real-time bioacoustics monitoring and automated species identification. *PeerJ*, 1, e103.

227 Antoniou, A., Storkey, A., and Edwards, H. 2017. Data augmentation generative adversarial
228 networks. <https://arxiv.org/abs/1711.04340>.

229 Campos-Cerqueira, M., Robinson, W.D., Augusto Leite, G., and Aide, T.M. 2021. Bird Occupancy
230 of a Neotropical Forest Fragment Is Mostly Stable over 17 Years but Influenced by Forest Age.
231 *Diversity*, 13(2):50. <https://doi.org/10.3390/d13020050>

232 Finer, M., Novoa, S., Weisse, M.J., Petersen, R., Mascaro, J., Souto, T., Stearns, F., and Martinez,
233 R.G.. Combating deforestation: from satellite to intervention. 2018. *Science*, 360 (6395), pp.
234 1303-1305.

235 He, F., Zarfl, C., Bremerich, V., David, J.N., Hogan, Z., Kalinkat, G., Tockner, K. and Jähnig, S.C.,
236 2019. The global decline of freshwater megafauna. *Global Change Biology*, 25(11), pp.3883-3892.

237 Hubbell, S. P. 2001. A unified theory of biodiversity and biogeography. Princeton University Press,
238 Princeton, New Jersey, USA.

239 Koch, G., Zemel, R., and Salakhutdinov, R. 2015. Siamese neural networks for one-shot
240 image recognition. In *Proceedings of the International Conference on Machine Learning*
241 *Workshops (ICML Workshops)*.

242 Pacourea, N., Rigby, C.L., Kyne, P.M., Sherley, R.B., Winker, H., Carlson, J.K., Fordham, S.V.,
243 Barreto, R., Fernando, D., Francis, M.P. and Jabado, R.W., 2021. Half a century of global decline
244 in oceanic sharks and rays. *Nature*, 589(7843), pp.567-571.

245 Rosenberg, K.V., Dokter, A.M., Blancher, P.J., Sauer, J.R., Smith, A.C., Smith, P.A., Stanton, J.C.,

246 Panjabi, A., Helft, L., Parr, M. and Marra, P.P., 2019. Decline of the North American

247 avifauna. *Science*, 366(6461), pp.120-124.

248 Sánchez-Bayo, F. and Wyckhuys, K.A., 2021. Further evidence for a global decline of the

249 entomofauna. *Austral Entomology*, 60(1), pp.9-26.

250 Salamon, J. and Bello, J. P. 2016. Deep convolutional neural networks and data augmentation for

251 environmental sound classification. <https://arxiv.org/abs/1608.04363>.

252 Schroff, F., Kalenichenko, D., and Philbin, J., 2015. Facenet: A unified embedding for face

253 recognition and clustering. In *Proceedings of the IEEE Conference on Computer Vision and*

254 *Pattern Recognition*, 2015, pp.815–823.

255 Snell, J., Swersky, K., and Zemel, R. 2017. Prototypical networks for few-shot learning. In

256 *Advances in Neural Information Processing Systems (NIPS)*.

257 Stapley, J., Garcia, M., and Andrews, R.M. 2015. Long-term data reveal a population decline of

258 the tropical lizard *Anolis apletophallus*, and a negative effect of El Niño years on population

259 growth rate. *PLoS One*, 10: e0115450.

260 Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H.S., and Hospedales, T.M. 2018. Learning to

261 compare: Relation network for few-shot learning. In *Proceedings of the IEEE Conference on*

262 *Computer Vision and Pattern Recognition (CVPR)*.

263 Spooner, F.E., Pearson, R.G. and Freeman, R., 2018. Rapid warming is associated with population

264 decline among terrestrial birds and mammals globally. *Global change biology*, 24(10), pp.4521-

265 4531.

266 Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D. 2016. Matching networks for one

267 shot learning. In Advances in Neural Information Processing Systems (NIPS).

268 Zhong, M., LeBien, J., Campos-Cerqueira, M., Dodhia, R., Lavista Ferres, J., Velev, J.P., and Aide,

269 T.M. 2020. Multispecies bioacoustic classification using transfer learning of deep convolutional

270 neural networks with pseudo-labeling. Applied Acoustics, 166, 107375.