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Abstract: Biodiversity monitoring depends on reliable species identification, but it can often be 26 

difficult due to detectability or survey constraints, especially for rare and endangered species. 27 

Advances in bioacoustic monitoring and AI-assisted classification are improving our ability to 28 

carry out long-term studies, of a large proportion of the fauna, even in challenging 29 

environments, such as remote tropical rainforests. AI classifiers need training data, and this can 30 

be a challenge when working with tropical animal communities, which are characterized by 31 

high species richness but only a few common species and a long tail of rare species. Here we 32 

compare species identification results using two approaches: convolutional neural networks 33 

(CNN) and Siamese Neural Networks (SNN), a few-shot learning approach. The goal is to 34 

develop methodology that accurately identifies both common and rare species. To do this we 35 

collected more than 600 hours of audio recordings from Barro Colorado Island (BCI), Panama 36 

and we manually annotated calls from 101 bird species to create the training data set. More 37 

than 40% of the species had less than 100 annotated calls and some species had less than 10. 38 

The results showed that Siamese Networks outperformed the more widely used convolutional 39 

neural networks (CNN), especially when the number of annotated calls is low. 40 

 41 
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I. Introduction 46 

The 21st century is marked by the severe population decline of multiple taxonomic groups due 47 

to habitat loss, climate change, hunting, and introduced species changes (Sánchez-Bayo and 48 

Wyckhuys 2021; Rosenberg et al. 2019; Pacoureau et al. 2021; He et al. 2019; Spooner et al. 49 

2018). To slow the loss of biodiversity, we urgently need to better understand how changes in 50 

climate and other environmental variables are affecting species distributions and abundances. 51 

Unfortunately, monitoring these state variables can be challenging, especially for species of 52 

greatest conservation concern, such as rare and endangered species.  53 

Furthermore, in many ecosystems such as tropical rainforests, high species richness is made up 54 

of a relatively small number of common species and many rare species (Hubbell 2001). From a 55 

conservation or management perspective, these rare species are of utmost important, but up to 56 

now it has been a challenge to collect reliable long-term data for most of these species.  57 

New tools (e.g., inexpensive audio recorders) and technologies (e.g., artificial intelligence) can 58 

greatly improve species identification and discovery. Most research on automating species 59 

identification in audio recordings has focused on producing algorithms specific to a single species  60 

(e.g., Aide et al. 2013). This approach limits the information that can be extracted from   61 

soundscapes, given that many species can be present in a single recording, particularly in species 62 

diverse habitats. In contrast, deep learning algorithms (e.g., neural networks) have been 63 

developed to identify multiple species (e.g., Zhong et al. 2020). These algorithms typically require 64 

a high number of annotated calls (i.e., training data) to achieve satisfactory accuracy. This is 65 

because the deep neural network models usually include millions of parameters and tend to 66 

overfit on small datasets, resulting in poor accuracy. To address the issue of limited training data, 67 
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researchers have developed few-shot learning methods (Koch et al. 2015; Vinyals et al. 2016; 68 

Snell et al. 2017; Sung et al. 2018).  These few-shot learning models take a contrastive learning 69 

approach using pairs or triplets of samples as training input. Since triplets of samples are 70 

compared in each training iteration - instead of comparing just one sample with its target label - 71 

the number of unique training samples effectively increases to the number of unique triplets in 72 

the training set (i.e., data augmentation).  73 

Here we compare species identification results using two approaches: convolutional neural 74 

networks (CNN) and Siamese Neural Networks (SNN), a few-shot learning algorithm. The goal is 75 

to develop methodology that accurately identifies both common and rare species.  76 

II. Data 77 

A. Data Sources and Data Annotation 78 

We collected more than 100,000 one-minute audio recordings from 99 sites on Barro Colorado 79 

Island (BCI), Panama in 2018 (Campos-Cerqueira et al. 2021).   80 

These recordings were used to create a detection history of more than 100 species in the audio 81 

recordings through three steps. First, biological experts manually searched for species in 82 

recordings from 5:00 to 9:00 a.m. from each site and created a call template for each species. 83 

Second, in the RFCx-ARBIMON platform (Aide et al. 2013), we used the template matching 84 

algorithm by providing the system with the species-call template, a playlist of all recordings, and 85 

a correlation threshold (0.1). All detections above the correlation threshold were cropped and 86 

displayed for posterior validation. Third, the experts reviewed the template matching results and 87 

annotated the results as either positive or negative.  88 
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For the present study, we created a dataset of approximately 23,000 annotated calls from 101 89 

bird species. The duration of most calls (87%) was less than 4 seconds, remaining 13% last 90 

between 4 and 7 seconds. The number of annotations varied greatly among species (Table 1).  91 

Eleven species had four or fewer annotations, while 55 species had more than 100.  92 

TABLE I: Number of annotated calls per species. 93 

Number of Annotated Calls per species Number of bird species 

1-4 11 

5-99 35 

100+ 55 

 94 

B. Data for modeling 95 

Using custom-written scripts in Python 3.7, Mel-spectrograms were produced from audio files 96 

(with NFFT = 1024 and 75% overlap, Hann window). Each mel-spectrogram was generated from 97 

a 4-s audio segment that contained either one or multiple annotated calls and was resized as 98 

384 pixels by 384 pixels with RGB channels (i.e., colored Mel-spectrograms). During the 99 

annotation process, we only labelled a single species in each template-matching detection. As a 100 

result, for each extracted Mel-spectrogram, the presence or absence of only one species is 101 

labeled.  102 

Given the long-tail distribution of the labeled data among all studied species, we grouped the 103 

11 species with less than five annotations into one category; therefore, our model has 91 104 

categories in total. The annotated data were randomly split into training, validation, and testing 105 
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sets (which account for 64%, 16%, and 20% of the annotated data, respectively), and the model 106 

results were reported and evaluated on the testing set. To make a fair comparison, we used the 107 

same backbone architecture (DenseNet121) for both Convolutional Neural Networks (CNN) and 108 

Siamese Neural Networks (SNN). 109 

III. Methods 110 

We assessed the performance of Convolutional Neural Networks (CNN) and a technique for 111 

few-shot learning, Siamese Neural Networks (SNN), to determine which best classified bird 112 

calls.  113 

A. Classification Models using Convolutional Neural Network (CNN) 114 

Convolutional Neural Networks (CNN) have been widely used for image classification tasks, and 115 

their success has also been proven in bioacoustic classification applications (Bianco et al. 2019, 116 

Zhong et al. 2020, LeBien et al. 2020). Here we used the DenseNet architecture (Huang et al. 117 

2016) as a baseline to classify the presence or absence of calls for each species in each 4-s 118 

spectrogram. DenseNet was explicitly developed to improve the negative effect on accuracy 119 

caused by the vanishing gradient in deep neural networks and has the advantage of improving 120 

feature propagation both in a forward and backward fashion. In a DenseNet architecture, the 121 

output feature-map of each layer is used as input for each subsequent layer, such that all layers 122 

are connected. 123 

Since many deep neural network models have parameters in the order of millions, they heavily 124 

rely on big data to avoid overfitting (REF). However, almost 40% of species have less than 100 125 

labeled calls in our annotated data. As an effective data-space solution to the problem of 126 
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limited data, data augmentation refers to the techniques that attempt to artificially increase 127 

the size and quality of training datasets such that the models built using them may achieve 128 

higher accuracy. 129 

Among various data augmentation methods for image processing, some basic ones include 130 

flips, rotations, shifts, noise injections, color space transformations, sharpening or blurring, and 131 

random erasing or cropping (REF). Specifically, for audio recordings, there are methods such as 132 

time-stretching, pitch shifting, and mixing multiple audio files (Salamon and Bello 2016). 133 

Beyond them, there are more advanced techniques, such as generative adversarial network 134 

(GAN)-based methods (Antoniou et al. 2017), which can generate synthetic images. For this 135 

model implementation, as our primary goal is to compare the performance between CNN and 136 

few-shot learning models, we did not apply advanced data augmentation techniques, but only 137 

two basic techniques instead to increase the size of data that can be used for model training: 138 

rotation (up to 5 degrees) and time-frequency shifting (width and height shifting up to 10% of 139 

the original spectrogram). 140 

B. Classification Models using Siamese Neural Network (SNN) 141 

Siamese Neural Networks (SNN) (Koch et al. 2015) are a class of neural network architectures 142 

that contain two or more identical subnetworks. “Identical” here means having the same 143 

configuration with the same parameters and weights. Parameter updating is mirrored across 144 

both sub-networks. SNN focuses on learning image embeddings in the deeper layers that place 145 

the same classes close together. Hence, it can be used to measure the similarity of the inputs by 146 
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comparing their feature vectors and deciding whether the two images belong to the same 147 

category or different categories. 148 

Since training of Siamese networks involves pairwise learning, a cross-entropy loss cannot be 149 

used in this case. Instead, we used another loss function called triplet loss (Hoffer and Ailon, 150 

2015). This is a loss function where an anchor (baseline) image is compared to a positive image 151 

(i.e., an image that is in the same category as the anchor image) and a negative image (i.e., an 152 

image that is in a different category as the anchor image). The distance from the anchor image 153 

to the positive image is minimized, and the distance from the anchor image to the negative image 154 

is maximized. As shown in formula (1), D (x, y) represents the distance between the learned 155 

vector representation of x and y. α is a margin term used to stretch the distance differences 156 

between similar and dissimilar pairs in the triplet. The remaining parameters represent the 157 

feature embeddings for the anchor (a), positive (p), and negative (n) images. 158 

                                     L(a, p, n) = max(0, D(a, p) — D(a, n) + α)                              (1)        159 

During the training process, an image triplet (anchor image, positive image, negative image) is 160 

fed into the model as a single sample (see Fig. 1).  The distance between the anchor and positive 161 

images should be smaller than that between the anchor and negative images, indicating higher 162 

similarity between the anchor and positive images. An extensive training data set is needed for 163 

many deep learning models to achieve good performance. While this may not be practical in 164 

many real applications, the way how Siamese Networks make good use of all training examples 165 

to train embeddings enables these networks to learn from very little data.  166 
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 167 

FIG. 1. Architecture of Siamese Networks with triplet loss. 168 

When triplets are generated for model training, as the training continues, some of the additional 169 

triplets are easy to deal with because their loss value is very small or even 0, preventing the 170 

network from further improvement. A good training strategy would be to constantly “mine” out 171 

those difficult cases (i.e., triplets that distance between the anchor and positive image is larger 172 

than the distance between the anchor and negative image) in each epoch, based on the 173 

performance of the model’s current snapshot, so that the model will always have a certain 174 

percentage of challenging cases in the training loop from which it still struggles to tell the 175 

difference. This is similar to the triplet mining in FaceNet (Schroff et al. 2015). 176 

After getting the embedding vector for each mel-spectrogram, we measured the similarity (i.e., 177 

L2 distance) for each mel-spectrogram in the test set with those in the training set and assigned 178 

the label to the closest species. 179 

 180 
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III. Results 181 

To evaluate the model performance on datasets with different categories and sizes, we reported 182 

the model performance when fitting on (1) all species and 2) rare species only. For each dataset, 183 

we reported the top-1, top-3, and top-5 accuracies (top-k accuracy is the accuracy where true 184 

class matches with any one of the k most probable classes predicted by the model), where the 185 

accuracies are calculated as an average of 5 independent runs. 186 

TABLE II: Comparison of classification results for the CNN and SNN models. Results are shown 187 

for all species combined, common species (>=100 annotated calls), and rare species (<100 188 

annotated calls). The highest performance for each measure and species subset is in bold type.  189 

Species 

 

Top-1 

Accuracy 

CNN 

Top-3 

Accuracy 

 

Top-5 

Accuracy 

 

Top-1 

Accuracy 

SNN 

Top-3 

Accuracy 

 

Top-5 

Accuracy 

All species 89.48% 94.42% 95.54% 88.66% 96.10% 97.35% 

common species 91.22% 95.62% 96.59% 89.85% 96.93% 98.08% 

rare species 67.12% 79.02% 81.90% 73.37% 85.46% 87.91% 

 190 

CNN performs slightly better on top-1 accuracy for the overall dataset and common species for 191 

models fitted on the training data from the entire annotated data (Table 2). In comparison, SNN 192 

performs substantially better on three measures for rare species and has higher top-3 and top-5 193 

accuracies for the overall dataset and common species. 194 
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TABLE III: Model results for classifying the presence of rare species (i.e., fewer than 100 195 

annotations per species) for the CNN and SNN models. The highest performance for each 196 

measure and species subset is in bold type. 197 

Species 

  

Top-1 

Accuracy 

CNN 

Top-3 

Accuracy 

 

Top-5 

Accuracy 

 

Top-1 

Accuracy 

SNN 

Top-3 

Accuracy 

 

Top-5 

Accuracy 

5 – 100 annotated calls 

(Includes 35 species) 

 83.25% 90.25% 92.21% 85.77 % 93.19% 95.40% 

5 – 20 annotated calls 

(Includes 13 species) 

 53.69% 67.89% 75.79% 73.16% 90.00% 93.69% 

5 – 10 annotated calls 

(Includes 7 species) 

 35.29% 64.71% 82.35% 60.00% 80.00% 90.59% 

 198 

When the analyses are restricted to the species with small training sets (<100 annotations), the 199 

difference in the performance of the two models is even more dramatic.  The accuracy of CNN 200 

decreases to a much larger extent than that of SNN (Table III).  201 

IV. Discussion 202 

We built models to classify common calls of 101 bird species in the Barro Colorado Island (BCI), 203 

Panama. In comparison to CNNs, which have been successfully used to classify multiple species 204 

in field audio recordings, SNN achieved better performance in this study, when the number of 205 

training samples is limited.  206 
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The original manually annotated data includes detections, either positive or negative, indicating 207 

the corresponding species’ presence or absence. However, we only used the positively annotated 208 

detections in the modeling process due to computational constraints. On the other hand, the 209 

negatively labeled detections may be used as “difficult cases” when constructing triplets while 210 

training Siamese Networks. With the model that has been trained with only positive detections, 211 

we scored all the positive and negative detections in the test set with the hope that the model 212 

was able to distinguish cases of presence and absence for each species. The positive samples 213 

should have smaller distances (i.e., higher similarities) to the same species in the training set for 214 

each species. We can also find the globally optimal distance threshold that can distinguish 215 

between positive and negative detections. Our results show that for this dataset, the globally 216 

optimal threshold when detecting a species’ call is around 0.3 ( Figure 2). The smaller the distance, 217 

the higher confidence we have that the classified species’ call is correct. Further, as different 218 

species’ calls have different similarities or uniqueness, it may be even better to choose species-219 

wise distance thresholds. 220 

      221 

 FIG. 2. Comparison between the positive (TP) and negative (FP) detections at different distance 222 

thresholds.  223 
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