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Abstract

The rapid intensification of poultry production raises important concerns about
the associated risks of zoonotic infections. Here, we introduce EPINEST (EPI-
demic NEtwork Simulation in poultry Transportation systems): an agent-based
modelling designed to simulate pathogen transmission within realistic poultry
production and distribution networks. The modular structure of the model
allows for easy parameterization to suit specific countries and system config-
urations. Moreover, the framework enables the replication of a wide range
of eco-epidemiological scenarios by incorporating diverse pathogen life-history
traits, modes of transmission and interactions between multiple strains and/or
pathogens. EPINEST was developed in the context of an interdisciplinary multi-
centre study conducted in Bangladesh, India, Vietnam and Sri Lanka, and will
facilitate the investigation of the spreading patterns of various health hazards
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such as avian influenza, Campylobacter, Salmonella and antimicrobial resistance
in these countries. Furthermore, this modelling framework holds potential for
broader application in veterinary epidemiology and One Health research, ex-
tending its relevance beyond poultry to encompass other livestock species and
disease systems.

Introduction 1

Animal populations act as reservoirs for a wide range of zoonotic pathogens, 2

such as Ebola virus, MERS-CoV, SARS-CoV-2, avian influenza viruses (AIVs), 3

Campylobacter and Salmonella [1–6]. Within this context, livestock produc- 4

tion is known to promote the risk of zoonotic infections [7]. In the case of 5

emerging pathogens of wildlife, livestock may become intermediate or amplifier 6

hosts, increasing odds of spillover into the human population [8]. The ongoing 7

global intensification of livestock production raises critical questions about the 8

role of husbandry and animal trading practices in shaping the risk of zoonotic 9

epidemics or spillover events. [9, 10]. Unfortunately, however, a comprehensive 10

understanding of how suck risk is modulated and amplified along production 11

and distribution networks (PDNs) is lacking. 12

Poultry production has become the fastest growing livestock sector in the last 13

three decades, with rapid intensification occurring in low- and middle-income 14

countries (LMICs) and particularly in South and Southeast Asia [11]. In many 15

of these countries, intensive production did not replace local farming and trading 16

practices completely, resulting in multiple modes of production and distribution 17

articulated in ways that are poorly understood and which vary according to 18

market and other conditions. While such transformative changes have proven in- 19

strumental towards improving food security, nutrition and economic and societal 20

development e.g. in China, India, Bangladesh among others, they also require 21

careful monitoring and investigation. Indeed, the growth of poultry production 22

and distribution networks has brought novel challenges in terms of disease man- 23

agement: intensive farming, limited surveillance infrastructure and veterinary 24

services and in many examples poor biosecurity conditions [12,13] can lead to an 25

environment replete with health hazards. For example, widespread sub-optimal 26

use of antimicrobial drugs by poultry farmers represents a leading driver of the 27

emergence of antimicrobial resistance [14–16]. 28

In many LMICs, people prefer to obtain their poultry from live bird markets 29

(LBMs), which are a longstanding feature of poultry trade and of urban and 30

rural life. Within poultry PDNs, LBMs may be considered as hubs, sites wherein 31

large numbers of people, and critically birds, meet and mix [17,18]. Thus, they 32

are major hotspots of AIV amplification and evolution [19], and have been 33

implicated in sustaining viral transmission in domestic poultry [20]. The diverse 34

ecology of AIV strains circulating within LBMs in Asia has been documented 35

extensively [21–24]. Low pathogenic strains such as H9N2 AIV are commonly 36

found among LBMs in Bangladesh, often at higher rates than in surrounding 37

farms [25–27]. Since its first identification in 1996, highly-pathogenic H5N1 38
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influenza has been detected in LBMs in many Asian countries [28–32]. 39

While the biological risks within poultry production systems are widely ac- 40

knowledged, they remain poorly characterised. This is partly due to the inherent 41

complexity of PDNs, which makes it difficult to understand how such risks are 42

modulated and increased along poultry value chains. Previous modelling efforts 43

have focused on disease transmission within specific PDN settings, e.g. single 44

farms or LBMs [33, 34], or some PDN segment, such as networks of farms or 45

LBMs [18,35–37]. Attempts to account for poultry or livestock PDN structure 46

in infectious disease modelling are rare and mostly theoretical, often leaving 47

out many epidemiologically relevant details of poultry production and distribu- 48

tion [38, 39]. Recent PDN mapping efforts have provided a clearer picture of 49

PDNs in several Asian countries [40,41]. A central observation is that PDNs are 50

highly heterogeneous across countries, poultry types, and even within the same 51

country. Therefore, a better understanding can be achieved by extending and 52

developing modelling to increase our understanding structural heterogeneities 53

within and across PDNs. 54

To address this gap, we introduce EPINEST, a novel agent-based model 55

(ABM) that allows simulation of pathogen transmission on top of realistic, em- 56

pirically derived assumptions about poultry movements. EPINEST generates 57

synthetic PDNs consisting of the key nodes, e.g. farms, traders, LBMs, that 58

are responsible for the production and transportation of chickens through the 59

PDN until they are sold to end-point consumers. Extensive data about farm- 60

ing and trading practices, collected mainly from field surveys, is used to inform 61

PDN generation and simulation [18, 27]. Farm-specific data, for example, in- 62

clude farm locations, capacity and statistics of distinct stages of production 63

cycles. Trader-level data encompass details of purchases and sales involving in- 64

dividual actors, origins of purchased poultry, and trader movements. EPINEST 65

allows for substantial flexibility for users in terms of specifying PDN structure 66

and functioning, making it a suitable framework to carry both data-driven and 67

more open-ended analyses. In fact, the ABM permits customisation of many 68

PDN properties, thus allowing users to explore a wide range of hypothetical 69

PDN configurations. 70

This ABM provides a unified and flexible modelling framework to simulate 71

epidemic dynamics in poultry PDNs and is the outcome of a wider interdis- 72

ciplinary research initiative [42]. Within this context, EPINEST will enable 73

investigating the amplification and dissemination of a wide range of health haz- 74

ards, including AIV, Campylobacter and anti-microbial resistance genes in poul- 75

try systems in Bangladesh, India, Vietnam and Sri Lanka. More broadly, our 76

framework may also be tailored to distinct poultry and livestock production 77

realities to tackler a wider range of epidemiological questions. 78

In this paper, we provide a detailed description of our ABM and illustrate 79

how to use it to explore a range of PDN structures and to better understand 80

aspects of pathogen transmission in PDNs. The examples presented here are 81

based on a broiler (chickens reared for meat) PDN in Bangladesh, which has 82

been characterised extensively [18, 40], while epidemic simulations focus on the 83

paradigmatic case of AIV transmission. The latter also illustrate an important 84
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feature of our framework, namely the ability to simulate multiple co-circulating 85

pathogens and their interactions. 86

Results 87

Synthetic poultry networks 88

To address questions about the eco-epidemiological dynamics of AIVs and other 89

poultry-related pathogens, we implemented an agent-based model to simulate 90

pathogen transmission on top of synthetic PDNs. Within our framework, gen- 91

erated PDNs consists of four main types of nodes: farms, middlemen, vendors 92

and LBMs (Fig. 1A). The system works as a supply chain where chickens are 93

reared in farms starting from day-old chicks and are later transported to LBMs 94

by middlemen (more details can be found in the Materials and Methods section 95

and in Text S1). Once they arrive at the LBM stage, chickens are handled by 96

vendors. These vendors may then sell chickens to other vendors operating in the 97

same or different LBMs, and/or to endpoint consumers, in which case chickens 98

are removed from the PDN. At any stage where chickens are exchanged, other 99

than to the endpoint customer, an opportunity arises for pathogen exchange 100

and mixing. 101

To illustrate the ability of the model to synthesize realistic poultry move- 102

ments, we simulate a small PDN consisting of 1200 farms scattered across the 103

50 upazilas (sub-districts) that supply the largest amount of broiler chickens 104

to LBMs located in Dhaka (Fig. 2A). The simulated PDN includes 20 distinct 105

LBMs, 163 middlemen and 444 vendors, and allows the trade of chickens be- 106

tween LBMs. Numbers of middlemen and vendors can not be specified a priori; 107

instead, they are determined dynamically by initially calculating the average 108

number of chickens that are sold by farms to each LBM daily. These calcula- 109

tions depend on the spatial arrangement of farms, their sizes and frequency of 110

selling, i.e. parameters that can be specified a priori. The capacity of each trader 111

(middleman or vendor), i.e. the maximum amount of chickens that he/she can 112

purchase daily is also fixed over the course of a simulation. 113

Farms sell all their chickens at the end of a production cycle. The trading 114

phase may require multiple days to complete and the flock may be split into 115

multiple transactions involving different middlemen. Fig. 2B,C show that both 116

the distributions of farm trading times and numbers of transactions per produc- 117

tion cycle obtained through simulations are consistent with field observations. 118

Upstream transportation and distribution of poultry operated by middlemen 119

represent an important driver of poultry mixing in LBMs [18]. In simulations, 120

middlemen direct previously purchased chickens to LBMs depending on where 121

these have been sourced from. In practice, a chicken bought in upazila a is 122

sold in market l with probability fa,l, as estimated from field questionnaires 123

Fig. 2D shows that the ABM generates poultry fluxes between individual upazi- 124

las and LBMs that are in excellent agreement with the corresponding expected 125

values (i.e. fa,l). Moreover, the allocation algorithm ensures that individual 126
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Fig 1: Model schematics. (A) Synthetic PDN and poultry movements. Chick-
ens are produced in farms (red) across the study area, and transported to LBMs
(blue) by middlemen (yellow). These are mobile traders that may collect chick-
ens from multiple farms located in one or more upazilas/sub-districts (an ad-
ministrative area below that of a district in Bangladesh). Within LBMs, chick-
ens are handled by vendors (orange) and may be moved between LBMs as a
result of vendors’ trading practices. (B) Individual settings associated with
farms, middlemen, LBMs (when open) and vendors (overnight, when LBMs are
closed) provide the context for pathogen transmission, under the assumption
that chickens mix homogeneously within the same setting. The panel zooms in
on a single LBM, where chickens are colour-coded according to disease status:
susceptible (S), exposed or latent (E), infectious (I) and recovered or immune
(R).

middlemen deliver chickens to a desired number of LBMs, as specified by some 127

statistical distribution. The agreement between empirical and simulated fre- 128

quencies of unique LBMs visited daily is shown in Fig. 2E. At the market level, 129

wholesaling activities and vendor movements between LBMs further contribute 130

to poultry mixing. Once a chicken enters an LBM, it may be sold multiple times 131

to secondary vendors before reaching end-point consumers [18,43]. In order to 132

better capture the inner organization of LBMs, the model structures vendors 133

in tiers according to their position along transaction chains (Fig. 2F). Finally, 134

we show the realised distribution of poultry marketing times alongside another 135

estimate obtained using a different approach [18] (Fig. 2G). Further statistics 136

about individual actors and poultry transactions can be found in Fig. S1, S2 137

and S3. 138

Selected aspects of generated PDNs can be easily manipulated within our 139

framework, allowing flexibility in exploring PDN configurations. In Fig. 3, for 140

example, we examine different distributions of LBMs serviced (Pr(km)) by in- 141

dividual middlemen on a daily basis (Fig. 3A). As we increase the number of 142

LBMs serviced per middleman, ⟨km⟩ on average, middlemen trade with more 143

vendors (Fig. 3B); consequently, individual transactions involve fewer birds since 144

the total cargo is the same (Fig. 3C). Fig. 3B also suggests that the small dis- 145
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crepancy observed in Fig. 3A at larger ⟨km⟩ is due to the limited amount of 146

vendors (inset). 147

We also present the impact of vendors’ trading practices on poultry market- 148

ing time. In particular, we alter the probability pempty that a vendor sells its 149

entire cargo in a single day, the fraction ρunsold of unsold birds in presence of 150

some surplus (occurring with probability 1− pempty). In addition, we consider 151

high and low tendency to prioritise selling older (i.e. previously unsold) chickens 152

over newly purchased ones. Varying parameters ρunsold and pempty affects the 153

average marketing time (Fig. 4A), as well as the proportion of chickens being 154

offered for sale on multiple days (Fig. 4B). Full distributions of marketing times 155

can be found in Fig. S4. Prioritizing the sale of older chickens had a negligible 156

effect on these statistics. Indeed, prioritizing older chickens is compensated by 157

a delay in selling newly purchased chickens (Fig. 4C). 158

As a final example, we examine the role of vendor movements between LBMs 159

in promoting the mixing of chickens from different upazilas/sub-districts. Net- 160

works of LBMs defined by trader movements can vary considerably across poul- 161

try types, countries, and even cities within the same country [40]. In Chat- 162

togram, for example, vendors trading broiler chickens operate almost exclusively 163

in a single market (Fig. 5A). In Dhaka however this is not the case, resulting in 164

frequent vendor movements that are articulated in a top-down structure where 165

central and peripheral markets can be identified (Fig. 5B). In fact, removing 166

a single edge in the network shown in Fig. 5B is sufficient to make it acyclic, 167

suggesting a hierarchical organisation. 168

Within our framework, we encode inter-market mobility in a graph G, whose 169

entries Gi,j represent the probability that a vendor purchasing in market imoves 170

to market j (or remains in i) to sell. As outlined above, vendors are further 171

arranged in tiers, so that vendors in tier L (VL) can only buy poultry from 172

wholesalers located in tier L − 1 or, in the case of L = 0 vendors (V0) from 173

middlemen trading in LBM i. For each vendor, purchase and sell locations 174

remain fixed throughout a simulation. 175

To explore inter-market mobility, we use a generative network model to cre- 176

ate mobility networks G akin to that of Fig. 5B. In practice, we generate directed 177

acyclic graphs (DAGs) of varying density and amount of hierarchy (see Materi- 178

als and Methods section), according to parameters ρ and prandom. ρ represents 179

the density of connections, while prandom is the probability of an individual con- 180

nection emanating from a source LBM that is selected randomly, rather than 181

proportionally to their actual number of connections. To quantify the degree 182

of hierarchy in a DAG G, we measure its global reaching centrality (GRC, see 183

Fig. 5C,E) and tree depth (TD, see Fig. 5D,F). GRC measures how well every 184

node can reach other nodes in the network with respect to the most influential 185

node; it takes value 1 in the case of a star graph and approaches 0 when all 186

nodes have the similar influence (no hierarchy). In contrast, TD represents the 187

longest directed path in G. Hierarchical DAGs, e.g. stars, tend to be more 188

compact and hence shallower than random structures. Setting prandom = 1 189

yields DAGs with little hierarchy, as edges are allocated randomly. In contrast, 190

prandom → 0 introduces additional structure. Fig. 5C,D show GRC and TD, re- 191
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spectively, for Dhaka’s network and for DAGs generated with prandom = 1 (red) 192

and prandom = 0.1 (cyan) while keeping the density of edges constant. Clearly, 193

Dhaka’s network is significantly more hierarchical and compact than random 194

DAGs; in contrast, DAGs generated with prandom = 0.1 provide a much closer 195

fit in terms of both GRC and TD. 196

We also summarize framework output by quantifying poultry mixing across 197

20 LBMs for different combinations of ρ and prandom (GRC and TD are shown 198

in Fig. 5E,F, respectively). Here mixing refers to the extent to which chickens 199

from distinct regions are brought together within LBMs. Upstream distribution, 200

managed by middleman, and vendor movements between LBMs are the factors 201

driving chicken mixing within this model. To quantify the amount of mixing, we 202

record the geographic origins of chickens offered for sale in each LBM and use 203

Pianka’s index [44] to make pairwise comparisons of poultry populations mar- 204

keted in distinct LBMs. Mean Pianka’s index values are shown in Fig. 5G as a 205

function of parameters ρ and prandom. Values close to 0 imply low overlap, while 206

a value of 1 corresponds to identical distributions of geographic sources of poul- 207

try. Fig. 5H shows another, complementary quantification of poultry mixing in 208

terms of the mean number of LBMs where it is possible to find chickens from two 209

randomly chosen upazilas/sub-districts. In general, we find that chicken mixing 210

increases with network density, while hierarchy has the opposite effect: random 211

vendor movements are more effective at mixing chickens within this simplified 212

network model. It should be noted that high levels of mixing can be observed 213

even in the absence of vendor movements due to upstream distribution (overlap 214

between the catchment areas of LBMs, of which middlemen are responsible; see 215

caption of Fig. 5 for further details). 216

Epidemic dynamics 217

In this section, we illustrate how our framework can be used to simulate and 218

characterise pathogen transmission across PDNs. We first consider a single, 219

AIV-like pathogen whose dynamics is described by a Susceptible-Exposed-Infectious-220
Recovered (SEIR) model, as depicted in Fig. 1B: upon infection, susceptible (S) 221

chickens enter an intermediate exposed stage (E) and become infectious (I) af- 222

ter a short latent period TE = 6 hours. Infectious chickens recover (R) after 223

an infectious period TI = 48 hours and become immune to further infection. 224

Importantly, we assume that chickens do not die due to the disease. We as- 225

sume that the pathogen (repeatedly) emerges at rate α in farms due to external 226

factors (e.g. contacts with wild birds) and spreads through the PDN through 227

a combination of poultry movements, intra- and inter-farm transmission (see 228

Material and Methods section). 229

Model output comes at different levels of aggregation. Fig. 6A shows for ex- 230

ample daily incidence within LBMs during the first stages of an outbreak. At the 231

most granular level, individual transmission events and their metadata can be 232

tracked as well. Using this information, we can reconstruct transmission chains 233

originating from individual introduction events and characterise their spatio- 234

temporal evolution (Fig. 6B). Fig. 6C further characterises farm outbreaks by 235
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summarising attack rates by production cycle. 236

In Fig. 6D-F, we investigate the role of spatial transmission in an endemic 237

context. We do so in a scenario where most transmission events occur within 238

farms (Fig. 6D), while viral amplification in LBMs is limited (Fig. 6E). Here, 239

spatial transmission is a crucial factor in determining global levels of infection. 240

Increasing the strength of inter-farm transmission βFF facilitates spatial inva- 241

sions, thus leading to more outbreaks on farms and infections (Fig. 6D). This 242

results in an increasing number of infected chickens pouring into LBMs from 243

farms (Fig. 6F), explaining also the increase in within-market prevalence ob- 244

served in Fig. 6E. 245

Another important epidemiological question is whether AIV is transmitted 246

and maintained in LBMs despite short marketing times. We address this ques- 247

tion by considering an alternative endemic scenario where transmission is con- 248

tributed mostly by LBMs (Fig. 6G). We find that a major limiting factor to viral 249

amplification in LBMs is represented by the latent period TE (Fig. 6H): delaying 250

the onset of infectiousness corresponds to a shorter window of opportunity for 251

transmission under short marketing times. In order to further demonstrate this 252

point, we quantify persistence of transmission chains within LBMs (Fig. 6I). As 253

TE increases, opportunities for transmission are diminished and chains of infec- 254

tion stutter, leading to reduced persistence. In this case, the presence of AIV 255

in LBMs can only be maintained through repeated introductions of infected 256

poultry. 257

Simulating multi-strain pathogens 258

Genomic surveillance in LBMs routinely identifies AIV lineages with distinct ge- 259

netic signatures [45]. In some instances, the presence of multiple AIV subtypes, 260

including the highly pathogenic H5N1 AIV, is also reported. Understanding 261

this diversity requires, however, accounting for multiple, potentially interacting 262

strains/pathogens that co-circulate in the same PDN. In this section, we use our 263

framework to perform multi-strain simulations in a variety of PDN structures. 264

We illustrate this in Fig. 7, which shows SEIR simulations with 50 co- 265

circulating strains. For simplicity, we assume that these share the same epidemi- 266

ological parameters, namely TE , TI and β, and generate partial cross-immunity 267

after a single infection. 268

Our aim is to measure the extent to which PDNs mix viral lineages from 269

distinct geographical regions. To this end, we modify the external seeding pro- 270

tocol so that strain si, i = 1, . . . , 50 can emerge only from upazila i. First, we 271

investigate the role of viral amplification during the transport segment, which 272

is operated by middlemen (Fig. 7A-C). To better disentangle the role of these 273

actors, we consider low within-farm transmission and prevent inter-farm trans- 274

mission fully by setting βFF = 0. Consequently, viral mixing can not occur 275

until chickens from different upazilas/sub-districts are collected by a middle- 276

man. As shown in Fig. 7A, increasing transmission during transport by varying 277

wFF leads to more infected chickens being introduced in LBMs, i.e. it results 278

in viral amplification. Note, however, that below a certain value of wMM , mid- 279
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dlemen may introduce fewer infections in LBMs than those they picked up at 280

farms. Increasing wMM has a modest positive effect on the average number of 281

strains circulating (i.e. strain richness) in individual LBMs, and on the overlap 282

between LBMs in terms of circulating strains (light to dark bars in Fig. 7B and 283

C, respectively). We also explored, for fixed wMM , the role of inter-market 284

mobility on these metrics. In this context, the density ρ of vendor movements 285

had a positive effect on both strain richness and overlap between LBMs as it 286

is promoting the dissemination of multiple strains across LBMs. In contrast, a 287

larger degree of hierarchy in movements (striped bars) had the opposite effect, 288

in agreement with findings from Fig. 5. 289

Finally, we consider a further scenario in which transmission within and 290

between farms plays a central role in shaping epidemic dynamics, while trans- 291

mission occurring during transport is assumed to be negligible (wMM = 0.001). 292

We find that increasing between-farm transmission βFF leads to a wider spatial 293

dissemination of strains even outside their upazila of origin (Fig. 7D). Conse- 294

quently, a more diverse set of strains is supplied to LBMs, as evidenced by the 295

number of strains observed at these locations (Fig. 7E). Also, because larger val- 296

ues of βFF promote strain dispersal across the entire area, LBMs are now more 297

similar to each other in terms of their strain populations (Fig. 7F). It should be 298

noted, however, that increased within-farm transmission is responsible, at least 299

in part, for the larger strain numbers and overlap between LBMs observed in 300

Fig. 7E,F with respect to panels B,C. Finally, we note that the effects of den- 301

sity and hierarchy of vendor movements on ecological metrics are analogous to 302

those observed in the previous scenario. These results are robust to increasing 303

cross-immunity between strains (Fig. S6). 304

Discussion 305

In this paper we have introduced EPINEST, an agent-based model to simulate 306

the transmission of generic health hazards in the context of realistic poultry or 307

livestock movements within a defined PDN. To the best of our knowledge, this 308

work represents the first attempt to account for the structural complexities of 309

poultry PDNs in the context of epidemic transmission modelling. Our model 310

allows to generate synthetic PDNs consisting of key actors and settings involved 311

in poultry production and distribution, namely farms, middlemen, LBMs and 312

market vendors. Using Bangladesh as a case study, we illustrated the ability 313

of our framework to reproduce empirical features of a broiler PDN. We used 314

extensive data from field surveys to inform most aspects of the model, including 315

farming and trading practices of key actors [18, 27, 46]. At the same time, 316

our model offers the possibility to easily manipulate most properties of the 317

network, allowing exploration of alternative PDN configurations. Importantly, 318

we emphasize that our model may be applied to other contexts, e.g. different 319

poultry types and countries for which sufficient data is available. 320

One of the main purposes of EPINEST was to assess the impact of PDN 321

structure and stakeholders’ trading practices on pathogen transmission. For this 322
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reason, we prioritised including PDN components with the highest relevance to 323

transmission dynamics. These include, for example, the time spent by chick- 324

ens at different locations. All-in/all-out production, which is commonly imple- 325

mented in commercial broiler farms, results in relatively homogeneous rearing 326

times across farmed chickens, although these vary considerably among different 327

chicken types. In contrast, LBMs are characterised by a much faster turnover, 328

with most chickens being sold within a few hours and unsold chickens remaining 329

for up to a few days. Longer marketing times are a well-established risk factor 330

for AIV infection in LBMs, and have been linked to AIV persistence in these 331

settings [18,47]. To account for heterogeneity in marketing times, we explicitly 332

account for a fraction of chickens being offered for sale on consecutive days. 333

Further basic ingredients of the model are the spatial distribution of poultry 334

farms and their sizes. Both elements are highly relevant to disease transmission. 335

Heterogeneities in farm locations can affect systemic vulnerability to epidemics 336

and pathogen dispersal patterns [48–50], while higher livestock densities are 337

associated with increased intra-farm transmission and may favor the emergence 338

of virulent pathogens [9, 51]. In the absence of accurate data about farm loca- 339

tions, we generated random farm distributions complying with reported volumes 340

of poultry production at the upazila level, and used field surveys to assign farm 341

sizes [18,27]. Nonetheless, we stress that our model can accommodate any dis- 342

tribution of farms. These may represent not only higher-resolution data, but 343

also outcomes from more accurate generative models [52–54]. 344

Our model also allows to control the degree of mixing of chickens along dis- 345

tribution and trading channels. The ability of PDNs to mix large numbers of 346

chickens, particularly within LBMs, is well-established. The inter-mingling of 347

different types of birds from potentially distant locations is concerning when 348

associated to co-circulation of genetically distinct viruses. A recent phylody- 349

namics study found substantial genetic structuring of H9N2 AIV by city in 350

Bangladesh [55], compatibly with low overlap between the corresponding sup- 351

plying production areas [18]. In contrast, viral lineages appeared to be highly 352

mixed across LBMs within the same city, possibly indicating frequent connec- 353

tions between these markets. Live poultry trade has also been shown to be an 354

important driver of regional AIV dissemination in China [56]. Here, poultry 355

mixing within and between LBMs is dictated by two factors: first, upstream 356

distribution via middlemen connects LBMs with farmed populations from a 357

wide geographic area. Within our framework, geographic fluxes between re- 358

gions (upazilas/sub-districts) and LBMs are expressed as a matrix that can be 359

informed using field surveys or traceability systems. Second, wholesaling ac- 360

tivities and vendor movements further contribute to stirring marketed poultry 361

across LBMs. In this manuscript, we used a generative model to sample inter- 362

market mobility networks, and quantified their impact on poultry mixing. We 363

emphasize that more complex mobility patterns, informed either from data or 364

through simulations, can be easily embedded within our framework. 365

A major feature of our model is that it allows simulating pathogen transmis- 366

sion while accounting for the complexity of poultry movements and PDN struc- 367

tures. Importantly, the epidemic layer is fully uncoupled from PDN generation. 368
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Thus, while current code supports simulations of SIR and SEIR dynamics only, 369

implementing additional epidemic models is a relatively straightforward task. 370

We illustrated how our ABM can be used to model AIV dynamics in both epi- 371

demic and endemic settings. In the former case, the ABM makes it possible to 372

map the early dissemination of, e.g., an emerging AIV strain across farms and 373

the rest of the PDN. The second scenario would be more suitable to describe 374

endemic circulation of AIVs. In this context, relevant scientific questions that 375

could be addressed using our framework include understanding how and where 376

an endemic AIV is maintained and amplified along the PDN. 377

A novel aspect of our ABM is that it enables simulations of multiple co- 378

circulating pathogens/strains and their interactions. This paves the way for a 379

number of eco-epidemiological applications. As an example, we assessed the 380

potential of PDNs to mix viral lineages originating from distinct geographical 381

areas. Additional applications may consider the joint dynamics of endemic and 382

emerging AIVs and simulate the early transmission dynamics of, say, highly- 383

pathogenic H5N1 AIV against a background of (cross-)immunity generated by 384

endemic circulation of H9N2 AIV [57]. 385

As any modelling framework, there are limitations to our ABM. Despite our 386

efforts to account for the structural complexity of PDNs, our focus on epidemi- 387

ological investigations meant that several aspects of real PDNs could not be 388

included in the model. For example, actors’ behaviours are treated as fixed 389

parameters external to, rather than emerging from, the dynamic system being 390

modelled. In reality, the decisions made by individual traders to sell or purchase 391

birds is influenced by social, economic and epidemiological factors. These may 392

include uncertainty about market conditions and fear spurred by disease out- 393

breaks [58, 59]. In addition, unequal power dynamics often constrains trading 394

ties [40, 60]. In this context, we plan on expanding our ABM’s capabilities to 395

include simple reactive behaviours, e.g. farmers selling chickens pre-emptively 396

following a surge in bird mortality [59]. Other extensions could include mixing 397

of different poultry species, different farming systems and trading practices, such 398

as second-line middlemen purchasing chickens from other traders, and different 399

biosecurity measures implemented at different LBMs to limit pathogen spread. 400

Finally, although we wrote our model in C++ to improve simulation speed, 401

computational constraints make it difficult to scale up simulations to more than 402

a few millions of farmed chickens. This is a common challenge in agent-based 403

models, where the increased amount of detail is traded off by computational 404

costs. 405

In conclusion, we implemented a novel agent-based model to jointly simulate 406

realistic poultry movements and epidemic trajectories. Realised structures en- 407

compass a wide-range of PDN configurations as encountered in many countries 408

in South and Southeast Asia, and potentially even other livestock production 409

systems with similar structure to the one discussed here. Compared to existing 410

ABMs devoted to veterinary epidemiology applications [61–64], ours offers the 411

ability to run both single- and multi-strain simulations. In addition, the simu- 412

lator can be programmed to yield a wide range of outputs, including individual 413

transactions and chains of infections, hence providing a full characterisation of 414
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the underlying system. This model is a unique tool in the One Health context as 415

it allows investigation of a range of epidemiological scenarios and helps us to un- 416

derstand better the role of different structural aspects on disease transmission. 417

Immediate applications of this model will allow exploration of the transmission 418

and amplification of AIVs and anti-microbial resistance genes within poultry 419

PDNs. 420

Materials and Methods 421

Generating synthetic PDNs 422

In general, a PDN denotes the ensemble of actors that are involved in the pro- 423

duction and/or distribution of a product such as poultry and their interactions. 424

At any point in time, a chicken is physically located within one and only one 425

setting, such as a farm, a middleman’s truck, an LBM or a vendor-owned shed 426

during the night. 427

Our generative algorithm instantiates a population of actors based on ex- 428

ternal specifications. First, a spatial distribution of farms must be provided 429

alongside the corresponding geographic setup. The latter consists of a parti- 430

tioning of the study area into a set of non-overlapping regions. In this study, 431

we take upazilas/sub-districts as regional units. Second, the user specifies a 432

number of LBMs and their catchment areas. In practice, this is achieved by 433

specifying a matrix fa,l representing the relative fluxes of chickens reaching 434

market l = 1, . . . , NM from area a = 1, . . . , NA. A full description of LBMs 435

requires a set of weights wl,l′ encoding the probability that a vendor purchases 436

chickens in LBM l and trades in LBM l′ (with possibly l = l′). Finally, a 437

number of parameters influencing farming, distribution and trading practices 438

should be specified as well (these are described in Text S1). With these details, 439

the algorithm computes the expected poultry fluxes between farms and LBMs 440

and allocates enough vendors and middlemen to satisfy such demand. At the 441

LBM stage, vendors are allocated in a tier-wise fashion depending on the volume 442

of chickens supplied by middlemen, inter-market movements, and wholesaling 443

practices. Eventually, it is possible to generate more middlemen and vendors 444

than strictly required based on heuristic calculations by inflating the expected 445

supply of chickens handled by middlemen and vendors through multiplicative 446

factors ϵMM and ϵV . 447

Modelling inter-market movements 448

As detailed in Text S1, a vendor purchasing chickens in LBM i is assigned to 449

trade in LBM j with probability Gi,j . 450

We sample the weights Gi,j from a generative network model defined by a 451

growth mechanism: we add LBMs j = 1, . . . , NM one at a time and establish 452

links i → j, i < j as follows: first, we draw the number of incoming edges 453

(in-degree) zj ∼ Binomial(ρ, j − 1). Second, we sample zj LBMs (with i < j) 454
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without replacement either at random with probability prandom, or proportion- 455

ally to their out-degree. This yields a binary matrix Ii→j denoting existing 456

connections. Weights are then calculated as: 457

Gi,j =

{
δi,j , if ki = 0.

Gselfδi,j + (1−Gself )Ii→j/ki, otherwise ,
(1)

where Gself is the probability of a vendor operating in a single market i, condi- 458

tional on the out-degree ki =
∑

j Ii→j being positive. Here we set Gself = 0.8. 459

Global reaching centrality 460

GRC is defined based on the notion of local reaching centrality CR(i), which 461

quantifies the proportion of nodes reachable from node i through directed edges. 462

Based on this definition, we calculate GRC by subtracting CR(i) from the max- 463

imum observed value Cmax
R = maxi CR(i), and averaging over all nodes: 464

GRC =

∑N
i Cmax

R − CR(i)

N − 1
. (2)

PDN dynamics 465

Within simulations, actors follow a daily routine. Let t = 0, . . . , 23 indicate 466

the time of the day (each time step is 1 hour long). Unless otherwise stated, 467

default parameters indicated in Text S1 are considered. LBMs open between 468

Topen and Tclose; at t = Topen, vendors move to LBMs, followed by middlemen. 469

Middlemen then proceed to sell their cargo to frontline vendors, i.e. those in 470

the first LBM tier (L = 0). In the next time step (t = Topen + 1), some of 471

these move to another LBM and trade with second-tier vendors, who in turn 472

sell chickens to vendors in the tier after that, repeating the process until the 473

last tier is reached. Vendor movements and wholesaling are therefore resolved 474

sequentially, in a tier-wise fashion, at time t = Topen + 1. In contrast, retailing 475

activities roll out between Topen +1 and Tclose. At Tclose, both wholesalers and 476

retailers leave LBMs alongside any unsold chickens. Overnight, these chickens 477

are stored in some other place, e.g. in a shed. Importantly, all chickens from 478

the same vendor are stored in the same place. 479

At some time t = Tfarm we update farms: empty farms may recruit a 480

new batch of chickens, while active farms may offer birds for sale depending 481

on batch age. After that, always at t = Tfarm, middlemen are updated: first, 482

they decide whether to cover a different set of upazilas/sub-districts. Then, 483

they contact farms within covered upazilas/sub-districts in order to purchase 484

chickens. At this stage, middlemen only determine how many chickens to collect 485

from each farm; the collection may happen anytime between Tfarm and Topen 486

on the following day. 487
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Epidemic dynamics 488

In this work, we consider a general transmission model involving a generic num- 489

ber of strains. Each strain, indexed by s, spreads according to SEIR dynamics. 490

Infected chickens become infectious only after a random latent period τ̂E , sam- 491

pled from a distribution P (τ̂E) with mean TE . Analogously, infectious chickens 492

recover after a random time τ̂I , sampled from a distribution P (τ̂I) with mean 493

TI . All epidemiological parameters are listed in Text S1. 494

Here, transmission is assumed to occur through infectious contacts among 495

chickens from the same setting. Other transmission mechanisms, including ex- 496

ternal introductions and inter-farm transmission, are described in Text S1. Dur- 497

ing a time step, an infectious chicken i contacts a single chicken j, chosen at 498

random within the same setting, and transmits strain s with probability: 499

pinfect = 1− exp(−β(s, i) · S(s, j) · wX) , (3)

where β(s, i) transmissibility of strain s and S(x, j) is susceptibility of chicken j 500

to s. The factor wX is a multiplier that depends only on the underlying setting 501

type (F,MM,M,V). 502

In general, the transmission rate β(s, i) and susceptibility S(s, j) may depend 503

on the immune state of infector and infectee, respectively. Importantly, different 504

functional forms of β(s, i) and S(s, j) embody different assumptions about im- 505

mune cross-reactions induced by previous exposure to other pathogens/strains. 506

In this work we consider uniform transmission β(s, i) = β, irrespective of im- 507

mune state, and susceptibility S(s, j) = 0, 1, σ depending on whether j has al- 508

ready been infected with s, is fully naive or was infected with some other strain 509

s′ ̸= s, respectively. The parameter σ ∈ [0, 1] represents reduced susceptibil- 510

ity due to cross-immunity, and interpolates between sterilising cross-immunity 511

(σ = 0) and no cross-immunity (σ = 1). 512
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Fig 2: Simulating poultry movements. (A) Spatial population of 1200
farms supplying Dhaka. Farm locations are generated as described in Text S1
and assigned preferentially to upazilas with a larger observed outgoing chicken
flux (colour scale). (B) Expected (black) and measured (red) distribution of
times required to sell an entire batch. (C) Expected and measured distributions
of transactions a single batch is split into. (D) Measured vs expected relative flux
between individual pairs (dots) of upazilas and LBMs. (E) Distribution of LBMs
serviced daily by individual middlemen. (F) Proportion of chickens sold to
wholesalers (W, teal) and retailers (R, yellow) by LBM tier in simulations (bars)
and data (markers). MM → V0 refers to transactions involving middlemen and
first tier vendors, while VL → VL+1 represents inter-tier transactions. For each
tier, bars do not add up to 1 since wholesalers can sell to end-point consumers
as well. Inset shows proportions of wholesalers and retailers. (G) Marketing
time distribution. Results are obtained from a single simulation with default
settings. Farm data are obtained from [27]. Data about middlemen and vendor
trading practices and marketing times are obtained from [18].
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Fig 3: Markets serviced daily. (A) Expected (scatters) and measured (lines)
distributions of markets serviced daily. Expected distributions are of the form
Pr(km = n) ∝ (1− pkm)n−1pkm where n = 1, . . . , km. Inset compares expected
and measured average numbers of markets serviced. (B) Distribution of vendors
a single middleman trades daily with. (C) Cumulative distribution of sizes of
transactions involving middlemen and vendors (solid lines). Dashed lines rep-
resent cumulative proportion of chickens sold in transactions up to a given size.
Results are averaged over 50 simulations from 10 different PDN realisations.

Fig 4: Vendor trading practices. (A) Average marketing time as a function
of ρunsold for different values of pempty. Solid and dashed lines correspond re-
spectively to low (10%) and high (90%) frequency of vendors prioritizing trading
older chickens. (B) Proportion of marketed chickens offered for sale on multiple
days. (C) Marketing time distributions for low and high frequency of vendors
prioritizing older chickens. Here, ρunsold = 0.1 and pempty = 0.2. Results are
averaged over 50 simulations from 10 different PDN realisations.
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Fig 5: LBM networks and poultry mixing. (A,B) Broiler LBM networks
for Chattogram and Dhaka, respectively. An arrow pointing from market l
to l′ indicates at least one movement in that direction, while arrow thickness
is proportional to the number of vendors moving on that edge. Node size is
proportional to the outgoing weight, i.e. the total number of vendors leav-
ing it. Isolated and connected nodes are shown in cyan and teal, respectively.
(C,D) GRC and TD, respectively, for Dhaka’s network (line) and ensembles of
2000 synthetic LBM networks with the same density as Dhaka’s network and
prandom = 1 (red) and prandom = 0.1 (cyan). (E,F) Average GRC and TD,
respectively, across 100 networks with 20 nodes and as a function of ρ and
prandom. Dotted line denotes Dhaka’s density. (G,H) Pianka’s index of overlap
and proportion of markets where it is possible to find chickens from different
upazilas/sub-districts, respectively, as a function of network parameters. Per-
forming the same measurement before any vendor movement occurs, yields an
overlap (Pianka’s) of 0.261, and 25,7% shared markets, on average. This repre-
sents the baseline overlap due to middlemen sourcing chickens from farms and
selling them to vendors. Results are averaged over 50 simulations from 10 dif-
ferent PDN realisations. All other PDN parameters are set to default values.
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Fig 6: Epidemic dynamics. (A) Daily incidence in LBMs in multiple simu-
lations. (B) Cumulative number of new farms infected over time from multiple
clusters. Each cluster is initiated by a different infectious seed. (C) Distribution
of attack rates for individual production cycles, conditional on at least one in-
fection. (D-F) High farm transmission scenario (wF = 0.2, wM = 0.7). Colour
scale corresponds to varying levels of inter-farm transmission βFF . (D) Propor-
tion of incident cases in different setting types (F: farms, MM: middlemen, M:
markets, V: vendors). (E) Average hourly prevalence in LBMs at stationari-
ety. (F) Proportion of latent and infectious chickens entering markets daily as a
function of βFF . (G-I) High LBM transmission scenario (wF = 0.1, wM = 2.4).
Colour scale corresponds to varying latent period TE . (G,H) mirror (D,E). (I)
Persistence is measured as the proportion of simulations where at least one
transmission chain persisting in markets and vendors for longer than 50 days
was observed. Results are qualitatively the same under different different cri-
teria about the duration of transmission chains (Fig. S5). Other parameters
are set to default values. Results are based on 50 simulations from 10 different
synthetic PDNs.
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Fig 7: Multi-strain dynamics and viral mixing in LBMs. (A-C) Sim-
ulations with no inter-farm transmission (βFF = 0). (A) Viral amplification
happening through transportation from farm to LBM gates as a function of
middlemen-specific transmission weight wMM . This is quantified through the
difference between total numbers of exposed and infected chickens sold to ven-
dors and purchased daily by middlemen. (B) Average strain richness (i.e. num-
ber of strains) in single LBMs as a function of density ρ of vendor movements
(on the x-axis), wMM (from light to dark). Solid and striped bars correspond
to low and high hierarchy in vendor movements, respectively. (C) Average Pi-
anka’s index of overlap between pairs of LBMs in terms of their catchment areas.
(D-G) Simulations with inter-farm transmission. (D) Average richness per up-
azila for increasing βFF . Note that the bottom-right map uses a different colour
scale. (E,F) Same as (B,C) but for varying βFF and with wMM = 0.001. We
set wF = 0.1 in (A-C) and wF = 0.2 in (D-F), while wM = 2.4 and wV = 1
in all panels. Cross-immunity reduces susceptibility to secondary infections to
σ = 0.3. Results are averaged over 50 simulations from 10 different synthetic
PDNs. In each simulation, statistics are collected for 100 days after an initial
transient of 2000 days.
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1 Data analysis 1

1.1 Farmers 2

Questionnaire data 3

Data were generated through a cross-sectional study that collected informa- 4

tion about farming practices from 100 distinct farms in Chattogram division, 5
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Bangladesh [1]. Available data includes farm sizes, the number of production 6

cycles completed in one year, as well as the numbers of traders and transac- 7

tions involved in clearing individual batches (Fig. A1). Here we focus on the 47 8

farms that reported trading broilers and raising a single batch at a time in a 9

single shed. It should be noted, however, that while the questionnaire aimed 10

to uncover farmers’ practices over one year, it is not possible to know whether 11

farmers raised at most one batch at a time for the entire period as their answers 12

reflect their situation during the interview. 13

Farm/batch size. We modelled batch sizes SF by assuming a truncated neg- 14

ative binomial distribution. More in detail, we assumed: 15

SF ∼ NB(pSF
, nSF

) if SF ∈ [Smin
F , Smax

F ] , (1)

where Smin
F , Smax

F are the minimum and maximum observed batch sizes. For 16

simplicity, we estimated parameters pSF
, nSF

by maximum likelihood without 17

accounting for truncation and verified a posteriori that the resulting bias was 18

small. Note that for this type of farms, batch size is the same as farm size, since 19

they do not rear multiple batches at the same time. 20

Replenishment time. We modelled replenishment time τreplenish by assum- 21

ing a shifted negative binomial distribution, i.e.: 22

τreplenish − 1 ∼ NB(pτreplenish
, nτreplenish

) , (2)

1.2 Middlemen 23

Individual middlemen properties 24

We used data from questionnaires to inform middlemen’ trading patterns. Con- 25

sistently with the main manuscript, we restrict our analysis to broiler data 26

only [2]. 27

Number of chickens bought daily. We divided the total number of chickens 28

bought during the entire study period by each middlemen with the number of 29

days in which he/she purchased any poultry. We used these raw values to 30

construct a discrete distribution from which to sample middlemen batch sizes 31

SMM in the ABM. 32

Number of markets visited daily. As a first step, we evaluated the number 33

of working days for each middlemen by combining sale frequencies of different 34

breeds. This was straightforward for middlemen that sold chickens every day 35

during the study or sold a single chicken breed. One middleman declared selling 36

chickens 4 times in a week; in this case, we set the number of working days to 4. 37

We then obtained the mean number of daily market visits k(daily) by dividing 38

the total number of market visits made by each middleman during the study 39

2

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 26, 2023. ; https://doi.org/10.1101/2023.07.25.550458doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.25.550458
http://creativecommons.org/licenses/by/4.0/


Figure A 1: Farm statistics from survey data and statistical fits. (A-
O) Univariate distributions (diagonal) and pairwise scatter plots (off-diagonal)
for several farm statistics, coloured by the number of available sheds. Shown
quantities include farm size (A), completed production cycles per year (C),
trading rollout duration (F), time to replenish the farm (J) and raising time
(O). We did not show farms with 4 sheds, as there were only two (see panel
P showing frequencies of sheds per farm). (Q) Poisson (green) and truncated
negative binomial (orange) fits to batch size data (black ticks). (R) Poisson
(green) and shifted negative binomial (orange) fits to replenishment time data
(black ticks). In both cases, a negative binomial distribution provides a better
fit than Poisson to underlying data. Analyses in (Q,R) were restricted to farms
with a single shed.

period with the corresponding number of working days. Note that some values 40

kdaily are not integer numbers due to the previous calculation. Finally, we used 41

maximum likelihood to fit a geometric distribution with parameter pkm to data 42

{kdailyi }, with i ranging from 1 to the total number of middlemen interviewed. 43

More precisely, the maximum likelihood estimate for pkm
is given by the inverse 44

of the sample mean of data {kdailyi }. This formula works also when some values 45

kdailyi are not integer numbers (Fig. A2). 46
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Figure A 2: Distribution of daily market visits. Fitted (line) and observed
(markers) frequencies of markets visited daily. The fitted distribution is geo-
metric with parameter p estimated using maximum likelihood. Note that some
data points were not integers and were therefore rounded to the nearest integer
in this plot. The fitted distribution corresponds to black markers in Fig. 2E,
but is here shown up to value 4, i.e. the maximum observed count.

1.3 Vendors 47

Individual vendor properties 48

We used data from questionnaires to inform vendors’ trading patterns. Unless 49

otherwise stated, we repeat every analysis for retailers and wholesalers. 50

Number of chickens bought daily. We first reconstructed the number of 51

chickens bought by a single vendor over the survey period by adding counts 52

of sold and unsold chickens. Then, we divided this number by the number of 53

days during which the same vendor bought any chickens, yielding an estimate 54

of the number of chickens bought daily. We used these raw values to construct 55

a discrete distribution from which to sample vendor batch sizes SV in the ABM 56

(Fig. A3A). 57

Surplus chickens First, we estimated the probability pempty to sell the entire 58

batch of chickens before a vendor buys another batch. This was computed as 59
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the ratio between the number of days with any unsold chickens and the number 60

of days with a purchase. 61

Second, we modelled the counts ubatch of unsold chickens per batch, condi- 62

tional on batch size SV and on the event that the batch is not fully emptied 63

(which happens with probability 1− pempty). We consider a negative binomial 64

distribution with mean µ = ρunsoldSV and variance µ · (1 + n−1
unsold · µ), where 65

ρunsold is the proportion of chickens that remain unsold before purchasing the 66

next batch and nunsold affects overdispersion compared to a Poisson distribu- 67

tion. Because our data are aggregated over a week period, we model the total 68

count of unsold chickens utotal rather than ubatch. Because the sum of negative 69

binomial random variables still follows a negative binomial distribution, utotal 70

has the same distribution as ubatch, with SV multiplied by the number of days 71

with any unsold chickens (as we are conditioning on having a surplus). Aggre- 72

gating data from wholesalers and retailers yields maximum likelihood estimates 73

ρMLE
unsold = 0.13 and nMLE

unsold = 3.4 (Fig. A3B-C), which are used throughout the 74

main manuscript. For completeness, we also estimate the same parameters for 75

wholesalers and retailers separately, who amount to 55 and 376 data points, 76

respectively. We find that wholesalers generate, on average and conditional on 77

at least one unsold chicken, less surplus chickens than retailers (ρMLE,W
unsold = 0.06 78

vs ρMLE,R
unsold = 0.13), while the amount of overdispersion is roughly the same 79

(nMLE,W
unsold = 3.4 and nMLE,R

unsold = 4.2). Note that we assume pempty to differ 80

between retailers and wholesalers. It should also be added that in the context 81

of questionnaire data, a surplus of chickens is defined in relation to consecutive 82

purchases, which could be multiple days apart, by the same vendor. In the 83

ABM, however, we conflate these parameters with surplus between consecutive 84

days, as vendors tend to buy new chickens every day. The resulting discrep- 85

ancy should not be large since 76% of interviewed vendors purchased (broiler) 86

chickens every day, and 93% during at least 6 days in a week. Finally, note that 87

during simulations, daily surplus is also subject to the constrain that it can not 88

be larger than batch size. 89

Prioritising unsold chickens. We estimate the probability of a vendor pri- 90

oritising the sale of previously unsold chickens as the proportion of vendors 91

declaring to do so in our data. 92

Transaction networks and inter-tier fluxes 93

Here we detail a procedure to estimate p
(L)
W and p

(L)
R for each market tier 94

L = 0, 1, . . . , Lmax. Parameters p
(L)
W,R represent the proportions of chickens 95

sold respectively to wholesalers and retailers in tier L, while 1 − p
(L)
W − p

(L)
R is 96

the proportion of chickens that wholesalers in tier L−1 (L > 1) sell to end-point 97

consumers. 98

The tier L = 0 corresponds to vendors that buy directly from middlemen. 99

Note that p
(0)
W + p

(0)
R = 1 since middlemen are not allowed to sell chickens to 100

end-point consumers. Wholesalers in tier L sell to wholesalers and retailers in 101
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tier L+ 1 according to probabilities p
(L+1)
W and p

(L+1)
R , respectively. Note that 102

the last tier Lmax must consist of retailers only and hence p
(Lmax)
W = 0. 103

Here we outline a simplified estimation procedure that yields parameters 104

that are common to all markets. We start with reconstructed transaction net- 105

works. These networks are DAGs consisting of multiple transactions, weighted 106

by the number g of chickens involved, between different node types. Nodes can 107

be either middlemen (MM) or vendors, the latter being further classified into 108

either wholesalers (W) or retailers (R). In addition, MM and W nodes are fur- 109

ther classified according to their ’depth’ within a transaction chain. This latter 110

characterization is somewhat reminiscent of our tiered structure, but a direct 111

mapping is not possible at this stage yet. In particular, in order to infer relevant 112

parameters from reconstructed transaction chains, we must take care of trans- 113

actions involving middlemen that purchase chickens directly from wholesalers 114

and sell them to other vendors. As our ABM does not allow middlemen to buy 115

from vendors, we replace these ’forbidden’ transactions found in reconstructed 116

networks, with sets of ’allowed’ transactions. Let V ∗
MM denote the set of such 117

middlemen. As a first step, we remove all transactions involving poultry farms, 118

except those involving any middlemen k ∈ V ∗
MM . For each remaining farm i, 119

we replace middlemen k ∈ V ∗
MM with a new label k∗ so that each transaction 120

i → k, k ∈ V ∗
MM becomes i → k∗. The label k∗ is just a placeholder representing 121

a fictitious middleman. Second, We then remove transactions of the type i → k 122

and k → j, where i, j are not farms and k ∈ V ∗
MM , and replace them with viable 123

transactions of the type i → j. Thus, if actor i sold chickens to k ∈ V ∗
MM , which 124

in turn sold chickens to vendor j, we remove edges (i, k) and (k, j), and create a 125

new edge (i, j) with a weight gi,j = gi,kgk,j/gk, where gk =
∑

l gk,l is the total 126

out-weight of k. Finally, we remove transactions involving only middlemen and 127

merge any duplicated edges together. 128

We can now analyse the resulting graph G. Let VMM represent the set of 129

middlemen nodes, i.e. the roots of the DAG. Note that VMM excludes nodes 130

from V ∗
MM . We associate middleman i with a weight g

(0)
i representing the 131

number of chickens it ’injects’ into markets. For each middleman node i ∈ VMM , 132

we then perform the following calculation: 133

• Enumerate all chains departing from node i and ending with a leaf node. 134

The latter might be a W or a R node. We stress that these are observed 135

transactions, not the output of our ABM. 136

• For each such chain, count the number of mark-ups, distinguishing be- 137

tween R and W nodes. Each chain may involve any number of W nodes 138

and an optional terminal R node. For example, a chain of the type 139

W → W → R consists of two wholesalers mark-ups before landing into a 140

retailer. A chain of the typeW → W consists of two wholesalers mark-ups, 141

with the terminal wholesaler selling directly to end-consumers. Finally, as- 142

sign a weight to the current chain by multiplying g
(0)
i by the proportion of 143

chickens that reach end-consumers through this chain. The latter is eas- 144

ily computed by multiplying together the proportions of chickens flowing 145
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through each edge in the chain. It is easy to see that the weights of chains 146

emanating from node i must add up to g
(0)
i . 147

By enumerating all chains constructed in this way, we can easily determine 148

the maximum number of tiers as the length of the longest chain in G. For 149

example, if the longest chain is of the type W → W → R, then we need 3 tiers 150

and L = 0, 1, Lmax = 2. 151

Once we have computed the weights for every chain in G, we can finally 152

obtain p
(L)
W and p

(L)
R by collapsing all chains according to their length and the 153

type of terminal node. The idea is to compute a running sum gG(L, T ) that 154

counts how many chickens end up in the hands of actors of type T, where T 155

is either W, R or C (end-point consumer) in tier L. Please note that we are 156

deliberately over-counting chickens according to how many mark-ups they make. 157

Let us illustrate this procedure by considering a generic chain with weight gc, 158

nW >= 0 wholesaler and nR = 0, 1 retailer mark-ups. The total length of the 159

chain is nc = nW + nR. For each L = 0, . . . , nW − 1 we increase the running 160

sum gG(L,W ) by gc. If the last node is of type W, we increase the running sum 161

gG(nW , C) by gc; else, the last node is of type R and we increase the running 162

sum gG(nW , R) by gc. 163

Finally, p
(L)
W = gG(L,W )/[gG(L,W ) + gG(L,R) + gG(L,C)] and p

(L)
R = 164

gG(L,R)/[gG(L,W )+gG(L,R)+gG(L,C)]. Note that gG(0, C) = 0 if we ignore 165

transactions involving MM selling to end-point consumers. 166

Note that we can include more reconstructed transaction networks in the 167

same analysis: we compute gG(L, T ) ∀G and then create a consensus quantity 168

gconsensus(L, T ) =
∑

G gG(L, T ), which we can finally use to compute parame- 169

ters of interest. 170

2 Actor dynamics 171

This section describes in detail different action and tasks for each actor. Further 172

details on actor instantiation can be found in the section dedicated to PDN 173

setup. 174

2.1 Farms 175

At any time, a farm is either empty or raising chickens. We consider farms 176

raising a single batch of chickens at a time, meaning that individual production 177

cycles do not overlap. Chickens from the same batch are introduced at the 178

same time as day-old chicks and are offered for sale as soon as they reach an 179

appropriate age τraise. A production cycle ends when all chickens in a farm are 180

sold. 181

Farm replenishment. After completing a cycle, a farm remains empty for a 182

random time τreplenish, sampled from a (shifted) negative binomial distribution. 183

After τreplenish time steps, a farm recruits a new batch of day-old chicks. 184
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Figure A 3: Vendors’ parameters analysis. (A) Raw distributions of number
of birds bought daily for R (blue) and W (orange). (B) Log-likelihood function
for negative binomial fit to surplus counts. Fitted parameters include the aver-
age proportion on unsold chickens ρunsold and the shape parameter nunsold. The
maximum likelihood solution (ρMLE

unsold, n
MLE
unsold) is indicated with a red marker.

(C) Expected surplus ρMLE
unsold · S (line) as a function of batch size S, together

with 95% C.I. (shaded area) calculated assuming a negative binomial distribu-
tion NB(ρMLE

unsoldS, n
MLE
unsold) for surplus. Broiler data are shown as well (black

dots).

Offering birds for sale. After raising a batch for τraise days, a farm is ready 185

to sell chickens. These are offered for sale progressively over a minimum of 186

τrollout days; more precisely, a farm stages new chickens corresponding to a 187

fraction 1/τrollout of its batch over the first τrollout days. By day τrollout, all 188

chickens at the farm can be sold to middlemen. Note that a farm could sell 189

chickens for a longer period of time if not enough middlemen are available to 190

trade with. In the case where any chickens remain unsold after τ
(max)
rollout days, 191

the corresponding farm is emptied automatically. 192

2.2 Middlemen 193

Middlemen daily routine consists of buying and collecting chickens from farms 194

in order to sell them to vendors operating in markets. A single middleman is 195

able to source chickens from multiple farms, potentially from distinct regions, 196

in order to fill up his/her cargo. 197

Updating scouted regions. Each middleman purchases chickens from farms 198

located in a subset A of neighboring areas, whose number we denote with 199

nscout = |A|. With daily frequency, each middleman may move and change 200

his/her catchment area with probability Pmove. In that case, a middleman up- 201

dates A by choosing nscout new regions as follows: first, a focal region a is 202

sampled at random with propensity proportional to the number of chickens be- 203

ing currently offered for sale in that region. In the case no farm is currently 204

trading, a is chosen fully at random. Second, nscout − 1 new regions are chosen 205
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at random among those neighboring a. More precisely, we say that a region a′ 206

neighbors a if their centroids are less than 80 km far apart. If a has less than 207

nscout − 1 neighbors, new regions are chosen among the areas neighboring with 208

a’s direct neighbors. The choice of a 80 km radius is arbitrary, but it guarantees 209

that middlemen do not cover too long distances in a single day. Note also that 210

according to our algorithm, middlemen are drawn preferentially to areas with 211

the largest offer of chickens, which reduces the odds of farms not being able to 212

sell their chickens. 213

Buying birds from farms. The main purpose of mobile traders is to collect 214

chickens from farms and deliver them to LBMs. With daily frequency, our 215

algorithm allocates amounts of chickens to be moved from any trading farm 216

to any market via middlemen. No chicken is collected at this stage yet. Our 217

simulator resolves allocations one middleman at a time in random order and 218

under the following constraints: 219

1. Middleman j can hold at most SMM chickens. 220

2. Middleman j can source chickens from farms located in any area a ∈ A. 221

3. Middleman j sells chickens to a number of vendors from exactly km mar- 222

kets. 223

4. Destination markets must be chosen in a way the preserves the overall 224

proportion of chickens leaving region a and entering market l, fa,l. 225

As a consequence of the last two requirements, each middleman keeps track 226

of which market each chicken is scheduled to be moved to. 227

The first step consists in sampling markets with probabilities {ql}l=1,...,NM
: 228

ql =

∑
a∈A Õafa,l∑

a∈A Õa

, (3)

where Õa is the number of birds currently offered for sale by farms in region 229

a. We sample markets with replacement until we get a set M comprising km 230

distinct markets, or after 1000 draws, in which case |M| < km. Let tl be the 231

number of times market l ∈ M was selected during sampling, and let t =
∑

l tl 232

be the total number of draws. Focusing on market l with tl > 0, we construct 233

the distribution fa|l: 234

fa|l =


Õafa,l∑

a∈A Õafa,l
if a ∈ A

0 otherwise

. (4)

We then sample tokens tl,a ∼ Multinomial(tl, {fa|l}) such that
∑

a∈A tl,a = 235

tl. Given the tokens tl,a, middleman j contacts farms in each region a ∈ A, 236
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securing up to
⌊
S̃MM tl,a/t

⌋
birds destined to market l. Here, S̃MM ≤ SMM 237

denotes the maximum number of birds that can be purchased during the current 238

day. S̃MM is smaller than SMM if middleman j is already carrying birds for 239

any reason, e.g. if unsold from previous days (this is usually rare). 240

Middlemen contact farms in an area a sequentially, starting with those trad- 241

ing for the longest amount of time. Transactions follow a greedy heuristics: if 242

middleman j has to collect sa birds from region a, he/she will attempt to buy 243

as many birds as possible from individual farms to meet such quota. In case 244

middleman j fails to secure the required number of birds from region a, we allow 245

j to contact any previously visited farms to meet the original quota. Additional 246

chickens obtained in this way are directed to market l with probability: 247
fa,l∑

l′∈M fa,l′
if l ∈ M

0 otherwise

. (5)

Finally, it should be noted that Õa decreases as chickens are allocated pro- 248

gressively to middlemen; in other words, availability of chickens decreases as we 249

iterate over middlemen. 250

Bird collection. Middlemen start collecting birds as soon as the allocation 251

step described in the previous section is terminated. At this point, middleman 252

j is already aware of the farms to be visited and the amounts of birds to pick up 253

from each of them. In simulations, middleman j can visit any of these farms in 254

random order at any point in time before the next market opening. This is to 255

ensure that j collects all of their chickens before bringing them to the market. 256

Selling birds to vendors. Each day, middleman j visits markets l ∈ M 257

sequentially. There, j sells chickens to available vendors until all sl carried 258

chickens scheduled for delivery to market l have been sold. These chickens 259

can be sold only to vendors in the first market tier (L = 0). A number 260

sl(W ) ∼ Binomial(sl, p
(0)
W ) are allocated for sale to wholesalers in this tier. 261

The remaining sl − sl(W ) chickens, plus any of the sl(W ) chickens that could 262

not be sold to wholesalers (e.g. because of limited buying capacity) are directed 263

to retailers. Any unsold chickens remain in middleman’s stock and are offered 264

for sale in the same market on the following day. Please note that this event is 265

expected to occur rarely in simulations. 266

2.3 Markets 267

Markets can be either open or closed: all markets open at Topen and close at 268

Tclose every day. Markets contain chickens only during opening hours. 269

10

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 26, 2023. ; https://doi.org/10.1101/2023.07.25.550458doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.25.550458
http://creativecommons.org/licenses/by/4.0/


2.4 Vendors 270

Vendors trade chickens within and between markets. There are two types of 271

vendors: retailers, who sell chickens to end-point consumers only, and whole- 272

salers, who can also sell chickens to other vendors. Vendors are organized in 273

tiers: vendors in tier L > 0 buy chickens from wholesalers in tier L − 1, while 274

vendors in tier L = 0 buy chickens directly from middlemen. Vendors first pur- 275

chase chickens in market l and then move to another market l′, or stay in l, 276

where they can sell chickens to other vendors and/or end-point consumers. 277

Buying birds. All vendors seek to buy as many chickens as possible during 278

any transaction with middlemen and/or other vendors, compatibly with their 279

own capacity and daily quota SV . Note that a vendor may hold more than SV 280

chickens at a time due to the presence of surplus chickens. Nonetheless, the 281

same vendor can not hold more chickens than the maximum carrying capacity 282

CV > SV . 283

Inter-market movements At Topen, vendor k moves to market l to purchase 284

chickens. Eventually, k stays in the same market or moves to a second location 285

l′ to trade. Chickens move alongside their owner. Note that k’s purchase and 286

trade markets l,l′ are invariant. In other words, k will always purchase chickens 287

in l and commute to l′ (if l ̸= l′) or stay in l (if l = l′) in a given PDN realisation. 288

All vendor movements are resolved at Topen and are therefore instantaneous: 289

vendors move to market l, purchase chickens and eventually change market 290

during the same time step. Note that vendors in tier L must move after those 291

in tier L− 1. 292

Wholesaling. Let us consider a wholesaler k operating in tier L. After pur- 293

chasing chickens, k carries ntot chickens, including also older chickens that re- 294

mained unsold from previous days. In the current day, k sells nsale = ntot − 295

nunsold chickens, where nunsold denotes the number of unsold chickens. nunsold 296

is a random variable whose sampling procedure is described in sections below. 297

Proportions p
(L+1)
W and p

(L+1)
R of these nsale are then directed to wholesalers 298

and retailers in tier L + 1, respectively. The remaining chickens are sold to 299

end-point consumers (retailing). 300

It is possible that k sells less chickens to L+1 tier wholesalers than planned. 301

In this case, any surplus chickens are redirected to retailers. Similarly, any 302

chickens that would remain unsold after the wholesaling phase are redirected to 303

end-point consumers. 304

Please note that wholesaling is instantaneous, occurring toe-to-toe with 305

inter-market movements as vendor switch from purchasing to trading chickens. 306

Retailing. Both wholesalers and retailers can sell chickens to end-point cus- 307

tomers. While wholesaling is instantaneous, retailing rolls out over market 308

opening hours, i.e. between Topen and Tclose. More in detail, vendors can sell 309
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chickens to end-point consumers between Topen + 1 and Tclose − 1; this means 310

that chickens spend at least one time step at the market. 311

The number of chickens sold in any time step over this period is stochas- 312

tic, but uniformly distributed. More in detail, we assume that the number of 313

chickens sold by vendor k during time step t is given by: 314

min{navail(t), round (u+X(t))} , (6)

where X is a Poisson random variate with mean navail(t)/δt, with navail(t) 315

and δt denoting the number of chickens destined to retail still in stock and 316

the time left until market closes, respectively. u is a random draw from an 317

uniform distribution on the unit interval whose role is to fix rounding issues, 318

while round(.) guarantees a meaningful result by rounding u+X to the nearest 319

integer. Finally, we require that k sells all of the remaining chickens that had 320

been scheduled for retail, right before market closure, i.e. at t = Tclose − 1. 321

Surplus chickens. As explained above, vendor k may retain a random num- 322

ber nunsold of chickens each day, which are then offered for sale the day after. 323

The surplus nunsold is computed as follows: first, vendor k sells the entire stock 324

with probability pempty, in which case nunsold = 0. Alternatively, nunsold is 325

sampled from a negative binomial distribution with mean ρunsold · ntot, with 326

the constraint nunsold ≤ ntot. More details can be found in the data analysis 327

section. 328

Prioritising unsold birds. Vendors keep track of unsold birds. We assume 329

that a proportion Ppriority of vendors in our simulations prioritise selling these 330

birds before recently purchased birds. The remaining vendors, instead, do not 331

prioritise repurposed chickens over those bought in the current day. 332

3 PDN setup 333

This section illustrates the generative algorithm responsible for instantiating the 334

PDN. The following subsections reflect the sequential steps of the algorithm. 335

The final goal is to generate a kind of supply chain with multiple intermediate 336

nodes under certain structural constraints. 337

The algorithm first instantiates ’source’ and ’sink’ nodes, i.e. farms and 338

markets, where chickens are first introduced and sold last, respectively. Then, 339

it populates markets with vendors, compatibly with incoming bird flux as deter- 340

mined by farm production and region-to-market fluxes. Finally, our algorithm 341

instantiates middlemen, i.e. the intermediate actors. 342

We assume here for simplicity that all actors handle and trade a single 343

chicken breed. 344
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3.1 Geography setup 345

Using external specifications about the study area, the algorithm creates a list 346

of NA regions, each being characterized by a given location and a weight pro- 347

portional to the share O
(0)
a , a = 1, . . . , NA of chickens produced there. In the 348

case of Bangladesh we identify individual regions with upazilas. In addition, we 349

also specify a matrix fa,l representing the proportion of chickens that end up in 350

market l = 1, . . . , NM from area a. Note that
∑

l fa,l = 1. 351

3.2 Farm generation 352

Farm properties. In this work we consider only farms raising a single batch 353

of chickens at a time. For this type of farm then, farm size SF is equivalent 354

to batch size; the latter is assumed to vary across farms and is sampled from 355

a truncated negative binomial distribution. In addition, batch size is invariant, 356

in the sense that a particular farm will always raise batches with the same size. 357

The raising time τraise is assumed to be a constant and shared by all farms. 358

Analogously to batch size, a random value of minimum rollout duration τrollout 359

is assigned to each farm according to a probabilistic distributions but does not 360

change over the course of a simulation. Finally, replenishment time τreplenish is 361

assumed to be sampled from a shifted negative binomial distribution, namely 362

τreplenish ∼ 1+NB(pτreplenish
, nτreplenish

), whenever a farm completes a rollout. 363

Farm properties and model parameters describing farm generation are listed in 364

Table A1. 365

Farm locations. For each farm we draw a random location according to the 366

following algorithm: we first draw a region a, either uniformly at random with 367

probability Prandom, or proportionally to the outgoing flux O
(0)
a with comple- 368

mentary probability. Then, we sample a random point within the selected re- 369

gion. 370

Alternatively, empirical or simulated data on farm spatial distributions could 371

be used to fix their locations. 372

Farm output. Once all farms have been generated, we compute a range of 373

quantities that are fundamental to PDN generation and/or dynamics. 374

First, we compute the expected daily bird outputOi from farm i = 1, . . . , NF . 375

We compute Oi by assuming that farm i completes every rollout in exactly 376

τrollout,i days yielding: 377

Oi =
Sf,i

⟨τreplenish⟩+ τrollout,i + τraise − 1
, (7)

it should be noted, however, that this overestimates the true expected daily 378

output Oi since τrollout,i represents only the minimum rollout duration, which 379

might take longer in absence of middlemen to collect birds. Nonetheless, we will 380

stick to the heuristic calculation in eq. S(7) to evaluate other quantities. These 381

include expected daily bird output from region a: 382
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Oa =
∑
i∈a

Oi , (8)

where the sum runs over all farms located in region a. Given the regional 383

outputs, it is possible to compute the following quantities: 384

• Õa = Oa/
∑

a′ Oa′ , a normalized version of Oa. 385

• qa,l = Oa · fa,l, the expected daily bird flux from region a to market l. 386

• Ml =
∑

a qa,l, the expected daily bird flux impinging on market l. 387

Table A 1: Farm-specific parameters. A fraction frandom of farms are allo-
cated in random upazilas, while remaining farms are assigned to upazilas pro-
portionally to their volume of traded chickens. Farm locations are completely
random within upazilas. Farm size and replenishment time distributions are
NB(p, n). Farm size SF is further constrained in the range [Smin

F , Smax
F ]. Farm

size is sampled once per farm per realisation: a farm always recruits the same
amount of birds. Refill and rollout times are sampled during each production
cycle.

Parameter Meaning Distribution/Value Source

NF Number of farms 1200 -
frandom Prob. random allocation 0.3 Assumed

T ′ Farm update time 11 a.m. -
SF Farm size NB(pSF

, nSF
) Estimated

pSF
Farm size NB parameter 0.003544 Estimated

nSF
Farm size NB parameter 5.245 Estimated

S
min/max
F Min/max farm size 600, 4180 Estimated
τraise Raising time 32 days [1]

pτreplenish
τreplenish NB parameter 0.2013 Estimated

nτreplenish
τreplenish NB parameter 4.488 Estimated

P (τrollout) Min. rollout time (0.2, 0.3, 0.3, 0.2) Assumed
distribution for τrollout = 1− 4 days

3.3 Market setup 388

Details about markets are provided externally. At this stage, the algorithm 389

instantiates NM markets, each structured in Lmax + 1 empty tiers. Market 390

properties and model parameters describing market generation are listed in Ta- 391

ble A2. 392
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Table A 2: Market parameters.

Parameter Meaning Distribution/Value Source

NM Number of LBMs 20 -
Topen LBM opening time 6 a.m. -
Tclose LBM closing time 11 p.m. -
wl,l′ Prob. vendor purchasing Explored Modelled

in LBMs l sells in l′

fa,l Prop. of chickens leaving Empirical [2]
upazila a for LBM l

3.4 Vendor setup 393

Vendor properties. At setup, each vendor is assigned a batch size SV , drawn 394

from a probabilistic distribution, the latter being different for W and R. Here, 395

SV denotes the maximum number of chickens he/she can purchase in a single 396

day. Parameters describing properties of vendors and their generation are listed 397

in Table A3, while parameters relating to market tiers are listed in Table A4. 398

Tier-by-tier vendor allocation. As explained in the main text, each vendor 399

operates in up to two markets, and always in the same tier. Our algorithm 400

assigns vendors to markets and tiers within them in a way that is compatible 401

with the expected flux of chickens entering the market, as well as with between- 402

tier fluxes. Importantly, neither the number of W and R can be specified a 403

priori as they are determined by our algorithm, which we define as follows. 404

Starting from tier L = 0, we assign as many R and W to that tier so that 405

their combined capacities SV match the expected R and W incoming fluxes 406

Ml · p(0)R and Ml · p(0)W from middlemen. Then, we assign a random destination 407

market l′ with probability wl,l′ to each vendor generated in the current tier; If 408

l′ = l, a vendor will operate in a single market. 409

We then proceed by evaluating the expected flux of chickens M
(1)
l impinging 410

on tier L = 1 due to vendors in tier L = 0; this amounts to compute the 411

combined expected output from all L = 0 wholesalers buying chickens in any 412

market and selling in l. The expected wholesaler output is taken to be equal to 413

SV . Given M
(1)
l , we allocate as many R and W to match fluxes M

(1)
l · p(1)R and 414

M
(1)
l · p(0)W . Finally, we repeat the same scheme for the deeper tiers as well. 415

As a final note, we allow for a multiplicative scaling factor, to be applied to 416

M
(0)
l , whose effect is to allocate more vendors than what would be implied by 417

our heuristic calculation of farm outputs. 418

Note that a vendor buying SV chickens daily also sells the same amount 419

of chickens on average. To see that, let us consider the following discrete-time 420

process: during time step t, a vendor accumulates SV chickens and sells all of his 421
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stock with probability pempty, or a proportion 1− ρunsold with complementary 422

probability. The average surplus at time step t+ 1 is given by: 423

ut+1 = (1− pempty) · ρunsold · (ut + SV ) .

At stationariety we must have ut+1 = ut ≡ u∗, which implies that the amounts of 424

chickens sold and purchased must balance each other, hence our claim. Solving 425

for u∗ yields: 426

u∗ =
(1− pempty) · ρunsold · SV

1− (1− pempty) · ρunsold
,

and an average daily stock, after acquiring SV chickens: 427

SV + u∗ =
SV

1− (1− pempty) · ρunsold
.

Finally, we take an individual’s vendor maximum carrying capacity CV as being 428

1.5 times the average daily stock: 429

CV =
1.5 · SV

1− (1− pempty) · ρunsold
.

Table A 3: Vendor-specific parameters. W,R denote wholesalers and re-
tailers, respectively. When some surplus is generated (with probability pempty),
it is sampled from a negative binomial distribution with mean m = ρunsold · n,
where n denotes total chickens offered for sale, and overdispersion parameter
αunsold (the variance is m+ αunsold ∗m2).

Parameter Meaning Distribution/Value Source

SV Max chickens purchased Empirical [2]
pempty Prob. no surplus 0.32 (W), 0.15 (R) Estimated
ρunsold Prop. surplus 0.13 (W & R) Estimated
αunsold Overdispersion surplus 0.29 (W & R) Estimated
Ppriority Prop. vendors selling 0.84 (W), 0.49 (R) Estimated

older chickens first

3.5 Middlemen setup 430

Middlemen properties. Middlemen are assumed to trade a single chicken 431

breed. Each middleman is assigned a capacity SMM from a discrete distribution, 432

denoting the maximum number of chickens it can buy in a single day. Analo- 433

gously to vendors, the number of middlemen can not be specified a priori, as it 434

is determined dynamically: we allocate as many vendors so that their combined 435

capacity matches the expected daily output from farms, i.e.
∑

i Oi. 436
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Table A 4: Market tiers’ parameters. Parameters p
(L)
W,R represent the pro-

portions of chickens sold respectively to wholesalers and retailers in tier L from
either middlemen (if L = 0) or wholesalers from the previous tier (if L > 0).

1− p
(L)
W − p

(L)
R represents instead the proportion of chickens that wholesalers in

tier L − 1 (L > 1) sell to end-point consumers (p
(0)
W − p

(0)
R = 1 since middle-

men do not sell to end-point consumers). Values are the same for all markets.
Parameters are estimated from reconstructed transaction networks. The last
tier contains only zeros as vendors in the previous tier sell only to end-point
consumers.

L p
(L)
W p

(L)
R

0 0.606 0.394
1 0.407 0.315
2 0.169 0.318
3 0 0.058
4 0 0.

In addition, each middleman is assigned an integer km, sampled from a 437

probability distribution, representing the number of markets visited daily. The 438

middleman will then commit to sell chickens to km different markets during 439

each day (km does not change in time). Properties of middlemen and model 440

parameters describing middlemen generation are listed in Table A5. 441

Middlemen initial positions. As explained in the main text, at any point 442

in time, each middleman tracks a set of nscout distinct regions. During PDN 443

generation, we assign middlemen to regions as follows: we first select an initial 444

area a uniformly at random. Then, nscout−1 new areas are chosen among those 445

neighboring a, i.e. within a distance d < dMM (based on their centroids). In 446

case not enough areas are selected, we choose among neighbors’ neighbors. 447

4 Simulating epidemic spread 448

Our simulator allows to simulate transmission of multiple pathogens/strains in 449

the same poultry population. The current version of the simulator allows to 450

simulate transmission across multiple scales, including at the level of the same 451

flock and at the level of farms. All parameters describing pathogen transmission 452

are listed in Table A6. 453
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Table A 5: Middleman-specific parameters. Number of markets serviced
daily is geometric with probability pkm

(truncated above by the number of
markets). km is sampled only once per middleman per realisation.

Parameter Meaning Distribution/Value Source

SMM Cargo size Empirical [2]
Pmove Daily movement prob. 0.1 Assumed
nscout Number of scouted areas 4 Assumed
dMM distance between neighboring areas 80 km Assumed
pkm Markets serviced parameter 0.66 [2]

4.1 Within-flock transmission 454

Let us consider a population of chickens within a single setting, e.g. a farm, a 455

middleman’s truck, a market, or a vendor’s shed. Note that at any time, any 456

chicken belongs to one and only one setting. 457

We simulate transmission using Sellke’s construction [3]. Briefly, we assign 458

a hazard value h to each chicken, sampled from an exponential distribution 459

with unit rate; then, any contact with an infectious chicken reduces the target 460

chicken’s hazard by an amount δh. Whenever h hits 0 due to an infectious 461

contact, the target chicken is infected. Later, h is updated with another draw 462

from an exponential distribution with unit rate. 463

We make the assumption that chickens within the same setting mix homo- 464

geneously at random. Therefore, infectious contacts are directed at random 465

chickens. During simulations, each infectious chicken makes exactly one contact 466

per time step with a randomly chosen chicken from the same setting. 467

Infection triggers a chain of events depending on the specified compartmen- 468

tal model. In SIR-like dynamics, an infected chicken becomes infectious im- 469

mediately, but recovers after an infectious period t̂I sampled from a geometric 470

distribution with PMF: 471

P (t̂I = k) = (1− pI)
k · pI , k = 0, 1, . . . , (9)

where pI = 1− exp(−(TI + 1)−1) and TI is the average infectious period. It is 472

easy to check that the distribution in Eq. (9) has mean TI . In simulations, t̂I 473

is sampled immediately after an infection happens, say time t, and recovery is 474

deferred to time t+ t̂I . In models with latency, i.e. SEIR-like models, chickens 475

become infectious only after an incubation time t̂E sampled from a geometric 476

distribution with mean TE . t̂E is sampled immediately after infection at time 477

t, and the chicken becomes infectious only at time t + t̂E , at which point the 478

corresponding infectious period is also sampled. 479

Let us now consider an infectious chicken i trying to infect chicken j with 480

pathogen x. The overall hazard reduction δh can then be written as: 481

18

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 26, 2023. ; https://doi.org/10.1101/2023.07.25.550458doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.25.550458
http://creativecommons.org/licenses/by/4.0/


δh = β(x, i) · S(x, j) · wsetting , (10)

where β(x, i) is the transmissibility of x and S(x, j) is susceptibility of chicken 482

j to infection with x. The factor wsetting is a multiplier that depends only on 483

the current setting, and accounts for differences in transmission across settings. 484

The factors β(x, i) and S(x, j) may depend on the state of the infector and 485

infectee, respectively. Susceptibility may account for example for previous ex- 486

posure to the same pathogen, or cross-reactions induced by exposure to other 487

pathogens/strains. In the single-strain SIR model, for example, S(x, j) = 0 if j 488

is infectious or recovered. 489

4.2 Between-farm transmission 490

We allow pathogens to spread between distinct farms. If a farm f contains 491

infectious chickens, the probability of infecting another farm f ′ (provided f ′ is 492

not empty), irrespective of whether f ′ is already infected or not, is computed 493

as: 494

pf,f ′ = min{1, nf · nf ′ ·K(df,f ′)} , (11)

where nf , nf ′ are the average numbers of chickens in farms f and f ′, respec- 495

tively, df,f ′ is the distance between f and f ′ and K(x) is a spatial kernel. If 496

transmission occurs, a random chicken in f ′ is set as infected, conditional on 497

not being already immune, and a random infector chicken is selected from farm 498

f . If the infector is co-infected with multiple strains, a single carried strain s 499

is chosen at random and transmitted to the infectee. Note that this process 500

bypasses the hazard rate calculation and that all strains are equivalent in the 501

context of between-farm transmission. 502

We simulate transmission between farms using the Conditional Entry algo- 503

rithm [4]. The algorithm requires farms to be assigned to cells in a grid in order 504

to exploit the fact that transmission is more likely to occur within cells than 505

between them. We use an adaptive algorithm described in the same paper to 506

construct a grid over the farm population. The algorithm relies on a hyper- 507

parameter λ, here set to 15, that only affects the sizes and number of individual 508

cells. Finally, because performing between-farm transmission is computation- 509

ally expensive, we run the conditional entry algorithm only once per day rather 510

than every time step. 511

In this work we consider a power-law transmission kernel: 512

K(d) =

βFF , for d < dK

βFF

(
dK
d

)γK

, for d ≥ dK
(12)

where βFF denotes the overall strength of spatial transmission. 513
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4.3 External introductions 514

External transmission events are responsible for seeding and re-seeding pathogens 515

in farms. Once a day we iterate over all farms and reduce the hazard of a ran- 516

domly selected chicken i due to pathogen s by an amount: 517

δhext,i = βext(s)S(x, i) . (13)

In the main manuscript, we also consider an alternative seeding protocol 518

that introduces different strains in distinct upazilas. 519

Table A 6: Epidemic parameters. Distributions of latent and infectious
period are geometric with expected values typical of AIV infections. The trans-
mission kernel’s shape and parameters γK and dK are instead inspired to a
study of H5N1 epidemics in Dhaka region.

Parameter Meaning Distribution/Value Source

TE Mean latent period 6 hours [5]
TI Mean infectious period 48 hours [5]
β Base within-flock transmissibility 0.2 hours−1 Assumed

βext Intro. rate 0.0005 days−1 Assumed
βFF Inter-flock transmissibility 5 · 10−11 days−1 Assumed
γK Exponent transmission kernel 0.94 [6]
dK Scale transmission kernel 0.1 km [6]
wX Setting-specific transmission 0.2 (F), 1 (MM) Assumed

multiplier 1 (M), 1 (V)
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Supplementary Figure 1: Additional farm statistics from simulations.
(A) Distribution of numbers of production cycles completed per year. The simu-
lated distribution (red) appears narrower compared to empirical data (black) [1].
However, it should be added that several interviewed farmers raised multiple
batches simultaneously, and those that declared raising a single batch during
the interview may well have being managing 2 or more simultaneously during
the previous year. (B) Cumulative distribution of sizes of transactions involving
farms and middlemen (solid line). The dotted line represents the cumulative
proportion of chickens sold in transactions up to a given size. given size. The
corresponding PMFs, denoted with ps and p′s respectively, are related since
p′s = s · ps

∑
s s · ps. In other words, p′s is the size-biased version of ps. (C)

Proportion of chickens remaining unsold after a given time since being offered
for sale for the first time by a farmer. Note that it is highly unlikely for a
chicken to remain unsold for more than 5 days. Results are obtained from a
single simulation with default settings as in Fig. 2 in the main manuscript.
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Supplementary Figure 2: Additional middlemen statistics from simula-
tions. (A) Proportion of upazilas visited daily by one middleman during a
single simulation. Note that a middleman may visit up to 4 upazilas per day,
but visiting one or two is usually sufficient to complete a cargo. (B) Distribu-
tions of daily numbers of farms visited by one middlemen (green) and middle-
men visiting one farm (red). (C) Distribution of numbers of vendors trading
daily with a middleman. (D) Cumulative distribution of sizes of transactions
involving middlemen and vendors (solid line). The dotted line represents the
cumulative proportion of chickens sold in transactions up to a given size. Note
that these transactions are typically smaller than those between farms and mid-
dlemen since vendors deal with smaller amounts of chickens than other PDN
actors. Results are obtained from a single simulation with default settings as in
Fig. 2 in the main manuscript.
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Supplementary Figure 3: Additional vendor statistics from simulations.
(A) Distribution of numbers of wholesalers supplying a retailer (yellow), another
wholesaler (blue) or any vendor (red) on a daily basis. (B) Distribution of num-
bers of retailers (yellow), wholesalers (blue) or vendors (red), regardless of type,
purchasing from a single wholesaler on a daily basis. Note that (A) excludes
vendors buying chickens from middlemen, i.e. vendors operating in the first
LBM tier. (C) Distributions of daily amounts of chickens bought from retailers
(yellow) and wholesalers (blue) in simulations (lines) and data (markers) [2].
(D) Cumulative distribution of sizes of transactions involving middlemen and
vendors (solid line). The dotted line represents the cumulative proportion of
chickens sold in transactions up to a given size. Results are obtained from a
single simulation with default settings as in Fig. 2 in the main manuscript.
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Supplementary Figure 4: Distribution of marketing times. Each panel
shows distributions of marketing times for different average proportions of un-
sold chickens ρunsold and for increasing probability pempty of a vendor selling all
chickens in a single day (from left to right). The marketing time is defined as
the time interval elapsed since a chicken enters any LBM for the first time and
is sold to an end-point customer. Simulation settings are the same as in Fig. 4
with only 10% of vendors prioritizing the sale of unsold chickens.

Supplementary Figure 5: Sensitivity of persistence probability to dura-
tion of transmission chains. Lines show how the probability of pathogen per-
sistence varies with both TE and the minimum duration to determine whether
a transmission chain is persistent or not. The estimation of the probability of
persistence as well as simulation settings are the same as in Fig. 6I.
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Supplementary Figure 6: Viral mixing under complete cross-immunity.
Results mirror panels B,C,E,F from Fig. 7 in the main manuscript, under the
assumption of complete cross-immunity (σ = 0). Increasing cross-immunity
lowers strain richness in any setting as individual strains face increased com-
petition. Nonetheless, increasing cross-immunity does not significantly affect
overlap between LBMs.
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