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Abstract

The rapid intensification of poultry production raises important concerns about
the associated risks of zoonotic infections. Here, we introduce EPINEST (EPI-
demic NEtwork Simulation in poultry Transportation systems): an agent-based
modelling designed to simulate pathogen transmission within realistic poultry
production and distribution networks. The modular structure of the model
allows for easy parameterization to suit specific countries and system config-
urations. Moreover, the framework enables the replication of a wide range
of eco-epidemiological scenarios by incorporating diverse pathogen life-history
traits, modes of transmission and interactions between multiple strains and/or
pathogens. EPINEST was developed in the context of an interdisciplinary multi-
centre study conducted in Bangladesh, India, Vietnam and Sri Lanka, and will
facilitate the investigation of the spreading patterns of various health hazards
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such as avian influenza, Campylobacter, Salmonella and antimicrobial resistance
in these countries. Furthermore, this modelling framework holds potential for
broader application in veterinary epidemiology and One Health research, ex-
tending its relevance beyond poultry to encompass other livestock species and
disease systems.

Introduction .

Animal populations act as reservoirs for a wide range of zoonotic pathogens, 2
such as Ebola virus, MERS-CoV, SARS-CoV-2, avian influenza viruses (AIVs), 3
Campylobacter and Salmonella [IH6]. Within this context, livestock produc- 4
tion is known to promote the risk of zoonotic infections [7]. In the case of
emerging pathogens of wildlife, livestock may become intermediate or amplifier ¢
hosts, increasing odds of spillover into the human population [8]. The ongoing  +
global intensification of livestock production raises critical questions about the s
role of husbandry and animal trading practices in shaping the risk of zoonotic o
epidemics or spillover events. [9L|10]. Unfortunately, however, a comprehensive 10
understanding of how suck risk is modulated and amplified along production u
and distribution networks (PDNs) is lacking. 12

Poultry production has become the fastest growing livestock sector in the last 1
three decades, with rapid intensification occurring in low- and middle-income  1a
countries (LMICs) and particularly in South and Southeast Asia [11]. In many 1
of these countries, intensive production did not replace local farming and trading 16
practices completely, resulting in multiple modes of production and distribution 17
articulated in ways that are poorly understood and which vary according to s
market and other conditions. While such transformative changes have proven in- 1
strumental towards improving food security, nutrition and economic and societal 2
development e.g. in China, India, Bangladesh among others, they also require =«
careful monitoring and investigation. Indeed, the growth of poultry production 2
and distribution networks has brought novel challenges in terms of disease man- 2
agement: intensive farming, limited surveillance infrastructure and veterinary 2
services and in many examples poor biosecurity conditions [12}f13] canlead toan 2
environment replete with health hazards. For example, widespread sub-optimal 2
use of antimicrobial drugs by poultry farmers represents a leading driver of the  »
emergence of antimicrobial resistance [14H16]. 2

In many LMICs, people prefer to obtain their poultry from live bird markets 2
(LBMsS), which are a longstanding feature of poultry trade and of urban and
rural life. Within poultry PDNs, LBMs may be considered as hubs, sites wherein =~ =
large numbers of people, and critically birds, meet and mix [17,/18]. Thus, they =
are major hotspots of AIV amplification and evolution [19], and have been s
implicated in sustaining viral transmission in domestic poultry [20]. The diverse s
ecology of AIV strains circulating within LBMs in Asia has been documented 3
extensively [21H24]. Low pathogenic strains such as HIN2 AIV are commonly 3
found among LBMs in Bangladesh, often at higher rates than in surrounding
farms [2527]. Since its first identification in 1996, highly-pathogenic HSN1 s
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influenza has been detected in LBMs in many Asian countries [28-32]. 39

While the biological risks within poultry production systems are widely ac- 4
knowledged, they remain poorly characterised. This is partly due to the inherent  «
complexity of PDNs, which makes it difficult to understand how such risks are
modulated and increased along poultry value chains. Previous modelling efforts
have focused on disease transmission within specific PDN settings, e.g. single 4
farms or LBMs [33}|34], or some PDN segment, such as networks of farms or s
LBMs [18l|35H37]. Attempts to account for poultry or livestock PDN structure
in infectious disease modelling are rare and mostly theoretical, often leaving
out many epidemiologically relevant details of poultry production and distribu- s
tion [381/39]. Recent PDN mapping efforts have provided a clearer picture of 4
PDNs in several Asian countries [40,/41]. A central observation is that PDNs are s
highly heterogeneous across countries, poultry types, and even within the same =
country. Therefore, a better understanding can be achieved by extending and s
developing modelling to increase our understanding structural heterogeneities s
within and across PDNs. 54

To address this gap, we introduce EPINEST, a novel agent-based model s
(ABM) that allows simulation of pathogen transmission on top of realistic, em- s
pirically derived assumptions about poultry movements. EPINEST generates s
synthetic PDNs consisting of the key nodes, e.g. farms, traders, LBMs, that s
are responsible for the production and transportation of chickens through the s
PDN until they are sold to end-point consumers. Extensive data about farm- e
ing and trading practices, collected mainly from field surveys, is used to inform «
PDN generation and simulation [18}27]. Farm-specific data, for example, in- ¢
clude farm locations, capacity and statistics of distinct stages of production e
cycles. Trader-level data encompass details of purchases and sales involving in- ¢
dividual actors, origins of purchased poultry, and trader movements. EPINEST
allows for substantial flexibility for users in terms of specifying PDN structure e
and functioning, making it a suitable framework to carry both data-driven and
more open-ended analyses. In fact, the ABM permits customisation of many e
PDN properties, thus allowing users to explore a wide range of hypothetical
PDN configurations. 70

This ABM provides a unified and flexible modelling framework to simulate =
epidemic dynamics in poultry PDNs and is the outcome of a wider interdis- 7
ciplinary research initiative [42]. Within this context, EPINEST will enable
investigating the amplification and dissemination of a wide range of health haz-
ards, including AIV, Campylobacter and anti-microbial resistance genes in poul-
try systems in Bangladesh, India, Vietnam and Sri Lanka. More broadly, our
framework may also be tailored to distinct poultry and livestock production
realities to tackler a wider range of epidemiological questions. 78

In this paper, we provide a detailed description of our ABM and illustrate
how to use it to explore a range of PDN structures and to better understand s
aspects of pathogen transmission in PDNs. The examples presented here are a
based on a broiler (chickens reared for meat) PDN in Bangladesh, which has &
been characterised extensively [18}/40], while epidemic simulations focus on the
paradigmatic case of AIV transmission. The latter also illustrate an important e
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feature of our framework, namely the ability to simulate multiple co-circulating s

pathogens and their interactions. 86
Results o
Synthetic poultry networks s

To address questions about the eco-epidemiological dynamics of AIVs and other s
poultry-related pathogens, we implemented an agent-based model to simulate o
pathogen transmission on top of synthetic PDNs. Within our framework, gen-
erated PDNs consists of four main types of nodes: farms, middlemen, vendors o
and LBMs (Fig.). The system works as a supply chain where chickens are o
reared in farms starting from day-old chicks and are later transported to LBMs o
by middlemen (more details can be found in the Materials and Methods section o
and in Text S1). Once they arrive at the LBM stage, chickens are handled by o
vendors. These vendors may then sell chickens to other vendors operating in the o
same or different LBMs, and/or to endpoint consumers, in which case chickens o
are removed from the PDN. At any stage where chickens are exchanged, other o
than to the endpoint customer, an opportunity arises for pathogen exchange 100
and mixing. 101

To illustrate the ability of the model to synthesize realistic poultry move- 10
ments, we simulate a small PDN consisting of 1200 farms scattered across the 10
50 upazilas (sub-districts) that supply the largest amount of broiler chickens 10
to LBMs located in Dhaka (Fig.[2A). The simulated PDN includes 20 distinct 105
LBMs, 163 middlemen and 444 vendors, and allows the trade of chickens be- 10
tween LBMs. Numbers of middlemen and vendors can not be specified a priori; o7
instead, they are determined dynamically by initially calculating the average 1o
number of chickens that are sold by farms to each LBM daily. These calcula- 10
tions depend on the spatial arrangement of farms, their sizes and frequency of 10
selling, i.e. parameters that can be specified a priori. The capacity of each trader 1
(middleman or vendor), i.e. the maximum amount of chickens that he/she can w2
purchase daily is also fixed over the course of a simulation. 13

Farms sell all their chickens at the end of a production cycle. The trading 1.
phase may require multiple days to complete and the flock may be split into s
multiple transactions involving different middlemen. Fig.[2B,C show that both s
the distributions of farm trading times and numbers of transactions per produc- ur
tion cycle obtained through simulations are consistent with field observations. us
Upstream transportation and distribution of poultry operated by middlemen 1
represent an important driver of poultry mixing in LBMs [1§]. In simulations, 1o
middlemen direct previously purchased chickens to LBMs depending on where 1z
these have been sourced from. In practice, a chicken bought in upazila a is 12
sold in market ! with probability f,;, as estimated from field questionnaires 12
Fig.[2D shows that the ABM generates poultry fluxes between individual upazi- 1
las and LBMs that are in excellent agreement with the corresponding expected 1
values (i.e. fg,1). Moreover, the allocation algorithm ensures that individual 12


https://doi.org/10.1101/2023.07.25.550458
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.25.550458; this version posted July 26, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

'

A Farm

Middleman

LBM

L,

Vendor

JGE
2L A
LA AL
RAK

| = m— o

Fig 1: Model schematics. (A) Synthetic PDN and poultry movements. Chick-
ens are produced in farms (red) across the study area, and transported to LBMs
(blue) by middlemen (yellow). These are mobile traders that may collect chick-
ens from multiple farms located in one or more upazilas/sub-districts (an ad-
ministrative area below that of a district in Bangladesh). Within LBMs, chick-
ens are handled by vendors (orange) and may be moved between LBMs as a
result of vendors’ trading practices. (B) Individual settings associated with
farms, middlemen, LBMs (when open) and vendors (overnight, when LBMs are
closed) provide the context for pathogen transmission, under the assumption
that chickens mix homogeneously within the same setting. The panel zooms in
on a single LBM, where chickens are colour-coded according to disease status:
susceptible (S), exposed or latent (E), infectious (I) and recovered or immune
(R).

middlemen deliver chickens to a desired number of LBMs, as specified by some 1
statistical distribution. The agreement between empirical and simulated fre- 12
quencies of unique LBMs visited daily is shown in Fig.[2E. At the market level, 120
wholesaling activities and vendor movements between LBMs further contribute 130
to poultry mixing. Once a chicken enters an LBM, it may be sold multiple times 1
to secondary vendors before reaching end-point consumers [18,43]. In order to 13
better capture the inner organization of LBMs, the model structures vendors 133
in tiers according to their position along transaction chains (Fig.). Finally, 134
we show the realised distribution of poultry marketing times alongside another 13
estimate obtained using a different approach [18] (Fig.[2IG). Further statistics 1
about individual actors and poultry transactions can be found in Fig. S1,S2 1
and S3. 138

Selected aspects of generated PDNs can be easily manipulated within our 1
framework, allowing flexibility in exploring PDN configurations. In Fig.[3] for 10
example, we examine different distributions of LBMs serviced (Pr(ky,)) by in- 1a
dividual middlemen on a daily basis (Fig.[3]A). As we increase the number of 1
LBMs serviced per middleman, (k,,) on average, middlemen trade with more 1
vendors (Fig. ); consequently, individual transactions involve fewer birds since 14
the total cargo is the same (Fig.). Fig. also suggests that the small dis- s
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crepancy observed in Fig. at larger (k,,) is due to the limited amount of 1
vendors (inset). 147

We also present the impact of vendors’ trading practices on poultry market- s
ing time. In particular, we alter the probability pempty that a vendor sells its 140
entire cargo in a single day, the fraction pynseiq 0of unsold birds in presence of 150
some surplus (occurring with probability 1 — pempty). In addition, we consider s
high and low tendency to prioritise selling older (i.e. previously unsold) chickens 1s
over newly purchased ones. Varying parameters punsoid and pempty affects the —1ss
average marketing time (Fig.), as well as the proportion of chickens being s
offered for sale on multiple days (Fig.). Full distributions of marketing times  1ss
can be found in Fig. S4. Prioritizing the sale of older chickens had a negligible 15
effect on these statistics. Indeed, prioritizing older chickens is compensated by 15
a delay in selling newly purchased chickens (Fig.). 158

As a final example, we examine the role of vendor movements between LBMs 150
in promoting the mixing of chickens from different upazilas/sub-districts. Net- 160
works of LBMs defined by trader movements can vary considerably across poul- 1
try types, countries, and even cities within the same country [40]. In Chat- e
togram, for example, vendors trading broiler chickens operate almost exclusively 163
in a single market (Fig.[5]A). In Dhaka however this is not the case, resulting in 1o
frequent vendor movements that are articulated in a top-down structure where 16
central and peripheral markets can be identified (Fig.). In fact, removing 1
a single edge in the network shown in Fig.[fB is sufficient to make it acyclic, 1
suggesting a hierarchical organisation. 168

Within our framework, we encode inter-market mobility in a graph G, whose 160
entries G; ; represent the probability that a vendor purchasing in market ¢ moves 1o
to market j (or remains in i) to sell. As outlined above, vendors are further 1
arranged in tiers, so that vendors in tier L (V1) can only buy poultry from 1
wholesalers located in tier L — 1 or, in the case of L = 0 vendors (Vp) from s
middlemen trading in LBM 4. For each vendor, purchase and sell locations 1
remain fixed throughout a simulation. 175

To explore inter-market mobility, we use a generative network model to cre- s
ate mobility networks G akin to that of Fig.[5]B. In practice, we generate directed 1
acyclic graphs (DAGs) of varying density and amount of hierarchy (see Materi- 1
als and Methods section), according to parameters p and prandom. p represents i
the density of connections, while p,.qndom is the probability of an individual con- 18
nection emanating from a source LBM that is selected randomly, rather than 1
proportionally to their actual number of connections. To quantify the degree 1s
of hierarchy in a DAG G, we measure its global reaching centrality (GRC, see 183
Fig.[5IC,E) and tree depth (TD, see Fig.,F). GRC measures how well every 1
node can reach other nodes in the network with respect to the most influential 1
node; it takes value 1 in the case of a star graph and approaches 0 when all 1
nodes have the similar influence (no hierarchy). In contrast, TD represents the 1s
longest directed path in G. Hierarchical DAGs, e.g. stars, tend to be more 1
compact and hence shallower than random structures. Setting prandom = 1 180
yields DAGs with little hierarchy, as edges are allocated randomly. In contrast, 190
Prandom — 0 introduces additional structure. Fig.[5|C,D show GRC and TD, re- 1a
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spectively, for Dhaka’s network and for DAGs generated with prandom = 1 (red) 102
and prandom = 0.1 (cyan) while keeping the density of edges constant. Clearly, 10
Dhaka’s network is significantly more hierarchical and compact than random 1.
DAGs; in contrast, DAGs generated with p,qndom = 0.1 provide a much closer 10
fit in terms of both GRC and TD. 196

We also summarize framework output by quantifying poultry mixing across 1o
20 LBMs for different combinations of p and prandom (GRC and TD are shown 10
in Fig.,F7 respectively). Here mixing refers to the extent to which chickens 10
from distinct regions are brought together within LBMs. Upstream distribution, 20
managed by middleman, and vendor movements between LBMs are the factors
driving chicken mixing within this model. To quantify the amount of mixing, we 20
record the geographic origins of chickens offered for sale in each LBM and use 20
Pianka’s index [44] to make pairwise comparisons of poultry populations mar- 20
keted in distinct LBMs. Mean Pianka’s index values are shown in Fig. [5G as a  2s
function of parameters p and prqndom- Values close to 0 imply low overlap, while 20
a value of 1 corresponds to identical distributions of geographic sources of poul- 207
try. Fig.[5H shows another, complementary quantification of poultry mixing in 2
terms of the mean number of LBMs where it is possible to find chickens from two 209
randomly chosen upazilas/sub-districts. In general, we find that chicken mixing 21w
increases with network density, while hierarchy has the opposite effect: random 2
vendor movements are more effective at mixing chickens within this simplified 21
network model. It should be noted that high levels of mixing can be observed a3
even in the absence of vendor movements due to upstream distribution (overlap 2
between the catchment areas of LBMs, of which middlemen are responsible; see 2
caption of Fig.[5 for further details). 216

Epidemic dynamics o7

In this section, we illustrate how our framework can be used to simulate and s
characterise pathogen transmission across PDNs. We first consider a single, 20
ATV-like pathogen whose dynamics is described by a Susceptible-Exposed-Infectiousso
Recovered (SEIR) model, as depicted in Fig.: upon infection, susceptible (S) 2z
chickens enter an intermediate exposed stage (E) and become infectious (I) af- 2
ter a short latent period Tr = 6 hours. Infectious chickens recover (R) after 23
an infectious period 77 = 48 hours and become immune to further infection. 2
Importantly, we assume that chickens do not die due to the disease. We as- 2
sume that the pathogen (repeatedly) emerges at rate « in farms due to external 2
factors (e.g. contacts with wild birds) and spreads through the PDN through 27
a combination of poultry movements, intra- and inter-farm transmission (see 2
Material and Methods section). 229

Model output comes at different levels of aggregation. Fig.[6]A shows for ex- 2%
ample daily incidence within LBMs during the first stages of an outbreak. At the o
most granular level, individual transmission events and their metadata can be 2
tracked as well. Using this information, we can reconstruct transmission chains 233
originating from individual introduction events and characterise their spatio- 2.
temporal evolution (Fig.). Fig.lﬁp further characterises farm outbreaks by ;s
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summarising attack rates by production cycle. 236

In Fig.[6D-F, we investigate the role of spatial transmission in an endemic 2x
context. We do so in a scenario where most transmission events occur within 23
farms (Fig.[6]D), while viral amplification in LBMs is limited (Fig.[6E). Here, 23
spatial transmission is a crucial factor in determining global levels of infection. 240
Increasing the strength of inter-farm transmission Spp facilitates spatial inva-  au
sions, thus leading to more outbreaks on farms and infections (Fig.[]D). This e
results in an increasing number of infected chickens pouring into LBMs from 243
farms (Fig.@?‘), explaining also the increase in within-market prevalence ob- 2w
served in Fig.[GE. 245

Another important epidemiological question is whether AIV is transmitted 24
and maintained in LBMs despite short marketing times. We address this ques- 2
tion by considering an alternative endemic scenario where transmission is con- s
tributed mostly by LBMs (Fig.[6iG). We find that a major limiting factor to viral s
amplification in LBMs is represented by the latent period Tk (Fig. @H) delaying 20
the onset of infectiousness corresponds to a shorter window of opportunity for 2
transmission under short marketing times. In order to further demonstrate this 25
point, we quantify persistence of transmission chains within LBMs (F1g|§|[) As 2
Tg increases, opportunities for transmission are diminished and chains of infec- 254
tion stutter, leading to reduced persistence. In this case, the presence of ATV 25
in LBMs can only be maintained through repeated introductions of infected s
poultry. 257

Simulating multi-strain pathogens 258

Genomic surveillance in LBMs routinely identifies ATV lineages with distinct ge- 250
netic signatures [45]. In some instances, the presence of multiple AIV subtypes, 20
including the highly pathogenic H5N1 AIV, is also reported. Understanding 26
this diversity requires, however, accounting for multiple, potentially interacting 2
strains/pathogens that co-circulate in the same PDN. In this section, we use our 26
framework to perform multi-strain simulations in a variety of PDN structures. e

We illustrate this in Fig.[7]] which shows SEIR simulations with 50 co- s
circulating strains. For simplicity, we assume that these share the same epidemi- 26
ological parameters, namely Tg, 1T and (8, and generate partial cross-immunity 26
after a single infection. 268

Our aim is to measure the extent to which PDNs mix viral lineages from 20
distinct geographical regions. To this end, we modify the external seeding pro- 27
tocol so that strain s;, ¢ = 1,...,50 can emerge only from upazila i. First, we on
investigate the role of viral amplification during the transport segment, which 2
is operated by middlemen (Fig.—C). To better disentangle the role of these 23
actors, we consider low within-farm transmission and prevent inter-farm trans- o
mission fully by setting Spr = 0. Consequently, viral mixing can not occur s
until chickens from different upazilas/sub-districts are collected by a middle- a7
man. As shown in Fig.[7]A, increasing transmission during transport by varying =
wrp leads to more infected chickens being introduced in LBMs, i.e. it results s
in viral amplification. Note, however, that below a certain value of wyspr, mid- 27
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dlemen may introduce fewer infections in LBMs than those they picked up at 2
farms. Increasing wjysps has a modest positive effect on the average number of 2
strains circulating (i.e. strain richness) in individual LBMs, and on the overlap 2
between LBMs in terms of circulating strains (light to dark bars in Fig. and s
C, respectively). We also explored, for fixed wasps, the role of inter-market —2s
mobility on these metrics. In this context, the density p of vendor movements s
had a positive effect on both strain richness and overlap between LBMs as it s
is promoting the dissemination of multiple strains across LBMs. In contrast, a 2
larger degree of hierarchy in movements (striped bars) had the opposite effect, 2
in agreement with findings from Fig.[5} 289

Finally, we consider a further scenario in which transmission within and 20
between farms plays a central role in shaping epidemic dynamics, while trans- 2
mission occurring during transport is assumed to be negligible (wprpr = 0.001). 20
We find that increasing between-farm transmission Spp leads to a wider spatial 203
dissemination of strains even outside their upazila of origin (Fig.[7D). Conse-
quently, a more diverse set of strains is supplied to LBMs, as evidenced by the 20
number of strains observed at these locations (Fig. mE) Also, because larger val- 206
ues of Spp promote strain dispersal across the entire area, LBMs are now more 27
similar to each other in terms of their strain populations (Fig.). It should be 298
noted, however, that increased within-farm transmission is responsible, at least 20
in part, for the larger strain numbers and overlap between LBMs observed in 30
Fig.[7E,F with respect to panels B,C. Finally, we note that the effects of den- s
sity and hierarchy of vendor movements on ecological metrics are analogous to e
those observed in the previous scenario. These results are robust to increasing s
cross-immunity between strains (Fig. S6). 304

Discussion 205

In this paper we have introduced EPINEST, an agent-based model to simulate 306
the transmission of generic health hazards in the context of realistic poultry or s
livestock movements within a defined PDN. To the best of our knowledge, this s
work represents the first attempt to account for the structural complexities of 300
poultry PDNs in the context of epidemic transmission modelling. Our model 30
allows to generate synthetic PDNs consisting of key actors and settings involved  su
in poultry production and distribution, namely farms, middlemen, LBMs and s
market vendors. Using Bangladesh as a case study, we illustrated the ability s
of our framework to reproduce empirical features of a broiler PDN. We used 3.
extensive data from field surveys to inform most aspects of the model, including s
farming and trading practices of key actors [18[27,|46]. At the same time, 3
our model offers the possibility to easily manipulate most properties of the s
network, allowing exploration of alternative PDN configurations. Importantly, s
we emphasize that our model may be applied to other contexts, e.g. different s
poultry types and countries for which sufficient data is available. 320

One of the main purposes of EPINEST was to assess the impact of PDN s
structure and stakeholders’ trading practices on pathogen transmission. For this s
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reason, we prioritised including PDN components with the highest relevance to s
transmission dynamics. These include, for example, the time spent by chick- 32
ens at different locations. All-in/all-out production, which is commonly imple- s
mented in commercial broiler farms, results in relatively homogeneous rearing 3
times across farmed chickens, although these vary considerably among different 37
chicken types. In contrast, LBMs are characterised by a much faster turnover, s
with most chickens being sold within a few hours and unsold chickens remaining s
for up to a few days. Longer marketing times are a well-established risk factor s
for AIV infection in LBMs, and have been linked to AIV persistence in these
settings [18}|47]. To account for heterogeneity in marketing times, we explicitly s
account for a fraction of chickens being offered for sale on consecutive days. 333

Further basic ingredients of the model are the spatial distribution of poultry 3.
farms and their sizes. Both elements are highly relevant to disease transmission. 33
Heterogeneities in farm locations can affect systemic vulnerability to epidemics 33
and pathogen dispersal patterns [48-50], while higher livestock densities are 33
associated with increased intra-farm transmission and may favor the emergence 33
of virulent pathogens [9,[51]. In the absence of accurate data about farm loca- 33
tions, we generated random farm distributions complying with reported volumes 340
of poultry production at the upazila level, and used field surveys to assign farm sa
sizes |18}[27]. Nonetheless, we stress that our model can accommodate any dis- s«
tribution of farms. These may represent not only higher-resolution data, but s
also outcomes from more accurate generative models [52H54]. 344

Our model also allows to control the degree of mixing of chickens along dis- s
tribution and trading channels. The ability of PDNs to mix large numbers of 146
chickens, particularly within LBMs, is well-established. The inter-mingling of s
different types of birds from potentially distant locations is concerning when s
associated to co-circulation of genetically distinct viruses. A recent phylody- 34
namics study found substantial genetic structuring of HIN2 AIV by city in s
Bangladesh [55], compatibly with low overlap between the corresponding sup-
plying production areas [18]. In contrast, viral lineages appeared to be highly 35
mixed across LBMs within the same city, possibly indicating frequent connec- 35
tions between these markets. Live poultry trade has also been shown to be an 354
important driver of regional AIV dissemination in China [56]. Here, poultry s
mixing within and between LBMs is dictated by two factors: first, upstream s
distribution via middlemen connects LBMs with farmed populations from a s
wide geographic area. Within our framework, geographic fluxes between re- ss
gions (upazilas/sub-districts) and LBMs are expressed as a matrix that can be s
informed using field surveys or traceability systems. Second, wholesaling ac- 0
tivities and vendor movements further contribute to stirring marketed poultry &
across LBMs. In this manuscript, we used a generative model to sample inter- e
market mobility networks, and quantified their impact on poultry mixing. We 36
emphasize that more complex mobility patterns, informed either from data or e
through simulations, can be easily embedded within our framework. 365

A major feature of our model is that it allows simulating pathogen transmis- e
sion while accounting for the complexity of poultry movements and PDN struc- e
tures. Importantly, the epidemic layer is fully uncoupled from PDN generation. s
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Thus, while current code supports simulations of SIR and SEIR dynamics only, e
implementing additional epidemic models is a relatively straightforward task. s
We illustrated how our ABM can be used to model AIV dynamics in both epi- s
demic and endemic settings. In the former case, the ABM makes it possible to
map the early dissemination of, e.g., an emerging AIV strain across farms and s
the rest of the PDN. The second scenario would be more suitable to describe s
endemic circulation of AIVs. In this context, relevant scientific questions that s
could be addressed using our framework include understanding how and where 37
an endemic AIV is maintained and amplified along the PDN. 377

A novel aspect of our ABM is that it enables simulations of multiple co- s
circulating pathogens/strains and their interactions. This paves the way for a s
number of eco-epidemiological applications. As an example, we assessed the s
potential of PDNs to mix viral lineages originating from distinct geographical —sa
areas. Additional applications may consider the joint dynamics of endemic and 3
emerging AIVs and simulate the early transmission dynamics of, say, highly- s
pathogenic HSN1 AIV against a background of (cross-)immunity generated by — ss
endemic circulation of HIN2 ATV [57]. 385

As any modelling framework, there are limitations to our ABM. Despite our s
efforts to account for the structural complexity of PDNs, our focus on epidemi- s
ological investigations meant that several aspects of real PDNs could not be s
included in the model. For example, actors’ behaviours are treated as fixed s
parameters external to, rather than emerging from, the dynamic system being 3%
modelled. In reality, the decisions made by individual traders to sell or purchase s
birds is influenced by social, economic and epidemiological factors. These may 3o
include uncertainty about market conditions and fear spurred by disease out- s
breaks [58,59]. In addition, unequal power dynamics often constrains trading  se
ties [40,/60]. In this context, we plan on expanding our ABM’s capabilities to 3o
include simple reactive behaviours, e.g. farmers selling chickens pre-emptively 3o
following a surge in bird mortality [59]. Other extensions could include mixing 3o
of different poultry species, different farming systems and trading practices, such 30
as second-line middlemen purchasing chickens from other traders, and different 30
biosecurity measures implemented at different LBMs to limit pathogen spread. a0
Finally, although we wrote our model in C++ to improve simulation speed, s
computational constraints make it difficult to scale up simulations to more than s
a few millions of farmed chickens. This is a common challenge in agent-based 40
models, where the increased amount of detail is traded off by computational
costs. 405

In conclusion, we implemented a novel agent-based model to jointly simulate 406
realistic poultry movements and epidemic trajectories. Realised structures en- 4o
compass a wide-range of PDN configurations as encountered in many countries s
in South and Southeast Asia, and potentially even other livestock production e
systems with similar structure to the one discussed here. Compared to existing a0
ABMs devoted to veterinary epidemiology applications [61H64], ours offers the au
ability to run both single- and multi-strain simulations. In addition, the simu- o
lator can be programmed to yield a wide range of outputs, including individual a1
transactions and chains of infections, hence providing a full characterisation of 4.
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the underlying system. This model is a unique tool in the One Health context as s
it allows investigation of a range of epidemiological scenarios and helps us to un- 4
derstand better the role of different structural aspects on disease transmission. a7
Immediate applications of this model will allow exploration of the transmission s
and amplification of AIVs and anti-microbial resistance genes within poultry o

PDNS 420
Materials and Methods o
Generating synthetic PDNs o

In general, a PDN denotes the ensemble of actors that are involved in the pro- s
duction and/or distribution of a product such as poultry and their interactions. 4
At any point in time, a chicken is physically located within one and only one 4
setting, such as a farm, a middleman’s truck, an LBM or a vendor-owned shed 4
during the night. a7

Our generative algorithm instantiates a population of actors based on ex- s
ternal specifications. First, a spatial distribution of farms must be provided s
alongside the corresponding geographic setup. The latter consists of a parti- a3
tioning of the study area into a set of non-overlapping regions. In this study, s
we take upazilas/sub-districts as regional units. Second, the user specifies a
number of LBMs and their catchment areas. In practice, this is achieved by 4
specifying a matrix f,; representing the relative fluxes of chickens reaching 4
market [ = 1,..., Ny, from area a = 1,..., N4a. A full description of LBMs 43
requires a set of weights w; ;s encoding the probability that a vendor purchases s
chickens in LBM [ and trades in LBM [’ (with possibly I = I’). Finally, a 4
number of parameters influencing farming, distribution and trading practices s
should be specified as well (these are described in Text S1). With these details, a3
the algorithm computes the expected poultry fluxes between farms and LBMs 0
and allocates enough vendors and middlemen to satisfy such demand. At the
LBM stage, vendors are allocated in a tier-wise fashion depending on the volume 4
of chickens supplied by middlemen, inter-market movements, and wholesaling s
practices. Eventually, it is possible to generate more middlemen and vendors s
than strictly required based on heuristic calculations by inflating the expected s
supply of chickens handled by middlemen and vendors through multiplicative 4

factors eprps and ey . 27
Modelling inter-market movements as8
As detailed in Text S1, a vendor purchasing chickens in LBM i is assigned to 4w
trade in LBM j with probability G ;. 450

We sample the weights G; ; from a generative network model defined by a 4
growth mechanism: we add LBMs 5 = 1,..., Ny one at a time and establish s

links ¢ — j, ¢ < j as follows: first, we draw the number of incoming edges s
(in-degree) z; ~ Binomial(p,j — 1). Second, we sample z; LBMs (with ¢ < j) s
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without replacement either at random with probability p,rqndom, Or proportion- s
ally to their out-degree. This yields a binary matrix Z;_,; denoting existing s

connections. Weights are then calculated as: .
i g if k; = 0.
Gij = N i ' 0
Gserfdij + (1- Gself)Ii—U’/ki, otherwise ,

where Gge5 is the probability of a vendor operating in a single market ¢, condi- 45
tional on the out-degree k; = Zj Z;—; being positive. Here we set Gserp = 0.8. s

Global reaching centrality 460

GRC is defined based on the notion of local reaching centrality Cg(i), which
quantifies the proportion of nodes reachable from node ¢ through directed edges. 4
Based on this definition, we calculate GRC by subtracting Cr(¢) from the max- 43

imum observed value CF*" = max; Cg(i), and averaging over all nodes: a64
GRC = ZZV C’Vélax — CR(Z) (2)
B N-1 '
PDN dynamics a5
Within simulations, actors follow a daily routine. Let ¢ = 0,...,23 indicate a6

the time of the day (each time step is 1 hour long). Unless otherwise stated, s
default parameters indicated in Text S1 are considered. LBMs open between s
Topen and Tejose; at t = Topen, vendors move to LBMs, followed by middlemen. s
Middlemen then proceed to sell their cargo to frontline vendors, i.e. those in a7
the first LBM tier (L = 0). In the next time step (t = Topen + 1), some of
these move to another LBM and trade with second-tier vendors, who in turn s
sell chickens to vendors in the tier after that, repeating the process until the
last tier is reached. Vendor movements and wholesaling are therefore resolved a7
sequentially, in a tier-wise fashion, at time ¢ = Typen, + 1. In contrast, retailing
activities roll out between Toper, + 1 and Tejose. At Tejose, both wholesalers and 4z
retailers leave LBMs alongside any unsold chickens. Overnight, these chickens v
are stored in some other place, e.g. in a shed. Importantly, all chickens from 4
the same vendor are stored in the same place. 479

At some time ¢ = T4rm we update farms: empty farms may recruit a 4o
new batch of chickens, while active farms may offer birds for sale depending s
on batch age. After that, always at ¢t = T4, middlemen are updated: first, s
they decide whether to cover a different set of upazilas/sub-districts. Then, s
they contact farms within covered upazilas/sub-districts in order to purchase —as
chickens. At this stage, middlemen only determine how many chickens to collect s
from each farm; the collection may happen anytime between T'fqrm and Topen 48
on the following day. ag7

13


https://doi.org/10.1101/2023.07.25.550458
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.25.550458; this version posted July 26, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Epidemic dynamics a8

In this work, we consider a general transmission model involving a generic num- 4o
ber of strains. Each strain, indexed by s, spreads according to SEIR dynamics. a0
Infected chickens become infectious only after a random latent period 7g, sam- 4
pled from a distribution P(7g) with mean Tg. Analogously, infectious chickens 40
recover after a random time 77, sampled from a distribution P(77) with mean 4
Ty. All epidemiological parameters are listed in Text S1. 204

Here, transmission is assumed to occur through infectious contacts among s
chickens from the same setting. Other transmission mechanisms, including ex- a9
ternal introductions and inter-farm transmission, are described in Text S1. Dur- 407
ing a time step, an infectious chicken ¢ contacts a single chicken j, chosen at s
random within the same setting, and transmits strain s with probability: 299

Pinfect = 1 — exp(=f(s,1) - S(s,j) - wx) , (3)

where (s, 1) transmissibility of strain s and S(z, j) is susceptibility of chicken j s
to s. The factor wyx is a multiplier that depends only on the underlying setting so
type (F,MM,M,V). 502

In general, the transmission rate 8(s, 7) and susceptibility S(s, j) may depend  sos
on the immune state of infector and infectee, respectively. Importantly, different o
functional forms of §(s,4) and S(s,j) embody different assumptions about im- s
mune cross-reactions induced by previous exposure to other pathogens/strains. s
In this work we consider uniform transmission 3(s,i) = 8, irrespective of im-  sor
mune state, and susceptibility S(s,j) = 0,1, depending on whether j has al- s
ready been infected with s, is fully naive or was infected with some other strain  soo
s’ # s, respectively. The parameter o € [0,1] represents reduced susceptibil- s
ity due to cross-immunity, and interpolates between sterilising cross-immunity su

(0 = 0) and no cross-immunity (o = 1). 512
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Fig 2: Simulating poultry movements. (A) Spatial population of 1200
farms supplying Dhaka. Farm locations are generated as described in Text S1
and assigned preferentially to upazilas with a larger observed outgoing chicken
flux (colour scale). (B) Expected (black) and measured (red) distribution of
times required to sell an entire batch. (C) Expected and measured distributions
of transactions a single batch is split into. (D) Measured vs expected relative flux
between individual pairs (dots) of upazilas and LBMs. (E) Distribution of LBMs
serviced daily by individual middlemen. (F) Proportion of chickens sold to
wholesalers (W), teal) and retailers (R, yellow) by LBM tier in simulations (bars)
and data (markers). MM — Vj refers to transactions involving middlemen and
first tier vendors, while Vi, — Vi1 represents inter-tier transactions. For each
tier, bars do not add up to 1 since wholesalers can sell to end-point consumers
as well. Inset shows proportions of w2lesalers and retailers. (G) Marketing
time distribution. Results are obtained from a single simulation with default
settings. Farm data are obtained from . Data about middlemen and vendor
trading practices and marketing times are obtained from [1§].


https://doi.org/10.1101/2023.07.25.550458
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.25.550458; this version posted July 26, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

— p=01 — Simulation A B
08 p=03 [ BExpected 030
— p=05 -
— p=0s 025 107"
0.6
50 0.20
w 3 w L
= £ A = S 10
04 w & 015
]
2o Fd 0.10
-3
02 o 5 10 10
Expected mean
A . " 0.05 s Overall transactions
0.0 %ﬂmmmﬁﬂ 0.00 —_ w0+ 7 Overall chickens involved
5 10 15 20 ] 10 20 30 40 50 10° 10! 10? 10%
Markets visited daily Number of vendors Transaction size
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A B C

Low priority
— High priority
— Data

== Data
—— Low priority
— = High priority
= Pampy=0.05

=

=
]
I~
G

o

=
o
I
S

Market closed

5
=)
2
s

=
o
&

5
Prop. sold on multiple days
°

Marketing time (hours)

o
=
S

0.05 0.10 015 020 005 0.10 015 0.20 [ 10 20 30
Punsold Punsoid Marketing time (hours)

Fig 4: Vendor trading practices. (A) Average marketing time as a function
of punsota for different values of pempey. Solid and dashed lines correspond re-
spectively to low (10%) and high (90%) frequency of vendors prioritizing trading
older chickens. (B) Proportion of marketed chickens offered for sale on multiple
days. (C) Marketing time distributions for low and high frequency of vendors
prioritizing older chickens. Here, pynsota = 0.1 and pempry = 0.2. Results are
averaged over 50 simulations from 10 different PDN realisations.

23


https://doi.org/10.1101/2023.07.25.550458
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.25.550458; this version posted July 26, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Chattogram
A .o 0

I = Prandom=1

Prandom = 0.1

0.2 0.4 0.6 0.8 o 2 4 6 8
Global reaching centrality Tree depth

0.5 S

10

0.01 0.3 0.6 1.0

102 101 100 102 10-1 100 001 03 0.6 1.0

Prandom Prandom Prandom Prandom
| e
0.2 0.4 0.6 2 3 5 7 9 0.30 0.35 0.40 0.5 0.6 0.7
Global reaching centrality Tree depth Pianka's index Prop. of shared markets

Fig 5: LBM networks and poultry mixing. (A,B) Broiler LBM networks
for Chattogram and Dhaka, respectively. An arrow pointing from market [
to I’ indicates at least one movement in that direction, while arrow thickness
is proportional to the number of vendors moving on that edge. Node size is
proportional to the outgoing weight, i.e. the total number of vendors leav-
ing it. Isolated and connected nodes are shown in cyan and teal, respectively.
(C,D) GRC and TD, respectively, for Dhaka’s network (line) and ensembles of
2000 synthetic LBM networks with the same density as Dhaka’s network and
Drandom = 1 (red) and prandom = 0.1 (cyan). (E,F) Average GRC and TD,
respectively, across 100 networks with 20 nodes and as a function of p and
Drandom- Dotted line denotes Dhaka’s density. (G,H) Pianka’s index of overlap
and proportion of markets where it is possible to find chickens from different
upazilas/sub-districts, respectively, as a function of network parameters. Per-
forming the same measurement before any vendor movement occurs, yields an
overlap (Pianka’s) of 0.261, and 25,7% shared markets, on average. This repre-
sents the baseline overlap due to middlemen sourcing chickens from farms and
selling them to vendors. Results are averaged over 50 simulations from 10 dif-
ferent PDN realisations. All other PDN parameters are set to default values.
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Fig 6: Epidemic dynamics. (A) Daily incidence in LBMs in multiple simu-
lations. (B) Cumulative number of new farms infected over time from multiple
clusters. Each cluster is initiated by a different infectious seed. (C) Distribution
of attack rates for individual production cycles, conditional on at least one in-
fection. (D-F) High farm transmission scenario (wp = 0.2, was = 0.7). Colour
scale corresponds to varying levels of inter-farm transmission Srp. (D) Propor-
tion of incident cases in different setting types (F: farms, MM: middlemen, M:
markets, V: vendors). (E) Average hourly prevalence in LBMs at stationari-
ety. (F) Proportion of latent and infectious chickens entering markets daily as a
function of Spp. (G-I) High LBM transmission scenario (wp = 0.1, wpr = 2.4).
Colour scale corresponds to varying latent period Tg. (G,H) mirror (D,E). (I)
Persistence is measured as the proportion of simulations where at least one
transmission chain persisting in markets and vendors for longer than 50 days
was observed. Results are qualitatively the same under different different cri-
teria about the duration of transmission chains (Fig.S5). Other parameters
are set to default values. Results are based on 50 simulations from 10 different
synthetic PDNs.
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Fig 7: Multi-strain dynamics and viral mixing in LBMs. (A-C) Sim-
ulations with no inter-farm transmission (8pr = 0). (A) Viral amplification
happening through transportation from farm to LBM gates as a function of
middlemen-specific transmission weight wpsps. This is quantified through the
difference between total numbers of exposed and infected chickens sold to ven-
dors and purchased daily by middlemen. (B) Average strain richness (i.e. num-
ber of strains) in single LBMs as a function of density p of vendor movements
(on the x-axis), wpras (from light to dark). Solid and striped bars correspond
to low and high hierarchy in vendor movements, respectively. (C) Average Pi-
anka’s index of overlap between pairs of LBMs in terms of their catchment areas.
(D-G) Simulations with inter-farm transmission. (D) Average richness per up-
azila for increasing Spp. Note that the bottom-right map uses a different colour
scale. (E,F) Same as (B,C) but for varying Srp and with wyrps = 0.001. We
set wp = 0.1 in (A-C) and wp = 0.2 in (D-F), while wy; = 2.4 and wy =1
in all panels. Cross-immunity reduces susceptibility to secondary infections to
o = 0.3. Results are averaged over 50 simulations from 10 different synthetic
PDNs. In each simulation, statistics are collected for 100 days after an initial
transient of 2000 days.
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1 Data analysis :
1.1 Farmers >
Questionnaire data 3
Data were generated through a cross-sectional study that collected informa- 4
tion about farming practices from 100 distinct farms in Chattogram division, s
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Bangladesh [1]. Available data includes farm sizes, the number of production
cycles completed in one year, as well as the numbers of traders and transac- 7
tions involved in clearing individual batches (Fig. A1). Here we focus on the 47
farms that reported trading broilers and raising a single batch at a time in a o
single shed. It should be noted, however, that while the questionnaire aimed 1o
to uncover farmers’ practices over one year, it is not possible to know whether
farmers raised at most one batch at a time for the entire period as their answers 1
reflect their situation during the interview. 13

Farm/batch size. We modelled batch sizes Sp by assuming a truncated neg- 1
ative binomial distribution. More in detail, we assumed: 15

Sp ~ NB(ps,,ns,) if Sp € [Spin, §par] (1)

where S S79% are the minimum and maximum observed batch sizes. For 1
simplicity, we estimated parameters pg,,ng, by maximum likelihood without 7
accounting for truncation and verified a posteriori that the resulting bias was 1
small. Note that for this type of farms, batch size is the same as farm size, since 1
they do not rear multiple batches at the same time. 20

Replenishment time. We modelled replenishment time 7.cpienisn by assum- 2

ing a shifted negative binomial distribution, i.e.: »
Treplenish — 1~ NB(pT'replenish ’ nT‘r'eplenish) ’ (2)

1.2 Middlemen 2

Individual middlemen properties 2

We used data from questionnaires to inform middlemen’ trading patterns. Con- 2
sistently with the main manuscript, we restrict our analysis to broiler data
only [2] 27

Number of chickens bought daily. We divided the total number of chickens 2
bought during the entire study period by each middlemen with the number of 2
days in which he/she purchased any poultry. We used these raw values to
construct a discrete distribution from which to sample middlemen batch sizes =
SMM in the ABM. 32

Number of markets visited daily. As a first step, we evaluated the number s
of working days for each middlemen by combining sale frequencies of different
breeds. This was straightforward for middlemen that sold chickens every day s
during the study or sold a single chicken breed. One middleman declared selling 3
chickens 4 times in a week; in this case, we set the number of working days to 4. &
We then obtained the mean number of daily market visits k(?*%) by dividing s
the total number of market visits made by each middleman during the study
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Figure A 1: Farm statistics from survey data and statistical fits. (A-
O) Univariate distributions (diagonal) and pairwise scatter plots (off-diagonal)
for several farm statistics, coloured by the number of available sheds. Shown
quantities include farm size (A), completed production cycles per year (C),
trading rollout duration (F), time to replenish the farm (J) and raising time
(O0). We did not show farms with 4 sheds, as there were only two (see panel
P showing frequencies of sheds per farm). (Q) Poisson (green) and truncated
negative binomial (orange) fits to batch size data (black ticks). (R) Poisson
(green) and shifted negative binomial (orange) fits to replenishment time data
(black ticks). In both cases, a negative binomial distribution provides a better
fit than Poisson to underlying data. Analyses in (Q,R) were restricted to farms
with a single shed.

period with the corresponding number of working days. Note that some values
k@i are not integer numbers due to the previous calculation. Finally, we used
maximum likelihood to fit a geometric distribution with parameter py  to data
{kJ*"™ | with i ranging from 1 to the total number of middlemen interviewed.
More precisely, the maximum likelihood estimate for py,, is given by the inverse
of the sample mean of data {kfl “ily}. This formula works also when some values

k2 are not integer numbers (Fig. A2).
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Figure A 2: Distribution of daily market visits. Fitted (line) and observed
(markers) frequencies of markets visited daily. The fitted distribution is geo-
metric with parameter p estimated using maximum likelihood. Note that some
data points were not integers and were therefore rounded to the nearest integer
in this plot. The fitted distribution corresponds to black markers in Fig. 2E,
but is here shown up to value 4, i.e. the maximum observed count.

1.3 Vendors w7
Individual vendor properties a8

We used data from questionnaires to inform vendors’ trading patterns. Unless 4o
otherwise stated, we repeat every analysis for retailers and wholesalers. 50

Number of chickens bought daily. We first reconstructed the number of =«
chickens bought by a single vendor over the survey period by adding counts s
of sold and unsold chickens. Then, we divided this number by the number of s
days during which the same vendor bought any chickens, yielding an estimate s
of the number of chickens bought daily. We used these raw values to construct s
a discrete distribution from which to sample vendor batch sizes Sy in the ABM s
(Fig. A3A) 57

Surplus chickens First, we estimated the probability pempiy to sell the entire s
batch of chickens before a vendor buys another batch. This was computed as s
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the ratio between the number of days with any unsold chickens and the number e
of days with a purchase. 61

Second, we modelled the counts upqien, 0f unsold chickens per batch, condi- e
tional on batch size Sy and on the event that the batch is not fully emptied e
(which happens with probability 1 — pempty). We consider a negative binomial e
distribution with mean p = punsoraSv and variance p - (1 + n;ﬁsold - ), where s
Punsold 1S the proportion of chickens that remain unsold before purchasing the e
next batch and nqns0q affects overdispersion compared to a Poisson distribu- e
tion. Because our data are aggregated over a week period, we model the total s
count of unsold chickens uoiq; rather than upesen. Because the sum of negative 6o
binomial random variables still follows a negative binomial distribution, wsorq; 7
has the same distribution as upqtcn, with Sy multiplied by the number of days =«
with any unsold chickens (as we are conditioning on having a surplus). Aggre- =
gating data from wholesalers and retailers yields maximum likelihood estimates
pMLE =013 and nMLE = 3.4 (Fig. A3B-C), which are used throughout the
main manuscript. For completeness, we also estimate the same parameters for
wholesalers and retailers separately, who amount to 55 and 376 data points,
respectively. We find that wholesalers generate, on average and conditional on

MR =0.06

at least one unsold chicken, less surplus chickens than retailers (p,,, <01 78

VS 1\5%’;5&1% = 0.13), wljl\ilgEthe amount of overdispersion is roughly the same 1
(nMEEW — 3.4 and nMEER = 4.9). Note that we assume pegpry to differ s

between retailers and wholesalers. It should also be added that in the context «
of questionnaire data, a surplus of chickens is defined in relation to consecutive e
purchases, which could be multiple days apart, by the same vendor. In the s
ABM, however, we conflate these parameters with surplus between consecutive s
days, as vendors tend to buy new chickens every day. The resulting discrep- s
ancy should not be large since 76% of interviewed vendors purchased (broiler) s
chickens every day, and 93% during at least 6 days in a week. Finally, note that
during simulations, daily surplus is also subject to the constrain that it can not s
be larger than batch size. 8

Prioritising unsold chickens. We estimate the probability of a vendor pri-
oritising the sale of previously unsold chickens as the proportion of vendors o
declaring to do so in our data. 0

Transaction networks and inter-tier fluxes 03

Here we detail a procedure to estimate p%,[%) and pg) for each market tier o

L =0,1,..., L. Parameters p%,)R represent the proportions of chickens o

sold respectively to wholesalers and retailers in tier L, while 1 — pg,[L,) — pg) is o

the proportion of chickens that wholesalers in tier L—1 (L > 1) sell to end-point o
consumers. o8

The tier L = 0 corresponds to vendors that buy directly from middlemen. o
Note that pg/?,) + pgg) = 1 since middlemen are not allowed to sell chickens to 100
end-point consumers. Wholesalers in tier L sell to wholesalers and retailers in 1
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tier L 4+ 1 according to probabilities p%H) and p%H), respectively. Note that 10

the last tier L4, must consist of retailers only and hence p%”“”) =0. 103

Here we outline a simplified estimation procedure that yields parameters 1o
that are common to all markets. We start with reconstructed transaction net- 1o
works. These networks are DAGs consisting of multiple transactions, weighted 106
by the number g of chickens involved, between different node types. Nodes can 1o
be either middlemen (MM) or vendors, the latter being further classified into 10
either wholesalers (W) or retailers (R). In addition, MM and W nodes are fur- 10
ther classified according to their 'depth’ within a transaction chain. This latter 1o
characterization is somewhat reminiscent of our tiered structure, but a direct 1
mapping is not possible at this stage yet. In particular, in order to infer relevant 1
parameters from reconstructed transaction chains, we must take care of trans- 13
actions involving middlemen that purchase chickens directly from wholesalers 1
and sell them to other vendors. As our ABM does not allow middlemen to buy s
from vendors, we replace these 'forbidden’ transactions found in reconstructed 1
networks, with sets of ’allowed’ transactions. Let V},, denote the set of such w7
middlemen. As a first step, we remove all transactions involving poultry farms, s
except those involving any middlemen k € Vj;,,. For each remaining farm 4, 1o
we replace middlemen k € Vj,, with a new label £* so that each transaction 120
i — k, k € Vi, becomes i — k*. The label k* is just a placeholder representing 1z
a fictitious middleman. Second, We then remove transactions of the type i = k 12
and k — j, where ¢, j are not farms and k € V};,,, and replace them with viable 1
transactions of the type i — j. Thus, if actor ¢ sold chickens to k& € V};;,, which 124
in turn sold chickens to vendor j, we remove edges (i, k) and (k, j), and create a 12
new edge (7,7) with a weight g; ; = g x9k,j/9k, Where gi, = >, g is the total 1
out-weight of k. Finally, we remove transactions involving only middlemen and  12r
merge any duplicated edges together. 128

We can now analyse the resulting graph G. Let Vj;ps represent the set of 120
middlemen nodes, i.e. the roots of the DAG. Note that V5 excludes nodes 13
from V35, We associate middleman i with a weight gz(o) representing the 1
number of chickens it ’injects’ into markets. For each middleman node i € Vyspy, 132
we then perform the following calculation: 133

e Enumerate all chains departing from node i and ending with a leaf node. 13
The latter might be a W or a R node. We stress that these are observed 13
transactions, not the output of our ABM. 136

e For each such chain, count the number of mark-ups, distinguishing be- 13
tween R and W nodes. Each chain may involve any number of W nodes 13
and an optional terminal R node. For example, a chain of the type 1
W — W — R consists of two wholesalers mark-ups before landing into a 140
retailer. A chain of the type W — W consists of two wholesalers mark-ups, 1a
with the terminal wholesaler selling directly to end-consumers. Finally, as- 1
sign a weight to the current chain by multiplying gi(o) by the proportion of 1
chickens that reach end-consumers through this chain. The latter is eas- 14
ily computed by multiplying together the proportions of chickens flowing s
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through each edge in the chain. It is easy to see that the weights of chains s
(0)

emanating from node ¢ must add up to g; . 147

By enumerating all chains constructed in this way, we can easily determine 1
the maximum number of tiers as the length of the longest chain in G. For 14
example, if the longest chain is of the type W — W — R, then we need 3 tiers 1s0
and L = 0, 1, Lmaac = 2. 151

Once we have computed the weights for every chain in G, we can finally 1
obtain p%) and p%) by collapsing all chains according to their length and the s
type of terminal node. The idea is to compute a running sum gg(L,T) that 1s
counts how many chickens end up in the hands of actors of type T, where T 15
is either W, R or C (end-point consumer) in tier L. Please note that we are s
deliberately over-counting chickens according to how many mark-ups they make. s
Let us illustrate this procedure by considering a generic chain with weight g., 1ss
nw >= 0 wholesaler and ng = 0,1 retailer mark-ups. The total length of the s
chain is n, = nw + ngr. For each L = 0,...,ny — 1 we increase the running e
sum g (L, W) by g.. If the last node is of type W, we increase the running sum e
ga(nw,C) by g.; else, the last node is of type R and we increase the running e
sum gg(nw, R) by ge. 163

Finally, ply) = ga(L,W)/[ga(L, W) + ga(L, R) + ga(L,C)) and pfy) =
9c(L, R)/[9c(L, W)+ gc(L, R)+gc(L, C)]. Note that go(0,C) = 0 if we ignore 165
transactions involving MM selling to end-point consumers. 166

Note that we can include more reconstructed transaction networks in the e
same analysis: we compute gg(L,T) VG and then create a consensus quantity e
Geonsensus(L, T) = Y 9a(L,T), which we can finally use to compute parame- 16
ters of interest. 170

2 Actor dynamics m

This section describes in detail different action and tasks for each actor. Further 1
details on actor instantiation can be found in the section dedicated to PDN 1
setup. 174

2.1 Farms 175

At any time, a farm is either empty or raising chickens. We consider farms 1
raising a single batch of chickens at a time, meaning that individual production 1
cycles do not overlap. Chickens from the same batch are introduced at the s
same time as day-old chicks and are offered for sale as soon as they reach an 1
appropriate age Trqise- A production cycle ends when all chickens in a farm are 10
sold. 181

Farm replenishment. After completing a cycle, a farm remains empty for a s
random time Trepienish, sampled from a (shifted) negative binomial distribution. 1
After Trepienisn time steps, a farm recruits a new batch of day-old chicks. 184
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Figure A 3: Vendors’ parameters analysis. (A) Raw distributions of number
of birds bought daily for R (blue) and W (orange). (B) Log-likelihood function
for negative binomial fit to surplus counts. Fitted parameters include the aver-
age proportion on unsold chickens pyysoiq and the shape parameter n.,,s014- The
maximum likelihood solution (pMLE nMLE ) s indicated with a red marker.
(C) Expected surplus pMLE . S (line) as a function of batch size S, together
with 95% C.I. (shaded area) calculated assuming a negative binomial distribu-
tion NB(pMLE S nMLE ) for surplus. Broiler data are shown as well (black
dots).

Offering birds for sale. After raising a batch for 7,.4;sc days, a farm is ready  1ss
to sell chickens. These are offered for sale progressively over a minimum of 1s
Trollout days; more precisely, a farm stages new chickens corresponding to a s
fraction 1/Tponout Of its batch over the first Toi0ut days. By day Tronout, all 1
chickens at the farm can be sold to middlemen. Note that a farm could sell s

chickens for a longer period of time if not enough middlemen are available to 190
(maz)

trade with. In the case where any chickens remain unsold after 7, . days, 1
the corresponding farm is emptied automatically. 102
2.2 Middlemen 103

Middlemen daily routine consists of buying and collecting chickens from farms 1o
in order to sell them to vendors operating in markets. A single middleman is 10
able to source chickens from multiple farms, potentially from distinct regions, s
in order to fill up his/her cargo. 107

Updating scouted regions. Each middleman purchases chickens from farms 1
located in a subset A of neighboring areas, whose number we denote with 10
Nscout = |A|. With daily frequency, each middleman may move and change 200
his/her catchment area with probability Ppove. In that case, a middleman up- a
dates A by choosing ngcou: new regions as follows: first, a focal region a is 2
sampled at random with propensity proportional to the number of chickens be- 20
ing currently offered for sale in that region. In the case no farm is currently 20
trading, a is chosen fully at random. Second, nscout — 1 new regions are chosen 205
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at random among those neighboring a. More precisely, we say that a region a’ 20
neighbors a if their centroids are less than 80 km far apart. If a has less than 27
Nscout — 1 neighbors, new regions are chosen among the areas neighboring with 20
a’s direct neighbors. The choice of a 80 km radius is arbitrary, but it guarantees 20
that middlemen do not cover too long distances in a single day. Note also that 210
according to our algorithm, middlemen are drawn preferentially to areas with ou
the largest offer of chickens, which reduces the odds of farms not being able to 2
sell their chickens. 213

Buying birds from farms. The main purpose of mobile traders is to collect 2.
chickens from farms and deliver them to LBMs. With daily frequency, our s
algorithm allocates amounts of chickens to be moved from any trading farm 2
to any market via middlemen. No chicken is collected at this stage yet. Our ar
simulator resolves allocations one middleman at a time in random order and s

under the following constraints: 219
1. Middleman j can hold at most Sp;ps chickens. 220
2. Middleman j can source chickens from farms located in any area a € A. 21

3. Middleman j sells chickens to a number of vendors from exactly k,, mar- 22
kets. 223

4. Destination markets must be chosen in a way the preserves the overall 22
proportion of chickens leaving region a and entering market [, fg ;. 25

As a consequence of the last two requirements, each middleman keeps track 2

of which market each chicken is scheduled to be moved to. 27
The first step consists in sampling markets with probabilities {¢;};=1,.. N, 22
o}
o = 2zzeaOcdet. (3)

ZaEA Oa

where O, is the number of birds currently offered for sale by farms in region 2o
a. We sample markets with replacement until we get a set M comprising k,, 23
distinct markets, or after 1000 draws, in which case |M| < k,,. Let t; be the o
number of times market | € M was selected during sampling, and let ¢t = >, ¢ 2=
be the total number of draws. Focusing on market [ with ¢; > 0, we construct s
the distribution f,;: 23

Oafa,l

— 2 ifac A
ZGEA Oafa,l

fa\l = (4)

0 otherwise

We then sample tokens t; , ~ Multinomial(t;, { fo);}) such that > . 1, = 2
t;. Given the tokens t; o, middleman j contacts farms in each region a € A, 25
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securing up to {SMMtl,a/tJ birds destined to market [. Here, S’MM < Sym o

denotes the maximum number of birds that can be purchased during the current 23
day. Syrar is smaller than Spras if middleman j is already carrying birds for 2
any reason, e.g. if unsold from previous days (this is usually rare). 240

Middlemen contact farms in an area a sequentially, starting with those trad- 2
ing for the longest amount of time. Transactions follow a greedy heuristics: if 2
middleman j has to collect s, birds from region a, he/she will attempt to buy 2
as many birds as possible from individual farms to meet such quota. In case 2
middleman j fails to secure the required number of birds from region a, we allow 24
J to contact any previously visited farms to meet the original quota. Additional 2

chickens obtained in this way are directed to market [ with probability: 207
fa l .
= ifle M
Zl’eM fa

(5)
0 otherwise

Finally, it should be noted that O, decreases as chickens are allocated pro- 2
gressively to middlemen; in other words, availability of chickens decreases as we 29
iterate over middlemen. 250

Bird collection. Middlemen start collecting birds as soon as the allocation 2
step described in the previous section is terminated. At this point, middleman s
j is already aware of the farms to be visited and the amounts of birds to pick up  2s3
from each of them. In simulations, middleman j can visit any of these farms in 2
random order at any point in time before the next market opening. This is to 25
ensure that j collects all of their chickens before bringing them to the market. 256

Selling birds to vendors. Each day, middleman j visits markets | € M 2
sequentially. There, j sells chickens to available vendors until all s; carried s
chickens scheduled for delivery to market [ have been sold. These chickens s
can be sold only to vendors in the first market tier (L = 0). A number 20
si(W) ~ Binomial(sl,pg/?,)) are allocated for sale to wholesalers in this tier.
The remaining s; — s;(W) chickens, plus any of the s;(W) chickens that could
not be sold to wholesalers (e.g. because of limited buying capacity) are directed 263
to retailers. Any unsold chickens remain in middleman’s stock and are offered 2
for sale in the same market on the following day. Please note that this event is 26

expected to occur rarely in simulations. 266
2.3 Markets 267
Markets can be either open or closed: all markets open at T,p,., and close at 2
T.10se every day. Markets contain chickens only during opening hours. 260

10
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2.4 Vendors 210

Vendors trade chickens within and between markets. There are two types of on
vendors: retailers, who sell chickens to end-point consumers only, and whole- o
salers, who can also sell chickens to other vendors. Vendors are organized in s
tiers: vendors in tier L > 0 buy chickens from wholesalers in tier L — 1, while 2
vendors in tier L = 0 buy chickens directly from middlemen. Vendors first pur- 2
chase chickens in market [ and then move to another market I’, or stay in I, 2
where they can sell chickens to other vendors and/or end-point consumers. 277

Buying birds. All vendors seek to buy as many chickens as possible during s
any transaction with middlemen and/or other vendors, compatibly with their 2w
own capacity and daily quota Sy. Note that a vendor may hold more than Sy 20
chickens at a time due to the presence of surplus chickens. Nonetheless, the 2
same vendor can not hold more chickens than the maximum carrying capacity
Cy > Sy. 283

Inter-market movements At T,,c,, vendor k moves to market [ to purchase 2s
chickens. Eventually, k stays in the same market or moves to a second location 2
" to trade. Chickens move alongside their owner. Note that k’s purchase and 2
trade markets [,I’ are invariant. In other words, k will always purchase chickens  2s7
in [ and commute to I’ (if [ # ') or stay in l (if l = I’) in a given PDN realisation. s

All vendor movements are resolved at Tj,pen, and are therefore instantaneous: — 2s
vendors move to market [, purchase chickens and eventually change market 200
during the same time step. Note that vendors in tier L must move after those 2
in tier L — 1. 202

Wholesaling. Let us consider a wholesaler k operating in tier L. After pur- 20
chasing chickens, k carries ny,; chickens, including also older chickens that re- 20
mained unsold from previous days. In the current day, k sells nsgie = Npor — 205
Nunsold chickens, where nynso1q denotes the number of unsold chickens. nypsorg 20
is a random variable whose sampling procedure is described in sections below. 20

Proportions p%H) and pS%LH) of these ngqe are then directed to wholesalers 20
and retailers in tier L 4 1, respectively. The remaining chickens are sold to 20
end-point consumers (retailing). 300

It is possible that k sells less chickens to L + 1 tier wholesalers than planned. su
In this case, any surplus chickens are redirected to retailers. Similarly, any o
chickens that would remain unsold after the wholesaling phase are redirected to 30
end-point consumers. 304
Please note that wholesaling is instantaneous, occurring toe-to-toe with 30
inter-market movements as vendor switch from purchasing to trading chickens. 3o

Retailing. Both wholesalers and retailers can sell chickens to end-point cus- 3o
tomers. While wholesaling is instantaneous, retailing rolls out over market 30
opening hours, i.e. between Typen, and Tijose. More in detail, vendors can sell 30

11
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chickens to end-point consumers between T,pe, + 1 and Tijpse — 15 this means s
that chickens spend at least one time step at the market. 311

The number of chickens sold in any time step over this period is stochas- o
tic, but uniformly distributed. More in detail, we assume that the number of a3
chickens sold by vendor k during time step t is given by: 314

min{nayai(t), round (u + X (t))}, (6)

where X is a Poisson random variate with mean ngqqi(t)/0t, with nguei(t) s
and 0t denoting the number of chickens destined to retail still in stock and s
the time left until market closes, respectively. u is a random draw from an s~
uniform distribution on the unit interval whose role is to fix rounding issues, s
while round(.) guarantees a meaningful result by rounding u+ X to the nearest s
integer. Finally, we require that k sells all of the remaining chickens that had 3
been scheduled for retail, right before market closure, i.e. at ¢t = Tjpse — 1. 21

Surplus chickens. As explained above, vendor k may retain a random num- s
ber nynsorg of chickens each day, which are then offered for sale the day after. s
The surplus nqynsorqd is computed as follows: first, vendor k sells the entire stock 3
with probability pempty, in which case nypsoiq = 0. Alternatively, nypsorg is s
sampled from a negative binomial distribution with mean pynsoid - Ttor, With 32
the constraint Nynsord < Niot- More details can be found in the data analysis s
section. 38

Prioritising unsold birds. Vendors keep track of unsold birds. We assume s
that a proportion Pp,iority of vendors in our simulations prioritise selling these s
birds before recently purchased birds. The remaining vendors, instead, do not s
prioritise repurposed chickens over those bought in the current day. 33

3 PDN setup 3

This section illustrates the generative algorithm responsible for instantiating the — 3a
PDN. The following subsections reflect the sequential steps of the algorithm. 33
The final goal is to generate a kind of supply chain with multiple intermediate 33
nodes under certain structural constraints. 337

The algorithm first instantiates ’source’ and ’sink’ nodes, i.e. farms and 33
markets, where chickens are first introduced and sold last, respectively. Then, 33
it populates markets with vendors, compatibly with incoming bird flux as deter- 340
mined by farm production and region-to-market fluxes. Finally, our algorithm su

instantiates middlemen, i.e. the intermediate actors. 32
We assume here for simplicity that all actors handle and trade a single 34
chicken breed. 314

12
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3.1 Geography setup 245

Using external specifications about the study area, the algorithm creates a list 34
of N4 regions, each being characterized by a given location and a weight pro- s
portional to the share O((lo), a=1,...,N4 of chickens produced there. In the s
case of Bangladesh we identify individual regions with upazilas. In addition, we 340
also specify a matrix f,; representing the proportion of chickens that end up in 35
market [ =1,..., Ny from area a. Note that >, f,; = 1. 351

3.2 Farm generation 352

Farm properties. In this work we consider only farms raising a single batch s
of chickens at a time. For this type of farm then, farm size Sg is equivalent 354
to batch size; the latter is assumed to vary across farms and is sampled from s
a truncated negative binomial distribution. In addition, batch size is invariant, s
in the sense that a particular farm will always raise batches with the same size. s
The raising time 7,45 is assumed to be a constant and shared by all farms. s
Analogously to batch size, a random value of minimum rollout duration 7ot 35
is assigned to each farm according to a probabilistic distributions but does not s
change over the course of a simulation. Finally, replenishment time 7, ¢pienisn is 3ot
assumed to be sampled from a shifted negative binomial distribution, namely s
Treplenish ~ LFNB(Dr,oionions Mrvepienion )» Whenever a farm completes a rollout. e
Farm properties and model parameters describing farm generation are listed in 36
Table A1. 365

Farm locations. For each farm we draw a random location according to the s
following algorithm: we first draw a region a, either uniformly at random with e
probability Prundom, or proportionally to the outgoing flux O((IO) with comple- 368
mentary probability. Then, we sample a random point within the selected re- 36

gion. 370
Alternatively, empirical or simulated data on farm spatial distributions could s
be used to fix their locations. 372

Farm output. Once all farms have been generated, we compute a range of a3
quantities that are fundamental to PDN generation and/or dynamics. 374

First, we compute the expected daily bird output O; from farm¢ =1,..., Np. s
We compute O; by assuming that farm ¢ completes every rollout in exactly s
Trollout,i; days yielding: 377

Sy

b
<Treplenish> + Trollout,i + Traise — 1

0; = (7)

it should be noted, however, that this overestimates the true expected daily s
output O; since Troiout,i represents only the minimum rollout duration, which s
might take longer in absence of middlemen to collect birds. Nonetheless, we will 3z
stick to the heuristic calculation in eq. S(7) to evaluate other quantities. These sa
include expected daily bird output from region a: 382

13


https://doi.org/10.1101/2023.07.25.550458
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.25.550458; this version posted July 26, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Ou= 0, (8)

i€a

where the sum runs over all farms located in region a. Given the regional sss

outputs, it is possible to compute the following quantities: 384
e 0, = Oa/ >, O, a normalized version of O,. 38
® goi = Og - fa,1, the expected daily bird flux from region a to market [. 386
o M; =3, 4qa,, the expected daily bird flux impinging on market [. 387

Table A 1: Farm-specific parameters. A fraction f,qnqom of farms are allo-
cated in random upazilas, while remaining farms are assigned to upazilas pro-
portionally to their volume of traded chickens. Farm locations are completely
random within upazilas. Farm size and replenishment time distributions are
NB(p,n). Farm size Sr is further constrained in the range [S%", S7*]. Farm
size is sampled once per farm per realisation: a farm always recruits the same
amount of birds. Refill and rollout times are sampled during each production

cycle.
H Parameter Meaning Distribution/Value Source H
Ng Number of farms 1200 -
frandom Prob. random allocation 0.3 Assumed
T’ Farm update time 11 a.m. -
Sp Farm size NB(psp,ns;) Estimated
DSy Farm size N'B parameter 0.003544 Estimated
NS, Farm size N'B parameter 5.245 Estimated
g ma Min/max farm size 600, 4180 Estimated
Traise Raising time 32 days [1]
Pryepiensen  Treplenish N'B parameter 0.2013 Estimated
Norpoprenian  Treplenish NB parameter 4.488 Estimated
P(Troliout) Min. rollout time (0.2,0.3,0.3,0.2) Assumed
distribution for Troliout = 1 — 4 days
3.3 Market setup 388

Details about markets are provided externally. At this stage, the algorithm s
instantiates Nj; markets, each structured in L,,.. + 1 empty tiers. Market 30
properties and model parameters describing market generation are listed in Ta- 30
ble A2. 392
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Table A 2: Market parameters.

H Parameter Meaning Distribution/Value  Source H
Ny Number of LBMs 20 -
Topen LBM opening time 6 a.m. -
Terose LBM closing time 11 p.m. -
wy,p Prob. vendor purchasing Explored Modelled
in LBMs [ sells in I/
fal Prop. of chickens leaving Empirical [2]
upazila a for LBM [

3.4 Vendor setup 303

Vendor properties. At setup, each vendor is assigned a batch size Sy, drawn 30
from a probabilistic distribution, the latter being different for W and R. Here, 30
Sy denotes the maximum number of chickens he/she can purchase in a single s
day. Parameters describing properties of vendors and their generation are listed 307
in Table A3, while parameters relating to market tiers are listed in Table A4. 308

Tier-by-tier vendor allocation. As explained in the main text, each vendor  se
operates in up to two markets, and always in the same tier. Our algorithm 40
assigns vendors to markets and tiers within them in a way that is compatible
with the expected flux of chickens entering the market, as well as with between- 40
tier fluxes. Importantly, neither the number of W and R can be specified a 03
priori as they are determined by our algorithm, which we define as follows. 204

Starting from tier L = 0, we assign as many R and W to that tier so that s
their combined capacities Sy match the expected R and W incoming fluxes 406
M - pg) and M - pé?,) from middlemen. Then, we assign a random destination a0
market [ with probability w; - to each vendor generated in the current tier; If 4
I =1, a vendor will operate in a single market. 400

We then proceed by evaluating the expected flux of chickens M, l(l) impinging w0
on tier L = 1 due to vendors in tier L = 0; this amounts to compute the
combined expected output from all L = 0 wholesalers buying chickens in any o
market and selling in [. The expected wholesaler output is taken to be equal to a3

Sy . Given Ml(l), we allocate as many R and W to match fluxes Ml(l) ~p5%1) and 4

Ml(l) . pg[),). Finally, we repeat the same scheme for the deeper tiers as well. a1

As a final note, we allow for a multiplicative scaling factor, to be applied to s
Ml(o), whose effect is to allocate more vendors than what would be implied by a7
our heuristic calculation of farm outputs. a18

Note that a vendor buying Sy chickens daily also sells the same amount 4o
of chickens on average. To see that, let us consider the following discrete-time 42
process: during time step ¢, a vendor accumulates Sy chickens and sells all of his s
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stock with probability pempty, Or & proportion 1 — pynsoid With complementary s
probability. The average surplus at time step ¢ + 1 is given by: a3

Uty1 = (1 - pempty) * Punsold * (ut + SV) .

At stationariety we must have us41 = u; = u*, which implies that the amounts of 42
chickens sold and purchased must balance each other, hence our claim. Solving s
for u* yields: a2

* (1 - pempty) * Punsold * SV
1- (1 - pempty) * Punsold ’
and an average daily stock, after acquiring Sy chickens: a7

Sy
Sy +u* = .
1- (1 - pempty) * Punsold

Finally, we take an individual’s vendor maximum carrying capacity Cy as being 4
1.5 times the average daily stock: 429

B 1.5- Sy
1- (1 - pempty) * Punsold .

Cy

Table A 3: Vendor-specific parameters. W,R denote wholesalers and re-
tailers, respectively. When some surplus is generated (with probability pempty ).
it is sampled from a negative binomial distribution with mean m = pypnso1a - 1,
where n denotes total chickens offered for sale, and overdispersion parameter
Qunsold (the variance is m + aynsold * mz).

H Parameter Meaning Distribution/Value Source H
Sy Max chickens purchased Empirical 2]
Dempty Prob. no surplus 0.32 (W), 0.15 (R) Estimated
Punsold Prop. surplus 0.13 (W & R) Estimated
Qunsold Overdispersion surplus 0.29 (W & R) Estimated
Ppriority Prop. vendors selling 0.84 (W), 0.49 (R) Estimated
older chickens first

3.5 Middlemen setup w30

Middlemen properties. Middlemen are assumed to trade a single chicken
breed. Each middleman is assigned a capacity Sysas from a discrete distribution, 43
denoting the maximum number of chickens it can buy in a single day. Analo- 3
gously to vendors, the number of middlemen can not be specified a priori, as it 4.
is determined dynamically: we allocate as many vendors so that their combined 43
capacity matches the expected daily output from farms, i.e. >, O;. 436
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Table A 4: Market tiers’ parameters. Parameters p%,[l,")R represent the pro-

portions of chickens sold respectively to wholesalers and retailers in tier L from
either middlemen (if L = 0) or wholesalers from the previous tier (if L > 0).

1-— p%) — p%) represents instead the proportion of chickens that wholesalers in

tier L — 1 (L > 1) sell to end-point consumers (pg[),) - pgg) = 1 since middle-
men do not sell to end-point consumers). Values are the same for all markets.
Parameters are estimated from reconstructed transaction networks. The last
tier contains only zeros as vendors in the previous tier sell only to end-point

consumers.
T @
L2 o ek |
0 0.606 0.394
1 0407 0.315
2 0169 0.318
3 0 0.058
4 0 0.

In addition, each middleman is assigned an integer k,,, sampled from a
probability distribution, representing the number of markets visited daily. The s
middleman will then commit to sell chickens to k,, different markets during a3
each day (k,, does not change in time). Properties of middlemen and model 4o
parameters describing middlemen generation are listed in Table A5. an

Middlemen initial positions. As explained in the main text, at any point s
in time, each middleman tracks a set of ngeoyus distinct regions. During PDN s
generation, we assign middlemen to regions as follows: we first select an initial 4
area a uniformly at random. Then, n.0,t — 1 new areas are chosen among those s
neighboring a, i.e. within a distance d < dpspr (based on their centroids). In s
case not enough areas are selected, we choose among neighbors’ neighbors. a7

4 Simulating epidemic spread o

Our simulator allows to simulate transmission of multiple pathogens/strains in o
the same poultry population. The current version of the simulator allows to s
simulate transmission across multiple scales, including at the level of the same s
flock and at the level of farms. All parameters describing pathogen transmission s
are listed in Table A6. 453
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Table A 5: Middleman-specific parameters. Number of markets serviced
daily is geometric with probability pg, (truncated above by the number of
markets). k,, is sampled only once per middleman per realisation.

H Parameter Meaning Distribution/Value  Source H
S Cargo size Empirical [2]
Prrove Daily movement prob. 0.1 Assumed
Nscout Number of scouted areas 4 Assumed
dyryv distance between neighboring areas 80 km Assumed

D, Markets serviced parameter 0.66 2]

4.1 Within-flock transmission 454

Let us consider a population of chickens within a single setting, e.g. a farm, a s
middleman’s truck, a market, or a vendor’s shed. Note that at any time, any s
chicken belongs to one and only one setting. 257

We simulate transmission using Sellke’s construction [3]. Briefly, we assign s
a hazard value h to each chicken, sampled from an exponential distribution s
with unit rate; then, any contact with an infectious chicken reduces the target a0
chicken’s hazard by an amount dh. Whenever h hits 0 due to an infectious
contact, the target chicken is infected. Later, h is updated with another draw s
from an exponential distribution with unit rate. 463

We make the assumption that chickens within the same setting mix homo- 4
geneously at random. Therefore, infectious contacts are directed at random s
chickens. During simulations, each infectious chicken makes exactly one contact e
per time step with a randomly chosen chicken from the same setting. a67

Infection triggers a chain of events depending on the specified compartmen- 468
tal model. In SIR-like dynamics, an infected chicken becomes infectious im- 40
mediately, but recovers after an infectious period ¢; sampled from a geometric o
distribution with PMF: n

Plir=k)=0Q—-p)*-p;,k=0,1,..., (9)

where p; = 1 — exp(—(T7 +1)71) and T} is the average infectious period. It is
easy to check that the distribution in Eq. (9) has mean T;. In simulations, iy am
is sampled immediately after an infection happens, say time ¢, and recovery is 4
deferred to time ¢ 4+ ¢;. In models with latency, i.e. SEIR-like models, chickens s
become infectious only after an incubation time ¢z sampled from a geometric 4z
distribution with mean Tx. tg is sampled immediately after infection at time 4
t, and the chicken becomes infectious only at time t + g, at which point the s

corresponding infectious period is also sampled. 479
Let us now consider an infectious chicken i trying to infect chicken j with s
pathogen . The overall hazard reduction dh can then be written as: 281
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6h = ﬁ(l‘ﬂz) : S(-Tyj) * Wsetting » (10)

where [(x,1) is the transmissibility of x and S(z, j) is susceptibility of chicken s
Jj to infection with x. The factor wsetting is @ multiplier that depends only on s
the current setting, and accounts for differences in transmission across settings. sss
The factors B(z,i) and S(z,j) may depend on the state of the infector and s
infectee, respectively. Susceptibility may account for example for previous ex- s
posure to the same pathogen, or cross-reactions induced by exposure to other s
pathogens/strains. In the single-strain SIR model, for example, S(x,j) = 0if j  ass
is infectious or recovered. 489

4.2 Between-farm transmission 490

We allow pathogens to spread between distinct farms. If a farm f contains s
infectious chickens, the probability of infecting another farm f’ (provided f’is o
not empty), irrespective of whether f’ is already infected or not, is computed a0
as: 494

prp =min{l,ng -ngp - K(dyg )}, (11)

where ny, ny are the average numbers of chickens in farms f and f’, respec- a5
tively, ds ;- is the distance between f and f’ and K(z) is a spatial kernel. If as
transmission occurs, a random chicken in f’ is set as infected, conditional on 4
not being already immune, and a random infector chicken is selected from farm s
f. If the infector is co-infected with multiple strains, a single carried strain s g
is chosen at random and transmitted to the infectee. Note that this process so
bypasses the hazard rate calculation and that all strains are equivalent in the su
context of between-farm transmission. 502

We simulate transmission between farms using the Conditional Entry algo- s
rithm [4]. The algorithm requires farms to be assigned to cells in a grid in order  so
to exploit the fact that transmission is more likely to occur within cells than  sos
between them. We use an adaptive algorithm described in the same paper to s
construct a grid over the farm population. The algorithm relies on a hyper-  so
parameter A, here set to 15, that only affects the sizes and number of individual s
cells. Finally, because performing between-farm transmission is computation-  soe
ally expensive, we run the conditional entry algorithm only once per day rather s

than every time step. 511
In this work we consider a power-law transmission kernel: 512
Brr, for d < dg
K(d) = BrF (d;)w , ford>dg (12)
where Bpp denotes the overall strength of spatial transmission. 513
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4.3 External introductions s14

External transmission events are responsible for seeding and re-seeding pathogens ss
in farms. Once a day we iterate over all farms and reduce the hazard of a ran- s

domly selected chicken i due to pathogen s by an amount: 517
6hea:t7i = Bewt(s)‘s’(xa Z) . (13)

In the main manuscript, we also consider an alternative seeding protocol s

that introduces different strains in distinct upazilas. 510

Table A 6: Epidemic parameters. Distributions of latent and infectious
period are geometric with expected values typical of AIV infections. The trans-
mission kernel’s shape and parameters vx and dx are instead inspired to a
study of H5N1 epidemics in Dhaka region.

H Parameter Meaning Distribution/Value  Source H
Tg Mean latent period 6 hours 5]
T Mean infectious period 48 hours [5]
B Base within-flock transmissibility 0.2 hours—! Assumed
Beat Intro. rate 0.0005 days~—! Assumed
Brr Inter-flock transmissibility 5-10~ 1 days™! Assumed
YK Exponent transmission kernel 0.94 [6]
di Scale transmission kernel 0.1 km [6]
wx Setting-specific transmission 0.2 (F),1 (MM)  Assumed
multiplier 1 (M), 1(V)
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Supplementary Figure 1: Additional farm statistics from simulations.
(A) Distribution of numbers of production cycles completed per year. The simu-
lated distribution (red) appears narrower compared to empirical data (black) [1].
However, it should be added that several interviewed farmers raised multiple
batches simultaneously, and those that declared raising a single batch during
the interview may well have being managing 2 or more simultaneously during
the previous year. (B) Cumulative distribution of sizes of transactions involving
farms and middlemen (solid line). The dotted line represents the cumulative
proportion of chickens sold in transactions up to a given size. given size. The
corresponding PMFs; denoted with ps and pl, respectively, are related since
Py = 8-psy..5-Pps. In other words, p) is the size-biased version of p,. (C)
Proportion of chickens remaining unsold after a given time since being offered
for sale for the first time by a farmer. Note that it is highly unlikely for a
chicken to remain unsold for more than 5 days. Results are obtained from a
single simulation with default settings as in Fig. 2 in the main manuscript.
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Supplementary Figure 2: Additional middlemen statistics from simula-
tions. (A) Proportion of upazilas visited daily by one middleman during a
single simulation. Note that a middleman may visit up to 4 upazilas per day,
but visiting one or two is usually sufficient to complete a cargo. (B) Distribu-
tions of daily numbers of farms visited by one middlemen (green) and middle-
men visiting one farm (red). (C) Distribution of numbers of vendors trading
daily with a middleman. (D) Cumulative distribution of sizes of transactions
involving middlemen and vendors (solid line). The dotted line represents the
cumulative proportion of chickens sold in transactions up to a given size. Note
that these transactions are typically smaller than those between farms and mid-
dlemen since vendors deal with smaller amounts of chickens than other PDN
actors. Results are obtained from a single simulation with default settings as in
Fig. 2 in the main manuscript.
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Supplementary Figure 3: Additional vendor statistics from simulations.
(A) Distribution of numbers of wholesalers supplying a retailer (yellow), another
wholesaler (blue) or any vendor (red) on a daily basis. (B) Distribution of num-
bers of retailers (yellow), wholesalers (blue) or vendors (red), regardless of type,
purchasing from a single wholesaler on a daily basis. Note that (A) excludes
vendors buying chickens from middlemen, i.e. vendors operating in the first
LBM tier. (C) Distributions of daily amounts of chickens bought from retailers
(yvellow) and wholesalers (blue) in simulations (lines) and data (markers) [2].
(D) Cumulative distribution of sizes of transactions involving middlemen and
vendors (solid line). The dotted line represents the cumulative proportion of
chickens sold in transactions up to a given size. Results are obtained from a
single simulation with default settings as in Fig. 2 in the main manuscript.
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Supplementary Figure 4: Distribution of marketing times. Each panel
shows distributions of marketing times for different average proportions of un-
sold chickens punsora and for increasing probability pempty of a vendor selling all
chickens in a single day (from left to right). The marketing time is defined as
the time interval elapsed since a chicken enters any LBM for the first time and
is sold to an end-point customer. Simulation settings are the same as in Fig. 4
with only 10% of vendors prioritizing the sale of unsold chickens.

1.0
0.8
o) Threshold
o 30 days
o 0.6 35 days
8 40 days
5 = 45 days
0 0.4 = 50 days
E = 55 days
D = 60 days
0.2 1 = 55 days
= 70 days
0.0
5 10 15 20 25

Te (hours)

Supplementary Figure 5: Sensitivity of persistence probability to dura-
tion of transmission chains. Lines show how the probability of pathogen per-
sistence varies with both T and the minimum duration to determine whether
a transmission chain is persistent or not. The estimation of the probability of
persistence as well as simulation settings are the same as in Fig. 61.
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Supplementary Figure 6: Viral mixing under complete cross-immunity.
Results mirror panels B,C,E,F from Fig. 7 in the main manuscript, under the
assumption of complete cross-immunity (o = 0). Increasing cross-immunity
lowers strain richness in any setting as individual strains face increased com-
petition. Nonetheless, increasing cross-immunity does not significantly affect
overlap between LBMs.
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