

1 SharePro: an accurate and efficient genetic colocalization 2 method accounting for multiple causal signals

3 Wenmin Zhang^{1,*}, Tianyuan Lu², Robert Sladek^{1,3,4}, Yue Li^{1,5}, Hamed S.
4 Najafabadi^{1,3,4}, and Josée Dupuis^{1,6,*}

5 ¹Quantitative Life Sciences, McGill University, Montreal, Canada

6 ²Department of Statistical Sciences, University of Toronto, Toronto, Canada

7 ³Department of Human Genetics, McGill University, Montreal, Canada

8 ⁴Dahdaleh Institute of Genomic Medicine, Montreal, Canada

9 ⁵School of Computer Science, McGill University, Montreal, Canada

10 ⁶Department of Epidemiology, Biostatistics and Occupational Health, McGill
11 University, Montreal, Canada

12 *Correspondence to wenmin.zhang@mail.mcgill.ca and joseedupuis3@mcgill.ca

13

Abstract

14 **Motivation:** Colocalization analysis is commonly used to assess whether two or more traits share
15 the same genetic signals identified in genome-wide association studies (GWAS), and is important for
16 prioritizing targets for functional follow-up of GWAS results. Existing colocalization methods can
17 have suboptimal performance when there are multiple causal variants in one genomic locus.

18 **Results:** We propose SharePro to extend the COLOC framework for colocalization analysis. Share-
19 Pro integrates linkage disequilibrium (LD) modelling and colocalization assessment by grouping cor-
20 related variants into effect groups. With an efficient variational inference algorithm, posterior colo-
21 calization probabilities can be accurately estimated. In simulation studies, SharePro demonstrated
22 increased power with a well-controlled false positive rate at a low computational cost. Through a
23 challenging case of the colocalization analysis of the circulating abundance of R-spondin 3 (RSPO3)
24 GWAS and estimated bone mineral density GWAS, we demonstrated the utility of SharePro in identi-
25 fying biologically plausible colocalized signals.

26 **Availability and Implementation:** The SharePro software for colocalization analysis is openly avail-
27 able at https://github.com/zhwm/SharePro_coloc and the analysis conducted in this
28 study is available at https://github.com/zhwm/SharePro_coloc_analysis.

29 1 Introduction

30 Colocalization analysis is a commonly used statistical procedure to assess whether two or more traits
31 share the same genetic signals identified in genome-wide association studies (GWAS) [1–5]. It is impor-
32 tant for understanding the interplay between heritable traits [6, 7], such as validating causal inference
33 results based on Mendelian randomization analysis [3, 8, 9] and identifying candidate genes for func-
34 tional follow-up studies [2, 10–12]. Therefore, a sensitive colocalization method that effectively controls
35 the false positive rate is crucial for increasing the yield of complex trait genetics studies.

36 COLOC [1] is one of the most widely used methods for colocalization analysis. COLOC uses a
37 Bayesian framework to estimate posterior probabilities of five different causal settings in a locus (H0:
38 no causal signals; H1: one unique causal signal for trait 1; H2: one unique causal signal for trait 2; H3:
39 different causal signals for trait 1 and 2; H4: one shared causal signal for trait 1 and 2. [1]). Colocaliza-
40 tion probability is defined by the posterior probability of H4 [1]. A key assumption in COLOC is that
41 only one causal variant exists within each genomic locus [1]. In both simulation and substantive studies
42 [1, 10], COLOC demonstrated high accuracy in identifying the shared causal signal when the one-causal-
43 variant assumption was met. However, the performance of COLOC may be compromised when more
44 than one causal signal exists in a genomic locus [2, 5, 13].

45 Building upon COLOC, several methods have been developed to address these challenges. For exam-
46 ple, eCAVIAR allows for multiple causal signals [2] by adopting the CAVIAR [14] fine-mapping frame-
47 work for colocalization. In eCAVIAR, colocalization is assessed at the variant-level by examining the
48 probabilities of variants being causal in both traits. Specifically, the posterior inclusion probabilities for
49 variants are first calculated separately for each trait. Then, the variant-level colocalization probabilities
50 are obtained from the product of the posterior inclusion probabilities. Recently, COLOC + SuSiE [5]
51 adopts a fine-mapping method SuSiE [15] for identifying multiple causal variants before performing
52 pairwise colocalization, which could improve the performance of COLOC when multiple causal sig-
53 nals exist. Similarly, PWCoCo [16] first performs conditional and joint analysis with GCTA-COJO [17],
54 followed by colocalization analysis on each pair of the conditionally independent signals identified by
55 GCTA-COJO using COLOC. These methods implement a two-step strategy. Namely, they first account
56 for LD via fine-mapping or conditional analysis to identify candidate variants for colocalization analysis,

57 separately for each trait. And then, under the one-causal-variant assumption, colocalization probabilities
58 are assessed by examining whether each pair of candidate variants represents the same causal signal.
59 However, with this strategy, the uncertainties in accounting for LD from the first step might affect the
60 assessment of colocalization in the second step.

61 We propose SharePro (Shared sparse Projection for colocalization analysis) to integrate LD mod-
62 elling and colocalization assessment to account for multiple causal variants in colocalization analysis.
63 In SharePro, highly correlated variants are grouped into effect groups and colocalization probabilities
64 are assessed by examining the causal status of each effect group in different traits. We evaluate the per-
65 formance of SharePro in simulation studies in comparison to state-of-the-art colocalization methods.
66 We further examine colocalization between cis-protein quantitative trait locus (pQTL) of the circulating
67 abundance of RSPO3 and a GWAS locus identified for estimated bone mineral density (eBMD) using
68 heel quantitative ultrasound measurement to evaluate whether SharePro could better identify biologically
69 plausible colocalized signals.

70 **2 Methods**

71 **2.1 SharePro method overview**

72 SharePro takes marginal associations (z-scores) from GWAS summary statistics and LD information cal-
73 culated from a reference panel as inputs, and infers posterior probabilities of colocalization (**Figure 1**).
74 Unlike existing methods, SharePro takes an effect group-level approach for colocalization. Specifically,
75 SharePro uses a sparse projection shared across traits to group correlated variants into effect groups.
76 Through this shared projection, variant representations for effect groups are the same across traits so that
77 colocalization probabilities can be directly calculated at the effect group-level. With an efficient varia-
78 tional inference algorithm, both variant representations for effect groups and their causal statuses in traits
79 can be accurately inferred. Consequently, we can obtain colocalization probabilities from the posterior
80 probabilities of effect groups being causal for all traits.

81 2.2 SharePro for colocalization analysis

82 In SharePro, we assume there are altogether K effect groups (for either trait y_1 or trait y_2 , or both) in a
 83 locus with G variants. Similar to our previous work on the sparse projection formulation of the SuSiE
 84 model [15, 18, 19], for the k^{th} ($k \in \{1, \dots, K\}$) effect group, SharePro uses \mathbf{s}_k , a sparse indicator shared
 85 by both traits to specify its variant representations (**Figure 1**). This indicator follows a multinomial dis-
 86 tribution:

$$\mathbf{s}_k \sim \text{Multinomial}(1, \mathbf{1}_{G \times 1} \times \frac{1}{G})$$

87 We use two additional sets of trait-specific variables to describe relationships between the k^{th} effect
 88 group and each trait: causal indicators c_{k1}, c_{k2} of whether the k^{th} effect group is causal for y_1 and y_2
 89 and β_{k1} and β_{k2} for their corresponding effect sizes (here we illustrate the model with two traits but it is
 90 also compatible with multiple traits):

$$c_{k1}, c_{k2} \sim \text{Bernoulli}(\sigma)$$

91

$$\beta_{k1} \sim \mathcal{N}(0, \tau_{\beta_1}^{-1})$$

92

$$\beta_{k2} \sim \mathcal{N}(0, \tau_{\beta_2}^{-1})$$

93 Denoting the genotype matrix as \mathbf{X}_1 and \mathbf{X}_2 , for traits y_1 and y_2 , we have:

$$\mathbf{y}_1 \sim \mathcal{N}(\mathbf{X}_1 \sum_k \mathbf{s}_k \beta_{k1} c_{k1}, \tau_{y_1}^{-1} \mathbf{I})$$

94

$$\mathbf{y}_2 \sim \mathcal{N}(\mathbf{X}_2 \sum_k \mathbf{s}_k \beta_{k2} c_{k2}, \tau_{y_2}^{-1} \mathbf{I})$$

95 τ_{β_1} and τ_{β_2} are hyperparameters for effect sizes while τ_{y_1} and τ_{y_2} are hyperparameters for residual vari-
 96 ances; σ is the important hyperparameter for prior colocalization probability. We discuss choices of these
 97 hyperparameters in the **Supplementary Notes**. The colocalization probability for the k^{th} effect group is
 98 represented by the posterior probability of $p(c_{k1} = c_{k2} = 1 | \mathbf{y}_1, \mathbf{y}_2, \mathbf{X}_1, \mathbf{X}_2)$. We use an efficient vari-
 99 ational inference algorithm [18, 20, 21] adapted for GWAS summary statistics for posterior inference
 100 (detailed in the **Supplementary Notes**).

101 2.3 Simulation studies

102 We conducted simulation studies under different causal settings to evaluate the performance of colocal-
103 ization methods. We randomly sampled five 1-Mb loci from the genome and extracted their genotypes
104 for 25,000 and 1,000 non-overlapping UK Biobank European ancestry individuals [22] to simulate trait 1
105 and trait 2, respectively. For each locus, we calculated the LD matrix using PLINK [23].

106 In each locus, we randomly sampled K_C causal variants to be shared across traits and additionally K_S
107 causal variants to be specific for each trait. For example, when $K_C = 0$ and $K_S = 1$, there was one
108 causal variant for trait 1 and one different causal variant for trait 2; When $K_C = 1$ and $K_S = 0$, there was
109 one causal variant shared by both traits. We set the per-variant heritability to be 0.01 in trait 1 and 0.05
110 in trait 2. With simulated traits, we performed GWAS using GCTA [24] to obtain summary statistics. We
111 repeated this process 50 times for each setting.

112 With LD information and simulated summary statistics, we performed colocalization analysis with
113 five different methods (**Table 1**) using a default prior colocalization probability of 1×10^{-5} and obtained
114 posterior colocalization probabilities from COLOC [1]. Both COLOC+SuSiE [4] and PWCoCo [16]
115 generated multiple pairs of colocalization probabilities, with the maximum used as colocalization prob-
116 abilities. For eCAVIAR, we also used the maximum variant-level colocalization probabilities as locus-
117 level colocalization summary [2]. Similarly in SharePro, maximum colocalization probabilities across all
118 identified effect groups were used.

119 A colocalization probability > 0.8 was considered strong evidence supporting colocalization, while a
120 colocalization probability < 0.2 was considered evidence against colocalization [3].

121 2.4 Colocalization analysis of RSPO3 pQTL and eBMD GWAS

122 We examined the utility of SharePro by assessing the colocalization between a cis-pQTL locus of the
123 circulating abundance of RSPO3, and a GWAS locus identified for eBMD using heel quantitative ul-
124 trasound measurement. We obtained UK Biobank eBMD GWAS summary statistics from the GEFOS
125 consortium [25] and RSPO3 pQTL summary statistics from the Fenland study [26]. The LD matrix was
126 calculated using UK Biobank European ancestry individuals and colocalization analysis was performed
127 with five different methods (**Table 1**) using a default prior colocalization probability of 1×10^{-5} .

128 3 Results

129 3.1 Simulation studies

130 To evaluate the performance of SharePro in colocalization analysis, we performed simulations under dif-
131 ferent causal settings. SharePro achieved the highest power in most settings. Specifically, in the sim-
132 ple scenario of only one causal variant ($K_C + K_S = 1$), COLOC, PWCoCo and SharePro accurately
133 identified all simulated cases of colocalization with a colocalization probability above 0.8 (**Figure 2** and
134 **Supplementary Table S1**). Meanwhile, COLOC + SuSiE only identified 98.8% cases of colocalization
135 (**Supplementary Table S1**) while the locus-level colocalization summary derived from eCAVIAR only
136 identified 51.2% of the simulated cases of colocalization (**Supplementary Table S1**).

137 In more challenging scenarios with multiple causal variants, SharePro maintained the highest power
138 for colocalization analysis, followed by COLOC + SuSiE. For example, with $K_C = 1$ and $K_S = 1$
139 and a colocalization probability cutoff at 0.8, SharePro achieved a true positive rate of 99.2%, while the
140 second best method COLOC + SuSiE achieved a true positive rate of 97.6% (**Figure 2** and **Supple-
141 mentary Table S1**). In contrast, as expected, since the one-causal-variant assumption was not satisfied, the
142 performance of COLOC became worse and only identified 44.4% cases of colocalization (**Supple-
143 mentary Table S1**). With more than one causal variant shared between the two simulated traits ($K_C > 1$),
144 SharePro consistently identified all cases of colocalization and outperformed other methods (**Figure 2**
145 and **Supplementary Table S1**).

146 When causal variants were different across the simulated traits (non-colocalized), the colocalization
147 probabilities obtained by COLOC, COLOC+SuSiE, eCAVIAR and SharePro were consistently below
148 0.2 (**Figure 2** and **Supplementary Table S2**). In contrast, PWCoCo had higher colocalization proba-
149 bilities. For instance, with $K_C = 0$ and $K_S = 1$, PWCoCo had a false positive rate of 2.4% with a
150 colocalization probability cutoff at 0.2 (**Supplementary Table S2**).

151 Moreover, SharePro also demonstrated high computational efficiency (**Table 1**). Across different sim-
152 ulation settings, on average, SharePro took 4.3 seconds to assess colocalization in a 1-Mb locus, which
153 was only longer than COLOC. In contrast, on average, eCAVIAR took more than 3 minutes to assess
154 colocalization in the same locus (**Table 1**).

155 We additionally performed prior sensitivity analysis (**Supplementary Notes**) to examine the impact

156 of prior colocalization probabilities on posterior colocalization probabilities and showcased two repre-
157 sentative scenarios in **Figure 3**. When the GWAS summary statistics demonstrate strong colocalization
158 pattern (**Figure 3A**), varying prior colocalization probabilities does not drastically change the posterior
159 colocalization probabilities (**Figure 3B**). In contrast, when statistical evidence from GWAS associations
160 is weak (**Figure 3C**), the posterior colocalization probabilities increases with the prior colocalization
161 probabilities (**Figure 3D**).

162 3.2 RSPO3-eBMD example

163 The eBMD measured at the heel using quantitative ultrasound is an important biomarker of osteoporosis
164 and strongly predicts fracture risk [25, 27, 28]. RSPO3 is a known modulator of the Wnt signaling path-
165 way that plays a crucial role in maintaining bone homeostasis [29, 30]. It has been experimentally shown
166 that the abundance of RSPO3 strongly influences the proliferation and differentiation of osteoblasts and
167 regulates bone mass [13]. Therefore, it is biologically plausible that the cis-pQTL of RSPO3 colocalize
168 with an eBMD GWAS locus.

169 However, although the marginal genetic associations for RSPO3 abundance and eBMD demonstrated
170 a highly similar pattern (**Figure 4A**), existing methods indicated no or minor evidence of colocalization
171 (**Figure 4B**). With SharePro, we identified multiple effect groups in this region and colocalization results
172 indicated that both rs7741021/rs9482773 and rs853974 were shared causal signals between circulating
173 RSPO3 abundance and eBMD (**Supplementary Table S3**). We explored different hyperparameter set-
174 tings for prior colocalization probabilities in SharePro (**Supplementary Notes**) and obtained robust colo-
175 calization results (**Supplementary Tables S4-7**).

176 4 Discussion

177 In this work, we present SharePro to integrate LD modelling and colocalization assessment that extends
178 the classical COLOC framework to account for multiple causal signals. Compared to methods that adopt
179 a two-step strategy to relax the one-causal-variant assumption in COLOC, the effect group-level ap-
180 proach in SharePro can effectively reduce the impact of LD in aligning causal signals, resulting in im-
181 proved power for colocalization analysis. Under different simulation settings, SharePro achieved the

182 highest power with a well-controlled false positive rate. Additionally, SharePro also demonstrated high
183 computational efficiency.

184 Through the example of the colocalization analysis of RSPO3 cis-pQTL and eBMD GWAS, we
185 demonstrated that SharePro could correctly identify biologically plausible colocalization in the pres-
186 ence of multiple causal signals. In the RSPO3 locus, both the RSPO3 pQTL study and the eBMD GWAS
187 are well-powered and the marginal associations exhibit a similar pattern (**Figure 4B**). However, the lead
188 variants with the smallest marginal p-value in this locus, although highly correlated, are different for cir-
189 culating RSPO3 abundance and eBMD (**Figure 4B**). In the presence of multiple causal signals, colo-
190 calization analysis in this locus using existing methods has been challenging. In SharePro, correlated
191 variants are grouped into effect groups and as a result, the impact of misaligned lead variants on colocal-
192 ization analysis is mitigated.

193 An important hyperparameter in colocalization analysis is the prior colocalization probability. In
194 SharePro, the default prior colocalization probability is 1×10^{-5} . In COLOC, this hyperparameter is
195 represented as p_{12} with a default value of 1×10^{-5} [1]. Because the prior colocalization probability can
196 impact posterior colocalization probability, especially when GWAS are not well-powered, it is necessary
197 to explore a range of different values to evaluate the robustness of colocalization results [4].

198 There are other cautions in colocalization analysis that also apply to SharePro. First, summary
199 statistics-based analysis requires that the LD reference panel matches the LD structure underlying the
200 samples included in GWAS. In SharePro, LD mismatch can lead to convergence issues for the algo-
201 rithm. Second, the validity of colocalization results relies on the rigor of GWAS in carefully accounting
202 for population stratification and other unmeasured confounding factors. Variants associated with shared
203 confounding factors can also be considered colocalized. Third, the power to detect colocalization is de-
204 pendent on the power of fine-mapping. We strongly suggest that prior sensitivity analysis should be per-
205 formed to evaluate whether the GWAS are well-powered for colocalization analysis.

206 In summary, we have developed SparsePro to extend COLOC for colocalization analysis. With in-
207 creased power and well-controlled false positive rate at a low computation cost, SharePro is suitable for
208 large-scale colocalization analysis. With the increasing number of publicly available GWAS summary
209 statistics, we envision SharePro will have the potential to substantially deepen our understanding of com-
210 plex traits and diseases.

211 5 Figure Legends

212 **Figure 1 SharePro for genetic colocalization analysis.** The data generative process in SharePro is
213 depicted in the graphical model. Green shaded nodes represent observed variables: genotype X_{i1} , trait
214 y_{i1} for the i^{th} individual in the first study, and genotype X_{j2} , trait y_{j2} for the j^{th} individual in the second
215 study. The orange unshaded nodes represent latent variables characterizing effect groups. s_k is a sparse
216 indicator shared between traits, specifying variant representations for the k^{th} effect group. c_{k1} and c_{k2}
217 are causal indicators of whether the k^{th} effect group is causal in trait y_1 and trait y_2 while β_{k1} and β_{k2}
218 represent the corresponding effect sizes. As a result, colocalization probability for the k^{th} effect group
219 is the posterior probability of $c_{k1} = c_{k2} = 1$. Here we assume individual-level data are available and
220 adaption to GWAS summary statistics is detailed in the **Supplementary Notes**.

221 **Figure 2 SharePro demonstrated improved power with a well controlled false positive rate for**
222 **colocalization analysis.** Colocalization probabilities derived by five methods based on 50 replicates in
223 each of the five loci are illustrated. Rows represent the different numbers of causal variants ($K_C + K_S$)
224 and colors represent the different numbers of shared causal variants (K_C) between the two simulated
225 traits. Median colocalization probabilities across a total of 250 replicates are indicated by horizontal bars
226 and inter-quartile ranges are represented by boxes.

227 **Figure 3 Prior sensitivity analysis in SharePro.** (A) GWAS associations with a strong support for
228 colocalization. Each dot represents a variant and the color indicates its correlation with the simulated
229 colocalized variant. (B) Prior sensitivity analysis in the case of a strong support for colocalization. The
230 x-axis stands for prior colocalization probabilities in the logarithmic scale and the y-axis stands for pos-
231 terior colocalization probabilities. (C) GWAS associations with a weak support for colocalization. Each
232 dot represents a variant and the color indicates its correlation with the simulated colocalized variant. (D)
233 Prior sensitivity analysis in the case of a weak support for colocalization. The x-axis stands for prior
234 colocalization probabilities in the logarithmic scale and the y-axis stands for posterior colocalization
235 probabilities.

236 **Figure 4 SharePro identified shared effect groups between RSPO3 pQTL and eBMD GWAS. (A)**
237 Marginal associations from eBMD GWAS and RSPO3 pQTL. The x-axis indicates chromosome and po-
238 sition information and the y-axis represents p-value on the logarithmic scale. Each dot represents a vari-
239 ant and its color indicates its correlation (r^2) with the colocalized variant rs7741021. (B) Colocalization
240 probabilities assessed by different colocalization methods for RSPO3 pQTL and eBMD GWAS.

241 **6 Supporting Information**

242 **6.1 Supplementary Notes**

243 **6.2 Supplementary Tables**

244 **7 Data and Software Availability**

245 The SharePro software for colocalization analysis is openly available at <https://github.com/>
246 `zhwm/SharePro_coloc` and the analysis conducted in this study is available at [https://](https://github.com/)
247 `github.com/zhwm/SharePro_coloc_analysis`. GWAS summary statistics for eBMD was
248 obtained from the GEFOS consortium at <http://www.gefos.org>. GWAS summary statistics
249 for RSPO3 pQTL was obtained from the Fenland study at <https://omicscience.org/apps/>
250 `pgwas/`. Both COLOC and COLOC+SuSiE are included in the coloc (version 5.1.0) R package ob-
251 tained from CRAN. PWCoCo was obtained from GitHub at <https://github.com/jwr-git/>
252 `pwcoco`. eCAVIAR was obtained from GitHub at <https://github.com/fhormoz/caviar>.

Method	Multiple causal variants	Signal identification	Posterior summary	Running time (second; SD)	Reference
COLOC	X	X	locus-level	0.1 (0.1)	[1]
COLOC+SuSiE	✓	separate fine-mapping	paired locus-level	14.0 (3.3)	[5]
eCAVIAR	✓	separate fine-mapping	variant-level	227.7 (89.3)	[2]
PWCoCo	✓	conditional analysis	paired locus-level	38.1 (20.5)	[8]
SharePro	✓	joint fine-mapping	effect group-level	4.3 (1.1)	this study

Table 1: Summary of colocalization method features.

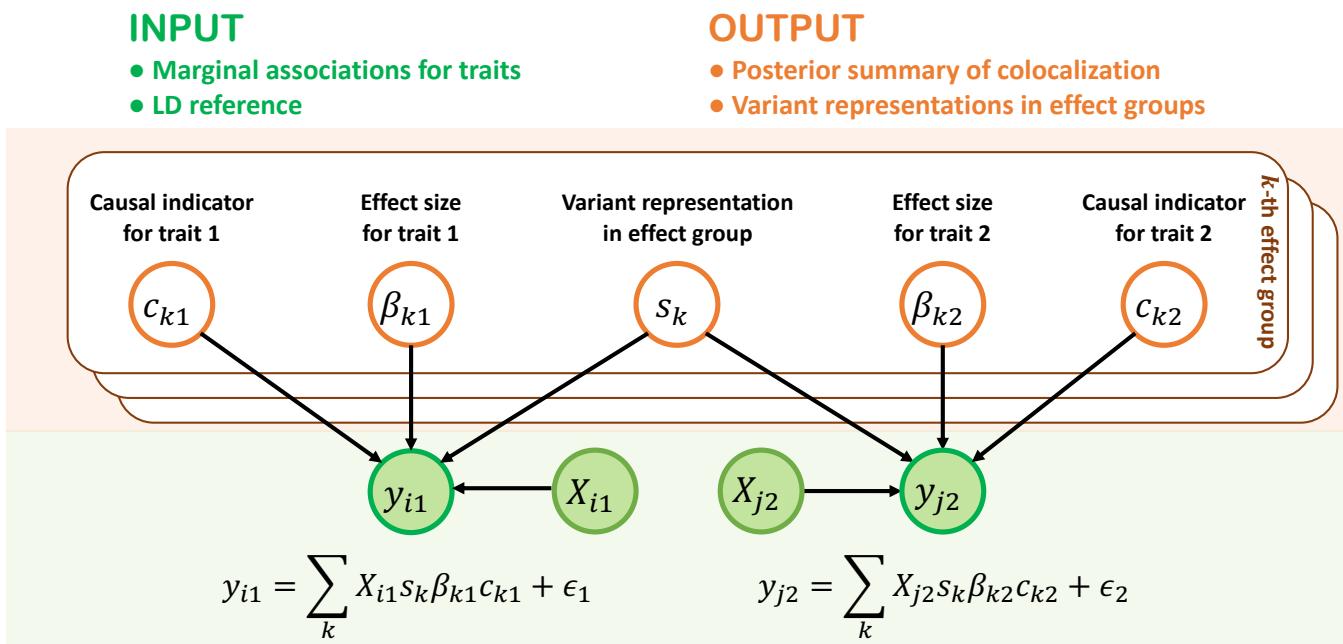


Figure 1: SharePro for genetic colocalization analysis.

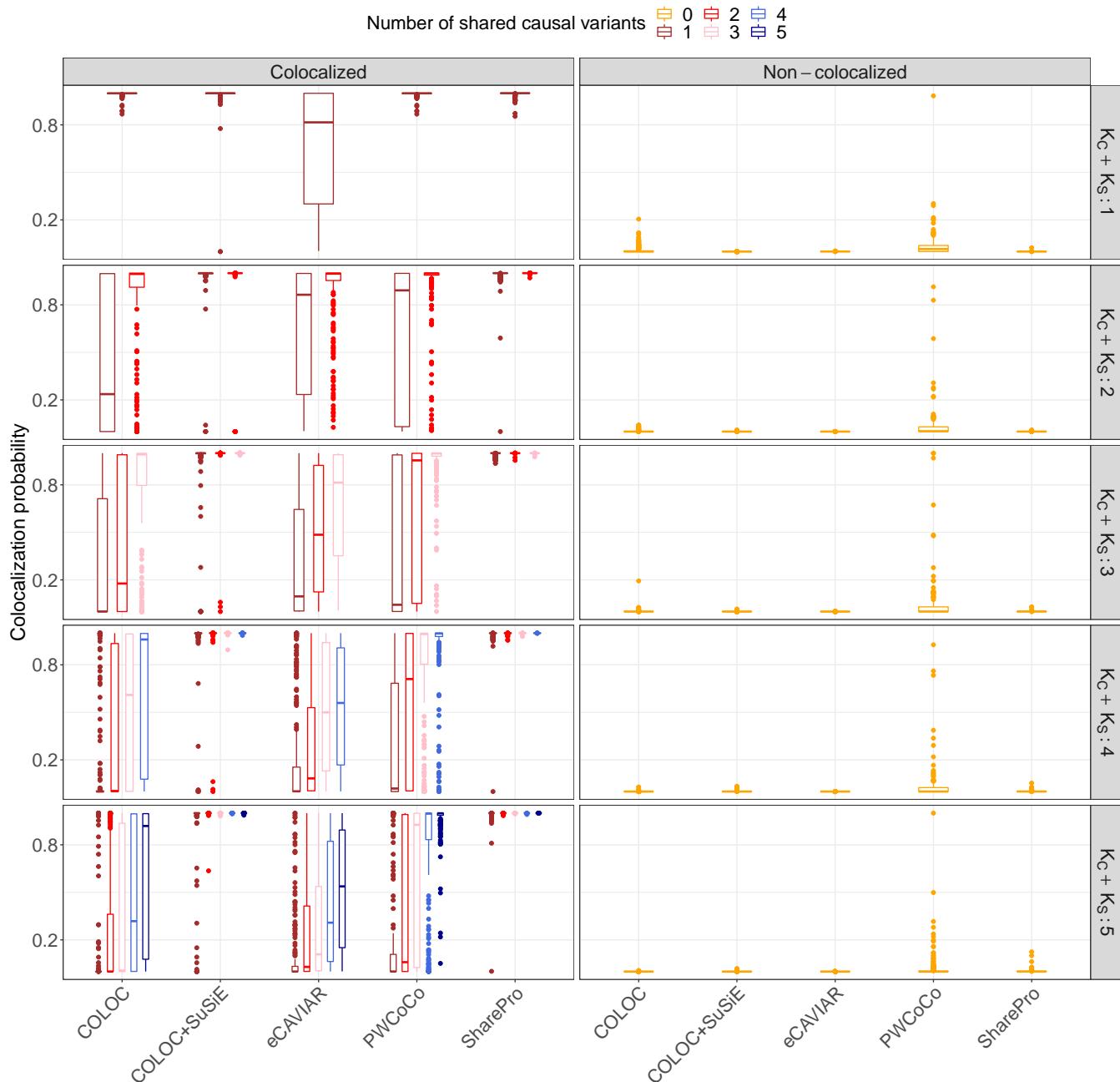


Figure 2: SharePro demonstrated improved power with a well controlled false positive rate for colocalization analysis.

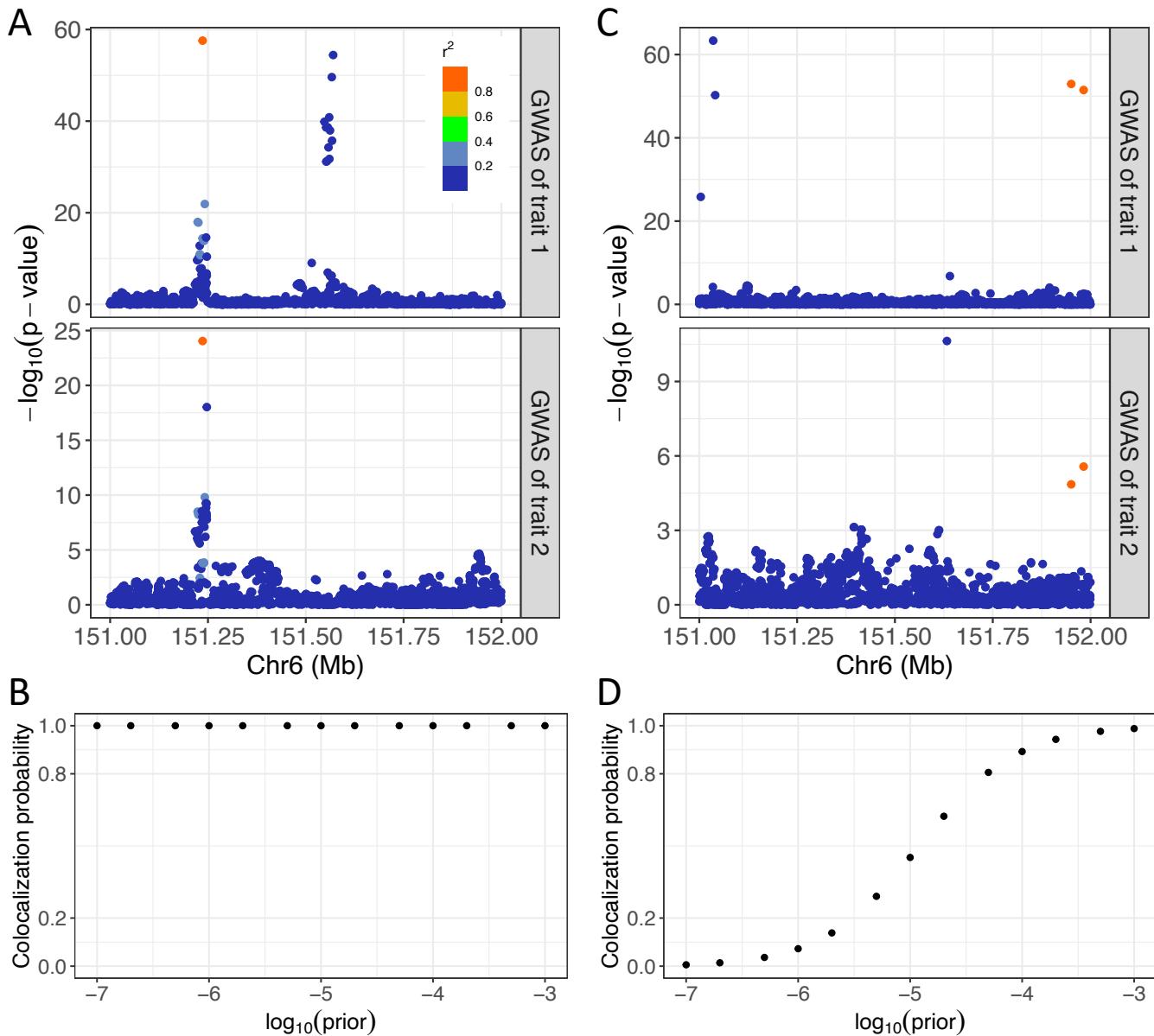


Figure 3: Prior sensitivity analysis in SharePro.

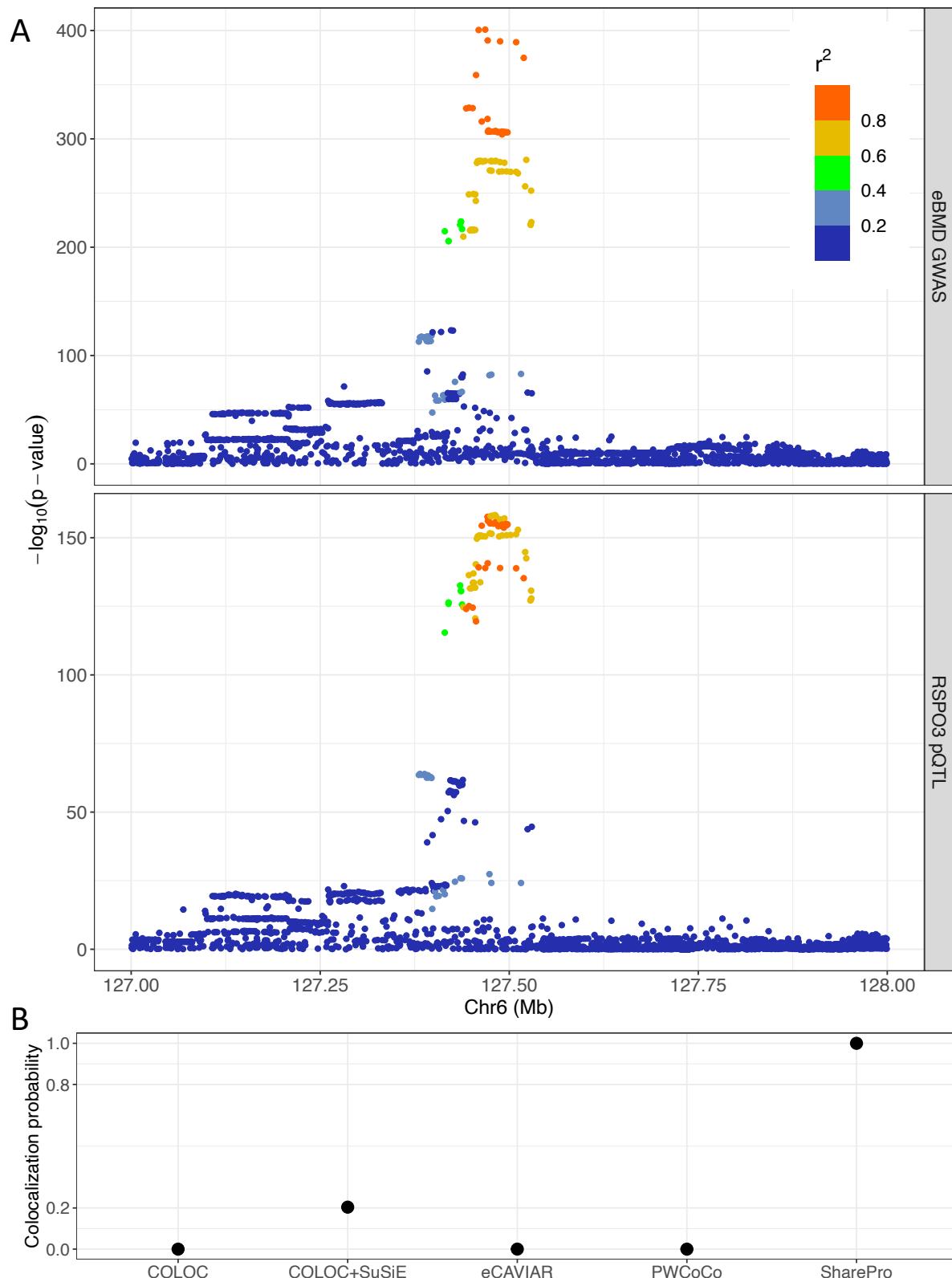


Figure 4: SharePro identified shared effect groups between RSPO3 pQTL and eBMD GWAS.

253 8 Acknowledgements

254 W.Z. has been supported by a doctoral training fellowship from the FRQNT (319188) and the Healthy
255 Brains, Healthy Lives Program, funded by the Canada First Research Excellence Fund (CFREF), Que-
256 bec's Ministère de l'Économie et de l'Innovation (MEI), and the Fonds de recherche du Québec (FRQS,
257 FRQSC and FRQNT). T.L. has been supported by a Schmidt AI in Science Postdoctoral Fellowship and
258 a Vanier Canada Graduate Scholarship. Y.L. is supported by Natural Sciences and Engineering Research
259 Council (NSERC) Discovery Grant (RGPIN-2019-0621), Fonds de recherche Nature et technologies
260 (FRQNT) New Career (NC-268592), and Canada First Research Excellence Fund Healthy Brains for
261 Healthy Life (HBHL) initiative New Investigator start-up award (G249591). H.S.N holds a Canada Re-
262 search Chair funded by the Canadian Institutes of Health Research and has been supported by NSERC
263 Discovery Grant (RGPIN-2018-05962). This research used the NeuroHub infrastructure and was under-
264 taken thanks in part to funding from the Canada First Research Excellence Fund, awarded through the
265 Healthy Brains, Healthy Lives initiative at McGill University. This research was enabled in part by sup-
266 port provided by Calcul Québec and the Digital Research Alliance of Canada. This research has been
267 conducted using the UK Biobank Resource under Application Number 45551.

268 9 Author contributions

269 Conceptualization: W.Z.; Data curation: W.Z., T.L.; Formal analysis: W.Z.; Funding acquisition: W.Z.,
270 Y.L., H.S.N, J.D.; Investigation: W.Z.; Methodology: W.Z.; Project Administration: R.S., H.S.N and
271 J.D.; Resources: Y.L., H.S.N and J.D.; Software: W.Z.; Supervision: Y.L., R.S., H.S.N and J.D.; Vali-
272 dation: W.Z., T.L., R.S., Y.L., H.S.N and J.D.; Visualization: W.Z.; Writing – Original Draft Preparation:
273 W.Z.; Writing – Review & Editing: W.Z., T.L., R.S., Y.L., H.S.N and J.D.

274 10 Disclosures

275 T.L. is an employee of 5 Prime Sciences Inc. The other authors have no relevant disclosures.

276 References

- 277 1. Giambartolomei, C. *et al.* Bayesian test for colocalisation between pairs of genetic association
278 studies using summary statistics. *PLOS Genetics* **10**, e1004383 (2014).
- 279 2. Hormozdiari, F. *et al.* Colocalization of GWAS and eQTL signals detects target genes. *The Ameri-
280 can Journal of Human Genetics* **99**, 1245–1260 (2016).
- 281 3. Zheng, J. *et al.* Phenome-wide Mendelian randomization mapping the influence of the plasma pro-
282 teome on complex diseases. *Nature Genetics* **52**, 1122–1131 (2020).
- 283 4. Wallace, C. Eliciting priors and relaxing the single causal variant assumption in colocalisation anal-
284 yses. *PLOS Genetics* **16**, e1008720 (2020).
- 285 5. Wallace, C. A more accurate method for colocalisation analysis allowing for multiple causal vari-
286 ants. *PLOS Genetics* **17**, e1009440 (2021).
- 287 6. Sun, B. B. *et al.* Genomic atlas of the human plasma proteome. *Nature* **558**, 73–79 (2018).
- 288 7. Pickrell, J. K. *et al.* Detection and interpretation of shared genetic influences on 42 human traits.
289 *Nature Genetics* **48**, 709–717 (2016).
- 290 8. Zuber, V. *et al.* Combining evidence from Mendelian randomization and colocalization: Review
291 and comparison of approaches. *The American Journal of Human Genetics* (2022).
- 292 9. Richardson, T. G., Hemani, G., Gaunt, T. R., Relton, C. L. & Davey Smith, G. A transcriptome-
293 wide Mendelian randomization study to uncover tissue-dependent regulatory mechanisms across
294 the human genome. *Nature Communications* **11**, 1–11 (2020).
- 295 10. Fortune, M. D. *et al.* Statistical colocalization of genetic risk variants for related autoimmune dis-
296 eases in the context of common controls. *Nature Genetics* **47**, 839–846 (2015).
- 297 11. Lu, T., Forgetta, V., Greenwood, C. M., Zhou, S. & Richards, J. B. Circulating Proteins Influencing
298 Psychiatric Disease: A Mendelian Randomization Study. *Biological Psychiatry* **93**, 82–91 (2023).
- 299 12. Yoshiji, S. *et al.* Proteome-wide Mendelian randomization implicates nephronectin as an actionable
300 mediator of the effect of obesity on COVID-19 severity. *Nature Metabolism* **5**, 248–264 (2023).

- 301 13. Nilsson, K. H. *et al.* RSPO3 is important for trabecular bone and fracture risk in mice and humans.
302 *Nature Communications* **12**, 1–18 (2021).
- 303 14. Hormozdiari, F., Kostem, E., Kang, E. Y., Pasaniuc, B. & Eskin, E. Identifying causal variants at
304 loci with multiple signals of association. *Genetics* **198**, 497–508 (2014).
- 305 15. Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to variable selection
306 in regression, with application to genetic fine mapping. *Journal of the Royal Statistical Society Series B: Statistical Methodology* **82**, 1273–1300 (2020).
- 308 16. Robinson, J. W. *et al.* An efficient and robust tool for colocalisation: Pair-wise Conditional and
309 Colocalisation (PWCoCo). *bioRxiv* (2022).
- 310 17. Yang, J. *et al.* Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies
311 additional variants influencing complex traits. *Nature Genetics* **44**, 369–375 (2012).
- 312 18. Zhang, W., Najafabadi, H. & Li, Y. SparsePro: an efficient genome-wide fine-mapping method integrating
313 summary statistics and functional annotations. *bioRxiv* (2021).
- 314 19. Zou, Y., Carbonetto, P., Wang, G. & Stephens, M. Fine-mapping from summary data with the “Sum
315 of Single Effects” model. *PLOS Genetics* **18**, e1010299 (2022).
- 316 20. Blei, D. M., Kucukelbir, A. & McAuliffe, J. D. Variational inference: A review for statisticians.
317 *Journal of the American Statistical Association* **112**, 859–877 (2017).
- 318 21. Titsias, M. & Lazaro-Gredilla, M. Spike and slab variational inference for multi-task and multiple
319 kernel learning. *Advances in Neural Information Processing Systems* **24**, 2339–2347 (2011).
- 320 22. Bycroft, C. *et al.* The UK Biobank resource with deep phenotyping and genomic data. *Nature* **562**,
321 203–209 (2018).
- 322 23. Purcell, S. *et al.* PLINK: a tool set for whole-genome association and population-based linkage
323 analyses. *The American Journal of Human Genetics* **81**, 559–575 (2007).
- 324 24. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex
325 trait analysis. *The American Journal of Human Genetics* **88**, 76–82 (2011).
- 326 25. Morris, J. A. *et al.* An atlas of genetic influences on osteoporosis in humans and mice. *Nature Genetics* **51**,
327 258–266 (2019).

- 328 26. Pietzner, M. *et al.* Mapping the proteo-genomic convergence of human diseases. *Science* **374**,
329 eabj1541 (2021).
- 330 27. Lu, T. *et al.* Improved prediction of fracture risk leveraging a genome-wide polygenic risk score.
331 *Genome Medicine* **13**, 1–15 (2021).
- 332 28. Lu, T., Forgetta, V., Greenwood, C. M. & Richards, J. B. Identifying Causes of Fracture Beyond
333 Bone Mineral Density: Evidence From Human Genetics. *Journal of Bone and Mineral Research*
334 **37**, 1592–1602 (2022).
- 335 29. Baron, R. & Kneissel, M. WNT signaling in bone homeostasis and disease: from human mutations
336 to treatments. *Nature Medicine* **19**, 179–192 (2013).
- 337 30. Lerner, U. H. & Ohlsson, C. The WNT system: background and its role in bone. *Journal of Internal*
338 *Medicine* **277**, 630–649 (2015).
- 339 31. Shi, H., Kichaev, G. & Pasaniuc, B. Contrasting the genetic architecture of 30 complex traits from
340 summary association data. *The American Journal of Human Genetics* **99**, 139–153 (2016).

SharePro Supplementary Notes

341 1 A variational inference algorithm for Bayesian colocalization

342 In SharePro (Figure 1), similar to our previous work on the sparse projection formulation of the SuSiE
343 model [15, 18, 19], with a shared projection matrix $\mathbf{S}_{G \times K} = [\mathbf{s}_1, \dots, \mathbf{s}_K]$, we can group correlated variants
344 into K effect groups where

$$\mathbf{s}_k \sim \text{Multinomial}(1, \mathbf{1}_{G \times 1} \times \frac{1}{G})$$

345 is the sparse indicator for the variant compositions in the k^{th} effect group. We have trait-specific indica-
346 tor vectors $\mathbf{c}_1 = [c_{11}, \dots, c_{K1}]$ and $\mathbf{c}_2 = [c_{12}, \dots, c_{K2}]$ to characterize the causal statuses of effect groups on
347 traits where

$$c_{k1}, c_{k2} \sim \text{Bernoulli}(\sigma)$$

348 With trait-specific effect size vectors $\boldsymbol{\beta}_1 = [\beta_{11}, \dots, \beta_{K1}]$ and $\boldsymbol{\beta}_2 = [\beta_{12}, \dots, \beta_{K2}]$ where

$$\beta_{k1} \sim \mathcal{N}(0, \tau_{\beta_1}^{-1})$$

349

$$\beta_{k2} \sim \mathcal{N}(0, \tau_{\beta_2}^{-1})$$

350 and denoting the genotype matrix as \mathbf{X}_1 and \mathbf{X}_2 , for traits \mathbf{y}_1 and \mathbf{y}_2 , we have:

$$\mathbf{y}_1 \sim \mathcal{N}(\mathbf{X}_1 \sum_k \mathbf{s}_k \beta_{k1} c_{k1}, \tau_{y_1}^{-1} \mathbf{I})$$

351

$$\mathbf{y}_2 \sim \mathcal{N}(\mathbf{X}_2 \sum_k \mathbf{s}_k \beta_{k2} c_{k2}, \tau_{y_2}^{-1} \mathbf{I})$$

352 In colocalization analysis, we are interested in the posterior probabilities of causal indicators based on
353 the observed traits \mathbf{y}_1 , \mathbf{y}_2 and the genotypes \mathbf{X}_1 and \mathbf{X}_2 . Inference of the exact posterior distribution of
354 causal indicators \mathbf{c}_1 , \mathbf{c}_2 and variant representations in effect groups \mathbf{S} is difficult. Similar with the IBSS
355 algorithm [15] proposed by SuSiE and our previous work on paired mean field variational inference al-

356 gorithm [18, 21], we use a paired mean field factorized variational family [21]

$$q(\mathbf{S}, \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \mathbf{c}_1, \mathbf{c}_2) = \prod_k q(\mathbf{s}_k, \beta_{k1}, \beta_{k2}, c_{k1}, c_{k2})$$

357 to approximate the desired posterior distribution:

$$p(\mathbf{S}, \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \mathbf{c}_1, \mathbf{c}_2 | \mathbf{y}_1, \mathbf{y}_2, \mathbf{X}_1, \mathbf{X}_2) = \frac{p(\mathbf{y}_1, \mathbf{y}_2, \mathbf{S}, \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \mathbf{c}_1, \mathbf{c}_2 | \mathbf{X}_1, \mathbf{X}_2)}{p(\mathbf{y}_1, \mathbf{y}_2 | \mathbf{X}_1, \mathbf{X}_2)}$$

358 We can obtain the optimal approximation by maximizing the evidence lower bound (ELBO) [20]:

$$ELBO = E_{q(\mathbf{S}, \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \mathbf{c}_1, \mathbf{c}_2)} [\log \frac{p(\mathbf{y}_1, \mathbf{y}_2, \mathbf{S}, \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \mathbf{c}_1, \mathbf{c}_2 | \mathbf{X}_1, \mathbf{X}_2)}{q(\mathbf{S}, \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \mathbf{c}_1, \mathbf{c}_2)}]$$

359 with the following conditions satisfied for each k [20]:

$$\log q(\mathbf{s}_k, \beta_{k1}, \beta_{k2}, c_{k1}, c_{k2}) = E_{q(\mathbf{s}_{\setminus k}, \boldsymbol{\beta}_{\setminus k1}, \boldsymbol{\beta}_{\setminus k2}, \mathbf{c}_{\setminus k1}, \mathbf{c}_{\setminus k2})} [\log p(\mathbf{y}_1, \mathbf{y}_2, \mathbf{S}, \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \mathbf{c}_1, \mathbf{c}_2 | \mathbf{X}_1, \mathbf{X}_2)]$$

360 where $E_{q(\mathbf{s}_{\setminus k}, \boldsymbol{\beta}_{\setminus k1}, \boldsymbol{\beta}_{\setminus k2}, \mathbf{c}_{\setminus k1}, \mathbf{c}_{\setminus k2})}$ is the expectation with respect to the variational distribution excluding the
361 k^{th} component. If we write out the joint probability:

$$\begin{aligned} & \log p(\mathbf{y}_1, \mathbf{y}_2, \mathbf{S}, \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \mathbf{c}_1, \mathbf{c}_2 | \mathbf{X}_1, \mathbf{X}_2) \\ &= \log p(\mathbf{y}_1 | \mathbf{X}_1, \mathbf{S}, \boldsymbol{\beta}_1, \mathbf{c}_1) + \log p(\mathbf{y}_2 | \mathbf{X}_2, \mathbf{S}, \boldsymbol{\beta}_2, \mathbf{c}_2) + \sum_k \log p(\mathbf{s}_k) \\ & \quad + \sum_k \log p(\beta_{k1}) + \sum_k \log p(\beta_{k2}) + \sum_k \log p(c_{k1}) + \sum_k \log p(c_{k2}) \\ &= \frac{N}{2} \log \frac{\tau_{y_1}}{2\pi} - \frac{\tau_{y_1}}{2} (\mathbf{y}_1 - \mathbf{X}_1 (\sum_k \mathbf{s}_k \beta_{k1} c_{k1}))^\top (\mathbf{y}_1 - \mathbf{X}_1 (\sum_k \mathbf{s}_k \beta_{k1} c_{k1})) \\ & \quad + \frac{N}{2} \log \frac{\tau_{y_2}}{2\pi} - \frac{\tau_{y_2}}{2} (\mathbf{y}_2 - \mathbf{X}_2 (\sum_k \mathbf{s}_k \beta_{k2} c_{k2}))^\top (\mathbf{y}_2 - \mathbf{X}_2 (\sum_k \mathbf{s}_k \beta_{k2} c_{k2})) \\ & \quad + \sum_k \sum_g s_{kg} \log \frac{1}{G} + \sum_k (\frac{1}{2} \log \frac{\tau_{\beta_1}}{2\pi} - \frac{\tau_{\beta_1}}{2} \beta_{k1}^2) + \sum_k (\frac{1}{2} \log \frac{\tau_{\beta_2}}{2\pi} - \frac{\tau_{\beta_2}}{2} \beta_{k2}^2) \\ & \quad + \sum_k [c_{k1} \log \sigma + (1 - c_{k1}) \log(1 - \sigma)] + \sum_k [c_{k2} \log \sigma + (1 - c_{k2}) \log(1 - \sigma)] \end{aligned}$$

362 and denote $\tilde{\beta}_{\setminus k1} = E_{q(\mathbf{S}_{\setminus k}, \beta_{\setminus k1}, \mathbf{c}_{\setminus k1})} \left[\sum_{k \neq k1} \mathbf{s}_{k1} \beta_{k1} c_{k1} \right]$ and $\tilde{\beta}_{\setminus k2} = E_{q(\mathbf{S}_{\setminus k}, \beta_{\setminus k2}, \mathbf{c}_{\setminus k2})} \left[\sum_{k \neq k2} \mathbf{s}_{k2} \beta_{k2} c_{k2} \right]$
363 the required conditions can be simplified into four different cases for the k^{th} effect group:

Case 1: $c_{k1} = 0 = c_{k2} = 0$, i.e. the k^{th} effect group is not causal for either trait:

$$\begin{aligned} & \log q(s_{kg} = 1, \mathbf{s}_{k \setminus g} = \mathbf{0}, \beta_{k1}, \beta_{k2}, c_{k1} = 0, c_{k2} = 0) \\ &= const + \frac{1}{2} \log \frac{\tau_{\beta_1}}{2\pi} - \frac{\tau_{\beta_1}}{2} \beta_{k1}^2 + \frac{1}{2} \log \frac{\tau_{\beta_2}}{2\pi} - \frac{\tau_{\beta_2}}{2} \beta_{k2}^2 + 2 \log(1 - \sigma) \end{aligned}$$

364 After integrating out β_{k1} and β_{k2} , we have:

$$\log q(s_{kg} = 1, \mathbf{s}_{k \setminus g} = \mathbf{0}, c_{k1} = 0, c_{k2} = 0) = const + 2 \log(1 - \sigma)$$

Case 2 (trait 1 specific): $c_{k1} = 1$ and $c_{k2} = 0$, i.e. the k^{th} effect group is causal for trait \mathbf{y}_1 but not for trait \mathbf{y}_2 :

$$\begin{aligned} & \log q(s_{kg} = 1, \mathbf{s}_{k \setminus g} = \mathbf{0}, \beta_{k1}, \beta_{k2}, c_{k1} = 1, c_{k2} = 0) \\ &= const + \tau_{y_1} \mathbf{X}_{g1}^\top (\mathbf{y}_1 - \mathbf{X}_1 \tilde{\beta}_{\setminus k1}) \beta_{k1} - \frac{\tau_{y_1}}{2} \mathbf{X}_{g1}^\top \mathbf{X}_{g1} \beta_{k1}^2 + \frac{1}{2} \log \frac{\tau_{\beta_1}}{2\pi} - \frac{\tau_{\beta_1}}{2} \beta_{k1}^2 \\ & \quad + \frac{1}{2} \log \frac{\tau_{\beta_2}}{2\pi} - \frac{\tau_{\beta_2}}{2} \beta_{k2}^2 + \log \sigma + \log(1 - \sigma) \end{aligned}$$

365 We recognize that $q(\beta_{k1} | s_{kg}=1, \mathbf{s}_{k \setminus g} = \mathbf{0}, c_{k1} = 1, c_{k2} = 0) \sim \mathcal{N}(\mu_{kg1}^*, \tau_{kg1}^*)$. By matching sufficient
366 statistics of the normal distribution, we have variational parameters for β_{k1} :

$$\tau_{kg1}^* = \tau_{y_1} \mathbf{X}_{g1}^\top \mathbf{X}_{g1} + \tau_{\beta_1}$$

367

$$\mu_{kg1}^* = \frac{\tau_{y_1}}{\tau_{kg1}^*} \mathbf{X}_{g1}^\top (\mathbf{y}_1 - \mathbf{X}_1 \tilde{\beta}_{\setminus k1})$$

368 After integrating out β_{k1} and β_{k2} , we have:

$$\log q(s_{kg} = 1, \mathbf{s}_{k \setminus g} = \mathbf{0}, c_{k1} = 1, c_{k2} = 0) = const + \frac{1}{2} \log \frac{\tau_{\beta_1}}{\tau_{kg1}^*} + \frac{\tau_{kg1}^* \mu_{kg1}^{*2}}{2} + \log \sigma(1 - \sigma)$$

Case 3 (trait 2 specific): $c_{k1} = 0$ and $c_{k2} = 1$, i.e. the k^{th} effect group is causal for trait \mathbf{y}_2 but not for

trait y_1 :

$$\begin{aligned} & \log q(s_{kg} = 1, \mathbf{s}_{k \setminus g} = \mathbf{0}, \beta_{k1}, \beta_{k2}, c_{k1} = 0, c_{k2} = 1) \\ &= const + \tau_{y_2} \mathbf{X}_{g2}^\top (\mathbf{y}_2 - \mathbf{X}_2 \tilde{\boldsymbol{\beta}}_{\setminus k2}) \beta_{k2} - \frac{\tau_{y_2}}{2} \mathbf{X}_{g2}^\top \mathbf{X}_{g2} \beta_{k2}^2 + \frac{1}{2} \log \frac{\tau_{\beta_1}}{2\pi} - \frac{\tau_{\beta_1}}{2} \beta_{k1}^2 \\ & \quad + \frac{1}{2} \log \frac{\tau_{\beta_2}}{2\pi} - \frac{\tau_{\beta_2}}{2} \beta_{k2}^2 + \log \sigma + \log(1 - \sigma) \end{aligned}$$

369 Similarly, we recognize that $q(\beta_{k2} | s_{kg}=1, \mathbf{s}_{k \setminus g} = \mathbf{0}, c_{k1} = 0, c_{k2} = 1) \sim \mathcal{N}(\mu_{kg2}^*, \tau_{kg2}^*)$. By matching
370 sufficient statistics for the normal distribution, we can obtain the following variational parameters for
371 β_{k2} :

$$\tau_{kg2}^* = \tau_{y_2} \mathbf{X}_{g2}^\top \mathbf{X}_{g2} + \tau_{\beta_2}$$

372

$$\mu_{kg2}^* = \frac{\tau_{y_2}}{\tau_{kg2}^*} \mathbf{X}_{g2}^\top (\mathbf{y}_2 - \mathbf{X}_2 \tilde{\boldsymbol{\beta}}_{\setminus k2})$$

373 After integrating out β_{k1} and β_{k2} , we have:

$$\log q(s_{kg} = 1, \mathbf{s}_{k \setminus g} = \mathbf{0}, c_{k1} = 0, c_{k2} = 1) = const + \frac{1}{2} \log \frac{\tau_{\beta_2}}{\tau_{kg2}^*} + \frac{\tau_{kg2}^* \mu_{kg2}^{*2}}{2} + \log \sigma(1 - \sigma)$$

Case 4 (colocalization): $c_{k1} = 1 = c_{k2} = 1$, i.e. the k^{th} effect group is causal for both trait y_1 and trait

374 y_2 :

$$\begin{aligned} & \log q(s_{kg} = 1, \mathbf{s}_{k \setminus g} = \mathbf{0}, \beta_{k1}, \beta_{k2}, c_{k1} = 1, c_{k2} = 1) \\ &= const + \tau_{y_1} \mathbf{X}_{g1}^\top (\mathbf{y}_1 - \mathbf{X}_1 \tilde{\boldsymbol{\beta}}_{\setminus k1}) \beta_{k1} - \frac{\tau_{y_1}}{2} \mathbf{X}_{g1}^\top \mathbf{X}_{g1} \beta_{k1}^2 + \tau_{y_2} \mathbf{X}_{g2}^\top (\mathbf{y}_2 - \mathbf{X}_2 \tilde{\boldsymbol{\beta}}_{\setminus k2}) \beta_{k2} \\ & \quad - \frac{\tau_{y_2}}{2} \mathbf{X}_{g2}^\top \mathbf{X}_{g2} \beta_{k2}^2 + \frac{1}{2} \log \frac{\tau_{\beta_1}}{2\pi} - \frac{\tau_{\beta_1}}{2} \beta_{k1}^2 + \frac{1}{2} \log \frac{\tau_{\beta_2}}{2\pi} - \frac{\tau_{\beta_2}}{2} \beta_{k2}^2 + 2 \log \sigma \end{aligned}$$

374 We recognize that $q(\beta_{k1} | s_{kg}=1, \mathbf{s}_{k \setminus g} = \mathbf{0}, c_{k1} = 1, c_{k2} = 1) \sim \mathcal{N}(\mu_{kg1}^*, \tau_{kg1}^*)$ and $q(\beta_{k2} | s_{kg}=1, \mathbf{s}_{k \setminus g} =$
375 $\mathbf{0}, c_{k1} = 1, c_{k2} = 1) \sim \mathcal{N}(\mu_{kg2}^*, \tau_{kg2}^*)$. By matching sufficient statistics for these normal distribution, we
376 obtain the following variational parameters for β_{k1} and β_{k2} :

$$\tau_{kg1}^* = \tau_{y_1} \mathbf{X}_{g1}^\top \mathbf{X}_{g1} + \tau_{\beta_1}$$

377

$$\mu_{kg1}^* = \frac{\tau_{y_1}}{\tau_{kg1}^*} \mathbf{X}_{g1}^\top (\mathbf{y}_1 - \mathbf{X}_1 \tilde{\boldsymbol{\beta}}_{\setminus k1})$$

378

$$\tau_{kg2}^* = \tau_{y_2} \mathbf{X}_{g2}^\top \mathbf{X}_{g2} + \tau_{\beta_2}$$

379

$$\mu_{kg2}^* = \frac{\tau_{y_2}}{\tau_{kg2}^*} \mathbf{X}_{g2}^\top (\mathbf{y}_2 - \mathbf{X}_2 \tilde{\boldsymbol{\beta}}_{\setminus k2})$$

After integrating out β_{k1} and β_{k2} , we have:

$$\begin{aligned} \log q(s_{kg} = 1, \mathbf{s}_{k \setminus g} = \mathbf{0}, c_{k1} = 1, c_{k2} = 1) = & \text{const} + \frac{1}{2} \log \frac{\tau_{\beta_1}}{\tau_{kg1}^*} + \frac{\tau_{kg1}^* \mu_{kg1}^{*2}}{2} \\ & + \frac{1}{2} \log \frac{\tau_{\beta_2}}{\tau_{kg2}^*} + \frac{\tau_{kg2}^* \mu_{kg2}^{*2}}{2} + 2 \log \sigma \end{aligned}$$

380 Combining all four cases, we have the conditional distributions for c_{k1} and c_{k2} :

$$q(c_{k1} = 1 | s_{kg} = 1, \mathbf{s}_{k \setminus g} = \mathbf{0}) = \frac{1}{1 + e^{-u_1}}$$

381

$$q(c_{k2} = 1 | s_{kg} = 1, \mathbf{s}_{k \setminus g} = \mathbf{0}) = \frac{1}{1 + e^{-u_2}}$$

382 where

$$u_1 = \frac{1}{2} \log \frac{\tau_{\beta_1}}{\tau_{kg1}^*} + \frac{\tau_{kg1}^* \mu_{kg1}^{*2}}{2} + \log \frac{\sigma}{1 - \sigma}$$

383

$$u_2 = \frac{1}{2} \log \frac{\tau_{\beta_2}}{\tau_{kg2}^*} + \frac{\tau_{kg2}^* \mu_{kg2}^{*2}}{2} + \log \frac{\sigma}{1 - \sigma}$$

384 After integrating out c_{k1} and c_{k2} , we have the variational distribution for \mathbf{s}_k :

$$\log q(s_{kg} = 1, \mathbf{s}_{k \setminus g} = \mathbf{0}) = \log \tilde{\pi}_g + 2 \log(1 - \sigma) + \log(1 + e^{u_1}) + \log(1 + e^{u_2})$$

Therefore, for the k^{th} effect groups, we can calculate the posterior colocalization probability as

$$\begin{aligned} & p(c_{k1} = c_{k2} = 1 | \mathbf{y}_1, \mathbf{y}_2, \mathbf{X}_1, \mathbf{X}_2) \\ & = \sum_g q(c_{k1} = 1 | s_{kg} = 1, \mathbf{s}_{k \setminus g} = \mathbf{0}) q(c_{k2} = 1 | s_{kg} = 1, \mathbf{s}_{k \setminus g} = \mathbf{0}) q(s_{kg} = 1, \mathbf{s}_{k \setminus g} = \mathbf{0}) \end{aligned}$$

385 In summary, we have now derived **Algorithm 1** for colocalization analysis with SharePro:

Algorithm 1: SharePro for genetic colocalization analysis

Data: $\mathbf{X}_1^T \mathbf{X}_1$, $\mathbf{X}_2^T \mathbf{X}_2$, $\mathbf{X}_1^T \mathbf{y}_1$ and $\mathbf{X}_2^T \mathbf{y}_2$;

hyperparameters σ , τ_{β_1} , τ_{β_2} , τ_{y_1} and τ_{y_2}

Result: Posterior colocalization probabilities for the k^{th} effect group, $k \in \{1, \dots, K\}$

1 **while** *ELBO* not converge **do**

2 **for** $k = 1$ **to** K **do**

3 update $q(\mathbf{s}_k)$;

386 4 update $q(c_{k1}|\mathbf{s}_k)$ and $q(c_{k2}|\mathbf{s}_k)$;

5 update $q(\beta_{k1}|c_{k1}, \mathbf{s}_k)$ and $q(\beta_{k2}|c_{k2}, \mathbf{s}_k)$;

6 **end**

7 **end**

8 **for** $k = 1$ **to** K **do**

9 $p(c_{k1} = c_{k2} = 1 | \mathbf{y}_1, \mathbf{y}_2, \mathbf{X}_1, \mathbf{X}_2) = \sum_{\mathbf{s}_k} q(c_{k1} = 1 | \mathbf{s}_k) q(c_{k2} = 1 | \mathbf{s}_k) q(\mathbf{s}_k)$

10 **end**

387 **2 Adaptation to summary statistics**

388 The information in individual-level data \mathbf{X}_1 , \mathbf{X}_2 , \mathbf{y}_1 and \mathbf{y}_2 are used in the form of $\mathbf{X}_1^T \mathbf{X}_1$, $\mathbf{X}_2^T \mathbf{X}_2$, $\mathbf{X}_1^T \mathbf{y}_1$
389 and $\mathbf{X}_2^T \mathbf{y}_2$ throughout the proposed **Algorithm 1**, which can be derived from GWAS summary statistics
390 and a LD reference panel. Specifically, in most publicly available GWAS summary statistics, standard-
391 ized effect sizes (z-scores) are usually available or can be derived from marginal effect sizes and standard
392 errors. With standardized genotypes and phenotypes, we have:

$$\mathbf{X}_1^T \mathbf{X}_1 = N_1 * \mathbf{LD}$$

393

$$\mathbf{X}_2^T \mathbf{X}_2 = N_2 * \mathbf{LD}$$

394

$$\mathbf{X}_1^T \mathbf{y}_1 = \sqrt{N_1} \mathbf{z}_1$$

395

$$\mathbf{X}_2^T \mathbf{y}_2 = \sqrt{N_2} \mathbf{z}_2$$

396 where N_1 and N_2 are sample sizes, LD is the variant Pearson correlation coefficient matrix and \mathbf{z}_1 and
397 \mathbf{z}_2 are the z-scores in GWAS summary statistics for trait 1 and trait 2 respectively.

398 3 Hyperparameter estimation

399 Apart from the required quantities derived from GWAS summary statistics, there are also hyperparameters
400 to be estimated in the colocalization algorithm: τ_{β_1} and τ_{β_2} for effect size distributions, τ_{y_1} and τ_{y_2}
401 for trait residual variances and σ for prior colocalization probability. As shown in our previous work
402 [18], HESS-based heritability estimates [31] can provide suitable estimation for variance hyperparameters.
403 Specifically, we can obtain the local heritability (\hat{h}^2) in a locus as well as per-variant heritability
404 (\hat{h}_v^2) with the HESS [31] estimator using GWAS summary statistics, and use them to set hyperparameters:
405 $\tau_{\beta_1}^{-1} = \hat{h}_{v1}^2$, $\tau_{\beta_2}^{-1} = \hat{h}_{v2}^2$, $\tau_{y_1}^{-1} = 1 - \hat{h}_1^2$ and $\tau_{y_2}^{-1} = 1 - \hat{h}_2^2$.

406 An important hyperparameter in Bayesian colocalization is the prior colocalization probability σ . We
407 set its default value to 1×10^{-5} (the same default value as used in COLOC). However, the impact of prior
408 colocalization probabilities on posterior colocalization probabilities depends on the power of GWAS. In
409 simulation studies, we explored a range of prior: 1×10^{-7} , 2×10^{-7} , 5×10^{-7} , 1×10^{-6} , 2×10^{-6} ,
410 5×10^{-6} , 1×10^{-5} , 2×10^{-5} , 5×10^{-5} , 1×10^{-4} , 2×10^{-4} , 5×10^{-4} , 1×10^{-3} and showcased two
411 representative simulation examples in **Figure 3**.