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Abstract

Motivation: Colocalization analysis is commonly used to assess whether two or more traits share

the same genetic signals identified in genome-wide association studies (GWAS), and is important for
prioritizing targets for functional follow-up of GWAS results. Existing colocalization methods can
have suboptimal performance when there are multiple causal variants in one genomic locus.

Results: We propose SharePro to extend the COLOC framework for colocalization analysis. Share-
Pro integrates linkage disequilibrium (LD) modelling and colocalization assessment by grouping cor-
related variants into effect groups. With an efficient variational inference algorithm, posterior colo-
calization probabilities can be accurately estimated. In simulation studies, SharePro demonstrated
increased power with a well-controlled false positive rate at a low computational cost. Through a
challenging case of the colocalization analysis of the circulating abundance of R-spondin 3 (RSPO3)
GWAS and estimated bone mineral density GWAS, we demonstrated the utility of SharePro in identi-
fying biologically plausible colocalized signals.

Availability and Implementation: The SharePro software for colocalization analysis is openly avail-
able at https://github.com/zhwm/SharePro_coloc and the analysis conducted in this

study is available at https://github.com/zhwm/SharePro_coloc_analysis.
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1 Introduction

Colocalization analysis is a commonly used statistical procedure to assess whether two or more traits
share the same genetic signals identified in genome-wide association studies (GWAS) [[1-5]]. It is impor-
tant for understanding the interplay between heritable traits [6} 7], such as validating causal inference
results based on Mendelian randomization analysis [3, 8, 9] and identifying candidate genes for func-
tional follow-up studies [2, 10-12]. Therefore, a sensitive colocalization method that effectively controls
the false positive rate is crucial for increasing the yield of complex trait genetics studies.

COLOC [1]] is one of the most widely used methods for colocalization analysis. COLOC uses a
Bayesian framework to estimate posterior probabilities of five different causal settings in a locus (HO:
no causal signals; H1: one unique causal signal for trait 1; H2: one unique causal signal for trait 2; H3:
different causal signals for trait 1 and 2; H4: one shared causal signal for trait 1 and 2. [1]). Colocaliza-
tion probability is defined by the posterior probability of H4 [1]. A key assumption in COLOC is that
only one causal variant exists within each genomic locus [[1]. In both simulation and substantive studies
[1,]10], COLOC demonstrated high accuracy in identifying the shared causal signal when the one-causal-
variant assumption was met. However, the performance of COLOC may be compromised when more
than one causal signal exists in a genomic locus [2, |5, |13].

Building upon COLOC, several methods have been developed to address these challenges. For exam-
ple, eCAVIAR allows for multiple causal signals [2] by adopting the CAVIAR [14]] fine-mapping frame-
work for colocalization. In eCAVIAR, colocalization is assessed at the variant-level by examining the
probabilities of variants being causal in both traits. Specifically, the posterior inclusion probabilities for
variants are first calculated separately for each trait. Then, the variant-level colocalization probabilities
are obtained from the product of the posterior inclusion probabilities. Recently, COLOC + SuSiE [J5]
adopts a fine-mapping method SuSiE [15] for identifying multiple causal variants before performing
pairwise colocalization, which could improve the performance of COLOC when multiple causal sig-
nals exist. Similarly, PWCoCo [/16] first performs conditional and joint analysis with GCTA-COJO [[17]],
followed by colocalization analysis on each pair of the conditionally independent signals identified by
GCTA-COJO using COLOC. These methods implement a two-step strategy. Namely, they first account

for LD via fine-mapping or conditional analysis to identify candidate variants for colocalization analysis,
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separately for each trait. And then, under the one-causal-variant assumption, colocalization probabili-
ties are assessed by examining whether each pair of candidate variants represents the same causal signal.
However, with this strategy, the uncertainties in accounting for LD from the first step might affect the
assessment of colocalization in the second step.

We propose SharePro (Shared sparse Projection for colocalization analysis) to integrate LD mod-
elling and colocalization assessment to account for multiple causal variants in colocalization analysis.
In SharePro, highly correlated variants are grouped into effect groups and colocalization probabilities
are assessed by examining the causal status of each effect group in different traits. We evaluate the per-
formance of SharePro in simulation studies in comparison to state-of-the-art colocalization methods.
We further examine colocalization between cis-protein quantitative trait locus (pQTL) of the circulating
abundance of RSPO3 and a GWAS locus identified for estimated bone mineral density (eBMD) using
heel quantitative ultrasound measurement to evaluate whether SharePro could better identify biologically

plausible colocalized signals.

2 Methods

2.1 SharePro method overview

SharePro takes marginal associations (z-scores) from GWAS summary statistics and LD information cal-
culated from a reference panel as inputs, and infers posterior probabilities of colocalization (Figure [I).
Unlike existing methods, SharePro takes an effect group-level approach for colocalization. Specifically,
SharePro uses a sparse projection shared across traits to group correlated variants into effect groups.
Through this shared projection, variant representations for effect groups are the same across traits so that
colocalization probabilities can be directly calculated at the effect group-level. With an efficient varia-
tional inference algorithm, both variant representations for effect groups and their causal statuses in traits
can be accurately inferred. Consequently, we can obtain colocalization probabilities from the posterior

probabilities of effect groups being causal for all traits.
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2.2 SharePro for colocalization analysis

In SharePro, we assume there are altogether K effect groups (for either trait y; or trait y,, or both) in a
locus with G variants. Similar to our previous work on the sparse projection formulation of the SuSiE
model [15, |18, /19], for the k*" (k € {1, ..., K'}) effect group, SharePro uses sy, a sparse indicator shared
by both traits to specify its variant representations (Figure [I). This indicator follows a multinomial dis-
tribution:

sr ~ Multinomial(1,1g4; X =)

G

We use two additional sets of trait-specific variables to describe relationships between the k" effect
group and each trait: causal indicators ¢, ¢ of whether the k' effect group is causal for y; and y
and [y and S, for their corresponding effect sizes (here we illustrate the model with two traits but it is

also compatible with multiple traits):

Ck1, Ck2 ~ Bernoulli(o)

5k1 ~ N(O7 T711>
6/@2 ~ N(07 Tﬁ_zl)

Denoting the genotype matrix as X; and X, for traits y; and y,, we have:
y1~ NX0) | seBrack, 7,,')
k

y2 ~ N (X, Z SkBraCra; 7, 1)
k

75, and 73, are hyperparameters for effect sizes while 7, and 7, are hyperparameters for residual vari-
ances; o is the important hyperparameter for prior colocalization probability. We discuss choices of these
hyperparameters in the Supplementary Notes. The colocalization probability for the k" effect group is
represented by the posterior probability of p(cx; = cro = 1|y1, yo, X1, X2). We use an efficient vari-
ational inference algorithm [18, 20, |21]] adapted for GWAS summary statistics for posterior inference

(detailed in the Supplementary Notes).
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2.3 Simulation studies

We conducted simulation studies under different causal settings to evaluate the performance of colocal-
ization methods. We randomly sampled five 1-Mb loci from the genome and extracted their genotypes
for 25,000 and 1,000 non-overlapping UK Biobank European ancestry individuals [22] to simulate trait 1
and trait 2, respectively. For each locus, we calculated the LD matrix using PLINK [23]].

In each locus, we randomly sampled K¢ causal variants to be shared across traits and additionally Kg
causal variants to be specific for each trait. For example, when Ko = 0 and Kg = 1, there was one
causal variant for trait 1 and one different causal variant for trait 2; When K- = 1 and K5 = 0, there was
one causal variant shared by both traits. We set the per-variant heritability to be 0.01 in trait 1 and 0.05
in trait 2. With simulated traits, we performed GWAS using GCTA [24] to obtain summary statistics. We
repeated this process 50 times for each setting.

With LD information and simulated summary statistics, we performed colocalization analysis with
five different methods (Table 1)) using a default prior colocalization probability of 1 x 10~° and obtained
posterior colocalization probabilities from COLOC [1]. Both COLOC+SuSiE [4]] and PWCoCo [16]
generated multiple pairs of colocalization probabilities, with the maximum used as colocalization prob-
abilities. For eCAVIAR, we also used the maximum variant-level colocalization probabilities as locus-
level colocalization summary [2[]. Similarly in SharePro, maximum colocalization probabilities across all
identified effect groups were used.

A colocalization probability > (.8 was considered strong evidence supporting colocalization, while a

colocalization probability < 0.2 was considered evidence against colocalization [3]].

2.4 Colocalization analysis of RSPO3 pQTL and eBMD GWAS

We examined the utility of SharePro by assessing the colocalization between a cis-pQTL locus of the
circulating abundance of RSPO3, and a GWAS locus identified for eBMD using heel quantitative ul-
trasound measurement. We obtained UK Biobank eBMD GWAS summary statistics from the GEFOS
consortium [25] and RSPO3 pQTL summary statistics from the Fenland study [26]]. The LD matrix was
calculated using UK Biobank European ancestry individuals and colocalization analysis was performed

with five different methods (Table (1) using a default prior colocalization probability of 1 x 1077,
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3 Results

3.1 Simulation studies

To evaluate the performance of SharePro in colocalization analysis, we performed simulations under dif-
ferent causal settings. SharePro achieved the highest power in most settings. Specifically, in the sim-
ple scenario of only one causal variant (Ko + Kg = 1), COLOC, PWCoCo and SharePro accurately
identified all simulated cases of colocalization with a colocalization probability above 0.8 (Figure 2] and
Supplementary Table S1). Meanwhile, COLOC + SuSiE only identified 98.8% cases of colocalization
( Supplementary Table S1) while the locus-level colocalization summary derived from eCAVIAR only
identified 51.2% of the simulated cases of colocalization ( Supplementary Table S1).

In more challenging scenarios with multiple causal variants, SharePro maintained the highest power
for colocalization analysis, followed by COLOC + SuSiE. For example, with Ko = land Kg = 1
and a colocalization probability cutoff at 0.8, SharePro achieved a true positive rate of 99.2%, while the
second best method COLOC + SuSiE achieved a true positive rate of 97.6% (Figure[2Jand Supplemen-
tary Table S1). In contrast, as expected, since the one-causal-variant assumption was not satisfied, the
performance of COLOC became worse and only identified 44.4% cases of colocalization ( Supplemen-
tary Table S1). With more than one causal variant shared between the two simulated traits (Ko > 1),
SharePro consistently identified all cases of colocalization and outperformed other methods (Figure
and Supplementary Table S1).

When causal variants were different across the simulated traits (non-colocalized), the colocalization
probabilities obtained by COLOC, COLOC+SuSiE, eCAVIAR and SharePro were consistently below
0.2 (Figure [2land Supplementary Table S2). In contrast, PWCoCo had higher colocalization proba-
bilities. For instance, with Ko = 0 and Kg = 1, PWCoCo had a false positive rate of 2.4% with a
colocalization probability cutoff at 0.2 ( Supplementary Table S2).

Moreover, SharePro also demonstrated high computational efficiency (Table[I). Across different sim-
ulation settings, on average, SharePro took 4.3 seconds to assess colocalization in a 1-Mb locus, which
was only longer than COLOC. In contrast, on average, €CAVIAR took more than 3 minutes to assess
colocalization in the same locus (Table [T)).

We additionally performed prior sensitivity analysis (Supplementary Notes) to examine the impact

7
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of prior colocalization probabilities on posterior colocalization probabilities and showcased two repre-
sentative scenarios in Figure[3] When the GWAS summary statistics demonstrate strong colocalization
pattern (Figure [3]A), varying prior colocalization probabilities does not drastically change the posterior
colocalization probabilities (Figure [3B). In contrast, when statistical evidence from GWAS associations
is weak (Figure [3C), the posterior colocalization probabilities increases with the prior colocalization

probabilities (Figure [3D).

3.2 RSPO3-eBMD example

The eBMD measured at the heel using quantitative ultrasound is an important biomarker of osteoporosis
and strongly predicts fracture risk [25, 27, 28]. RSPO3 is a known modulator of the Wnt signaling path-
way that plays a crucial role in maintaining bone homeostasis [29, 30]. It has been experimentally shown
that the abundance of RSPO3 strongly influences the proliferation and differentiation of osteoblasts and
regulates bone mass [13]]. Therefore, it is biologically plausible that the cis-pQTL of RSPO3 colocalize
with an e BMD GWAS locus.

However, although the marginal genetic associations for RSPO3 abundance and eBMD demonstrated
a highly similar pattern (Figure 4A), existing methods indicated no or minor evidence of colocalization
(Figure dB). With SharePro, we identified multiple effect groups in this region and colocalization results
indicated that both rs7741021/rs9482773 and rs853974 were shared causal signals between circulating
RSPO3 abundance and eBMD (Supplementary Table S3). We explored different hyperparameter set-
tings for prior colocalization probabilities in SharePro (Supplementary Notes) and obtained robust colo-

calization results (Supplementary Tables S4-7).

4 Discussion

In this work, we present SharePro to integrate LD modelling and colocalization assessment that extends
the classical COLOC framework to account for multiple causal signals. Compared to methods that adopt
a two-step strategy to relax the one-causal-variant assumption in COLOC, the effect group-level ap-
proach in SharePro can effectively reduce the impact of LD in aligning causal signals, resulting in im-

proved power for colocalization analysis. Under different simulation settings, SharePro achieved the

8
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highest power with a well-controlled false positive rate. Additionally, SharePro also demonstrated high
computational efficiency.

Through the example of the colocalization analysis of RSPO3 cis-pQTL and eBMD GWAS, we
demonstrated that SharePro could correctly identify biologically plausible colocalization in the pres-
ence of multiple causal signals. In the RSPO3 locus, both the RSPO3 pQTL study and the eBMD GWAS
are well-powered and the marginal associations exhibit a similar pattern (Figure dB). However, the lead
variants with the smallest marginal p-value in this locus, although highly correlated, are different for cir-
culating RSPO3 abundance and eBMD (Figure 4B). In the presence of multiple causal signals, colo-
calization analysis in this locus using existing methods has been challenging. In SharePro, correlated
variants are grouped into effect groups and as a result, the impact of misaligned lead variants on colocal-
ization analysis is mitigated.

An important hyperparameter in colocalization analysis is the prior colocalization probability. In
SharePro, the default prior colocalization probability is 1 x 10~°. In COLOC, this hyperparameter is
represented as p;, with a default value of 1 x 107° [1]]. Because the prior colocalization probability can
impact posterior colocalization probability, especially when GWAS are not well-powered, it is necessary
to explore a range of different values to evaluate the robustness of colocalization results [4].

There are other cautions in colocalization analysis that also apply to SharePro. First, summary
statistics-based analysis requires that the LD reference panel matches the LD structure underlying the
samples included in GWAS. In SharePro, LD mismatch can lead to convergence issues for the algo-
rithm. Second, the validity of colocalization results relies on the rigor of GWAS in carefully accounting
for population stratification and other unmeasured confounding factors. Variants associated with shared
confounding factors can also be considered colocalized. Third, the power to detect colocalization is de-
pendent on the power of fine-mapping. We strongly suggest that prior sensitivity analysis should be per-
formed to evaluate whether the GWAS are well-powered for colocalization analysis.

In summary, we have developed SparsePro to extend COLOC for colocalization analysis. With in-
creased power and well-controlled false positive rate at a low computation cost, SharePro is suitable for
large-scale colocalization analysis. With the increasing number of publicly available GWAS summary
statistics, we envision SharePro will have the potential to substantially deepen our understanding of com-

plex traits and diseases.
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S Figure Legends

Figure[I] SharePro for genetic colocalization analysis. The data generative process in SharePro is
depicted in the graphical model. Green shaded nodes represent observed variables: genotype X1, trait
y;1 for the i individual in the first study, and genotype X jo, trait y;, for the 5 individual in the second
study. The orange unshaded nodes represent latent variables characterizing effect groups. sy, is a sparse
indicator shared between traits, specifying variant representations for the k' effect group. c;; and ¢y
are causal indicators of whether the k' effect group is causal in trait y; and trait y, while 3;; and Sis
represent the corresponding effect sizes. As a result, colocalization probability for the k" effect group
is the posterior probability of cx; = cx2 = 1. Here we assume individual-level data are available and

adaption to GWAS summary statistics is detailed in the Supplementary Notes.

Figure 2| SharePro demonstrated improved power with a well controlled false positive rate for
colocalization analysis. Colocalization probabilities derived by five methods based on 50 replicates in
each of the five loci are illustrated. Rows represent the different numbers of causal variants (K¢ + Kg)
and colors represent the different numbers of shared causal variants (K ) between the two simulated
traits. Median colocalization probabilities across a total of 250 replicates are indicated by horizontal bars

and inter-quartile ranges are represented by boxes.

Figure[3| Prior sensitivity analysis in SharePro. (A) GWAS associations with a strong support for
colocalization. Each dot represents a variant and the color indicates its correlation with the simulated
colocalized variant. (B) Prior sensitivity analysis in the case of a strong support for colocalization. The
x-axis stands for prior colocalization probabilities in the logarithmic scale and the y-axis stands for pos-
terior colocalization probabilities. (C) GWAS associations with a weak support for colocalization. Each
dot represents a variant and the color indicates its correlation with the simulated colocalized variant. (D)
Prior sensitivity analysis in the case of a weak support for colocalization. The x-axis stands for prior
colocalization probabilities in the logarithmic scale and the y-axis stands for posterior colocalization

probabilities.
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Figure[d SharePro identified shared effect groups between RSPO3 pQTL and eBMD GWAS. (A)
Marginal associations from eBMD GWAS and RSPO3 pQTL. The x-axis indicates chromosome and po-
sition information and the y-axis represents p-value on the logarithmic scale. Each dot represents a vari-

ant and its color indicates its correlation (2) with the colocalized variant rs7741021. (B) Colocalization

probabilities assessed by different colocalization methods for RSPO3 pQTL and eBMD GWAS.

6 Supporting Information

6.1 Supplementary Notes

6.2 Supplementary Tables

7 Data and Software Availability

The SharePro software for colocalization analysis is openly available at https://github.com/
zhwm/SharePro_coloc and the analysis conducted in this study is available at https://
github.com/zhwm/SharePro_coloc_analysis. GWAS summary statistics for e BMD was
obtained from the GEFOS consortium at http: //www.gefos.org. GWAS summary statistics
for RSPO3 pQTL was obtained from the Fenland study at https://omicscience.org/apps/
pgwas/. Both COLOC and COLOC+SuSiE are included in the coloc (version 5.1.0) R package ob-
tained from CRAN. PWCoCo was obtained from GitHub at https://github.com/jwr—-git/

pwcocol. eCAVIAR was obtained from GitHub at https://github.com/fhormoz/caviar.
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Method Multiple causal variants Signal identification Posterior summary ~ Running time (second; SD)  Reference
COLOC X X locus-level 0.1 (0.1) [
COLOC+SuSiE v separate fine-mapping  paired locus-level 14.0 (3.3) (5]
eCAVIAR v separate fine-mapping variant-level 227.7 (89.3) [2])
PWCoCo v conditional analysis paired locus-level 38.1 (20.5) (8]

SharePro v joint fine-mapping effect group-level 4.3(1.1) this study

Table 1: Summary of colocalization method features.

12


https://doi.org/10.1101/2023.07.24.550431
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.24.550431; this version posted July 26, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

OUTPUT

e Posterior summary of colocalization
e Variant representations in effect groups

INPUT
e Marginal associations for traits
e LD reference

Effect size Causal indicator

Causal indicator Effect size Variant representation
for trait 2 for trait 2

for trait 1 for trait 1 in effect group

dnou8 199 Y-y

Bra Bz

o N\ e N\ /
N N\ e N\ /
yi1 = zxuskﬁmcm + € Vj2 = ZijSkﬁkzckz + €
i X

Figure 1: SharePro for genetic colocalization analysis.
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Figure 2: SharePro demonstrated improved power with a well controlled false positive rate for
colocalization analysis.

14


https://doi.org/10.1101/2023.07.24.550431
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.24.550431; this version posted July 26, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A 60-

’ . s 601 °
o . 08 o ° % o)
4 0.6
40 ¢ o |3 40- =
o 0z | L o
o o
o ; ? ;:
~ 207 . S| _ 20 )
© - o i
=) ° =)
s ““-—-&A—n—n s "
T 01 > 0| dnfleatessasesendibiotdian
2 251 . g .
2 2
D on | o 9
§or . gl F° 2
15+ > 6. . >
e e S
101 = =
o o
5- N N
" Y o o (J
0- T T T T T T T T T T
151.00 151.25 151.50 151.75 152.00 151.00 151.25 151.50 151.75 152.00
Chr6 (Mb) Chr6 (Mb)
B D
21.0- ) . e o o e o . 31_0. . .
5 5 ?
8 0.8+ g 0.8+ L
o o
o o [
C C
2 2 .
© ©
N N .
‘_8" 0.21 ‘_8“ 0.21 .
o o « ®
©o.0{_ 1 1 1 1 Oo00{e * !
7 -6 5 4 -3 =7 -6 5 4 -3
log1o(prior) log1o(prior)

Figure 3: Prior sensitivity analysis in SharePro.

15


https://doi.org/10.1101/2023.07.24.550431
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.24.550431; this version posted July 26, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A 400+ oo
° 2
. r
- N ..
Ld .
300+ o=
0.6
0.4 o
@
o8 0.2 %
200' e o
=
w
100+
—_
(0]
3
S o
|
o
< -
8 150- :
I Qo o
)
[ ] »
. L ]
100' m
w
o)
o
W
©
-~ g
.‘ —
50 oo .
[ ]
° “t. e .
. w. .‘.- m .:.
° LY 00 [ ° ° ° 9
oo $32 S oW o 2%
o Maw
127.00 127.25 127.50 127.75 128.00
B Chré (Mb)
8 081
o]
o
o
-y
S
©
N
[\]
g 021 )
[e]
© 0.0 ° i o L :
COLOC COLOC+SuSiE eCAVIAR PWCoCo SharePro

Figure 4: SharePro identified shared effect groups between RSPO3 pQTL and eBMD GWAS.
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SharePro Supplementary Notes

«+ 1 A variational inference algorithm for Bayesian colocalization

a2 In SharePro (Figure [I), similar to our previous work on the sparse projection formulation of the SuSiE
a3 model [[15,|18,19], with a shared projection matrix Sy = [s1, ..., Sk |, Wwe can group correlated variants
as into K effect groups where

s ~ Multinomial(1,1g54; X =)

G

a5 is the sparse indicator for the variant compositions in the k" effect group. We have trait-specific indica-
as  tor vectors ¢; = [¢y1, ..., Cx1] and € = [c19, ..., Cxo] to characterize the causal statuses of effect groups on
47 traits where

Ck1, Ck2 ~ Bernoulli(o)
us  With trait-specific effect size vectors 31 = 511, ..., Ox1] and Ba[S12, ..., x| where

ﬁkl ~ N(O7 Tﬂ_ll)

349

61{2 ~ N(O7 Tgl)

ss0 and denoting the genotype matrix as X; and X, for traits y; and y,, we have:

y1 ~N(Xy Z skBr1cr1, 7, 1)
k

351
ya ~ N (Xy Z Sk BraCr2, TyjI)
k
352 In colocalization analysis, we are interested in the posterior probabilities of causal indicators based on
353 the observed traits yq, y2 and the genotypes X; and X,. Inference of the exact posterior distribution of
35« causal indicators ¢y, ¢ and variant representations in effect groups S is difficult. Similar with the IBSS

55 algorithm [[15] proposed by SuSiE and our previous work on paired mean field variational inference al-
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gorithm [|18} [21]], we use a paired mean field factorized variational family [21]]

q(S, B1, B2, c1,¢2) = [ [ alsk, Ber, Bra: caa, o)
K

to approximate the desired posterior distribution:

P(YM y2,8,B1, B2, C1, C2\X1, XQ)

S X1, Xg) =
p( 7[317327C1,02|Y17YQ7 1 2) p(yl>YZ|X17X2)

We can obtain the optimal approximation by maximizing the evidence lower bound (ELBO) [20]:

p()’h y2,S,B1, B2, ¢, C2’X17 Xz)

ELBO = Eysp, aere0)[l0
4(S,B1,B2.c1.c2) 108 q(S, B1, B2, c1,c2)

]

with the following conditions satisfied for each & [20]:

log q(Sk, Bk1, Bra; Cr1, Cr2) = Eq(S\k,ﬁ\kl,B\kQ,c\kl,c\kg) log p(y1,¥2,S, B1, B2, €1, €2 X1, X3)]

where E(I(S\k7ﬁ\k1:ﬁ\k2vc\klvc\k2)

k" component. If we write out the joint probability:

10%]0(}’1, y2,5,B1, B2, c1, C2|X1, Xz)

=logp(y1X1,S, B1, c1) + log p(y2[X2, S, B2, ¢2) + Zlogp(sk)
p

+> logp(Bi) + Y logp(Bra) + D logplc) + Y log p(cia)
K K K K

N

T, T,
=5 log 2—2;; - ;l yi— Xy Zskﬁmcm (y1 — X1(Z SkBk1Ck1))
A

N 7 Ty
+ 5 log # - ; (y2 — X5 Zskﬁmcm))T (y2 — X Zskﬂkzcm))

+Zzskg log Z E - Eﬁkl +Z 2 TBQB;@)

+ Z[Cm logo + (1 —¢p1)log(l — o)) + Z[Cm logo + (1 — cx2) log(1 — o)

22

is the expectation with respect to the variational distribution excluding the
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362 and denote B\ = EQ(S\mﬁ\th\m) [Zk/;ﬁk SkiBkrCrn | and By = EQ(S\k,B\m,C\m) [Ek/;ﬁk Sk’ﬁk’QCk’Q]
ses the required conditions can be simplified into four different cases for the k" effect group:

Case 1: ¢;; = 0 = ¢ = 0, i.e. the k" effect group is not causal for either trait:

log Q(Skg =1,8p =0, B, B2, ek = 0, ck2 = 0)

1 T8 T3 1 s T3
=const + §log2—7; - 71621 + §log2—; - 725,32 +2log(1 — o)

s+ After integrating out Sx; and [y, we have:
log q(skg = 1,81mg = 0,1 = 0, cko = 0) = const + 2log(1 — o)

Case 2 (trait 1 specific): ¢;; = 1 and ¢, = 0, i.e. the k" effect group is causal for trait y; but not for

trait yo:

logQ(Skg =1L, spg = 0, Bk, Bras k1 = 1, cpp = 0)

~ T, 1 T, T,
=const + Tleng (y1 — XiB\i1) B — %X;Xglﬁ,?l + 3 log % — %ﬁzl

1
—|——log@

TB2 12
- = | log(1 —
5 . 5 B5 +log o + log( o)

365 We recognize that q(Bj1[Skg=1,8kg = 0,¢cr1 = 1,0 = 0) ~ ./\/'(u;;gl, T,;“gl). By matching sufficient

s statistics of the normal distribution, we have variational parameters for [y :

* T
7—kgl - Tylxglxgl + T8

367

* T P
Hig1 = fl'X;(Yl — XiBx1)
7—kgl

ss  After integrating out Sx; and (32, we have:

* *2
T8 I Tg1MEg1
T 2
kgl

1
log q(skg = 1,819 = 0,cr1 = 1, cp2 = 0) = const + - log +logo(l — o)

Case 3 (trait 2 specific): c¢;; = 0 and c;p = 1, i.e. the k" effect group is causal for trait y, but not for
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trait yy:

log q(skg = 1,819 = 0, Br1, B2, cr1 = 0,ch2 = 1)

~ T, 1 T T
=const + TszgTQ(YZ — XoB\k2)Br2 — ﬂX;XﬁﬁgQ + 5 log 2 ﬁﬁil

2 2 2m 2
1 s Ts
+ §log2—; — 725,32 +logo +log(1 — o)

se0  Similarly, we recognize that ¢(Sra|Skg=1,Skmg = 0,c61 = 0,¢p0 = 1) ~ ./\f(,u,’;gz, Tg2)- By matching
a0 sufficient statistics for the normal distribution, we can obtain the following variational parameters for

371 ,Bkgi

* T
7—l~cg2 - Ty2X92X92 + T8,

372

* T P
Higo = 32 X;(yz - Xzﬁ\kﬂ)
7—kg2

ars  After integrating out Sx; and [y, we have:

* *2
T3y Tkg2y’kg2
+

- +logo(l —o0)
Thg2 2

1
log q(skg = 1,81 = 0,cr1 = 0,cp2 = 1) = const + - log

Case 4 (colocalization): c;,; = 1 = ¢, = 1, i.e. the k" effect group is causal for both trait y; and trait

ya:

log q(siy = L spg = 0, Br1, Bras cer = 1, e = 1)
—const + 7, X (y1 — X1 But) Bt — X X182 + 7, X o (v2 — XoPo) S
- g1\l 1P\k1) Bkt = =5 Rg1 Rg1P1 7+ Tya Rga (Y2 2B\k2) k2
T, 1 T8 T8 1 T3 T3
- %X;Xﬂﬁig + 5 log 2—7; - 715,31 + B log 2—; — 725,32 +2logo
sa  We recognize that ¢(Br1|Skg=1,80g = 0,1 = 1,¢cr2 = 1) ~ N(pijy1, 7g1) and q(Bralskg=1, kg =

a5 0,061 = L = 1) ~ N (H%g2: Thy2)- By matching sufficient statistics for these normal distribution, we

a7e  obtain the following variational parameters for Sy and [o:

* T
Tkgl - Ty1X91X91 + T8
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377
* Ty1 T o
Higt = TTX91 (y1 — XiBk1)
kgl
378 T
Tl:g? = TyQXg2X92 + g,
379

* T, o
Hig2 = _32 XgTz(Y2 — XoB\r2)
Tng

After integrating out 31 and (o, wWe have:

1 7_* *2
log q(skg = 1,89 = 0,c01 = 1,2 = 1) = const + - log :fl + kgl;kgl
kgl

1 T *2
+= log 7-52 + kg2#kg2
2 Thg2 2

+ 2log o

a0 Combining all four cases, we have the conditional distributions for cx; and cgo:

=1 =1 =0) = —1
C](Ckl - ‘skg - ’Sk\g - ) - 1 + e~
381 ]_
q(cra = Uskg = 1,809 = 0) = 14+e 2
ss2 Where
1 7_* *2
uy = L log Tfl n kg1Migl —|—logL
2 Thol 2 -0
383 2
1 7_* *
= - log 122 4 Thatllke? | gop T
27 2 l—o

ss¢  After integrating out cx; and ¢y, we have the variational distribution for sy:
log ¢(skg = 1,8y = 0) =log T, 4+ 2log(1 — o) + log(1 + €") + log(1 + €*2)
Therefore, for the k" effect groups, we can calculate the posterior colocalization probability as

p<ck1 = Ck2 = 1|}’1;Y2,X17X2)

:ZQ(CM = 1lsrg = 1,86y = 0)q(cra = 1|srg = 1,80y = 0)q(skg = 1,81y = 0)
g
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385 In summary, we have now derived Algorithm (1| for colocalization analysis with SharePro:

Algorithm 1: SharePro for genetic colocalization analysis

Data: XTX,, XTX,, XTy, and XIy,;
hyperparameters o, 73,, 73,, 7, and 7,
Result: Posterior colocalization probabilities for the k' effect group, k € {1,..., K}

1 while ELBO not converge do

2 for kK =1to K do
3 update ¢(sy);
386
4 update q(ck1|sk) and g(ckalsk);
5 update q(Bx1|ck1, sk) and q(Bya|ckz2, si);
6 end
7 end

s for k =1to K do

9 | plerr = cre = 1y1,y2, X1, Xa) = > q(er = 1sp)q(cr2 = 1si)q(sk)

10 end

» 2 Adaptation to summary statistics

sss The information in individual-level data X, Xs, y; and y» are used in the form of X7 X, XI'X,, XTy,
sss and X1y, throughout the proposed Algorithm (1 which can be derived from GWAS summary statistics
a0 and a LD reference panel. Specifically, in most publicly available GWAS summary statistics, standard-

so1 ized effect sizes (z-scores) are usually available or can be derived from marginal effect sizes and standard

a2 errors. With standardized genotypes and phenotypes, we have:

X/X; =N, *xLD
393

X)Xy, =N, *x LD

394

XlTY1 =V Nizq

395

XzTY2 =/ Nozy
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sss where [V and N, are sample sizes, LD is the variant Pearson correlation coefficient matrix and z; and

397 Zo are the z-scores in GWAS summary statistics for trait 1 and trait 2 respectively.

= 3 Hyperparameter estimation

ass  Apart from the required quantities derived from GWAS summary statistics, there are also hyperparame-
400 ters to be estimated in the colocalization algorithm: 73, and 75, for effect size distributions, 7, and 7,
s01  for trait residual variances and o for prior colocalization probability. As shown in our previous work

a2 [18]], HESS-based heritability estimates [31] can provide suitable estimation for variance hyperparam-
a3 eters. Specifically, we can obtain the local heritability (h?) in a locus as well as per-variant heritability
404 (ﬁ%) with the HESS [31]] estimator using GWAS summary statistics, and use them to set hyperparame-
w5 ters: T, ! = h2,, s = h2,, Tl =1- h2 and T =1 — h2.

406 An important hyperparameter in Bayesian colocalization is the prior colocalization probability o. We
w7 set its default value to 1 x 1077 (the same default value as used in COLOC). However, the impact of prior
a8 colocalization probabilities on posterior colocalization probabilities depends on the power of GWAS. In
w90 simulation studies, we explored a range of prior: 1 x 1077,2 x 1077,5 x 1077, 1 x 107%,2 x 1075,

s 5x107%1x107°,2x107°,5x 10721 x 10742 x 10745 x 1074, 1 x 1072 and showcased two

411 representative simulation examples in Figure 3.
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