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Abstract13

Motivation: Colocalization analysis is commonly used to assess whether two or more traits share14

the same genetic signals identified in genome-wide association studies (GWAS), and is important for15

prioritizing targets for functional follow-up of GWAS results. Existing colocalization methods can16

have suboptimal performance when there are multiple causal variants in one genomic locus.17

Results: We propose SharePro to extend the COLOC framework for colocalization analysis. Share-18

Pro integrates linkage disequilibrium (LD) modelling and colocalization assessment by grouping cor-19

related variants into effect groups. With an efficient variational inference algorithm, posterior colo-20

calization probabilities can be accurately estimated. In simulation studies, SharePro demonstrated21

increased power with a well-controlled false positive rate at a low computational cost. Through a22

challenging case of the colocalization analysis of the circulating abundance of R-spondin 3 (RSPO3)23

GWAS and estimated bone mineral density GWAS, we demonstrated the utility of SharePro in identi-24

fying biologically plausible colocalized signals.25

Availability and Implementation: The SharePro software for colocalization analysis is openly avail-26

able at https://github.com/zhwm/SharePro_coloc and the analysis conducted in this27

study is available at https://github.com/zhwm/SharePro_coloc_analysis.28
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1 Introduction29

Colocalization analysis is a commonly used statistical procedure to assess whether two or more traits30

share the same genetic signals identified in genome-wide association studies (GWAS) [1–5]. It is impor-31

tant for understanding the interplay between heritable traits [6, 7], such as validating causal inference32

results based on Mendelian randomization analysis [3, 8, 9] and identifying candidate genes for func-33

tional follow-up studies [2, 10–12]. Therefore, a sensitive colocalization method that effectively controls34

the false positive rate is crucial for increasing the yield of complex trait genetics studies.35

COLOC [1] is one of the most widely used methods for colocalization analysis. COLOC uses a36

Bayesian framework to estimate posterior probabilities of five different causal settings in a locus (H0:37

no causal signals; H1: one unique causal signal for trait 1; H2: one unique causal signal for trait 2; H3:38

different causal signals for trait 1 and 2; H4: one shared causal signal for trait 1 and 2. [1]). Colocaliza-39

tion probability is defined by the posterior probability of H4 [1]. A key assumption in COLOC is that40

only one causal variant exists within each genomic locus [1]. In both simulation and substantive studies41

[1, 10], COLOC demonstrated high accuracy in identifying the shared causal signal when the one-causal-42

variant assumption was met. However, the performance of COLOC may be compromised when more43

than one causal signal exists in a genomic locus [2, 5, 13].44

Building upon COLOC, several methods have been developed to address these challenges. For exam-45

ple, eCAVIAR allows for multiple causal signals [2] by adopting the CAVIAR [14] fine-mapping frame-46

work for colocalization. In eCAVIAR, colocalization is assessed at the variant-level by examining the47

probabilities of variants being causal in both traits. Specifically, the posterior inclusion probabilities for48

variants are first calculated separately for each trait. Then, the variant-level colocalization probabilities49

are obtained from the product of the posterior inclusion probabilities. Recently, COLOC + SuSiE [5]50

adopts a fine-mapping method SuSiE [15] for identifying multiple causal variants before performing51

pairwise colocalization, which could improve the performance of COLOC when multiple causal sig-52

nals exist. Similarly, PWCoCo [16] first performs conditional and joint analysis with GCTA-COJO [17],53

followed by colocalization analysis on each pair of the conditionally independent signals identified by54

GCTA-COJO using COLOC. These methods implement a two-step strategy. Namely, they first account55

for LD via fine-mapping or conditional analysis to identify candidate variants for colocalization analysis,56

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 26, 2023. ; https://doi.org/10.1101/2023.07.24.550431doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.24.550431
http://creativecommons.org/licenses/by-nc-nd/4.0/


separately for each trait. And then, under the one-causal-variant assumption, colocalization probabili-57

ties are assessed by examining whether each pair of candidate variants represents the same causal signal.58

However, with this strategy, the uncertainties in accounting for LD from the first step might affect the59

assessment of colocalization in the second step.60

We propose SharePro (Shared sparse Projection for colocalization analysis) to integrate LD mod-61

elling and colocalization assessment to account for multiple causal variants in colocalization analysis.62

In SharePro, highly correlated variants are grouped into effect groups and colocalization probabilities63

are assessed by examining the causal status of each effect group in different traits. We evaluate the per-64

formance of SharePro in simulation studies in comparison to state-of-the-art colocalization methods.65

We further examine colocalization between cis-protein quantitative trait locus (pQTL) of the circulating66

abundance of RSPO3 and a GWAS locus identified for estimated bone mineral density (eBMD) using67

heel quantitative ultrasound measurement to evaluate whether SharePro could better identify biologically68

plausible colocalized signals.69

2 Methods70

2.1 SharePro method overview71

SharePro takes marginal associations (z-scores) from GWAS summary statistics and LD information cal-72

culated from a reference panel as inputs, and infers posterior probabilities of colocalization (Figure 1).73

Unlike existing methods, SharePro takes an effect group-level approach for colocalization. Specifically,74

SharePro uses a sparse projection shared across traits to group correlated variants into effect groups.75

Through this shared projection, variant representations for effect groups are the same across traits so that76

colocalization probabilities can be directly calculated at the effect group-level. With an efficient varia-77

tional inference algorithm, both variant representations for effect groups and their causal statuses in traits78

can be accurately inferred. Consequently, we can obtain colocalization probabilities from the posterior79

probabilities of effect groups being causal for all traits.80
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2.2 SharePro for colocalization analysis81

In SharePro, we assume there are altogether K effect groups (for either trait y1 or trait y2, or both) in a82

locus with G variants. Similar to our previous work on the sparse projection formulation of the SuSiE83

model [15, 18, 19], for the kth (k ∈ {1, ..., K}) effect group, SharePro uses sk, a sparse indicator shared84

by both traits to specify its variant representations (Figure 1). This indicator follows a multinomial dis-85

tribution:86

sk ∼ Multinomial(1,1G×1 ×
1

G
)

We use two additional sets of trait-specific variables to describe relationships between the kth effect87

group and each trait: causal indicators ck1, ck2 of whether the kth effect group is causal for y1 and y288

and βk1 and βk2 for their corresponding effect sizes (here we illustrate the model with two traits but it is89

also compatible with multiple traits):90

ck1, ck2 ∼ Bernoulli(σ)

91

βk1 ∼ N (0, τ−1
β1

)

92

βk2 ∼ N (0, τ−1
β2

)

Denoting the genotype matrix as X1 and X2, for traits y1 and y2, we have:93

y1 ∼ N (X1

∑
k

skβk1ck1, τ
−1
y1

I)

94

y2 ∼ N (X2

∑
k

skβk2ck2, τ
−1
y2

I)

τβ1 and τβ2 are hyperparameters for effect sizes while τy1 and τy2 are hyperparameters for residual vari-95

ances; σ is the important hyperparameter for prior colocalization probability. We discuss choices of these96

hyperparameters in the Supplementary Notes. The colocalization probability for the kth effect group is97

represented by the posterior probability of p(ck1 = ck2 = 1|y1,y2,X1,X2). We use an efficient vari-98

ational inference algorithm [18, 20, 21] adapted for GWAS summary statistics for posterior inference99

(detailed in the Supplementary Notes).100
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2.3 Simulation studies101

We conducted simulation studies under different causal settings to evaluate the performance of colocal-102

ization methods. We randomly sampled five 1-Mb loci from the genome and extracted their genotypes103

for 25,000 and 1,000 non-overlapping UK Biobank European ancestry individuals [22] to simulate trait 1104

and trait 2, respectively. For each locus, we calculated the LD matrix using PLINK [23].105

In each locus, we randomly sampled KC causal variants to be shared across traits and additionally KS106

causal variants to be specific for each trait. For example, when KC = 0 and KS = 1, there was one107

causal variant for trait 1 and one different causal variant for trait 2; When KC = 1 and KS = 0, there was108

one causal variant shared by both traits. We set the per-variant heritability to be 0.01 in trait 1 and 0.05109

in trait 2. With simulated traits, we performed GWAS using GCTA [24] to obtain summary statistics. We110

repeated this process 50 times for each setting.111

With LD information and simulated summary statistics, we performed colocalization analysis with112

five different methods (Table 1) using a default prior colocalization probability of 1× 10−5 and obtained113

posterior colocalization probabilities from COLOC [1]. Both COLOC+SuSiE [4] and PWCoCo [16]114

generated multiple pairs of colocalization probabilities, with the maximum used as colocalization prob-115

abilities. For eCAVIAR, we also used the maximum variant-level colocalization probabilities as locus-116

level colocalization summary [2]. Similarly in SharePro, maximum colocalization probabilities across all117

identified effect groups were used.118

A colocalization probability > 0.8 was considered strong evidence supporting colocalization, while a119

colocalization probability < 0.2 was considered evidence against colocalization [3].120

2.4 Colocalization analysis of RSPO3 pQTL and eBMD GWAS121

We examined the utility of SharePro by assessing the colocalization between a cis-pQTL locus of the122

circulating abundance of RSPO3, and a GWAS locus identified for eBMD using heel quantitative ul-123

trasound measurement. We obtained UK Biobank eBMD GWAS summary statistics from the GEFOS124

consortium [25] and RSPO3 pQTL summary statistics from the Fenland study [26]. The LD matrix was125

calculated using UK Biobank European ancestry individuals and colocalization analysis was performed126

with five different methods (Table 1) using a default prior colocalization probability of 1× 10−5.127
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3 Results128

3.1 Simulation studies129

To evaluate the performance of SharePro in colocalization analysis, we performed simulations under dif-130

ferent causal settings. SharePro achieved the highest power in most settings. Specifically, in the sim-131

ple scenario of only one causal variant (KC + KS = 1), COLOC, PWCoCo and SharePro accurately132

identified all simulated cases of colocalization with a colocalization probability above 0.8 (Figure 2 and133

Supplementary Table S1). Meanwhile, COLOC + SuSiE only identified 98.8% cases of colocalization134

( Supplementary Table S1) while the locus-level colocalization summary derived from eCAVIAR only135

identified 51.2% of the simulated cases of colocalization ( Supplementary Table S1).136

In more challenging scenarios with multiple causal variants, SharePro maintained the highest power137

for colocalization analysis, followed by COLOC + SuSiE. For example, with KC = 1 and KS = 1138

and a colocalization probability cutoff at 0.8, SharePro achieved a true positive rate of 99.2%, while the139

second best method COLOC + SuSiE achieved a true positive rate of 97.6% (Figure 2 and Supplemen-140

tary Table S1). In contrast, as expected, since the one-causal-variant assumption was not satisfied, the141

performance of COLOC became worse and only identified 44.4% cases of colocalization ( Supplemen-142

tary Table S1). With more than one causal variant shared between the two simulated traits (KC > 1),143

SharePro consistently identified all cases of colocalization and outperformed other methods (Figure 2144

and Supplementary Table S1).145

When causal variants were different across the simulated traits (non-colocalized), the colocalization146

probabilities obtained by COLOC, COLOC+SuSiE, eCAVIAR and SharePro were consistently below147

0.2 (Figure 2 and Supplementary Table S2). In contrast, PWCoCo had higher colocalization proba-148

bilities. For instance, with KC = 0 and KS = 1, PWCoCo had a false positive rate of 2.4% with a149

colocalization probability cutoff at 0.2 ( Supplementary Table S2).150

Moreover, SharePro also demonstrated high computational efficiency (Table 1). Across different sim-151

ulation settings, on average, SharePro took 4.3 seconds to assess colocalization in a 1-Mb locus, which152

was only longer than COLOC. In contrast, on average, eCAVIAR took more than 3 minutes to assess153

colocalization in the same locus (Table 1).154

We additionally performed prior sensitivity analysis (Supplementary Notes) to examine the impact155
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of prior colocalization probabilities on posterior colocalization probabilities and showcased two repre-156

sentative scenarios in Figure 3. When the GWAS summary statistics demonstrate strong colocalization157

pattern (Figure 3A), varying prior colocalization probabilities does not drastically change the posterior158

colocalization probabilities (Figure 3B). In contrast, when statistical evidence from GWAS associations159

is weak (Figure 3C), the posterior colocalization probabilities increases with the prior colocalization160

probabilities (Figure 3D).161

3.2 RSPO3-eBMD example162

The eBMD measured at the heel using quantitative ultrasound is an important biomarker of osteoporosis163

and strongly predicts fracture risk [25, 27, 28]. RSPO3 is a known modulator of the Wnt signaling path-164

way that plays a crucial role in maintaining bone homeostasis [29, 30]. It has been experimentally shown165

that the abundance of RSPO3 strongly influences the proliferation and differentiation of osteoblasts and166

regulates bone mass [13]. Therefore, it is biologically plausible that the cis-pQTL of RSPO3 colocalize167

with an eBMD GWAS locus.168

However, although the marginal genetic associations for RSPO3 abundance and eBMD demonstrated169

a highly similar pattern (Figure 4A), existing methods indicated no or minor evidence of colocalization170

(Figure 4B). With SharePro, we identified multiple effect groups in this region and colocalization results171

indicated that both rs7741021/rs9482773 and rs853974 were shared causal signals between circulating172

RSPO3 abundance and eBMD (Supplementary Table S3). We explored different hyperparameter set-173

tings for prior colocalization probabilities in SharePro (Supplementary Notes) and obtained robust colo-174

calization results (Supplementary Tables S4-7).175

4 Discussion176

In this work, we present SharePro to integrate LD modelling and colocalization assessment that extends177

the classical COLOC framework to account for multiple causal signals. Compared to methods that adopt178

a two-step strategy to relax the one-causal-variant assumption in COLOC, the effect group-level ap-179

proach in SharePro can effectively reduce the impact of LD in aligning causal signals, resulting in im-180

proved power for colocalization analysis. Under different simulation settings, SharePro achieved the181
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highest power with a well-controlled false positive rate. Additionally, SharePro also demonstrated high182

computational efficiency.183

Through the example of the colocalization analysis of RSPO3 cis-pQTL and eBMD GWAS, we184

demonstrated that SharePro could correctly identify biologically plausible colocalization in the pres-185

ence of multiple causal signals. In the RSPO3 locus, both the RSPO3 pQTL study and the eBMD GWAS186

are well-powered and the marginal associations exhibit a similar pattern (Figure 4B). However, the lead187

variants with the smallest marginal p-value in this locus, although highly correlated, are different for cir-188

culating RSPO3 abundance and eBMD (Figure 4B). In the presence of multiple causal signals, colo-189

calization analysis in this locus using existing methods has been challenging. In SharePro, correlated190

variants are grouped into effect groups and as a result, the impact of misaligned lead variants on colocal-191

ization analysis is mitigated.192

An important hyperparameter in colocalization analysis is the prior colocalization probability. In193

SharePro, the default prior colocalization probability is 1 × 10−5. In COLOC, this hyperparameter is194

represented as p12 with a default value of 1 × 10−5 [1]. Because the prior colocalization probability can195

impact posterior colocalization probability, especially when GWAS are not well-powered, it is necessary196

to explore a range of different values to evaluate the robustness of colocalization results [4].197

There are other cautions in colocalization analysis that also apply to SharePro. First, summary198

statistics-based analysis requires that the LD reference panel matches the LD structure underlying the199

samples included in GWAS. In SharePro, LD mismatch can lead to convergence issues for the algo-200

rithm. Second, the validity of colocalization results relies on the rigor of GWAS in carefully accounting201

for population stratification and other unmeasured confounding factors. Variants associated with shared202

confounding factors can also be considered colocalized. Third, the power to detect colocalization is de-203

pendent on the power of fine-mapping. We strongly suggest that prior sensitivity analysis should be per-204

formed to evaluate whether the GWAS are well-powered for colocalization analysis.205

In summary, we have developed SparsePro to extend COLOC for colocalization analysis. With in-206

creased power and well-controlled false positive rate at a low computation cost, SharePro is suitable for207

large-scale colocalization analysis. With the increasing number of publicly available GWAS summary208

statistics, we envision SharePro will have the potential to substantially deepen our understanding of com-209

plex traits and diseases.210
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5 Figure Legends211

Figure 1 SharePro for genetic colocalization analysis. The data generative process in SharePro is212

depicted in the graphical model. Green shaded nodes represent observed variables: genotype Xi1, trait213

yi1 for the ith individual in the first study, and genotype Xj2, trait yj2 for the jth individual in the second214

study. The orange unshaded nodes represent latent variables characterizing effect groups. sk is a sparse215

indicator shared between traits, specifying variant representations for the kth effect group. ck1 and ck2216

are causal indicators of whether the kth effect group is causal in trait y1 and trait y2 while βk1 and βk2217

represent the corresponding effect sizes. As a result, colocalization probability for the kth effect group218

is the posterior probability of ck1 = ck2 = 1. Here we assume individual-level data are available and219

adaption to GWAS summary statistics is detailed in the Supplementary Notes.220

Figure 2 SharePro demonstrated improved power with a well controlled false positive rate for221

colocalization analysis. Colocalization probabilities derived by five methods based on 50 replicates in222

each of the five loci are illustrated. Rows represent the different numbers of causal variants (KC + KS)223

and colors represent the different numbers of shared causal variants (KC) between the two simulated224

traits. Median colocalization probabilities across a total of 250 replicates are indicated by horizontal bars225

and inter-quartile ranges are represented by boxes.226

Figure 3 Prior sensitivity analysis in SharePro. (A) GWAS associations with a strong support for227

colocalization. Each dot represents a variant and the color indicates its correlation with the simulated228

colocalized variant. (B) Prior sensitivity analysis in the case of a strong support for colocalization. The229

x-axis stands for prior colocalization probabilities in the logarithmic scale and the y-axis stands for pos-230

terior colocalization probabilities. (C) GWAS associations with a weak support for colocalization. Each231

dot represents a variant and the color indicates its correlation with the simulated colocalized variant. (D)232

Prior sensitivity analysis in the case of a weak support for colocalization. The x-axis stands for prior233

colocalization probabilities in the logarithmic scale and the y-axis stands for posterior colocalization234

probabilities.235
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Figure 4 SharePro identified shared effect groups between RSPO3 pQTL and eBMD GWAS. (A)236

Marginal associations from eBMD GWAS and RSPO3 pQTL. The x-axis indicates chromosome and po-237

sition information and the y-axis represents p-value on the logarithmic scale. Each dot represents a vari-238

ant and its color indicates its correlation (r2) with the colocalized variant rs7741021. (B) Colocalization239

probabilities assessed by different colocalization methods for RSPO3 pQTL and eBMD GWAS.240

6 Supporting Information241

6.1 Supplementary Notes242

6.2 Supplementary Tables243

7 Data and Software Availability244

The SharePro software for colocalization analysis is openly available at https://github.com/245

zhwm/SharePro_coloc and the analysis conducted in this study is available at https://246

github.com/zhwm/SharePro_coloc_analysis. GWAS summary statistics for eBMD was247

obtained from the GEFOS consortium at http://www.gefos.org. GWAS summary statistics248

for RSPO3 pQTL was obtained from the Fenland study at https://omicscience.org/apps/249

pgwas/. Both COLOC and COLOC+SuSiE are included in the coloc (version 5.1.0) R package ob-250

tained from CRAN. PWCoCo was obtained from GitHub at https://github.com/jwr-git/251

pwcoco. eCAVIAR was obtained from GitHub at https://github.com/fhormoz/caviar.252
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Method Multiple causal variants Signal identification Posterior summary Running time (second; SD) Reference

COLOC X X locus-level 0.1 (0.1) [1]
COLOC+SuSiE ✓ separate fine-mapping paired locus-level 14.0 (3.3) [5]

eCAVIAR ✓ separate fine-mapping variant-level 227.7 (89.3) [2]
PWCoCo ✓ conditional analysis paired locus-level 38.1 (20.5) [8]
SharePro ✓ joint fine-mapping effect group-level 4.3 (1.1) this study

Table 1: Summary of colocalization method features.
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Figure 1: SharePro for genetic colocalization analysis.
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Figure 2: SharePro demonstrated improved power with a well controlled false positive rate for
colocalization analysis.
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Figure 3: Prior sensitivity analysis in SharePro.
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Figure 4: SharePro identified shared effect groups between RSPO3 pQTL and eBMD GWAS.
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SharePro Supplementary Notes

1 A variational inference algorithm for Bayesian colocalization341

In SharePro (Figure 1), similar to our previous work on the sparse projection formulation of the SuSiE342

model [15, 18, 19], with a shared projection matrix SG×K = [s1, ..., sK ], we can group correlated variants343

into K effect groups where344

sk ∼ Multinomial(1,1G×1 ×
1

G
)

is the sparse indicator for the variant compositions in the kth effect group. We have trait-specific indica-345

tor vectors c1 = [c11, ..., cK1] and c2 = [c12, ..., cK2] to characterize the causal statuses of effect groups on346

traits where347

ck1, ck2 ∼ Bernoulli(σ)

With trait-specific effect size vectors β1 = [β11, ..., βK1] and β2[β12, ..., βK2] where348

βk1 ∼ N (0, τ−1
β1

)

349

βk2 ∼ N (0, τ−1
β2

)

and denoting the genotype matrix as X1 and X2, for traits y1 and y2, we have:350

y1 ∼ N (X1

∑
k

skβk1ck1, τ
−1
y1

I)

351

y2 ∼ N (X2

∑
k

skβk2ck2, τ
−1
y2

I)

In colocalization analysis, we are interested in the posterior probabilities of causal indicators based on352

the observed traits y1, y2 and the genotypes X1 and X2. Inference of the exact posterior distribution of353

causal indicators c1, c2 and variant representations in effect groups S is difficult. Similar with the IBSS354

algorithm [15] proposed by SuSiE and our previous work on paired mean field variational inference al-355

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 26, 2023. ; https://doi.org/10.1101/2023.07.24.550431doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.24.550431
http://creativecommons.org/licenses/by-nc-nd/4.0/


gorithm [18, 21], we use a paired mean field factorized variational family [21]356

q(S,β1,β2, c1, c2) =
∏
k

q(sk, βk1, βk2, ck1, ck2)

to approximate the desired posterior distribution:357

p(S,β1,β2, c1, c2|y1,y2,X1,X2) =
p(y1,y2,S,β1,β2, c1, c2|X1,X2)

p(y1,y2|X1,X2)

We can obtain the optimal approximation by maximizing the evidence lower bound (ELBO) [20]:358

ELBO = Eq(S,β1,β2,c1,c2)[log
p(y1,y2,S,β1,β2, c1, c2|X1,X2)

q(S,β1,β2, c1, c2)
]

with the following conditions satisfied for each k [20]:359

log q(sk, βk1, βk2, ck1, ck2) = Eq(S\k,β\k1,β\k2,c\k1,c\k2) [log p(y1,y2,S,β1,β2, c1, c2|X1,X2)]

where Eq(S\k,β\k1,β\k2,c\k1,c\k2) is the expectation with respect to the variational distribution excluding the360

kth component. If we write out the joint probability:361

log p(y1,y2,S,β1,β2, c1, c2|X1,X2)

= log p(y1|X1,S,β1, c1) + log p(y2|X2,S,β2, c2) +
∑
k

log p(sk)

+
∑
k

log p(βk1) +
∑
k

log p(βk2) +
∑
k

log p(ck1) +
∑
k

log p(ck2)

=
N

2
log

τy1
2π

− τy1
2
(y1 −X1(

∑
k

skβk1ck1))
⊤(y1 −X1(

∑
k

skβk1ck1))

+
N

2
log

τy2
2π

− τy2
2
(y2 −X2(

∑
k

skβk2ck2))
⊤(y2 −X2(

∑
k

skβk2ck2))

+
∑
k

∑
g

skg log
1

G
+
∑
k

(
1

2
log

τβ1

2π
− τβ1

2
β2
k1) +

∑
k

(
1

2
log

τβ2

2π
− τβ2

2
β2
k2)

+
∑
k

[ck1 log σ + (1− ck1) log(1− σ)] +
∑
k

[ck2 log σ + (1− ck2) log(1− σ)]
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and denote β̃\k1 = Eq(S\k,β\k1,c\k1)

[∑
k′̸=k sk′βk′1ck′1

]
and β̃\k2 = Eq(S\k,β\k2,c\k2)

[∑
k′̸=k sk′βk′2ck′2

]
362

the required conditions can be simplified into four different cases for the kth effect group:363

Case 1: ck1 = 0 = ck2 = 0, i.e. the kth effect group is not causal for either trait:

log q(skg = 1, sk\g = 0, βk1, βk2, ck1 = 0, ck2 = 0)

=const+
1

2
log

τβ1

2π
− τβ1

2
β2
k1 +

1

2
log

τβ2

2π
− τβ2

2
β2
k2 + 2 log(1− σ)

After integrating out βk1 and βk2, we have:364

log q(skg = 1, sk\g = 0, ck1 = 0, ck2 = 0) = const+ 2 log(1− σ)

Case 2 (trait 1 specific): ck1 = 1 and ck2 = 0, i.e. the kth effect group is causal for trait y1 but not for

trait y2:

log q(skg = 1, sk\g = 0, βk1, βk2, ck1 = 1, ck2 = 0)

=const+ τy1X
⊤
g1(y1 −X1β̃\k1)βk1 −

τy1
2
X⊤

g1Xg1β
2
k1 +

1

2
log

τβ1

2π
− τβ1

2
β2
k1

+
1

2
log

τβ2

2π
− τβ2

2
β2
2 + log σ + log(1− σ)

We recognize that q(βk1|skg=1, sk\g = 0, ck1 = 1, ck2 = 0) ∼ N (µ∗
kg1, τ

∗
kg1). By matching sufficient365

statistics of the normal distribution, we have variational parameters for βk1:366

τ ∗kg1 = τy1X
⊤
g1Xg1 + τβ1

367

µ∗
kg1 =

τy1
τ ∗kg1

X⊤
g1(y1 −X1β̃\k1)

After integrating out βk1 and βk2, we have:368

log q(skg = 1, sk\g = 0, ck1 = 1, ck2 = 0) = const+
1

2
log

τβ1

τ ∗kg1
+

τ ∗kg1µ
∗2
kg1

2
+ log σ(1− σ)

Case 3 (trait 2 specific): ck1 = 0 and ck2 = 1, i.e. the kth effect group is causal for trait y2 but not for
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trait y1:

log q(skg = 1, sk\g = 0, βk1, βk2, ck1 = 0, ck2 = 1)

=const+ τy2X
⊤
g2(y2 −X2β̃\k2)βk2 −

τy2
2
X⊤

g2Xg2β
2
k2 +

1

2
log

τβ1

2π
− τβ1

2
β2
k1

+
1

2
log

τβ2

2π
− τβ2

2
β2
k2 + log σ + log(1− σ)

Similarly, we recognize that q(βk2|skg=1, sk\g = 0, ck1 = 0, ck2 = 1) ∼ N (µ∗
kg2, τ

∗
kg2). By matching369

sufficient statistics for the normal distribution, we can obtain the following variational parameters for370

βk2:371

τ ∗kg2 = τy2X
⊤
g2Xg2 + τβ2

372

µ∗
kg2 =

τy2
τ ∗kg2

X⊤
g2(y2 −X2β̃\k2)

After integrating out βk1 and βk2, we have:373

log q(skg = 1, sk\g = 0, ck1 = 0, ck2 = 1) = const+
1

2
log

τβ2

τ ∗kg2
+

τ ∗kg2µ
∗2
kg2

2
+ log σ(1− σ)

Case 4 (colocalization): ck1 = 1 = ck2 = 1, i.e. the kth effect group is causal for both trait y1 and trait

y2:

log q(skg = 1, sk\g = 0, βk1, βk2, ck1 = 1, ck2 = 1)

=const+ τy1X
⊤
g1(y1 −X1β̃\k1)βk1 −

τy1
2
X⊤

g1Xg1β
2
k1 + τy2X

⊤
g2(y2 −X2β̃\k2)βk2

− τy2
2
X⊤

g2Xg2β
2
k2 +

1

2
log

τβ1

2π
− τβ1

2
β2
k1 +

1

2
log

τβ2

2π
− τβ2

2
β2
k2 + 2 log σ

We recognize that q(βk1|skg=1, sk\g = 0, ck1 = 1, ck2 = 1) ∼ N (µ∗
kg1, τ

∗
kg1) and q(βk2|skg=1, sk\g =374

0, ck1 = 1, ck2 = 1) ∼ N (µ∗
kg2, τ

∗
kg2). By matching sufficient statistics for these normal distribution, we375

obtain the following variational parameters for βk1 and βk2:376

τ ∗kg1 = τy1X
⊤
g1Xg1 + τβ1
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377

µ∗
kg1 =

τy1
τ ∗kg1

X⊤
g1(y1 −X1β̃\k1)

378

τ ∗kg2 = τy2X
⊤
g2Xg2 + τβ2

379

µ∗
kg2 =

τy2
τ ∗kg2

X⊤
g2(y2 −X2β̃\k2)

After integrating out βk1 and βk2, we have:

log q(skg = 1, sk\g = 0, ck1 = 1, ck2 = 1) = const+
1

2
log

τβ1

τ ∗kg1
+

τ ∗kg1µ
∗2
kg1

2

+
1

2
log

τβ2

τ ∗kg2
+

τ ∗kg2µ
∗2
kg2

2
+ 2 log σ

Combining all four cases, we have the conditional distributions for ck1 and ck2:380

q(ck1 = 1|skg = 1, sk\g = 0) =
1

1 + e−u1

381

q(ck2 = 1|skg = 1, sk\g = 0) =
1

1 + e−u2

where382

u1 =
1

2
log

τβ1

τ ∗kg1
+

τ ∗kg1µ
∗2
kg1

2
+ log

σ

1− σ

383

u2 =
1

2
log

τβ2

τ ∗kg2
+

τ ∗kg2µ
∗2
kg2

2
+ log

σ

1− σ

After integrating out ck1 and ck2, we have the variational distribution for sk:384

log q(skg = 1, sk\g = 0) = log π̃g + 2 log(1− σ) + log(1 + eu1) + log(1 + eu2)

Therefore, for the kth effect groups, we can calculate the posterior colocalization probability as

p(ck1 = ck2 = 1|y1,y2,X1,X2)

=
∑
g

q(ck1 = 1|skg = 1, sk\g = 0)q(ck2 = 1|skg = 1, sk\g = 0)q(skg = 1, sk\g = 0)
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In summary, we have now derived Algorithm 1 for colocalization analysis with SharePro:385

Algorithm 1: SharePro for genetic colocalization analysis

Data: XT
1X1, XT

2X2, XT
1 y1 and XT

2 y2;

hyperparameters σ, τβ1 , τβ2 , τy1 and τy2

Result: Posterior colocalization probabilities for the kth effect group, k ∈ {1, ..., K}

1 while ELBO not converge do

2 for k = 1 to K do

3 update q(sk);

4 update q(ck1|sk) and q(ck2|sk);

5 update q(βk1|ck1, sk) and q(βk2|ck2, sk);

6 end

7 end

8 for k = 1 to K do

9 p(ck1 = ck2 = 1|y1,y2,X1,X2) =
∑

sk
q(ck1 = 1|sk)q(ck2 = 1|sk)q(sk)

10 end

386

2 Adaptation to summary statistics387

The information in individual-level data X1, X2, y1 and y2 are used in the form of XT
1X1, XT

2X2, XT
1 y1388

and XT
2 y2 throughout the proposed Algorithm 1, which can be derived from GWAS summary statistics389

and a LD reference panel. Specifically, in most publicly available GWAS summary statistics, standard-390

ized effect sizes (z-scores) are usually available or can be derived from marginal effect sizes and standard391

errors. With standardized genotypes and phenotypes, we have:392

X⊤
1 X1 = N1 ∗ LD

393

X⊤
2 X2 = N2 ∗ LD

394

X⊤
1 y1 =

√
N1z1

395

X⊤
2 y2 =

√
N2z2
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where N1 and N2 are sample sizes, LD is the variant Pearson correlation coefficient matrix and z1 and396

z2 are the z-scores in GWAS summary statistics for trait 1 and trait 2 respectively.397

3 Hyperparameter estimation398

Apart from the required quantities derived from GWAS summary statistics, there are also hyperparame-399

ters to be estimated in the colocalization algorithm: τβ1 and τβ2 for effect size distributions, τy1 and τy2400

for trait residual variances and σ for prior colocalization probability. As shown in our previous work401

[18], HESS-based heritability estimates [31] can provide suitable estimation for variance hyperparam-402

eters. Specifically, we can obtain the local heritability (ĥ2) in a locus as well as per-variant heritability403

(ĥ2
v) with the HESS [31] estimator using GWAS summary statistics, and use them to set hyperparame-404

ters: τ−1
β1

= ĥ2
v1, τ−1

β2
= ĥ2

v2, τ−1
y1

= 1− ĥ2
1 and τ−1

y2
= 1− ĥ2

2.405

An important hyperparameter in Bayesian colocalization is the prior colocalization probability σ. We406

set its default value to 1×10−5 (the same default value as used in COLOC). However, the impact of prior407

colocalization probabilities on posterior colocalization probabilities depends on the power of GWAS. In408

simulation studies, we explored a range of prior: 1 × 10−7, 2 × 10−7, 5 × 10−7, 1 × 10−6, 2 × 10−6,409

5 × 10−6, 1 × 10−5, 2 × 10−5, 5 × 10−5, 1 × 10−4, 2 × 10−4, 5 × 10−4, 1 × 10−3 and showcased two410

representative simulation examples in Figure 3.411
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