
ursaPGx: a new R package to annotate pharmacogenetic star alleles using phased whole 
genome sequencing data 
 
Gennaro Calendo1, Dara Kusic1, Jozef Madzo1, Neda Gharani1,2, Laura Scheinfeldt1,* 
 
1 Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ 08103, USA 
2 Gharani Consulting Limited, 272 Regents Park Road, London, N3 3HN, UK 
*Corresponding author 
 
Abstract 
 
Long-read sequencing technologies offer new opportunities to generate high confidence phased 
whole genome sequencing data for robust pharmacogenetic annotation. Here we describe a 
new user-friendly R package, ursaPGx, designed to accept multi-sample phased whole genome 
sequencing data VCF input files and output star allele annotations for pharmacogenes 
annotated in PharmVar. 
 
 
Background 
 
Pharmacogenomics (PGx) benefits medication management [1-7], however, pharmacogenetic 
annotation is often quite complex. Functional PGx annotation and corresponding clinical PGx 
recommendations rely on star (*) allele annotation [8, 9]; star alleles are often defined by more 
than one genetic variant [10-12]; and when the star allele defining variants are heterozygous, 
phased haplotype information is needed to resolve the annotation. In addition, annotations may 
change over time as new variants are characterized and incorporated into clinical PGx 
recommendations. Many resources and off the shelf tools are available to support researchers 
and clinicians interested in PGx annotation. Several tools are well suited for PGx annotation of 
unphased data (e.g., StellarPGx, Stargazer [13, 14]), and tools such as PharmCAT, while not 
computationally streamlined for multi-sample annotation, go a step further to incorporate clinical 
recommendations into the software output [15].  
 
New long-read sequencing technologies offer opportunities to generate high confidence phased 
whole genome sequencing (WGS) data for robust PGx annotation. Here we describe ursaPGx, 
an R package designed to complement existing tools that leverages phased whole genome 
sequencing data for PGx annotation. ursaPGx is designed to run on a typical laptop computer 
using multi-sample, phased, WGS VCF files and provides an output table of star allele 
annotations for selected pharmacogenes annotated in PharmVar.  
 
 
Materials and Methods 
 
Samples 
 
Phased multi-sample VCF files were downloaded for each of the star allele containing 
chromosomes from the 1000 Genomes Project. These VCF files were generated by the New 
York Genome Center for 3,202 1000 Genomes Project samples by aligning the 30x WGS reads 
to GRCh38 and performing SNV and INDEL variant calling as described in [16].  
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Benchmark data 
 
The accuracy of the star allele calling algorithm of ursaPGx was benchmarked against the next 
generation sequencing consensus calls generated by the Genetic Reference and Testing 
Material Coordination Program (GeT-RM) for CYP2C8, CYP2C9, and CYP2C19 which 
combined the output of Astrolabe, Stargazer, and Aldy across investigator groups to generate a 
uniform diplotype call for each of the 137 samples included in their study [17], of which 87 also 
have 30x WGS data [16]. CYP2D6 calls generated by ursaPGx’s implementation of Cyrius were 
benchmarked against calls generated by Chen et al. [18]. 
 
 
Implementation and algorithm description 
 
Users may choose any phased WGS VCF file of interest for use as input to ursaPGx. ursaPGx 
assigns phased diplotype calls from single-sample or multi-sample indexed VCF files using 
publicly available star allele definitions from PharmVar [10-12]. First, for a given pharmacogene, 
star allele defining positions are used to extract genotype data for all samples in the VCF. Next, 
the extracted positions are checked against each PharmVar haplotype definition in order to 
determine ‘callable’ alleles. In this context, a callable allele is defined as a haplotype definition 
where all allele defining variants are present in the sample VCF. Downstream analysis is then 
limited to the set of callable alleles. The set of callable alleles is then used to generate a 
genomic position by haplotype definition reference matrix. The cells of the reference matrix 
contain the nucleotide which defines the given haplotype for each of the positions present in the 
sample VCF. Positions that are not part of a given haplotype definition are filled with the 
reference nucleotide for the position. Using this reference matrix allows ursaPGx to 
disambiguate star allele definitions such as CYP2C19*2 and CYP2C19*35, which share the 
same core allele definitions (CYP2C19*2, non-reference alleles for rs4244285, rs12769205, 
rs3758581; CYP2C19*35, non-reference alleles for rs12769205, rs3758581) and therefore must 
be distinguished by using a SNV unique to CYP2C19*2 (rs4244285). After constructing the 
reference matrix, genotype calls are converted to their nucleotide representation and split into 
haplotype strings for each sample. For each sample, each haplotype string is checked for exact 
matches against all columns of the reference matrix. All exact matches to the reference for each 
sample haplotype string are reported for each sample. If no exact matches occur, then the 
haplotype call for that sample is reported as ambiguous (*Amb). Haplotype calls for each 
sample are then combined to form a single diplotype call for the given pharmacogene for each 
sample included in the VCF. 
 
CYP2D6 star allele calling in ursaPGx is performed with a modified version of Illumina CYP2D6 
star allele caller Cyrius, designed to function in R. The CYP2D6 haplotype calling algorithm 
implemented in Cyrius is fully described in [18]. Briefly, Cyrius uses WGS BAM files to estimate 
the total number of copies of CYP2D6 and CYP2D7, determines the number of complete 
CYP2D6 and hybrid genes and uses these to estimate SVs impacting CYP2D6 annotation. 
Cyrius then performs small variant calling for star allele defining positions and derives an 
estimate of their copy number, and then matches these calls and SVs against star allele 
definitions from PharmVar (7/15/2020) in order to produce final diplotype calls for each sample.  
 
Software 
 
ursaPGx is a freely available and open source package implemented in the R programming 
language [19] and utilizes the VariantAnnotation package [20] from the Bioconductor project to 
provide a consistent interface with existing R packages for the analysis of genetic variant data. 
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Star allele definitions in VCF format are downloaded from PharmVar (current version 5.2.13) 
and parsed into R objects. All package code and analysis scripts are hosted on GitHub 
(https://github.com/coriell-research/ursaPGx). 
 
Requirements 
 
ursaPGx is designed to run on a personal laptop. Star allele calling for all 3,202 1000 Genomes 
Project samples for all 12 pharmacogenes takes ~45 seconds on a 3.7 GHz 6-Core Intel Core i5 
iMac. Cyrius CYP2D6 calling implemented in ursaPGx takes ~4 seconds per sample BAM.  
 
 
Results 
 
CYP2C8, CYP2C9, and CYP2C19 concordance was assessed for samples with matching IDs 
from the 30x WGS data in the GeT-RM benchmarking data sets (87/137) [17]. 
CYP2D6 concordance was tested against diplotype calls from Chen et al. [18] in order to ensure 
accuracy of the Cyrius implementation within ursaPGx. Diplotype calls produced by ursaPGx 
were found to be highly consistent with those generated by GeT-RM for all four benchmarked 
pharmacogenes (Table 1, Table S1). For the 87 samples with matching IDs between the 1000 
Genomes Project 30x WGS data and the GeT-RM NGS consensus benchmarking data, 
CYP2C8 was found to be perfectly concordant. For CYP2C19, one subject sample (NA19122) 
was reported as *2|*Amb according to ursaPGx whereas the GeT-RM consensus call for this 
sample was reported as *2/*35. In the phased 30x WGS dataset, one haplotype was an exact 
match for CYP2C19*2 but the other haplotype had no exact match to any PharmVar definition. 
Assuming accurate phasing of the input 30x WGS dataset, ursaPGx reports the inexact match 
as ambiguous for this sample. 
 
For CYP2C9, three samples were found to be discordant between ursaPGx and GeT-RM 
reported consensus calls. Two of the subject samples with discordant CYP2C9 calls, NA19143 
and NA19213, were annotated as *1/*6 by GeT-RM whereas ursaPGx assigned these samples 
as *1|*1. Because the CYP2C9*6 defining variant (rs9332131) is not present in the phased 30x 
WGS dataset, CYP2C9*6 is not included as a callable allele by ursaPGx and thus is not 
reported for these samples. One subject sample, HG01190, was assigned as *61|*1 by 
ursaPGx whereas GeT-RM reported the diplotype as *2/*61. However, this sample was found to 
be inconsistently annotated across labs in the GeT-RM benchmarking data with a minority 
subset of three of the annotation approaches assigning *1/*61. Additionally, in the 30x WGS 
dataset, rs1799853 and rs202201137 are both heterozygous, and the non-reference allele for 
rs1799853 (CYP2C9*2) is on the same phased chromosome as the rs202201137 non-reference 
allele (presence of both non-reference alleles on the same haplotype defines the *61 variant 
according to PharmVar). Given the phase information from the 30x WGS, *61|*1 is the diplotype 
most consistent with the observed data for this sample. 
 
Since Cyrius has already been shown to produce highly accurate CYP2D6 star allele calls [18], 
we benchmarked ursaPGx’s implementation of Cyrius against the 2,504 Phase 3 1000 
Genomes Project samples analyzed in the Cyrius publication in order to ensure that changes 
made to Cyrius, which were needed to port the software to R, were consistent with the original 
Cyrius implementation. 2,502 of the 2,504 samples were found to be exact matches with the 
Cyrius reported results. For the two discordant samples, NA18611 and HG02490, ursaPGx 
reported diplotype calls for these samples (*10/*2 and *2/*33, respectively) whereas the Cyrius 
benchmark did not assign a diplotype for these samples. This discrepancy is likely due to 
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differences in BAM file input and downstream processing used in the 1000 Genomes Project 
NYGC 30x WGS data versus the WGS dataset used in the Cyrius publication [18].  
 
 
Discussion 
 
Here we describe a new pharmacogenetic annotation tool, ursaPGx, that is designed to 
complement existing tools by leveraging multi-sample phased WGS data and PharmVar 
annotations. ursaPGx is implemented as an efficient and user-friendly R package that provides 
a simple interface for assigning star allele diplotypes to samples for PharmVar annotated genes 
including CYP2D6, by integrating the Cyrius CYP2D6 star allele caller. ursaPGx is especially 
well suited to long-read WGS datasets (e.g., PacBio HiFi) where phasing confidence is high. 
 
Our benchmarking analysis demonstrated high concordance, 100%, 97% and 99%, respectively 
for the three overlapping pharmacogenes, CYP2C8, CYP2C9, and CYP2C19 included in the 
most recent GeT-RM report [17]. Two of the discordant samples for CYP2C9 result from a star 
allele defining variant (*6) that is present in the GeT-RM dataset but not occurring in the 30x 
WGS 1000 Genomes Project dataset used to benchmark ursaPGx. The third discordant 
CYP2C9 sample (HG01190) results presumably from differences in phasing and variant calling 
results. Finally, as detailed in the methods section above, when no perfect match to any 
PharmVar defined haplotype occurs, the ursaPGx output will be ‘*Amb’, and this implementation 
approach explains the single discordant CYP2C19 sample, NA19122. 

 
As with any annotation approach, ursaPGx includes several limitations. First and foremost, any 
error or missing variants in the input VCF file will propagate into errors in annotation. Similarly, 
any errors or uncertainty in phase will propagate into annotation errors, particularly when 
heterozygotes are phased incorrectly. In addition, our annotation approach is limited to the 
pharmacogenes annotated in PharmVar [10-12] and requires already phased input data. This 
annotation choice is specifically designed to take advantage of increasingly common long-read 
WGS datasets, such as the data being generated by the Human Pangenome Reference 
Consortium [21]. 
 
 
Conclusion 
 
New long-read sequencing technologies offer opportunities to generate high confidence phased 
whole genome sequencing data for robust PGx annotation. Here we describe ursaPGx, a user-
friendly R package that leverages multi-sample phased whole genome sequencing data for star 
allele annotation. 
 
 
Availability and requirements 
 
Project name: ursaPGx 
Project home page: https://github.com/coriell-research/ursaPGx 
Operating system(s): Platform independent 
Programming language: R 
Other requirements: None 
License:  GC will check Cyrius  
Any restrictions to use by non-academics: GC will check Cyrius  
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Table 1. Concordance of ursaPGx diplotype calls with benchmarking datasets.  
 

Gene Concordance Benchmarking Data 
CYP2C8 1.00 (87/87) GeT-RM [17] 
CYP2C9 0.97 (84/87) GeT-RM [17] 
CYP2C19 0.99 (86/87) GeT-RM [17] 
CYP2D6 0.99 (2502/2504) Cyrius [18]  
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