

1 **The CB₁ receptor interacts with cereblon and drives cereblon**
2 **deficiency-associated memory shortfalls**

3

4 Carlos Costas-Insua^{1,2,3,#}, Alba Hermoso-López^{1,2,3,#}, Estefanía Moreno^{4,§},
5 Carlos Montero-Fernández^{1,2,3,§}, Alicia Álvaro-Blázquez^{1,3}, Rebeca Diez-Alarcia^{5,6,7},
6 Irene B. Maroto^{1,2,3}, Paula Morales⁸, Enric I. Canela⁴, Vicent Casadó⁴,
7 Leyre Urigüen^{5,6,7}, Luigi Bellocchio⁹, Ignacio Rodríguez-Crespo^{1,2,3}, Manuel Guzmán^{1,2,3,*}

8

9 ¹Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación Neuroquímica
10 (IUIN), Complutense University, 28040 Madrid, Spain.

11 ²Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto
12 de Salud Carlos III, 28029 Madrid, Spain.

13 ³Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain.

14 ⁴Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine of
15 the University of Barcelona, University of Barcelona, 08028 Barcelona, Spain.

16 ⁵Department of Pharmacology, University of the Basque Country/Euskal Herriko Unibertsitatea, 48940
17 Leioa, Spain.

18 ⁶Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain.

19 ⁷Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain.

20 ⁸Instituto de Química Médica, CSIC, 28006 Madrid, Spain.

21 ⁹Institut National de la Santé et de la Recherche Médicale (INSERM) and University of Bordeaux,
22 NeuroCentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, 33077 Bordeaux, France.

23

24 [#]Contributed equally as first authors

25 [§]Contributed equally as third authors

26 ^{*}Corresponding author

27

28 Running title: Control of memory by CRBN and CB₁R

29

30 **Abstract**

31 Cereblon/CRBN is a substrate-recognition component of the Cullin4A-DDB1-Roc1 E3
32 ubiquitin ligase complex. Destabilizing mutations in the human *CRBN* gene cause a
33 form of autosomal recessive non-syndromic intellectual disability (ARNSID) that is
34 modelled by knocking-out the mouse *Crbn* gene. A reduction in excitatory
35 neurotransmission has been proposed as an underlying mechanism of the disease, but
36 the intimate factors eliciting this impairment remain mostly unknown. Here we report
37 that CRBN molecules selectively located on glutamatergic neurons are necessary for
38 proper memory function. Combining various *in vivo* approaches, we show that the
39 cannabinoid CB₁ receptor (CB₁R), a key suppressor of synaptic transmission, is
40 overactivated in CRBN deficiency-linked ARNSID mouse models, and that the memory
41 deficits observed in these animals can be rescued by acute CB₁R-selective
42 pharmacological antagonism. Molecular studies demonstrated that CRBN interacts
43 physically with CB₁R and impairs the CB₁R-G_{i/o}-cAMP-PKA pathway in a ubiquitin
44 ligase-independent manner. Taken together, these findings unveil that CB₁R
45 overactivation is a driving mechanism of CRBN deficiency-linked ARNSID and
46 anticipate that the blockade of CB₁R could constitute a new therapy for this orphan
47 disease.

48

49 **Keywords**

50 Cannabinoid / Cereblon / Hippocampus / Memory / Rimonabant

51

52 Introduction

53 Intellectual disability (ID), defined by an intelligence quotient (IQ) below 70, affects 1-
54 3% of humans worldwide (Schalock *et al*, 2010). Individuals suffering from ID display
55 impaired cognitive and learning abilities, as well as a compromised adaptability to day-
56 to-day life. Among the many different genes that have been linked to ID (Kochinke *et*
57 *al*, 2016), *CRBN*, the gene encoding the 442 amino-acid protein cereblon/CRBN, was
58 identified 20 years ago in a study searching for gene(s) causing a non-severe form of
59 autosomal recessive non-syndromic intellectual disability (ARNSID) found in American
60 individuals with German roots (Higgins *et al*, 2000, 2004). These individuals bore a
61 single nucleotide substitution (*CRBN*: c.1255C→T), which generates a premature stop
62 codon (R419X), and displayed memory and learning deficits, with IQ values ranging
63 from 50 to 70. Individuals carrying a different *CRBN* missense mutation (*CRBN*:
64 c.1171T→C; C391R), which gives rise to more aggressive clinical symptoms, were
65 subsequently identified in Saudi Arabia (Sheereen *et al*, 2017). Copy number variations
66 in the chromosomal region containing the *CRBN* gene also result in ID (Dijkhuizen *et*
67 *al*, 2006; Papuc *et al*, 2015). Despite these well-described pathological consequences
68 of *CRBN* mutations and the high abundance of CRBN in the brain (Higgins *et al*, 2010),
69 the neurobiological actions of this protein remain obscure.

70 Seminal studies identified CRBN as a substrate adaptor of the Cullin4A-DDB1-
71 Roc1 E3 ubiquitin ligase complex (CRL4^{CRBN}) and the molecular target of thalidomide,
72 a drug that, when prescribed to pregnant women for sedative and antiemetic purposes,
73 caused severe malformations in thousands of children (Ito *et al*, 2010; Fischer *et al*,
74 2014). Despite these severe teratogenic effects, thalidomide and related
75 immunomodulatory drugs, such as pomalidomide and lenalidomide, are currently used
76 to treat lupus, lepra and some haematological malignancies (Asatsuma-Okumura *et al*,
77 2019b). An increasing body of evidence suggests that both the therapeutic and the
78 teratogenic effects of thalidomide arise from modifications in the specificity of CRBN

79 towards its ubiquitination substrates upon drug binding to this protein (Ito *et al*, 2010;
80 Krönke *et al*, 2014, 2015; Matyskiela *et al*, 2018; Asatsuma-Okumura *et al*, 2019a). In
81 contrast, little is known about the physiological actions of CRBN, particularly in the
82 brain, which could provide a mechanistic basis to explain why mutations in this protein
83 impact cognition. Previous reports support that the CRBN^{R419X} mutation destabilizes the
84 protein by enhancing autoubiquitination, thus suggesting that the ARNSID-associated
85 neuropathology could arise from reduced CRBN levels (Xu *et al*, 2013). Consistently,
86 knocking-out the *Crbn* gene in mice impairs learning and memory (Bavley *et al*, 2018;
87 Choi *et al*, 2018). To date, the proposed mechanisms underlying this CRBN deficiency-
88 associated cognitive impairment remain limited to a dysregulation of large conductance
89 Ca²⁺- and voltage-gated potassium channels (BK_{Ca}) and an increased activity of AMP-
90 dependent protein kinase (AMPK). These processes could alter synaptic plasticity and
91 reduce excitatory-neuron firing (Liu *et al*, 2014; Bavley *et al*, 2018; Choi *et al*, 2018).

92 The type-1 cannabinoid receptor (CB₁R), one of the most abundant G protein-
93 coupled receptors in the mammalian brain, constitutes the primary molecular target of
94 endocannabinoids (anandamide and 2-arachidonoylglycerol) and Δ⁹-
95 tetrahydrocannabinol (THC), the main psychoactive component of the hemp plant
96 *Cannabis sativa* (Pertwee *et al*, 2010). By reducing synaptic activity through
97 heterotrimeric G_{i/o} protein-dependent signalling pathways, the CB₁R participates in the
98 control of multiple biological processes, such as learning and memory, motor
99 behaviour, fear and anxiety, pain, food intake and energy metabolism (Piomelli, 2003;
100 Mechoulam *et al*, 2014). Specifically, in the context of the present work, cannabinoid-
101 evoked CB₁R stimulation impairs various short- and long-term cognitive functions in
102 both mice (Figueiredo & Cheer, 2023) and humans (Crean *et al*, 2011; Dellazizzo *et al*,
103 2022). Given that *Crbn* knockout mice show a reduced excitatory firing and ID-like
104 cognitive impairments, we hypothesized that a pathological CB₁R overactivation could
105 underlie CRBN deficiency-induced ID. By developing new conditional *Crbn* knockout
106 mouse lines and combining a large number of *in vitro* approaches with extensive *in vivo*

107 behavioural phenotyping, here we show that *i*) the pool of CRBN molecules located on
108 telencephalic glutamatergic neurons is necessary for proper memory function; *ii*) CRBN
109 interacts physically with CB₁R and inhibits receptor-coupled G_{i/o} protein-mediated
110 signalling; *iii*) CB₁R is overactivated in CRBN-deficient mice; and *iv*) acute CB₁R-
111 selective pharmacological blockade rescues the memory deficits induced by genetic
112 inactivation of the *Crbn* gene. These preclinical findings might pave the way to the
113 design of a new therapeutic intervention aimed to treat cognitive symptoms in patients
114 with CRBN deficiency-linked ARNSID.

115

116 **Results**

117

118 **Selective genetic inactivation of *Crbn* in glutamatergic neurons impairs memory**

119 To model *CRBN* mutation-associated ID, we generated three mouse lines in which the
120 *Crbn* gene was selectively inactivated in either *i*) all body cells (hereafter, CRBN-KO
121 mice), *ii*) telencephalic glutamatergic neurons (hereafter, Glu-CRBN-KO mice) or *iii*)
122 forebrain GABAergic neurons (hereafter, GABA-CRBN-KO mice). This was achieved
123 by backcrossing mice carrying exons 3-4 of *Crbn* flanked by *loxP* sites (*Crbn*^{FF})
124 (Rajadhyaksha *et al*, 2012) with mice expressing Cre recombinase under the control of
125 *i*) the citomegalovirus (*CMV*) promoter, *ii*) the *Nex1* promoter or *iii*) the *Dlx5/6* promoter,
126 respectively (Fig 1A) (Schwenk *et al*, 1995; Monory *et al*, 2006). The three CRBN-
127 deficient mouse lines were viable, fertile, and born at both sexes with expected
128 Mendelian frequency. To evaluate the recombination process together with the
129 neuronal pattern of CRBN expression, we performed *in situ* hybridization experiments
130 in brain sections using RNAscope technology. *Crbn* mRNA was found throughout the
131 brain of CRBN-WT mice, with a remarkable abundance in the hippocampal formation
132 (Fig 1B). High *Crbn* mRNA levels were also detected in the cortex (Fig 1C), striatum
133 (Fig EV1A) and the cerebellum (Fig EV1B). Sections from CRBN-KO mice, as
134 expected, showed a negligible signal in all brain regions analysed (Fig 1B and C, and
135 Fig EV1A and B). In Glu-CRBN-KO mice, *Crbn* mRNA was notably reduced in the CA1,
136 CA3 and hilus of the hippocampus, with a slighter decrease in the granule cell layer of
137 the dentate gyrus (Fig 1B). *Crbn* mRNA was also decreased in the cortex of Glu-
138 CRBN-KO mice (Fig 1C), but not in the striatum (Fig EV1A) and cerebellum (Fig
139 EV1B), two regions that do not express Cre under the *Nex1* promoter (Kleppisch *et al*,
140 2003). In GABA-CRBN-KO mice, among the four areas analysed, *Crbn* mRNA only
141 diminished in the striatum, a region that is composed almost exclusively by GABAergic
142 neurons (Fig 1B and C, and Fig EV1A and B). All these changes in *Crbn* mRNA levels

143 were confirmed by quantitative PCR (Fig 1D and Fig EV1C) and occurred in concert
144 with changes in CCRN protein levels, as assessed by western blotting (Fig 1E and Fig
145 EV1D). Taken together, these data indicate that CCRN is largely expressed in
146 glutamatergic neurons of the mouse hippocampus and cortex.

147 Next, we characterized these mice from a behavioural standpoint. CCRN-KO,
148 Glu-CCRN-KO and GABA-CCRN-KO animals showed normal functional parameters
149 such as body weight and body temperature (Fig 2A and B), motor activity (Fig 2C),
150 motor learning (Fig 2D) and gait pattern (Fig EV2A) compared to control CCRN-floxed
151 littermates. Anxiety-like behaviour, as assessed by the elevated plus maze test (Fig
152 2E) or the number of entries in the central part of an open-field arena (Fig EV2B), was
153 also unchanged between genotypes. As a previous study had linked alterations in
154 *CCRN* copy number to autism spectrum disorders (Pinto *et al*, 2010), we evaluated
155 sociability and depression, two core symptoms of those disorders, using the three-
156 chamber test and the forced-swimming test, respectively. CCRN-KO, Glu-CCRN-KO
157 and GABA-CCRN-KO mice had a preserved sociability (Fig 2F) and did not show major
158 signs of depression (Fig 2G) compared to matched controls. Regarding memory
159 function, which is heavily impaired in individuals bearing CCRN mutations (Higgins *et*
160 *al*, 2000, 2004), first, we found that long-term recognition memory was compromised in
161 CCRN-KO mice when using the novel object recognition test. Of note, this trait required
162 CCRN molecules located on excitatory neurons, as Glu-CCRN-KO, but not GABA-
163 CCRN-KO, also underperformed in the task (Fig 2H). To further strengthen this notion,
164 we used a modified version of the Y-maze test aimed to evaluate spatial memory.
165 Again, CCRN-KO and Glu-CCRN-KO mice, but not GABA-CCRN-KO, travelled less
166 distance in a novel arm compared to a previously familiar arm, in contrast with their
167 control littermates (Fig 2I). Finally, as an additional memory-related measure, we used
168 a contextual fear-conditioning paradigm. We previously verified that pain sensitivity,
169 using the hot plate test, was not basally affected by knocking-out *Crbn* (Fig EV2C), and
170 that the freezing response was unaltered during the shocking session (Fig EV2D). In

171 line with the aforementioned observations, we found that, compared to CRBN-floxed
172 mice, the aversive stimulus elicited a lower freezing response in CRBN-KO and Glu-
173 CRBN-KO mice, but not in GABA-CRBN-KO animals, when reintroduced in the
174 shocking chamber 24 h after conditioning (Fig 2J). Taken together, these data show
175 that knocking-out *Crbn* in mice, while preserving most behavioural traits, causes a
176 remarkable memory impairment, and underline the necessity for CRBN molecules
177 selectively located on telencephalic excitatory neurons for a proper cognitive function.

178

179 **CRBN interacts with CB₁R *in vitro***

180 CRBN was identified in a recent proteomic study from our group aimed to find new
181 CB₁R carboxy-terminal domain (CTD)-interacting proteins (Maroto *et al*, 2023) . As
182 CB₁R activation, by reducing presynaptic neurotransmitter release, can produce
183 amnesia (Wilson & Nicoll, 2002; Figueiredo & Cheer, 2023), and an impaired excitatory
184 neurotransmission has previously been observed in CRBN-KO mice (Choi *et al*, 2018),
185 here we sought to validate whether CRBN is a *bona fide* binding partner of the
186 receptor, and if so, what the functional consequences of this interaction are. First, we
187 produced recombinant hCRBN and hCB₁R-CTD, and performed fluorescence
188 polarization-based, protein-protein interaction assays. A well-defined, saturable curve
189 was observed, conceivably due to a direct, high-affinity CRBN-CB₁R-CTD interaction
190 (Fig 3A). Second, we conducted co-immunoprecipitation experiments in the HEK-293T
191 cell line, which indicated an association of CRBN to CB₁R (Fig 3B, C). Third, BRET
192 assays with a Rluc-tagged version of CB₁R and a GFP-fused CRBN chimaera also
193 supported the interaction (Fig 3D). Fourth, PLA experiments in cells expressing tagged
194 versions of both proteins showed overt fluorescence-positive *puncta*, consistent with a
195 protein-protein association (Fig 3E).

196 Our original proteomic screening was conducted with hCB₁R-CTD (aa 408-472)
197 (Maroto *et al*, 2023), thus narrowing down *ab initio* the CB₁R-CRBN binding site to the
198 bulk intracellular, cytoplasm-facing domain of the receptor. Co-immunoprecipitation

199 experiments with several CB₁R chimaeras (Fig 3F, upper panel) revealed that an 11-
200 amino acid stretch in the mid/distal CB₁R-CTD (aa 449-460) suffices for CRBN
201 engagement (Fig 3F, lower panel). CRBN has three different domains, namely an *N*-
202 terminal seven-stranded β -sheet, a *C*-terminus containing a cereblon-unique domain
203 that harbours the thalidomide-binding site, and an α -helical bundle linker that is
204 involved in DDB1 binding (Fischer *et al*, 2014) (Fig 3G, upper panel). Unfortunately, we
205 were unable to locate a particular stretch of CRBN that interacts with CB₁R as both the
206 *N*-terminal and *C*-terminal portions of CRBN bound the receptor (Fig 3G, lower panel).
207 Of note, the existence of a conserved regulator of G protein signalling (RGS) domain
208 spanning amino acids 117-255 (rat protein numbering) of CRBN, which would partially
209 overlap with the CRBN DDB1-binding site, was long proposed (Jo *et al*, 2005). In fact,
210 based on a published CRBN structure (Nowak *et al*, 2018), we aligned this region with
211 the reported RGS domains of RGS4 and GRK2 (Moy *et al*, 2000; Okawa *et al*, 2017)
212 and found a very similar three-dimensional folding (Fig 3H). Hence, we generated a
213 CRBN construct lacking this region (CRBN- Δ RGS) (Fig 3G, upper panel), which was
214 able to bind CB₁R (Fig 3G, lower panel) and, like similar previously-reported CRBN
215 mutants (e.g., CRBN- Δ Mid in Ito *et al*, 2010), did not form the CRL4^{CRBN} complex (Fig
216 3I). Taken together, these observations support that CB₁R and CRBN interact through
217 regions encompassing at least an 11-amino acid stretch of the mid/distal CB₁R-CTD
218 and multiple surfaces of CRBN.

219

220 **CRBN inhibits CB₁R-evoked G_{i/o} protein signalling *in vitro***

221 To assess whether CRBN binding alters CB₁R activity, we first conducted dynamic
222 mass redistribution (DMR) assays. We and others have previously used this approach
223 to study global CB₁R cell signalling (Viñals *et al*, 2015; Costas-Insua *et al*, 2021;
224 Maroto *et al*, 2023). Transfection of HEK-293T cells expressing CB₁R with a construct
225 encoding CRBN notably reduced the DMR signal evoked by the CB₁R agonist
226 WIN55,212-2 (WIN) (Fig 4A). Of note, this inhibition was mimicked by CRBN- Δ RGS,

227 thus pointing to a CRL4^{CRBN}-independent action. Next, we aimed to dissect which
228 signalling pathways are affected by CRBN. CB₁R activation inhibits adenylyl cyclase
229 and so reduces intracellular cAMP concentration *via* the α subunit of G_{i/o} proteins
230 (Howlett *et al*, 1986). Using a forskolin-driven cAMP generation assay, we found that
231 both CRBN and CRBN- Δ RGS reduced the ability of CB₁R to inhibit cAMP production
232 upon activation by its agonists WIN (Fig 4B) and CP-55,940 (CP) (Fig 4C) in a dose-
233 dependent manner. Moreover, this CB₁R agonist-evoked decrease in cAMP
234 concentration occurred in concert with PKA inactivation, an effect that was also
235 prevented by CRBN (Fig 4D). This action of CRBN on the CB₁R/cAMP/PKA axis
236 seemed to be pathway-specific, as CB₁R-triggered ERK activation, another well-
237 characterized receptor signalling pathway (Pertwee *et al*, 2010), was unaffected by
238 CRBN (Fig EV3A). We next evaluated the G protein subtype-coupling profile of CB₁R in
239 the presence or absence of CRBN or CRBN- Δ RGS. In line with the aforementioned
240 data, CRBN precluded WIN-evoked G_{o11} and G_{o3} coupling to CB₁R, with an apparent
241 slight shift towards G_{ao} engagement (Fig 4E). This effect was evident as well when
242 using HU-210, another CB₁R agonist (Fig EV3B). CRBN also displaced G_{oq/11} from
243 agonist-engaged CB₁R (Fig EV3C). The effect of CRBN was largely mimicked by
244 CRBN- Δ RGS (Fig 4E), thus supporting again an independence from the CRL4^{CRBN}
245 complex. As an additional approach, we assessed CB₁R function in HEK-293T cells in
246 which the CRBN gene was knocked-out by CRISPR/Cas9 technology (HEK293T-
247 CRBN-KO) (Krönke *et al*, 2015). Compared to the parental CRBN-WT cell line, the
248 CB₁R agonist-evoked reduction of intracellular cAMP concentration was facilitated in
249 CRBN-KO cells (Fig 4F), while knocking-out CRBN did not affect CB₁R-mediated ERK
250 activation (Fig EV3D).

251 Aside from these cell-signalling experiments, we evaluated in further detail the
252 possible involvement of ubiquitination as a molecular mechanism by which CRBN
253 could conceivably reduce CB₁R action. Specifically, we conducted experiments of
254 CRBN *i*) ectopic overexpression (Fig 4G), *ii*) CRISPR/Cas9-based knockout (Fig 4H)

255 and *iii*) siRNA-mediated knockdown (Fig 4I), followed by denaturing
256 immunoprecipitation, and did not find any alteration in CB₁R levels or ubiquitination.
257 Taken together, these data show that CCRN selectively impairs the CB₁R-mediated,
258 G_{i/o} protein-coupled inhibition of the cAMP/PKA pathway through a ubiquitination-
259 independent action.

260

261 **CCRN interacts with CB₁R and inhibits receptor signalling in the mouse brain**

262 Our aforementioned *in vitro* experiments support that CCRN binds to and inhibits CB₁R.
263 Thus, we sought to analyse whether this process also occurs in the mouse brain *in*
264 *vivo*. As a control, we first verified that the mouse orthologs of CB₁R and CCRN interact
265 in transfected HEK-293T cells as assessed by co-immunoprecipitation (Fig 5A). We
266 next found that CCRN also co-immunoprecipitates with CB₁R in mouse hippocampal
267 extracts (Fig 5B). This CB₁R-CCRN association was further supported by PLA
268 experiments conducted in mouse hippocampal sections, which showed abundant
269 fluorescence-positive *puncta* in WT mice but not CB₁R-KO animals (Fig 5C). We
270 subsequently injected stereotactically the hippocampi of WT mice with adenoviral
271 particles encoding a scrambled DNA sequence (AAV1/2.CBA-Control) or FLAG-tagged
272 CCRN (AAV1/2.CBA-FLAG-CCRN) and analysed the G protein-coupling profile of
273 CB₁R. In line with our aforementioned *in vitro* data, CCRN overexpression occluded the
274 agonist-evoked coupling of CB₁R to G_{αi1} and G_{αi3} proteins (Fig 5D).

275 CB₁R activation elicits numerous behavioural alterations in mice, which allows a
276 straightforward procedure to evaluate the status of CB₁R functionality *in vivo*. Hence,
277 we treated CCRN-deficient mice and their control littermates with vehicle or THC, and
278 assessed two well-characterised cannabinoid-mediated effects, namely catalepsy,
279 which relies exclusively on CB₁Rs located at CNS neurons (Monory *et al*, 2007), and -
280 as a control- thermal analgesia, which relies mostly on peripherally-located CB₁Rs
281 (Agarwal *et al*, 2007). Of note, the cataleptic -but not the analgesic- effect induced by a
282 submaximal dose of THC (3 mg/kg) was notably augmented in both CCRN-KO and

283 Glu-CRBN-KO mice, but not in GABA-CRBN-KO mice (Fig 5E). In contrast, a maximal
284 dose of THC (10 mg/kg) induced the same “ceiling” effect in the three mouse lines (Fig
285 5F), thus supporting a facilitation of CB₁R function rather than an alteration of global
286 CB₁R availability. Accordingly, the total levels of hippocampal CB₁R were not affected
287 upon knocking-out *Crbn* (Fig EV4A, B). The expression of archetypical synaptic
288 markers (vGAT, vGLUT1, synaptophysin, PSD-95) was neither altered in the
289 hippocampi of the three mouse lines compared to matched WT control animals (Fig
290 EV4C). Taken together, these data support that CRBN interacts with CB₁R and inhibits
291 receptor action *in vivo*.

292

293 **Selective pharmacological blockade of CB₁R rescues CRBN deficiency-
294 associated memory impairment in mice**

295 Finally, we asked whether blocking the aforementioned CB₁R disinhibition that occurs
296 in CRBN-KO mice could exert a therapeutic effect on these animals by ameliorating
297 their memory deficits. To test this possibility, we treated CRBN-KO mice with a low
298 dose (0.3 mg/kg, single i.p. injection) of the CB₁R-selective antagonist rimonabant (aka
299 SR141716) prior to behavioural testing. Knocking-out *Crbn* impaired object-recognition
300 memory (Fig 6A, left histogram), freezing behaviour (Fig 6B, left histogram) and spatial
301 memory (Fig 6C, upper histogram) in vehicle-treated mice, and all these severe
302 alterations were effectively rescued by acute rimonabant administration without
303 affecting the basal performance of control CRBN-WT littermates. Of note, this
304 therapeutic effect of rimonabant administration on cognitive traits was also evident in
305 Glu-CRBN-KO mice (Fig 6A, right histogram; B, right histogram; and C, lower
306 histogram). Collectively, these observations are consistent with our cell-signalling and
307 animal-behaviour data, and unveil a therapeutic effect of CB₁R-selective antagonism
308 on CRBN deficiency-associated memory deficits.

309

310 Discussion

311 Here, upon developing new mouse models lacking CRBN exclusively in telencephalic
312 glutamatergic neurons or forebrain GABAergic neurons, we depicted the neuron-
313 population selectivity of CRBN action. Our mapping of CRBN mRNA and protein
314 expression in the mouse brain shows an enriched expression of CRBN in glutamatergic
315 neurons of the hippocampus, a pivotal area for cognitive performance (Preston &
316 Eichenbaum, 2013). Likewise, our behavioural characterization of those animals
317 demonstrates that Glu-CRBN-KO mice, but not GABA-CRBN-KO animals, display
318 memory alterations. Collectively, this evidence strongly supports that CRBN molecules
319 expressed in hippocampal glutamatergic neurons are necessary for proper memory
320 function, in line with a previous study showing that acute deletion of CRBN from the
321 hippocampus of CRBN-floxed mice (though using a constitutive promoter-driven Cre-
322 recombinase expressing vector) impairs memory traits (Bavley *et al*, 2018). Additional
323 previous work had reported alterations of excitatory neurotransmission in *Crbn*
324 knockout mice (Choi *et al*, 2018). Specifically, an augmented anterograde trafficking
325 and activity of BK_{Ca} channels was suggested to be involved in the reduction of
326 presynaptic neurotransmitter release observed in those animals (Liu *et al*, 2014; Choi
327 *et al*, 2018). Nonetheless, this notion is challenged by other data showing that
328 activation of presynaptic BK_{Ca} channels does not modulate the release of glutamate at
329 several synapses (Gonzalez-Hernandez *et al*, 2018). Our findings may therefore help
330 to reconcile these inconsistencies as CB₁Rs reduce glutamate release (Piomelli, 2003)
331 and may also activate BK_{Ca} channels under certain conditions (Stumpff *et al*, 2005;
332 Romano & Lograno, 2006; López-Dyck *et al*, 2017). Furthermore, CRBN-KO mice
333 show a resilient phenotype towards stress (Akber *et al*, 2022; Park *et al*, 2022), and the
334 pathological aggregation of Tau, a hallmark of tauopathies as Alzheimer's disease
335 (Akber *et al*, 2021). Facilitation of CB₁R signalling also protects against acute and
336 chronic stress, and chronic stress consistently downregulates CB₁R (Morena *et al*,

337 2016). A similar scenario occurs in Alzheimer's disease mouse models, in which CB₁R
338 pharmacological activation produces a therapeutic benefit and CB₁R genetic deletion
339 worsens the disease (Aso *et al*, 2012, 2018). Based on our findings, one could
340 speculate that the reported resiliency of CRBN-KO mice may arise, at least in part,
341 from an enhanced CB₁R-evoked protective activity.

342 Our array of binding experiments proved that CRBN interacts physically with
343 CB₁R-CTD, thus highlighting this domain as a molecular hub that most likely influences
344 receptor function in a cell population-selective manner by engaging distinct sets of
345 interacting proteins (Niehaus *et al*, 2007; Costas-Insua *et al*, 2021; Maroto *et al*, 2023).
346 In line with this idea, association with CRBN blunted the ability of CB₁R to couple to its
347 canonical G_{i/o} protein-evoked inhibition of the cAMP-PKA pathway without altering the
348 receptor ubiquitination status. This effect of CRBN adds to its known ubiquitin ligase-
349 independent, "chaperone-like" actions in the maturation of some membrane proteins
350 (Eichner *et al*, 2016; Heider *et al*, 2021). By doing so, CRBN counteracts the activity of
351 activator of 90-kDa heat shock protein ATPase homolog 1 (AHA1), thereby attenuating
352 its negative effect on membrane protein instability. Intriguingly, chronic CB₁R activation
353 increases AHA1 levels, and AHA1 has been reported to augment the CB₁R-mediated
354 effects on cAMP levels and ERK phosphorylation (Filipeanu *et al*, 2011). Therefore, a
355 plausible notion to be explored in the future would be that CB₁R overactivity upon
356 CRBN loss of function arises, at least in part, from an enhanced, stimulatory action of
357 AHA1 on the receptor.

358 From a therapeutic perspective, we report that acute CB₁R-selective
359 pharmacological antagonism fully rescues the memory deficits of both CRBN-KO and
360 Glu-CRBN-KO mice. This finding aligns with previous studies by Ozaita and coworkers,
361 who found improvements in the symptomatology of mouse models of fragile X and
362 Down syndromes upon CB₁R blockade (Busquets-Garcia *et al*, 2013; Navarro-Romero
363 *et al*, 2019). Rimonabant (Acomplia®) was marketed in Europe for the treatment of
364 obesity until 2008, when it was withdrawn by the EMA due to its severe psychiatric

365 side-effects (Pacher & Kunos, 2013). Of note, the dose of rimonabant used in our study
366 (0.3 mg/kg), when considering a standard inter-species dose conversion formula
367 (Reagan-Shaw *et al*, 2008), is approximately 12 times lower than that prescribed to
368 obesity patients (20 mg/day, equivalent to 3.5 mg/kg in mice), and falls well below the
369 doses reducing food intake (1 mg/kg) and eliciting anxiety (3 mg/kg) in mice (Wiley *et*
370 *al*, 2005; Thiemann *et al*, 2009). This would theoretically ensure a safer profile upon
371 administration to patients. Given that rimonabant rescues glutamatergic synaptic
372 alterations even at lower doses (0.1 mg/kg) (Gomis-González *et al*, 2016), it is
373 plausible that the dose of 0.3 mg/kg used here normalizes the functionality of the
374 hippocampal circuitry of CRBN-KO and Glu-CRBN-KO mice. These issues
375 notwithstanding, the advent of novel CB₁R-targeting drugs with a safer pharmacological
376 profile, such as neutral antagonists (e.g., NESS0327) (Meye *et al*, 2013) or negative
377 allosteric modulators (e.g., AEF0117) (Haney *et al*, 2023), constitutes an attractive
378 therapeutic option to be explored in the future.

379 In summary, we provide compelling evidence supporting the existence of a CRBN-
380 CB₁R-memory axis that is impaired in *Crbn* knockout mice, thus suggesting that it could
381 also be disrupted in patients with *CRBN* mutations. This study allows a new conceptual
382 view of how CRBN controls memory and provides a potential therapeutic intervention
383 (namely, the pharmacological blockade of CB₁R) for patients with CRBN deficiency-
384 linked ARNSID. Future work should define the actual translationality of our preclinical-
385 research findings.

386

387 **Materials and Methods**

388

389 **Animals**

390 All the experimental procedures used were performed in accordance with the
391 guidelines and with the approval of the Animal Welfare Committee of Universidad
392 Complutense de Madrid and Comunidad de Madrid, and in accordance with the
393 directives of the European Commission. *Crbn*-floxed mice (herein referred to as
394 *Crbn*^{F/F}) and CMV-Cre mice were purchased from The Jackson Laboratory (Bar
395 Harbor, ME, USA; #017564, #006054). We also used *Nex1*-Cre mice, *Dlx5/6*-Cre mice
396 and full CB₁R knockout mice (herein referred to as CB₁R-KO) (Marsicano *et al*, 2002;
397 Monory *et al*, 2006), which were already available in our laboratory. Animal housing,
398 handling and assignment to the different experimental groups were conducted as
399 described (Ruiz-Calvo *et al*, 2018). Adequate measures were taken to minimize pain
400 and discomfort of the animals. For behavioural experiments, adult mice (ca. 2–4-
401 month-old) of both sexes (differentially represented in each graph as circles or
402 triangles) were habituated to the experimenter and the experimental room for one week
403 prior to the experiment. All behavioural tests were conducted during the early light
404 phase under dim illumination (< 50 luxes in the centre of the corresponding maze) and
405 video-recorded to allow the analysis to be conducted by an independent trained
406 experimenter, who remained blind towards the genotype and the treatment of the
407 animal. Mice were weighted on a conventional scale (accuracy up to 0.01 g) and their
408 body temperature was measured with a rectal probe (RET-3, Physitemp, Clifton, NJ,
409 USA) inserted ~2 cm into the animal's rectum.

410

411 **Motor performance tests**

412 Spontaneous locomotor activity was measured in an open field arena of 70x70 cm built
413 in-house with grey plexiglass. Mice were placed in the centre of the arena and allowed

414 free exploration for 10 min. Total distance travelled, resting time and entries in the
415 central part of the arena (25 x 25 cm) were obtained using Smart3.0 software (Panlab,
416 Barcelona, Spain). To assess motor learning skills, we conducted an accelerating
417 rotarod paradigm consisting of three daily sessions with a 40-min inter-trial interval, for
418 three consecutive days. Briefly, the mouse was placed in the rod (Panlab #LE8205) at
419 a constant speed (4 rpm), which was then accelerated (4 to 40 rpm in 300 s) once the
420 mouse was put in place. The time to fall from the apparatus was annotated in either
421 test, and the mean of trials 4-9 (days 2 and 3) was calculated to ensure reduced inter-
422 trial variability. For gait analysis, mice fore- and hind paws were painted with non-toxic
423 ink of different colours and placed in one end of a corridor (50-cm long, 5-cm wide) on
424 top of filter paper. The distance between strides was measured using a ruler.

425

426 **Pain sensitivity test**

427 Analgesia was evaluated using a hot-plate apparatus (Harvard apparatus, Holliston,
428 MA, USA #PY2 52-8570) being the temperature set at 52 °C. Animals were placed in
429 the plate inside a transparent cylinder and latency to first pain symptom (paw licking)
430 was annotated. Mice were removed after 30 s if no symptoms were visible.

431

432 **Anxiety test**

433 To evaluate anxiety-like behaviours we employed an elevated plus maze following
434 standard guidelines (arms: 30-cm long, 5-cm wide, two of them with 16-cm high walls,
435 connected with a central structure of 5x5 cm and elevated 50 cm from the floor). Each
436 mouse was placed in the centre of the maze, facing one of the open arms and the
437 exploratory behaviour of the animal was video recorded for 5 min. The number and
438 duration of entries was measured separately for the open arms and the closed arms
439 using Smart3.0 software, being one arm entry registered when the animal had placed
440 both forepaws in the arm. For simplicity, only time of permanence (in %) in the open
441 arms is provided.

442 **Sociability test**

443 To evaluate social behaviours, we introduced a single mouse in an arena (60-cm long,
444 40-cm wide, 40-cm high walls) divided in three compartments (20-cm long each)
445 separated by 2 walls (15-cm long) with a connector corridor (10-cm wide) and
446 containing two cylindrical cages (15-cm high, 8.5-cm diameter) in the lateral
447 compartments; for 10 min and allowed free exploration. One h later, the mouse was re-
448 exposed to this environment, but this time one of the cages contained one unfamiliar
449 mouse, paired in sex and age, and being a control genotype with the mouse
450 undergoing testing, in one of the cages. Mouse behaviour was video recorded for 10
451 min. Finally, time spent sniffing each cage was annotated manually by a blind
452 experimenter using a chronometer. Position of cages containing mice was randomized.
453 Mice with total exploration times lower than 15 s were considered outliers.

454

455 **Forced swimming test**

456 The forced swimming test was conducted in a custom square tank (14-cm high, 22-cm
457 wide) filled with 10-cm of water kept at a constant temperature of 22 °C for 5 min.
458 Animal behaviour was video recorded, and time spent immobile was annotated
459 manually by a blind experimenter using a chronometer.

460

461 **Novel object recognition test**

462 To evaluate object recognition memory, we introduced a single mouse in an L-maze
463 (15-cm high x 35-cm long x 5-cm wide) during 9 min for three consecutive days
464 (Oliveira da Cruz *et al*, 2020). The first day (habituation session) the maze did not
465 contain any object; the second day (training session) two equal objects (a green object
466 made of Lego pieces) were placed at both ends of the maze; the third day (testing
467 session), a new object, different in shape, colour, and texture (a white and orange
468 object made of Lego pieces) was placed at one of the ends. Position of novel objects in
469 the arms was randomized, and objects were previously analysed not be intrinsically

470 favoured. In all cases, mouse behaviour was video-recorded, and exploration time was
471 manually counted, being exploration considered as mice pointing the nose to the object
472 (distance < 1 cm) whereas biting and standing on the top of the object was not
473 considered exploration. Mice with total exploration times lower than 15 s were
474 considered outliers. Discrimination index was calculated as the time spent exploring the
475 new object (N) minus the time exploring the familiar object (F), divided by the total
476 exploration time [(N-F)/(N+F)]. When administered, SR141716 (Cayman Chemical, Ann
477 Arbor, MI, USA #9000484; 0.3 mg/kg), or vehicle [2% (v/v) DMSO, 2% (v/v) Tween-80
478 saline solution] was injected intraperitoneally immediately after the training session.

479

480 **Fear-conditioning test**

481 To evaluate hippocampal-dependent memory, we conducted a contextual fear-
482 conditioning test. A single mouse was introduced in a fear conditioning chamber (Ugo
483 Basile, Gemonio, VA, Italy #46000) for 2 min, and then 5 electric shocks were applied
484 (0.2 mA for 2 s each, 1-min intervals between shocks). Twenty-four h later, the mouse
485 was reintroduced in the same chamber for 3 min, and freezing behaviour was
486 automatically detected using ANY-maze software (Stoelting Europe, Dublin, Ireland).
487 The latency to start freezing detection was set to two s of immobility. When
488 administered, SR141716 (0.3 mg/kg), or vehicle [2% (v/v) DMSO, 2% (v/v) Tween-80
489 saline solution] was injected intraperitoneally immediately after the shocking session.

490

491 **Y-maze-based memory test**

492 To evaluate hippocampal-dependent memory, we employed a modified version of the
493 Y-maze test (Kraeuter *et al*, 2019). A mouse was placed in one arm of a maze (starting
494 arm) containing three opaque arms orientated at 120° angles from one another, being
495 one arm of the maze closed off (novel arm) and the other open (familiar arm) and
496 allowed for free exploration for 15 min (training session). Position of the starting,
497 familiar, and novel arms was randomized between tests. One h later, the mouse was

498 reintroduced into the maze with all three arms accessible and allowed for free
499 exploration for 5 min (testing session). Animal behaviour was video-recorded, and the
500 total ambulation in each arm was obtained by using Smart3.0 software. In line with
501 equivalent reports (Kraeuter *et al*, 2019), we noted a tendency of the mice to linger at
502 the starting arm, so comparisons were exclusively calculated between the novel arm
503 and the familiar arm. When administered, SR141716 (0.3 mg/kg), or vehicle [2% (v/v)
504 DMSO, 2% (v/v) Tween-80 saline solution)] was injected intraperitoneally the day
505 before the test.

506

507 **RNA isolation and quantitative PCR**

508 RNA isolation for multiple tissues was achieved by using the NucleoZOL one phase
509 RNA purification kit (Macherey-Nagel #740404.200) following manufacturer's
510 instructions. Two µg of total RNA were retro-transcribed using the Transcriptor First
511 Strand cDNA Synthesis Kit (Roche Life Science, Penzberg, Upper Bavaria, Germany,
512 #04379012001) with random hexamer primers. Real-time quantitative RT-PCR (Q-
513 PCR) was performed in a QuantStudio 7/12k Flex System (Applied Biosystems) with
514 the following primers *Crbn*.F 5'-TGAAATGGAAGTTGAAGACCAAGATAG-3'; *Crbn*.R 5'-
515 AACTCCTCCATATCAGCTCCCAGG-3'; *Hprt*.F 5'-CAGTACAGCCCCAAAATGGT-3';
516 *Hprt*.R 5'-CAAGGGCATATCCAACACA-3'; *Tbp*.F 5'-GGGGAGCTGTGATGTGAAGT-
517 3'; *Tbp*.R 5'-CCAGGAAATAATTCTGGCTCA-3', using the LightCycler® Multiplex DNA
518 Master (Roche Life Science #07339577001) and SYBR green (Roche Life Science
519 #4913914001). Relative expression ratio was calculated by using the $\Delta\Delta Ct$ method
520 with HPRT or TBP as housekeeping genes for normalization.

521

522 **RNAscope and immunofluorescence**

523 For RNAscope, mice were deeply anesthetized with a mixture of ketamine/xylazine
524 (87.5 mg/kg and 12.5 mg/kg, of each drug, respectively) and immediately perfused
525 intracardially with PBS followed by 4% paraformaldehyde (Panreac, Barcelona, Spain

526 #252931.1211). After perfusion, brains were removed and post-fixed overnight in the
527 same solution, cryoprotected by immersion in 10, 20, 30% gradient sucrose (24 h for
528 each sucrose gradient) at 4 °C, and then embedded in OCT. Serial coronal cryostat
529 sections (15 µm-thick) through the whole brain were collected in microscope glass
530 slides (Thermo Fisher Scientific, Waltham, MA, USA #J1800AMNZ) and stored at -80
531 °C. RNAscope assay (Advanced Cell Diagnostics, Newark, California, USA) was
532 performed using RNAscope® Intro Pack for Multiplex Fluorescent Reagent Kit v2
533 (#323136) with the Crbn mouse probe (#894791) following the manufacturer's
534 instructions.

535 For immunofluorescence, serial coronal cryostat sections (30 µm-thick) through
536 the whole brain were collected in PBS as free-floating sections and stored at -20 °C.
537 Slices or coverslips were permeabilized and blocked in PBS containing 0.25% Triton X-
538 100 and 10% or 5% goat serum (Pierce Biotechnology, Rockford, IL, USA),
539 respectively, for 1 h at RT. Primary antibodies were diluted directly into the blocking
540 buffer, and incubated overnight at 4 °C with the following primary antibodies and
541 dilutions: anti-CB₁R (1:400, CB₁R-GP-Af530, Frontier Institute Ishikari, Hokkaido,
542 Japan). After 3 washes with PBS for 10 min, samples were subsequently incubated for
543 2 h at RT with the appropriate highly cross-adsorbed anti-guinea pig AlexaFluor 546,
544 secondary antibody (1:1000; Invitrogen), together with DAPI (Roche, Basel,
545 Switzerland) to visualize nuclei. After washing 3 times in PBS, sections were mounted
546 onto microscope slides using Mowiol® mounting media.

547 Hybridization and immunofluorescence data were acquired on SP8 confocal
548 microscope (Leica Microsystems, Mannheim, Germany) using LAS-X software. Images
549 were taken using apochromatic 20X objective, and a 3-Airy disc pinhole. Fluorescent
550 quantification was measured using FIJI ImageJ open-source software, establishing a
551 threshold to measure only specific signal that was kept constant along the different
552 images. Regions of interest (ROIs) were defined for CA1 and CA3 pyramidal layer,
553 hilus and granule cell layer of dentate gyrus. Data were then expressed as percentage

554 of control. Controls were included to ensure none of the secondary antibodies
555 produced any significant signal in preparations incubated in the absence of the
556 corresponding primary antibodies. Representative images for each condition were
557 prepared for figure presentation by applying brightness, contrast, and other
558 adjustments uniformly.

559

560 **Protein expression and purification**

561 *E. coli* BL21 DE3 containing pBH4 (pET23-custom derivative) plasmids encoding
562 6xHis-tagged hCRBN or CB₁R-CTD (amino acids 400-472) were inoculated in 2 L of
563 2xYT media (1.6 % w/v tryptone, 1 % w/v yeast extract, and 5 g/L NaCl, pH 7.0) at 37
564 °C and constant agitation. During the exponential growth phase (OD₆₀₀ = 0.6-0.8),
565 protein expression was induced by addition of 0.5 mM isopropyl 1-thio-β-D-
566 galactopyranoside (Panreac, Barcelona, Spain) for 16 h at 20 °C. Next, bacteria were
567 pelleted by centrifugation at 5,000g for 15 min at room temperature and resuspended
568 in ice-cold lysis buffer (100 mM Tris-HCl, 100 mM NaCl, 10 mM imidazole, pH 7.0) with
569 continuous shaking in the presence of protease inhibitors (1 mg/mL aprotinin, 1 mg/ mL
570 leupeptin, 200 mM PMSF), 0.2 g/L lysozyme, and 5 mM β-mercaptoethanol, followed
571 by four cycles of sonication on ice. Insoluble cellular material was sedimented by
572 centrifugation at 12,000g for 30 min at 4° C and the resultant lysate filtered through
573 porous paper. Recombinant 6xHis-tagged proteins were sequentially purified on a
574 nickel nitrilotriacetic acid affinity column. After extensive washing (50 mM Tris-HCl, 100
575 mM NaCl, 25 mM imidazole, pH 7.0), proteins were eluted with elution buffer (50 mM
576 Tris-HCl, 100 mM NaCl, 250 mM imidazole, pH 7.0, supplemented with the
577 aforementioned protease inhibitors). Protein purity was confirmed by SDS-PAGE and
578 Coomassie brilliant blue or silver staining. Pure protein solutions were concentrated by
579 centrifugation in Centricon tubes (Millipore).

580

581 **Fluorescence polarization**

582 6xHis-tagged CB₁R-CTD was labelled with 3 molar equivalents of 5-
583 (iodoacetamido)fluorescein (5-IAF) in sodium bicarbonate buffer, pH 9.0, for 1 h at 25
584 °C, protected from light. Subsequently, non-reacted 5-IAF was washed out with a 1.00-
585 Da cutoff dialysis membrane. The concentration of the labelled peptide was calculated
586 by using the value of 68,000 cm⁻¹ M⁻¹ as the molar extinction coefficient of the dye at
587 pH 8.0, and a wavelength of 494 nm. Saturation binding experiments were performed
588 essentially as described previously (Costas-Insua *et al*, 2021), with a constant
589 concentration of 100 nM 5-IAF-CB₁R-CTD and increasing amounts of CCRN (~0-100
590 μM), and 3 internal replicates per point within each experiment. The fluorescence
591 polarization values obtained were fitted to the equation (FP – FP₀) = (FP_{max} -
592 FP₀)[CCRN]/(K_d + [CCRN]), where FP is the measured fluorescence polarization,
593 FP_{max} the maximal fluorescence polarization value, FP₀ the fluorescence polarization
594 in the absence of added CCRN, and K_d the dissociation constant, as determined with
595 GraphPad Prism version 8.0.1 (GraphPad Software, San Diego, CA, USA).
596

597 **Proximity ligation assay (PLA)**

598 *In situ* PLA for CB₁R and CCRN was conducted in HEK-293T cells transfected with
599 pcDNA3.1-CB₁R-myc and pcDNA3.1-3xHA-CCRN. Controls were performed in the
600 absence of one of the plasmids, that was replaced by an empty vector. Cells were
601 grown on glass coverslips and fixed in 4 % PFA for 15 min. For conducting PLA in
602 mouse hippocampal brain slices, mice were deeply anesthetized and immediately
603 perfused transcardially with PBS followed by 4 % PFA, postfixed and cryo-sectioned.
604 Immediately before the assay, mouse brain sections were mounted on glass slides,
605 and washed in PBS. In all cases, complexes were detected using the Duolink *in situ*
606 PLA Detection Kit (Sigma Aldrich) following supplier's instructions. First, samples were
607 permeabilized in PBS supplemented with 20 mM glycine and 0.05% Triton X-100 for 5
608 min (cell cultures) or 10 min (mounted slices) at room temperature. Slices were next
609 incubated with Blocking Solution (one drop per cm²) in a pre-heated humidity chamber

610 for 1 h at 37 °C. Primary antibodies were diluted in the Antibody Diluent Reagent from
611 the kit [mouse anti-c-myc (clone 9E10; 1:200, Sigma-Aldrich #11667149001) and rabbit
612 anti-HA (1:200, CST, #3724) for cell cultures; rabbit anti-CRBN (1:100, CST, #71810)
613 and rabbit anti-CB₁R (1:100, Frontier Institute, #CB1-Rb-Af380) for brain sections], and
614 incubated overnight at 4 °C. Negative controls were performed with only one primary
615 antibody. Ligations and amplifications were performed with In Situ Detection Reagent
616 Red (Sigma Aldrich), stained for DAPI, and mounted. Samples were analyzed with a
617 Leica SP8 confocal microscope and processed with Fiji ImageJ software.

618

619 **Cannabinoid administration**

620 Adult mice (2–4-month-old) were injected intraperitoneally with vehicle (1% v/v DMSO
621 in 1:18 v/v Tween-80/saline solution) 3 or 10 mg/kg THC (THC Pharm). Forty min later,
622 for the catalepsy test, the animal was placed with both forelimbs leaning on a bar
623 situated at a height of 3.5 cm. Immobility was considered maximal when the animal
624 exceeded 60 s of immobility, and null when the immobility time was lower than 5 s. In
625 all cases, 3 attempts were performed, and the maximal immobility time was selected as
626 the representative value. Next, analgesia was assessed as the latency to paw licking in
627 the hot-plate paradigm at a constant temperature of 52 °C. Animals were assigned
628 randomly to the different treatment groups, and all experiments were performed in a
629 blinded manner for genotype and pharmacological treatment.

630

631 **Western blot and immunoprecipitation**

632 Samples for western blotting were prepared as described (Costas-Insua *et al*, 2021;
633 Maroto *et al*, 2023). Tissue samples were homogenized with the aid of an automated
634 grinder (DWK Life Sciences GmbH, Mainz, Germany, #749540-0000). Proteins (1-50
635 µg) were resolved using PAGE-SDS followed by transfer to PVDF membranes using
636 Bio-Rad FastCast® reagents and guidelines. Membranes were blocked with 5%
637 defatted milk (w/v) or 5% BSA (w/v) in TBS-Tween-20 (0.1%) for 1 h and incubated

638 overnight with the following antibodies and dilutions: anti-phospho-ERK1/2 (1:1,000,
639 CST, Danvers, MA, 333 USA #9101), anti-ERK1/2 (1:1,000, CST #4696), anti-GFP
640 (1:1000, Thermo Fisher Scientific, Waltham, MA, USA #MA5-15256), anti- α -tubulin
641 (1:10,000, Sigma-Aldrich #T9026), anti- β -actin (1:10,000, Sigma-Aldrich #A5441), anti-
642 FLAG M2 (1:1,000, Sigma-Aldrich #F3165), anti-HA (1:1,000, CST #3724), anti-
643 GAPDH (1:3,000, CST #2118), anti-HSP90 (1:3,000 SCBT #sc-69703), anti-CB₁R
644 (1:2000, CB₁R-GP-Af530, Frontier Institute Ishikari, Hokkaido, Japan), anti-CRBN
645 (1:1,000, CST #71810), anti-Ubiquitin (SCBT, sc-8017), anti-synaptophysin (Synaptic
646 Systems, Goettingen, Germany #101002), anti-vGLUT1 (Synaptic Systems, #135303),
647 anti-vGAT (Synaptic Systems, #131003), anti-PSD-95 (Abcam, Cambridge, UK,
648 #ab2723), anti-vinculin (1:5,000, Sigma-Aldrich, #V9264). All antibodies were prepared
649 in TBS Tween-20 (0.1%) with 5% BSA (w/v). Membranes were then washed three
650 times with TBS-Tween-20 (0.1%), and HRP-labelled secondary antibodies, selected
651 according to the species of origin of the primary antibodies (Sigma-Aldrich #NA-931
652 and #NA-934 and Invitrogen #A18769), were added for 1 h at a 1:5,000 dilution in TBS-
653 Tween-20 (0.1%) at room temperature. Finally, protein bands were detected by
654 incubation with an enhanced chemiluminescence reagent (Bio-Rad #1705061). All
655 results provided represent the densitometric analysis, performed with Image Lab
656 software (Bio-Rad), of the band density from the protein of interest vs. the
657 corresponding band density from the loading control. For immunoprecipitations, the
658 pulled-down protein was considered the corresponding loading control. Western blot
659 images were cropped for clarity. Electrophoretic migration of molecular weight markers
660 is depicted on the left-hand side of each blot.

661 Immunoprecipitation experiments were performed as previously (Costas-Insua
662 *et al*, 2021). For co-immunoprecipitation experiments in HEK-293T cells, samples were
663 prepared on ice-cold GST buffer (50 mM Tris-HCl, 10% glycerol v/v, 100 mM NaCl, 2
664 mM MgCl₂, 1% v/v NP-40, pH 7.4), supplemented with protease inhibitors. Denaturing
665 immunoprecipitation to detect ubiquitination was conducted on RIPA buffer (50 mM

666 Tris-HCl pH 7.4, 150 mM NaCl, 1% v/v NP-40, 0.5% w/v sodium deoxycholate, 0.1%
667 w/v sodium dodecyl sulfate) supplemented with the deubiquitinase inhibitor 2-
668 chloroacetamide. Immunoprecipitations were conducted with anti-FLAG M2 affinity gel
669 (Sigma-Aldrich #A2220) or anti-HA agarose (Thermo Scientific, #26181), following the
670 supplier instructions. Finally, for co-immunoprecipitation experiments in adult
671 hippocampal tissue, protein extracts were solubilized on DDM buffer (25 mM Tris-HCl
672 pH 7.4, 140 mM NaCl, 2 mM EDTA, 0.5% n-dodecyl-β-D-maltoside) and the following
673 antibodies were added to a final concentration of 1 µg/ml: anti-CRBN (CST #71810),
674 anti-CB₁R (CB₁R-Rb-Af380), IgG control (Thermo Fisher Scientific, #10500C). Bound
675 proteins were captured with Protein G agarose for 4 h (Sigma-Aldrich, #17061801),
676 spun at low speed, washed three times with lysis buffer, and eluted with 2x Laemmli
677 sample buffer. In all cases, for CB₁R immunodetection, samples were heated for 10
678 min at 55 °C, and appropriate CB₁R-KO controls were included, following
679 recommended guidelines (Esteban *et al*, 2020).

680

681 **Cell culture, transfection and signalling experiments**

682 The HEK-293T cell line was obtained from the American Type Culture Collection
683 (Manassas, VA, USA). HEK-293T-CRBN-KO and parental HEK-293T-CRBN-WT cells,
684 generated with CRISPR/Cas9 technology, (Krönke *et al*, 2015), were kindly provided
685 by Dr. Benjamin L. Ebert (Dana-Farber Cancer Institute, Boston, MA, USA). Cells were
686 grown in DMEM supplemented with 10% FBS (Thermo Fisher Scientific), 1%
687 penicillin/streptomycin, 1 mM Na-pyruvate, 1 mM L-glutamine, and essential medium
688 non-essential amino acids solution (diluted 1/100) (all from Invitrogen, Carlsbad, CA,
689 USA). Cells were maintained at 37 °C in an atmosphere with 5% CO₂, in the presence
690 of the selection antibiotic when required (HEK-293T-FLAG-CB₁R; zeocin at 0.22
691 mg/mL, Thermo Fisher Scientific #R25001), and were periodically checked for the
692 absence of mycoplasma contamination. Cell transfections were conducted with
693 polyethyleneimine (Polysciences inc. Warrington, PA, USA #23966) in a 4:1 mass ratio

694 to DNA according to the manufacturer's instructions. Double transfections were
695 performed with equal amounts of the two plasmids (5 µg of total DNA per 10-cm plate),
696 except for BRET experiments (see below). Every condition was assayed in triplicate
697 within each individual experiment.

698 Drug treatments to assess CB₁R-evoked signalling were conducted as follows.
699 For ERK phosphorylation experiments, a 10 cm-diameter plate of transfected cells was
700 trypsinized and seeded on different 6 cm-diameter plates at a density of 1x10⁶ cells per
701 well. Six h later, cells were serum-starved overnight. Then, WIN-55,212-2 (Sigma-
702 Aldrich; #W102, 0.01-1 µM final concentration) or vehicle (DMSO, 0.1% v/v final
703 concentration) was added for 10 min. For PKA activity assays, the procedure was
704 essentially the same, but following WIN-55,212-2 (1 µM final concentration) or vehicle
705 (DMSO, 0.1% v/v final concentration) treatment, forskolin (Tocris, Bristol, UK, #1099, 1
706 µM final concentration) or vehicle (DMSO, 0.1% v/v final concentration) was added for
707 another 10 min. Cells were subsequently washed with ice-cold PBS, snap-frozen in
708 liquid nitrogen, and harvested at -80 ° C for western blot analyses, except for the
709 determination of PKA activity by ELISA (see below). Every condition was assayed in
710 triplicate within each individual experiment.

711

712 **Bioluminescence resonance energy transfer (BRET)**

713 BRET was conducted as described (Costas-Insua *et al*, 2021) in HEK-293T cells
714 transiently co-transfected with a constant amount of cDNA encoding the receptor fused
715 to Rluc protein and with increasingly amounts of GFP-CRBN. The net BRET is defined
716 as [(long-wavelength emission)/(short-wavelength emission)] – Cf where Cf
717 corresponds to [(long-wavelength emission)/(short-wavelength emission)] for the Rluc
718 construct expressed alone in the same experiment. BRET is expressed as milli BRET
719 units (mBU; net BRET x 1000). In BRET curves, BRET was expressed as a function of
720 the ratio between fluorescence and luminescence (GFP/Rluc). To calculate maximal
721 BRET from saturation curves, data were fitted using a nonlinear regression equation

722 and assuming a single phase with GraphPad Prism software version 8.0.1. The
723 represented experiment is the mean of three biological replicates.

724

725 **Antibody-capture [³⁵S]GTPγS scintillation proximity assay**

726 CB₁R-mediated activation of different subtypes of Gα protein subunits (Gα_{i1}, Gα_{i2}, Gα_{i3},
727 Gα_o, Gα_{q/11}, Gα_s, Gα_z, and Gα_{12/13}) was determined as described (Costas-Insua *et al*,
728 2021) using a homogeneous protocol of [³⁵S]GTPγS scintillation proximity assay
729 coupled to the use of the following antibodies: mouse monoclonal anti-Gα_{i1} (1:20,
730 Santa Cruz Biotechnology #sc-13534), rabbit polyclonal anti-Gα_{i2} (1:20; Santa Cruz
731 Biotechnology #sc-7276), rabbit polyclonal anti-Gα_{i3} (1:60, Antibodies on-line
732 #ABIN6258933), mouse monoclonal anti-Gα_o (1:40, Santa Cruz Biotechnology #sc-
733 393874), mouse monoclonal anti-Gα_{q/11} (1:20, Santa Cruz Biotechnology #sc-515689),
734 rabbit polyclonal anti-Gα_s (1:20, Santa Cruz Biotechnology #sc-377435), rabbit
735 polyclonal anti-Gα_z (1:60, Antibodies on-line #ABIN653561), and rabbit polyclonal anti-
736 Gα_{12/13} (1:40, Antibodies on-line #ABIN2848694). To determine their effect on
737 [³⁵S]GTPγS binding to the different Gα subunit subtypes in the different experimental
738 conditions, a single submaximal concentration (10 μM) of WIN-55,212-2 or HU-210
739 (Tocris #0966) was used, either alone or in the presence of the CB₁R antagonist O-
740 2050 (10 μM, Tocris #1655) as control. Nonspecific binding was defined as the
741 remaining [³⁵S]GTPγS binding in the presence of 10 μM unlabelled GTPγS. For each
742 Gα protein, specific [³⁵S]GTPγS binding values were transformed to percentages of
743 basal [³⁵S]GTPγS binding values (those obtained in the presence of vehicle). Every
744 condition was assayed in triplicate within each individual experiment.

745

746 **Determination of cAMP concentration**

747 cAMP was determined using the Lance Ultra cAMP kit (PerkinElmer), which is based
748 on homogeneous time-resolved fluorescence energy transfer. Briefly, HEK-293T cells
749 (1,000 per well), growing in medium containing 50 μM zardeverine, were incubated for

750 15 min in white ProxiPlate 384-well microplates (PerkinElmer) at 25 °C with vehicle
751 WIN-55,212-2 or CP55,940 (doses ranging from 0.0025 to 1 µM final concentration)
752 before adding vehicle or forskolin (0.5 µM final concentration) and incubating for 15
753 additional min. Every condition was assayed in triplicate within each individual
754 experiment. Fluorescence at 665 nm was analysed on a PHERAstar Flagship
755 microplate reader equipped with an HTRF optical module (BMG Lab technologies,
756 Offenburg, Germany).

757

758 **Dynamic mass redistribution (DMR) assays**

759 Global CB₁R signalling was determined by label-free technology as previously
760 described (Costas-Insua *et al*, 2021; Maroto *et al*, 2023) by using an EnSpire®
761 Multimode Plate Reader (PerkinElmer, Waltham, MA, USA). Briefly, 10,000 HEK-293T
762 or HEK-293T-Crbn^{-/-} cells expressing CB₁R were plated in 384-well sensor microplates
763 and cultured for 24 h. Then, the sensor plate was scanned, and a baseline optical
764 signature was recorded before adding 10 µL of the cannabinoid receptor agonist WIN-
765 55,212-2 (Sigma-Aldrich, 100 nM final concentration) dissolved in assay buffer (HBSS
766 with 20 mM Hepes, pH 7.15) containing 0.1% DMSO. Then, the resulting shifts of
767 reflected light wavelength (in pm) were analysed by using EnSpire Workstation
768 Software version 4.10. Each representative curve shown is the mean of three different
769 experiments. When conducted, cell transfection was achieved as stated above.

770

771 **Plasmids**

772 3xFLAG-tagged human CB₁R was cloned in the pcDNA3.1 backbone by restriction
773 cloning from existing sources in our laboratory. *N*-terminal 3xHA-tagged cDNAs of
774 mouse and human CRBN, as well as V5-tagged human Cullin-4a and myc-tagged
775 human DDB1 were acquired to VectorBuilder (Chicago, IL, USA). The GFP-tagged
776 version, partial and deletion mutants of CRBN were built by conventional PCR
777 methods. His₆-tagged CB₁R-CTD, CB₁R-CTD mutants, CB₁R-myc and CB₁R-Rluc were

778 already made in a previous work (Costas-Insua *et al*, 2021). Human CRBN cDNA was
779 inserted in the pBH4 vector by restriction cloning, rendering a His₆-tagged CRBN
780 amenable for protein purification; or in the pAM-CBA (Ruiz-Calvo *et al*, 2018) plasmid
781 for adeno-associated viral particles production (see below).

782

783 **Adeno-associated viral vector production**

784 All vectors used were of an AAV1/AAV2 mixed serotype and were generated by
785 calcium phosphate transfection of HEK293T cells. Subsequent purification was
786 conducted using an iodixanol gradient and ultracentrifugation as described previously
787 (Maroto *et al*, 2023).

788

789 **Stereotaxic surgery**

790 Adult mice (2 months-old) were anaesthetized with isoflurane (4%) and placed into a
791 stereotaxic apparatus (World Precision Instruments, Sarasota, FL, US). Adeno-
792 associated viral particles were injected with a Hamilton microsyringe (Sigma-Aldrich
793 #HAM7635-01) coupled to a 30g-needle controlled by a pump (World Precision
794 Instruments, #SYS-Micro4) directly in the hippocampus (1 μ L per injection site at a rate
795 of 0.25 μ L/min) with the following coordinates (in mm): anterior-posterior: -2.00 mm,
796 dorsal-ventral: -2.00 and -1.5 mm, medial-lateral: \pm 1.5 mm. Following each injection,
797 the syringe remained positioned for 1 min before withdrawal. Mice were treated with
798 analgesics [buprenorphine (0.1 mg/kg) and meloxicam (1 mg/kg)] before and for three
799 consecutive days after surgery. After three weeks of recovery, once ensured that body
800 weight returned at least to pre-surgery values, mice were euthanized, and brain was
801 dissected to collect hippocampi for further procedures.

802

803 **Determination of PKA activity**

804 To determine CB₁R-induced inhibition of PKA, we employed an ELISA (Abcam,
805 ab139435) following the manufacturer's instructions. Briefly, HEK-293T cells stably

806 expressing CB₁R, treated or not with WIN55,212-2 and/or forskolin, as stated above,
807 were lysed immediately after treatment with assay buffer (20 mM MOPS, 50 mM β-
808 glycerophosphate, 50 mM sodium fluoride, 1 mM sodium orthovanadate, 5 mM EGTA,
809 2 mM EDTA, 1% NP40, 1 mM DTT, 1 mM benzamidine, 1 mM PMSF, 10 µg/mL
810 leupeptin and aprotinin). The amount of total protein assayed (1-50 µg) was
811 independently adjusted in each assay, to ensure a linear protein-signal dependency. A
812 positive control, consisting of increasing amounts of recombinant PKA, was included in
813 each independent experiment. Every condition was assayed in triplicate within each
814 individual experiment.

815

816 **CRBN knockdown**

817 Silencing of CRBN was achieved by transfecting HEK-293T cells with the following
818 stealth siRNAs (Invitrogen) (Ito *et al*, 2010) using Lipofectamine 2000 (Thermo Fisher
819 Scientific #11668027) according to the manufacturer's instructions: CRBN #1, 5'-
820 CAGCUUAUGUGAAUCCUCAUGGAUA-3'; CRBN #2, 5'-
821 CCCAGACACUGAAGAUGAAAAUAGU-3'. Only sense strands are shown. Stealth
822 RNAi of low GC content was included as a negative control.

823

824 **Experimental design and statistical analyses**

825 Unless otherwise indicated, data are presented as mean ± SEM. The particular
826 statistical tests that were applied are indicated in each figure legend. All datasets were
827 tested for normality and homoscedasticity prior to analysis. Whenever possible, the
828 precise p values are given in the figures. p values below 0.05 were considered
829 significant. The sample size for each experiment was estimated based on previous
830 studies conducted by our laboratories. The number of biological replicates is provided
831 in each figure legend. The number of technical replicates is provided in the
832 corresponding Materials and Methods subsection. Graphs and statistics were
833 generated by GraphPad Prism v8.0.1.

834 Acknowledgements

835 This work was supported by the Spanish *Ministerio de Ciencia e Innovación*
836 (MICINN/FEDER; grants PID2021-125118OB-I00 to M.G., PID2020-113938RB-I00 to
837 E.M. and V.C., and PID2019-106404RB-I00 to L.U.,) and by the *Generalitat de*
838 *Catalunya* (grant 2021-SGR-00230 to E.M. and V.C.) L.B. was supported by INSERM.
839 C.C.-I. and I.B.M. were supported by contracts from the Spanish *Ministerio de*
840 *Universidades (Formación de Profesorado Universitario Program, references*
841 *FPU16/02593 and FPU15/01833, respectively).* We are indebted to Dr. Benjamin L.
842 Ebert for the kind donation of HEK-293T-CRBN-KO and parental HEK-293T-CRBN-WT
843 cells. We also thank David Martín-Gutiérrez, Lucía Rivera-Endrinal, Dr. Daniel García-
844 Ovejero, Dr. Eduardo Molina-Holgado, and the personnel of the core microscopy
845 centre and the animal facilities of Complutense University of Madrid for their expert
846 technical assistance.

847

848 Author contributions

849 **Carlos Costas-Insua:** Conceptualization; data curation; formal analysis; investigation;
850 methodology; resources; software; supervision; validation; visualization; writing –
851 original draft; writing – review & editing. **Alba Hermoso-López:** Data curation; formal
852 analysis; investigation; methodology; software; validation; visualization; writing – review
853 & editing. **Estefanía Moreno:** Data curation; formal analysis; investigation;
854 methodology; resources; software; validation; visualization; writing – review & editing.
855 **Carlos Montero-Fernández:** Investigation; methodology; software; writing – review &
856 editing. **Alicia Álvaro-Blázquez:** Investigation; methodology; software; writing – review
857 & editing. **Rebeca Diez-Alarcia:** Formal analysis; investigation; methodology; software;
858 writing – review & editing. **Irene B. Maroto:** Formal analysis; investigation;
859 methodology; software; validation; visualization; writing – review & editing. **Paula**
860 **Morales:** Data curation; formal analysis; investigation; methodology; resources;

861 software; visualization; writing – review & editing. **Enric I. Canela:** Funding acquisition;
862 methodology; resources; supervision; writing – review & editing. **Vicent Casadó:**
863 Funding acquisition; methodology; resources; supervision; writing – review & editing.
864 **Leyre Urigüen:** Data curation; formal analysis; funding acquisition; methodology;
865 resources; software; supervision; validation; writing – review & editing. **Luigi**
866 **Belloccchio:** Formal analysis; funding acquisition; methodology; resources; supervision;
867 writing – review & editing. **Ignacio Rodríguez-Crespo:** Conceptualization; data
868 curation; formal analysis; methodology; resources; software; supervision; validation;
869 writing – review & editing. **Manuel Guzmán:** Conceptualization; data curation; formal
870 analysis; funding acquisition; methodology; project administration; supervision;
871 validation; visualization; writing – original draft; writing – review & editing.

872

873 **Disclosure and competing interests statement**

874 The authors declare that they have no conflict of interest.

875

876 **The Paper Explained**

877 **Problem**

878 Intellectual disability is a major healthcare problem. Specifically, disrupting mutations in
879 *CRBN*, the gene that encodes cereblon/CRBN, an E3 ubiquitin ligase complex
880 component, cause a form of autosomal recessive non-syndromic intellectual disability
881 (ARNSID) that heavily impairs learning and memory skills. Recently, owing to the
882 generation of *Crbn* knockout mice that recapitulate the human disease, some
883 molecular factors underlying that cognitive dysfunction have been proposed, but the
884 intimate CRBN deficiency-evoked etiopathological mechanisms remain unknown.

885 **Results**

886 We first developed mouse models in which the *Crbn* gene was knocked-out non-
887 selectively from all body cells (CRBN-KO), or selectively from the glutamatergic (Glu-
888 CRBN-KO) or GABAergic (GABA-CRBN-KO) forebrain-neuron lineage. Behavioural
889 testing revealed a profound memory impairment in CRBN-KO and Glu-CRBN-KO but
890 not CRBN-GABA-KO mice. Molecular studies demonstrated that CRBN interacts
891 physically with CB₁R and inhibits receptor action in a ubiquitin ligase-independent
892 manner, thus providing a rationale for the CB₁R overactivation displayed by CRBN-
893 deficient animals. Finally, experiments conducted with CRBN-KO and Glu-CRBN-KO
894 mice acutely treated with rimonabant, a CB₁R-selective antagonist, showed that
895 blockade of this receptor restores normal memory function.

896 **Impact**

897 Our findings demonstrate that *i*) CRBN binds to and inhibits CB₁R, *ii*) deleting CRBN
898 causes CB₁R overactivation, and *iii*) this event, in turn, drives CRBN deficiency-
899 associated memory deficits in mice. In full caption, our findings pave the way for the
900 pharmacological blockade of CB₁R as a novel therapeutic intervention in patients with
901 CRBN deficiency-linked ARNSID.

902

903 **Data Availability Section**

904 This study includes no data deposited in external repositories.

905

906 **References**

907 Agarwal N, Pacher P, Tegeder I, Amaya F, Constantin CE, Brenner GJ, Rubino T,
908 Michalski CW, Marsicano G, Monory K, *et al* (2007) Cannabinoids mediate
909 analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. *Nat
910 Neurosci* 10: 870–879

911 Akber U, Bong S, Park ZY & Park CS (2022) Effects of cereblon on stress-activated
912 redox proteins and core behavior. *Brain Res* 1793

913 Akber U, Jo H, Jeon S, Yang SJ, Bong S, Lim S, Kim YK, Park ZY & Park CS (2021)
914 Cereblon regulates the proteotoxicity of tau by tuning the chaperone activity of
915 DNAJA1. *J Neurosci* 41: 5138–5156

916 Asatsuma-Okumura T, Ando H, De Simone M, Yamamoto J, Sato T, Shimizu N,
917 Asakawa K, Yamaguchi Y, Ito T, Guerrini L, *et al* (2019a) P63 is a cereblon
918 substrate involved in thalidomide teratogenicity. *Nat Chem Biol* 15: 1077–1084

919 Asatsuma-Okumura T, Ito T & Handa H (2019b) Molecular mechanisms of cereblon-
920 based drugs. *Pharmacol Ther* 202: 132–139

921 Aso E, Andrés-Benito P & Ferrer I (2018) Genetic deletion of CB1 cannabinoid
922 receptors exacerbates the Alzheimer-like symptoms in a transgenic animal model.
923 *Biochem Pharmacol* 157: 210–216

924 Aso E, Palomer E, Juvés S, Maldonado R, Muoz FJ & Ferrer I (2012) CB1 agonist
925 ACEA protects neurons and reduces the cognitive impairment of A β PP/PS1 mice.
926 *J Alzheimer's Dis* 30: 439–459

927 Bavley CC, Rice RC, Fischer DK, Fakira AK, Byrne M, Kosovsky M, Rizzo BK, Del
928 Prete D, Alaeddini A, Morón JA, *et al* (2018) Rescue of learning and memory
929 deficits in the human nonsyndromic intellectual disability cereblon knock-out
930 mouse model by targeting the AMP-activated protein kinase–mTORC1
931 translational pathway. *J Neurosci* 38: 2780–2795

932 Busquets-Garcia A, Gomis-González M, Guegan T, Agustín-Pavón C, Pastor A, Mato
933 S, Pérez-Samartín A, Matute C, De La Torre R, Dierssen M, *et al* (2013) Targeting
934 the endocannabinoid system in the treatment of fragile X syndrome. *Nat Med* 19:
935 603–607

936 Choi TY, Lee SH, Kim YJ, Bae JR, Lee KM, Jo Y, Kim SJ, Lee AR, Choi S, Choi LM, *et*
937 *al* (2018) Cereblon maintains synaptic and cognitive function by regulating BK
938 channel. *J Neurosci* 38: 3571–3583

939 Costas-Insua C, Moreno E, Maroto IB, Ruiz-Calvo A, Bajo-Grañeras R, Martín-
940 Gutiérrez D, Diez-Alarcia R, Teresa Vilaró M, Cortés R, García-Font N, *et al*
941 (2021) Identification of BiP as a CB₁ receptor-interacting protein that fine-tunes
942 cannabinoid signaling in the mouse brain. *J Neurosci* 41: 7924–7941

943 Crean RD, Crane NA & Mason BJ (2011) An evidence based review of acute and long-
944 term effects of cannabis use on executive cognitive functions. *J Addict Med* 5: 1–8

945 Dellazizzo L, Potvin S, Giguère S & Dumais A (2022) Evidence on the acute and
946 residual neurocognitive effects of cannabis use in adolescents and adults: a
947 systematic meta-review of meta-analyses. *Addiction* 117: 1857–1870

948 Dijkhuizen T, Van Essen T, Van Der Vlies P, Verheij JBGM, Sikkema-Raddatz B, Van
949 Der Veen AY, Gerssen-Schoorl KBJ, Buys CHCM & Kok K (2006) FISH and
950 array-CGH analysis of a complex chromosome 3 aberration suggests that loss of
951 CNTN4 and CRBN contributes to mental retardation in 3pter deletions. *Am J Med
952 Genet* 140: 2482–2487

953 Eichner R, Heider M, Fernández-Sáiz V, Van Bebber F, Garz AK, Lemeer S, Rudelius
954 M, Targosz BS, Jacobs L, Knorn AM, *et al* (2016) Immunomodulatory drugs
955 disrupt the cereblon-CD147-MCT1 axis to exert antitumor activity and
956 teratogenicity. *Nat Med* 22: 735–743

957 Esteban PF, Garcia-Ovejero D, Paniagua-Torija B, Moreno-Luna R, Arredondo LF,
958 Zimmer A, Martín ÁA & Molina-Holgado E (2020) Revisiting CB1 cannabinoid

959 receptor detection and the exploration of its interacting partners. *J Neurosci*
960 *Methods* 337: 108680

961 Figueiredo A & Cheer JF (2023) Endocannabinoid regulation of hippocampus-
962 dependent memory. *Exp Neurol* 364: 114384

963 Filipeanu CM, Guidry JJ, Leonard ST & Winsauer PJ (2011) Δ9-THC increases
964 endogenous AHA1 expression in rat cerebellum and may modulate CB1 receptor
965 function during chronic use. *J Neurochem* 118: 1101–1112

966 Fischer ES, Böhm K, Lydeard JR, Yang H, Stadler MB, Cavadini S, Nagel J, Serluca F,
967 Acker V, Lingaraju GM, *et al* (2014) Structure of the DDB1-CRBN E3 ubiquitin
968 ligase in complex with thalidomide. *Nature* 512: 49–53

969 Gomis-González M, Matute C, Maldonado R, Mato S & Ozaita A (2016) Possible
970 therapeutic doses of cannabinoid type 1 receptor antagonist reverses key
971 alterations in fragile X syndrome mouse model. *Genes (Basel)* 7: 56

972 Gonzalez-Hernandez AJ, Maglio LE & Gómez R (2018) Cereblon regulates BK channel
973 expression at presynaptic and postsynaptic sites in excitatory synapses. *J*
974 *Neurosci* 38: 7932–7934

975 Haney M, Vallée M, Fabre S, Collins Reed S, Zanese M, Campistron G, Arout CA,
976 Foltin RW, Cooper ZD, Kearney-Ramos T, *et al* (2023) Signaling-specific inhibition
977 of the CB1 receptor for cannabis use disorder: phase 1 and phase 2a randomized
978 trials. *Nat Med* 29: 1487-1499

979 Heider M, Eichner R, Stroh J, Morath V, Kuisl A, Zecha J, Lawatscheck J, Baek K,
980 Garz AK, Rudelius M, *et al* (2021) The IMiD target CRBN determines HSP90
981 activity toward transmembrane proteins essential in multiple myeloma. *Mol Cell*
982 81: 1170-1186.e10

983 Higgins JJ, Pucilowska J, Lombardi RQ & Rooney JP (2004) A mutation in a novel
984 ATP-dependent Lon protease gene in a kindred with mild mental retardation.
985 *Neurology* 63: 1927–1931

986 Higgins JJ, Rosen DR, Loveless JM, Clyman JC & Grau MJ (2000) A gene for
987 nonsyndromic mental retardation maps to chromosome 3p25-pter. *Neurology* 55:
988 335–340

989 Higgins JJ, Tal AL, Sun X, Hauck SCR, Hao J, Kosofosky BE & Rajadhyaksha AM
990 (2010) Temporal and spatial mouse brain expression of cereblon, an ionic channel
991 regulator involved in human intelligence. *J Neurogenet* 24: 18–26

992 Howlett AC, Qualy JM & Khachatrian LL (1986) Involvement of Gi in the inhibition of
993 adenylate cyclase by cannabimimetic drugs. *Mol Pharmacol* 29: 307–313

994 Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, Yamaguchi Y & Handa H
995 (2010) Identification of a primary target of thalidomide teratogenicity. *Science* 327:
996 1345–1350

997 Jo S, Lee KH, Song S, Jung YK & Park CS (2005) Identification and functional
998 characterization of cereblon as a binding protein for large-conductance calcium-
999 activated potassium channel in rat brain. *J Neurochem* 94: 1212–1224

1000 Kleppisch T, Wolfsgruber W, Feil S, Allmann R, Wotjak CT, Goebbels S, Nave KA,
1001 Hofmann F & Feil R (2003) Hippocampal cGMP-dependent protein kinase I
1002 supports an age- and protein synthesis-dependent component of long-term
1003 potentiation but is not essential for spatial reference and contextual memory. *J
1004 Neurosci* 23: 6005–6012

1005 Kochinke K, Zweier C, Nijhof B, Fenckova M, Cizek P, Honti F, Keerthikumar S,
1006 Oortveld MAW, Kleefstra T, Kramer JM, et al (2016) Systematic phenomics
1007 analysis deconvolutes genes mutated in intellectual disability into biologically
1008 coherent modules. *Am J Hum Genet* 98: 149–164

1009 Kraeuter AK, Guest PC & Sarnyai Z (2019) The Y-Maze for assessment of spatial
1010 working and reference memory in mice. *Methods Mol Biol* 1916 :105-111

1011 Krönke J, Fink EC, Hollenbach PW, MacBeth KJ, Hurst SN, Udeshi ND, Chamberlain
1012 PP, Mani DR, Man HW, Gandhi AK, et al (2015) Lenalidomide induces
1013 ubiquitination and degradation of CK1α in del(5q) MDS. *Nature* 523: 183–188

1014 Krönke J, Udeshi ND, Narla A, Grauman P, Hurst SN, McConkey M, Svinkina T, Heckl
1015 D, Comer E, Li X, *et al* (2014) Lenalidomide causes selective degradation of
1016 IKZF1 and IKZF3 in multiple myeloma cells. *Science* 343: 301–305
1017 Liu J, Ye J, Zou X, Xu Z, Feng Y, Zou X, Chen Z, Li Y & Cang Y (2014) CRL4A CRBN
1018 E3 ubiquitin ligase restricts BK channel activity and prevents epileptogenesis. *Nat
1019 Commun* 5: 1–9
1020 López-Dyck E, Andrade-Urzúa F, Elizalde A, Ferrer-Villada T, Dagnino-Acosta A,
1021 Huerta M, Osuna-Calleros Z, Rangel-Sandoval C & Sánchez-Pastor E (2017)
1022 ACPA and JWH-133 modulate the vascular tone of superior mesenteric arteries
1023 through cannabinoid receptors, BKCa channels, and nitric oxide dependent
1024 mechanisms. *Pharmacol Rep* 69: 1131–1139
1025 Maroto IB, Costas-Insua C, Berthoux C, Moreno E, Ruiz-Calvo A, Montero-Fernández
1026 C, Macías-Camero A, Martín R, García-Font N, Sánchez-Prieto J, *et al* (2023)
1027 Control of a hippocampal recurrent excitatory circuit by cannabinoid receptor-
1028 interacting protein Gap43. *Nat Commun* 14: 2303
1029 Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascioli MG, Hermann H,
1030 Tang J, Hofmann C, Zieglgänsberger W, *et al* (2002) The endogenous
1031 cannabinoid system controls extinction of aversive memories. *Nature* 418: 530–
1032 534
1033 Matyskiela ME, Couto S, Zheng X, Lu G, Hui J, Stamp K, Drew C, Ren Y, Wang M,
1034 Carpenter A, *et al* (2018) SALL4 mediates teratogenicity as a thalidomide-
1035 dependent cereblon substrate. *Nat Chem Biol* 14: 981–987
1036 Mechoulam R, Hanuš LO, Pertwee R & Howlett AC (2014) Early phytocannabinoid
1037 chemistry to endocannabinoids and beyond. *Nat Rev Neurosci* 15: 757–764
1038 Meye FJ, Trezza V, Vanderschuren LJM, Ramakers GMJ & Adan RAH (2013) Neutral
1039 antagonism at the cannabinoid 1 receptor: a safer treatment for obesity. *Mol
1040 Psychiatry* 18: 1294–1301

1041 Monory K, Blaudzun H, Massa F, Kaiser N, Lemberger T, Schütz G, Wotjak CT, Lutz B
1042 & Marsicano G (2007) Genetic dissection of behavioural and autonomic effects of
1043 $\Delta 9$ -tetrahydrocannabinol in mice. *PLoS Biol* 5: e269
1044 Monory K, Massa F, Egertová M, Eder M, Blaudzun H, Westenbroek R, Kelsch W,
1045 Jacob W, Marsch R, Ekker M, et al (2006) The endocannabinoid system controls
1046 key epileptogenic circuits in the hippocampus. *Neuron* 51: 455–466
1047 Morena M, Patel S, Bains JS & Hill MN (2016) Neurobiological interactions between
1048 stress and the endocannabinoid system. *Neuropsychopharmacology* 41: 80–102
1049 Moy FJ, Chanda PK, Cockett MI, Edris W, Jones PG, Mason K, Semus S & Powers R
1050 (2000) NMR structure of free RGS4 reveals an induced conformational change
1051 upon binding G α . *Biochemistry* 39: 7063–7073
1052 Navarro-Romero A, Vázquez-Oliver A, Gomis-González M, Garzón-Montesinos C,
1053 Falcón-Moya R, Pastor A, Martín-García E, Pizarro N, Busquets-Garcia A, Revest
1054 JM, et al (2019) Cannabinoid type-1 receptor blockade restores neurological
1055 phenotypes in two models for Down syndrome. *Neurobiol Dis* 125: 92–106
1056 Niehaus JL, Liu Y, Wallis KT, Egertová M, Bhartur SG, Mukhopadhyay S, Shi S, He H,
1057 Selley DE, Howlett AC, et al (2007) CB1 cannabinoid receptor activity is
1058 modulated by the cannabinoid receptor interacting protein CRIP 1a. *Mol
1059 Pharmacol* 72: 1557–1566
1060 Nowak RP, Deangelo SL, Buckley D, He Z, Donovan KA, An J, Safaee N,
1061 Jedrychowski MP, Ponthier CM, Ishoey M, et al (2018) Plasticity in binding confers
1062 selectivity in ligand-induced protein degradation article. *Nat Chem Biol* 14: 706–
1063 714
1064 Okawa T, Aramaki Y, Yamamoto M, Kobayashi T, Fukumoto S, Toyoda Y, Henta T,
1065 Hata A, Ikeda S, Kaneko M, et al (2017) Design, synthesis, and evaluation of the
1066 highly selective and potent G-protein-coupled receptor kinase 2 (GRK2) inhibitor
1067 for the potential treatment of heart failure. *J Med Chem* 60: 6942–6990

1068 Oliveira da Cruz JF, Gomis-Gonzalez M, Maldonado R, Marsicano G, Ozaita A &
1069 Busquets-Garcia A (2020) An alternative maze to assess novel object recognition
1070 in mice. *Bio Protoc* 10
1071 Pacher P & Kunos G (2013) Modulating the endocannabinoid system in human health
1072 and disease - Successes and failures. *FEBS J* 280: 1918–1943
1073 Papuc SM, Hackmann K, Andrieux J, Vincent-Delorme C, Budisteanu M, Arghir A,
1074 Schrock E, Tuțulan-Cuniță AC & Di Donato N (2015) Microduplications of
1075 3p26.3p26.2 containing CRBN gene in patients with intellectual disability and
1076 behavior abnormalities. *Eur J Med Genet* 58: 319–323
1077 Park N, Marquez J, Pham TK, Ko TH, Youm JB, Kim M, Choi SH, Moon J, Flores J, Ko
1078 KS, *et al* (2022) Cereblon contributes to cardiac dysfunction by degrading
1079 Cav1.2α. *Eur Heart J* 43: 1973–1989
1080 Pertwee RG, Howlett AC, Abood ME, Alexander SPH, Di Marzo V, Elphick MR,
1081 Greasley PJ, Hansen HS, Kunos G, Mackie K, *et al* (2010) International Union of
1082 Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands:
1083 beyond CB₁ and CB₂. *Pharmacol Rev* 62: 588–631
1084 Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, Conroy J, Magalhaes
1085 TR, Correia C, Abrahams BS, *et al* (2010) Functional impact of global rare copy
1086 number variation in autism spectrum disorders. *Nature* 466: 368–372
1087 Piomelli D (2003) The molecular logic of endocannabinoid signalling. *Nat Rev Neurosci*
1088 4: 873–884
1089 Preston AR & Eichenbaum H (2013) Interplay of hippocampus and prefrontal cortex in
1090 memory. *Curr Biol* 23: R764-73
1091 Rajadhyaksha AM, Ra S, Kishinevsky S, Lee AS, Romanienko P, DuBoff M, Yang C,
1092 Zupan B, Byrne M, Daruwalla ZR, *et al* (2012) Behavioral characterization of
1093 cereblon forebrain-specific conditional null mice: A model for human non-
1094 syndromic intellectual disability. *Behav Brain Res* 226: 428–434

1095 Reagan-Shaw S, Nihal M & Ahmad N (2008) Dose translation from animal to human
1096 studies revisited. *FASEB J* 22: 659–661

1097 Romano MR & Lograno MD (2006) Cannabinoid agonists induce relaxation in the
1098 bovine ophthalmic artery: Evidences for CB1 receptors, nitric oxide and potassium
1099 channels. *Br J Pharmacol* 147: 917–925

1100 Ruiz-Calvo A, Maroto IB, Bajo-Grañeras R, Chiarlone A, Gaudioso Á, Ferrero JJ, Resel
1101 E, Sánchez-Prieto J, Rodríguez-Navarro JA, Marsicano G, et al (2018) Pathway-
1102 specific control of striatal neuron vulnerability by corticostriatal cannabinoid CB₁
1103 receptors. *Cereb Cortex* 28: 307–322

1104 Schalock RL, Borthwick-Duffy SA, Bradley VJ, Buntinx WHE, Coulter DL, Craig EM,
1105 Gomez SC, Lachapelle Y, Luckasson R, Reeve A, et al (2010) Intellectual
1106 Disability: Definition, classification, and systems of supports. Eleventh edition.
1107 *American Association on Intellectual and Developmental Disabilities* 33: 386

1108 Schwenk F, Baron U & Rajewsky K (1995) A cre-transgenic mouse strain for the
1109 ubiquitous deletion of loxP-flanked gene segments including deletion in germ
1110 cells. *Nucleic Acids Res* 23: 5080–5081

1111 Sheereen A, Alaamery M, Bawazeer S, Al Yafee Y, Massadeh S & Eyaid W (2017) A
1112 missense mutation in the CRBN gene that segregates with intellectual disability
1113 and self-mutilating behaviour in a consanguineous Saudi family. *J Med Genet* 54:
1114 236–240

1115 Stumpff F, Boxberger M, Krauss A, Rosenthal R, Meissner S, Choritz L, Wiederholt M
1116 & Thieme H (2005) Stimulation of cannabinoid (CB1) and prostanoid (EP2)
1117 receptors opens BKCa channels and relaxes ocular trabecular meshwork. *Exp
1118 Eye Res* 80: 697–708

1119 Thiemann G, Watt CA, Ledent C, Molleman A & Hasenöhrl RU (2009) Modulation of
1120 anxiety by acute blockade and genetic deletion of the CB1 cannabinoid receptor in
1121 mice together with biogenic amine changes in the forebrain. *Behav Brain Res* 200:
1122 60–67

1123 Viñals X, Moreno E, Lanfumey L, Cordomí A, Pastor A, de La Torre R, Gasperini P,

1124 Navarro G, Howell LA, Pardo L, *et al* (2015) Cognitive impairment induced by

1125 delta-9-tetrahydrocannabinol occurs through heteromers between cannabinoid

1126 CB1 and serotonin 5-HT2A Receptors. *PLoS Biol* 13: e1002194

1127 Wiley JL, Burston JJ, Leggett DC, Alekseeva OO, Razdan RK, Mahadevan A & Martin

1128 BR (2005) CB1 cannabinoid receptor-mediated modulation of food intake in mice.

1129 *Br J Pharmacol* 145: 293–300

1130 Wilson RI & Nicoll RA (2002) Neuroscience: Endocannabinoid signaling in the brain.

1131 *Science* 296: 678–682

1132 Xu G, Jiang X & Jaffrey SR (2013) A mental retardation-linked nonsense mutation in

1133 cereblon is rescued by proteasome inhibition. *J Biol Chem* 288: 29573–29585

1134

1135

1136 **FIGURE LEGENDS**

1137

1138 **Figure 1. Characterization of the conditional CRBN knockout mouse lines**

1139

1140 A. Scheme of the breeding strategy. The resulting genomic architecture, sequencing primers and a
1141 representative genotyping agarose gel are shown.

1142

1143 B. Representative images and fluorescent signal quantification of RNAscope *in situ* hybridization
1144 labelling of *Crbn* mRNA in the hippocampus of CRBN-WT (n = 6), Glu-CRBN-KO (n = 5), GABA-
1145 CRBN-KO (n = 4) and CRBN-KO (n = 3) mice. High magnification images of CA1 (I), CA3 (II),
1146 hilus (III) and granule cell layer of the dentate gyrus (IV) are shown. Circles, male mice; triangles,
1147 female mice. p values were obtained by one-way ANOVA with Dunnett's post-hoc test.

1148

1149 C. Representative images and fluorescent signal quantification of RNAscope *in situ* hybridization
1150 labelling of *Crbn* mRNA in the cortex of CRBN-WT (n = 6), Glu-CRBN-KO (n = 4), GABA-CRBN-
1151 KO (n = 4) and CRBN-KO (n = 3) mice. Circles, male mice; triangles, female mice. p values were
1152 obtained by one-way ANOVA with Dunnett's post-hoc test.

1153

1154 D. *Crbn* mRNA levels (% of WT mice) as assessed by q-PCR in the hippocampus and cortex of
1155 CRBN-WT, CRBN-KO, Glu-CRBN-WT, Glu-CRBN-KO, GABA-CRBN-WT and GABA-CRBN-KO
1156 mice (n = 3 animals per group). Circles, male mice; triangles, female mice. p values were
1157 obtained by unpaired Student's *t* test.

1158

1159 E. CRBN protein levels (% of WT mice) as assessed by western blotting the in hippocampus and
1160 cortex of CRBN-WT, CRBN-KO, Glu-CRBN-WT, Glu-CRBN-KO, GABA-CRBN-WT and GABA-
1161 CRBN-KO mice (n = 6 animals per group). Circles, male mice; triangles, female mice. p values
1162 were obtained by unpaired Student's *t* test.

1163

1164 **Figure 2. Behavioural phenotyping of the conditional CRBN knockout mouse lines**

1165

1166 A. Body weight (in g) at postnatal day 60. CRBN-WT (n = 16), CRBN-KO (n = 16), Glu-CRBN-WT (n
1167 = 16), Glu-CRBN-KO (n = 16), GABA-CRBN-WT (n = 16), GABA-CRBN-KO (n = 16). Circles,
1168 male mice; triangles, female mice. p values were obtained by unpaired Student's *t* test.

1169

1170 B. Body temperature (in °C) at postnatal day 60. CRBN-WT (n = 12), CRBN-KO (n = 12), Glu-
1171 CRBN-WT (n = 13), Glu-CRBN-KO (n = 12), GABA-CRBN-WT (n = 12), GABA-CRBN-KO (n =
1172 12). Circles, male mice; triangles, female mice. p values were obtained by unpaired Student's *t*
1173 test.

1174

1175 C. Ambulation (total distance travelled, in m) in the open field test. CRBN-WT (n = 18), CRBN-KO (n
1176 = 15), Glu-CRBN-WT (n = 20), Glu-CRBN-KO (n = 19), GABA-CRBN-WT (n = 20), GABA-CRBN-
1177 KO (n = 21). Circles, male mice; triangles, female mice. p values were obtained by unpaired
1178 Student's *t* test.

1179

1180 D. Time (in s) to fall from the apparatus in the rotarod test. CRBN-WT (n = 18), CRBN-KO (n = 15),
1181 Glu-CRBN-WT (n = 22), Glu-CRBN-KO (n = 20), GABA-CRBN-WT (n = 20), GABA-CRBN-KO (n
1182 = 24). Circles, male mice; triangles, female mice. p values were obtained by unpaired Student's *t*
1183 test.

1184

1185 E. Time (in %) spent in the open arms of an elevated plus maze. CRBN-WT (n = 13), CRBN-KO (n =
1186 11), Glu-CRBN-WT (n = 19), Glu-CRBN-KO (n = 18), GABA-CRBN-WT (n = 19), GABA-CRBN-
1187 KO (n = 20). Circles, male mice; triangles, female mice. p values were obtained by unpaired
1188 Student's *t* test.

1189

1190 F. Time (in s) spent sniffing the cage containing an object (O) or a mouse counterpart (M) in the
1191 sociability test. CRBN-WT (n = 11), CRBN-KO (n = 10), Glu-CRBN-WT (n = 22), Glu-CRBN-KO
1192 (n = 20), GABA-CRBN-WT (n = 11), GABA-CRBN-KO (n = 15). Circles, male mice; triangles,
1193 female mice. p values were obtained by one-way ANOVA with Tukey's post-hoc test.

1194

1195 G. Time (in s) spent immobile in the forced-swimming test. CRBN-WT (n = 12), CRBN-KO (n = 10),
1196 Glu-CRBN-WT (n = 22), Glu-CRBN-KO (n = 20), GABA-CRBN-WT (n = 11), GABA-CRBN-KO (n
1197 = 16). Circles, male mice; triangles, female mice. p values were obtained by unpaired Student's *t*
1198 test.

1199

1200 H. Discrimination index values (in %) in the novel object recognition test. CRBN-WT (n = 12), CRBN-
1201 KO (n = 14), Glu-CRBN-WT (n = 17), Glu-CRBN-KO (n = 15), GABA-CRBN-WT (n = 13), GABA-

1202 CCRBN-KO (n = 18). Circles, male mice; triangles, female mice. p values were obtained by
1203 unpaired Student's *t* test.

1204

1205 I. Ambulation (total distance travelled, in m) in the novel (N) or familiar (F) arm in the Y-maze
1206 memory test. CCRBN-WT (n = 26), CCRBN-KO (n = 21), Glu-CCRBN-WT (n = 32), Glu-CCRBN-KO (n
1207 = 28), GABA-CCRBN-WT (n = 20), GABA-CCRBN-KO (n = 22). Circles, male mice; triangles, female
1208 mice. p values were obtained by one-way ANOVA with Tukey's post-hoc test.

1209

1210 J. Time (in %) spent freezing in the testing session of the fear conditioning protocol. CRBN-WT (n =
1211 10), CRBN-KO (n = 10), Glu-CRBN-WT (n = 24), Glu-CRBN-KO (n = 24), GABA-CRBN-WT (n =
1212 13), GABA-CRBN-KO (n = 14). Circles, male mice; triangles, female mice. p values were
1213 obtained by unpaired Student's *t* test.

1214

1215 Figure 3. CRBN interacts with CB₁R *in vitro*

1216

1217 A. Fluorescence polarization-based protein–protein binding experiments using 5-IAF-labeled CB₁R-
1218 CTD and increasing amounts of unlabelled CRBN. A representative experiment is shown (n = 3).

1219

1220 B. Co-immunoprecipitation experiments in HEK-293T cells expressing human HA-CRBN and
1221 3xFLAG-CB₁R. Immunoprecipitation (IP) was conducted with anti-FLAG M2 agarose. WCL
1222 Whole-cell lysate. A representative experiment is shown (n = 3).

1223

1224 C. Co-immunoprecipitation experiments in HEK-293T cells expressing human HA-CRBN and
1225 3xFLAG-CB₁R. Immunoprecipitation (IP) was conducted with anti-HA agarose. WCL, Whole-cell
1226 lysate. A representative experiment is shown (n = 3).

1227

1228 D. BRET experiments in HEK-293T cells expressing CB₁R-Rluc and increasing amounts of GFP-
1229 CRBN. A representative experiment is shown (n = 3).

1230

1231 E. Proximity ligation assays in HEK-293T cells expressing CB₁R-Rluc, HA-CRBN or both. Note the
1232 red *puncta* in the doubly transfected cells. A representative experiment is shown (n = 3).

1233

1234 F. Scheme of the different constructs expressing portions of CB₁R-CTD. Co-immunoprecipitation
1235 experiments in HEK-293T cells expressing human HA-CRBN and distinct GFP-CB₁R-CTD

1236 chimeras. Immunoprecipitation (IP) was conducted with anti-HA agarose. WCL, Whole-cell lysate.
1237 A representative experiment is shown (n = 3).

1238
1239 G. Scheme of the different constructs expressing portions of CCRN. Co-immunoprecipitation
1240 experiments in HEK-293T cells expressing human 3xFLAG-CB₁R and distinct HA-CCRN
1241 chimeras. Immunoprecipitation (IP) was conducted with anti-FLAG M2 agarose. WCL, Whole-cell
1242 lysate. A representative experiment is shown (n = 3).

1243
1244 H. Superposition of the putative RGS domain in CCRN (in gold; Protein Data Bank [PDB] ID: 6BN7)
1245 with the RGS domains of RGS4 (left part, in red; Protein Data Bank [PDB] ID: 1EZT) or GRK2
1246 (right part, in green; Protein Data Bank [PDB] ID: 5UVC). Images were constructed with
1247 ChimeraX software.

1248
1249 I. Co-immunoprecipitation experiments in HEK-293T cells expressing human HA-CCRN (F) or HA-
1250 CCRN-ΔRGS (Δ) together with V5-Cullin4A and myc-DDB1. Immunoprecipitation (IP) was
1251 conducted with anti-FLAG M2 agarose. WCL, Whole-cell lysate. A representative experiment is
1252 shown (n = 3).

1253

1254 **Figure 4. CCRN inhibits CB₁R-evoked G_{i/o} protein signalling *in vitro***

1255
1256 A. DMR experiments in HEK-293T cells expressing CB₁R, together or not with CCRN or CCRN-
1257 ΔRGS, and incubated with WIN55,212-2 (100 nM). A representative experiment is shown (n = 3).

1258
1259 B. cAMP concentration in HEK-293T cells expressing CB₁R, together or not with CCRN or CCRN-
1260 ΔRGS. Cells were incubated first for 15 min with vehicle or WIN55,212-2 (doses ranging from
1261 0.025 to 1 μM), and then for 15 min with forskolin (FK; 500 nM). **p < 0.01 from vehicle, or #p <
1262 0.05 or ##p < 0.01 from paired control, by two-way ANOVA with Tukey's multiple comparisons
1263 test (n = 4).

1264
1265 C. cAMP concentration in HEK-293T cells expressing CB₁R, together or not with CCRN or CCRN-
1266 ΔRGS. Cells were incubated first for 15 min with vehicle or CP-55,940 (doses ranging from 0.025
1267 to 1 μM), and then for 15 min with forskolin (FK; 500 nM). p values were obtained by two-way
1268 ANOVA with Tukey's multiple comparisons test (n = 3).

1269

1270

1271 D. HEK-293T cells expressing CB₁R, together or not with CRBN were incubated for 10 min with

1272 vehicle or WIN55,212-2 (1 μ M) followed by vehicle or forskolin (FK; 1 μ M) for another 10 min, and

1273 cell extracts were subjected to an ELISA to detect active PKA. Data were normalized to the

1274 vehicle-vehicle condition and p values were obtained by two-way ANOVA with Tukey's multiple

1275 comparisons test (n = 3).

1276

1277 E. Coupling of CB₁R to G_{a_{i/o}} proteins in membrane extracts from HEK-293T cells expressing CB₁R,

1278 together or not with CRBN or CRBN- Δ RGS after WIN55,212-2 stimulation (10 μ M). *p<0.05 from

1279 basal (dashed line) by one-sample Student's *t* test. p values between constructs were obtained by

1280 unpaired Student's *t* test (n = 3-4).

1281

1282 F. cAMP concentration in HEK-293T-CRBN-WT and HEK-293T-CRBN-KO cells expressing CB₁R.

1283 Cells were incubated first for 15 min with vehicle, WIN55,212-2 or CP55,940 (each at 500 nM),

1284 and then for 15 min with forskolin (FK; 500 nM). p values were obtained by two-way ANOVA with

1285 Tukey's multiple comparisons test (n = 6 for WIN and 3 for CP).

1286

1287 G. CB₁R ubiquitination is not affected by CRBN overexpression. Immunoprecipitation (IP) was

1288 conducted with anti-FLAG M2 agarose. WCL: whole-cell lysate. A representative experiment is

1289 shown. p values were obtained by unpaired Student's *t* test (n = 4).

1290

1291 H. CB₁R ubiquitination is not affected by CRBN knockout. Immunoprecipitation (IP) was conducted

1292 with anti-FLAG M2 agarose. WCL: whole-cell lysate. A representative experiment is shown. p

1293 values were obtained by unpaired Student's *t* test (n = 6).

1294

1295 I. CB₁R ubiquitination is not affected by CRBN knockdown. Immunoprecipitation (IP) was conducted

1296 with anti-FLAG M2 agarose. WCL: whole-cell lysate. A representative experiment is shown. p

1297 values were obtained by one-way ANOVA with Tukey's multiple comparisons test (n = 5).

1298

1299 **Figure 5. CRBN binds to CB₁R and inhibits receptor signalling in the mouse brain**

1300

1301 A. Co-immunoprecipitation experiments in HEK-293T cells expressing mouse HA-CRBN and

1302 3xFLAG-CB₁R. Immunoprecipitation (IP) was conducted with anti-FLAG M2 agarose. WCL,

1303 Whole-cell lysate. A representative experiment is shown (n = 3).

1304
1305 B. Co-immunoprecipitation experiments in adult hippocampal tissue. Immunoprecipitation (IP) was
1306 conducted with IgG control, anti-CB₁R or anti-CRBN. WTL, Whole-tissue lysate. A representative
1307 experiment is shown (n = 3).
1308
1309 C. Proximity ligation assays in brain slices from WT and CB₁R-KO mice. Note the fluorescence-
1310 positive red *puncta*, depicting CB₁R-CRBN complexes, in the hippocampus of WT but not KO
1311 mice. Representative high magnification images of cortex, CA1, CA3, hilus and granule cell layer
1312 of the dentate gyrus are shown (n = 3 animals per group).
1313
1314 D. Coupling of CB₁R to Gα_{i/o} proteins in membrane extracts from hippocampi of mice transduced
1315 with AAV1/2.CBA.Control or AAV1/2.CBA.CRBN vectors. p values were obtained by unpaired
1316 Student's *t* test (n = 3) between samples and by one-sample Student's *t* test from baseline
1317 (dashed line). A representative western blot showing viral expression in pooled hippocampal
1318 extracts is shown.
1319
1320 E. CRBN-WT (n = 16-17), CRBN-KO (n = 18), Glu-CRBN-WT (n = 14-15), Glu-CRBN-KO (n = 14),
1321 GABA-CRBN-WT (n = 7-8) and GABA-CRBN-KO (n = 9) mice were injected with a submaximal
1322 dose of THC (3 mg/kg, single i.p. injection) or vehicle. Forty min later, catalepsy on a horizontal
1323 bar (latency to move, s) and thermal analgesia in the hot-plate test (latency to pain, s) were
1324 measured. Circles, male mice; triangles, female mice. p values were obtained by two-way
1325 ANOVA with Tukey's post-hoc test.
1326
1327 F. CRBN-WT (n = 6-9), CRBN-KO (n = 9), Glu-CRBN-WT (n = 7-8), Glu-CRBN-KO (n = 9-10),
1328 GABA-CRBN-WT (n = 7-8) and GABA-CRBN-KO (n = 8-9) mice were injected with a maximal
1329 dose of THC (10 mg/kg, single i.p. injection) or vehicle. Forty min later, catalepsy on a horizontal
1330 bar (latency to move, s) and thermal analgesia in the hot-plate test (latency to pain, s) were
1331 measured. Circles, male mice; triangles, female mice. p values were obtained by two-way
1332 ANOVA with Tukey's post-hoc test.
1333
1334 **Figure 6. Selective pharmacological blockade of CB₁R rescues CRBN deficiency-associated**
1335 **memory impairment in mice**
1336

1337 A. Experimental scheme and discrimination index values (in %) in the novel object recognition test.

1338 CCRBN-WT+Veh (n = 11), CCRBN-WT+Rimo (n = 9), CCRBN-KO+Veh (n = 11), CCRBN-KO+Rimo (n
1339 = 9), Glu-CCRBN-WT+Veh (n = 26), Glu-CCRBN-WT+Rimo (n = 28), Glu-CCRBN-KO+Veh (n = 21),
1340 Glu-CCRBN-KO+Rimo (n = 25). Circles, male mice; triangles, female mice. p values were obtained
1341 by two-way ANOVA with Tukey's post-hoc test.

1342 B. Experimental scheme and time (in %) spent freezing in the testing session of the fear conditioning
1343 protocol. CCRBN-WT+Veh (n = 10), CCRBN-WT+Rimo (n = 11), CCRBN-KO+Veh (n = 12), CCRBN-
1344 KO+Rimo (n = 7), Glu-CCRBN-WT+Veh (n = 12), Glu-CCRBN-WT+Rimo (n = 11), Glu-CCRBN-
1345 KO+Veh (n = 9), Glu-CCRBN-KO+Rimo (n = 11). Circles, male mice; triangles, female mice. p
1346 values were obtained by two-way ANOVA with Tukey's post-hoc test.

1347 C. Experimental scheme and ambulation (total distance travelled, in m) in the novel (N) or familiar
1348 (F) arm in the Y-maze memory test. CCRBN-WT+Veh (n = 11), CCRBN-WT+Rimo (n = 9), CCRBN-
1349 KO+Veh (n = 13), CCRBN-KO+Rimo (n = 7), Glu-CCRBN-WT+Veh (n = 13), Glu-CCRBN-WT+Rimo
1350 (n = 10), Glu-CCRBN-KO+Veh (n = 12), Glu-CCRBN-KO+Rimo (n = 11). Circles, male mice;
1351 triangles, female mice. p values were obtained by two-way ANOVA with Sidak's post-hoc test.

1352

1353 **EXPANDED VIEW FIGURE LEGENDS**

1354

1355 **Figure EV1. Additional characterization of the conditional CRBN knockout mouse lines**

1356

1357 A. Representative images and fluorescent signal quantification of RNAscope *in situ* hybridization
1358 labelling in the striatum of CRBN-WT (n = 6), Glu-CRBN-KO (n = 5), GABA-CRBN-KO (n = 4) and
1359 CRBN-KO (n = 3) mice. Circles, male mice; triangles, female mice. p values were obtained by
1360 one-way ANOVA with Dunnett's post-hoc test.

1361

1362 B. Representative images and fluorescent signal quantification of RNAscope *in situ* hybridization
1363 labelling in the cerebellum of CRBN-WT (n = 6), Glu-CRBN-KO (n = 5), GABA-CRBN-KO (n = 3)
1364 and CRBN-KO (n = 3) mice. Circles, male mice; triangles, female mice. p values were obtained
1365 by one-way ANOVA with Dunnett's post-hoc test.

1366

1367 C. *Crbn* mRNA levels (% of WT mice) as assessed by q-PCR in the striatum or cerebellum of
1368 CRBN-WT, CRBN-KO, Glu-CRBN-WT, Glu-CRBN-KO, GABA-CRBN-WT and GABA-CRBN-KO
1369 mice (n = 3 animals per group). Circles, male mice; triangles, female mice. p values were
1370 obtained by unpaired Student's *t* test.

1371

1372 D. CRBN protein levels (% of WT mice) as assessed by western blotting in the striatum or
1373 cerebellum of CRBN-WT, CRBN-KO, Glu-CRBN-WT, Glu-CRBN-KO, GABA-CRBN-WT and
1374 GABA-CRBN-KO mice (n = 6 animals per group). Circles, male mice; triangles, female mice. p
1375 values were obtained by unpaired Student's *t* test.

1376

1377 **Figure EV2. Additional behavioural phenotyping of the CRBN knockout mouse lines**

1378

1379 A. Stride length (in cm) in the footprint test. CRBN-WT (n = 13), CRBN-KO (n = 8), Glu-CRBN-WT (n
1380 = 17), Glu-CRBN-KO (n = 13), GABA-CRBN-WT (n = 9), GABA-CRBN-KO (n = 11). Circles, male
1381 mice; triangles, female mice. p values were obtained by unpaired Student's *t* test.

1382

1383 B. Entries in the central part of an open field arena (normalized to total ambulation). CRBN-WT (n =
1384 18), CRBN-KO (n = 15), Glu-CRBN-WT (n = 20), Glu-CRBN-KO (n = 19), GABA-CRBN-WT (n =
1385 19), GABA-CRBN-KO (n = 24). Circles, male mice; triangles, female mice. p values were
1386 obtained by unpaired Student's *t* test.

1387

1388 C. Time to show pain symptoms (in s) in the hot plate test. CRBN-WT (n = 18), CRBN-WT (n = 18),
1389 CRBN-KO (n = 15), Glu-CRBN-WT (n = 20), Glu-CRBN-KO (n = 19), GABA-CRBN-WT (n = 21),
1390 GABA-CRBN-KO (n = 24). Circles, male mice; triangles, female mice. p values were obtained by
1391 unpaired Student's *t* test.

1392

1393 D. Time (in %) spent freezing in the conditioning session of the fear conditioning protocol. CRBN-WT
1394 (n = 10), CRBN-KO (n = 10), Glu-CRBN-WT (n = 24), Glu-CRBN-KO (n = 24), GABA-CRBN-WT
1395 (n = 13), GABA-CRBN-KO (n = 14). Circles, male mice; triangles, female mice. p values were
1396 obtained by unpaired Student's *t* test.

1397

1398 **Figure EV3. Additional data on the CRBN-mediated inhibition of CB₁R-evoked G_{i/o} protein signalling**
1399 *in vitro*

1400

1401 A. HEK-293T cells expressing CB1R, together or not with CRBN, were incubated for 10 min with
1402 vehicle or WIN55,212-2 (doses ranging from 0.01 to 1 μ M), and cell extracts were blotted for ERK
1403 phosphorylation. A representative experiment is shown. p values were obtained by two-way
1404 ANOVA with Tukey's multiple comparisons test (n = 6).

1405

1406 B. Coupling of CB₁R to G_{i/o} proteins in membrane extracts from HEK-293T cells expressing CB₁R,
1407 together or not with CRBN or CRBN- Δ RGS, after HU-210 stimulation (10 μ M). *p<0.05 from basal
1408 (dashed line) by one-sample Student's *t*-test. p values between constructs were obtained by
1409 unpaired Student's *t* test (n = 3-4).

1410

1411 C. Coupling of CB₁R to non-G_{i/o} proteins in membrane extracts from HEK-293T cells expressing
1412 CB₁R, together or not with CRBN or CRBN- Δ RGS after WIN55,212-2 stimulation (10 μ M).
1413 *p<0.05 from basal (dashed line) by one-sample Student's *t* test. p values between constructs
1414 were obtained by unpaired Student's *t* test (n = 3-4).

1415

1416 D. HEK-293T-CRBN-WT and HEK-293T-CRBN-KO cells expressing CB₁R were incubated for 10
1417 min with vehicle or WIN55,212-2 (doses ranging from 0.01 to 1 μ M), and cell extracts were
1418 blotted for ERK phosphorylation. A representative experiment is shown. p values were obtained
1419 by two-way ANOVA with Tukey's multiple comparisons test (n = 4).

1420

1421 **Figure EV4. *Crbn* deletion does not alter the levels of CB₁R and synapse-marker proteins in the**
1422 **mouse hippocampus**

1423

1424 A. CB₁R protein levels (% of WT mice) as assessed by western blotting in the hippocampus of
1425 CCRN-WT (n = 4), CCRN-KO (n = 4), Glu-CCRN-WT (n = 8), Glu-CCRN-KO (n = 8), GABA-
1426 CCRN-WT (n = 3) or GABA-CCRN-KO (n = 3) mice. Circles, male mice; triangles, female mice. p
1427 values were obtained by unpaired Student's *t* test.

1428

1429 B. CB₁R immunoreactivity (% of WT mice) in the hippocampus of CCRN-WT and CCRN-KO mice (n
1430 = 3 animals per group). High magnification images of CA1 (I), CA3 (II), hilus (III) and granule cell
1431 layer of the dentate gyrus (IV) are shown. Circles, male mice; triangles, female mice. p values
1432 were obtained by unpaired Student's *t* test.

1433

1434 C. Synaptophysin, PSD-95, vGLUT1 and vGAT protein levels (% of WT mice) as assessed by
1435 western blotting in the hippocampus of CCRN-WT, CCRN-KO, Glu-CCRN-WT, Glu-CCRN-KO,
1436 GABA-CCRN-WT or GABA-CCRN-KO mice (n = 3-4 animals per group). Circles, male mice;
1437 triangles, female mice. p values were obtained by unpaired Student's *t* test.

Figure 1

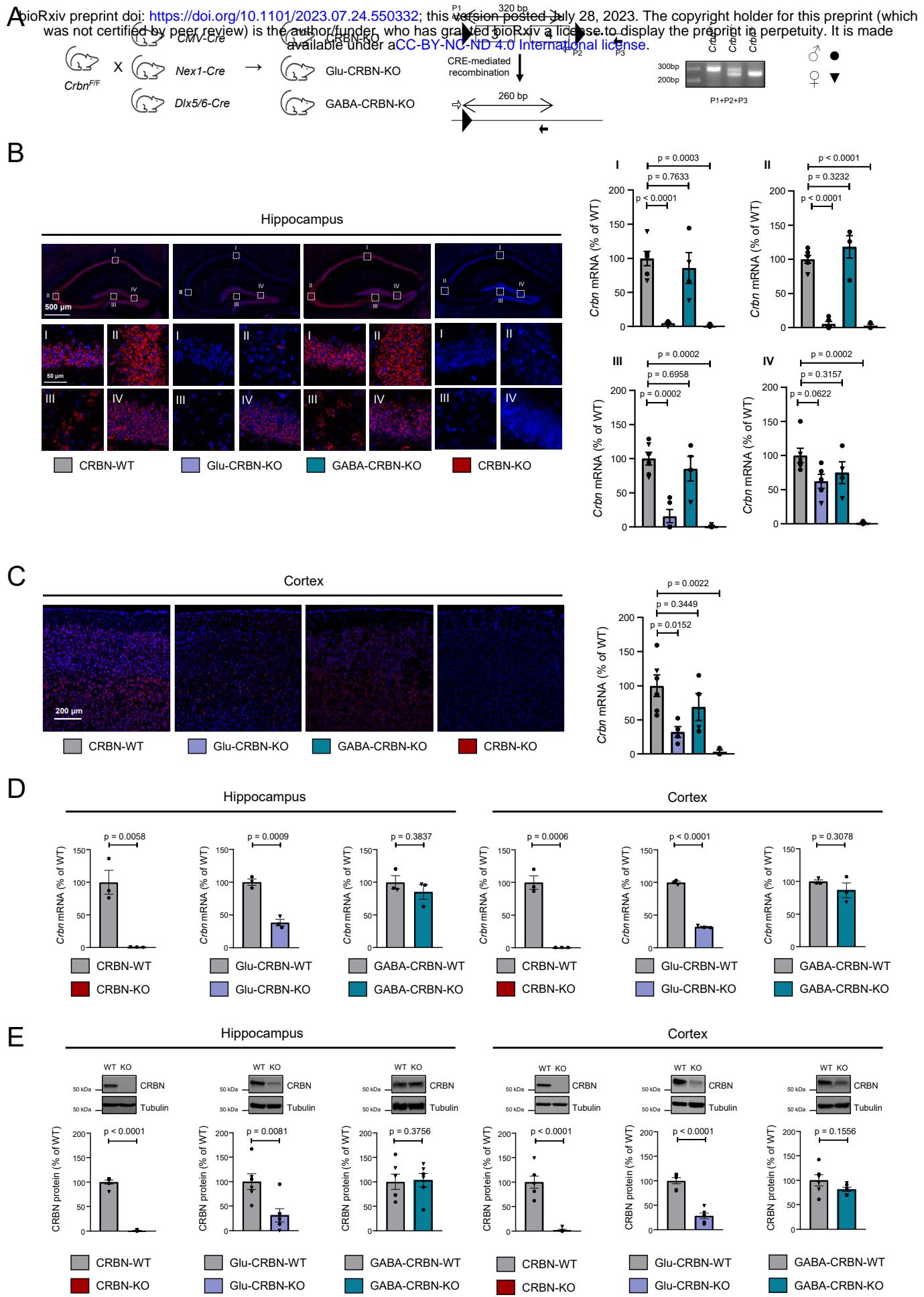


Figure 2

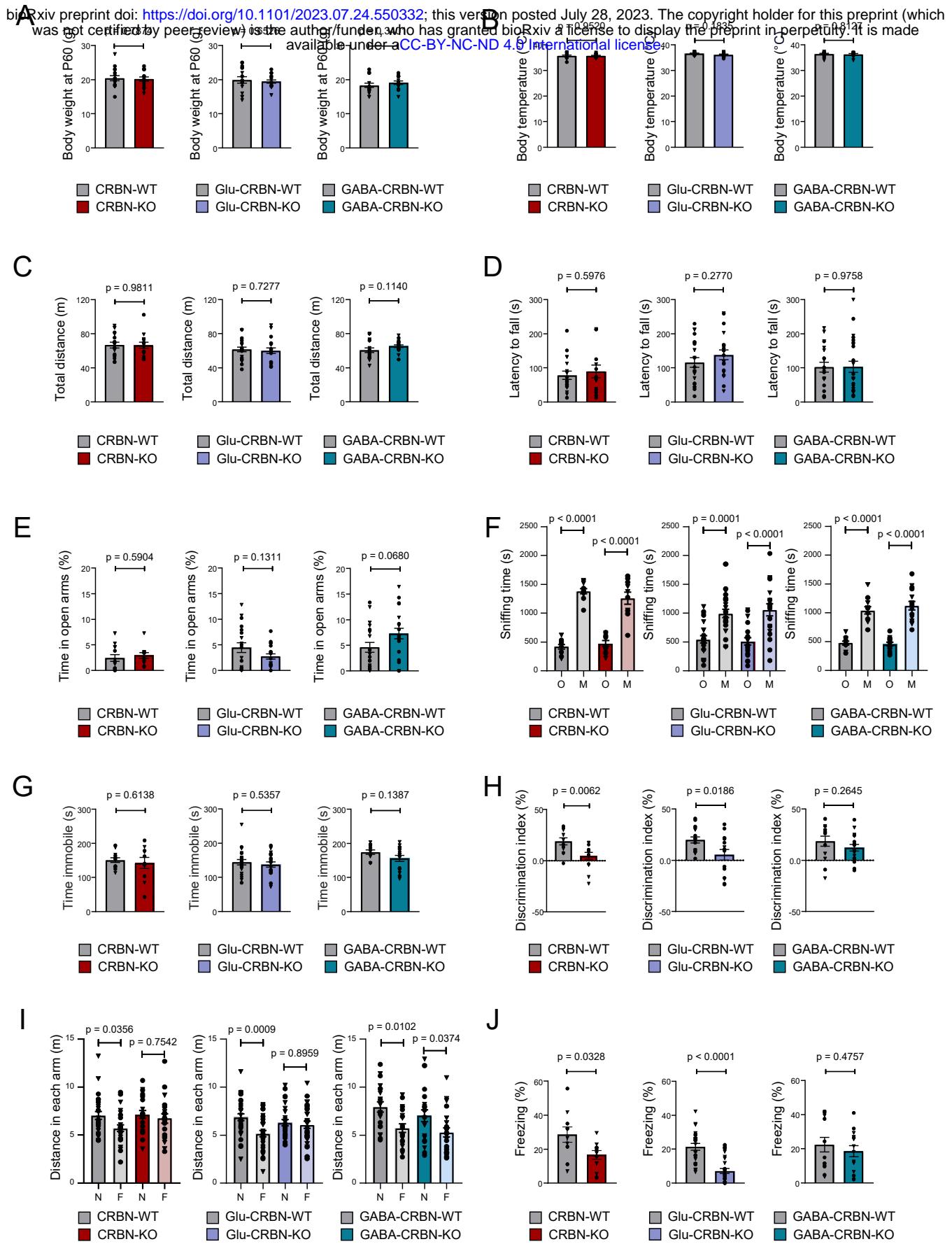


Figure 3

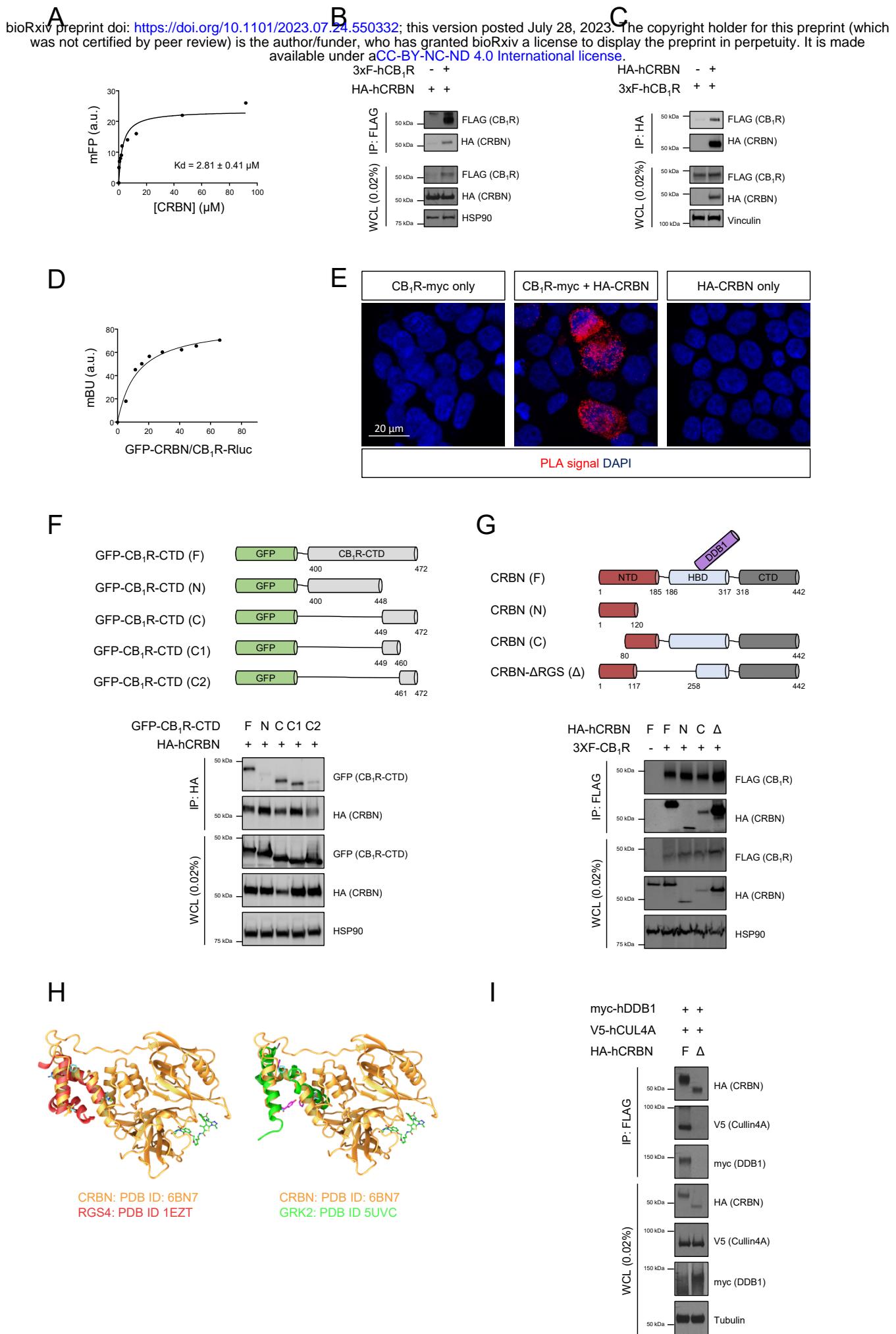


Figure 4

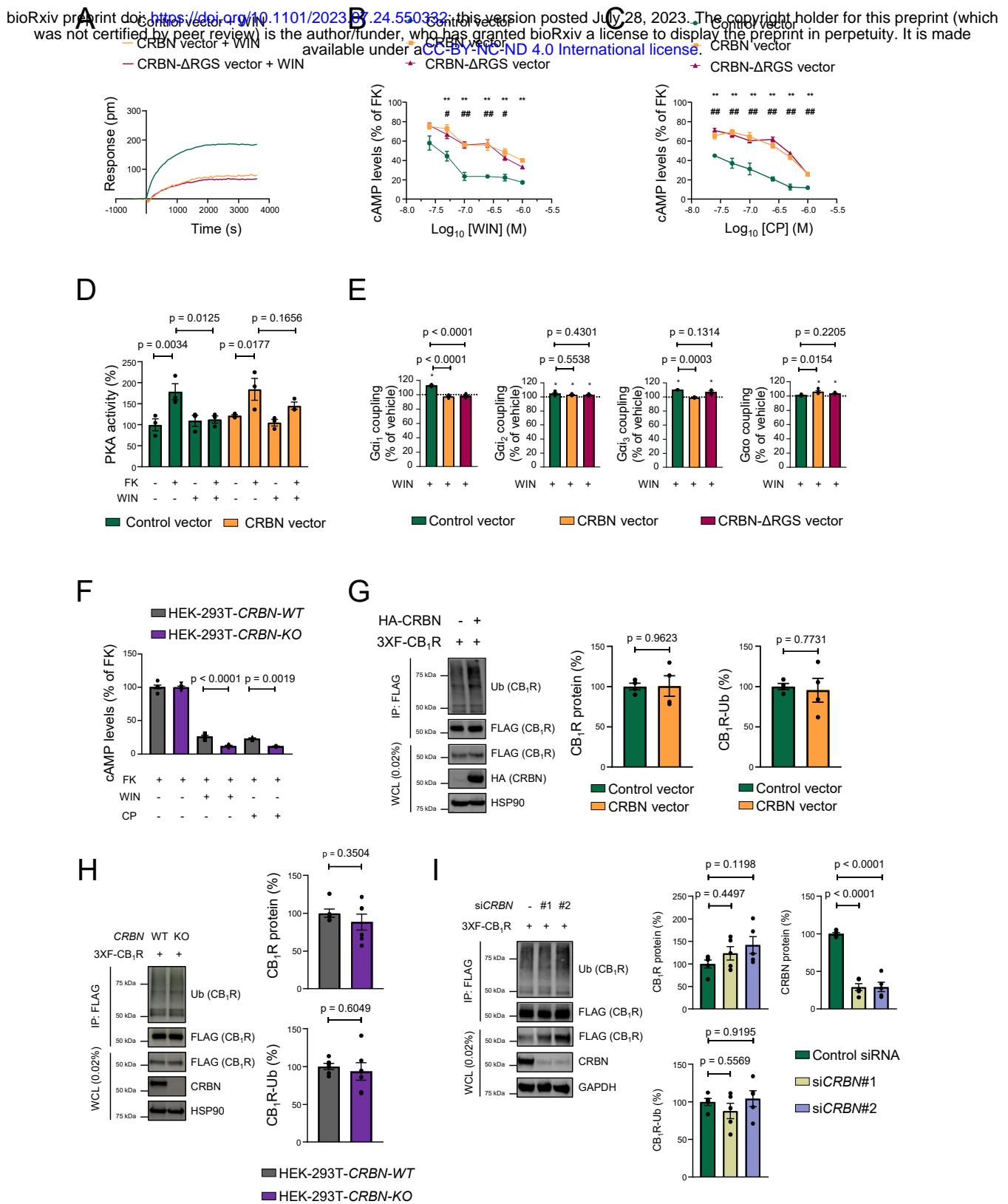


Figure 5

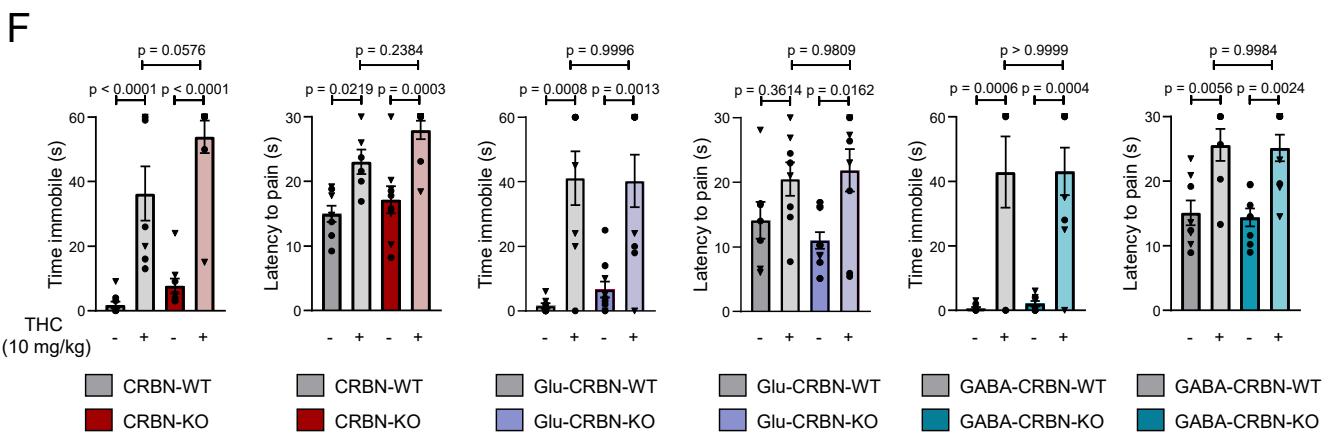
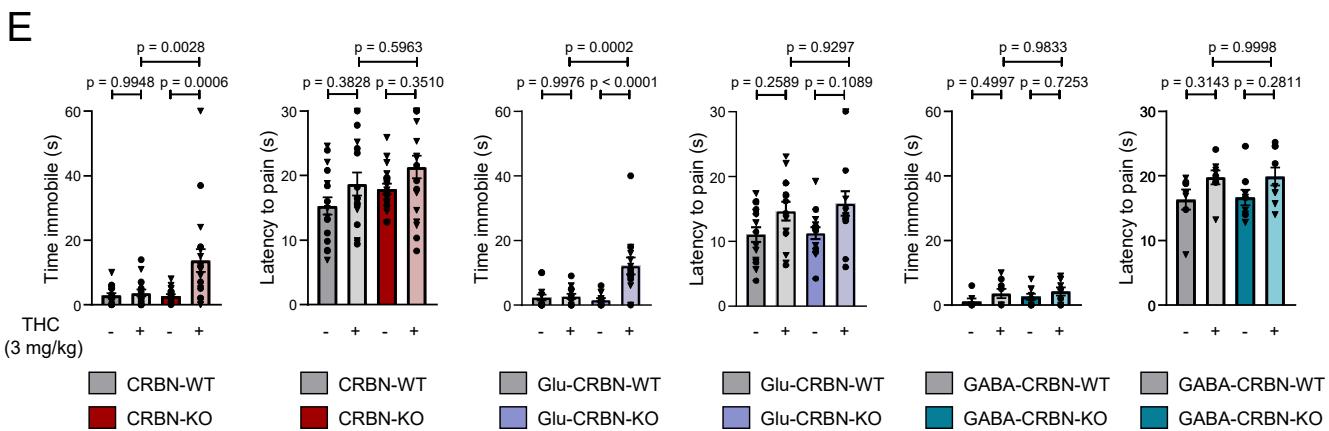
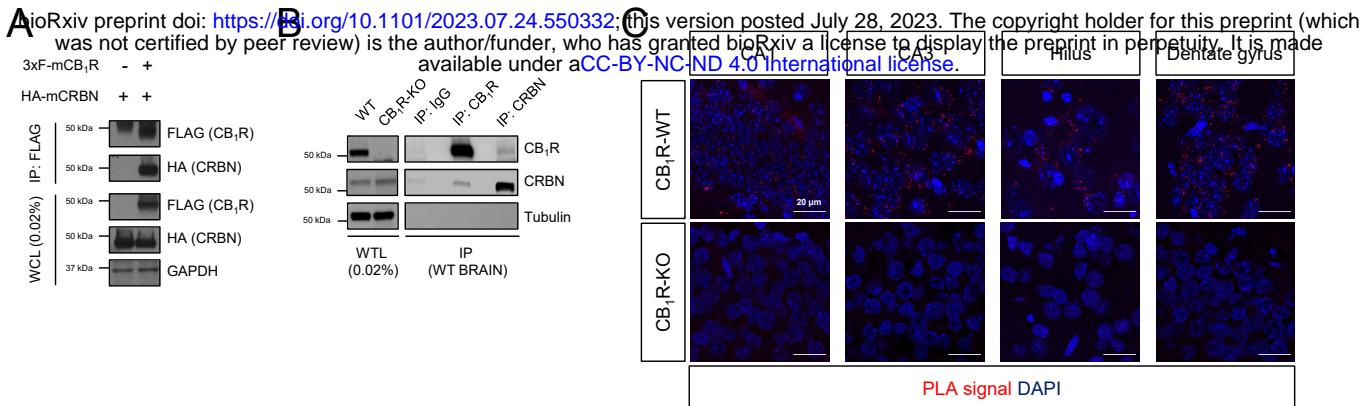
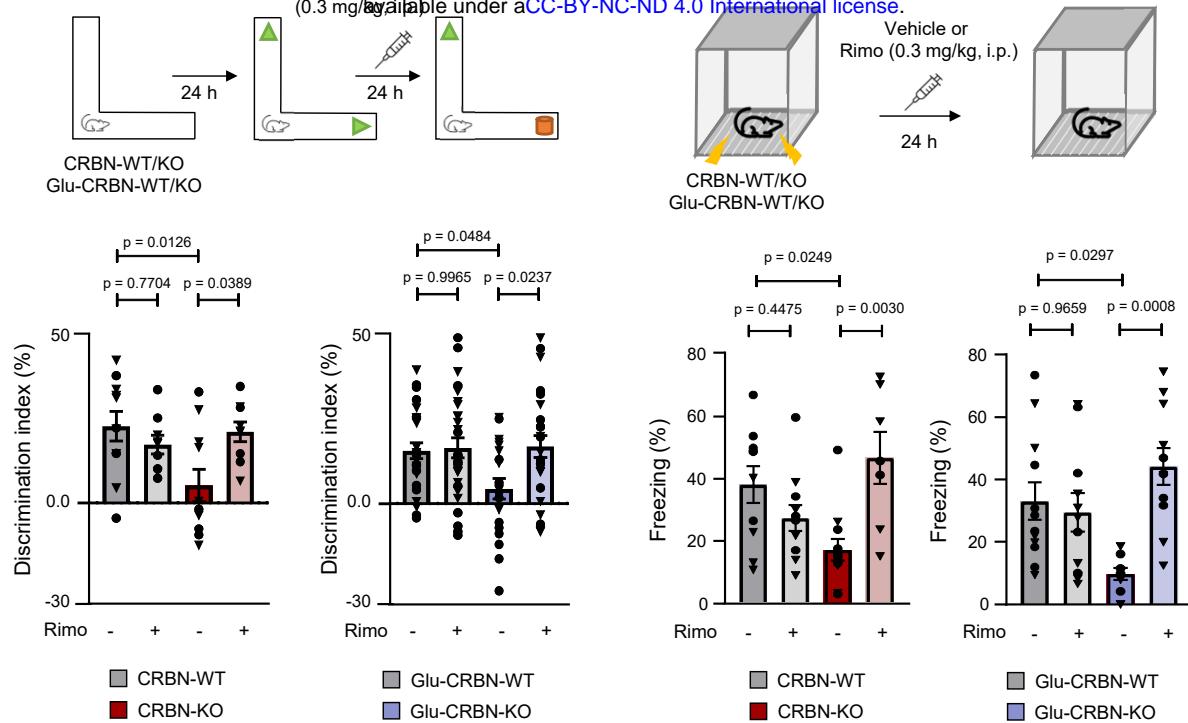





Figure 6

bioRxiv preprint doi: <https://doi.org/10.1101/2023.07.24.550332>; this version posted July 28, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

C

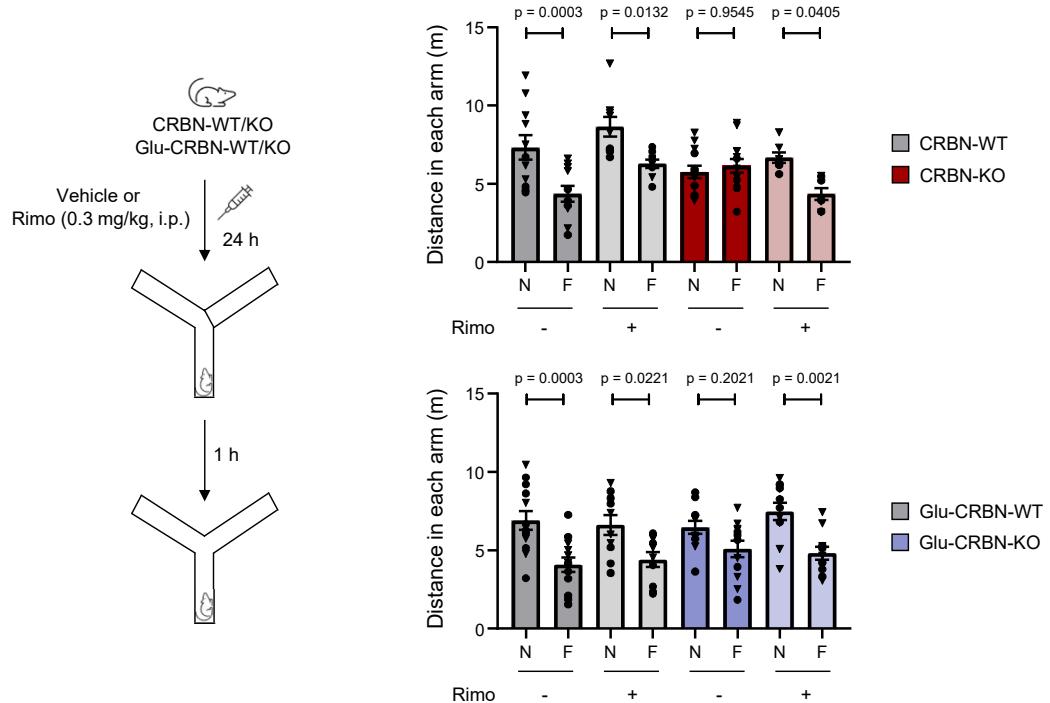


Figure EV1

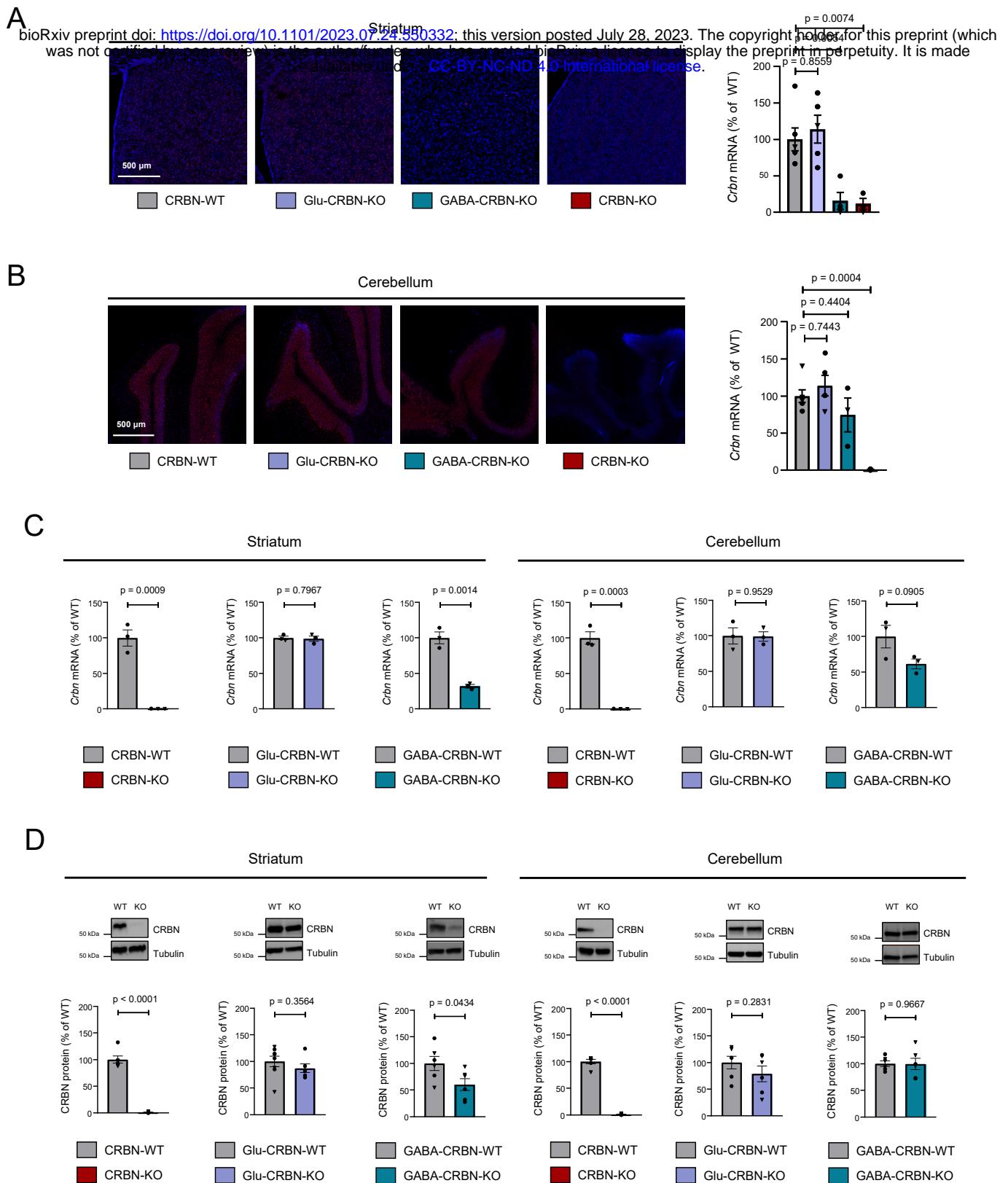


Figure EV2

bioRxiv preprint doi: <https://doi.org/10.1101/2023.07.24.550332>; this version posted July 28, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

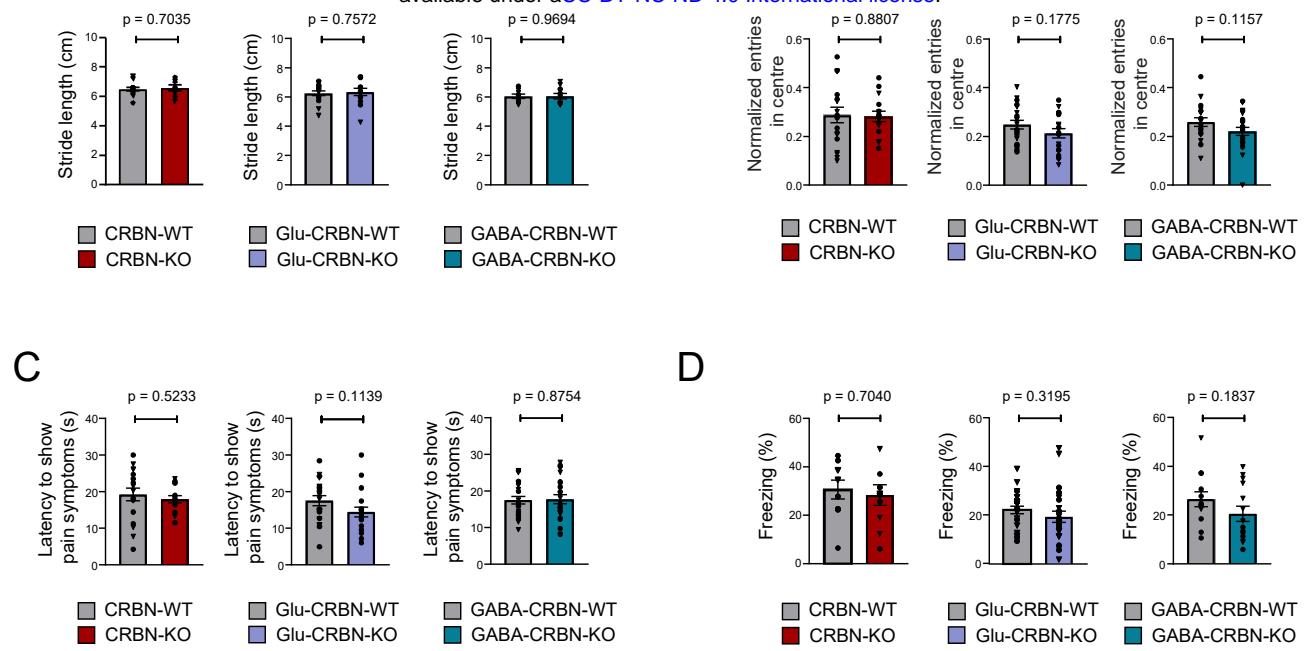


Figure EV3

bioRxiv preprint doi: <https://doi.org/10.1101/2023.07.24.550332>; this version posted July 28, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

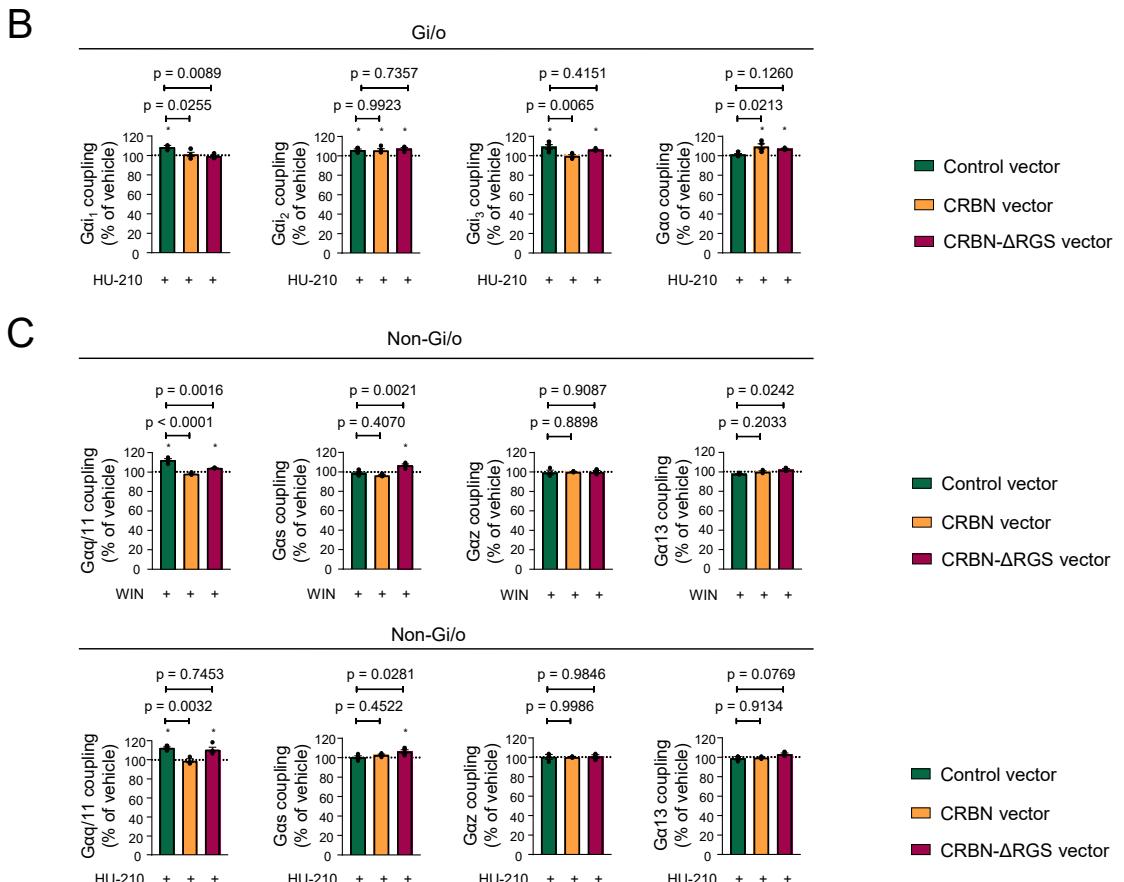
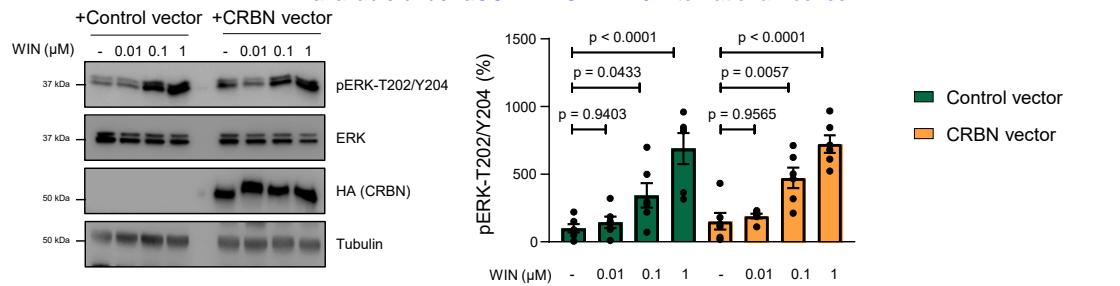
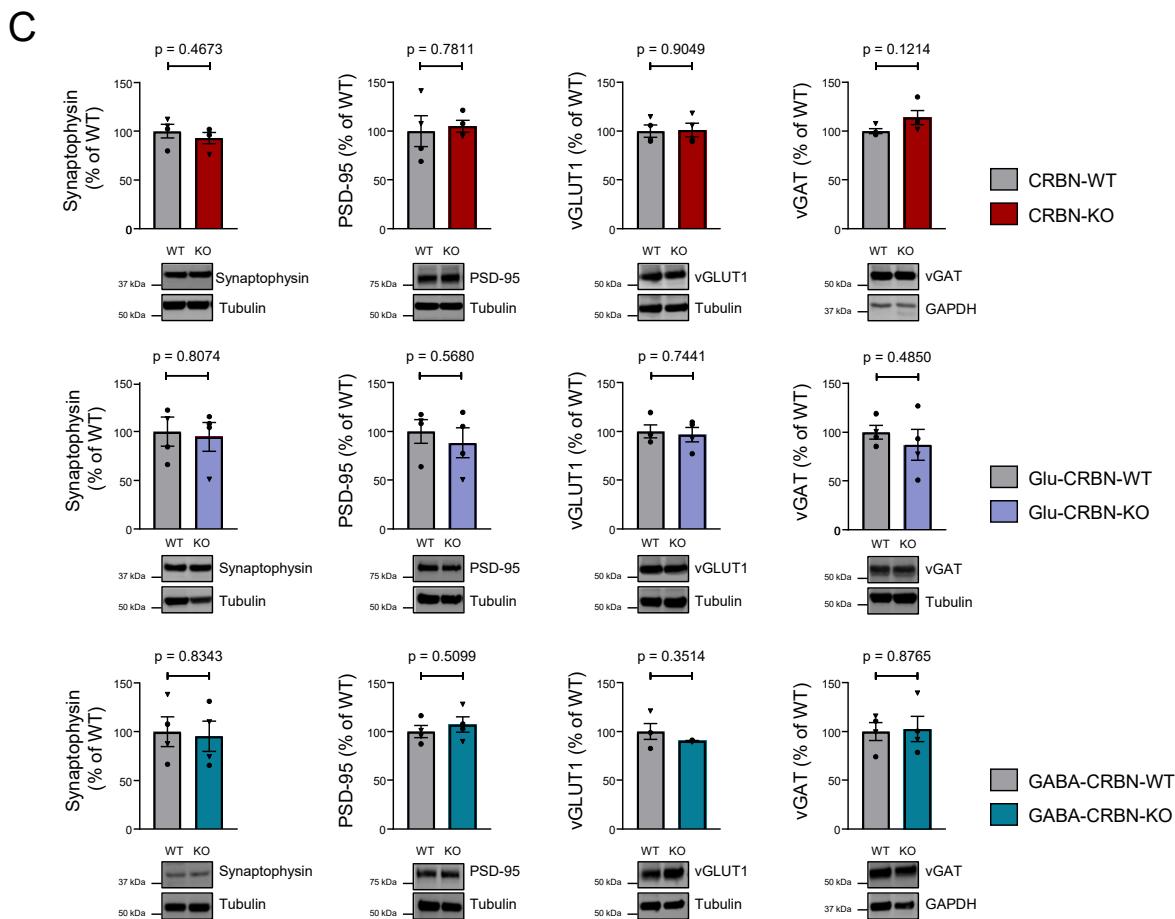
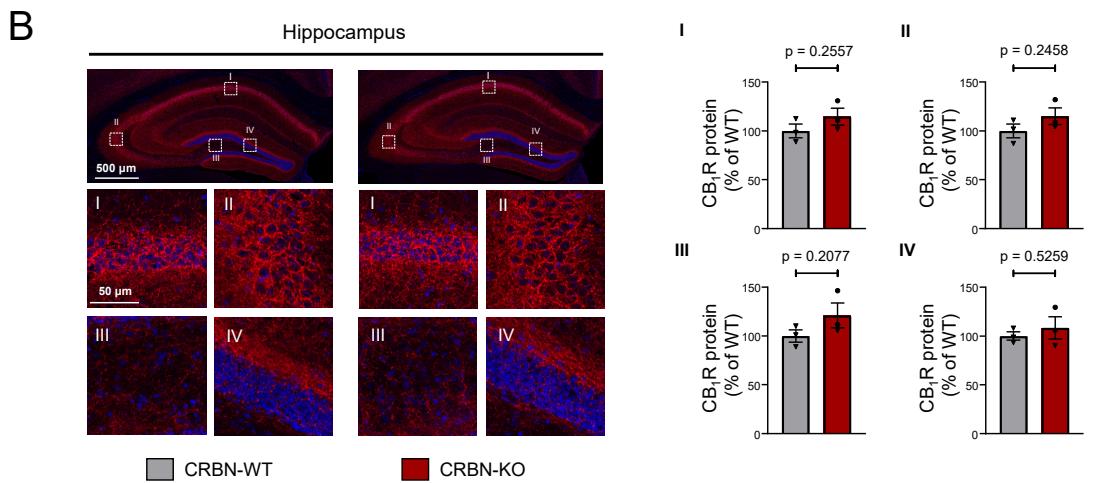
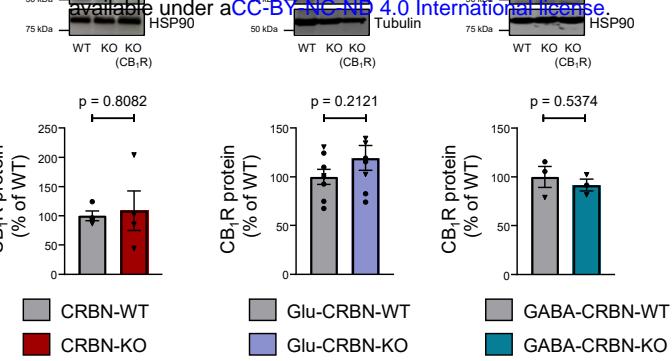






Figure EV4

bioRxiv preprint doi: <https://doi.org/10.1101/2023.07.24.550332>; this version posted July 28, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

