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ABSTRACT

Researchers investigating the neural mechanisms underlying speech perception often employ electroencephalography (EEG)
to record brain activity while participants listen to spoken language. The high temporal resolution of EEG enables the study of
neural responses to fast and dynamic speech signals. Previous studies have successfully extracted speech characteristics
from EEG data and, conversely, predicted EEG activity from speech features.

Machine learning techniques are generally employed to construct encoding and decoding models, which necessitate a
substantial amount of data. We present SparrKULee: A Speech-evoked Auditory Repository of EEG, measured at KU Leuven,
comprising 64-channel EEG recordings from 85 young individuals with normal hearing, each of whom listened to 90-150
minutes of natural speech. This dataset is more extensive than any currently available dataset in terms of both the number of
participants and the amount of data per participant. It is suitable for training larger machine learning models. We evaluate the
dataset using linear and state-of-the-art non-linear models in a speech encoding/decoding and match/mismatch paradigm,
providing benchmark scores for future research.

Background & Summary

In order to study the neural processing of speech, recent studies have presented natural running speech to participants while the
electroencephalogram (EEG) was recorded. Currently, regression is used to either decode features from the speech stimulus
from the EEG (also known as a backward model)!~, to predict the EEG from the speech stimulus!© (forward model), or
to transform both EEG and speech stimulus to a shared space’-® (hybrid model). Deep neural networks have recently been
proposed for auditory decoding and have obtained promising results* 12

All previously mentioned methods require EEG recordings of the participants with strict time alignment to the speech
stimulus. This time alignment is necessary due to the time-locked neural tracking of the speech stimulus at a millisecond scale
(e.g., auditory brainstem responses (ABR)), which can last up to 600 ms'3. As this data is personal and expensive to collect,
there is a need for more public datasets that researchers can use to benchmark and train their models.

Table 1 presents an overview of currently available public datasets of EEG recordings of people listening to natural speech.
These studies have generated 87.7 hours of EEG data from 133 participants listening to clean speech and speech-in-noise
in their native language. However, this amount of data is relatively small compared to datasets in other domains, such as
automatic speech recognition, and needs to be increased for training models due to the low signal-to-noise ratio of auditory
EEG. Additionally, combining the data from these studies for model training is challenging due to differences in the authors’
signal acquisition equipment, measurement protocols, and preprocessing methods.

For our dataset (SparrKULee), we conducted an EEG experiment in which 85 participants were recruited and presented
with speech stimuli for a duration ranging between 90 and 150 minutes, divided into 6 to 10 recordings (i.e., an uninterrupted
period in which a participant listens to a stimulus), totaling 168 hours of EEG data. A general summary can be found in table 2.
To validate the obtained dataset, we employed state-of-the-art linear>% '8 and deep learning models'?, in participant-specific
and participant-independent training scenarios. These models can serve as benchmarks for comparison in future research. Our
dataset is publicly available on the RDR KU Leuven website.
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Time per Total time
Dataset Ref Speech material Language Participants participant (min)
(min)
clean speech 19 60 1140
Broderick 14 time-reversed speech English 10 60 600
speech-in-noise 21 30 630
DTU Fuglsang T clean speech Danish 18 8.3 150
clean speech . 18 10 180
Etard 16 speechzn-noise English 18 30 540
foreign language speech  Dutch 12 40 480
Weissbart 17 clean speech English 13 40 520
Brennan al clean speech English 49 12.4 610
Vanheuseden a2 clean speech English 17 (* mild to severe hearing loss) 24 410
clean speech 85 110 9320
SparrKULee speechzn-noise Dutch 26 28.5 740

Table 1. Overview of currently publicly available single-speaker datasets.

Parameters Values
Number of participants 85
Minutes data per participant 90 to 150
Number of sessions for each participant 1
Number of trials per session 6to 10
Original sampling rate 8192 Hz
Provided sampling rate 1024 Hz
Number of channels 64

Table 2. Detailed information about the dataset

Methods

We define a trial as an uninterrupted recording lasting around 15 minutes. We define a session as the complete set of trials
and pre-screening activities that a participant underwent from the moment they entered the room until the moment they left.
Stimulus, in our study, refers to the speech audio files that we presented to the participants during the experiment, which were
designed to elicit specific responses from their brains. Figure 1 provides a high-level overview of the different parts of a session.

Participants

Between October 2018 and September 2022, data were collected from 85 participants (74 female/11 male, 21.4 +1.9 years
(sd)). Inclusion criteria for this study were young (18-30 years), normal-hearing adults (all hearing thresholds <= 30 dB SPL,
for 125-8000 Hz), with Dutch/Flemish as their native language. Before commencing the EEG experiments, participants read
and signed an informed consent form approved by the Medical Ethics Committee UZ KU Leuven/Research (KU Leuven,
Belgium) with reference S57102. All participants in this dataset explicitly consented to share their pseudonymized data in a
publicly accessible dataset. This dataset is a subset of our larger proprietary dataset containing data from participants that did
not give consent to share their data. Additionally, the participants completed a questionnaire requesting general demographic
information (age, sex, education level, handedness'®) and diagnoses of hearing loss and neurological pathologies. Participants
indicating any neurological or hearing-related diagnosis were excluded from the study. Last, the medical history and the
presence of learning disabilities were questioned as research has shown that serious concussions, the medication used to treat,
for example, insomnia®’, and learning disabilities such as dyslexia can affect brain responses>'->2. Therefore this information
was used to screen out participants with possibly divergent brain responses.

Behavioral Experiments
First, we measured the air conduction thresholds using the Hughson-Westlake method>? for frequencies from 125 to 8000 Hz
(see Figure 2). Participants with hearing thresholds > 30 dB SPL were excluded.

Secondly, we used the Flemish Matrix test** to determine each participant’s speech reception threshold (SRT, the signal-to-
noise ratio (SNR) at which 50 % speech understanding is achieved). The test consisted of 3 lists (2 for training, 1 for evaluation)
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Session
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| Behavioralexp | | | Break | |[Trial ] | Break |
Measure air SR_T . Participant
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& || G| e

Figure 1. Overview of a session. First, the participant underwent behavioral experiments: air conduction thresholds were
measured using the Hughson-Westlake method and the Flemish MATRIX test estimated the Speech reception threshold (SRT).
Following the Flemish MATRIX test, the EEG part of the study started, consisting of multiple trials of EEG recording. A trial
is defined as an uninterrupted EEG measurement when a stimulus is playing. In this study, trials were approximately 15
minutes in length. After three trials, the participants were offered the option to take a short break.

of 20 sentences following the adaptive procedure of Brand et al.>>. Each sentence has a fixed syntactic structure of 5 words:
name, verb, numeral, color and object [e.g. "Lucas telt vijf gele sokken" ("Lucas counts five yellow socks")]. After each
sentence, participants were asked to indicate the heard sentence using a 5x11 matrix containing ten possibilities for each word
and a blank option. The order of the three lists was randomized across participants. The last SNR value was used as an estimate
of the SRT. The lists were presented to the participants using electromagnetically shielded Ethymotic ER-3A insert phones,
binaurally at 62 dBA for each ear. Luts et al.>* present the list to the participants monoaurally to the best ear and obtain an
average SRT of —8.7dBSNR when using the results of the third list of the adaptive procedure. During the first repetitions, they
report a significant training effect, which disappears starting from the third repetition. In our setup, binaural stimulation was
chosen to be close to our EEG data acquisition setup. Figure 3 shows the histogram of the obtained SRT over participants in our

study. Participants scored an average value of —8.9dB +0.6(sd), similar to results obtained by Luts et al.?*.

EEG data acquisition

All recording sessions were conducted at the research group ExpORL of KU Leuven, in a triple-walled, soundproof booth
equipped with a Faraday cage to reduce external electromagnetic interference. Participants were instructed to listen to the
speech while seated and minimize muscle movements. They were seated in a comfortable chair in the middle of the booth.

We recorded EEG using a BioSemi ActiveTwo system with 64 active Ag-AgCl electrodes and two additional electrodes for
the common electrode (CMS) and current return path (DRL). In addition, two mastoid electrodes and the BioSemi head caps
were used, containing electrode holders placed according to the 10-20 electrode system.

To ensure proper electrode placement for each participant, we first measured their head size (from nasion to inion to nasion)
and selected an appropriate cap. Mastoid locations were scrubbed with Nuprep and cleaned with alcohol gel. The mastoid
electrodes were then attached using stickers and held with tape.

The electrode cap was placed on the participant’s head from back to front, with ears placed through gaps in the cap. The
closing tape at the bottom was secured, and a visual assessment was performed to ensure proper fit. The cap was adjusted so
that the distance between the nasion and the electrode Cz, the inion and the electrode Cz were equal, and the distance between
the left and right ears and the Cz electrode. Electrode gel was applied to the cap holes, and the electrodes were placed gently.
The battery, electrode cables and mastoid electrodes were attached to the BioSemi AD-box. The participant was then instructed
to sit still while EEG was recorded. The subjects were told to keep their eyes open during the measurement. If necessary, the
additional gel was applied to poorly behaving electrodes, and the electrode offset was checked to ensure proper connection. All
offsets were ideally between +20 and -20 mV.

The EEG recordings were digitized at a sampling rate of 8192 Hz and stored on a hard disk using the BioSemi ActiView
software.
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Figure 2. Air conduction thresholds (in dB hearing level (HL)) of the participants.

EEG experiment

All participants listened to 6, 7, 8 or 10 trials, each of approximately 15 minutes. The order of all the trials was randomized per

participant. After each trial, a question about the stimulus content was asked to determine attention to and comprehension of the

story. As the questions were not calibrated, they merely motivated the participant to pay attention to the stimulus. After three

trials, the participants were asked if they wanted to have a short break. Table 3 shows an overview of the experiment and timing.
We used different categories of stimuli:

¢ Reference audiobook to which all participants listened, made for children and narrated by a male speaker. The length of
the audiobook is around 15 minutes.

* Audiobooks made for children or adults. To keep the trial length around 15 minutes, some audiobooks were split into
different parts when the length exceeded 15 minutes.

* Audiobooks with noise made for children to which speech-weighted noise was added, as explained below, to obtain an
SNR of 5 dB.

* Podcasts from the series’ Universiteit van Vlaanderen’ (University of Flanders)>¢

a scientific question, lasts around 15 minutes, and is narrated by a single speaker.

. Each episode of this podcast answers

+ Podcasts with video from the series’ Universiteit van Vlaanderen” (University of Flanders)?®, while video material of
the speaker was shown. The video material can be found on the website of Universiteit van Vlaanderen for each podcast

separately.

The Podcasts and Podcasts with video were dynamically range compressed by the producers of the stimuli, while the audiobooks
were not.
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Figure 3. Histogram of the speech reception threshold (SRT), as determined by the matrix test

The dataset collection consists of two main session types: ses-shortstoriesO1 and ses-varyingstories, differing in the
presented stimuli. Each participant undertook one session. An overview of the experiment and timing can be found in table 3,
while figure 4 summarizes which stimuli were used for each participant in each session.

Ses-shortstories01

For this session type, data from 26 participants is available. It includes ten different parts of audiobooks for children. Two
audiobooks, audiobook_1 and audiobook_4, are narrated by male speakers, the other by female speakers. audiobook_3,
audiobook_5 and audiobook_6 are narrated by the same speaker. Two out of ten trials were randomly chosen for each
participant and presented in speech-weighted-noise (SNR = 5dB). Additionally, 3 subjects listened to a different version of
audiobook_1. For this experiment, the audiobook was cut in 2 halves (audiobook_1_1, audiobook_1_2 respectively), and a
pitch-shifted version was used created for each half (audiobook_1_1_shifted, audiobook_1_2_shifted, respectively). More
information about the pitch shifting and additional experiments can be found in the work of Algoet et al.?’. Finally, there was
one control condition in which the first 5 minutes of audiobook_1 were presented to a subject who had no insertphones inserted

(audiobook_1_artefact]).

Ses-varyingstories

For the ses-varyingstories type, data from 59 participants are available. Ses-varyingstories had a fixed reference audiobook_1
(which was presented to all subjects), an audiobook of around 30 minutes split into two parts, and three to five different podcasts
per participant, chosen to keep an even distribution of the sex of the speaker. The stimuli were changed every 2 to 8 participants.

Stimulus preparation

All stimuli were stored at a sampling rate of 48kHz. For each stimulus file, a trigger file was generated. These triggers were
sent from the stimulation equipment (RME soundcard) to the BioSemi. Triggers were generated every second in the form of a
block wave. At every second and the beginning and end of the recording, a block pulse with a width of 1 ms is inserted. Based
on the stimulus, speech-shaped noise was created at the same root-mean-square value (RMS) as the stimulus. The noise was
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Required  Cumulative

Experimental procedure time (min) time (min)

Fill in informed consent 5 5
Fill in questionnaire 5 10
Pure tone audiometry 15 25
Speech audiometry (matrix test) 25 50
Fit EEG equipment 15 65
Listen to 3 stimuli 50 115
First break 5 120
Listen to 3 stimuli 50 170
Second break 5 175
Krios scan of EEG electrode positions 10 185
Listen to 3 stimuli 50 245

Table 3. Overview of the experimental procedure.

Session Participants Stimuli
[Ses-Shortstoriest1 | | [Sub01tosub-26 | [26 ||[[aB1__ ||[aB2 | [ae3 | [aB4 | [aB5_1 | [aB5 2 | [aB5.3 | [aB6_1 | [aB6 2 | [AB15 |
[Ses-varyingstorieso1 | | [sub27tosub-31 | [5 |[|[a81__J|fp1  |lez |z |lps  Jae71 |[as7_2 [ffrrovio
[Ses-varyingstorieso2 | | [sub-32t0sw36 | [5 |||[ae1 Jflps  [ee  [le7  |ee  f[aes_1 |{aes_2 |friovio
[ses-Varyingstories03 | | [sub-37tosub-42 | 6 |||[aB1 |i|P9 et ez [[p1o  |i{aBa_1 |aBa 2 |
[SesVaryingstories0s | | [Sub43tosub46 | [4_]||[aB1 I!IP13 Ip1a  [leis  [He1o  |ag10_1 | [aB10 2|
[Ses-varyingstoriesos | | [suba7tosub48 | [2 |||[aB1__][[P16 |17 [[p1s  [H[p1o  [{as11_1 [{aB11_2]
[ses-varyingstoriesos | | [Sub-49 1o sub-56 | [a81 |i|s>20 [lp21 ez |Hlp2s  [f{ag12_1 ] [ag12_2]
[ses-Varyingstorieso7 | | [sub-57tosub-62 | [6 |||[aB1 |i|P24 |[p2s  |[p26  |f|p27  |[]aB13_1| |aB13 2| Reference Audiobook
[ses-varyingstoriesos | | [Sub-63 to sub-71 | [aB1 I!IPZB | fp2s  |[Pao | P31 ||{aB14_1 | [aB14_2 || pmmmmm Audiobooks for Adults
[Ses-varyingstoriesos | | [Sub-72tosub-78 | [a81  Jllpzz |r3z  |[pas | [aB14_1] [aB14_2 || ] Audiobooks for Children
[Ses-Varyingstories10 | | [Sub-79 10 sub-85 | [aB1 lilpss [lrss  [lrar | = ::z:::: with video

Figure 4. Overview of all the stimuli that were presented, per participant. AB=audiobook, P=podcast. Audiobooks and
podcast are numbered. The subscript _1/2/3 indicate different parts of the same audiobook, each around 15 minutes in length.

created by taking white noise and changing the spectrum of the white noise to the spectrum of the speech, and then matching
the RMS value of the original stimulus file.

Afterward, using one noise file for each RMS value, the stimuli were calibrated with a type 2260 sound-level pressure
meter, a type 4189 0.5-in. microphone, and a 2-cm3 coupler (Bruel & Kjaer, Copenhagen, Denmark).

The auditory stimuli were presented using a laptop connected to an RME Hammerfall DSP Muliface II or RME Fireface UC
soundcard, using the APEX software platform”® and electromagnetically shielded Ethymotic ER-3A insert phones, binaurally
at 62 dBA for each ear.

Krios data

We acquired a 3D-scan of the configuration of the EEG caps for all participants, using a Polaris Krios scanner (NDI, Canada),
which scans all the electrodes, using a probe to mark three reference points: at the nasion and the height of the tragus at both
sides. The Polaris Krios scanner is based on optical measurement technology and uses light reflected by markers to determine
the position coordinates.

EEG data preprocessing

Besides the raw EEG recordings, we also provide EEG with commonly used preprocessing steps applied. All steps were con-
ducted in Python 3.6, and the code for preprocessing is available on our GitHub repository (https://github.com/exporl/auditory-
eeg-dataset). First, EEG data was high-pass filtered, using a 1st-order Butterworth filter with a cut-off frequency of 0.5 Hz.
Zero-phase filtering was conducted by filtering the data forward and backward. Subsequently, the EEG was downsampled from
8192 Hz to 1024 Hz and eyeblink artifact removal was applied to the EEG, using a multichannel Wiener filter’®. Afterward, the
EEG was re-referenced to a common average, and finally, the EEG was downsampled to 64 Hz.
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Speech stimuli preprocessing

The initial sampling frequency of the stimuli was 48kHz. We provide a script to calculate the envelope using a gammatone
filterbank?! with 28 subbands. Each subband envelope was calculated by taking the absolute value of each sample, raised to the
power of 0.6. A single envelope was obtained by averaging all these subbands>2. Then, the envelope was downsampled to 64
Hz.

Data Records

All data were organized according to EEG-BIDS*3, an extension to the Brain Imaging Directory Structure (BIDS)** for EEG
data. EEG-BIDS allows storing EEG data with relevant extra information files, e.g., about the experiment, the stimuli and the
triggers, enabling quick usage of the data and linking the auditory stimuli to the raw EEG files. A schematic overview of our
repository is shown in Figure 5. The dataset consists of 3 parts: (1) raw data, in a folder per participant, (2) the auditory stimuli,
in zipped Numpy (.npz)>> format (3) the preprocessed data records, as described above, in the derivatives folder.

Raw data

The raw data was structured in a folder per participant. For each participant (1 to 85), a folder sub—-xxx is available in
the root folder. In this folder, there is a folder indicating the session, which can be either ses-shortstories01 or
ses-varyingstoriesxx (xx=01...09).

Each session folder contains a subfolder beh, containing the results of the behavioral matrix SRT estimation. These files
were named according to the participant, the session, the task, which is always listeningActive, and the behavioral experiment
run, which goes from 1 to 3.

The data of the EEG experiment was stored as a subfolder in the session folder, named eeg. The EEG experiment data
were named according to the participant, the session, the task and the run. When the participant listened to a stimulus, the task
was listeningActive. When the participant listened to silence, which happened at the start and end of the experiment,
the task wasrestingState. The run suffix chronologically numbers the different trials starting at 01. Each trial has four
corresponding files, differing only in their ending, after the run suffix: (1) raw gzipped file of EEG data in BioSemi Data Format
(BDF), sampled at 8192 Hz, ending in eeg.bdf . gz, (2) a descriptive apr file eeg . apr, containing extra information about
the experiment, such as the answers to the questions that were asked, (3) stimulation file to link EEG to the corresponding
stimulus stimulation.tsv and (4) events.tsv, which describes which stimuli were presented to the participants at
which time.

Stimuli
All the stimuli are saved in the folder st imuli/eeg. For each stimulus, we provide four corresponding files, stored in the
npz format with additional gzipping to reduce storage, which is easily readable in Python: (1) the stimulus, stored at 48 kHz
stimulusName.npz.qgz, (2) the associated noise file noise_stimulusName.npz.gz, (3) the associated trigger file
t_stimulueName.npz.gz and (4) the experiment description file st imulusName . apx.

The stimuli were named according to their type: either audiobook_xx or podcast_xx, where xx indexes unique
stimuli. Whenever an audiobook was split into multiple consecutive parts, an extra suffix denotes which part of the audiobook
is referred to.

Preprocessed data

For all data, we also provide a preprocessed, downsampled version of the data. These data can be found in the derivatives/preprocess:e

folder. Similar to the raw data, the preprocessed data was structured in a folder per participant, per session, which could be
either ses-shortstoriesxx or ses-varyingstoriesxx. The preprocessed files derive their name from the raw EEG file used to create
the preprocessed version. To avoid confusion, a suffix desc—preproc was added, such that no two files have the same name.
After the desc—preproc suffix, the name of the stimulus the participant listened to was added to facilitate linking the EEG
brain response to the auditory stimulus for downstream tasks.

Technical Validation
In order to demonstrate the validity of the data, we conducted several experiments on the preprocessed version of the proposed

dataset. The code to obtain these results can be found online: https://github.com/exporl/auditory-eeg-dataset.

Additional preprocessing
For all our experiments, we split each trial into a training, validation and test set, containing respectively 80%, 10% and 10% of
each trial for each participant. The train, validate and test set do not overlap, so the test set remains unseen for all the models.
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Dataset structure overview
|  sub-001
L,ses—shortstoriesOl
| _eeg
sub-001_ses-shortstories0l_task_restingState_run-01_eeg.apr
sub-001_ses-shortstories0l_task_restingState_run-01_eeg.bdf.gz
sub-001_ses-shortstories0l_task_restingState_run-01_stimulation.tsv
sub-001_ses-shortstories0l_task_restingState_run-01_events.tsv
sub-001_ses-shortstories0l_task_listeningActive_run-01_eeg.apr
sub-001_ses-shortstories0l_task_listeningActive_run-01_eeg.bdf.gz
sub-001_ses-shortstories0l_task_listeningActive_run-01_stimulation.ts¥
sub-001_ses-shortstories0l_task_listeningActive_run-01_events.tsv

sub-001_ses-shortstories0l_task_listeningActive_run-10_eeg.apr
sub-001_ses-shortstories0l_task_listeningActive_run-10_eeg.bdf.gz
sub-001_ses-shortstories0l_task_listeningActive_run-10_stimulation.ts¥
sub-001_ses-shortstories0l_task_listeningActive_run-10_events.tsv
sub—-001_ses-shortstories0l_task_restingState_run-02_eeg.apr
sub—-001_ses—-shortstories0l_task_restingState_run-02_eceg.bdf.gz
sub-001_ses-shortstories0l_task_restingState_run-02_stimulation.tsv
sub-001_ses-shortstories0l_task_restingState_run-02_events.tsv

| Dbeh

sub-001_ses-shortstories0l_task_listeningActive_run-01_beh.apr
sub-001_ses-shortstories0l_task_listeningActive_run-02_beh.apr
sub-001_ses-shortstories0l_task_listeningActive_run-03_beh.apr

| stimuli

eeqg
audiobook_1.apx
audiobook_1l.npz.gz
noise_audiobook_1.npz.gz
t_audiobook_1.npz.gz

podcast_37.apx

podcast_37.npz.gz

noise_podcast_37.npz.gz

t_podcast_37.npz.gz

| derivatives

| preprocessed_eeg

L sub-001
L,ses—shortstoriesOl

sub-001_ses-shortstories0l_task_listeningActive_run-01_
desc-preproc-audiobook_5_1_eeg.npy

sub-001_ses-shortstories0l_task_listeningActive_run-02_
desc-preproc-audiobook_5_2_eeg.npy

sub-001_ses-shortstories0l_task_listeningActive_run-10_
desc-preproc-audiobook_6_2_ eeg.npy
| preprocessed_stimuli
audiobook_1.data_dict
audiobook_1_envelope.npy

podcast_37.data_dict
podcast_37_envelope.npy

Figure 5. Tree depicting the structure of our dataset. All data have been structured according to the EEG-BIDS standard.
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Before usage, we normalized each trial by computing the mean and standard deviation for each of the 64 EEG channels and
the envelope stimulus on the training set. We then normalized the train, validation and test set by subtracting from each trial the
mean and dividing by the standard deviation computed on the train set.

Linear forward/backward modeling

To show the validity of the data, we trained participant-specific linear forward and backward models'? (i.e., models that predict
EEG from the stimulus envelope and the stimulus envelope from the EEG, respectively). The backward model was used to
detect neural tracking in each recording, i.e., that the speech envelope can effectively be decoded for each participant/story
compared to a null distribution of random predictions. The forward model was used to visualize the EEG channels for which
the stimulus-related activity can be best predicted.

Model training
The models were trained based on the recommendations of Crosse et al. (2021)'®. The backward model weights were obtained
similarly by equation 1:

wp = (RTR+AI)"'RT s )]

Where R is a matrix consisting of time-lagged versions of the EEG, s is the stimulus envelope and A is the ridge regression
parameter.In a similar fashion, equation 2 was used to obtain the forward model weights:

wr=(STS+AD)~'STr (2)

Where S is a matrix consisting of time-lagged versions of the stimulus envelope, r is a matrix containing the EEG response, and
A is the ridge regression parameter.

Both models had an integration window from -100ms to 400ms. Following the recommendations of Crosse et al. (2021)!8,
leave-one-out cross-validation was performed on the recordings in the training set to determine the optimal ridge regression
parameter (A) from a list of values (10" for x = [—6,—4,—2,0,2,4,6]). Correlations scores were averaged across folds and
channels, after which the A is chosen, corresponding to the highest correlation value.

To evaluate the performance of both models, the Pearson correlation between the predicted and true data was calculated
on the test set. In order to detect neural tracking, we followed the procedure of Crosse et al. (2021)'®. For each recording in
the test-set, the predictions are (circularly) shifted in time by a random amount N = 100 times. By correlating these shifted
predictions to the actual signal, a null distribution was constructed for each participant. The 95th percentile of this null
distribution was compared to the mean of the obtained scores on the test sets.

The analysis of EEG neural responses is typically performed in specific filter bands. For auditory EEG, the research
typically focuses on the Delta band (0.5 —4 Hz) and the Theta band (4 — 8 Hz)>3%38. We investigated the effect of filtering the
EEG and envelope in different bands: Delta (0.5 —4Hz), Theta (4 — 8Hz), Alpha (8 — 14Hz), Beta (14 — 30Hz) and Broadband
(0.5 —32H7z). A 1st order Butterworth filter was chosen for each of the proposed filtering bands.

The model training and evaluation were performed in Python using Numpy>> and Scipy.

Analysis

Using the linear backward model, we were able to detect neural tracking for all participants. In 11 of the 666 recordings, we
were not able to detect neural tracking in any frequency band with the linear decoder. These recordings are listed in table 4.
The results per frequency band are shown in Figure 6. As previously shown by Vanthornhout et al.?, the optimal performance
was reached when filtering in the delta-band (0.5 — 4 Hz). While correlations are hard to compare between studies because they
are heavily influenced by the measurement paradigm, subject selection, preprocessing and modeling choices, the correlations
we found for the delta band are roughly in line with previous studies (median correlation between 0.1-0.2'-2).

We compared the linear backward model performance across all stimuli and stimuli types (audiobooks vs. podcast,
excluding the audiobook_1 shifted and artifact versions) in the delta-band. The results are visualized in Figure 7 and Figure 8,
respectively. Note that there is a large variability in decoding scores within and between stimuli. Additionally, a significant
difference was found between the audiobook and podcast stimuli (0.184 vs. 0.133 median Pearson correlation, MannWhitneyU
test: p < 1079).

For the forward model, we show topomaps averaged across participants for each frequency band and stimulus type in Figure
9. As with the backward model, we observed the highest correlations between predicted and actual EEG signals in the delta
band. The highest correlations were obtained for the channels in the temporal and occipital regions.
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Subject Stimulus

sub-002 audiobook_1_artefact
sub-011 audiobook_6_1
sub-051 audiobook_1
sub-051 audiobook_1
sub-051  podcast_23
sub-054 audiobook_12_2
sub-056  podcast_22
sub-060 podcast_24
sub-064 audiobook_14 2
sub-064  podcast_30
sub-076  audiobook_14_1

21
22

Table 4. Recordings where no significant tracking was found with the linear backward model.

Non-linear models - Match-mismatch paradigm

For the non-linear models, we used the match-mismatch paradigm’-'2. In this paradigm, the models are given three inputs: a
segment of the EEG recording, the time-matched stimulus envelope segment, and a mismatched (imposter) stimulus envelope
segment. As specified by!?, the imposter was taken 1s after the matched stimulus envelope segment. If extracting an imposter
(at the end of each set) was impossible, the segment was discarded from the dataset. We extracted overlapping windows with
80% overlap. We included an analysis using a dilated convolutional model'? to show typical match-mismatch performance
across different input segment lengths.

Model training

The dilated convolutional network consists of four steps. First, the EEG channels are combined, from 64 to 8, using a 1D
convolutional layer with a kernel size of 1 and a filter size of 8. Second, there are N dilated convolutional layers with a kernel
size of K and 16 filters. These N convolutional layers are applied to both EEG and envelope stimulus segments. After each
convolutional layer, a rectified linear unit (ReLU) is applied. Both stimulus envelope segments share the weights for the
convolutional layers. After these non-linear transformations, the EEG is compared to both stimulus envelopes, using cosine
similarity. Finally, the similarity scores are fed to a single neuron, with sigmoid non-linearity, to create a prediction of the
matching stimulus segment.

The model was implemented in Tensorflow and used the Adam optimizer, with a learning rate of 0.001 and binary-cross
entropy as the loss function. Models were trained for a maximum of 50 epochs, using early stopping based on the validation loss,
with a patience factor of 5. We trained the models with an input segment length of 5 seconds and in a participant-independent
way, i.e., all participant data was given simultaneously to the model. We report results for input testing lengths 1, 2, 3, 5, and
10 s. Since the trained dilation model does not have fixed input lengths, we used the same model with different input lengths.

Analysis

The results of this analysis can be seen in figure 10. The accuracy of the model increased with longer window lengths. We see
the same trend as in'%. In order to test the generalizability of the model, we also tested the model with an arbitrarily chosen
mismatch segment, as opposed to the fixed 1 second. There was no significant difference between these two testing conditions,
which is in line with the experiment as conducted in*°.

Usage Notes

The stimuli included in the dataset were saved in Numpy array format®>. AB;, AB3, AByp1 and ABy; for x = 7...14 originate
from the Radioboeken project of deBuren (https://soundcloud.com/deburen—eu/). Podcasts were obtained from
Universiteit van Vlaanderen (https://www.universiteitvanvlaanderen.be). All stimuli in the dataset can only
be used/shared for non-commercial purposes. When republishing (adaptations of) the stimuli, explicit permission should be
acquired from the original publishing organization(s) (i.e., deBuren or Universiteit van Vlaanderen).

The dataset is available on the RDR KU Leuven platform https://rdr.kuleuven.be/dataset.xhtml?persistentld=doi: 10.48804/K3VSND

under an Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). Due to privacy concerns, access to part of the
data is restricted. Readers requesting access should mail the corresponding authors, stating what they want to use the data for.
Access will be granted to non-commercial users, complying with the CC-BY-NC-4.0 license.
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Linear decoder performance across frequency bands

0.35 A

0.30 A

0.25 A

0.20 A

0.15 A

Pearson correlation

0.10 -

0.05 A

0.00 A

Delta [0.5-4] Theta [4-8] Alpha [8-14] Beta [14-30] Broadband [0.5-32]
Frequency band

Figure 6. Results of the linear backward model for different frequency bands. Each point in the boxplot is the correlation
between the predicted speech envelope and stimulus envelope for one participant, averaged over recordings. Separate models
were trained for each participant and frequency band (Delta (0.5 — 4Hz), Theta (4 — 8Hz), Alpha (8 — 14Hz), Beta (14 —30H7z)
and Broadband (0.5 — 32H7z)). Highest correlations were obtained in the delta band and decreased when going to higher
frequency bands. The dashed line represents the significance level (@=0.05)

Code availability

All code used for the technical validation can be found online: https://github.com/exporl/auditory-eeg-dataset. We used the
mne-python library®’.

For using the data, we recommend using the code on our GitHub repository to get started, which consists of two main parts:
(1) code to create the preprocessed eeg and preprocessed stimuli from the raw data and (2) code to perform the experiments as
discussed in the technical validation. The README file contains detailed technical instructions.
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Figure 7. Results of the linear backward model for the different stimuli in the dataset. One model is trained per participant.
Each point in the boxplot is the correlation between the predicted speech envelope and stimulus envelope for one recording.
Data was filtered in the delta band (0.5 — 4Hz). There is high variability across participants and stimuli.
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Figure 9. Results of the forward linear model for different stimuli types and frequency bands. For each channel, the
correlation between actual and predicted EEG is shown and averaged across participants. One model is trained per participant.
The highest correlations are obtained in the delta-band for the channels in the temporal and occipital region.
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