

1 SparrKULee: A Speech-evoked Auditory Response 2 Repository of the KU Leuven, containing EEG of 85 3 participants

4 **Bernd Accou^{1,2,†,*}, Lies Bollens^{1,2,†,*}, Marlies Gillis¹, Wendy Verheijen¹, Hugo Van hamme²,**
5 **and Tom Francart^{1,*}**

6 ¹ExpORL, Dept. Neurosciences KU Leuven, Leuven, Belgium

7 ²PSI, Dept. of Electrical engineering (ESAT) KU Leuven, Leuven, Belgium

8 *corresponding author(s): bernd.accou@kuleuven.be, lies.bollens@kuleuven.be, tom.francart@kuleuven.be

9 [†]these authors contributed equally to this work

10 ABSTRACT

Researchers investigating the neural mechanisms underlying speech perception often employ electroencephalography (EEG) to record brain activity while participants listen to spoken language. The high temporal resolution of EEG enables the study of neural responses to fast and dynamic speech signals. Previous studies have successfully extracted speech characteristics from EEG data and, conversely, predicted EEG activity from speech features.

Machine learning techniques are generally employed to construct encoding and decoding models, which necessitate a substantial amount of data. We present SparrKULee: A Speech-evoked Auditory Repository of EEG, measured at KU Leuven, comprising 64-channel EEG recordings from 85 young individuals with normal hearing, each of whom listened to 90-150 minutes of natural speech. This dataset is more extensive than any currently available dataset in terms of both the number of participants and the amount of data per participant. It is suitable for training larger machine learning models. We evaluate the dataset using linear and state-of-the-art non-linear models in a speech encoding/decoding and match/mismatch paradigm, providing benchmark scores for future research.

12 Background & Summary

In order to study the neural processing of speech, recent studies have presented natural running speech to participants while the electroencephalogram (EEG) was recorded. Currently, regression is used to either decode features from the speech stimulus from the EEG (also known as a backward model)¹⁻⁵, to predict the EEG from the speech stimulus^{1,6} (forward model), or to transform both EEG and speech stimulus to a shared space^{7,8} (hybrid model). Deep neural networks have recently been proposed for auditory decoding and have obtained promising results^{4,5,9-12}.

All previously mentioned methods require EEG recordings of the participants with strict time alignment to the speech stimulus. This time alignment is necessary due to the time-locked neural tracking of the speech stimulus at a millisecond scale (e.g., auditory brainstem responses (ABR)), which can last up to 600 ms¹³. As this data is personal and expensive to collect, there is a need for more public datasets that researchers can use to benchmark and train their models.

Table 1 presents an overview of currently available public datasets of EEG recordings of people listening to natural speech. These studies have generated 87.7 hours of EEG data from 133 participants listening to clean speech and speech-in-noise in their native language. However, this amount of data is relatively small compared to datasets in other domains, such as automatic speech recognition, and needs to be increased for training models due to the low signal-to-noise ratio of auditory EEG. Additionally, combining the data from these studies for model training is challenging due to differences in the authors' signal acquisition equipment, measurement protocols, and preprocessing methods.

For our dataset (SparrKULee), we conducted an EEG experiment in which 85 participants were recruited and presented with speech stimuli for a duration ranging between 90 and 150 minutes, divided into 6 to 10 recordings (i.e., an uninterrupted period in which a participant listens to a stimulus), totaling 168 hours of EEG data. A general summary can be found in table 2. To validate the obtained dataset, we employed state-of-the-art linear^{2,8,18} and deep learning models¹², in participant-specific and participant-independent training scenarios. These models can serve as benchmarks for comparison in future research. Our dataset is publicly available on the [RDR KU Leuven website](#).

Dataset	Ref	Speech material	Language	Participants	Time per participant (min)	Total time (min)
Broderick	14	clean speech	English	19	60	1140
		time-reversed speech		10	60	600
		speech-in-noise		21	30	630
DTU Fuglsang	15	clean speech	Danish	18	8.3	150
Etard	16	clean speech	English	18	10	180
		speech-in-noise		18	30	540
		foreign language speech	Dutch	12	40	480
Weissbart	17	clean speech	English	13	40	520
Brennan	41	clean speech	English	49	12.4	610
Vanheusden	42	clean speech	English	17 (* mild to severe hearing loss)	24	410
SparrKULee		clean speech	Dutch	85	110	9320
		speech-in-noise		26	28.5	740

Table 1. Overview of currently publicly available single-speaker datasets.

Parameters	Values
Number of participants	85
Minutes data per participant	90 to 150
Number of sessions for each participant	1
Number of trials per session	6 to 10
Original sampling rate	8192 Hz
Provided sampling rate	1024 Hz
Number of channels	64

Table 2. Detailed information about the dataset

34 Methods

35 We define a *trial* as an uninterrupted recording lasting around 15 minutes. We define a *session* as the complete set of trials
 36 and pre-screening activities that a participant underwent from the moment they entered the room until the moment they left.
 37 *Stimulus*, in our study, refers to the speech audio files that we presented to the participants during the experiment, which were
 38 designed to elicit specific responses from their brains. Figure 1 provides a high-level overview of the different parts of a session.

39 Participants

40 Between October 2018 and September 2022, data were collected from 85 participants (74 female/11 male, 21.4 ± 1.9 years
 41 (sd)). Inclusion criteria for this study were young (18-30 years), normal-hearing adults (all hearing thresholds ≤ 30 dB SPL,
 42 for 125-8000 Hz), with Dutch/Flemish as their native language. Before commencing the EEG experiments, participants read
 43 and signed an informed consent form approved by the Medical Ethics Committee UZ KU Leuven/Research (KU Leuven,
 44 Belgium) with reference S57102. All participants in this dataset explicitly consented to share their pseudonymized data in a
 45 publicly accessible dataset. This dataset is a subset of our larger proprietary dataset containing data from participants that did
 46 not give consent to share their data. Additionally, the participants completed a questionnaire requesting general demographic
 47 information (age, sex, education level, handedness¹⁹) and diagnoses of hearing loss and neurological pathologies. Participants
 48 indicating any neurological or hearing-related diagnosis were excluded from the study. Last, the medical history and the
 49 presence of learning disabilities were questioned as research has shown that serious concussions, the medication used to treat,
 50 for example, insomnia²⁰, and learning disabilities such as dyslexia can affect brain responses^{21,22}. Therefore this information
 51 was used to screen out participants with possibly divergent brain responses.

52 Behavioral Experiments

53 First, we measured the air conduction thresholds using the Hughson-Westlake method²³ for frequencies from 125 to 8000 Hz
 54 (see Figure 2). Participants with hearing thresholds > 30 dB SPL were excluded.

55 Secondly, we used the Flemish Matrix test²⁴ to determine each participant's speech reception threshold (SRT, the signal-to-
 56 noise ratio (SNR) at which 50 % speech understanding is achieved). The test consisted of 3 lists (2 for training, 1 for evaluation)

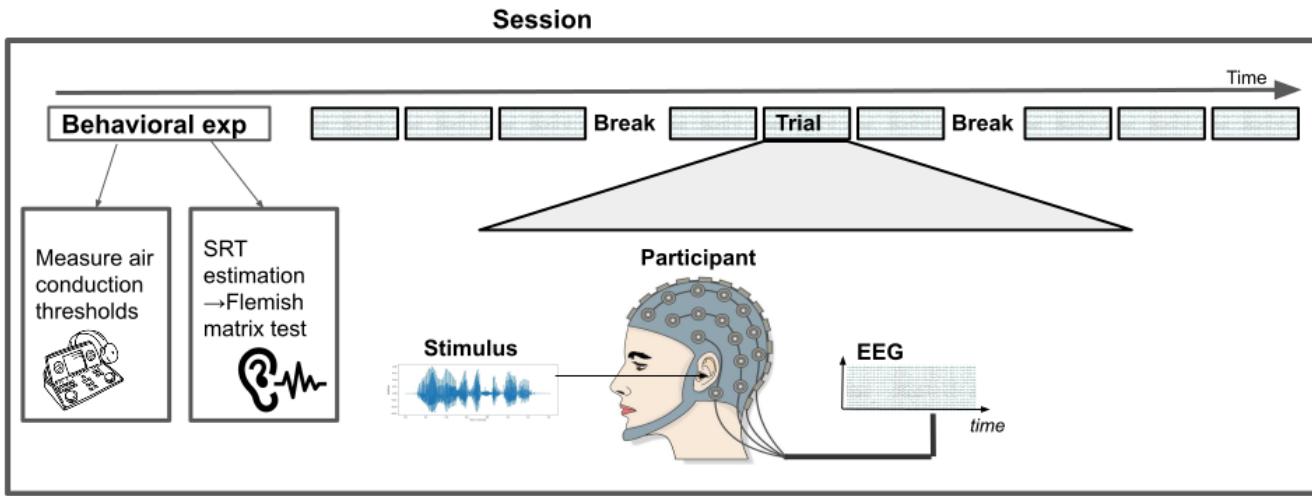


Figure 1. Overview of a session. First, the participant underwent behavioral experiments: air conduction thresholds were measured using the Hughson-Westlake method and the Flemish MATRIX test estimated the Speech reception threshold (SRT). Following the Flemish MATRIX test, the EEG part of the study started, consisting of multiple trials of EEG recording. A trial is defined as an uninterrupted EEG measurement when a stimulus is playing. In this study, trials were approximately 15 minutes in length. After three trials, the participants were offered the option to take a short break.

57 of 20 sentences following the adaptive procedure of Brand et al.²⁵. Each sentence has a fixed syntactic structure of 5 words:
58 name, verb, numeral, color and object [e.g. "Lucas telt vijf gele sokken" ("Lucas counts five yellow socks")]. After each
59 sentence, participants were asked to indicate the heard sentence using a 5x11 matrix containing ten possibilities for each word
60 and a blank option. The order of the three lists was randomized across participants. The last SNR value was used as an estimate
61 of the SRT. The lists were presented to the participants using electromagnetically shielded Ethymotic ER-3A insert phones,
62 binaurally at 62 dBA for each ear. Luts et al.²⁴ present the list to the participants monoaurally to the best ear and obtain an
63 average SRT of -8.7 dB SNR when using the results of the third list of the adaptive procedure. During the first repetitions, they
64 report a significant training effect, which disappears starting from the third repetition. In our setup, binaural stimulation was
65 chosen to be close to our EEG data acquisition setup. Figure 3 shows the histogram of the obtained SRT over participants in our
66 study. Participants scored an average value of $-8.9 \text{ dB} \pm 0.6 \text{ (sd)}$, similar to results obtained by Luts et al.²⁴.

67 EEG data acquisition

68 All recording sessions were conducted at the research group ExpORL of KU Leuven, in a triple-walled, soundproof booth
69 equipped with a Faraday cage to reduce external electromagnetic interference. Participants were instructed to listen to the
70 speech while seated and minimize muscle movements. They were seated in a comfortable chair in the middle of the booth.

71 We recorded EEG using a BioSemi ActiveTwo system with 64 active Ag-AgCl electrodes and two additional electrodes for
72 the common electrode (CMS) and current return path (DRL). In addition, two mastoid electrodes and the BioSemi head caps
73 were used, containing electrode holders placed according to the 10-20 electrode system.

74 To ensure proper electrode placement for each participant, we first measured their head size (from nasion to inion to nasion)
75 and selected an appropriate cap. Mastoid locations were scrubbed with Nuprep and cleaned with alcohol gel. The mastoid
76 electrodes were then attached using stickers and held with tape.

77 The electrode cap was placed on the participant's head from back to front, with ears placed through gaps in the cap. The
78 closing tape at the bottom was secured, and a visual assessment was performed to ensure proper fit. The cap was adjusted so
79 that the distance between the nasion and the electrode Cz, the inion and the electrode Cz were equal, and the distance between
80 the left and right ears and the Cz electrode. Electrode gel was applied to the cap holes, and the electrodes were placed gently.
81 The battery, electrode cables and mastoid electrodes were attached to the BioSemi AD-box. The participant was then instructed
82 to sit still while EEG was recorded. The subjects were told to keep their eyes open during the measurement. If necessary, the
83 additional gel was applied to poorly behaving electrodes, and the electrode offset was checked to ensure proper connection. All
84 offsets were ideally between +20 and -20 mV.

85 The EEG recordings were digitized at a sampling rate of 8192 Hz and stored on a hard disk using the BioSemi ActiView
86 software.

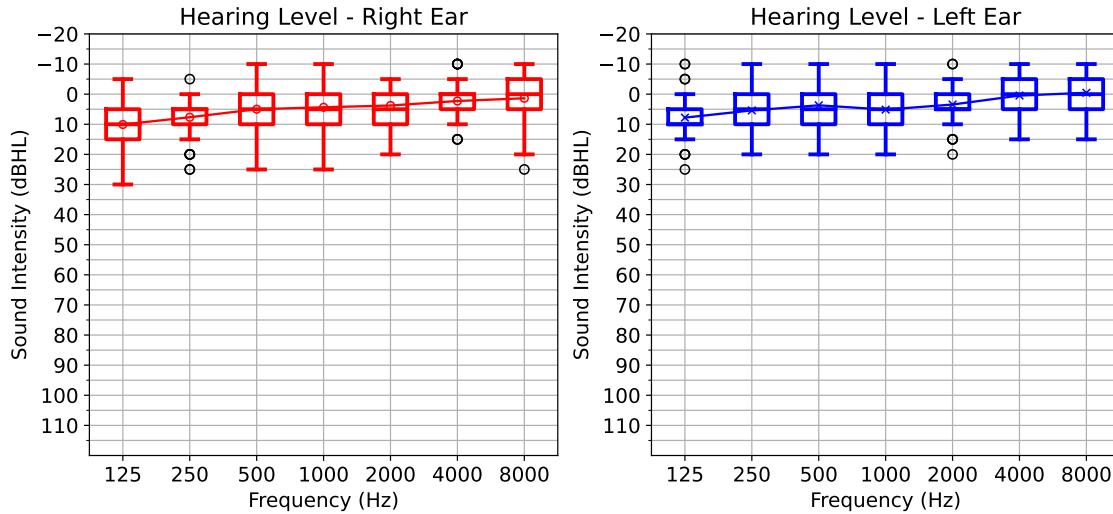


Figure 2. Air conduction thresholds (in dB hearing level (HL)) of the participants.

87 **EEG experiment**

88 All participants listened to 6, 7, 8 or 10 trials, each of approximately 15 minutes. The order of all the trials was randomized per
89 participant. After each trial, a question about the stimulus content was asked to determine attention to and comprehension of the
90 story. As the questions were not calibrated, they merely motivated the participant to pay attention to the stimulus. After three
91 trials, the participants were asked if they wanted to have a short break. Table 3 shows an overview of the experiment and timing.

92 We used different categories of stimuli:

93 • **Reference audiobook** to which all participants listened, made for children and narrated by a male speaker. The length of
94 the audiobook is around 15 minutes.

95 • **Audiobooks** made for children or adults. To keep the trial length around 15 minutes, some audiobooks were split into
96 different *parts* when the length exceeded 15 minutes.

97 • **Audiobooks with noise** made for children to which speech-weighted noise was added, as explained below, to obtain an
98 SNR of 5 dB.

99 • **Podcasts** from the series 'Universiteit van Vlaanderen' (University of Flanders)²⁶. Each episode of this podcast answers
100 a scientific question, lasts around 15 minutes, and is narrated by a single speaker.

101 • **Podcasts with video** from the series 'Universiteit van Vlaanderen' (University of Flanders)²⁶, while video material of
102 the speaker was shown. The video material can be found on the website of Universiteit van Vlaanderen for each podcast
103 separately.

104 The Podcasts and Podcasts with video were dynamically range compressed by the producers of the stimuli, while the audiobooks
105 were not.

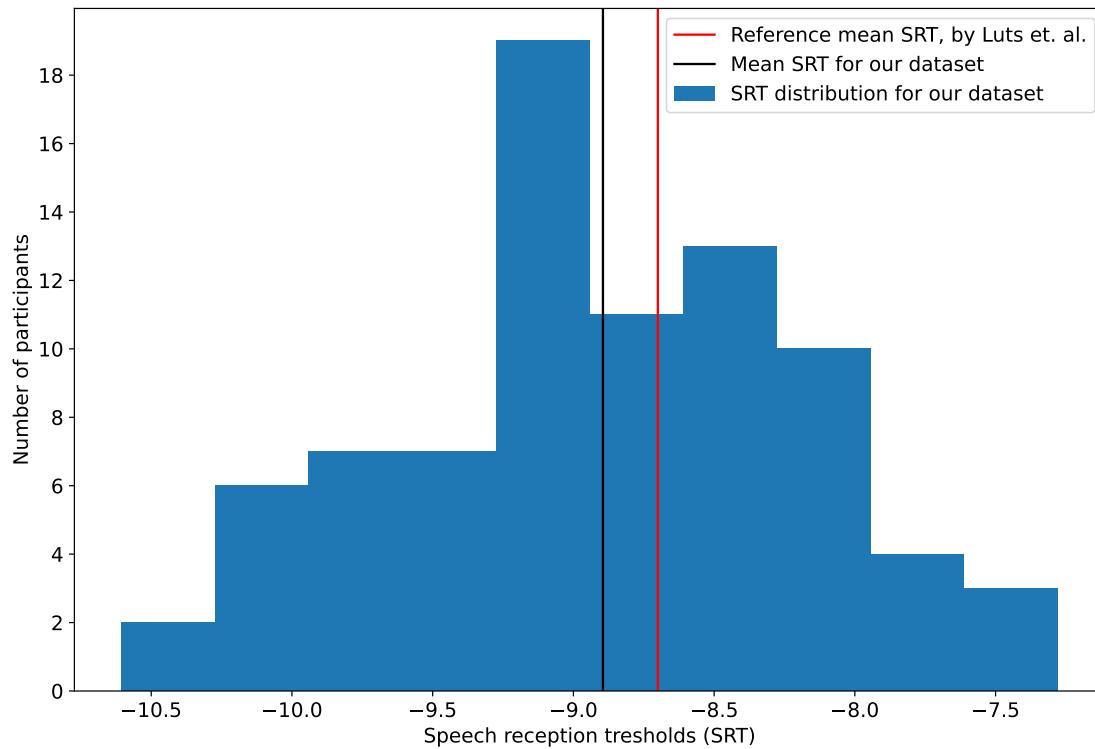


Figure 3. Histogram of the speech reception threshold (SRT), as determined by the matrix test

106 The dataset collection consists of two main session types: ses-shortstories01 and ses-varyingstories, differing in the
107 presented stimuli. Each participant undertook one session. An overview of the experiment and timing can be found in table 3,
108 while figure 4 summarizes which stimuli were used for each participant in each session.

109 **Ses-shortstories01**

110 For this session type, data from 26 participants is available. It includes ten different parts of audiobooks for children. Two
111 audiobooks, audiobook_1 and audiobook_4, are narrated by male speakers, the other by female speakers. audiobook_3,
112 audiobook_5 and audiobook_6 are narrated by the same speaker. Two out of ten trials were randomly chosen for each
113 participant and presented in speech-weighted-noise (SNR = 5dB). Additionally, 3 subjects listened to a different version of
114 audiobook_1. For this experiment, the audiobook was cut in 2 halves (audiobook_1_1, audiobook_1_2 respectively), and a
115 pitch-shifted version was used created for each half (audiobook_1_1_shifted, audiobook_1_2_shifted, respectively). More
116 information about the pitch shifting and additional experiments can be found in the work of Algoet et al.²⁷. Finally, there was
117 one control condition in which the first 5 minutes of audiobook_1 were presented to a subject who had no insertphones inserted
118 (audiobook_1_artefact]).

119 **Ses-varyingstories**

120 For the ses-varyingstories type, data from 59 participants are available. Ses-varyingstories had a fixed reference audiobook_1
121 (which was presented to all subjects), an audiobook of around 30 minutes split into two parts, and three to five different podcasts
122 per participant, chosen to keep an even distribution of the sex of the speaker. The stimuli were changed every 2 to 8 participants.

123 **Stimulus preparation**

124 All stimuli were stored at a sampling rate of 48kHz. For each stimulus file, a trigger file was generated. These triggers were
125 sent from the stimulation equipment (RME soundcard) to the BioSemi. Triggers were generated every second in the form of a
126 block wave. At every second and the beginning and end of the recording, a block pulse with a width of 1 ms is inserted. Based
127 on the stimulus, speech-shaped noise was created at the same root-mean-square value (RMS) as the stimulus. The noise was

Experimental procedure	Required time (min)	Cumulative time (min)
Fill in informed consent	5	5
Fill in questionnaire	5	10
Pure tone audiometry	15	25
Speech audiometry (matrix test)	25	50
Fit EEG equipment	15	65
Listen to 3 stimuli	50	115
First break	5	120
Listen to 3 stimuli	50	170
Second break	5	175
Krios scan of EEG electrode positions	10	185
Listen to 3 stimuli	50	245

Table 3. Overview of the experimental procedure.

Session	Participants	Stimuli									
Ses-Shortstories01	Sub-01 to sub-26 26	AB1	AB2	AB3	AB4	AB5_1	AB5_2	AB5_3	AB6_1	AB6_2	AB15
Ses-Varyingstories01	Sub-27 to sub-31 5	AB1	P1	P2	P3	P4	AB7_1	AB7_2	P10VID		
Ses-Varyingstories02	Sub-32 to sub-36 5	AB1	P5	P6	P7	P8	AB8_1	AB8_2	P10VID		
Ses-Varyingstories03	Sub-37 to sub-42 6	AB1	P9	P11	P12	P10	AB9_1	AB9_2			
Ses-Varyingstories04	Sub-43 to sub-46 4	AB1	P13	P14	P15	P10	AB10_1	AB10_2			
Ses-Varyingstories05	Sub-47 to sub-48 2	AB1	P16	P17	P18	P19	AB11_1	AB11_2			
Ses-Varyingstories06	Sub-49 to sub-56 8	AB1	P20	P21	P22	P23	AB12_1	AB12_2			
Ses-Varyingstories07	Sub-57 to sub-62 6	AB1	P24	P25	P26	P27	AB13_1	AB13_2			
Ses-Varyingstories08	Sub-63 to sub-71 8	AB1	P28	P29	P30	P31	AB14_1	AB14_2			
Ses-Varyingstories09	Sub-72 to sub-78 8	AB1	P32	P33	P34		AB14_1	AB14_2			
Ses-Varyingstories10	Sub-79 to sub-85 7	AB1	P35	P36	P37		AB14_1	AB14_2			

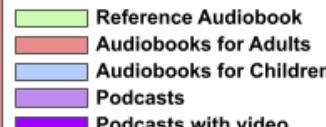


Figure 4. Overview of all the stimuli that were presented, per participant. AB=audiobook, P=podcast. Audiobooks and podcast are numbered. The subscript *_1/2/3* indicate different parts of the same audiobook, each around 15 minutes in length.

128 created by taking white noise and changing the spectrum of the white noise to the spectrum of the speech, and then matching
 129 the RMS value of the original stimulus file.

130 Afterward, using one noise file for each RMS value, the stimuli were calibrated with a type 2260 sound-level pressure
 131 meter, a type 4189 0.5-in. microphone, and a 2-cm³ coupler (Brüel & Kjaer, Copenhagen, Denmark).

132 The auditory stimuli were presented using a laptop connected to an RME Hammerfall DSP Muliface II or RME Fireface UC
 133 soundcard, using the APEX software platform²⁸ and electromagnetically shielded Ethymotic ER-3A insert phones, binaurally
 134 at 62 dBA for each ear.

135 **Krios data**

136 We acquired a 3D-scan of the configuration of the EEG caps for all participants, using a Polaris Krios scanner (NDI, Canada),
 137 which scans all the electrodes, using a probe to mark three reference points: at the nasion and the height of the tragus at both
 138 sides. The Polaris Krios scanner is based on optical measurement technology and uses light reflected by markers to determine
 139 the position coordinates.

140 **EEG data preprocessing**

141 Besides the raw EEG recordings, we also provide EEG with commonly used preprocessing steps applied. All steps were con-
 142 ducted in Python 3.6, and the code for preprocessing is available on our GitHub repository (<https://github.com/exporl/auditory-eeg-dataset>). First, EEG data was high-pass filtered, using a 1st-order Butterworth filter with a cut-off frequency of 0.5 Hz.
 143 Zero-phase filtering was conducted by filtering the data forward and backward. Subsequently, the EEG was downsampled from
 144 8192 Hz to 1024 Hz and eyeblink artifact removal was applied to the EEG, using a multichannel Wiener filter³⁰. Afterward, the
 145 EEG was re-referenced to a common average, and finally, the EEG was downsampled to 64 Hz.
 146

147 **Speech stimuli preprocessing**

148 The initial sampling frequency of the stimuli was 48kHz. We provide a script to calculate the envelope using a gammatone
149 filterbank³¹ with 28 subbands. Each subband envelope was calculated by taking the absolute value of each sample, raised to the
150 power of 0.6. A single envelope was obtained by averaging all these subbands³². Then, the envelope was downsampled to 64
151 Hz.

152 **Data Records**

153 All data were organized according to EEG-BIDS³³, an extension to the Brain Imaging Directory Structure (BIDS)³⁴ for EEG
154 data. EEG-BIDS allows storing EEG data with relevant extra information files, e.g., about the experiment, the stimuli and the
155 triggers, enabling quick usage of the data and linking the auditory stimuli to the raw EEG files. A schematic overview of our
156 repository is shown in Figure 5. The dataset consists of 3 parts: (1) raw data, in a folder per participant, (2) the auditory stimuli,
157 in zipped Numpy (.npz)³⁵ format (3) the preprocessed data records, as described above, in the *derivatives* folder.

158 **Raw data**

159 The raw data was structured in a folder per participant. For each participant (1 to 85), a folder *sub-xxxx* is available in
160 the root folder. In this folder, there is a folder indicating the session, which can be either *ses-shortstories01* or
161 *ses-varyingstoriesxx* (xx = 01...09).

162 Each session folder contains a subfolder *beh*, containing the results of the behavioral matrix SRT estimation. These files
163 were named according to the participant, the session, the task, which is always *listeningActive*, and the behavioral experiment
164 run, which goes from 1 to 3.

165 The data of the EEG experiment was stored as a subfolder in the session folder, named *eeg*. The EEG experiment data
166 were named according to the participant, the session, the task and the run. When the participant listened to a stimulus, the task
167 was *listeningActive*. When the participant listened to silence, which happened at the start and end of the experiment,
168 the task was *restingState*. The run suffix chronologically numbers the different trials starting at 01. Each trial has four
169 corresponding files, differing only in their ending, after the run suffix: (1) raw gzipped file of EEG data in BioSemi Data Format
170 (BDF), sampled at 8192 Hz, ending in *eeg.bdf.gz*, (2) a descriptive apr file *eeg.apr*, containing extra information about
171 the experiment, such as the answers to the questions that were asked, (3) stimulation file to link EEG to the corresponding
172 stimulus *stimulation.tsv* and (4) *events.tsv*, which describes which stimuli were presented to the participants at
173 which time.

174 **Stimuli**

175 All the stimuli are saved in the folder *stimuli/eeg*. For each stimulus, we provide four corresponding files, stored in the
176 *npz* format with additional gzipping to reduce storage, which is easily readable in Python: (1) the stimulus, stored at 48 kHz
177 *stimulusName.npz.gz*, (2) the associated noise file *noise_stimulusName.npz.gz*, (3) the associated trigger file
178 *t_stimulusName.npz.gz* and (4) the experiment description file *stimulusName.apx*.

179 The stimuli were named according to their type: either *audiobook_xx* or *podcast_xx*, where *xx* indexes unique
180 stimuli. Whenever an audiobook was split into multiple consecutive parts, an extra suffix denotes which part of the audiobook
181 is referred to.

182 **Preprocessed data**

183 For all data, we also provide a preprocessed, downsampled version of the data. These data can be found in the *derivatives/preprocessed*
184 folder. Similar to the raw data, the preprocessed data was structured in a folder per participant, per session, which could be
185 either *ses-shortstoriesxx* or *ses-varyingstoriesxx*. The preprocessed files derive their name from the raw EEG file used to create
186 the preprocessed version. To avoid confusion, a suffix *desc-preproc* was added, such that no two files have the same name.
187 After the *desc-preproc* suffix, the name of the stimulus the participant listened to was added to facilitate linking the EEG
188 brain response to the auditory stimulus for downstream tasks.

189 **Technical Validation**

190 In order to demonstrate the validity of the data, we conducted several experiments on the preprocessed version of the proposed
191 dataset. The code to obtain these results can be found online: <https://github.com/expol/auditory-eeg-dataset>.

192 **Additional preprocessing**

193 For all our experiments, we split each trial into a training, validation and test set, containing respectively 80%, 10% and 10% of
194 each trial for each participant. The train, validate and test set do not overlap, so the test set remains unseen for all the models.

Figure 5. Tree depicting the structure of our dataset. All data have been structured according to the EEG-BIDS standard.

195 Before usage, we normalized each trial by computing the mean and standard deviation for each of the 64 EEG channels and
196 the envelope stimulus on the training set. We then normalized the train, validation and test set by subtracting from each trial the
197 mean and dividing by the standard deviation computed on the train set.

198 **Linear forward/backward modeling**

199 To show the validity of the data, we trained participant-specific linear forward and backward models^{1,2} (i.e., models that predict
200 EEG from the stimulus envelope and the stimulus envelope from the EEG, respectively). The backward model was used to
201 detect neural tracking in each recording, i.e., that the speech envelope can effectively be decoded for each participant/story
202 compared to a null distribution of random predictions. The forward model was used to visualize the EEG channels for which
203 the stimulus-related activity can be best predicted.

204 **Model training**

205 The models were trained based on the recommendations of Crosse et al. (2021)¹⁸. The backward model weights were obtained
206 similarly by equation 1:

$$w_b = (R^T R + \lambda I)^{-1} R^T s \quad (1)$$

207 Where R is a matrix consisting of time-lagged versions of the EEG, s is the stimulus envelope and λ is the ridge regression
208 parameter. In a similar fashion, equation 2 was used to obtain the forward model weights:

$$w_f = (S^T S + \lambda I)^{-1} S^T r \quad (2)$$

209 Where S is a matrix consisting of time-lagged versions of the stimulus envelope, r is a matrix containing the EEG response, and
210 λ is the ridge regression parameter.

211 Both models had an integration window from -100ms to 400ms. Following the recommendations of Crosse et al. (2021)¹⁸,
212 leave-one-out cross-validation was performed on the recordings in the training set to determine the optimal ridge regression
213 parameter (λ) from a list of values (10^x for $x = [-6, -4, -2, 0, 2, 4, 6]$). Correlations scores were averaged across folds and
214 channels, after which the λ is chosen, corresponding to the highest correlation value.

215 To evaluate the performance of both models, the Pearson correlation between the predicted and true data was calculated
216 on the test set. In order to detect neural tracking, we followed the procedure of Crosse et al. (2021)¹⁸. For each recording in
217 the test-set, the predictions are (circularly) shifted in time by a random amount $N = 100$ times. By correlating these shifted
218 predictions to the actual signal, a null distribution was constructed for each participant. The 95th percentile of this null
219 distribution was compared to the mean of the obtained scores on the test sets.

220 The analysis of EEG neural responses is typically performed in specific filter bands. For auditory EEG, the research
221 typically focuses on the Delta band (0.5 – 4 Hz) and the Theta band (4 – 8 Hz)^{2,36–38}. We investigated the effect of filtering the
222 EEG and envelope in different bands: Delta (0.5 – 4Hz), Theta (4 – 8Hz), Alpha (8 – 14Hz), Beta (14 – 30Hz) and Broadband
223 (0.5 – 32Hz). A 1st order Butterworth filter was chosen for each of the proposed filtering bands.

224 The model training and evaluation were performed in Python using Numpy³⁵ and Scipy.

225 **Analysis**

226 Using the linear backward model, we were able to detect neural tracking for all participants. In 11 of the 666 recordings, we
227 were not able to detect neural tracking in any frequency band with the linear decoder. These recordings are listed in table 4.
228 The results per frequency band are shown in Figure 6. As previously shown by Vanthornhout et al.², the optimal performance
229 was reached when filtering in the delta-band (0.5 – 4 Hz). While correlations are hard to compare between studies because they
230 are heavily influenced by the measurement paradigm, subject selection, preprocessing and modeling choices, the correlations
231 we found for the delta band are roughly in line with previous studies (median correlation between 0.1-0.2^{1,2}).

232 We compared the linear backward model performance across all stimuli and stimuli types (audiobooks vs. podcast,
233 excluding the audiobook_1 shifted and artifact versions) in the delta-band. The results are visualized in Figure 7 and Figure 8,
234 respectively. Note that there is a large variability in decoding scores within and between stimuli. Additionally, a significant
235 difference was found between the audiobook and podcast stimuli (0.184 vs. 0.133 median Pearson correlation, MannWhitneyU
236 test: $p < 10^{-9}$).

237 For the forward model, we show topomaps averaged across participants for each frequency band and stimulus type in Figure
238 9. As with the backward model, we observed the highest correlations between predicted and actual EEG signals in the delta
239 band. The highest correlations were obtained for the channels in the temporal and occipital regions.

Subject	Stimulus
sub-002	audiobook_1_artefact
sub-011	audiobook_6_1
sub-051	audiobook_12_1
sub-051	audiobook_12_2
sub-051	podcast_23
sub-054	audiobook_12_2
sub-056	podcast_22
sub-060	podcast_24
sub-064	audiobook_14_2
sub-064	podcast_30
sub-076	audiobook_14_1

Table 4. Recordings where no significant tracking was found with the linear backward model.

240 **Non-linear models - Match-mismatch paradigm**

241 For the non-linear models, we used the match-mismatch paradigm^{7,12}. In this paradigm, the models are given three inputs: a
242 segment of the EEG recording, the time-matched stimulus envelope segment, and a mismatched (impostor) stimulus envelope
243 segment. As specified by¹⁰, the imposter was taken 1s after the matched stimulus envelope segment. If extracting an imposter
244 (at the end of each set) was impossible, the segment was discarded from the dataset. We extracted overlapping windows with
245 80% overlap. We included an analysis using a dilated convolutional model¹² to show typical match-mismatch performance
246 across different input segment lengths.

247 **Model training**

248 The dilated convolutional network consists of four steps. First, the EEG channels are combined, from 64 to 8, using a 1D
249 convolutional layer with a kernel size of 1 and a filter size of 8. Second, there are N dilated convolutional layers with a kernel
250 size of K and 16 filters. These N convolutional layers are applied to both EEG and envelope stimulus segments. After each
251 convolutional layer, a rectified linear unit (ReLU) is applied. Both stimulus envelope segments share the weights for the
252 convolutional layers. After these non-linear transformations, the EEG is compared to both stimulus envelopes, using cosine
253 similarity. Finally, the similarity scores are fed to a single neuron, with sigmoid non-linearity, to create a prediction of the
254 matching stimulus segment.

255 The model was implemented in Tensorflow and used the Adam optimizer, with a learning rate of 0.001 and binary-cross
256 entropy as the loss function. Models were trained for a maximum of 50 epochs, using early stopping based on the validation loss,
257 with a patience factor of 5. We trained the models with an input segment length of 5 seconds and in a participant-independent
258 way, i.e., all participant data was given simultaneously to the model. We report results for input testing lengths 1, 2, 3, 5, and
259 10 s. Since the trained dilation model does not have fixed input lengths, we used the same model with different input lengths.

260 **Analysis**

261 The results of this analysis can be seen in figure 10. The accuracy of the model increased with longer window lengths. We see
262 the same trend as in¹². In order to test the generalizability of the model, we also tested the model with an arbitrarily chosen
263 mismatch segment, as opposed to the fixed 1 second. There was no significant difference between these two testing conditions,
264 which is in line with the experiment as conducted in³⁹.

265 **Usage Notes**

266 The stimuli included in the dataset were saved in Numpy array format³⁵. AB_1, AB_3, AB_{xp1} and AB_{xp2} for $x = 7\dots14$ originate
267 from the Radioboeken project of deBuren (<https://soundcloud.com/deburen-eu/>). Podcasts were obtained from
268 Universiteit van Vlaanderen (<https://www.universiteitvanvlaanderen.be>). All stimuli in the dataset can only
269 be used/shared for non-commercial purposes. When republishing (adaptations of) the stimuli, explicit permission should be
270 acquired from the original publishing organization(s) (i.e., deBuren or Universiteit van Vlaanderen).

271 The dataset is available on the RDR KU Leuven platform <https://rdr.kuleuven.be/dataset.xhtml?persistentId=doi:10.48804/K3VSND>
272 under an Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). Due to privacy concerns, access to part of the
273 data is restricted. Readers requesting access should mail the corresponding authors, stating what they want to use the data for.
274 Access will be granted to non-commercial users, complying with the CC-BY-NC-4.0 license.

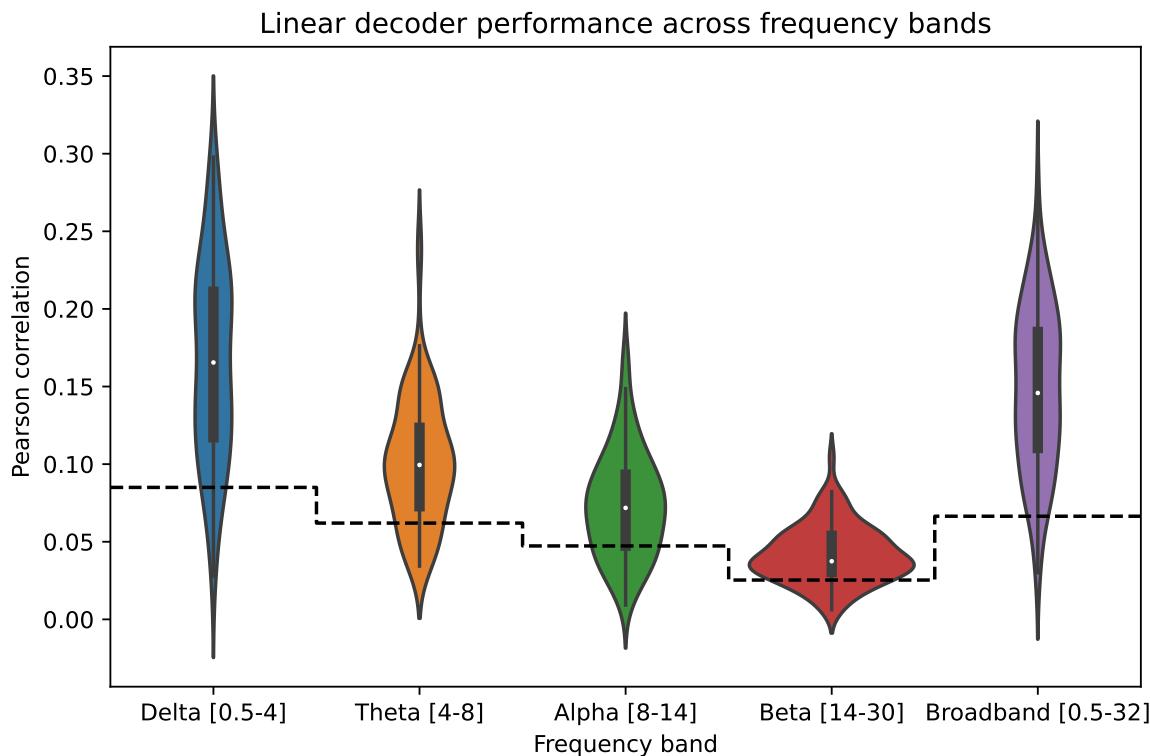


Figure 6. Results of the linear backward model for different frequency bands. Each point in the boxplot is the correlation between the predicted speech envelope and stimulus envelope for one participant, averaged over recordings. Separate models were trained for each participant and frequency band (Delta (0.5 – 4Hz), Theta (4 – 8Hz), Alpha (8 – 14Hz), Beta (14 – 30Hz) and Broadband (0.5 – 32Hz)). Highest correlations were obtained in the delta band and decreased when going to higher frequency bands. The dashed line represents the significance level ($\alpha=0.05$)

275 Code availability

276 All code used for the technical validation can be found online: <https://github.com/exporl/auditory-eeg-dataset>. We used the
277 mne-python library⁴⁰.

278 For using the data, we recommend using the code on our GitHub repository to get started, which consists of two main parts:
279 (1) code to create the preprocessed eeg and preprocessed stimuli from the raw data and (2) code to perform the experiments as
280 discussed in the technical validation. The README file contains detailed technical instructions.

281 Acknowledgements

282 The research conducted in this paper is funded by KU Leuven Special Research Fund C24/18/099 (C2 project to Tom Francart
283 and Hugo Van hamme), by two PhD grants (1S89622N,1SB1421N) of the Research Foundation Flanders (FWO) and from
284 the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant
285 agreement No 637424, ERC Starting Grant to Tom Francart).

286 The authors thank Amelie Algoet, Jolien Smeulders, Lore Kerkhofs, Sara Peeters, Merel Dillen, Ilham Gamgami, Amber
287 Verhoeven, Vitor Vasconselos, Jard Hendrickx, Lore Verbeke and Ana Carbajal Chavez for their help with data collection.

288 Author contributions statement

289 B.A., W.V., L.B., H.V.h and T.F conceived the experiments, B.A., L.B., M.G. and W.V. conducted/supervised the experiments,
290 B.A. and L.B analysed the results. All authors reviewed the manuscript.

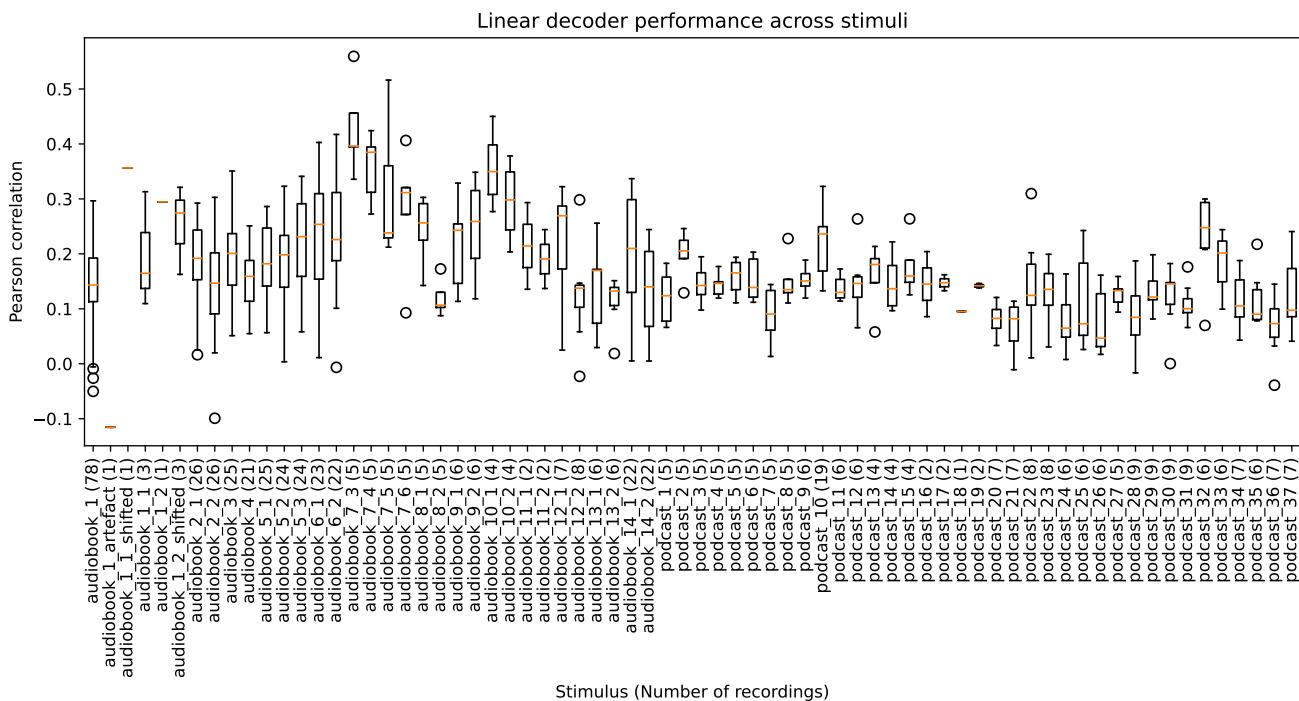


Figure 7. Results of the linear backward model for the different stimuli in the dataset. One model is trained per participant. Each point in the boxplot is the correlation between the predicted speech envelope and stimulus envelope for one recording. Data was filtered in the delta band (0.5 – 4Hz). There is high variability across participants and stimuli.

Competing interests

The authors declare no conflict of interest.

References

1. Crosse, M. J., Di Liberto, G. M., Bednar, A. & Lalor, E. C. The multivariate temporal response function (mTRF) toolbox: A MATLAB toolbox for relating neural signals to continuous stimuli. *Front. Hum. Neurosci.* **10**, 1–14, [10.3389/fnhum.2016.00604](https://doi.org/10.3389/fnhum.2016.00604) (2016).
2. Vanthornhout, J., Decruy, L., Wouters, J., Simon, J. Z. & Francart, T. Speech Intelligibility Predicted from Neural Entrainment of the Speech Envelope. *JARO - J. Assoc. for Res. Otolaryngol.* **19**, 181–191, [10.1007/s10162-018-0654-z](https://doi.org/10.1007/s10162-018-0654-z) (2018).
3. Iotzov, I. & Parra, L. C. EEG can predict speech intelligibility. *J. Neural Eng.* **16**, 036008, [10.1088/1741-2552/ab07fe](https://doi.org/10.1088/1741-2552/ab07fe) (2019).
4. Thornton, M., Mandic, D. & Reichenbach, T. Robust decoding of the speech envelope from eeg recordings through deep neural networks. *J. Neural Eng.* **19**, 046007 (2022).
5. Accou, B., Vanthornhout, J., Hamme, H. V. & Francart, T. Decoding of the speech envelope from EEG using the VLAAI deep neural network, [10.1101/2022.09.28.509945](https://doi.org/10.1101/2022.09.28.509945) (2022). Pages: 2022.09.28.509945 Section: New Results.
6. Lesenfants, D., Vanthornhout, J., Verschueren, E. & Francart, T. Data-driven spatial filtering for improved measurement of cortical tracking of multiple representations of speech. *bioRxiv* [10.1101/551218](https://doi.org/10.1101/551218) (2019).
7. de Cheveigné, A. *et al.* Multiway canonical correlation analysis of brain data. *NeuroImage* **186**, 728–740, <https://doi.org/10.1016/j.neuroimage.2018.11.026> (2019).
8. de Cheveigné, A., Slaney, M., Fuglsang, S. A. & Hjortkjaer, J. Auditory stimulus-response modeling with a match-mismatch task. *J. Neural Eng.* **18**, 046040, [10.1088/1741-2552/abf771](https://doi.org/10.1088/1741-2552/abf771) (2021).
9. de TAILLEZ, T., KOLLMEIER, B. & MEYER, B. Machine learning for decoding listeners' attention from eeg evoked by continuous speech. *Eur. J. Neurosci.* **51**, [10.1111/ejn.13790](https://doi.org/10.1111/ejn.13790) (2017).

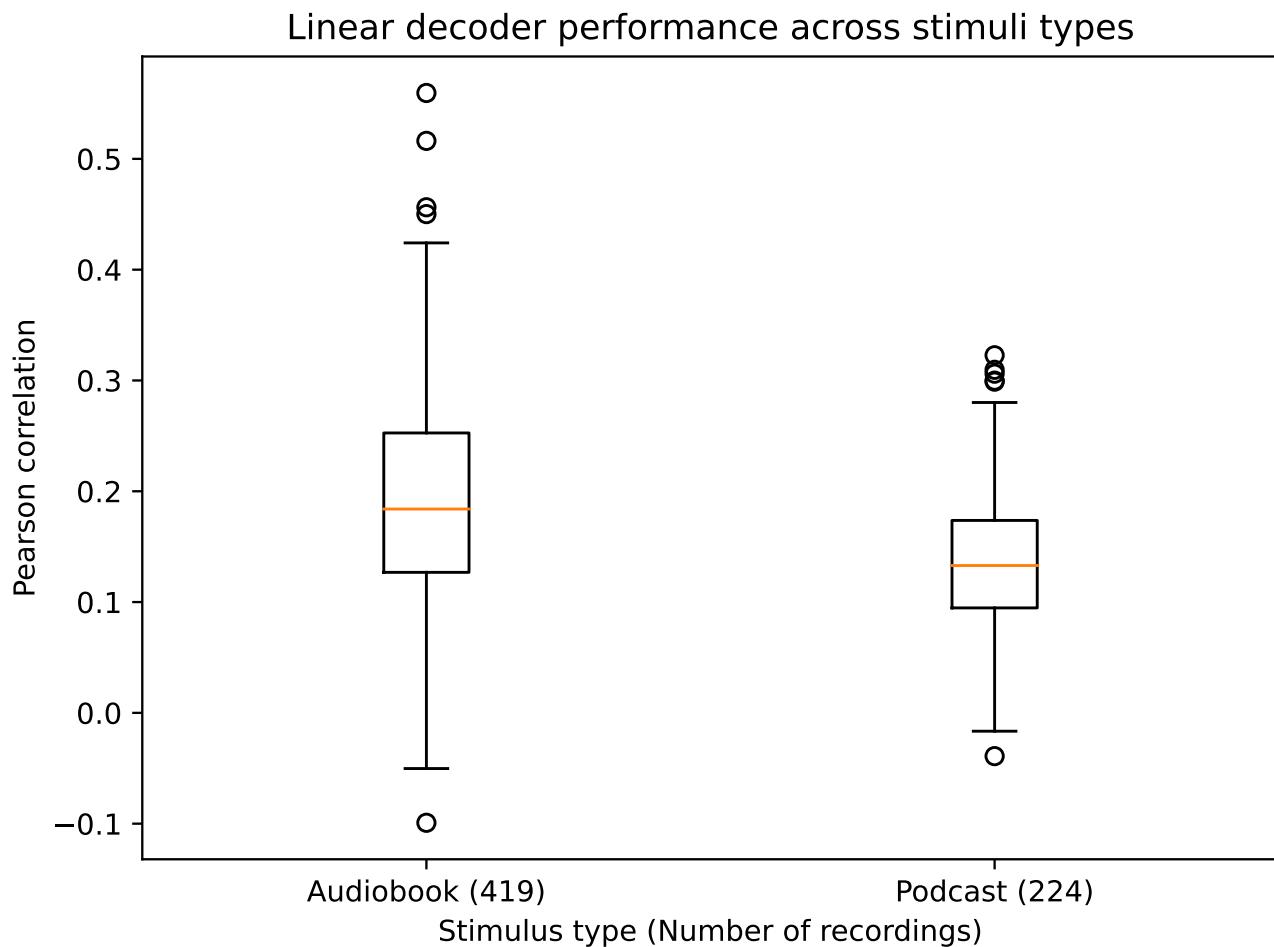


Figure 8. Results of the linear backward model for the different stimuli in the dataset. One model is trained per participant. Each point in the boxplot is the correlation between the predicted speech envelope and stimulus envelope for one participant, averaged across recordings. Significantly higher correlations were obtained for the audiobooks (0.184 vs. 0.133 median Pearson correlation, MannWhitneyU test: $p < 10^{-9}$).

314 10. Monesi, M. J., Accou, B., Montoya-Martinez, J., Francart, T. & Hamme, H. V. An LSTM Based Architecture to Relate
315 Speech Stimulus to Eeg. *ICASSP, IEEE Int. Conf. on Acoust. Speech Signal Process. - Proc.* **2020-May**, 941–945,
316 [10.1109/ICASSP40776.2020.9054000](https://doi.org/10.1109/ICASSP40776.2020.9054000) (2020).

317 11. Monesi, M. J., Accou, B., Francart, T. & Van Hamme, H. Extracting different levels of speech information from eeg using
318 an lstm-based model, [10.48550/ARXIV.2106.09622](https://doi.org/10.48550/ARXIV.2106.09622) (2021).

319 12. Accou, B., Jalilpour-Monesi, M., hamme, H. V. & Francart, T. Predicting speech intelligibility from eeg using a dilated
320 convolutional network. *ArXiv* **abs/2105.06844** (2021).

321 13. Ding, N. & Simon, J. Z. Emergence of neural encoding of auditory objects while listening to competing speakers. *Proc. Natl.*
322 *Acad. Sci.* **109**, 11854–11859, [10.1073/pnas.1205381109](https://doi.org/10.1073/pnas.1205381109) (2012). <https://www.pnas.org/doi/pdf/10.1073/pnas.1205381109>.

323 14. Broderick, M. P., Anderson, A. J., Di Liberto, G. M., Crosse, M. J. & Lalor, E. C. Electrophysiological correlates of
324 semantic dissimilarity reflect the comprehension of natural, narrative speech. *Curr. Biol.* **28**, 803–809 (2018).

325 15. Fuglsang, S. A., Wong, D. D. & Hjortkjær, J. Eeg and audio dataset for auditory attention decoding, [10.5281/zenodo.1199011](https://doi.org/10.5281/zenodo.1199011) (2018).

326 16. Etard, O. & Reichenbach, T. EEG Dataset for 'Decoding of selective attention to continuous speech from the human
327 auditory brainstem response' and 'Neural Speech Tracking in the Theta and in the Delta Frequency Band Differentially
328 Encode Clarity and Comprehension of Speech in Noise', [10.5281/zenodo.7086209](https://doi.org/10.5281/zenodo.7086209) (2022).

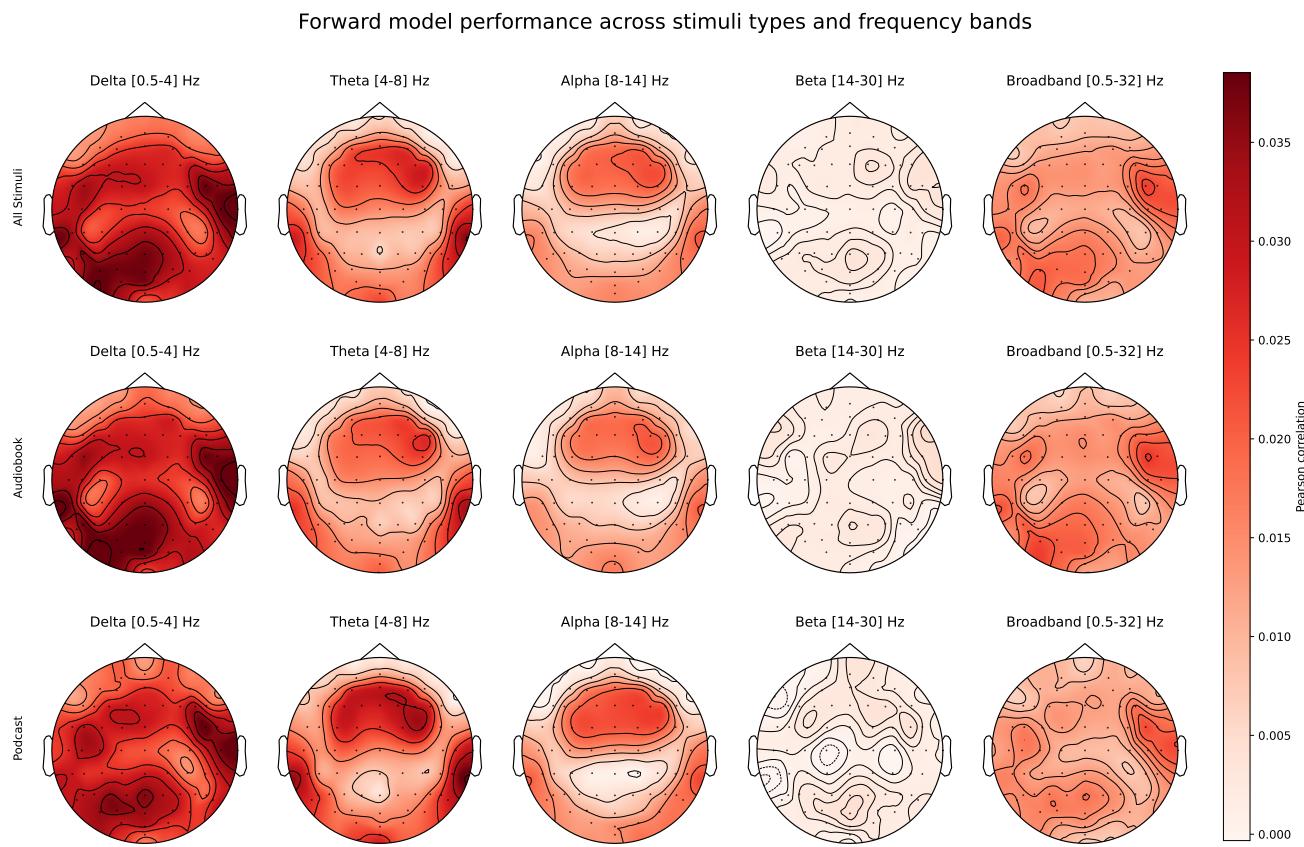


Figure 9. Results of the forward linear model for different stimuli types and frequency bands. For each channel, the correlation between actual and predicted EEG is shown and averaged across participants. One model is trained per participant. The highest correlations are obtained in the delta-band for the channels in the temporal and occipital region.

330 17. Weissbart, H., Kandylaki, K. & Reichenbach, T. EEG Dataset for 'Cortical Tracking of Surprisal during Continuous
331 Speech Comprehension', [10.5281/zenodo.7086168](https://doi.org/10.5281/zenodo.7086168) (2022).

332 18. Crosse, M. *et al.* Linear modeling of neurophysiological responses to speech and other continuous stimuli: Methodological
333 considerations for applied research. *Front. Neurosci.* **15**, [10.3389/fnins.2021.705621](https://doi.org/10.3389/fnins.2021.705621) (2021).

334 19. COREN, S. The lateral preference inventory for measurement of handedness, footedness, eyedness, and earedness - norms
335 for young-adults. *BULLETIN OF THE PSYCHONOMIC SOCIETY* **31**, 1–3, [10.3758/bf03334122](https://doi.org/10.3758/bf03334122) (1993).

336 20. van Lier, H., Drinkenburg, W. H., van Eeten, Y. J. & Coenen, A. M. Effects of diazepam and zolpidem on eeg beta
337 frequencies are behavior-specific in rats. *Neuropharmacol.* **47**, 163–174, <https://doi.org/10.1016/j.neuropharm.2004.03.017>
338 (2004).

339 21. De Vos, A., Vanvooren, S., Vanderauwera, J., Ghesquière, P. & Wouters, J. Atypical neural synchronization to speech
340 envelope modulations in dyslexia. *Brain Lang.* **164**, 106–117, <https://doi.org/10.1016/j.bandl.2016.10.002> (2017).

341 22. Power, A. J., Colling, L. J., Mead, N., Barnes, L. & Goswami, U. Neural encoding of the speech envelope by children with
342 developmental dyslexia. *Brain Lang.* **160**, 1–10, <https://doi.org/10.1016/j.bandl.2016.06.006> (2016).

343 23. Hughson, W., Westlake, H. *et al.* Manual for program outline for rehabilitation of aural casualties both military and civilian.
344 *Trans Am Acad Ophthalmol Otolaryngol* **48**, 1–15 (1944).

345 24. Luts, H., Jansen, S., Dreschler, W. & Wouters, J. Development and normative data for the flemish/dutch matrix test (2014).

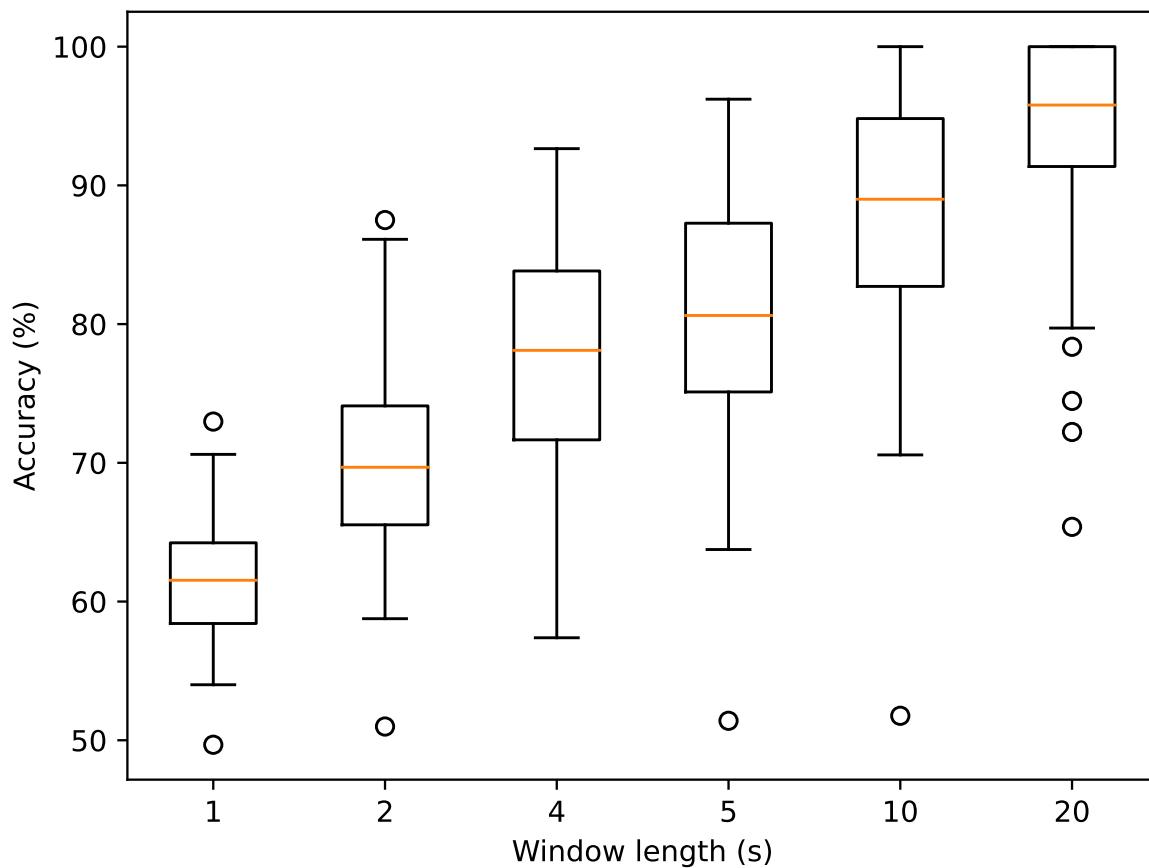


Figure 10. Results of the non-linear dilation model, in the match-mismatch paradigm. Each point in the boxplot is the match-mismatch accuracy for one participant, averaged across recordings. The imposter envelope segment starts one second after the end of the true segment. One model was trained across all participants.

346 25. Brand, T. & Kollmeier, B. Efficient adaptive procedures for threshold and concurrent slope estimates for psychophysics
347 and speech intelligibility tests. *The J. Acoust. Soc. Am.* **111**, 2801–2810 (2002).

348 26. Universiteit van vlaanderen. <https://www.universiteitvanyvlaanderen.be/podcast>. Accessed: 2022-10-20.

349 27. Algoet, A. Invloed van het geslacht van de spreker en luisteraar en persoonlijke appreciatie van het verhaal op de neurale
350 tracking van de spra akomhullende. (2020).

351 28. Francart, T., Van Wieringen, A. & Wouters, J. Apex 3: a multi-purpose test platform for auditory psychophysical
352 experiments. *J. neuroscience methods* **172**, 283–293 (2008).

353 29. Inc., N. D. Krios. ndi. (2023).

354 30. Somers, B., Francart, T. & Bertrand, A. A generic EEG artifact removal algorithm based on the multi-channel Wiener filter.
355 *J. Neural Eng.* **15**, 036007, [10.1088/1741-2552/aaac92](https://doi.org/10.1088/1741-2552/aaac92) (2018).

356 31. Søndergaard, P. & Majdak, P. The auditory modeling toolbox. In Blauert, J. (ed.) *The Technology of Binaural Listening*,
357 33–56 (Springer, Berlin, Heidelberg, 2013).

358 32. Biesmans, W., Das, N., Francart, T. & Bertrand, A. Auditory-inspired speech envelope extraction methods for improved
359 eeg-based auditory attention detection in a cocktail party scenario. *IEEE Transactions on Neural Syst. Rehabil. Eng.* **25**,
360 402–412 (2017).

361 33. Pernet, C. R. *et al.* Eeg-bids, an extension to the brain imaging data structure for electroencephalography. *Sci. data* **6**, 1–5
362 (2019).

363 34. Gorgolewski, K. J. *et al.* The brain imaging data structure, a format for organizing and describing outputs of neuroimaging
364 experiments. *Sci. data* **3**, 1–9 (2016).

365 35. Harris, C. R. *et al.* Array programming with NumPy. *Nat.* **585**, 357–362, [10.1038/s41586-020-2649-2](https://doi.org/10.1038/s41586-020-2649-2) (2020). Number:
366 7825 Publisher: Nature Publishing Group.

367 36. Etard, O. & Reichenbach, T. Neural speech tracking in the theta and in the delta frequency band differentially encode
368 clarity and comprehension of speech in noise. *J. Neurosci.* **39**, 5750–5759, [10.1523/JNEUROSCI.1828-18.2019](https://doi.org/10.1523/JNEUROSCI.1828-18.2019) (2019).
369 <https://www.jneurosci.org/content/39/29/5750.full.pdf>.

370 37. Sharon, R. A., Narayanan, S., Sur, M. & Murthy, H. A. An empirical study of speech processing in the brain by analyzing
371 the temporal syllable structure in speech-input induced eeg. In *ICASSP 2019 - 2019 IEEE International Conference on
372 Acoustics, Speech and Signal Processing (ICASSP)*, 4090–4094, [10.1109/ICASSP.2019.8683572](https://doi.org/10.1109/ICASSP.2019.8683572) (2019).

373 38. Ding, N. & Simon, J. Z. Cortical entrainment to continuous speech: functional roles and interpretations. *Front. Hum.
374 Neurosci.* **8** (2014).

375 39. Puffay, C. *et al.* Relating eeg to continuous speech using deep neural networks: a review. *arXiv preprint arXiv:2302.01736*
376 (2023).

377 40. Gramfort, A. *et al.* MEG and EEG data analysis with MNE-Python. *Front. Neurosci.* **7**, 1–13, [10.3389/fnins.2013.00267](https://doi.org/10.3389/fnins.2013.00267)
378 (2013).

379 41. Brennan, Jonathan R. & Hale, John T. EEG Datasets for Naturalistic Listening to "Alice in Wonderland", https://deepblue.lib.umich.edu/data/concern/data_sets/bg257f92t (2018).

380 42. Vanheusden, Frederique J *et al.* Dataset for: Hearing aids do not alter cortical entrainment to speech at audible levels in
381 mild-to-moderately hearing-impaired subjects, <https://eprints.soton.ac.uk/438737/> (2019).