bioRxiv preprint doi: https://doi.org/10.1101/2023.07.23.550158; this version posted July 25, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Deep lear ning-based cell profiling based on neuronal morphology

Qiang Liu™?, Francesca Nicholls', Helen A. Rowland™?, Adria Dangla-Valls', Shuhan Li?, Yi
Zhang', Piotr Kalinowski*, Elena Ribe!, Jamie L. Ifkovits®, Sanjay Kumar®, Cuong Q.

Nguyen®, Alejo Nevado-Holgado®®, Noel J. Buckley™*, Andrey Kormilitzin**’
Author affiliations:

1. Department of Psychiatry, University of Oxford, Oxford, UK

2. Department of Engineering Mathematics, University of Bristol, UK

3. Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
4. Novel Human Genetics Research Unit, GSK, Collegeville, PA, USA

5. Artificial Intelligence and Machine Learning, GSK, San Francisco, CA, USA
6. Big Datalnstitute, University of Oxford, Oxford, UK

7. Mathematical Institute, University of Oxford, Oxford, UK

Corresponding author: Andrey Kormilitzin, Department of Psychiatry, University of Oxford,
Warneford Hospital, Oxford, OX3 7JX, UK. Email: andrey.kormilitzin@psych.ox.ac.uk.

Phone number: +44 (0) 1865 613112


https://doi.org/10.1101/2023.07.23.550158
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.23.550158; this version posted July 25, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Abstract

Treatment of neurons with 3-amyloid peptide (AB1-42) has been widely used as a model to
interrogate the cellular and molecular mechanisms underlying Alzheimer’ s disease, and as an
assay system to identify drugs that reverse or block disease phenotype. Prior studies have
largely relied on high content imaging (HCI) to extract cellular features such as neurite length
or branching, but these have not offered a robust/comprehensive means of relating readout to
AP1.42 concentrations. Here, we use a deep learning-based cell profiling technique to directly
measure the impact of AB;.42 on primary murine cortical neurons. The deep learning model
achieved approximately 80% accuracy, compared to 54% for the cell phenotypic feature-
based approach. The deep learning model could distinguish subtle neuronal morphological
changes induced by arange of AB1.42 concentration. When tested on a separate dataset, the
accuracy remained comparable and dropped by only 2%. Our study demonstrates that deep
learning-based cell profiling is superior to HCI-based feature extraction on neuronal
morphology and it provides an aternative to a dose/response curve, where the modality of the
response does not have to be pre-determined. Moreover, this gpproach could form the basis

of a screening tool that can be applied to any cellular model where appropriate phenotypic

markers based on genotypes and/or pathological insults are available.

Keywords: Cell morphology; cell profiling; p-amyloid peptide; deep learning; cell

phenotypic characteristics.
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1. I ntroduction

Computational cellular models, considered as a grand challenge of the 21% century in systems
and mathematical biology, have developed at a frenetic pace * . Such models have
successfully unveiled hidden mechanisms underlying human diseases and recapitul ate
characteristics of diseases at the cellular level **, which can be deployed to accurately and
rapidly identify disease phenotypes *°. Furthermore, they enable researchers to gain insights

into the development of diseases and further explore potential interventions at the preclinical

7

stage .

Alzheimer’s disease (AD) is a progressive neurodegenerative disease with nearly 7 million
new cases emerging worldwide each year 8°. Effective interventions are desperately desired
but can only come with afundamental understanding of the phenotypic responses to
pathophysiologically relevant insults '°. Recent research has claimed that the production and
deposition of B-amyloid peptide (AB1-42) in the human brain are correlated with AD and Mild
Cognitive Impairment (MCI) ***?, and can further predict early AD status **'*. Ex vivo
primary neurons present a powerful research model to understand neurological disease.
Compared to neural cell lines, primary neurons bear molecular and cellular phenotypic
features that correspond closely to their in vivo counterparts *°. Primary murine cortical
neurons have been extensively utilized as cellular models to interrogate AD-related
mechanisms. They are one of the most frequently used experimental paradigms to analyse
phenotypic response to application of Ap1-42, which may facilitate our understanding of the

mechanism of AD and further discover new therapeutics.

Traditional image-based cell phenotyping adopts an indirect two-step approach, where a set
of pre-determined subcellular compartment morphological features are first extracted and

summarised from raw images *°. Regression or classification models are then built on these
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aggregated features for downstream analysis . This inevitably forces subjective human
decision-making factorsinto the data analysis such that a significant amount of raw data that
may contain subtle signals is abandoned and remain unused. Namely, the researcher has to
decide in advance which subcellular features are likely to be affected by the assay. In
addition, the assay may affect characteristics of the cell that cannot be compartmentalised
into traditional cellular features. Machine learning (ML) has been used to classify phenotypes
and has been shown to be superior to eye-based classification in several studies including
classification of multiple cancer cell lines *® and reversing phenotypes subsequent to genetic
perturbations *°. More recent advances in the computer science domain, particularly the deep
learning technique, deploy an end-to-end modelling approach where a model takes raw
images as input and directly yields expected outcomes. In such away, complex non-linear
relationships and latent patterns uninterpretable by the naked eye can be effectively explored,
and the most appropriate features relevant to the task are learned automatically, which
enables them to achieve state-of-the-art performance ?>%. Furthermore, a model developed
for one task can be easily deployed by a new one after slight parameter fine-tuning because

the generic low-level features learnt by the model are transferable %,

In this study, we demonstrate the development and utilization of a deep learning model to
classify neuronal cell phenotype based on morphological changes in response to disease-
relevant stimulus exemplified here using A4, as an effective generalisable tool. Recent
progress in deep learning-based methods has already demonstrated promising results in
cellular image analysis across various domains 2. To our knowledge, this study is the first to
classify cellular neurodegenerative phenotype and the results presented herein highlight the
superior power of an AIML-enabled model compared to traditional two-step HCl-based cell

profiling methods and human experts in terms of accuracy. Thiswork establishes a
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foundation that can be further utilized in downstream tasks such as identification of small

molecules or genetic interventions that block or reverse neurodegenerative phenotypes.

Additionally, the integration of deep learning methods with other advanced analytical
techniques, such as single-cell sequencing or proteomics, may offer a more comprehensive
view of the complex interplay between cellular components and their contribution to disease
processes. By providing novel data-driven insights and facilitating the deconvolution of
complex biological processes, deep learning techniques have the potential to transform our
understanding of cellular behaviour and function, ultimately shaping the future of drug

discovery and therapeutic development.

2. Results

21 Mode performance

The cellular model system employed here included the primary mouse neuronal cultures that
were treated with ABi.42 in 6 doses (0, 0.1, 0.3, 1, 3, 30 uM) and then immunostained with
Hoechst 33342 and antibodies that recognised microtubule-associated protein 2 (MAP2),
synaptophysin and postsynaptic density-95 (PSD-95). This allowed visualisation of the
nucleus, neuronal cytoskeleton and localisation of pre- and post-synaptic markers. We report
the accuracy of our modelsin Table 1. In terms of in-distribution (ID) validation of 6 doses
classification, the deep neural network (DNN) model using 5-channel (MAP2, synaptophysin
and PSD-95 immunostaining, Hoechst stain and bright-field) image stacks as input achieved
the best performance at 80.63% accuracy. According to the confusion matrix in Figure 2, the
model was capable of distinguishing neurons treated with vehicle, 0.3uM, 1uM, 3uM, and
30uM ApB1.42. We anticipated that misclassifications would predominantly occur between
adjacent dosages likely due to insufficient distinguishing features, and this indeed proved to
be the case. Most misclassifications were made between vehicle and the lowest concentration
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of 0.1 uM ApB;.42, indicating that the model could not accurately distinguish between these
two rather close conditions. A small number of misclassifications between doses 1 and 3 uM
was also observed, indicating that changes in cell morphology induced by either of these
concentrations of ABi.4, were, as expected, more similar than between more distant
concentrations of AB.4.. Cell morphologies of other doses were al significantly different

from each other.

We have conducted several sensitivity analyses. Firstly, to further understand the contribution
of each channel, we developed another 5 DNNs, each of which was trained and tested on
images of one individual channel only. Results (Table 1) showed that the presynaptic marker
(synaptophysin) and nuclear stain (Hoechst 33342) were the best performing single markers,
both of which reached almost 75% accuracy, followed by the postsynaptic marker (PSD-95)
at 58.64%. Somewhat surprisingly, the neuronal cytoskeleton marker (MAP2) yielded the
worst accuracy of less than 40%. All models showed a marginal drop in accuracy in terms of
out-of-distribution (OOD) validation, ranging from reasonable values of approximately 3%
loss for the 5-channel, presynaptic and nucleic channel models, to roughly 6% loss for the
rest. The model using the bright-field channel only achieved 59.40% on ID validation
accuracy. However, the accuracy dropped significantly to 46.86% on OOD validation. We
report the rest of the sensitivity analysis results in Table S3 in the supplement. Secondly, to
confirm that the performance was entirely lost when the association between input images
and their labels was eliminated, we conducted permutation training. During permutation
training, the dose labels were shuffled and randomly assigned to image stacks. Not
surprisingly, the accuracy of training with randomly shuffled labels dropped significantly to
16.41%, which was close to random guessing performance of 16.67%. Thirdly, to confirm
that the DNN was not simply using information coming from the distribution of pixel

intensity (mean, median, standard deviation, etc.) rather than the cellular features for decision
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making, we conducted pixel randomisation, where the pixels within each test image were

randomly shuffled.

The accuracy of the pixel randomisation analysis was 16.52%, which was close to random
guessing. Lastly, in addition to a well-established convolutional-based architecture (CNN),
we tested the Transformer-based architecture and achieved comparable but slightly lower
accuracy at 78.38%. We also evaluated the inference time of the trained CNN-based model
and found that the network was able to process 305 images per second on a server with an
Intel Xeon Silver 4216 CPU and asingle GeForce RTX 2080 Ti graphical processing unit

(GPU) accelerator.

2.2  Modd interpretation

The saliency maps per channel are shown in Figure 3. According to saliency maps, the model
was mainly focused on the area where the magority of cells were located. The results
validated that the decision was made based on the actual cellular morphology, rather than
being misled by the background irrelevant noise, which together with the previous OOD
validation results indicates that there was no detectable batch effect between replicated wells
across plates. Moreover, when pixels of each test image were randomly shuffled, the model’s
accuracy dropped to 16.52%/16.40% in terms of 1D and OOD validation (Table 2), indicating
that the DNN was not simply measuring the statistics of pixel value intensities (mean, median,
standard deviation, etc.) to perform classification. It is noteworthy that the model
demonstrated the capacity to focus on the most pertinent areas of interest, rather than ssimply
learning to identify cells or their general density. For instance, in Figure 3C, the model
disregarded similar cells and concentrated solely on a specific region (the right area), which
was closely linked to the cell phenotype resulting from the treatment. Moreover, to visualize

the distribution of learned cellular representations, we employed the Uniform Manifold
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Approximation and Projection (UMAP) technique to transform the 512-dimensional feature
vector into a 2-dimensional representation, depicted in Figure 4. The findings align well with
the confusion matrix presented in Figure 2. For instance, the model primarily struggled to
differentiate between 0 and 0.1 uM doses, as evidenced by the low accuracy in Figure 2 and

the extensively overlapping pointsin Figure 4.
2.3 Cdl featureanalysis

We report the accuracy of logistic regression and X GBoost which used cell morphological
features as input to classify APi.42 dosesin Table 1. These features were extracted by the
Columbus software > from the same images as those used by the DNNs. Compared to
logistic regression, the XGBoost achieved slightly higher accuracy at 53.69% in terms of ID
validation, indicating that some non-linear relationships were found among the cell features.
However, it still performed approximately 35% worse than the DNN (80.63%). The
confusion matrices of these two models are shown in Figures S1 and S2 in the supplement.
Misclassifications were mainly among neighbouring doses. Particularly, compared to the
DNN, both models struggled to differentiate 0.1 and 0.3 uM doses from vehicle, as well as 30

MM from 1 and 3 pM.

We used SHAPley Additive exPlanations (SHAP) values to visualise feature importance® %.
A bar plot of the 20 most important features for the XGBoost model demonstrated by SHAP
valuesis shown in Figure 5. The impact of each cell feature on the prediction of all 6 dosesis
stacked. The y-axis indicates the cell feature names sorted by importance. The x-axisisthe
stacked mean absolute value of the SHAP values of each feature. Overall, the standard
deviation of ‘synaptic spot background intensity’ and ‘ synaptic uncorrected spot peak
intensity’, the mean of ‘ postsynaptic total spot area’ and the max of ‘ synaptic region

intensity’ are the dominant cell morphological features. We can also see each feature
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contributed equally to negative control and the 0.1 uM Ap;.4> (colours olive and violet) in
most cases. This corresponds to the results in confusion matrices, i.e., misclassification
between them is relatively high. The feature analyses for each specific dose can be seen in
Figures S6 — S11 in the supplement, which reveals, for example, that a high standard
deviation of the *synaptic spot background intensity’ lowers the predicted probability for the

0.1 lJ.M ABl—42-
2.4  Comparison of deep learning to human classification

We compared the performance of our model to this of 2 human experts on 120 image stacks
that were randomly selected and manually annotated (see Table 2). Results show that our
model performed better with 85% accuracy, while humans performed at 53% and 33%. Inter-
annotator agreement had a Cohen’s kappa value of 0.34. According to the interpretation
guidelines %, this indicates a fair/poor agreement between human annotators, i.e., in this task
humans made different annotation decisions for most doses and the task was hard. The
confusion matrices are shown in Figures S3, $4 and S5 in the supplement. The majority of

misclassifications occurred among adjacent doses.
3. Discussion

In this study, we present an end-to-end image-based cell profiling approach, i.e., a deep
learning model that can reliably identify morphological changesin neuronal cells treated with
arange of concentrations of Api-42. The model outperformed traditional high content imaging
tools and domain experts, while the OOD validation results proved the generalisability of the
model. According to the DNNSs trained using individual channels only, information carried by
the presynaptic (synaptophysin) and nuclear markers (Hoechst 33342) was dominant for
decision making. This was also confirmed by the results from the conventional HCI analysis

(the XGBoost model) that, although achieving significantly lower accuracy, identified that
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the most important features were synapse related, particularly postsynaptic features marked
by PSD-95. One of the earliest pathological eventsto occur in Alzheimer’s diseaseis
synaptic dysregulation and loss 2%, The results here suggest this remains a key feature, and

consequently is arelevant model of disease able to utilise low doses of AB1.42.

Interestingly, the ability to classify using nuclear markers (Hoechst 33342) was not simply a
result of focusing on the density of nucleus, as random zoom augmentation (images were
randomly zoomed in or out by athreshold of 20% along both the height and width) was
applied during training, which can also be seen from our OOD validation results. None of the
models could distinguish between vehicleand 0.1 UM Ap;.42. Other antibodies or imaging
probes, recognising different cellular compartments may be necessary to discriminate among
the subtle morphologica changes produced by these adjacent doses of AB1.42. Such candidate
agents may include markers of organelles that are implicated in AB;.4> metabolism, including

ER/Golgi, endosomes, lysosomes *°.

We noticed a slight performance drop when we used the Transformer-based architecture. One
possible reason is that unlike other tasks, cellsin our images did not have adominant pattern.
Thus, splitting an image into patches and projecting these flattened patches yielded similar
results across all patches, which diminish the gain of patch embeddings. Another reason
might be that we had employed the same pre-training and fine-tuning hyperparameters for
both CNNs and Transformers. Research has shown that CNNs can be at least as robust and
expressive as the Transformers *. Future work might include hand-crafting different learning
rate scheduler or trying the hybrid CNN-Transformer architecture, but this is beyond the

focus of this paper.

The work presented in this manuscript utilizes primary neurons isolated from C57BL/6J mice

which is one of the most widely used inbred strains of mouse models and has been studied in
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various research areas. Primary murine neurons are a widely accepted model employed in
genetics and neuroscience research, as a proof-of-concept to demonstrate the power of
Al/ML-enabled models in exploring cellular pathobiology. The model developed in this
work can serve as a foundation to test the transferability to human cellular systems (e.g.,

hi PSC-derived neuronal models) carrying various genotypes and/or with pathological insults.
These cellular models may be more relevant and have better translatability to human

compared to rodent models that have been traditionally used in preclinical research.

In conclusion, we have shown that end-to-end deep learning models can identify AB1.42
treatment conditions based on the morphological changes of neuronal cells. The speed and
accuracy of our deep learning model outperformed conventional cell profiling methods and
human experts and successfully classified changes in phenotype in response to arange of
AP1-42 concentrations. More generally, in this work, using a dose-response case study, we
generated arange of cell phenotypes that are close and yet distinguishable by deep learning
model, and demonstrated the potential of machine learning as a valuable tool to recognise
changes in cell phenotypes induced in response to drug treatment. The ability to robustly
learn and rapidly recognise phenotypic changes in cells can be utilised in large scale
screening procedures with chemogenomic libraries and identify those compounds that block
or reverse the neurodegenerative phenotype, thereby accel erating the discovery of novel

therapeutic targets.

4. Methods

4.1 Dataacquisition

Cortical neurons were prepared from E15 embryos harvested from C57BL/6J micein
accordance with the Animals Scientific Procedures Act (1986). Pregnant mice were killed by
CO,, followed by cervical dislocation. Embryos were removed and killed by cervical

11
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dislocation, and cortices were dissected into Trypsin-EDTA. After washing and treating with
DNase, cortices were triturated to a single cell suspension, centrifuged and resuspended in
Neurobasal medium with MACs Neurobrew supplement and L-Glutamine. Cells were then
plated in poly-D-lysine precoated 96 well plates at a density of 50,000/cm?.

Mouse primary neuronal cultures were then treated with Ap;.42 in 6 doses (0, 0.1, 0.3, 1, 3, 30
M) and immunostained with Hoechst 33342 and antibodies that recognised microtubule-
associated protein 2 (MAP2), synaptophysin and postsynaptic density-95 (PSD-95) to allow
visualisation of the nucleus, neuronal cytoskeleton and localisation of pre- and post-synaptic
markers. These markers were selected to enrich information related to both general cell
morphology and to neuronal functionality, both of which modalities are known to be altered
in response to B-amyloid. The experiment was replicated on 5 plates, with 54 wells per plate
(9 replications per AB;.42 dose). The cells were finally imaged at 40x magnification and 225
different field-of-views per well were captured. We obtained 60,750 images at 12,150
different locations on each plate. At each location, four immunostained images and one
bright-field image were captured. All images were grayscale with aresolution of 1024 X

1024.
4.2 Moddl design

The main models were deep neural networks (DNN), i.e., a deep learning-based machine
learning model inspired by our brain’s network of neurons, that can identify morphological
changes of neuronal cellstreated with 6 concentrations of AfB1.42. A set of additional DNNs
were developed for further performance evaluation and model interpretation, i.e., identifying
the features in stained images that contributed the most to the model for decision making.

The workflow is shown in Figure 1.

12
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Subsequent to image capture, all fluorescent and bright-field greyscale images from each
unique field of view were used to produce a stack of 5-channel image, thereby forming the
input data structure of the model. Pixel intensity values were then normalised. In terms of the
training pipeline (represented by blue arrows in Figure 1), image augmentation techniques
such as random flip, rotation and zoom, were applied to create transformed versions of
imagesto artificially expand the dataset, which enabled our model to be more robust by
introducing potential extra variationsin the real world and prevent model overfitting. The
image augmentation was applied only on the training dataset rather than the validation or
testing sets, and the augmentation was re-calculated for each batch at the beginning of each
epoch. We deployed the MobileNetV2 (53 layers, 3.4 million parameters) for feature
extraction, which is alightweight DNN architecture with fewer parameters and is designed
for mobile platforms *. The original input layer of MobileNetV2 (3 channels only) was
replaced by our data structure (1024 x 1024 X 5, i.e., 5 channels). The original classification
layer was removed, and a max pooling layer and global average pooling layer were attached
afterwards. Transfer learning was applied using parameters pre-trained on ImageNet *. The
other layers were initialised using Glorot’ sinitialisation **. TensorFlow was used for
implementation *. We used 80% images for training, 10% for validation and the rest 10% for
testing. Fine-tuning was carried out in two steps. In the first step, we fixed the parameters of
MobileNetV2 and only updated the parameters of the other layers using 30 epochs, 16 mini-
batch size and 0.0002 learning rate. We then unfroze the MobileNetV2 and fine-tuned all
layers using 0.00001 learning rate and 10 early stopping patience. All other hyperparameters
were reported in Table S1 in the supplement. The model adopted an end-to-end training
manner, where it took a raw 5-channel image stack and directly yielded 6 numbers, each
corresponding to the probability of treatment with the corresponding dose. Therefore, the task

was essentially a supervised classification problem.

13
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Gradient-weighted Class Activation Mapping (Grad-CAM) was deployed for model
interpretation, where the gradient flowing into the last convolutional layer and the feature
maps produced by the last convolutional layer were combined to generate a heatmap
indicating the focus of our model when making decisions **. Grad-CAM typically resultsin a
saliency map with alower resolution than the input image. Thus, we followed the paper and
used bilinear interpolation to generate the saliency maps *. In this study, single-channel
images were fed into the DNN after training was completed and the parameters were fixed to
obtain Grad-CAM images (orange arrows in Figure 1). We then overlay them on original

images for clearer visualisation.

To further evaluate the main model, we performed four sensitivity anayses. Firstly, to further
understand the contribution of each channel, we developed another 5 DNNs, each of which
was trained and tested on images of one individual channel only (4 stained and bright-field).
The architecture and hyperparameters of these 5 DNNs were the same as in their 5-channel
equivalent described above, with the only difference that the input layer had only 1 channel.
Secondly, we performed permutation training, where the dose labels were shuffled and
randomly assigned to image stacks, to confirm that all performance was lost when al
association between input images and their 1abels was eliminated. Thirdly, we conducted
pixel randomisation, where the pixels within each test image were randomly shuffled, to
confirm that the DNN was not simply using information coming from the distribution of
pixel intensity (mean, median, standard deviation, etc.) rather than the cellular features for
decision making. Lastly, instead of fine-tuning MobileNetV2 which is a convolutional-based
architecture, we tested another Transformer-based architecture — Dei T-Ti with smilar
number of parameters (5 million parameters, 3 heads, 12 layers, 192 embedding dimensions,

16 patches) *'. Other hyperparameters were the same as the MobileNetV/2-based DNN,
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except we used cosine learning rate decay in the fine-tuning phase. Detailed hyperparameters

arein Table Sl in the supplement.
4.3 Cdll feature analysis

To compare the end-to-end DNN model with traditional cell profiling methods *’, we built
two conventional models and used cell morphological features as input to classify the doses.
Specifically, using the channels allocated for each marker Hoechst, Synaptophysin, PSD-95
and MAP2 a customised pipeline was devel oped on the Columbus Image Data Storage and
Analysis System ?* and used to determine 302 morphological features focusing on changesin

nuclear, neurite and synaptic number, expression intensity, and morphology.

Nuclear morphological features were determined by the corresponding channel using ‘ Find
Nuclei’ on Method B, removing border objects. Standard intensity properties, standard and
STAR morphology properties were then calculated for each object. Features relating to
neurites were obtained by identifying MAP2-positive neurites as the region of interest
population using a common threshold of 0.5. The area, standard intensity properties, standard
and STAR morphology properties were calculated for each field. To analyse synaptic
changes, The MAP2 region was resized by 7px and using Method A of Find Spots to identify
the pre-synaptic and post-synaptic channels along the MAP2 region. Signal from both pre-
and post-synaptic channels was excluded if over 100px?. To identify synapses, the overlap of
the pre- and post-synaptic spots was determined by resizing the outer border of the pre-
synaptic spots. The number of objects, and features pertaining to spot intensity were

determined for pre-, post-synaptic, and combined channels.

For each characteristic identified per objects per field of view (same asthe field of views
used for the DNN model), we quantified each of the neurite, synaptic and nuclei related

characteristics by 6 statistical metrics, namely sum, mean, standard deviation, median,
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minimum and maximum values. This excluded dendrite related characteristics, which were
quantified by sum only due to limited capacity to accurately segment individual neurons. A
detailed list of each characteristic identified using Columbus software can be found in Table

S2 in the supplement.

We then built two models, namely a statistical model (logistic regression with ridge

regul arisation) and amachine learning model (extreme gradient boosting, X GBoost) ¥, and
used these features as model input for classification. All features were standardized, i.e.,
rescaled to have a mean of 0 and a standard deviation of 1. We employed distributed
asynchronous hyper-parameter optimisation (Hyperopt) for hyper-parameter tuning, i.e.,
choosing a set of optimal arguments for amodel whose values are set before the training
process. Finally, we performed model interpretation for the XGBoost by using SHAP values
to demonstrate the global feature importance and the impact of each feature on individual
dose specific predictions %, SHAP value is the difference between predicted probability
and base value, given alist of features. The base value is the value that will be predicted if we
do not know any features for an image stack, i.e., the average of the model output over the
training dataset. A higher magnitude of a SHAP value indicates a more important and

predictive feature.
4.4  Comparison of deep learning and human classification

We further compared our model (6 doses classification using 5-channel image stacks) to
human experts. In this study, two biologists, each experienced in microscopic analysis of
AP1-42 treated neurons, were invited to carry out annotation, i.e., the process of manually
labelling images. Specifically, the biologists were first given sufficient images to become
familiar with the task (training). In our case, 120 image stacks, 20 per dose, were provided.

Each of the experts then received 120 image stacks, 20 per dose, with random image names
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and was tasked with predicting the dose of each image stack. The testing images provided to
both experts were identical. We finally compared the performance of the biologists to our
model. Accuracy was used for evaluation, which is detailed in the subsequent section. In
addition, we calculated inter-annotator agreement, which is a measure of how well multiple
annotators can make the same decision for a specific category. In our study, this indicates
how easy it isto clearly distinguish the doses based on cell morphological changes by human

experts. Cohen's kappa statistic was used to measure the inter-annotator agreement *.
45 Modd evaluation setting

Both ID and OOD validations were performed. In our case, we considered using images from
the same plate of training images for testing as ID validation, whereas OOD validation was
defined by training the DNN using images from one plate and testing on another plate.

In terms of model evaluation, bootstrapping (a statistical procedure that resamples asingle
dataset to create many simulated samples by random sampling with replacement) was
deployed, where images, image stacks or cell features from one plate were randomly drawn
with replacement to form atraining set. The trained model was then tested on the testing set,
i.e., images of the same plate for ID validation. This process was repeated 20 times with
random initialisation each time. All DNNs were validated on OOD images randomly drawn
from another plate, with the total number of test images identical to the ones used for ID
validation. The same training and eval uation strategies were applied for the cell feature
analysis with logistic regression and X GBoost. No OOD validation was performed for the
cell feature analysis.

Accuracy was used to evaluate all models and was calculated by:

ACC = TP+TN

" TP+TN+FP+FN’
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where TP, TN, FP and FN represent true positive, true negative, false positive and false
negative, respectively. As a by-product, confusion matrices were generated as well for
stratified misclassification identification.

All DNNs were developed and validated using TensorFlow *. Logistic regression, XGBoost

and SHAP were implemented in Python “°.
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Figure 3. Grad-CAM images. A. MAPT immunostaining B. Synaptophysin immunostaining.

C. PSD-95 immunostaining. D. Hoechst stain. E. Bright-field. Grad-CAM: Gradient-
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weighted Class Activation Mapping. A saliency map is an image that highlights the region on
which the DNN focusin order to reflect the degree of importance of a pixel to the DNN
model. According to the saliency maps, the model was mainly focused on the area where the
majority of cells were distributed. The results validated that the decision was made based on

the actual cellular morphology, rather than being misled by the background irrelevant noise.
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Figure 4. The UMAP projection of 1280-dimensional representation of cellular features.
Some classes, denoted by dosesin uM, demonstrate good separation, while others were
challenging for the model to distinguish clearly. The results are well aligned with the

confusion matrix shown in.
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Figure 5. 20 most important features for the XGBoost model measured by SHAP values. The impact of each cell feature on the prediction of all
6 doses is stacked to create the feature importance visualization. The y-axis indicates the cell feature names sorted by the importance. The x-axis

is the stacked mean absolute value of the SHAP values of each feature.
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Table 1. Model performance evaluation using accuracy (6 doses, i.e., 0, 0.1, 0.3, 1, 3, 30 uM).
The DNN architecture is MobileNetV 2 based. DNN: deep neural network. Cl: confidence

interval, calculated as the 2.5th to the 97.5th percentile of bootstrap estimates.

Model ID validation accuracy OOD validation
[95% CI] accuracy [95% Cl]
DNN, 5-channel 80.63% [78.24,83.02] 77.81%[76.10, 79.51]

DNN, neuronal channel (MAP2)
DNN, postsynaptic channel (PSD-95)

DNN, presynaptic channel
(synaptophysin)

DNN, nucleic channel (Hoechst
33342)

DNN, bright-field

Cell features, logistic regression with
ridge regularization

Cell features, extreme gradient
boosting (XGBoost)

38.60% [34.72, 42.49]

58.64% [54.94, 63.35]

74.71% [71.94, 77.47]

74.76% [72.66, 76.86]
59.40% [55.06, 63.74]

50.24% [48.53, 51.95]

53.60% [52.24, 55.14]

32.30% [23.42, 41.19]

51.33% [48.01, 54.65]

72.18%[68.39, 75.97]

70.21% [67.34, 73.07]
46.86% [41.47, 52.25]

NA

NA
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Table 2. Performance of our model and 2 biologists on the randomly selected 120 image

stacks.
Accuracy
Our mode| 85.00%
Biologist 1 52.50%
Biologist 2 33.33%
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