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Abstract 

Treatment of neurons with β-amyloid peptide (Aβ1-42) has been widely used as a model to 

interrogate the cellular and molecular mechanisms underlying Alzheimer’s disease, and as an 

assay system to identify drugs that reverse or block disease phenotype. Prior studies have 

largely relied on high content imaging (HCI) to extract cellular features such as neurite length 

or branching, but these have not offered a robust/comprehensive means of relating readout to 

Aβ1-42 concentrations. Here, we use a deep learning-based cell profiling technique to directly 

measure the impact of Aβ1-42 on primary murine cortical neurons. The deep learning model 

achieved approximately 80% accuracy, compared to 54% for the cell phenotypic feature-

based approach. The deep learning model could distinguish subtle neuronal morphological 

changes induced by a range of Aβ1-42 concentration. When tested on a separate dataset, the 

accuracy remained comparable and dropped by only 2%. Our study demonstrates that deep 

learning-based cell profiling is superior to HCI-based feature extraction on neuronal 

morphology and it provides an alternative to a dose/response curve, where the modality of the 

response does not have to be pre-determined. Moreover, this approach could form the basis 

of a screening tool that can be applied to any cellular model where appropriate phenotypic 

markers based on genotypes and/or pathological insults are available. 

 

Keywords: Cell morphology; cell profiling; β-amyloid peptide; deep learning; cell 

phenotypic characteristics. 
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1. Introduction 

Computational cellular models, considered as a grand challenge of the 21st century in systems 

and mathematical biology, have developed at a frenetic pace 1 2. Such models have 

successfully unveiled hidden mechanisms underlying human diseases and recapitulate 

characteristics of diseases at the cellular level 3 4, which can be deployed to accurately and 

rapidly identify disease phenotypes 5 6. Furthermore, they enable researchers to gain insights 

into the development of diseases and further explore potential interventions at the preclinical 

stage 7. 

Alzheimer’s disease (AD) is a progressive neurodegenerative disease with nearly 7 million 

new cases emerging worldwide each year 8 9. Effective interventions are desperately desired 

but can only come with a fundamental understanding of the phenotypic responses to 

pathophysiologically relevant insults 10. Recent research has claimed that the production and 

deposition of β-amyloid peptide (Aβ1-42) in the human brain are correlated with AD and Mild 

Cognitive Impairment (MCI) 11 12, and can further predict early AD status 13 14. Ex vivo 

primary neurons present a powerful research model to understand neurological disease. 

Compared to neural cell lines, primary neurons bear molecular and cellular phenotypic 

features that correspond closely to their in vivo counterparts 15. Primary murine cortical 

neurons have been extensively utilized as cellular models to interrogate AD-related 

mechanisms.   They are one of the most frequently used experimental paradigms to analyse 

phenotypic response to application of Aβ1-42, which may facilitate our understanding of the 

mechanism of AD and further discover new therapeutics.  

Traditional image-based cell phenotyping adopts an indirect two-step approach, where a set 

of pre-determined subcellular compartment morphological features are first extracted and 

summarised from raw images 16. Regression or classification models are then built on these 
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aggregated features for downstream analysis 17. This inevitably forces subjective human 

decision-making factors into the data analysis such that a significant amount of raw data that 

may contain subtle signals is abandoned and remain unused. Namely, the researcher has to 

decide in advance which subcellular features are likely to be affected by the assay. In 

addition, the assay may affect characteristics of the cell that cannot be compartmentalised 

into traditional cellular features. Machine learning (ML) has been used to classify phenotypes 

and has been shown to be superior to eye-based classification in several studies including 

classification of multiple cancer cell lines 18 and reversing phenotypes subsequent to genetic 

perturbations 19. More recent advances in the computer science domain, particularly the deep 

learning technique, deploy an end-to-end modelling approach where a model takes raw 

images as input and directly yields expected outcomes. In such a way, complex non-linear 

relationships and latent patterns uninterpretable by the naked eye can be effectively explored, 

and the most appropriate features relevant to the task are learned automatically, which 

enables them to achieve state-of-the-art performance 20-22. Furthermore, a model developed 

for one task can be easily deployed by a new one after slight parameter fine-tuning because 

the generic low-level features learnt by the model are transferable 23.  

In this study, we demonstrate the development and utilization of a deep learning model to 

classify neuronal cell phenotype based on morphological changes in response to disease-

relevant stimulus exemplified here using Aβ1-42 as an effective generalisable tool.  Recent 

progress in deep learning-based methods has already demonstrated promising results in 

cellular image analysis across various domains 23. To our knowledge, this study is the first to 

classify cellular neurodegenerative phenotype and the results presented herein highlight the 

superior power of an AIML-enabled model compared to traditional two-step HCI-based cell 

profiling methods and human experts in terms of accuracy.  This work establishes a 
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foundation that can be further utilized in downstream tasks such as identification of small 

molecules or genetic interventions that block or reverse neurodegenerative phenotypes.   

Additionally, the integration of deep learning methods with other advanced analytical 

techniques, such as single-cell sequencing or proteomics, may offer a more comprehensive 

view of the complex interplay between cellular components and their contribution to disease 

processes. By providing novel data-driven insights and facilitating the deconvolution of 

complex biological processes, deep learning techniques have the potential to transform our 

understanding of cellular behaviour and function, ultimately shaping the future of drug 

discovery and therapeutic development.  

2. Results 

2.1 Model performance 

The cellular model system employed here included the primary mouse neuronal cultures that 

were treated with Aβ1-42 in 6 doses (0, 0.1, 0.3, 1, 3, 30 µM) and then immunostained with 

Hoechst 33342 and antibodies that recognised microtubule-associated protein 2 (MAP2), 

synaptophysin and postsynaptic density-95 (PSD-95). This allowed visualisation of the 

nucleus, neuronal cytoskeleton and localisation of pre- and post-synaptic markers. We report 

the accuracy of our models in Table 1. In terms of in-distribution (ID) validation of 6 doses 

classification, the deep neural network (DNN) model using 5-channel (MAP2, synaptophysin 

and PSD-95 immunostaining, Hoechst stain and bright-field) image stacks as input achieved 

the best performance at 80.63% accuracy. According to the confusion matrix in Figure 2, the 

model was capable of distinguishing neurons treated with vehicle, 0.3µM, 1µM, 3µM, and 

30µM Aβ1-42. We anticipated that misclassifications would predominantly occur between 

adjacent dosages likely due to insufficient distinguishing features, and this indeed proved to 

be the case. Most misclassifications were made between vehicle and the lowest concentration 
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of 0.1 µM Aβ1-42, indicating that the model could not accurately distinguish between these 

two rather close conditions. A small number of misclassifications between doses 1 and 3 µM 

was also observed, indicating that changes in cell morphology induced by either of these 

concentrations of Aβ1-42 were, as expected, more similar than between more distant 

concentrations of Aβ1-42. Cell morphologies of other doses were all significantly different 

from each other.  

We have conducted several sensitivity analyses. Firstly, to further understand the contribution 

of each channel, we developed another 5 DNNs, each of which was trained and tested on 

images of one individual channel only. Results (Table 1) showed that the presynaptic marker 

(synaptophysin) and nuclear stain (Hoechst 33342) were the best performing single markers, 

both of which reached almost 75% accuracy, followed by the postsynaptic marker (PSD-95) 

at 58.64%. Somewhat surprisingly, the neuronal cytoskeleton marker (MAP2) yielded the 

worst accuracy of less than 40%. All models showed a marginal drop in accuracy in terms of 

out-of-distribution (OOD) validation, ranging from reasonable values of approximately 3% 

loss for the 5-channel, presynaptic and nucleic channel models, to roughly 6% loss for the 

rest. The model using the bright-field channel only achieved 59.40% on ID validation 

accuracy. However, the accuracy dropped significantly to 46.86% on OOD validation. We 

report the rest of the sensitivity analysis results in Table S3 in the supplement. Secondly, to 

confirm that the performance was entirely lost when the association between input images 

and their labels was eliminated, we conducted permutation training. During permutation 

training, the dose labels were shuffled and randomly assigned to image stacks. Not 

surprisingly, the accuracy of training with randomly shuffled labels dropped significantly to 

16.41%, which was close to random guessing performance of 16.67%. Thirdly, to confirm 

that the DNN was not simply using information coming from the distribution of pixel 

intensity (mean, median, standard deviation, etc.) rather than the cellular features for decision 
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making, we conducted pixel randomisation, where the pixels within each test image were 

randomly shuffled.  

The accuracy of the pixel randomisation analysis was 16.52%, which was close to random 

guessing. Lastly, in addition to a well-established convolutional-based architecture (CNN), 

we tested the Transformer-based architecture and achieved comparable but slightly lower 

accuracy at 78.38%. We also evaluated the inference time of the trained CNN-based model 

and found that the network was able to process 305 images per second on a server with an 

Intel Xeon Silver 4216 CPU and a single GeForce RTX 2080 Ti graphical processing unit 

(GPU) accelerator.  

2.2 Model interpretation 

The saliency maps per channel are shown in Figure 3. According to saliency maps, the model 

was mainly focused on the area where the majority of cells were located. The results 

validated that the decision was made based on the actual cellular morphology, rather than 

being misled by the background irrelevant noise, which together with the previous OOD 

validation results indicates that there was no detectable batch effect between replicated wells 

across plates. Moreover, when pixels of each test image were randomly shuffled, the model’s 

accuracy dropped to 16.52%/16.40% in terms of ID and OOD validation (Table 2), indicating 

that the DNN was not simply measuring the statistics of pixel value intensities (mean, median, 

standard deviation, etc.) to perform classification. It is noteworthy that the model 

demonstrated the capacity to focus on the most pertinent areas of interest, rather than simply 

learning to identify cells or their general density. For instance, in Figure 3C, the model 

disregarded similar cells and concentrated solely on a specific region (the right area), which 

was closely linked to the cell phenotype resulting from the treatment. Moreover, to visualize 

the distribution of learned cellular representations, we employed the Uniform Manifold 
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Approximation and Projection (UMAP) technique to transform the 512-dimensional feature 

vector into a 2-dimensional representation, depicted in Figure 4. The findings align well with 

the confusion matrix presented in Figure 2. For instance, the model primarily struggled to 

differentiate between 0 and 0.1 µM doses, as evidenced by the low accuracy in Figure 2 and 

the extensively overlapping points in Figure 4. 

2.3 Cell feature analysis 

We report the accuracy of logistic regression and XGBoost which used cell morphological 

features as input to classify Aβ1-42 doses in Table 1. These features were extracted by the 

Columbus software 24 from the same images as those used by the DNNs. Compared to 

logistic regression, the XGBoost achieved slightly higher accuracy at 53.69% in terms of ID 

validation, indicating that some non-linear relationships were found among the cell features. 

However, it still performed approximately 35% worse than the DNN (80.63%). The 

confusion matrices of these two models are shown in Figures S1 and S2 in the supplement. 

Misclassifications were mainly among neighbouring doses. Particularly, compared to the 

DNN, both models struggled to differentiate 0.1 and 0.3 µM doses from vehicle, as well as 30 

µM from 1 and 3 µM. 

We used SHAPley Additive exPlanations (SHAP) values to visualise feature importance25 26. 

A bar plot of the 20 most important features for the XGBoost model demonstrated by SHAP 

values is shown in Figure 5. The impact of each cell feature on the prediction of all 6 doses is 

stacked. The y-axis indicates the cell feature names sorted by importance. The x-axis is the 

stacked mean absolute value of the SHAP values of each feature. Overall, the standard 

deviation of ‘synaptic spot background intensity’ and ‘synaptic uncorrected spot peak 

intensity’, the mean of ‘postsynaptic total spot area’ and the max of ‘synaptic region 

intensity’ are the dominant cell morphological features. We can also see each feature 
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contributed equally to negative control and the 0.1 µM Aβ1-42 (colours olive and violet) in 

most cases. This corresponds to the results in confusion matrices, i.e., misclassification 

between them is relatively high. The feature analyses for each specific dose can be seen in 

Figures S6 – S11 in the supplement, which reveals, for example, that a high standard 

deviation of the ‘synaptic spot background intensity’ lowers the predicted probability for the 

0.1 µM Aβ1-42. 

2.4 Comparison of deep learning to human classification 

We compared the performance of our model to this of 2 human experts on 120 image stacks 

that were randomly selected and manually annotated (see Table 2). Results show that our 

model performed better with 85% accuracy, while humans performed at 53% and 33%. Inter-

annotator agreement had a Cohen’s kappa value of 0.34. According to the interpretation 

guidelines 27, this indicates a fair/poor agreement between human annotators, i.e., in this task 

humans made different annotation decisions for most doses and the task was hard. The 

confusion matrices are shown in Figures S3, S4 and S5 in the supplement. The majority of 

misclassifications occurred among adjacent doses. 

3. Discussion 

In this study, we present an end-to-end image-based cell profiling approach, i.e., a deep 

learning model that can reliably identify morphological changes in neuronal cells treated with 

a range of concentrations of Aβ1-42. The model outperformed traditional high content imaging 

tools and domain experts, while the OOD validation results proved the generalisability of the 

model. According to the DNNs trained using individual channels only, information carried by 

the presynaptic (synaptophysin) and nuclear markers (Hoechst 33342) was dominant for 

decision making. This was also confirmed by the results from the conventional HCI analysis 

(the XGBoost model) that, although achieving significantly lower accuracy, identified that 
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the most important features were synapse related, particularly postsynaptic features marked 

by PSD-95.  One of the earliest pathological events to occur in Alzheimer’s disease is 

synaptic dysregulation and loss 28 29. The results here suggest this remains a key feature, and 

consequently is a relevant model of disease able to utilise low doses of Aβ1-42.  

Interestingly, the ability to classify using nuclear markers (Hoechst 33342) was not simply a 

result of focusing on the density of nucleus, as random zoom augmentation (images were 

randomly zoomed in or out by a threshold of 20% along both the height and width) was 

applied during training, which can also be seen from our OOD validation results. None of the 

models could distinguish between vehicle and 0.1 µM Aβ1-42. Other antibodies or imaging 

probes, recognising different cellular compartments may be necessary to discriminate among 

the subtle morphological changes produced by these adjacent doses of Aβ1-42.   Such candidate 

agents may include markers of organelles that are implicated in Aβ1-42 metabolism, including 

ER/Golgi, endosomes, lysosomes 30. 

We noticed a slight performance drop when we used the Transformer-based architecture. One 

possible reason is that unlike other tasks, cells in our images did not have a dominant pattern. 

Thus, splitting an image into patches and projecting these flattened patches yielded similar 

results across all patches, which diminish the gain of patch embeddings. Another reason 

might be that we had employed the same pre-training and fine-tuning hyperparameters for 

both CNNs and Transformers. Research has shown that CNNs can be at least as robust and 

expressive as the Transformers 31. Future work might include hand-crafting different learning 

rate scheduler or trying the hybrid CNN-Transformer architecture, but this is beyond the 

focus of this paper. 

The work presented in this manuscript utilizes primary neurons isolated from C57BL/6J mice 

which is one of the most widely used inbred strains of mouse models and has been studied in 
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various research areas. Primary murine neurons are a widely accepted model employed in 

genetics and neuroscience research, as a proof-of-concept to demonstrate the power of 

AI/ML-enabled models in exploring cellular pathobiology.  The model developed in this 

work can serve as a foundation to test the transferability to human cellular systems (e.g., 

hiPSC-derived neuronal models) carrying various genotypes and/or with pathological insults. 

These cellular models may be more relevant and have better translatability to human 

compared to rodent models that have been traditionally used in preclinical research.   

In conclusion, we have shown that end-to-end deep learning models can identify Aβ1-42 

treatment conditions based on the morphological changes of neuronal cells. The speed and 

accuracy of our deep learning model outperformed conventional cell profiling methods and 

human experts and successfully classified changes in phenotype in response to a range of 

Aβ1-42 concentrations. More generally, in this work, using a dose-response case study, we 

generated a range of cell phenotypes that are close and yet distinguishable by deep learning 

model, and demonstrated the potential of machine learning as a valuable tool to recognise 

changes in cell phenotypes induced in response to drug treatment. The ability to robustly 

learn and rapidly recognise phenotypic changes in cells can be utilised in large scale 

screening procedures with chemogenomic libraries and identify those compounds that block 

or reverse the neurodegenerative phenotype, thereby accelerating the discovery of novel 

therapeutic targets. 

4. Methods 

4.1 Data acquisition 

Cortical neurons were prepared from E15 embryos harvested from C57BL/6J mice in 

accordance with the Animals Scientific Procedures Act (1986). Pregnant mice were killed by 

CO2, followed by cervical dislocation. Embryos were removed and killed by cervical 
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dislocation, and cortices were dissected into Trypsin-EDTA. After washing and treating with 

DNase, cortices were triturated to a single cell suspension, centrifuged and resuspended in 

Neurobasal medium with MACs Neurobrew supplement and L-Glutamine. Cells were then 

plated in poly-D-lysine precoated 96 well plates at a density of 50,000/cm2. 

Mouse primary neuronal cultures were then treated with Aβ1-42 in 6 doses (0, 0.1, 0.3, 1, 3, 30 

µM) and immunostained with Hoechst 33342 and antibodies that recognised microtubule-

associated protein 2 (MAP2), synaptophysin and postsynaptic density-95 (PSD-95) to allow 

visualisation of the nucleus, neuronal cytoskeleton and localisation of pre- and post-synaptic 

markers. These markers were selected to enrich information related to both general cell 

morphology and to neuronal functionality, both of which modalities are known to be altered 

in response to β-amyloid.  The experiment was replicated on 5 plates, with 54 wells per plate 

(9 replications per Aβ1-42 dose). The cells were finally imaged at 40x magnification and 225 

different field-of-views per well were captured. We obtained 60,750 images at 12,150 

different locations on each plate. At each location, four immunostained images and one 

bright-field image were captured. All images were grayscale with a resolution of 1024 �

1024. 

4.2 Model design 

The main models were deep neural networks (DNN), i.e., a deep learning-based machine 

learning model inspired by our brain’s network of neurons, that can identify morphological 

changes of neuronal cells treated with 6 concentrations of Aβ1-42. A set of additional DNNs 

were developed for further performance evaluation and model interpretation, i.e., identifying 

the features in stained images that contributed the most to the model for decision making. 

The workflow is shown in Figure 1.  
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Subsequent to image capture, all fluorescent and bright-field greyscale images from each 

unique field of view were used to produce a stack of 5-channel image, thereby forming the 

input data structure of the model. Pixel intensity values were then normalised. In terms of the 

training pipeline (represented by blue arrows in Figure 1), image augmentation techniques 

such as random flip, rotation and zoom, were applied to create transformed versions of 

images to artificially expand the dataset, which enabled our model to be more robust by 

introducing potential extra variations in the real world and prevent model overfitting. The 

image augmentation was applied only on the training dataset rather than the validation or 

testing sets, and the augmentation was re-calculated for each batch at the beginning of each 

epoch. We deployed the MobileNetV2 (53 layers, 3.4 million parameters) for feature 

extraction, which is a lightweight DNN architecture with fewer parameters and is designed 

for mobile platforms 32. The original input layer of MobileNetV2 (3 channels only) was 

replaced by our data structure (1024 � 1024 � 5, i.e., 5 channels). The original classification 

layer was removed, and a max pooling layer and global average pooling layer were attached 

afterwards. Transfer learning was applied using parameters pre-trained on ImageNet 33. The 

other layers were initialised using Glorot’s initialisation 34. TensorFlow was used for 

implementation 35. We used 80% images for training, 10% for validation and the rest 10% for 

testing. Fine-tuning was carried out in two steps. In the first step, we fixed the parameters of 

MobileNetV2 and only updated the parameters of the other layers using 30 epochs, 16 mini-

batch size and 0.0002 learning rate. We then unfroze the MobileNetV2 and fine-tuned all 

layers using 0.00001 learning rate and 10 early stopping patience. All other hyperparameters 

were reported in Table S1 in the supplement. The model adopted an end-to-end training 

manner, where it took a raw 5-channel image stack and directly yielded 6 numbers, each 

corresponding to the probability of treatment with the corresponding dose. Therefore, the task 

was essentially a supervised classification problem. 
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Gradient-weighted Class Activation Mapping (Grad-CAM) was deployed for model 

interpretation, where the gradient flowing into the last convolutional layer and the feature 

maps produced by the last convolutional layer were combined to generate a heatmap 

indicating the focus of our model when making decisions 36. Grad-CAM typically results in a 

saliency map with a lower resolution than the input image. Thus, we followed the paper and 

used bilinear interpolation to generate the saliency maps 36. In this study, single-channel 

images were fed into the DNN after training was completed and the parameters were fixed to 

obtain Grad-CAM images (orange arrows in Figure 1). We then overlay them on original 

images for clearer visualisation.  

To further evaluate the main model, we performed four sensitivity analyses. Firstly, to further 

understand the contribution of each channel, we developed another 5 DNNs, each of which 

was trained and tested on images of one individual channel only (4 stained and bright-field). 

The architecture and hyperparameters of these 5 DNNs were the same as in their 5-channel 

equivalent described above, with the only difference that the input layer had only 1 channel. 

Secondly, we performed permutation training, where the dose labels were shuffled and 

randomly assigned to image stacks, to confirm that all performance was lost when all 

association between input images and their labels was eliminated. Thirdly, we conducted 

pixel randomisation, where the pixels within each test image were randomly shuffled, to 

confirm that the DNN was not simply using information coming from the distribution of 

pixel intensity (mean, median, standard deviation, etc.) rather than the cellular features for 

decision making. Lastly, instead of fine-tuning MobileNetV2 which is a convolutional-based 

architecture, we tested another Transformer-based architecture – DeiT-Ti with similar 

number of parameters (5 million parameters, 3 heads, 12 layers, 192 embedding dimensions, 

16 patches) 37. Other hyperparameters were the same as the MobileNetV2-based DNN, 
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except we used cosine learning rate decay in the fine-tuning phase. Detailed hyperparameters 

are in Table S1 in the supplement. 

4.3 Cell feature analysis 

To compare the end-to-end DNN model with traditional cell profiling methods 17, we built 

two conventional models and used cell morphological features as input to classify the doses. 

Specifically, using the channels allocated for each marker Hoechst, Synaptophysin, PSD-95 

and MAP2 a customised pipeline was developed on the Columbus Image Data Storage and 

Analysis System 24 and used to determine 302 morphological features focusing on changes in 

nuclear, neurite and synaptic number, expression intensity, and morphology.  

Nuclear morphological features were determined by the corresponding channel using ‘Find 

Nuclei’ on Method B, removing border objects. Standard intensity properties, standard and 

STAR morphology properties were then calculated for each object. Features relating to 

neurites were obtained by identifying MAP2-positive neurites as the region of interest 

population using a common threshold of 0.5. The area, standard intensity properties, standard 

and STAR morphology properties were calculated for each field. To analyse synaptic 

changes, The MAP2 region was resized by 7px and using Method A of Find Spots to identify 

the pre-synaptic and post-synaptic channels along the MAP2 region. Signal from both pre- 

and post-synaptic channels was excluded if over 100px2. To identify synapses, the overlap of 

the pre- and post-synaptic spots was determined by resizing the outer border of the pre-

synaptic spots. The number of objects, and features pertaining to spot intensity were 

determined for pre-, post-synaptic, and combined channels.  

For each characteristic identified per objects per field of view (same as the field of views 

used for the DNN model), we quantified each of the neurite, synaptic and nuclei related 

characteristics by 6 statistical metrics, namely sum, mean, standard deviation, median, 
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minimum and maximum values. This excluded dendrite related characteristics, which were 

quantified by sum only due to limited capacity to accurately segment individual neurons. A 

detailed list of each characteristic identified using Columbus software can be found in Table 

S2 in the supplement.  

We then built two models, namely a statistical model (logistic regression with ridge 

regularisation) and a machine learning model (extreme gradient boosting, XGBoost) 38, and 

used these features as model input for classification. All features were standardized, i.e., 

rescaled to have a mean of 0 and a standard deviation of 1. We employed distributed 

asynchronous hyper-parameter optimisation (Hyperopt) for hyper-parameter tuning, i.e., 

choosing a set of optimal arguments for a model whose values are set before the training 

process. Finally, we performed model interpretation for the XGBoost by using SHAP values 

to demonstrate the global feature importance and the impact of each feature on individual 

dose specific predictions 25 26. SHAP value is the difference between predicted probability 

and base value, given a list of features. The base value is the value that will be predicted if we 

do not know any features for an image stack, i.e., the average of the model output over the 

training dataset. A higher magnitude of a SHAP value indicates a more important and 

predictive feature. 

4.4 Comparison of deep learning and human classification 

We further compared our model (6 doses classification using 5-channel image stacks) to 

human experts. In this study, two biologists, each experienced in microscopic analysis of 

Aβ1-42 treated neurons, were invited to carry out annotation, i.e., the process of manually 

labelling images. Specifically, the biologists were first given sufficient images to become 

familiar with the task (training). In our case, 120 image stacks, 20 per dose, were provided. 

Each of the experts then received 120 image stacks, 20 per dose, with random image names 
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and was tasked with predicting the dose of each image stack. The testing images provided to 

both experts were identical. We finally compared the performance of the biologists to our 

model. Accuracy was used for evaluation, which is detailed in the subsequent section. In 

addition, we calculated inter-annotator agreement, which is a measure of how well multiple 

annotators can make the same decision for a specific category. In our study, this indicates 

how easy it is to clearly distinguish the doses based on cell morphological changes by human 

experts. Cohen’s kappa statistic was used to measure the inter-annotator agreement 39. 

4.5 Model evaluation setting 

Both ID and OOD validations were performed. In our case, we considered using images from 

the same plate of training images for testing as ID validation, whereas OOD validation was 

defined by training the DNN using images from one plate and testing on another plate.  

In terms of model evaluation, bootstrapping (a statistical procedure that resamples a single 

dataset to create many simulated samples by random sampling with replacement) was 

deployed, where images, image stacks or cell features from one plate were randomly drawn 

with replacement to form a training set. The trained model was then tested on the testing set, 

i.e., images of the same plate for ID validation. This process was repeated 20 times with 

random initialisation each time. All DNNs were validated on OOD images randomly drawn 

from another plate, with the total number of test images identical to the ones used for ID 

validation. The same training and evaluation strategies were applied for the cell feature 

analysis with logistic regression and XGBoost. No OOD validation was performed for the 

cell feature analysis. 

Accuracy was used to evaluate all models and was calculated by:  

��� 	
�����

�����������
, 
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where TP, TN, FP and FN represent true positive, true negative, false positive and false 

negative, respectively. As a by-product, confusion matrices were generated as well for 

stratified misclassification identification. 

All DNNs were developed and validated using TensorFlow 35. Logistic regression, XGBoost 

and SHAP were implemented in Python 40. 
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 Data Availability 

The data and codes that support the findings of this study are available on request from the 

first and corresponding authors. 
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Figure 1. Workflow of Aβ1-42 treatment identification. Blue arrows: model training and 

classification pipelines. Orange arrows: model interpretation pipeline. Aβ1-42: β-amyloid 

peptide (1-42). Grad-CAM: Gradient-weighted Class Activation Mapping. 
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Figure 2. Confusion matrix of the deep neural network model using 5-channel image stacks 

as input for dose classification (0, 0.1, 0.3, 1, 3, 30 µM), ID validation. 
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Figure 3. Grad-CAM images. A. MAPT immunostaining B. Synaptophysin immunostaining. 

C. PSD-95 immunostaining. D. Hoechst stain. E. Bright-field. Grad-CAM: Gradient-

B 

C 

Original image – MAPT Saliency map 

Original image – synaptophysin Saliency map 

Original image – PSD-95 Saliency map 

A 

D 

Original image – Hoechst Saliency map 

E 

Original image – bright-field Saliency map 
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weighted Class Activation Mapping. A saliency map is an image that highlights the region on 

which the DNN focus in order to reflect the degree of importance of a pixel to the DNN 

model. According to the saliency maps, the model was mainly focused on the area where the 

majority of cells were distributed. The results validated that the decision was made based on 

the actual cellular morphology, rather than being misled by the background irrelevant noise. 
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Figure 4. The UMAP projection of 1280-dimensional representation of cellular features. 

Some classes, denoted by doses in µM, demonstrate good separation, while others were 

challenging for the model to distinguish clearly. The results are well aligned with the 

confusion matrix shown in. 
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Figure 5. 20 most important features for the XGBoost model measured by SHAP values. The impact of each cell feature on the prediction of all 

6 doses is stacked to create the feature importance visualization. The y-axis indicates the cell feature names sorted by the importance. The x-axis 

is the stacked mean absolute value of the SHAP values of each feature.  
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Table 1. Model performance evaluation using accuracy (6 doses, i.e., 0, 0.1, 0.3, 1, 3, 30 µM). 

The DNN architecture is MobileNetV2 based. DNN: deep neural network. CI: confidence 

interval, calculated as the 2.5th to the 97.5th percentile of bootstrap estimates. 

Model 
ID validation accuracy 

[95% CI] 
OOD validation 

accuracy [95% CI] 

DNN, 5-channel 80.63% [78.24, 83.02] 77.81% [76.10, 79.51] 

DNN, neuronal channel (MAP2) 38.60% [34.72, 42.49] 32.30% [23.42, 41.19] 

DNN, postsynaptic channel (PSD-95) 58.64% [54.94, 63.35] 51.33% [48.01, 54.65] 

DNN, presynaptic channel 
(synaptophysin) 

74.71% [71.94, 77.47] 72.18% [68.39, 75.97] 

DNN, nucleic channel (Hoechst 
33342) 

74.76% [72.66, 76.86] 70.21% [67.34, 73.07] 

DNN, bright-field 59.40% [55.06, 63.74] 46.86% [41.47, 52.25] 

Cell features, logistic regression with 
ridge regularization 

50.24% [48.53, 51.95] NA 

Cell features, extreme gradient 
boosting (XGBoost) 

53.69% [52.24, 55.14] NA 
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Table 2. Performance of our model and 2 biologists on the randomly selected 120 image 

stacks. 

 Accuracy 

Our model 85.00% 

Biologist 1 52.50% 

Biologist 2 33.33% 
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