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Abstract

Although three-dimensional (3D) genome structures are altered in cancer cells, little is
known about how these changes evolve and diversify during cancer progression. Leveraging
genome-wide chromatin tracing to visualize 3D genome folding directly in tissues, we
generated 3D genome cancer atlases of murine lung and pancreatic adenocarcinoma. Our
data reveal stereotypical, non-monotonic, and stage-specific alterations in 3D genome folding
heterogeneity, compaction, and compartmentalization as cancers progress from normal to
preinvasive and ultimately to invasive tumors, discovering a potential structural bottleneck
in early tumor progression. Remarkably, 3D genome architectures distinguish histologic
cancer states in single cells, despite considerable cell-to-cell heterogeneity. Gene-level
analyses of evolutionary changes in 3D genome compartmentalization not only showed
compartment-associated genes are more homogeneously regulated, but also elucidated
prognostic and dependency genes in lung adenocarcinoma and a previously unappreciated
role for polycomb-group protein Rnf2 in 3D genome regulation. Our results demonstrate the
utility of mapping the single-cell cancer 3D genome in tissues and illuminate its potential to

identify new diagnostic, prognostic, and therapeutic biomarkers in cancer.
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Introduction

Cancer cells exhibit profound alterations in nuclear size, shape, and chromatin texture'.
Microscopic examination of these structural features remains a gold standard for diagnosis and
establishing pathologic cancer grade, which is frequently associated with prognosis'. It has become
increasingly clear that the three-dimensional (3D) genome folding organization within the nucleus
of cells plays a key role both in normal physiologic functions and in disease’”. Here, we describe
in situ genome-wide single-cell cancer 3D genome atlases, generated using an imaging-based 3D
genomics method that we have pioneered — termed chromatin tracing'®!!. Unlike earlier studies
using sequencing-based 3D genomics technologies (e.g., high-throughput chromosome
conformation capture (Hi-C)) that relied on population averaging of cells and indirect inference of

altered genome organization in cancer cells'>"!’

, our approach allows us to analyze 3D folding of
the genome directly in individual cancer cells in the native tissue environment iz vivo. In addition,
it enables us to monitor evolution of this folding organization (and its regulation) during cancer
progression from normal to preinvasive to invasive tumor cells. Our results define histologic stage-
specific alterations in 3D genome architectures during lung and pancreatic adenocarcinoma
(LUAD and PDAC) progression and illustrate how the evolution of 3D genome folding can be
used to identify novel genes that govern prognosis, delineate cancer cell dependency, and regulate
the 3D genome. Our findings and the methodologic toolkit we describe herein provide a unique

resource by which in situ single-cell 3D genome information could be leveraged to identify

potential new diagnostic, prognostic, and therapeutic cancer biomarkers.

Results

Genome-wide chromatin tracing in a mouse model of lung adenocarcinoma

(8]
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To directly visualize chromatin folding organization in single cells within tissues, we performed
genome-wide chromatin tracing in which we targeted a panel of 473 genomic loci spanning all 19
mouse autosomes at an average genomic interval of 5 Mb (Supplementary Tables 1-3). These
included genomic regions that harbor “classic” oncogenes, tumor suppressor genes, and super-
enhancers. To unambiguously distinguish genomic loci from one another, we adapted a previously
published DNA multiplexed error-robust fluorescence in situ hybridization (DNA MERFISH)
100-choose-2 combinatorial barcoding design. We assigned each target genomic locus a unique
100-bit binary barcode, with each barcode containing two “1” bits and 98 “0” bits'®; each “1” bit
physically corresponded to a unique overhang readout sequence on the primary probes hybridized
to the target genomic locus (Fig. 1a). The primary probes targeting each genomic locus contained
two versions of readout sequences that corresponded to the two “1” bits in the barcode of the locus.
We hybridized all primary probes to all target genomic loci and sequentially hybridized dye-
labeled readout probes to image the 100 bits, with 50 hybridization rounds and two-color imaging
(Fig. 1a). We then fitted the 3D positions of the foci imaged by fluorescence in situ hybridization
(FISH), decoded the barcodes, and reconstructed chromatin traces in single cells (Figs. 1b-1c). To
validate the quality of genome-wide chromatin tracing, we measured the mean spatial distance
between each pair of target genomic loci and constructed a mean inter-loci distance matrix (Fig.
1d). We first performed this in lung alveolar type 2 (AT2) cells — the putative cell-of-origin for
lung adenocarcinoma (LUAD)'2! in wild-type (WT) mice. The resulting matrix featured lower
intra-chromosomal distances and higher inter-chromosomal distances, consistent with
chromosome territory organization®?. Importantly, the inter-loci distances measured from WT AT2
biological replicates were highly correlated with each other (Pearson correlation coefficient=0.91;
Extended Data Figs. 1a-1b). Within each chromosome, the inter-loci spatial distances scaled with

expected genomic distances, with longer chromosomes reaching larger spatial distances
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(Extended Data Fig. 1¢). On average, inter-loci spatial distances followed a power-law function
in comparison to genomic distances, with a scaling factor of about one-tenth (Extended Data Fig.
1d), similar to scaling factors calculated based on previous reports in other mouse tissues

(Extended Data Figs. 1e-1f)*>,

Having established the approach in normal tissues, we next performed chromatin tracing on the K-
MADM-Trp53 mouse lung cancer model (Fig. 1a, Extended Data Figs. 1g and 1h) that induces
sparse and sequential mutagenesis of Kras and 7rp53 in the lung epithelium to mimic the faithful
genetic and histologic progression of human LUAD development*2’. To trace the evolution of
3D genome organization during LUAD progression in these mice, we leveraged the Mosaic
Analysis with Double Markers (MADM) system?®, which allows unambiguous coupling of
genotype to fluorescence labeling?®?. In this system, sibling green-fluorescent protein-expressing
(GFP+) homozygous mutant and tdTomato-expressing (tdTomato+) homozygous WT cells are
generated from a rare Cre/loxP-mediated inter-chromosomal mitotic recombination (G2-X) event
in a heterozygous parent. Yellow heterozygous (GFP+/tdTomato+) cells are also generated
through non-mitotic inter-chromosomal recombination (G0/G1) or mitotic recombination
followed by Z segregation®®?’. Subclones of green (GFP+) Trp53~", red (tdTomato+) Trp53™/™,
and yellow (GFP+/tdTomato+) Trp53™~ cells can then be traced in preinvasive Kras mutant lung
adenomas initiated by inhaled lentiviral Cre infection®. Only Trp53~", and not Trp53*" or
Trp53™~ adenoma cells, progressed to advanced LUAD?’, providing us with a tractable in vivo
model to study histologically defined cellular stages of lung cancer progression from normal AT2
to preinvasive adenoma to LUAD cells in lung tissue sections. We combined multiplexed
fluorescence imaging of GFP, tdTomato, surfactant protein C (SPC), and CD45 with genome-wide

chromatin tracing on the same tissue sections to achieve cancer-state-specific single-cell 3D
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genome profiling (Extended Data Fig. 1g). SPC marks AT2 and cancer cells, whereas the pan-
immune marker CD45 allowed us to exclude macrophages, which are labeled alongside cancer
cells by the MADM system (presumably through lentiviral Cre infection) (Fig. 1e). To build a
complete 3D genome atlas that captures the full spectrum of tumor development, we analyzed
26,852 cells across 17 replicates collected from multiple lung lobes (most containing several
discrete tumors) of 13 mice harboring all stages of LUAD progression: AT2, AdenomaR (red

Trp53*%), AdenomaY (yellow Trp53*-), AdenomaG (green Trp537"), and LUAD cells.

A structural bottleneck of the 3D genome in early lung cancer progression

Given the heterogeneous nature of cancer development’!, we hypothesized that chromatin
conformations might become increasingly diverse during subclonal progression. To our surprise,
chromatin folding conformations instead became less heterogeneous during early progression from
AT?2 to preinvasive adenoma cells — quantified as the coefficient of variation (COV) of inter-loci
distances along each autosome (Figs. 2a, 2b, and Extended Data Fig. 2a). This trend was then
reversed upon progression to LUAD. To define the dynamics of 3D genome alterations during
LUAD progression, we quantified the population-averages for several structural features of
chromosomes in situ for each cell state (AT2, Adenoma (R, Y, G), LUAD), including: (1) intra-
chromosomal compaction (mean inter-loci distances on each autosome), (2) long-range
intermixing (calculated using a demixing score metric benchmarked using published active and
inactive X-chromosome folding conformations in human cells'') (Extended Data Fig. 2b), (3)
active (A) and inactive (B) chromatin compartment polarization (quantified using a polarization
index metric'!), (4) inter-chromosomal distance, and (5) radial localization of each genomic locus
in the nucleus (see Methods). /ncreased chromosome compaction was seen for all adenoma cell

states compared with AT2 cells (decreased decompaction score; Figs. 2a, 2¢, and Extended Data
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Fig. 2c¢), alongside reduced long-range intermixing (increased demixing score; Fig. 2d and
Extended Data Fig. 2d) and increased A-B compartment polarization (Fig. 2e). Moreover,
chromosomes in adenoma states were more spatially associated (reduced inter-chromosomal
distance; Fig. 2f and Extended Data Figs. 2e-2g), with a subset (e.g., Chr 7, 13, and 19) showing
consistent changes in radial distribution within the nucleus compared to AT2 cells (Fig. 2g and
Extended Data Fig. 2i). Strikingly, these phenotypes again largely reverted in LUAD cells (Fig.
2 and Extended Data Fig. 2). Importantly, infer-chromosomal distances in LUAD largely
surpassed those of AT2 cells (Fig. 2f and Extended Data Fig. 2h), leading to an expected larger
overall nuclear volume in LUAD than in AT2 and adenoma cells (Extended Data Fig. 2j).
Together, these data demonstrate stereotypical, non-monotonic, and stage-specific 3D genome
conformations during lung cancer progression, which could represent a structural bottleneck for

tumor development.

We also identified several cancer state-independent 3D genome features. For example, spatial
proximity frequencies were the highest for frans-chromosomal A-A compartment interactions,
followed by A-B and B-B interactions (Extended Data Figs. 3a-3i). The same trend was also
observed in long-range cis-chromosomal compartment interactions (Extended Data Figs. 3j-31).
Furthermore, we identified a consistent negative correlation between radial scores and A-B
compartment scores (Extended Data Fig. 3m). These observations align with previously reported

findings in mouse fetal livers and human lung fibroblast cells'®?*

, suggesting features that
represent general principles of 3D genome organization independent of cell state, cell type, and

even mammalian species.


https://doi.org/10.1101/2023.07.23.550157
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

15

20

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.23.550157; this version posted September 9, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Structural features of 3D genome evolution are largely conserved in pancreatic
adenocarcinoma progression

To study whether the global 3D genome changes observed in LUAD progression are conserved in
other cancer types, we also leveraged a mouse model of pancreatic ductal adenocarcinoma
(PDAC). We used an analogous K-MADM-Trp53 model that directs Cre recombinase activity to
the pancreas using a Pdx/-Cre transgene and recapitulates the major genetic and histologic
properties of human PDAC progression®**>¥, We performed genome-wide chromatin tracing
targeting the same 473 genomic loci combined with cytokeratin 19 (CK19; a marker for normal
and malignant duct cells) immunofluorescence, GFP, tdTomato, and DAPI imaging in the same
single cells. We analyzed a total of 2,677 cells at all stages of PDAC progression, including normal
CK19+ duct cells, preinvasive pancreatic intraepithelial neoplasia (PanIN) cells (R, Y, G), and
invasive PDAC cells, all in their native tissue microenvironment (Extended Data Figs. 4a-4d).
Mean inter-loci distances showed the expected chromosome territory features and genomic
distance scaling (Extended Data Figs. 4e and 4f), consistent with high-quality traces. Analysis
of key architectural features of chromosomes in situ largely recapitulated findings in LUAD
progression, including (1) intra-chromosomal heterogeneity (Fig. 2h), (2) intra-chromosomal
compaction (Fig. 2i), (3) long-range intermixing (Fig. 2j), (4) inter-chromosomal distances
(Extended Data Fig. 4g) and (5) radial localizations of genomic loci in the nucleus (Extended
Data Fig. 4h). When comparing PanIN to WT duct cells, we observed that chromosomes largely
exhibited decreased heterogeneity, more compact folding, reduced long-range intermixing,
decreased inter-chromosomal distances, and changes in radial distribution for a subset of
chromosomes (e.g., Chr 1, 17, and 19). These phenotypes were at least partially reverted upon
progression to PDAC, except for inter-chromosomal distances. Thus, stereotypical, non-

monotonic, and stage-specific changes in 3D genome conformations seen in PDAC progression
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mirrored those seen in lung cancer, arguing that they may represent general features of

tumorigenesis.

Organization of the 3D genome reflects specific histologic cancer cell states at the single-cell
level

We next asked whether it is possible to classify the different histologic cancer cell states in our
models based solely on the single-cell 3D genome data — defining state-specific in sifu single-cell
biomarkers. We first established, using subsampling analysis, that as few as 100 cells per cell state
are sufficient to recapitulate 3D genome organization changes for most structural features
described above (Extended Data Figs. Sa-5f). We then leveraged a “Trace2State” pipeline that
performs dimensionality reduction of single-cell 3D genome conformation data to visualize
clusters corresponding to different histologic cell states in a low dimensional representation. We
adopted a previously developed single-cell A/B compartment (scA/B) score metric for all target
genomic loci (Fig. 3a)***>. The scA/B score of each observed locus is defined as the mean A/B
compartment score of all its spatially adjacent loci (<1200-nm radius) and reflects the A/B
compartment identity of each locus at the single-cell level. We used these scores as high-
dimensional input variables to generate a two-dimensional display using three independent

dimensionality reduction methods¢*

. As shown in Fig. 3a, the single-cell 3D genome
conformations of AT2 (purple) and LUAD (blue) cells were largely distinct in these plots, whereas
those of preinvasive adenoma cells were clustered between these populations, concordant with
histologic progression. We trained a series of supervised machine learning models to classify the
different cancer cell states based on the single-cell 3D genome data (see Methods). A support

vector machine model performed best, with 90% overall accuracy in predicting cancer cell states

(Figs. 3b-3¢). Similar results were obtained for the PDAC data (Figs. 3d-3f). These results argue
9
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that analysis of 3D genome organization can be used to distinguish between histologic cell states

during oncogenesis at the single-cell level.

We hypothesized that the subset of 7Trp53~~ AdenomaG cells that progress into LUAD without
clear mutational drivers (Extended Data Figs. 6a-6¢) might have acquired specific 3D genome
features associated with this behavior. Indeed, AdenomaG cells often exhibited chromosome-scale
structural features intermediate between those of non-progressing AdenomaR/Y cells and LUAD
cells (Figs. 2b-2d). 3D genome dimensionality reduction analyses further showed that preinvasive
AdenomaR/Y cells and invasive LUAD cells formed distinct but overlapping clusters, with
AdenomaG cells dispersed within and between them (Fig. 3g). Using either a Leiden clustering
approach® or a k-nearest-neighbor method, we computationally segmented the low-dimensional
space into two regions of adenoma-like and LUAD-like conformations and quantified the
percentage of AdenomaG cells distributed in the two regions. In this analysis, a greater proportion
of AdenomaG cells (vs. other adenoma cells) adopted LUAD-like 3D chromatin organization (i.e.,
located in the LUAD-like region; Figs. 3g-3h). This result indicates that 3D chromatin

organization changes associated with LUAD precede histologic progression in the model.

Chromatin tracing delineates prognostic and predictive biomarkers in LUAD

To define the relationship between altered 3D genome conformation and gene expression changes
during LUAD progression, we performed bulk RNA-seq on dissected GFP+ tumors of K-MADM-
Trp53 mice (Extended Data Fig. 6d and Supplementary Table 4). Unsupervised hierarchical
clustering revealed two distinct tumor groups (Extended Data Fig. 6e) that could be classified as
AdenomaG and LUAD cells based on expected changes in gene expression with progression,

including loss of lung epithelial markers (AT1/AT2), increased expression of genes connected
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with gastric identity, epithelial-to-mesenchymal transition (EMT), and metastasis, plus
transcriptional alterations associated with enhanced Kras signaling (Extended Data Figs. 6f-6g)*.
We next focused on the scA/B score changes of genes with significantly altered expression
between AdenomaG and LUAD cells. Genes with enhanced expression in LUAD cells tended to
show increased scA/B scores, whereas those with reduced expression had decreased scA/B scores
(Fig. 4a). We reasoned that the 3D compartment alterations described above could promote stable
gene activation or repression with functional consequences, due to differences in active/repressive
epigenetic signatures and chromatin, RNA polymerase II (Pol II), and transcription factor densities
in the compartments*!. Genes with significantly elevated expression in marker genomic loci (Fig.
4b) with increased scA/B scores in LUAD cells might be important for LUAD progression, as
candidate progression drivers (CPDs) (Fig. 4¢). In contrast, genes with significantly decreased
expression in marker loci with decreased scA/B scores could be candidate tumor suppressors
(CTSs) (Fig. 4¢). We developed a “Trace2Biomarker” pipeline to call CPDs and CTSs (see
Methods). To test the hypothesis that A/B compartment organization contributes to more stable
gene expression regulation, we quantified the gene expression heterogeneity/homogeneity in
LUAD cells derived from K-MADM-Trp53 mice analyzed by single-nucleus RNA-seq (snRNA-
seq; Extended Data Figs. 6h-6j). Using a published gene expression homogeneity metric*’, CPD
and CTS genes were significantly more homogenously expressed than the top differentially
expressed genes (up or down) in regions with unchanged scA/B scores (Fig. 4d). We confirmed
these findings in a separate single-cell RNA-seq (scRNA-seq) dataset derived from a different
Kras/Trp53 mutant (KP) LUAD mouse model*° (Fig. 4e). These observations suggest that genes
associated with compartment changes during tumor evolution are more homogeneously regulated,
leading to more stable regulation of potential cancer driver and suppressor genes than

compartment-independent expression regulatory mechanisms.
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To investigate the relative importance of the CPD and CTS genes identified by our analysis, we
assessed whether they could serve as useful prognostic (of survival) or predictive (of dependency)
biomarkers. Importantly, 5 of the 22 CPD genes and 8 of the 19 CTS genes that we identified have
not previously been implicated in lung cancer pathogenesis (Supplementary Table 5). To
determine prognostic significance, we scored individual patient LUAD samples (from The Cancer
Genome Atlas (TCGA)?) for their correlation with the CPD and CTS gene signatures. For the
CPD gene signature, high-scoring patients (top quintile most correlated tumor gene expression, n
= 96 patients) exhibited significantly worse survival compared to patients with lower scores
(bottom quintile, » = 96 patients) whereas the inverse was true for the CTS gene signature (Fig.
4f). Comparable analyses of the top differentially expressed genes in genomic regions with
unchanged scA/B scores (or irrespective of scA/B score changes), by contrast, were poor
predictors of patient survival (Fig. 4f). Similarly, CPD genes identified by combining 3D genome
organization and gene expression data showed greater gene dependency in LUAD cell lines
analyzed in the Cancer Dependency Map** than top differentially expression genes with
unchanged scA/B or irrespective of scA/B score (Fig. 4g). To directly validate the function of
identified CPD genes in LUAD, we performed an arrayed lentiviral RN Ai screen targeting 18 CPD
genes with readily-available short hairpin RNAs (shRNAs, 3 per gene; Supplementary Table 6)
in two independent primary LUAD mouse cell lines isolated from the K-MADM-Trp53 mouse
model (SA6082inf) and an analogous Kras/Trp53 mutant (KP) mouse model*. Knockdown of 16
of 18 (89%) tested CPD genes reduced viability in both cell lines (Fig. 4h) — including five novel
targets in LUAD (Ephx2, Peg3, Apob, Oitl, and Slc6al9; Supplementary Table 5). Only 6.4%
of randomly selected genes would have been expected to affect cell proliferation based on analysis

of the Cancer Dependency Map**’ (see Methods), arguing that combining 3D genome
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organization and gene expression data offers greater prognostic (of survival) and predictive (of
genetic dependency) power than gene expression alone. Our results thus strongly support the utility

of 3D genome mapping as an orthologous tissue-based cancer biomarker.

Fine-scale chromatin tracing reveals enhancer-promoter interactions in candidate
progression drivers

For higher resolution assessment of the evolution of local chromatin structure of CPD and CTS
genes during lung cancer progression, we took advantage of fine-scale chromatin tracing. We
mapped in situ nuclear positions of nearly one thousand genomic loci in the cis-regulatory regions
of 23 genes, including CPD and CTS genes and the known driver oncogenes Kras and Myc
(Extended Data Fig. 7a). For each gene, we targeted 40 consecutive 5-kb to 20-kb loci (20 loci
for Foxa3 due to short genomic length) spanning the promoter and candidate enhancers (Extended
Data Fig. 7a) and collected datasets from a total of 7,511 AT2, Adenoma (R, Y, G), and LUAD
cells. The kilobase-resolution chromatin folding became increasingly more compact during AT2
to adenoma to LUAD progression (Extended Data Fig. 7b), suggesting that trends in chromatin
compaction from adenoma to LUAD depend on scale. To identify enhancer-promoter (E-P)
interactions, we accounted for the confounding effects of gene scale compaction and analyzed the
normalized inter-loci distances between putative active enhancers and promoters (Methods,
Extended Data Fig. 7¢). We observed that most E-P loops for CPD genes exhibited increased
interactions during progression from adenoma to LUAD, concordant with increased gene
expression (Extended Data Figs. 7d and 7e). In contrast, E-P loops for CTS genes did not show
systematic changes (Extended Data Figs. 7d and 7e), suggesting that CTS repression during
LUAD progression is not regulated at the E-P interaction level and may instead result from global

compaction of the gene regions and/or compartment changes. Kras showed an increase in E-P loop
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interactions in LUAD, which may afford an alternative mechanism for enhancing Kras expression
in the adenoma-to-LUAD transition beyond amplification*® (Extended Data Figs. 7e and 7f).
Similarly, Myc — basal expression of which is required for Kras-driven lung tumor initiation*” and
overexpression of which is sufficient to induce lung tumorigenesis®® — showed increased looping
between the Myc promoter and two putative downstream enhancers in the AT2 to adenoma
transition (Extended Data Figs. 7e and 7f). We further found that the Myc locus exhibited
increased expression and scA/B score changes comparing adenoma to AT2 cells (termed candidate
initiation gene; Supplementary Table 5), suggesting that both local looping and larger scale
compartment alterations may regulate its expression. These data demonstrate the potential to map
both fine- and large-scale 3D genome structure with chromatin tracing to clarify associations

between chromatin architectures and expression of functionally important genes in cancer.

Rnf2 regulates 3D genome folding through a non-canonical function

One major goal of our study was to define novel regulators of 3D genome architecture. We first
assessed the role of neighboring immune cells in the tumor microenvironment in governing 3D
genome organization and found little influence — arguing that 3D genome organization changes
during LUAD progression are likely independent of immune cell interactions. Comparing 3D
genome organization of AT2/cancer cells during LUAD progression in relation to their spatial
proximity to CD45+ cells showed negligible differences in chromatin conformation heterogeneity,
chromatin decompaction, chromatin demixing, and A-B compartment polarization (Extended
Data Figs. 8a-8d). Moreover, in dimensionality reduction analyses, AT2/cancer cells adjacent to
and far from immune cells contained similar spectra of single-cell 3D genome conformations

(Extended Data Fig. 8e).
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To identify possible cell-autonomous upstream regulators of cancer 3D genome reorganization,
we developed a “Trace2Regulator” pipeline (see Methods). The pipeline leveraged a published
Binding Analysis for Regulation of Transcription (BART) algorithm’!-2 to predict transcription
factors and chromatin regulators that bind to upregulated genes located in marker loci with
increased scA/B scores in the adenoma-to-LUAD transition. We identified Rnf2 as a top candidate.
Rnf2 is a major component of the polycomb repressive complex 1 (PRCI1) and catalyzes mono-
ubiquitination of lysine 119 of histone H2A (H2AK119ub)*. Canonically, PRC1 works in concert
with polycomb repressive complex 2 (PRC2), which modifies histones by depositing H3K27me3
to repress transcription®*. We knocked down Rnf2 (shRnf2) in KP LUAD cells (Fig. 5a) and saw
a significant negative effect on cell viability (Fig. 5b). scA/B score changes upon Rnf2 knockdown
significantly correlated with scA/B score changes during LUAD progression (Fig. 5¢), indicating
that Rnf2 partially regulates 3D genome reorganization in LUAD cells. Since the predicted binding
sites of Rnf2 were associated with increased scA/B scores, we speculated that Rnf2 may
preferentially bind A compartment regions. Consistent with this hypothesis, Rnf2 CUT&RUN
revealed significantly higher Rnf2 peak density in compartment A topologically associating

domains (TADs, also known as contact domains)>*>° (Fig. 5d).

Although the canonical function of Rnf2 is to mediate gene silencing through polycomb
repression™, it can also (non-canonically) associate with epigenetically active loci®®®!'. As both

polycomb-repressed and active chromatin regions tend to localize in compartment A%*%3

, a key
question is whether the Rnf2-controlled regions in LUAD are mainly polycomb-repressed or active
chromatin. To answer this question, we aligned and clustered the Rnf2 CUT&RUN peaks in all
target genomic regions with H3K4me3 and H3K27me3 CUT&RUN profiles. The majority of Rnf2

peaks (51.6%) resided in active regions (H3K4me3+, H3K27me3—) (Fig. Se), with fewer (23.3%
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and 4.3%, respectively) being found in repressed (H3K4me3—, H3K27me3+) and bivalent
(H3K4me3+, H3K27me3+) regions (Fig. 5e). CUT&RUN analysis of RNA Pol II with
phosphorylated S5 confirmed the active transcriptional states of the active regions (Fig. Se). In
addition, scA/B score changes upon Rnf2 knockdown were better or similarly correlated with the
scA/B score changes in LUAD progression, if only active Rnf2-bound regions were included in
the correlation analysis (Fig. 5f). These results suggest that Rnf2 in active genomic loci may

regulate 3D genome reorganization associated with LUAD progression.

To further understand the regulatory role of Rnf2 on the 3D genome, we performed H2AK119ub
CUT&RUN, and found that WT Rnf2 peaks in active regions do not colocalize with strong
H2AK119ub peaks. In contrast, another core PRC1 component BMI1 colocalizes with Rnf2 in all
regions (Fig. Se). These data argue that the canonical ubiquitin ligase function of Rnf2 is
dispensable for its role in shaping the 3D genome. To test this hypothesis directly, we performed
rescue experiments upon Rnf2 knockdown with vectors expressing wild-type (WT) Rnf2 or a
catalytic Rnf2 mutant (I53S) that lacks ubiquitin ligase activity® (Fig. 6a). We found that scA/B
score changes upon rescue with WT Rnf2 significantly correlated with scA/B score changes during
LUAD progression (Fig. 6b), validating the specific effect of Rnf2. Strikingly, mutated Rnf2
(I53S) also induced scA/B score changes that mirrored LUAD progression, but with a stronger and
more significant correlation than that of WT rescue (Fig. 6b). These results thus demonstrate that
Rnf2 partially regulates 3D genome changes during the adenoma-to-LUAD progression via a

ubiquitin ligase-independent function.

Finally, to test whether Rnf2 directly reorganizes the 3D genome in LUAD cells, we used the

degradation tag (dTAG) system® to induce acute Rnf2 protein loss in KP cells. We endogenously
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tagged an FKBP12%V degron tag to the C-terminus of Rnf2. Rnf2 protein was rapidly degraded
after 0.5 h of dTAG ligand (dTAG-13) administration but H2AK119ub levels were unchanged
(Figs. 6¢-6e). We found that the scA/B score changed significantly upon rapid Rnf2 degradation
and that these alterations correlated with scA/B score changes during LUAD progression or upon
Rnf2 knockdown (Fig. 6f). These kinetic degradation experiments support a direct role for Rnf2

in 3D genome reorganization independent of its canonical ubiquitin ligase catalytic function.

Discussion

In this study, we generated comprehensive 3D genome atlases in physiologically relevant mouse
models of lung and pancreatic cancer progression. Beyond establishing a new data rich cancer
genomics resource, our analyses support the broad utility of our technologic pipeline to measure
and interpret biological heterogeneity of the 3D genome in a variety of biological systems and
diseases (Extended Data Fig. 9). A key finding from this work is our demonstration that data on
single-cell 3D genome organization can distinguish and predict different histologic cancer cell
states with high accuracy (Fig. 3), despite recent studies showing that 3D chromatin conformation
is highly variable even among cells of the same type®®7°. We further show that high-dimensional
3D genome data can be used to identify genes that govern prognosis and delineate cancer cell
dependencies (Fig. 4). Perturbation of most of the nominated candidate progression drivers led to
defects in cancer cell viability, demonstrating that the single-cell 3D genome organization contains
rich information to uncover novel diagnostic and prognostic cancer biomarkers along with genetic

vulnerabilities for drug target discovery.

Our results also underscore the potential of high-dimensional in situ 3D genome data to identify
previously unappreciated 3D genome regulators. By focusing on genes within loci that underwent
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genome compartment reorganization during LUAD progression, we discovered Rnf2 has a
ubiquitin ligase-independent role in reorganizing the 3D genome in active chromatin regions.

Although Rnf2 is best known for transcriptional repression’>->4

, recent reports have delineated a
non-canonical role for Rnf2 in gene activation, though the precise mechanisms for this function
remain controversial®®¢!, In comparison to WT Rnf2, re-expressing a catalytic mutant (153S) of
Rnf2 in LUAD cells more strongly recapitulated 3D genome changes in the adenoma-to-LUAD
transition (Fig. 6b). One potential explanation for this is that Rnf2 I53S associates more with active
chromatin regions than its WT counterpart, facilitating compartment transitions that drive LUAD
progression. In support of this model, a recent study demonstrated that H2AK119ubl and
H3K27me3 are required to maintain Rnf2 at canonical PRC2-repressed sites, as loss of Rnf2
catalytic activity displaces it from these sites’!. An additional layer of regulation may occur
downstream of KRAS signaling itself. Prior work in BRAF-mutant melanoma®' suggested that
phosphorylation of Rnf2 by MEK1/2 — a key mediator of the mitogen-activated protein kinase
(MAPK) pathway downstream of oncogenic KRAS and BRAF — allows Rnf2 to recruit activating
histone modifiers to poised promoters to induce gene expression. During murine LUAD

progression, MAPK signaling downstream of oncogenic Kras increases’>’?

, suggesting that a
comparable mechanism of Rnf2 activation may be occurring. These data argue that MAPK
hyperactivation — permitted by loss of Trp537>73 — may facilitate the capacity of Rnf2 to reorganize
3D genome compartmentalization to drive the adenoma-to-LUAD transition. Given increased

MAPK signaling in human NSCLC samples’™, such mechanisms of Rnf2 regulation may also

occur during human lung cancer progression.

Recent scRNA-seq®® and scATAC-seq” studies in mouse models of Kras-driven LUAD

characterized the heterogeneous transcriptomic and epigenomic landscapes that arise in cancer,
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leading to the identification of transitional and plastic cell states with molecular alterations that

can drive tumor initiation, progression, and metastasis?®4%7>,

Although transcriptional
heterogeneity progressively increased during LUAD progression in these models, we observed a
striking non-monotonic evolution of the 3D genome, which was mirrored in PDAC (Fig. 2) and
could represent a structural bottleneck of the 3D genome in cancer development. In support of a
functional role of 3D genome alterations during tumor evolution, combining 3D genome and
transcriptomic data led to improved identification of important genes (CPDs and CTSs) that predict
prognosis and dependency (Fig. 4). One potential mechanism by which nuclear compartment
localization may lead to functional importance is by maintaining more stable gene activation or
repression due to epigenetic state, chromatin density, proximity to activating/repressive nuclear
landmarks, and local interacting protein density (including RNA Pol II and transcription factors)*!.
Consistent with this hypothesis, we observed that differentially expressed genes that resided in loci
that underwent concordant compartment transitions were more homogeneously expressed or
repressed in LUAD (Figs. 4d and 4e). To directly map 3D genome alterations to transcriptionally
and epigenetically defined cell states, future studies should combine genome-wide chromatin

7679 epigenomics®’, and proteomics®®®! in the

tracing with imaging-based spatial transcriptomics
same single cancer cells within the native tumor microenvironment. In addition, genome-wide
finer-scale chromatin tracing with kilobase resolution may systematically reveal gene-specific
enhancer-promoter interactions further defining the molecular features and plasticity of cells
during LUAD progression.

Chromatin tracing offers several unique advantages among single-cell 3D genomics methods>%*

87 in studying the cancer 3D genome. First, as an imaging-based approach, it retains the native

tissue architecture in situ, which is essential for pathologic analyses in cancer studies and allows
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analyses of cell-cell interactions in shaping the 3D genome within the tumor microenvironment
(Extended Data Fig. 8). Second, the chromatin tracing approach directly traces the 3D folding
path of chromatin, whereas sequencing-based approaches indirectly infer 3D chromatin folding
based on contact events. Third, the chromatin tracing method allows integration with multiplexed
fluorescent protein/immunofluorescence imaging in the same single cells, enabling cell type-
specific identification (e.g., SPC+ AT2 cells, CK19+ duct cells) and lineage labels (e.g., MADM),
whereas the potential for similar multiplexing is limited in sequencing-based methods. Fourth, the
chromatin tracing approach achieves higher cell throughput due to its cost efficiency. For example,
a recent scSPRITE study® profiled 1,000 cells at 40-kb to 1-Mb resolution, while our work
analyzed over 61,000 cells at 5-kb to 5-Mb resolution, albeit with lower genomic coverage intrinsic

to the targeted FISH approach.

Our study demonstrates proof-of-principle of the utility of in sifu chromatin tracing to garner
insights into tumor biology, taking advantage of the capacity to visualize the entire spectrum of
lung and pancreatic tumorigenesis in mouse models with genetically encoded lineage markers for
tracing subclonal evolution. Furthermore, the choice of model system allowed us to account for
differences in cell cycle progression and copy number variation (CNV) across histologic states,
which could confound 3D genome analyses. We previously showed with pulse 5-ethynyl-2’-
deoxyuridine (EdU) incorporation experiments in K-MADM-Trp53 mice that ~2% of preinvasive
adenoma cells are actively proliferating compared to ~8% of LUAD cells*®’. Therefore, most of
our profiled cancer cells are in Go/Gi, which should have minimal confounding effects on
chromatin folding and nuclear organization®. Furthermore, the monotonic increase in the
proportion of cells proliferating in going from the AT2 (post-mitotic) to adenoma to LUAD

populations cannot explain the reversible trend of 3D genome changes observed across these
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states. Whole-exome sequencing of AdenomaG and LUAD cells isolated from K-MADM-Trp53
mice showed only a subset of LUAD tumors exhibiting evidence of gains of Chromosome 6 and
losses of Chromosomes 4, 9, and 11 (Extended Data Figs. 6a-6b), as has been observed in other
Kras/Trp53 mutant murine LUAD models***®. Given the lack of systematic gains or losses across
most chromosomes and tumors, it is unlikely that CNVs could account for the global chromatin
structure differences observed between adenoma and LUAD cells across all autosomes. Finally,
few single nucleotide variants (SNVs) were observed in both adenoma and LUAD tumors, none
of which resulted in protein-altering mutations in known cancer driver genes®” (Extended Data
Fig. 6¢ and Supplementary Table 7), similar to findings in other genetically engineered mouse
LUAD models*“%°!, These data argue that the observed 3D genome alterations are not merely a

surrogate of the mutational evolution of cancer.

In contrast to the mouse, human tumors exhibit significantly more complex somatic genotypes
compared with those in genetically engineered mouse models of a similar type*®. Indeed, the
human NSCLC genome is highly heterogeneous, with different tumors displaying distinct
combinations of point mutations, structural variations, and fusion genes®’. It therefore remains to
be explored whether the cell state-specific 3D genome architectures observed in murine LUAD
progression are recapitulated in human lung tumors, and how 3D genome evolution differs across
driver oncogenes (e.g., KRAS vs. EGFR). To answer these questions, one can apply genome-wide
chromatin tracing to rare clinical human lung tumor samples harboring a preinvasive component
(carcinoma in situ) adjacent to invasive tumor regions and normal regions. As DNA FISH has been
traditionally used to map structural variations in cancer, the FISH-based chromatin tracing
technique has the potential to delineate multi-dimensional genomic alterations in single cancer

cells, which may offer even more robust biomarkers for cancer diagnosis and therapeutics. Given
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the rich information one can derive from mapping genome-wide true-3D chromatin folding in
subclonal cancer progression, we anticipate that comprehensive tissue-based chromatin tracing —
when applied broadly in cancer and combined with multi-modal spatial profiling of the
transcriptome, epigenome, proteome, and metabolome — will have transformative potential to
reveal new aspects of cancer biology and novel biomarkers for cancer diagnosis, subtype

stratification, prediction of treatment response, and therapeutic development.

Methods

Mice

Mouse strains: Animal studies were approved by the Institutional Animal Care and Use
Committee of Yale University. Mice were housed in a specific-pathogen free facility with
controlled temperature and day/night cycles and maintained in a mixed background. MADM]1I-
GT (Stock #013749), MADM11-TG (Stock #013751), and PdxI-Cre (Stock #014647) were
obtained from the Jackson Laboratory (JAX). LSL-Kras®'?P (JAX Stock #008179) and Trp53%9
(JAX Stock #002101) mice were a gift from Dr. Tyler Jacks. LSL-Kras®'*?/Kras""; MADM1 -
TG, Trp53X0/MADM11-TG, Trp53"" breeder mice were generated as previously described. LSL-
Kras®?P/Kras"T; MADM11-TG, Trp53X°/MADM11-TG, Trp53"T were crossed with MADM]I I-
GT mice (with or without Pdx/-Cre) to generate K-MADM-Trp53 or PdxI-Cre; K-MADM-Trp53
experimental mice of both sexes for lung and pancreatic cancer analyses, respectively. Genotyping

primers and protocols have been previously reported*’.

Lentivirus production and infection: pPGK-Cre lentiviral backbone was amplified and
transfected into 293T cells using VSV-G (Addgene 8454) and psPAX2 (Addgene 12260)

packaging vectors and TransIT-LT1 kit (MirusBio). After 48 and 72 hours, virus was collected,
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filtered, and ultracentrifuged. Lentivirus was resuspended in OptiMEM (ThermoFisher) and

administered intratracheally to K-MADM-Trp53 mice at 6-10 weeks of age to generate lung tumors.

Probe design and synthesis

Template probe design: In genome-wide chromatin tracing, to select target genomic regions for
mChr1-mChrl9, we first downloaded TAD coordinates in mouse embryonic stem cells from
http://3dgenome.fsm.northwestern.edu/download.html. Second, we selected a list of target TADs
containing one or more of the following features: (1) TADs containing MAPK pathway genes; (2)
TADs containing “classic” oncogenes and tumor suppressor genes; and (3) TADs containing
super-enhancers. Third, to select other target TADs, we selected 30 TADs that are equally spaced
along each entire chromosome and removed those that are within an interval to the feature-
containing target TADs. We then combined the remaining other target TADs and feature-
containing target TADs as the target genomic regions. We designed about 400 oligos targeting a
60-kb feature-containing region within each feature-containing TAD, and about 400 oligos
targeting the central 60-kb region of other target TADs. A total of 50 target TADs were designed
for mChr6 and 18-25 target TADs were designed for each of the other autosomes. A total of 473
target TADs spanning mChr1-mChr19 were selected. To distinguish the identities of each target
TAD, we adapted a previously published Hamming weight 2 (HW2) binary barcode design
strategy'®. We rearranged the binary code assignment to (1) minimize the variance of the number
of TADs imaged in each imaging round across different imaging rounds for each chromosome to
make sure no more than 1 TAD was imaged per imaging round for each chromosome, except for
mChr6; and (2) for mChr6, maximize the genomic distance between the TADs imaged in the same
imaging round. The template oligos for the 473 target TADs were designed as follows: each

template oligo consisted of 6 regions (from 5’ to 3°): (1) a 20-nucleotide (20-nt) forward priming
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region; (2) a 20-nt adapter binding region; (3) a 40-nt genome targeting region; (4) a second 20-nt
adapter binding region; (5) a third 20-nt adapter binding region; and (6) a 20-nt reverse priming
region. The forward and reverse 20-nt priming sequences were generated from random sequences
that were screened to lack homology to the mouse genome and optimized for PCR amplifications.
The 20-nt adapter binding sequences bind to 60-nt adapter oligos consisting of one 20-nt adapter
sequence and two 20-nt readout probe binding sequences. Both the adapter and readout probe
binding sequences were generated from random sequences with minimum homology to the mouse
genome and maximum performance in signal to noise ratios. The 40-nt genome targeting
sequences were designed with OligoArray2.1%* using the following parameters: (1) the melting
temperatures of the target sequences were between 65 °C and 85 °C; (2) the melting temperatures
of potential secondary structures were less than 76 °C; (3) the melting temperatures of potential
cross-hybridizations were less than 72 °C; 4) the GC content of the sequences was between 20%
and 90%; (5) no consecutive repeats of six or more A’s, T’s, C’s and G’s were identified; and (6)
adjacent oligos were allowed to have 30-nt overlapping sequences. Genome targeting sequences
were then screened against the mouse genome with BLAST+ to ensure single matches to the
reference genome®*. Genomic targeting sequences were further screened against a mouse repetitive
database from Repbase (https://www.girinst.org/repbase/)’>. Sequences with more than 16-nt
homology to a list of repetitive sequences in the mouse repetitive database were removed. A
monolayer of 400 oligos were then selected for each target TAD to construct the template probe
library. The template probe library pool was purchased from Twist Biosciences. Template probe
sequences are provided in Supplementary Table 1. Genome coordinates (mm9), codebook and
target TAD features are provided in Supplementary Table 2.

In fine-scale chromatin tracing, we designed probes that target the regulatory regions of Kras, Myc,

13 CPD genes and 8 CTS genes. Genomic regions of interest were chosen based on gene
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annotations and previously published Hi-C data in mES cells’®. Putative enhancers were identified
by the union of Ensembl predicted enhancers and H3K4mel (ENCFF536DWZ) and DNasel
(ENCFF268DLZ) intersected ChIP-seq peaks in adult mouse lung. We selected 40 consecutive 5-
kb to 20-kb genomic loci (20 loci for Foxa3 due to shorter genomic length) for each gene. We
performed 50 rounds of three-color imaging to decode the identity of each locus. For the first 40
rounds, each 5-kb to 20-kb genomic locus was read out one at a time on all genes (seven genes in
560-nm channel, eight genes in 647-nm channel, eight genes in 750-nm channel) in each
hybridization round. The last 10 rounds read out one gene at a time in the three channels. We
designed 150 oligos per Skb genomic region. The template oligos were designed as follows: each
template oligo consisted of 6 regions (from 5’ to 3”): (1) a 20-nucleotide (20-nt) forward priming
region; (2) a 20-nt genomic loci readout region; (3) a 30-nt genome targeting region; (4) a second
20-nt genomic loci readout region; (5) a 20-nt gene readout region; and (6) a 20-nt reverse priming
region. The forward and reverse 20-nt priming sequences and readout sequences were generated
as described above. The 30-nt genome targeting sequences were designed with ProbeDealer®’
using the following parameters: (1) the melting temperatures of the target sequences were between
66 °C and 100 °C; (2) the melting temperatures of potential secondary structures were less than
76 °C; (3) the melting temperatures of potential cross-hybridizations were less than 72 °C; 4) the
GC content of the sequences was between 30% and 90%; (5) no consecutive repeats of six or more
A’s, T’s, C’s and G’s were identified; and (6) adjacent oligos were allowed to have 20-nt
overlapping sequences. Genome targeting sequences were then screened against the mouse
genome with BLAST+ to ensure single matches to the reference genome®. Genomic targeting
sequences were further screened against a mouse repetitive database from Repbase
(https://www.girinst.org/repbase/)’>. Sequences with more than 16-nt homology to a list of

repetitive sequences in the mouse repetitive database were removed. A monolayer of 150 oligos
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per 5-kb genomic region was then selected for each target locus to construct the template probe
library. The template probe library pool was purchased from Agilent. Template probe sequences
are provided in Supplementary Table 1. Genome coordinates (mml0) are provided in
Supplementary Table 2.

Primary probe synthesis: Primary probes were synthesized from the template probe library using
previously published protocols following a procedure of limited-cycle PCR, in vitro transcription,
reverse transcription, and probe purification!!:"*%%  All PCR primers, reverse transcription
primers, adapters, and readout probes were purchased from Integrated DNA Technologies (IDT).

The sequences are provided in Supplementary Table 3.

Mouse K-MADM-Trp53 lung tissue chromatin tracing experiments

Tissue preparation: K-MADM-Trp53 mice were dissected at sign of respiratory distress via CO2
asphyxiation. Lungs were perfused with ice cold 1xPBS, incubated in 4% (vol/vol)
paraformaldehyde (Electron Microscopy Sciences, 15710-S) overnight, and cryoprotected with 30%
sucrose (Sigma-Aldrich, S0389). Tissue was embedded in Tissue-Tek OCT (Sakura, 4583) and
frozen on dry ice before storage at -80 °C.

Coverslip treatment: Prior to tissue sectioning, coverslips (Bioptechs, 40-mm-diameter, #1.5)
were first silanized as previously described!?*!!. In brief, coverslips were immersed into a 1:1
mixture of 37% (vol/vol) hydrochloric acid (HCl) and methanol at room temperature for 30 min.
Coverslips were then washed with deionized water three times, followed by a 70% ethanol wash.
Coverslips were dried in a 70 °C oven for 1 h and immersed into chloroform containing 0.2%
(vol/vol) allyltrichlorosilane (Sigma, 107778) and 0.1% (vol/vol) triethylamine (Millipore,

TX1200) for 30 min at room temperature. Coverslips were then washed with chloroform and
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ethanol and dried in a 70 °C oven for 1 h. Silanized coverslips can be stored in a desiccated
chamber at room temperature for weeks. For tissue attachment, silanized coverslips were treated
with 1% (vol/vol) polyethylenimine (Sigma, 408727) in water for 5 min and washed twice in water.
Coverslips were then air-dried and ready for tissue attachment.

Tissue sectioning: Frozen mouse lung tissue blocks were sectioned at a thickness of 10 um at -
20°C on a cryostat. Three consecutive tissue slices were sectioned at a time: one for hematoxylin
and eosin (H&E) staining, one for whole-section fluorescence imaging, and one for chromatin
tracing. The sections were air-dried at room temperature for 1 h and then directly used or stored at
-20°C for months.

H&E staining and whole-section fluorescence imaging: H&E staining was performed by Yale
Pathology Tissue Services (YPTS). For whole-section fluorescence imaging, the section was
mounted in VECTASHIELD Vibrance Antifade Mounting Medium with DAPI (VectorLabs, H-
1800-2). Stitched fluorescence images in 353-nm, 488-nm, and 592-nm illumination channels for
DAPI, GFP, and tdTomato, respectively, were collected with a Plan-Apochromat 10x%/0.45 M27
objective on a Zeiss Axio Imager M2 microscope.

Co-immunofluorescence and fluorescent protein imaging of the chromatin tracing section:
Frozen tissue sections were first balanced at room temperature for 10 min. Tissue sections were
then hydrated with DPBS (Gibco, 14190-144) for 5 min twice. Tissue sections were permeabilized
with 0.5% (vol/vol) Triton X-100 (Sigma-Aldrich, T8787) in DPBS for 30 min at room
temperature and washed in DPBS for 2 min twice. Tissue sections were then blocked for 30 min
at room temperature in blocking buffer containing 1% (wt/vol) BSA (Sigma-Aldrich, A9647-
100G), 22.52 mg/mL glycine (AmericanBio, AB00730), 10% (vol/vol) donkey serum (Millipore
Sigma, S30-100ml), 5% (vol/vol) goat serum (Invitrogen, 31873) and 0.1% (vol/vol) Tween-20

(Sigma-Aldrich, P7949) in DPBS. Tissue sections were incubated with rabbit anti-SPC antibody
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(Millipore, AB3786, 1:50) and rat anti-CD45 antibody (BioLegend, 103101, 1:100) in blocking
buffer at 4 °C overnight. The samples were washed with DPBS for 5 min three times and then
incubated with DyLight 800-labeled donkey anti-rabbit secondary antibody (Invitrogen, SAS-
10044, 1:1000) and Alexa Fluor 647-labeled goat anti-rat secondary antibody (Invitrogen, A-
21247, 1:1000) in blocking buffer for 1 h at room temperature. The samples were washed in DPBS
for 5 min three times and then incubated with DAPI (Thermo Fisher, 62248) at 1:1000 dilution in
2x SSC (diluted from 20x SSC, Invitrogen, 15557-044) for 10 min. The samples were then
mounted onto a Bioptechs FCS2 flow chamber and replenished with imaging buffer with an
oxygen scavenging system (50 mM Tris-HCl pH 8.0 (AmericanBio, AB14043), 10% wt/vol
glucose (Sigma-Aldrich, G5767), 2 mM Trolox (Sigma-Aldrich, 238813), 0.5 mg/mL glucose
oxidase (Sigma-Aldrich, G2133), 40 pg/mL catalase (Sigma-Aldrich, C30)). The imaging buffer
was freshly prepared for each experiment and was covered with a layer of mineral oil (Sigma,
330779) in the reservoir tube to prevent continuous oxidation. We then selected multiple fields of
view (FOVs) at predefined tumor regions based on tumor grades of the adjacent whole-section
fluorescence images. Tumor grades were confirmed independently by two investigators (S.S.A.
and M.D.M.). At each FOV, we sequentially took z-stack images of DAPI, GFP fluorescence,
tdTomato fluorescence, anti-SPC immunofluorescence and anti-CD45 immunofluorescence with
405-nm, 488-nm, 560-nm, 647-nm, and 750-nm laser illuminations. The z-stacks (7-10 um total)
had a step size of 200-nm and an exposure time of 0.4 s at each step.

Primary probe hybridization: After imaging, tissue sections on coverslips were de-assembled
from the chamber, treated with 1 pg/mL proteinase K (Invitrogen, AM2546) in 2% (vol/vol) SDS
(Sigma-Aldrich, 05030-1L-F) in 2x SSC at 37 °C for 10 min, and washed in DPBS for 2 min twice.
Tissue sections were then treated in 0.1 M HCl for 5 min and washed in DPBS for 2 min twice.

Tissue sections were digested with 0.1 mg/mL RNase A (ThermoFisher Scientific, EN0531) in
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DPBS for 45 min at 37 °C and washed with 2x SSC for 2 min twice. Tissue sections were treated
with pre-hybridization buffer containing 50% (vol/vol) formamide (Sigma-Aldrich, F7503) and
0.1% (vol/vol) Tween-20 in 2x SSC. Synthesized primary probes were dissolved in 25 pL
hybridization buffer containing 50% (vol/vol) formamide and 20% (vol/vol) dextran sulfate
(Millipore, S4030) in 2x SSC. The total probe concentration was 30-40 uM. Coverslips were
immersed in hybridization buffer containing probes in 60 mm petri dishes, heat denatured in a
90 °C water bath for 3.5 min, and subsequently incubated the petri dish at 47 °C in a humid
chamber for 36-48 hours. Samples were washed with 50% (vol/vol) formamide in 2x SSC for 15
min twice at room temperature followed by 2x SSC for an additional 15 min at room temperature.
Washed samples were then incubated with 0.1-um yellow-green beads (Invitrogen, F8803)
resuspended in 2x SSC as fiducial markers for drift correction, washed with 2% SSC briefly,
incubated with DAPI at 1:1000 dilution in 2x SSC for 10 min for image registration, and washed
again with 2x SSC for 2 min twice.

Readout probe hybridization and imaging: After the primary probe hybridization, the sample was
repeatedly hybridized with adapters and readout oligonucleotide probes, imaged, and
photobleached for a total of 50 rounds. Each adapter probe was 60-nt and consisted of a 20-nt
primary probe binding region and two consecutive 20-nt readout probe binding regions. The
readout probes were 30-nt oligos conjugated with Alexa Fluor 647 (or Cy5) or ATTO 565 (or Cy3)
fluorophores with 20-nt complementary to the readout probe binding regions of adapters. The
sequences of adapter and readout probes are provided in Supplementary Table 3. To perform
automatic buffer exchange during multiple rounds of readout probe hybridization and imaging, we
used a Bioptechs FCS2 flow chamber and a computer-controlled, custom-built fluidics system'"7”.
Prior to sequential readout probe hybridization and imaging, we used DAPI images for registration

to images taken before primary probe hybridization. We assembled the sample onto the Bioptechs
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FCS2 flow chamber and further flowed 2 mL imaging buffer through the chamber. We selected
the same FOVs as those selected during co-immunofluorescence and fluorescent protein imaging.
At each FOV, we took z-stack images with 488-nm and 405-nm laser illuminations to image
fiducial beads and DAPI respectively. The z-stacks (7-10 um total) had a step size of 200-nm and
an exposure time of 0.4 s at each step. For each round of readout probe hybridization, we flowed
through the chamber 2 mL readout probe hybridization buffer (20% vol/vol ethylene carbonate
(Sigma-Aldrich, E26258) in 2x SSC) containing two adapter probes each at 50 nM concentration
and incubated for 15 min at room temperature. We flowed through the chamber 2 mL wash buffer
(20% vol/vol ethylene carbonate in 2% SSC) for 2 min and further flowed through 2 mL readout
probe hybridization buffer containing the two dye-labeled readout probes each at 75 nM
concentration. We incubated the sample for 15 min at room temperature and further flowed
through 2 mL wash buffer for 2 min. We then flowed 2 mL imaging buffer through the chamber.
Ateach FOV, we took z-stack images with 647-nm, 560-nm, and 488-nm laser illuminations. Dye-
labeled readout probes were imaged in the 647-nm and 560-nm channels and fiducial beads were
imaged in the 488-nm channel. The z-stack (7-10 um total) had a step size of 200-nm and an
exposure time of 0.4 s at each step. After imaging, we switched buffer to readout probe
hybridization buffer containing 1 uM dye-free readout probes (blocking oligos) and photobleached
the sample by continuous simultaneous laser illuminations with 750-nm, 647-nm, and 560-nm
lasers for 40 s. We then flowed 5 mL 2x SSC through the chamber to wash away the unbound dye-
free readout probes before the next hybridization round. A total of 50 hybridization rounds was
performed. The color shift between the 647-nm and 560-nm channels was canceled by taking z-
stack calibration images of 100-nm Tetraspeck beads (Invitrogen, T7279) attached to a coverslip

surface.
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Mouse K-MADM-Trp53 lung tissue fine-scale chromatin tracing

We performed fine-scale chromatin tracing targeting in total 1200 genomic loci in the cis
regulatory regions of 30 genes, including 14 candidate progression drivers (CPDs), 14 candidate
tumor suppressors (CTSs), Kras, and Myc. For each gene, we target 40 (20 for Foxa3 due to short
gene length) consecutive 5-kb to 20-kb loci spanning the promoter and candidate enhancers. To
distinguish the identity of each target locus in each gene region, we used a parallel chromatin
tracing approach: each template probe consists of (from 5’ to 3”) a 20-nt forward priming region,
a 20-nt locus-specific readout sequence, a 30-nt genome-targeting sequence, a second 20-nt locus-
specific readout sequence, a 20-nt gene-specific readout sequence and a 20-nt reverse priming
sequence. We divided the 30 genes into three fluorescence channels (560-nm, 647-nm, 750-nm),
with 10 genes profiled per channel. In each channel, probes targeting each of the 40 loci shared
the same locus-specific readout sequence. Probes targeting the same gene region shared the same
gene-specific readout sequence. The template probe library pool was purchased from Agilent
(Supplementary Table 1). Primary probes were synthesized following the protocols described
above. We first hybridized primary probes to the genome. The hybridization procedure for the
fine-scale chromatin tracing is similar to that of the megabase-resolution chromatin tracing except
that (1) heat denaturation was performed by incubating the petri dish in a 90 °C water bath for 4
min; and (2) primary probes were incubated in a petri dish at 40 °C in a humid chamber for 36-48
hours. We then sequentially hybridized dye-labeled readout probes and performed 50 rounds of
three-color imaging, including 40 rounds for locus-specific readout and 10 rounds for gene-
specific readout. The sequences of adapter and readout probes are provided in Supplementary

Table 3.

Mouse K-MADM-Trp53 pancreas tissue chromatin tracing experiments
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The experimental procedure for the pancreas tissue is similar to that of the lung tissue except that
pancreas tissue sections were permeabilized with 0.5% (vol/vol) Triton X-100 (Sigma-Aldrich,
T8787) in DPBS for 20 min at room temperature, washed in DPBS for 2 min twice, incubated with
rabbit anti-Cytokeratin 19 antibody (Abcam, ab52625, 1:50 and rat anti-Ki-67 antibody
(Invitrogen, 14-5698-82, 1:100) in blocking buffer at 4 °C overnight. Heat denaturation was

performed by incubating the petri dish in a 90 °C water bath for 3 min.

Mouse cell line chromatin tracing experiments

Cell culture: The KP mouse primary adenocarcinoma cell line, 31671, was a gift from Dr. Nik
Joshi and was derived from an autochthonous LSL-Kras®?P/Kras"T; p53/1°¥/1o* mouse
administered with Adeno-Cre'®?. The K-MADM-Trp53 mouse primary adenocarcinoma cell line,
SA6082inf, was derived from collagenase-based dissociation of a large green tumor dissected from
a K-MADM-Trp53 mouse. Kras and Trp53 genotypes were confirmed by PCR. Both cell lines
were cultured in DMEM (Corning, 10-013-CV) containing 10% (vol/vol) FBS (Gibco, 26140-079)
and 1% (vol/vol) Penicillin-Streptomycin (ThermoFisher, 15140-122) at 37 °C with 5% COx. Cells
were passaged whenever they reached confluency. Both cell lines were seeded onto UV-sterilized
coverslips (Bioptechs, 40-mm-diameter, #1.5) and permitted to grow until 60-70% confluency
prior to primary probe hybridization. All cell lines were determined to be free of mycoplasma via
PCR (ATCC, 30-1012K).

Stable Rnf2 knockdown and rescue cell line construction: Lentiviral supernatant for Sigma
Mission™ shRNAs targeting Rnf2 and a non-targeting control (shNTC) was obtained from the
Yale Cancer Center Functional Genomics Core. KP cells were seeded in 6-well plates (Falcon,
353046) with a density of 50,000 cells/well. Cells were infected with lentivirus at different titers

24 hours after seeding. Stable transfected cells were selected with 6 pg/mL puromycin (Gibco,
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A11138-03) for 48-72 hours after lentiviral transfection. Cell pellets were collected after 48 hours
of selection for quantitative RT-PCR validation and after 72 hours of selection for western blot
validation. For Rnf2 rescue experiments, Rnf2 WT and Rnf2 I53S c¢cDNAs (both harboring a
mutated Rnf2 shRNA target seed sequence) were synthesized from Genscript and inserted into the
multiple cloning site of pLV-EF1a-IRES-Hygro (Addgene 85134). To construct rescue cell lines
(shNTC+empty vector, shRnf2+empty vector, shRnf2+I53S Rnf2), stable Rnf2 knockdown KP
cells were seeded in 6-well plates (Falcon, 353046) with a density of 50,000 cells/well. Cells were
infected with lentivirus at different titers 24 hours after seeding. Stable transfected cells were
selected with 700 pg/mL hygromycin (Gibco, 10687010) for 48-72 hours after lentiviral
transduction. Rnf2 protein expression was confirmed by western blot.

Primary probe hybridization: Cells were washed with DPBS twice for 2 min each, fixed with 4%
(vol/vol) paraformaldehyde (EMS, 15710) in DPBS for 10 min, and washed twice with DPBS for
2 min each. Cells were permeabilized with 0.5% (vol/vol) Triton-X (Sigma-Aldrich, T8787) in
DPBS for 10 min and washed twice with DPBS for 2 min each. Next, the cells were treated with
0.1 M HCI for 5 min at room temperature, washed with DPBS twice for 2 min each, treated with
0.1 mg/mL RNase A in DPBS for 45 min at 37 °C, and washed twice with 2x SSC for 2 min each.
The cells were subsequently incubated in pre-hybridization buffer containing 50% (vol/vol)
formamide and 0.1% (vol/vol) Tween-20 in 2x SSC. Synthesized primary probes were dissolved
in 25 pL hybridization buffer containing 50% (vol/vol) formamide and 20% (vol/vol) dextran
sulfate in 2% SSC. The final probe concentration was 30-40 uM. We then added the hybridization
buffer containing probes to a 60 mm petri dish and flipped the coverslip onto it so that the cells
were immersed into hybridization buffer. Heat denaturation was performed by incubating the petri
dish in a 90 °C water bath for 4 min. The petri dish was incubated at 47 °C in a humid chamber

for 36-48 hours. After hybridization, the cells were washed with 50% (vol/vol) formamide in 2x
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SSC for 15 min twice at room temperature and washed with 2x SSC for an additional 15 min. We
then incubated each sample with 0.22-um light yellow beads (Spherotech, FP-0245-2) resuspended
in 2x SSC as fiducial markers for drift correction and washed the sample with 2% SSC briefly.

Readout probe hybridization and imaging: We followed the same “Readout probe hybridization
and imaging” procedure, as performed in “Mouse K-MADM-Trp53 lung tissue chromatin tracing
experiments” described above, except that (1) DAPI images were acquired after sequential readout
probe hybridization and imaging; (2) both readout probe hybridization buffer and wash buffer were
composed of 35% (vol/vol) formamide in 2x SSC instead of 20% (vol/vol) ethylene carbonate; (3)
fiducial beads were imaged in the 405-nm channel; and (4) tris(2-carbox-yethyl)phosphine (TCEP;
Sigma-Aldrich, C4706) cleavage was used instead of photobleaching for fluorescence signal
removal between the readout hybridization rounds. TCEP reduces disulfide bonds connecting
fluorophores to readout probes, removing fluorophores from readout probes. The TCEP cleavage
buffer was composed of 50 mM TCEP and 1 uM dye-free readout probes in 20% (vol/vol) ethylene
carbonate to block unoccupied readout probe binding regions on adapters from interfering with the

next round of hybridization and imaging.

Microscope setup

For imaging, we used a custom-built microscope with a Nikon Ti2-U body, a Nikon CFI Plan Apo

103 Different laser

Lambda 60x Oil (NA1.40) objective lens, and an active auto-focusing system
settings were applied for imaging tissues or cell lines. For K-MADM-Trp53 lung chromatin tracing
experiments, illumination lasers included: a 750-nm laser (2RU-VFL-P-500-750-B1R, MPB
Communications), a 647-nm laser (2RU-VFL-P-1000-647-B1R, MPB Communications), a 560-
nm laser (2RU-VFL-P-1000-560-B1R, MPB Communications), a 488-nm laser (2RU-VFL-P-

500-488-B1R, MPB Communications), and a 405-nm laser (OBIS 405 nm LX 50 mW, Coherent).
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The five laser lines were directed to the sample using a multi-band dichroic mirror
(ZT405/488/561/647/752rpc-UF2, Chroma) on the excitation path. Laser intensities were
controlled with an acousto-optic tunable filter (AOTF, 97-03309-01 Gooch & Housego), and laser
on-off was controlled by mechanical shutters (LS3S2Z0, Vincent Associates). For cell line
chromatin tracing experiments, we used a Lumencor CELESTA light engine for illumination, with
the following laser wavelengths: 405-nm, 477-nm, 546-nm, 638-nm, and 749-nm. The lasers were
directed to the sample using a corresponding penta-band dichroic mirror from Lumencor. Laser
intensities and on-off were controlled by internal controls of the light engine. The 750/749-nm
laser was used to excite and image DyLight 800-conjugated donkey anti-rabbit secondary antibody.
The 647/638-nm laser was used to excite and image Alexa Fluor 647 (or Cy5) on readout probes
and on the anti-rat secondary antibody. The 560/546-nm laser was used to excite and image
tdTomato fluorescence and ATTO 565 (or Cy3) on readout probes. The 488/477-nm laser was
used to excite and image GFP fluorescence and the yellow-green fiducial beads for drift correction.
The 405-nm laser was used to excite and image the DAPI stain and the light-yellow fiducial beads.
On the emission path, we had a multi-band emission filter (ZET405/488/561/647-656/752-nm
Chroma for the tissue imaging setup or a corresponding penta-band emission filter for the cell line
imaging setup) and a Hamamatsu Orca Flash 4.0 V3 camera. The pixel size of our system was
107.9 nm. To automatically scan and image multiple FOVs, we used a computer-controlled
motorized x—y sample stage (SCAN IM 112x74, Marzhauser). For z-stepping and active auto-

focusing, a piezo z positioner (Mad City Labs, Nano-F100S) was used.

Arrayed RNAI screen of cell proliferation

Lentiviral infection conditions were optimized in 96-well plates for initial cell seeding number,

lentiviral dosage, antibiotic concentration, and assay time. KP and K-MADM-Trp53 LUAD cells
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were seeded in complete cell culture media at a density of 250 cells per well in a 96-well assay
plate (Corning 3903), incubated for 24 hours, and infected with lentiviral supernatant of Sigma
Mission™ shRNAs targeting CPDs obtained from the Yale Cancer Center Functional Genomics
Core. A total of 200 uL media was added into each well comprised of 50 uL lentiviral supernatant
and 150 uL complete cell culture media with 10 ug/mL polybrene (EMD Millipore, TR-1003-G).
Each shRNA hairpin was tested in triplicate. All lentiviral infections were performed in duplicate
to rule out the influence of lentiviral dosage on cell growth: one replicate with 6 ug/mL puromycin
selection and the other replicate with no puromycin selection. After 24 hours of lentiviral
incubation, corresponding wells were treated with or without puromycin selection for 48 hours.
The cells were then incubated with complete cell culture media for 4-5 days. Total viable cell count
was determined with CellTiter-Glo Luminescent Cell Viability Assay (Promega, G7572) using a
Promega luminescence plate reader. For data analysis, we deducted luminescence readout values
of blank wells from those of test wells. We then normalized luminescence readout values of each
target shRNA hairpin to those of shNTC. All shRNA hairpin sequences are provided in

Supplementary Table 6.

Rnf2 targeted degradation

Two million cells of the KP mouse primary adenocarcinoma cell line 31671 were nucleofected
(Amaxa) with 2 pg homology-directed repair (HDR) template and 2 uM RNP (IDT Alt-R
CRISPR-Cas9 sgRNA) for Rnf2-dTAG. The HDR template contained a 555-nt 5’ homology arm
homologous to the 5> end of the Rnf2 stop codon, a 30-nt linker and two HA tags, an FKBP*¢Y
and mScarlet insert (Supplementary Table 6, amplified from a gift plasmid from Dr. David
Schatz at Yale University), and a 999-nt 3° homology arm homologous to the 3’ end of the Rnf2

stop codon. After transfection, the cells were seeded into 6-well plates and cultured for 24-48 hours
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before FACS sorting. mScarlet+ cells were sorted into 96-well plates. Single colonies were
manually picked, genotyped with PCR, and validated with sequencing. The spacer sequence for
Rnf2 sgRNA is GACTTTATTATGCACCCACCA. The dTAG-13 ligand and negative control
ligand were added to the cells at a final concentration of 500 nM. The cells were incubated at 37 °C

with 5% COa.

Western Blot

Cells were trypsinized, harvested, and lysed with RIPA buffer (ThermoFisher, 89900) containing
1x protease inhibitors (ThermoFisher, 8§7786) at 4 °C for 30 min. Cell lysate supernatant was
collected after centrifugation at 16,000 % g for 20 min at 4 °C. Supernatants were quantified using
the BCA protein assay kit (Pierce, 23225). A total of 20 pg protein was denatured at 95 °C for 5
min and loaded on a 4-20% precast polyacrylamide gel (BioRad, 4568094) for gel electrophoresis.
Proteins were transferred onto a PVDF membrane (ThermoFisher, IB24001) with an iBlot2 gel
transfer device (Invitrogen, IB21001). The PVDF membrane was blocked with 5% (vol/vol) BSA
in 1x TBST (AmericanBio, AB14330-01000), incubated with primary antibodies at 4 °C overnight,
washed with 1x TBST for 5 min for three times, incubated with HRP-conjugated secondary
antibodies at room temperature for 1 hour, and washed three times with 1x TBST for 5 min.
Membranes were treated with SuperSignal West Pico Plus chemiluminescent substrate
(ThermoScientific, 34577) and imaged with a ChemiDoc imaging system (BioRad). For
fluorescence detection, proteins were transferred onto a nitrocellulose membrane (BioRad,
1620145) with the Trans-Blot Turbo transfer system (BioRad). Blots were washed once with 1x
PBS (Boston BioProducts, BM-220X), blocked for an hour with Intercept Blocking Buffer
(LiCOR, 927-7001), and incubated with primary antibodies overnight at 4°C. Blots were

subsequently washed three times with 1x PBS-0.1%Tween20 for 10 min (Sigma-Aldrich, P1379-
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500ML), incubated with fluorescence secondary antibodies at room temperature for 45 minutes,
wash three more times with 1x PBS-0.1%Tween20 followed by 1x PBS once prior to ChemiDoc
imaging. The following antibodies were used: rabbit anti-Rnf2 (Cell Signaling Technologies,
56948, 1:500), rabbit anti-Rnf2 (Proteintech, 16031-1-AP, 1:1000), mouse anti-Hsp90 (BD
Biosciences, 610418, 1:10,000, HRP-conjugated goat anti-rabbit IgG (Abcam, ab6721, 1:3000),
HRP-conjugated goat anti-mouse IgG (BioRad, STAR207P, 1:10,000), DyLight 800 4X PEG-
conjugated goat anti-mouse IgG 800 (Cell Signaling Technologies, 52578, 1:10,000), and DyLight

680-cojugated goat anti-rabbit IgG (Cell Signaling Technologies, 5366S, 1:10,000).

Bulk RNA-sequencing of lung tumors

Large green tumors from K-MADM-Trp53 mice were microdissected under a Nikon SMZ1270
fluorescence dissection stereo microscope and flash frozen. Tissue was pulverized using a
BioPulverizer that was sprayed down with RNAse Away (Molecular BioProducts) and cooled with
liquid nitrogen. RNA and genomic DNA were extracted using the AllPrep DNA/RNA Mini Kit
(Qiagen). Library preparation for RNA-sequencing was performed by the Yale Center for Genome
Analysis (YCGA), and libraries were sequenced on a NovaSeq S2 (Illumina) to obtain 100-bp
paired-end reads. All reads that passed FASTQC quality metrics were mapped to the UCSC mm10
mouse genome and normalized gene count matrices were generated through STAR. Further
analysis after trimming, alignment, and normalization were performed using DESeq2 on R!*,
Hierarchical clustering was done through the pheatmap package. Genes upregulated (log> fold
change > 2, FDR < 0.05) or downregulated (logz fold change < -1, FDR < 0.05) in LUAD
compared to AdenomaG were compared to the MSigDB Hallmarks gene set collection

(https://www.gsea-msigdb.org/gsea/msigdb) to determine enrichment (hypergeometric test).
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Normalized expression counts and differential expression analyses are included in

Supplementary Table 4.

Whole exome sequencing analysis of copy number and single nucleotide variants

Tumor genomic DNA was obtained from flash frozen tumors using the AllPrep DNA/RNA Mini
Kit, as described above. Paired normal DNA was obtained by extraction from FFPE slides of the
same mouse lung by the YCGA. Whole exome sequencing (WES) was performed using the Mouse
All Exon kit (Agilent) for target capture followed by next-generation sequencing by Psomagen.
Mouse tumor samples were sequenced at 200x read coverage while healthy lung tissue was
sequenced at 50x. For copy number analysis, sample reads were mapped to the GRCm38 reference
genome with BWA-mem'®, sorted based on coordinates with Picard SortSam tools
(http://broadinstitute.github.io/picard/), and indexed with Samtools'%!?7, For single nucleotide
variant (SNV) analysis, after initial quality control and trimming the raw sequences using fastp'®®,
the trimmed sequence data were mapped to the mouse reference genome UCSC mm10 using
BWA-MEM!'%. Duplicate reads were identified by employing the MarkDuplicates tool from the
Genome Analysis Toolkit (GATK)/picard. Base Quality Score Recalibration (BQSR) was
performed using BaseRecalibrator & ApplyBQSR with reference to the dbSNP database and data
from the Sanger Mouse Genetics Programme (Sanger MGP). We created a panel of normals (PoN)
containing germline and artifactual sites by running Mutect2 in tumor-only mode for each of 12
normal samples. We constructed a GenomicsDB datastore from the normal Mutect2 calls. The
normal calls were combined to create the PON with CreateSomaticPanelOfNormals. In this way,
not only were the matched normal variants filtered out, but also any variants present in other

normal mouse samples. We employed Mutect2 in GATK4 (v 4.4.0.0)!% to call somatic variants in

a tumor/normal variant calling pipeline. The variant calling also utilized the PON file created using
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the normal calls. To address potential orientation biases in the raw data, we applied the
LearnReadOrientationModel tool to learn the orientation bias model. Then, we filtered the
unprocessed variants using FilterMutectCalls. We applied additional filtering criteria to reduce the
false-positive rate of the variants identified. The positions in either tumor or matched normal
samples with <10x coverage were removed from further analysis. At least three reads were
required to support variants called in tumor samples, with no more than zero reads for the variant
allele in the matched normal. A variant allele fraction of >5% was used to make mutation calls,

which are listed in Supplementary Table 7.

Single-nucleus RNA sequencing

Single-nucleus isolation and RNA sequencing library preparation: Nuclei from dissected lung
tumors (two biologic replicates) were isolated by adapting a previously reported protocol''°.
Briefly, a stock solution of 2x salt-Tris buffer (ST buffer) composed of 292 mM NaCl (Thermo
Fisher, BP358), 20 mM Trizma-HCI (Sigma, T2194-100ML), 2 mM CaCl2 (VWR, E506-100ML),
and 42 mM MgCl2 (Alfa Aesar, J62411) in nuclease-free water (Invitrogen, 10977-15) was
prepared fresh before isolation. 0.02% NP-40 Substitute based ST lysis buffer (NST lysis buffer)
was generated using 1 mL of 2x ST buffer, 4 uL of 10% NP-40 Substitute (Sigma, 98379), 10 uL
of BSA (NEB, B9000S), 20 pL of Superase-In RNase inhibitor (Invitrogen, AM2696), and 966
uL of nuclease free water (Invitrogen, 10977-015). Resuspension buffer was also freshly prepared
using 880 pL of 1x Dulbecco’s PBS (Sigma, D8537-500ML), 100 pL of BSA, and 20 pL of
Superase-In RNase inhibitor. 50 pL of NST lysis buffer was added to flash frozen tissue ina 1.5
mL microcentrifuge tube. The sample was continuously minced on ice with Noyes Spring scissors

(Fine Science Tools, 15514-12) for four minutes to isolate nuclei. Additional NST lysis buffer was

added to the sample for a final volume of 0.5 mL and passed through a 30 pm MACS SmartStrainer
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(Miltenyi Biotec, 130-098-458) into a 15 mL conical tube. The sample was then washed by adding
4 mL of 1x ST buffer through the strainer. Samples were spun down in a swinging bucket
centrifuge for 5 min at 500 g at 4°C and resuspended in 50-100 pL. of Resuspension buffer
depending on the size of the pellet. The nuclei suspension was then passed through a 35-um filter

(Falcon, 352235). Nuclei were counted on a hemacytometer, and 10,000 nuclei were loaded onto

a 10x Chromium chip for Chromium Single Cell 3’ Library (V3, PN-1000075) generation.

Single-nucleus RNA sequencing data analysis: Libraries were sequenced according to 10x
Chromium manufacturer recommendations. The reads were aligned to the mm10-2020-A
reference transcriptome to include introns using Cell Ranger count (v.7.1.0; 10x Genomics). To
remove ambient RNA, raw matrices generated from Cell Ranger were inputted into Cellbender
(Snapshot 11) using remove-background and run on the Terra platform with an FPR set to 0.01.
Doublets were detected using Scrublet (v0.2.1) via doublet detection (Snapshot 2) on Terra.
Seurat 5.0.5 was used for downstream analyses. Cell barcodes with (1) 500-5000 genes; (2) 1000-
10,000 transcript UMIs; and (3) less than 10% mitochondrial counts were included in the analysis.
Data were normalized with a global scaling “LogNormalize” method and a scale factor of 10,000.
We performed feature selection with the “vst” method and 2,000 features, scaled the data with all
genes, performed principal component analysis (PCA) for dimensionality reduction, and clustered
single nucleus gene expression with the Louvain algorithm. For tumor analyses, we first excluded
fibroblasts and fibrocytes (Ptpre, Cd163, S100a4, S100a8, S100a9, Cd90, Collal, 116, Ccl3, Ccl4),
endothelial cells (Pecam i, Cdh5, Tie2, Foxf1), and immune cells (Mrcli, Trac, Jchain, Ighgl) and
further identified adenoma cells (Sfipc, Lyz2, Cxcll5, Hopx), and LUAD cells (Eif2s3y, Chsy3,

Ldlrad4, Largel) based on their marker gene expression patterns*®!1%-111,
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Image analysis

All image analysis was performed with MATLAB R2019b.

DAPI registration: GFP and tdTomato fluorescence images and SPC and CDA45 co-
immunofluorescence images were aligned to genome-wide chromatin tracing images using
intensity-based image registration of the DAPI images. To process the DAPI images, we first took
the average z-projection of each DAPI image stack and normalized it to its maximum intensity.
We then reduced the background by normalizing the average projection image to the background
calculated by the adaptthresh function. We then adjusted the threshold of the image so that the
maximum and minimum intensities corresponded to the 3™ and 1° quartiles of the pixel intensities.
We then applied an “opening-by-reconstruction” technique with a disk-shaped morphological
structural element with a radius of 25 pixels to reduce the noise. Next, to align the processed DAPI
images, we applied an intensity-based image registration algorithm. We used the imregtform
function to estimate the geometric transformation for image alignment and the imregconfig
function to generate the optimizer and metric configurations used by imregtform. We first
optimized an initial transformation condition, and then used the optimized initial conditions to
improve image alignment. For initial condition optimizations, we reduced the InitialRadius of the
optimizer (generated by imregconfig) by a scale factor of 5 and set the Maximumlterations of the
optimizer to 500. We then applied the optimizer and metric to the imregtform function with the
“similarity” geometric transformation option to generate the initial geometric transformation
object. We used the imregtform function to align the processed DAPI images with the “affine”
geometric transformation option, the previously generated optimizer and metric, and the initial
geometric transformation object. We finally generated a geometric transformation object to align
DAPI images taken with fluorescent protein and co-immunofluorescence images to the DAPI

images taken with the first hybridization round of genome-wide chromatin tracing.
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GFP+ and tdTomato+ cell analysis: To identify cells with GFP or tdTomato fluorescence signals,
we first generated maximum projections of GFP or tdTomato images along the z direction and
aligned the images to the first-round readout hybridization images of genome-wide chromatin
tracing. We then used an algorithm that can manually adjust the intensity threshold to determine
GFP+ or tdTomato+ cells (Thresholding an image - File Exchange - MATLAB Central
(mathworks.com)). We finally generated binary masks to distinguish GFP+ and tdTomato+ cells.
SPC+ and CD45+ cell extraction: To identify cells with SPC or CD45 immunofluorescence
signals, we generated average projections of SPC or CD45 images along the z direction and
normalized the images to the background calculated by the adaptthresh function. We then
performed standard deviation filtering of the image with the stdfilt function, and filled holes with
the imfill function, using a connectivity of 8 pixels. We then converted the SPC or CD45 images
to binary images, used the regionprops function to identify SPC or CD45 patches, and excluded
patches smaller than 150 pixels. The remaining patches were used to generated binary masks to
distinguish SPC+ or CD45+ cells. Finally, to match the signals to nuclei, we generated binary
masks for each cell nucleus using the DAPI images as described in the “Nucleus segmentation”
section below and dilated the binary mask of each nucleus with a disk-shaped structural element
of 10 pixels. We then multiplied each single-nucleus binary mask to the SPC or CD45 binary
masks. Nuclei with more than 100 overlapping pixels were labeled as nuclei of SPC+ or CD45+
cells.

The genome-wide chromatin tracing image analysis pipeline consists of the following steps: color
correction, drift correction, nucleus segmentation, foci fitting, decoding, and trace linking.

Color correction: The color shift between 647-nm and 560-nm laser channels was corrected by
taking z-stack calibration images of Tetraspeck microspheres (0.1 pm, Invitrogen, T7279) attached

to a coverslip surface. A polynomial spatial transformation structure in x and y was constructed
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with the cp2tform function and used for xy color shift correction. The color shift in z was corrected
by calculating the mean z shift.

Drift correction: To correct for sample drifts between different rounds of hybridizations, we
determined 3D positions (X, y, z) of fiducial beads with 3D Gaussian fitting for each hybridization
round. We subtracted 3D positions (X, y, z) of the first hybridization round from each hybridization
round to generate the drift correction profiles for all hybridization rounds.

Nucleus segmentation: Because the tissue sections largely consisted of a monolayer of cells, we
segmented single cell nuclei in 2D based on DAPI staining patterns. We first applied drift
corrections to the DAPI images and took their average projections along the z direction. We then
normalized the DAPI average projection images to the background calculated by the adaptthresh
function with a neighborhood size of 101 pixels. We further removed small “bright” objects using
“opening-by-reconstruction” and small “dark” objects using “closing-by-reconstruction”
techniques, both with a disk-shaped structuring element of 15 pixels. These processed DAPI
images were further analyzed to extract foreground and background markers for the watershed
algorithm. To obtain foreground markers for each single nucleus, we calculated the regional
maxima with the imregionalmax function. To acquire background markers, we binarized the
processed DAPI images and calculated their complement. We then used the imimposemin function
to modify the processed DAPI images so that the regional minima occurred at foreground and
background marker pixels. Finally, we applied the watershed function to the modified DAPI
images for nucleus segmentation. We excluded small debris (<300 pixels) and under-segmented
doublet nuclei (>9000 pixels) from our analyses.

Foci fitting: To determine the intensity threshold for DNA foci identification, we adapted a
previously developed adaptive thresholding procedure so that the fitted foci number matched the

t24

expected DNA loci count”*. The expected DNA loci count per nucleus per bit was approximately
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20 based on the probe design. We then fitted 3D positions (X, y, z) of all DNA foci using a 3D
radial center algorithm'!? in each bit. We further applied color correction and drift correction to
the fitted DNA foci in each bit, so that all fitted DNA foci were in the same 3D coordinate system
as the first bit in the 560-nm laser channel. The signal intensity of each fitted DNA spot was
normalized to the median signal intensities of all DNA foci in the corresponding image.

Decoding and trace linking: After we generated all fitted DNA foci in each bit in single nuclei,
we adapted a previously reported expectation-maximization procedure for decoding!®. First, we
identified all valid spot pairs corresponding to a valid barcode whose two fitted DNA spots were
within 500-nm spatial distance. For each spot pair, we calculated three quality metrics: (1) the
distance between the 3D positions (X, y, z) of the spot pairs; (2) the difference between the signal
intensities of the spot pairs; and (3) the average signal intensities of the spot pairs. We then
calculated the percentages of spot pairs with worse qualities than a given spot pair (e.g. larger
distance, larger difference, smaller intensities) and calculated the product of the three percentages
as the quality score of the given spot pair. Next, for all spot pairs containing the same repetitive
spot, we retained one spot pair with the highest quality score. Then, for each target genomic locus,
we retained the top four spot pairs with the highest quality scores in each nucleus. After we
obtained all processed spot pairs in all nuclei in each FOV, we linked the DNA loci positions into
traces using a previously developed symmetric nearest neighbor approach?*. We identified the 3D
centroid positions of each linked chromosome territory and calculated a fourth quality metric: the
distance between each spot pair to the nearest corresponding chromosome territory centroid. We
then iteratively updated the quality scores, removed repetitive spot pairs, retained the top four spot
pairs with the highest quality scores, and performed trace linking. For each single nucleus, if more
than 99% (iteration rounds no more than 10) or 97% (iteration rounds more than 10) of spot pairs

in the current iteration were the same as the previous iteration, the nucleus would be labeled as
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“decoded”. If more than 85% of nuclei in the FOV were labeled as “decoded”, the iteration would
be terminated and spot pairs in the current iteration were stored as the finalized spot pairs. To link
the finalized spot pairs (detected TADs) into chromatin traces, we first defined initial traces using
the detected TADs in the first hybridization round. To grow the chromatin trace, we link the
detected TADs to the traces if the detected TADs in the current hybridization round are the nearest
neighbor to those in the previous hybridization round, and vice versa. After linking chromatin
traces, we refit the missing TADs of each chromatin trace using the finalized spot pairs if they are
within 6 pixels to the periphery of the chromosome territory. There are a small proportion (around
10%) of chromatin traces with overlapping TADs after the refitting procedure, so we further
identified traces with >50% overlapping TADs and excluded the shorter ones. For each
chromosome in a single cell, we then retained the longest two chromatin traces. Quality of the
individual datasets was further confirmed by analyzing the detection efficiency of each target
genomic region and trace length distribution, which was consistent across all datasets and all
cancer states.

Fine-scale data analysis: For fine-scale chromatin tracing data analysis, the analytical procedure
is the same as that in large-scale chromatin tracing mentioned above except for decoding and trace
linking. We first fitted foci as described in “Foci fitting” above in 50 hybridization rounds in three
color channels. The expected foci count per hybridization round was set as twice the number of
target genomic loci in the specific round in the color channel. To link traces, we first identified the
centroid position of the gene foci in the gene hybridization round, which approximated the centroid
of the chromatin trace. Next, in each of the 40 genomic locus hybridization rounds, if a genomic
locus was within 500 nm of the centroid, we included it into the chromatin trace. Chromatin traces
shorter than 7 loci were removed. In each cell, we retained the longest two chromatin traces for

each gene. To identify enhancer-promoter loops (E-P loops), we first calculated the mean spatial
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distance between each pair of loci. We excluded loci in hybridization rounds with poor signal-to-

noise ratios. We then calculated the expected distances, as published previously!!-*

using all cells
of each state (power law fitting of mean spatial distance versus genomic distance). For each trace,
we calculated the normalized distance (spatial distance/expected distance) between each pair of
loci. We identified normalized distances between all loci to the promoter locus and performed one-
sided Wilcoxon rank-sum tests and false discovery rate (FDR) multiple comparison correction to
identify loci with lower normalized distances to the promoter than those of neighboring loci. If
such locus contained a putative enhancer, we called it an E-P loop. We used E-P interactions in
LUAD cells to identify CPD gene E-P interactions and those in AT2 plus adenoma cells to identify
CTS E-P interactions. Putative enhancers were identified by the union of Ensembl predicted

enhancers and H3K4mel (ENCFF536DWZ) and DNasel (ENCFF268DLZ) intersected ChIP-seq

peaks in adult mouse lung.

Data analyvsis and statistics

Heterogeneity: To compare chromatin conformational heterogeneity, we defined a heterogeneity
score as the coefficient of variation (COV) of inter-loci distances between a pair of TADs on a
chromosome of a cell state (variation among different copies of the chromosome). Wilcoxon
signed-rank test was used to compare all heterogeneity scores of a chromosome between cell states.
Decompaction: To compare levels of chromatin compaction, we defined a decompaction score as
the mean inter-loci distance between a pair of TADs on a chromosome of a cell state. Wilcoxon
signed-rank test was used to compare all decompaction scores of a chromosome between cell states.
Demixing: To compare levels of chromatin intermixing or demixing, we defined a demixing score
as the standard deviation of all normalized mean inter-loci distances on a chromosome of a cell

state. The normalized mean inter-loci distance between a pair of TADs was calculated by
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normalizing the mean inter-loci distance between the pair of TADs to the average value of all mean
inter-loci distances on the chromosome. Levene’s test of normalized mean inter-loci distances of
a chromosome was used for statistical comparisons between cell states for potential differences in
chromatin intermixing/demixing.

A and B compartment polarization analysis: To identify A and B compartments, we adapted a
previously developed algorithm to determine A and B compartment scores''?*. In brief, we first
generated a mean inter-loci spatial distance matrix for each chromosome, where each pixel
corresponded to the mean spatial distance between a pair of TADs. We then normalized the mean
spatial distances to the corresponding expected spatial distances calculated by power-law fitting
of spatial versus genomic distances. Next, we calculated the Pearson correlation coefficient
between each pair of columns of the normalized matrix. Finally, we applied a principal component
analysis of the Pearson correlation matrix and used the coefficients of the first principal component
as the compartment scores. We calculated the correlations between compartment scores and an
averaged profile of H3K4mel, H3K4me3, DNase I hypersensitivity site, and gene densities!'>!!4,
and flipped the signs of the compartment scores if necessary, so that the correlations were positive.
Under this assignment, A compartment TADs had positive scores and B compartment TADs had
negative scores. We then used a previously described polarization index metric to quantify the
polarized arrangement of A and B compartments >*. We downloaded the called H3K4mel and
H3K4me3 ChIP-seq peaks and DNA DNase I hypersensitivity sites from the ENCODE portal with
the following identifiers: ENCFF536DWZ, ENCFF508WEP, ENCFF268DLZ. The gene density
profile was downloaded from the UCSC table browser.

Radial score analysis: To calculate the radial score of each TAD in each single cell, we first
measured the mean spatial distance between each TAD to the centroid of all target TADs and

normalized the distance to the average spatial distances from all TADs to the centroid. Wilcoxon
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signed-rank test was used to compare all radial scores of TADs on a chromosome between cell
states.

The ”Trace2State” pipeline for single-cell chromatin conformation-based cell state
visualization and classification: To visualize in low dimension potential clustering of single-cell
3D genome conformations, we constructed an input matrix where each row corresponded to a
single cell and each column represented the single-cell A/B compartment (scA/B) score of each
TAD?. Only cells with at least 10 traces were analyzed. The scA/B score of each TAD was
calculated as the mean A/B compartment score of all its spatially adjacent TADs within a 1200-
nm 3D radius neighborhood. Specifically, we first calculated the population-average A/B
compartment scores of each TAD as described in “A and B compartment polarization analysis”
above. For each observed TAD locus, we then identified all other TADs within a 1200-nm 3D
radius neighborhood and calculated their mean A/B compartment score as the scA/B score of the
central TAD locus. Missing values in the matrix were replaced with 0's. The matrix was used as
input in a principal component analysis, and the first 50 principal components were used for
downstream visualizations. We scaled the 50 principle components with the PCA().fit-transform
function in python, and visualized the single cell data with t-distributed stochastic neighbor
embedding (t-SNE), UMAP and PacMAP?*¢3¥, To classify different cell states with supervised
machine learning, we supplied the Classification Learner App of MATLAB with the same input
scA/B score matrix as described above. To evaluate the supervised machine learning model, we
applied five-fold cross-validation which prevents overfitting. Specifically, data were partitioned
into five randomly chosen subsets of roughly equal sizes, with four assigned as training subsets
and one as the test subset. The model was trained repeatedly five times such that each subset was
used exactly once as the test subset. The overall prediction accuracy was calculated as the average

prediction accuracy of the test subsets in the five trainings. The Median Gaussian SVM model we

49


https://doi.org/10.1101/2023.07.23.550157
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

15

20

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.23.550157; this version posted September 9, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

used in MATLAB Classification Learner included regularization (box constraint level = 1). All
machine learning models were trained, and the model with the highest prediction accuracy
(medium gaussian support vector machine) was retained to plot the confusion matrix and ROC
curves.

The “Trace2Biomarker” pipeline for CPD and CTS gene identification: To identify CPD and
CTS genes, we first identified marker TADs with significantly changed scA/B scores during
LUAD progression. Specifically, we extracted cells with more than 325 TADs. We next performed
rank-normalization using the tiedrank function in MATLAB of scA/B scores in each cell. We
performed Wilcoxon rank-sum tests of rank-normalized scA/B scores of each TAD comparing
AdenomaG and LUAD cells. TADs with p < 0.1 were defined as marker TADs. We then defined
CPD genes as genes located in marker TADs with increased scA/B scores and with significantly
higher expression (mean expression count > 10, fold change > 3, FDR < 0.05) in LUAD compared
to AdenomaG cells. CTS genes were defined as genes located in marker TADs with decreased
scA/B scores and with significantly lower expression (mean expression count > 10, fold change <
0.5, FDR < 0.05) in LUAD compared to AdenomaG cells. For control groups, genes with
significantly increased expression in regions with unchanged scA/B scores are defined as those in
TADs with p >= 0.1 and increased expression (mean expression count > 10, fold change > 3, FDR
<0.05) in LUAD compared to AdenomaG cells. Genes with significantly decreased expression in
regions with unchanged scA/B scores are defined as those in TADs with p >= 0.1 and decreased
expression (mean expression count > 10, fold change < 0.5, FDR < 0.05) in LUAD compared to
AdenomaG cells. Genes with increased expression only are defined as those with increased
expression (mean expression count > 10, fold change > 3, FDR < 0.05) in LUAD compared to
AdenomaG cells irrespective of scA/B score changes. Similarly, genes with decreased expression

only are defined as those with decreased expression (mean expression count > 10, fold change <
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0.5, FDR < 0.05) in LUAD compared to AdenomaG cells. Equal numbers of genes (the top 21
upregulated and top 19 downregulated) were used for each of the above gene lists interrogated in
TCGA patient survival analyses described below.

Quantification of single-nucleus and single-cell gene expression homogeneity: For expression
homogeneity calculation, we used a similar algorithm as described previously*’. We first randomly
subsampled 100 cells and calculated the Pearson correlation coefficient of gene expression
between each cell pairs. We repeated the process 100 times, each time using the mean Pearson

correlation coefficient as the gene expression homogeneity score.

Identification of AT2 cells spatially close to and far from immune cells: To distinguish
AT2/cancer cells close to and far from immune cells, we extracted binary masks of nuclei of SPC+
cells (or GFP+CD45— cancer cells in LUAD tumors) and of CD45+ cells and dilated the
SPC+/cancer cell binary mask by 50 pixels. The SPC+/cancer cells with overlapping pixels with
the CD45+ mask were identified as AT2/cancer cells spatially close to immune cells, whereas
SPC+/cancer cells with no overlapping pixels with the CD45+ mask were identified as AT2/cancer
cells distant from immune cells.

Probability for randomly selected genes to inhibit cell growth: To quantify the percentage of
randomly selected genes that can affect cell growth, we downloaded the gene dependency.csv
table from https://figshare.com/articles/dataset/  DEMETER 2 Combined RNAi/9170975, which
contained the probabilities that knocking down one gene has a cell growth inhibition or death effect.
Cancer cell line genetic dependencies were estimated using the DEMETER2 model applied to a
combination of three large-scale Cancer Dependency Map RNAI screening datasets (the Broad
Institute Project Achilles, Novartis Project DRIVE, and the Marcotte et al. breast cell line dataset).

We identified all mouse LUAD cell lines from the table with available RNAi data and calculated
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the mean probability of all genes in mouse LUAD cells. 6.4% of randomly selected genes are
expected to affect cell growth.

TCGA patient survival analysis: Clinical data for TCGA LUAD patient survival and RNA-seq
data were obtained from the GDAC website from the Broad Institute
(https://gdac.broadinstitute.org/). The identified CPD/CTS genes of LUAD were converted to
human orthologs. The RNA-seq expression matrix and the gene list were applied as input to score
the individual expression files using GSVA R package with ssGSEA scoring method!'>!'®. TCGA
LUAD patients were grouped based on high/low ssGSEA scores (most correlated/least correlated)
using the top/bottom quintiles. Kaplan-Meier survival analysis was carried out using survfit R
function with log-rank significance test.

The “Trace2Regulator” pipeline for 3D genome regulator identification: To identify chromatin
regulators that bind to genes in marker loci, we first identified genes with increased expression
(FDR < 0.1, fold change > 1) in TADs with increased scA/B scores (p < 0.1) from adenoma green
to LUAD cells. We then inputted the gene list into the BART algorithm®'? to generate a list of
chromatin regulators predicted to bind to the input genes, using the default parameter settings. We
further knocked down candidate chromatin regulators with shRNAs in the KP LUAD cell line and
performed DNA MERFISH. We further compared 3D genome alterations upon the candidate
chromatin regulator knockdown with those during the adenomaG to LUAD progression. Candidate

regulators showing concordant 3D genome alterations were identified as 3D genome regulators.

CUT&RUN experiments and analysis

CUT&RUN protocol: CUT&RUN was performed using the Epicypher CUTANA™
ChIC/CUT&RUN Kit (14-1048) according to the manufacturer’s specifications with the following

conditions and modifications: For binding to the Concanavalin beads, 500,000 cells per sample
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were prepared, counted twice by hemacytometer, and averaged. Nuclei were prepared according
to the Epicypher Cut and Run Manual Appendix. Nuclei were incubated with activated beads. 0.1
E. coli spike in DNA ng was added to each sample. The following antibodies (0.5 ug of antibody
per reaction) were used:

IgG Control antibody: CUTANA™ Kit Rabbit [gG CUT&RUN Negative Control Antibody
RNF2 antibody: CST RINGI1B (D22F2) XP® Rabbit mAb #5694

H3K4me3 antibody: Epicypher Rabbit Polyclonal H3K4me3 13-0041

H3K27me3 antibody: CST Tri-Methyl-Histone H3 (Lys27) (C36B11) Rabbit mAb #9733
H2AK119ub antibody: CST Ubiquityl-Histone H2A (Lys119) (D27C4) Rabbit mAb #8240
BMI-1 antibody: Active Motif BMI-1 antibody (mAb) 39993

RNA Pol II p-ser5: Abcam Anti-RNA polymerase II phosphor-S5 EPR19015

Library preparation: Libraries were prepared using the Epicypher CUTANA™ CUT&RUN
Library Prep Kit (14-1001) according to the manufacturer’s specifications with the following
modification: SPRI-select beads were used after library preparation to perform 200-700 bp size
selection to enrich for DNA fragments from CUT&RUN and remove any adapter dimers or high
molecular weight DNA. Library quality was analyzed using Agilent Tapestation D1000 High
Sensitivity Tapes (#5067-5584). Sequencing was performed with 10 million reads ordered per
sample, 150 bp paired-end reads, on an Illumina NovaSeq 6000.

CUT&RUN data analysis: CUT&RUN reads were analyzed for quality using FastQC
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and trimmed using Trimmomatic.
Reads were then aligned to mm9 and K-12 E. coli genome U00096.3 by Bowtie2 version 2.3.4.
Picard version 2.27.4 was used to down-sample the reads so that the read depths of E. coli
sequences from different samples matched each other. SAMTools version 1.11 was then used to

convert to BAM format, index, isolate uniquely mapped paired reads, and remove duplicates.
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MACS?2 version 2.2.7.1 was used to call sample narrow peaks, using IgG as an input. Read counts

across genomic intervals and peak visualization were performed using deepTools version 3.3!!7,

and .bw files were visualized using the Integrative Genomics Viewer.

Data availability

All raw imaging data are available upon request. All sequencing data will be available at the Gene
Expression Omnibus (GEO) upon publication. Analyzed imaging and sequencing data are

available at https://campuspress.yale.edu/wanglab/Cancer3DGenome/.

Code availability

Open-source code for imaging data collection is available at https://github.com/ZhuangLab/storm-
control. MATLAB code for raw image analysis and downstream data analysis are available at

https://campuspress.yale.edu/wanglab/Cancer3DGenome/.
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Supplementary information

Supplementary Table 1. Template oligonucleotide probe libraries for genome-wide and fine-
scale chromatin tracing

Supplementary Table 2. Codebook for all target genomic loci for genome-wide chromatin
tracing. The first column indicates which chromosome each target TAD is located in. The second
and third column indicate the start coordinate and end coordinate of the target TAD. The fourth
column indicates the HW2 binary barcode for each TAD. Each barcode consists of 100 bits, with
2 bits assigned as ‘1’ and all the other 98 bits as ‘0.

Supplementary Table 3. Oligo sequences for adapters, common readout probes, blocking
oligos and primers. The file contains four spreadsheets: ‘Large-scale adapters’, ‘Fine-scale
adapters’, ‘Common readout oligos’, ‘Blocking oligos’ and ‘Primers’. ‘Large-scale adapters’
contains the sequences of all 100 oligos that can bind to the primary probes and correspond to the
100 bits in the codebook. ‘Fine-scale adapters’ contains the sequences of loci-specific probes and
gene-specific probes. ‘Common readout oligos’ contains the sequences of dye-conjugated readout
probes. ‘Blocking oligos’ contains the dye-free oligos that have the same sequences as the common
readout oligos to block any unbound sites of the previous adapters. ‘Primers’ contains the forward
and reverse primer sequences for the template probe library amplification and primary probe

synthesis.
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Supplementary Table 4. RNA-seq analysis of lung tumors from K-MADM-Trp53 mice.
Differential expression analysis (DESeq2) of large green tumors derived from K-MADM-Trp53
mice and classified as AdenomaG and LUAD based on marker gene expression. For each gene,
log2 normalized expression counts (DESeq2) for each sample, average expression counts across
all samples, log2 fold change (LUAD vs. AdenomaG), p-value, and FDR (padj) are shown.
Supplementary Table S. List of candidate progression driver, candidate tumor suppressor
and candidate tumor initiation genes. Lists of candidate progression drivers, candidate tumor
suppressors, and candidate tumor initiation genes. References (PubMed IDs (PMID)) are listed for
genes with prior literature evidence for a functional role in lung cancer pathogenesis.
Supplementary Table 6. shRNA sequences for lentiviral transduced stable cell lines to knock
down candidate progression driver genes and sequence of the FKBPF36V and mScarlet
insert. The table contains two spreadsheets. Spreadsheet one contains sequences for all the
shRNAs of the candidate genes, positive controls, and negative controls. The first column contains
the gene names. The second column contains the shRNA sequences. The third column contains
the hairpin numbers. Spreadsheet two contains sequences for the FKBPF36V and mScarlet insert
used for Rnf2 targeted degradation.

Supplementary Table 7. Whole exome sequencing analysis of lung tumors from K-MADM-
Trp53 mice. Mutation calls of variants (variant allele fraction > 5%) for adenoma and LUAD
tumors (n = 6 tumors per group). Table includes mouse number (sample), variant chromosome,
genomic position, reference base (REF), variant base (ALT), variant allele fraction (Tumor AF),
number of reference read (AD[0]) and variant reads (AD[1]) in tumor and normal, gene, and

protein-altering effect (missense, splice variant, stop gained).
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Fig. 1. A genome-scale chromatin tracing strategy to visualize cancer 3D genomes. a,
Schematic illustration of the experimental procedure. b, (Left panel) Raw FISH foci in bit 28 in a
WT AT2 cell. (Right panels) Zoom-in images of raw FISH foci showing the decoding procedure
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and reconstructed genomic loci for 5 loci (shown as dots with 5 pseudo-colors each appearing
twice). ¢, (Left panel) Reconstructed chromatin traces superimposed with DAPI staining. The
traces are 2D projections of x, y coordinates. The DAPI image is a maximum-intensity z-
projection from a 10-um z-stack. (Right panel) The 3D positions of all decoded genomic loci in a
single-cell nucleus. Different pseudo-colors represent different autosomes. d, Matrix of mean
inter-loci distances between all genomic loci in AT2 cells. n = 4,806 AT2 cells. e, (Upper panels)
Immunofluorescence staining of cell-type markers, DAPI staining, and fluorescent protein
imaging of lung tissue from a WT mouse, a K-MADM-Trp53 mouse with adenomas, and a K-
MADM-Trp53 mouse with LUAD. (Lower panels) Representative cells of each state. The images
are maximum-intensity z-projections from 10-um z-stacks.
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Fig. 2. Systematic changes of 3D genome conformations during lung and pancreatic cancer
progression. a, Coefficient of variation (COV) of inter-loci distances (upper panels) and mean
inter-loci distances (lower panels) of mouse Chrl3 in WT AT2 (n = 4,806), Trp53** adenoma
(AdenomaR, n = 791), Trp53"~ adenoma (AdenomaY, n = 1,603), Trp53~ adenoma
(AdenomaG, n = 1,941), and Trp53~~ LUAD (n = 17,711) cells. Cell numbers of each cell state
are identical in a-g. b-e, Distributions of the (mean) log2 fold change of heterogeneity (COV of
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inter-loci distance), decompaction (mean inter-loci distance), demixing scores, and polarization
indices of each autosome (n = 19), comparing each cancer state to AT2 state. f, Distribution of the
log2 fold change of inter-chromosomal distances, comparing each cancer state to AT2 state. g,
Distribution of the mean log2 fold change of radial scores of Chr13, Chr7, and Chr19, comparing
each cancer state to AT2 state. h-j, Distributions of the (mean) log2 fold change of heterogeneity
(COV of inter-loci distance), decompaction (mean inter-loci distance), and demixing scores of
each autosome (n = 19), comparing each pancreatic cancer state to normal duct cells. n = 1529,
123, 189, 361, 475 for normal duct, PanIN R, PanIN Y, PanIN G, and PDAC cells. Cell numbers
of each cell state are identical in h-j. p values of two-sided Wilcoxon signed-rank test (b-j) are
displayed. In b-j, the horizontal lines of each box from top to bottom represent the 75th percentile,
median, and 25th percentile. Whiskers extend to the non-outlier maximum and non-outlier
minimum. Outliers are defined as values at least 1.5 times interquartile range away from the top
or bottom of the box.
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Fig. 3. The single-cell 3D genome distinguishes and encodes cancer progression states. a,
Cartoon illustration of scA/B score calculation (left panels). t-SNE, UMAP and PaCMAP plots of
single-cell 3D genome conformations (right panels). n = 3410, 157, 689, 878, and 8834 for WT
AT2, AdenomaR, AdenomaG, AdenomaY, and LUAD cells, respectively. Cell numbers of each
cell state are identical in a-c, g and h. b, Confusion matrix of supervised machine learning in mouse
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lung cells. The number in each matrix element represents the precision in each predicted state. c,
Receiver operating characteristic (ROC) curves of the machine learning model in mouse lung cells.
The area under curve (AUC) values are shown. d, PCA plot of single-cell 3D genome
conformations. n= 1103, 191, and 268 for normal duct, PanIN, and PDAC cells, respectively. Cell
numbers of each cell state are identical in d-f. e, Confusion matrix of supervised machine learning
in mouse pancreas cells. The number in each matrix element represents the precision in each
predicted state. f, Receiver operating characteristic (ROC) curves of the machine learning model
in mouse pancreas cells. The area under curve (AUC) values are shown. g, PCA plot of single-cell
3D genome conformations of adenoma and LUAD cells (left). Leiden clustering separates
Adenoma-like and LUAD-like clusters (right). h, Percentages of cells with adenoma-like or
LUAD-like 3D genome conformations in g, in each of the AdenomaR/Y, AdenomaG, and LUAD
states. The adenoma-like or LUAD-like conformation state for each cell is assigned based on a
Leiden clustering approach (upper) or the majority state of its five nearest neighbors (lower) in the
left panel of g. p values from two-sided Fisher’s exact test are shown.
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Fig. 4. The single-cell 3D genome nominates prognostic genes and genetic dependencies. a,
scA/B score changes of genes with decreased (n = 94 genes) or increased (n = 120 genes)
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expression levels from AdenomaG to LUAD cells. p values of one-sided Wilcoxon signed-rank
tests are shown. b, Mean scA/B score changes in marker genomic loci between AdenomaG and
LUAD cells. ¢, Heatmap of candidate progression driver (CPD) and candidate tumor suppressor
(CTS) gene expression (log2 normalized expression counts) comparing AdenomaG and LUAD
tumors derived from K-MADM-Trp53 mice. d-e, Gene expression homogeneity of LUAD cells in
the K-MADM-Trp53 (single nucleus) (d) and KP (single cell) (e) model comparing CPDs
(Expression up + scA/B up) or CTSs (Expression down + scA/B down) with up/down regulated
genes in regions with unchanged scA/B scores. Gene expression homogeneity is quantified with a
correlation homogeneity score method*’. The horizontal lines of each box represent the 75th
percentile, median, and 25th percentile. Whiskers extend to the non-outlier maximum and non-
outlier minimum. Outliers are defined as values away from the top or bottom of the box by more
than 1.5 times interquartile range. f, Kaplan-Meier survival curves comparing TCGA LUAD
patients with gene expression profiles most or least correlated with CPDs (Expression up + scA/B
up), CTSs (Expression down + scA/B down), and the corresponding controls (Expression up +
scA/B unchanged or Expression down + scA/B unchanged; Expression up only or Expression
down only). Top row: 21 genes are included in each panel. Bottom row: 19 genes are included in
each panel. In the control groups, the genes are the ones with the highest expression fold change
among all genes fitting the criteria. All analyses were performed with a top vs. bottom 20%
(quintiles; n = 96 tumors per group). p values of two-sided log-rank test are shown. g, Dependency
scores (using the DEMETER?2 algorithm) of LUAD cell lines (n = 57) comparing CPDs
(Expression up + scA/B up) and corresponding controls (Expression up + scA/B unchanged or
Expression up only). n = 19-20 genes per group with available data in RNAi screens in the Cancer
Dependency Map. Lower (more negative) score = more dependent. **p < 0.01, Wilcoxon rank-
sum test. The horizontal lines of each box represent the 75th percentile, median, and 25th
percentile. Whiskers extend to the maximum and minimum. h, Cell viability (mean + SD,
normalized to the mean of non-targeting control (NTC), n = 3 replicates per hairpin, 3 hairpins per
gene) of arrayed RNAI screen targeting CPD genes in the KP (upper panel) and SA6082inf (lower
panel) LUAD cell lines. NTC (green underline), positive controls (red underline), and CPD genes
with significant phenotypes (at least two out of three hairpins with less than 80% of NTC cell
count, purple underline) in both cell lines are indicated.
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Fig. 5. Rnf2 partially regulates 3D genome organization changes during the adenoma-to-
LUAD transition. a, Western blot analysis of Rnf2 protein levels following Rnf2 knockdown with
three independent hairpins in the KP cell line. Control cells were constructed with a non-targeting
control shRNA sequence (shNTC). HSP90 is loading control. b, Cell viability (mean + SD,
normalized to mean of shNTC) following knockdown with three Rnf2 shRNAs, n = 3 replicates
per hairpin. p values from two-sided two-sample t-tests are shown. ¢, scA/B score changes from
shRnf2 to shNTC versus those from AdenomaG to LUAD show a significant positive correlation,
n = 473 target genomic regions. Black lines are fitted regression lines. Spearman correlation
coefficients and p values are shown. d, Rnf2 peak densities in A (n =209 regions) and B (n = 264
regions) compartments in ShNTC. The horizontal lines of each box from top to bottom represent
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the 75th percentile, median, and 25th percentile. Whiskers extend to the non-outlier maximum and
non-outlier minimum. Outliers are defined as values at least 1.5 times interquartile range away
from the top or bottom of the box. p value of two-sided Wilcoxon rank-sum test is shown. e,
CUT&RUN read density heatmaps of Rnf2, H3K4me3, H3K27me3, RNA polymerase Il with
phosphorylated S5 modification, H2AK119ub, and BMI1 in shNTC KP cells. Rnf2 peak regions
[-5k, +5k] of all target genomic regions are shown and are categorized as active (H3K4me3+,
H3K27me3-), bivalent (H3K4me3+, H3K27me3+), repressed (H3K4me3—, H3K27me3+), or
other (H3K4me3—, H3K27me3—) based on chromatin marks. f, scA/B score changes from shRnf2
to shNTC versus those from AdenomaG to LUAD show a stronger or similarly positive correlation
using target genomic regions with only active Rnf2 peaks, n = 113 target genomic regions.
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Fig. 6. Rnf2 regulates 3D genome organization via a ubiquitin ligase-independent activity. a,
Western blot analysis of Rnf2 protein levels following rescue of shRNA knockdown (shRnf2-3)
with stable transduction of Rnf2 WT, ubiquitin-ligase dead Rnf2 I53S mutant, or empty vector
(EV) control. HSP90 is loading control. b, scA/B score changes from shRnf2-3 to shRnf2-3+WT
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Rnf2 (left) and to shRnf2-3+I53S Rnf2 (right) versus those from AdenomaG to LUAD show a
stronger positive correlation with expression of a catalytically dead mutant of Rnf2, n =473 target
genomic regions. Black lines are fitted regression lines. Spearman correlation coefficients and p
values are shown. ¢, Western blot of Rnf2 and H2AK119ub in KP LUAD cells with Rnf2-dTAG
after treatment with the dTAG-13 ligand or negative control ligand (a diastereomer of dTAG-13)
at the designated times (0, 0.5, or 12 hours). d, Immunofluorescence images of Rnf2 and
H2AK119ub in KP LUAD cells with Rnf2-dTAG after treatment with dTAG-13 ligand or negative
control at designated times. e, Quantification of the immunofluorescence intensities in d. The
horizontal lines of each box from top to bottom represent the 75th percentile, median, and 25th
percentile. Whiskers extend to the non-outlier maximum and non-outlier minimum. Outliers are
defined as values at least 1.5 times interquartile range away from the top or bottom of the box. p
value from two-sided Wilcoxon rank sum test is shown. f, scA/B score changes from Rnf2-
degraded cells (dTAG-13) to Rnf2 non-degraded cells (dTAG-13 negative control) versus those
from AdenomaG to LUAD and those from shRnf2 to shNTC, with n =473 target genomic regions.
Black lines are fitted regression lines. Spearman correlation coefficients and p values are shown.
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Extended Data Fig. 1. Genome-scale chromatin tracing visualizes 3D genome organization
in vivo. a, Pearson correlation coefficients of mean inter-loci distances between WT datasets. b,
Mean inter-loci distances of WT dataset 3 versus mean inter-loci distances of WT dataset 2. The
red line is a fitted linear regression line. The black line is the y = x line. ¢, Mean inter-loci spatial
distance versus genomic distance for all pairs of genomic loci on each autosome in AT2 cells.
Different pseudo-colors represent different autosomes. n = 6,039 intra-chromosomal inter-loci
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pairs in b-d. n=4,806 WT AT2 cells in ¢c-d. d, Power-law scaling of all 19 mouse autosomes (Chr
1-19) in WT mouse lung. e, Power-law scaling of Chr 19 in E14.5 mouse fetal liver. Data were re-
analyzed from Liu et al. Nat. Commun. (2020)**. f, Power-law scaling of all 20 mouse
chromosomes (Chr 1-19, Chr X) in the mouse brain inhibitory neurons expressing Vip. Data were
re-analyzed from Takei et al. Science. (2021)%*. g, Schematic illustration of the experimental
procedure. The schematic is created with BioRender.com. h, Whole-section fluorescence images
of wild-type (WT) mouse lung and K-MADM-Trp53 mouse lungs containing adenomas or LUAD.
For panels d-f, lines are fitted power-law functions, and S is the scaling factor.
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Extended Data Fig. 2. Changes of cancer state-specific 3D genome features comparing each
cancer state to the AT2 state. a, Mean log2 fold change of heterogeneity scores of each
chromosome, comparing each cancer state to WT AT2 cell state. * indicates FDR < 0.05, two-
sided Wilcoxon signed-rank test. b, Demixing scores (standard deviation of normalized mean
inter-loci distances) of the active X chromosomes (Xa, n = 95) and inactive X chromosomes (Xi,

= 95) in human IMR90 cells show a reduction (increased intermixing) in Xi, as previously
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described using other analyses'!. p value from two-sided Levene’s test is shown. ¢, Mean log2 fold
change of decompaction scores of each chromosome, comparing each cancer state to WT AT2 cell
state. * indicates FDR < 0.05, two-sided Wilcoxon signed-rank test. d, Log2 fold change of the
demixing score of each chromosome, comparing each cancer state to WT AT2 cell state. *
5 indicates FDR < 0.05, two-sided Levene’s test. e-h, Log2 fold changes of mean inter-loci distances
for adenoma red (AdenomaR) (e), adenoma yellow (AdenomaY) (f), adenoma green (AdenomaG)
(g), and LUAD (h) relative to AT2 cells. Yellow lines highlight the boundaries of chromosomes.
i, Mean log2 fold change of radial scores of each chromosome, comparing each cancer state to the
AT2 cell state. * indicates FDR < 0.05, two-sided Wilcoxon signed-rank test. j, Nuclear convex
10 hull volume of WT AT2, AdenomaR, AdenomaY, AdenomaG, and LUAD cells. p values of two-
sided Wilcoxon rank-sum tests are shown. The horizontal lines of each box from top to bottom
represent the 75th percentile, median, and 25th percentile. Whiskers extend to the non-outlier
maximum and non-outlier minimum. Outliers are defined as values at least 1.5 times interquartile
range away from the top or bottom of the box. Cell numbers in (a, c-j) are the same as in Figure

15 2.
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Extended Data Fig. 3. Cancer state-independent 3D genome features during lung cancer
progression. a-c¢, Normalized trans-chromosomal proximity frequency between genomic loci in
AT2 (a), adenoma (b), and LUAD (¢) cells. The proximity frequency between each pair of trans-
chromosomal genomic regions were normalized to the mean proximity frequency of all loci pairs
of the two corresponding chromosomes. A cutoff distance of 800-nm was used for defining
proximity. The genomic regions were re-ordered so that A compartment loci were grouped
separately from B compartment loci. d-f, Distribution of normalized trans-chromosomal proximity
frequencies of pairs of A loci (A-A), pairs of B loci (B-B) and pairs of A and B loci (A-B) in AT2
(d), adenoma (e) and LUAD (f) cells. g-i, Normalized trans-chromosomal proximity frequencies
of A-A, B-B and A-B loci pairs in AT2 (g), adenoma (h) and LUAD (i) cells. The horizontal lines
of each box from top to bottom represent the 75th percentile, the median and the 25th percentile.
Whiskers extend to the non-outlier maximum and non-outlier minimum. Outliers are defined as
values at least 1.5 times interquartile range away from the top or bottom of the box. p values from
two-sided Wilcoxon rank-sum test are shown. j-1, The proximity frequency between each pair of
cis-chromosomal genomic regions as a function of their genomic distances in AT2 (j), adenoma
(k), and LUAD (1) cells. m, Radial scores versus A-B compartment scores of genomic loci in the
five cell states. The lines are fitted linear regression lines. Correlation coefficients (R) and p values
are shown. Cell numbers for all panels are the same as in Figure 2.
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Extended Data Fig. 4. Genome-wide chromatin tracing of pancreatic adenocarcinoma
progression. a-b, Whole-section fluorescence images of a K-MADM-Trp53 pancreas with
PanINs (a) and PDAC (b). ¢-d, (Upper panels) Immunofluorescence staining of the duct cell
marker CK19 and DAPI staining in a field of view in a-b. (Lower panels) Fluorescent protein
imaging of GFP and tdTomato and DAPI staining in a field of view in a-b. The images are
maximum-intensity z-projections from 10-um z-stacks. e, Matrix of mean inter-loci distances
between all genomic loci in normal duct cells. n = 1,529 cells. f, Mean inter-loci spatial distance
versus genomic distance for all pairs of genomic loci on each autosome in duct cells. Different
pseudo-colors represent different autosomes. n = 6,039 intra-chromosomal inter-loci pairs. n =
1,529 cells. g, Log2 fold change of mean inter-chromosomal distances, comparing each cancer
state to normal duct cells. n = 1529, 123, 189, 361, 475 for normal duct, PanIN R, PanIN Y, PanIN
G, and PDAC cells. Cell numbers of each cell state are identical in g and h. h, Distribution of the
mean log2 fold change of radial scores of Chr17, Chrl, and Chr19, comparing each cancer state to
normal duct cells.
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Extended Data Fig. 5. Subsampling analysis of chromatin folding changes during lung cancer
progression. a-c, Distributions of the (mean) log2 fold change of heterogeneity (COV of inter-
loci distance), decompaction (mean inter-loci distance), and demixing scores of each autosome (n
=19) in a randomly subsampled population of 100 cells per cell state, comparing each cancer state
to AT2 state. d, Distribution of the log2 fold change of inter-chromosomal distances in a randomly
subsampled population of 100 cells per cell state, comparing each cancer state to AT2 state. e,
Distribution of the log2 fold change of polarization indices of A and B compartments of each
autosome (n = 19) in a randomly subsampled population of 100 cells per cell state, comparing each
cancer state to AT2 state. f, Distribution of the mean log2 fold change of radial scores of Chr 16,
Chr 5, and Chr18 in a randomly subsampled population of 100 cells per cell state, comparing each
cancer state to AT2 state. p values of two-sided Wilcoxon signed-rank test (a-f) are displayed. In
a-f, the horizontal lines of each box from top to bottom represent the 75th percentile, median, and
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25th percentile. Whiskers extend to the non-outlier maximum and non-outlier minimum. Outliers
are defined as values at least 1.5 times interquartile range away from the top or bottom of the box.
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Extended Data Fig. 6. Exome and RNA sequencing analyses of lung tumors from K-MADM-
Trp53 mice. a, Heatmap of mean copy number variants (CNVs) of each autosome across
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AdenomaG and LUAD samples (n = 6 tumors per group). Classification of AdenomaG and LUAD
is based on parallel gene expression analysis by RNA-seq on the same tumors (e). b, Distribution
of copy numbers of each autosome in AdenomaG and LUAD tumors relative to paired normal.
Each dot represents a single tumor. Black lines represent the median values. ¢, Frequency of non-
synonymous single nucleotide variants (SNVs) per megabase (Mb) with variant allele fraction
(VAF) > 5% in AdenomaG and LUAD tumors. d, Representative large GFP+ (green) tumor
dissected under fluorescence microscopy for whole exome and RNA sequencing analyses. Scale
bar = 2.5 mm. e-f, Unsupervised hierarchical clustering of all expressed genes (e) segregates
dissected green tumors into two clusters (n = 6 tumors per cluster) defining AdenomaG and LUAD
cells based on the expression of previously described markers of histologic progression*® (f),
including loss of AT2/ATI1 genes (Stfpc, Lyz2, and Hopx) and acquisition of genes associated
with gastric differentiation, epithelial-to-mesenchymal transition (EMT), and metastasis (Clu,
Hnf4a, Gknl, Hmga2, Cldn2). Row normalized expression counts are shown in heatmap. The
horizontal lines in each violin in (f) represent the 75th percentile, median, and 25th percentile. p
values of two-sided Wilcoxon rank-sum test are displayed. g, Gene set enrichment analysis using
the MSigDB Hallmarks (H1) shows the top 3 enriched gene sets for upregulated (red, log2 fold
change > 2 and FDR < 0.05) and downregulated (blue, log2 fold change < —1 and FDR < 0.05)
genes in LUAD compared to AdenomaG. Log10 (1/p value) is plotted (one-sided hypergeometric
test). EMT = epithelial-to-mesenchymal transition. h, Schematic illustration of the snRNA-seq
pipeline in K-MADM-Trp53 lung tumors. The schematic is created with BioRender.com. i-j,
UMAP plot of single-cell gene expression profiles in K-MADM-Trp53 lung tumors (n = 6,300
cells). Different cell type clusters identified by unsupervised clustering were labeled with different
colors (i) based on gene set enrichment patterns of adenoma (n = 1,631) and LUAD (n = 4,669)-
specific genes (j).

88


https://doi.org/10.1101/2023.07.23.550157
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.23.550157; this version posted September 9, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Fluorescent dye Primary probe
Loci readout: (/Secondaw pl’O{JE/ </ A ene 1 _ Gene 23

o1 <8 : S
Kras, Myc y M Gene 2

13 CPD genes
8 CTS genes ' ’\\J‘\\J

L
/ s 3 ‘_/lg Gene 2

Gene 1 Ceme 2 Gene readout: \_,/\J’ o - ag
Hyb 41 L&\ Gene1 Gene23
Gene 2 i 6%2 ’
ene
Loci 1 Loci 40
Gene1 Gene 23
Gene 2
[
b 8 gol_.2x10° d CPD E-P loops f
: 2x10° 04 00t
= [0}
5 _ o ) o 25 0.3 0.009 [JAT2
3 o1 % - s gz ° § — — [_JAdenoma
& ° 2100 5B , B’ [JLUAD
8 -0.2 ° oL 1 ©
T X N o 15
e ° LW 00 g - L o
8_0_3 8’§ -0.1 % 3
s — CPD 28 o2 ]
o P CTS g . ® o5
8 —0.4 mmKras 5 -03 £
S S _04 Zo 0
9} O Adenoma/AT2 LUAD/AT2 Kras E-P
= <7
c CTS E-P loops
o © 09 8x10°  3x10+
z 8 03 g 25 1x10° & X1
9 < 03 = 0.06 0.02
1.05 § N—g gi - g ?
B gnl. N 8 45
s Qu oo e il
v — °
5 8’§ 0.1 g
9% % _Iﬁ —0.2 ©
o) E 03 E 05
2 g S
9 @ c-04 = 0
Adenoma/AT2  LUAD/AT2 WMyc  Myc  Wiyo
E1P E2P E3-P
P4
e 12 § CPD gene: 12 CTS gene: 12
Kras "o Foxa3 14 Cxcl12 1.1
I
Q
09 2
&
0.8 QO
AT2 5
Adenoma

LUAD

A

D
[ E2® HE3 EN [ I3

E-P interaction 2 N/ sympk
Gene annotation ~ —emmmm Kras Lmntd1 >Myc MYPOPOS ™ s> Rsph6a =D030044L04RTk = Gm9946
= Etfrfl 20100%BZ4R'k - = Gm49498 m - —— =Cxcl12 «==(Gm45083
s Py
~m Casc | D030024E09RIK Irf2bp 1 <= Foxa3 Dmwd 1700030F04Rik
=Gm15543 — —
Mypop Dmpk

&9


https://doi.org/10.1101/2023.07.23.550157
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

15

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.23.550157; this version posted September 9, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Extended Data Fig. 7. Fine-scale tracing of candidate drivers and suppressors of cancer
progression. a, Schematic illustration of high-resolution chromatin tracing targeting the cis
regulatory regions of 23 genes, including CPD, CTS, Kras, and Myc. b, Distribution of the mean
log2 fold change of decompaction (mean inter-loci distance) scores of each target gene, comparing
each cancer state to AT2 state. n = 960, 460, 368, 5723 for normal AT2, Adenoma RY, Adenoma
G, and LUAD cells. Cell numbers in each cell state are identical in b-f. ¢, Pileup heatmap of
normalized E-P distances centered around each E-P loop. E-P loops of CPD genes are called in
LUAD cells. E-P loops of CTS genes are called in AT2 plus adenoma cells. d, Distribution of the
log2 fold change of the normalized distances between promoter and putative enhancers of CPD
and CTS genes, comparing each cancer state to AT2 cells. e, Normalized inter-loci distance
matrices of the target genomic regions surrounding the Kras, Myc, Foxa3 (CPD), and Cxcli2
(CTS) genes in AT2, adenoma, and LUAD cell states. The green circles designate putative
enhancer-promoter contacts. Putative enhancer and gene annotation tracks are aligned to the target
regions. f, Distribution of the normalized distances between promoter and putative enhancers of
the Kras and Myc genes.
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Extended Data Fig. 8. 3D genome organization in cancer cells is largely independent of
spatial proximity to immune cells. a-c, Mean log2 fold change of heterogeneity (a),
decompaction (b), and demixing (¢) scores of each chromosome, comparing AT2/cancer cells near
(less than 10 um) versus far (more than 10 pm) from CD45+ immune cells. The p values (a, b) or
FDR (c¢) with significance (< 0.05) from two-sided Wilcoxon signed-rank test (a, b) or two-sided
Levene’s test (¢) are displayed. d, Distribution of polarization indices of A-B compartments in
AT?2/cancer cells near or far from immune cells. Two-sided Wilcoxon rank-sum test yielded no
significant p values (p < 0.05). e, t-SNE plots of single-cell 3D chromatin conformations in AT2,
adenoma, and LUAD cells show no distinct clusters based on spatial proximity to immune cells.
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In (a, b, d), the horizontal lines of each box from top to bottom represent the 75th percentile,
median, and 25th percentile. Whiskers extend to the non-outlier maximum and non-outlier

minimum. Outliers are defined as values at least 1.5 times interquartile range away from the top
or bottom of the box.
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Extended Data Fig. 9. Schematic illustration of the experimental approach and major
findings. In this work, we generated single-cell 3D genome atlases during lung and pancreatic
cancer progression. Our data revealed stereotypical, stage-specific and conserved alterations in 3D

10 genome folding as cancers progress from normal to preinvasive to invasive tumors, elucidating a
potential structural bottleneck during early cancer progression. We developed “Trace2State” and
“Trace2Biomarker” pipelines and revealed the utility of 3D genome mapping in discovering
prognostic and predictive biomarkers. We further developed a “Trace2Regulator” pipeline and
identified a ubiquitin ligase-independent role for Rnf2 in 3D genome regulation.

92


https://doi.org/10.1101/2023.07.23.550157
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Tracing the evolution of single-cell cancer 3D genomes: an atlas for cancer gene discovery
	Abstract
	Although three-dimensional (3D) genome structures are altered in cancer cells, little is known about how these changes evolve and diversify during cancer progression. Leveraging genome-wide chromatin tracing to visualize 3D genome folding directly in ...
	Introduction
	Cancer cells exhibit profound alterations in nuclear size, shape, and chromatin texture1. Microscopic examination of these structural features remains a gold standard for diagnosis and establishing pathologic cancer grade, which is frequently associat...
	Results
	Genome-wide chromatin tracing in a mouse model of lung adenocarcinoma
	To directly visualize chromatin folding organization in single cells within tissues, we performed genome-wide chromatin tracing in which we targeted a panel of 473 genomic loci spanning all 19 mouse autosomes at an average genomic interval of 5 Mb (Su...
	Having established the approach in normal tissues, we next performed chromatin tracing on the K-MADM-Trp53 mouse lung cancer model (Fig. 1a, Extended Data Figs. 1g and 1h) that induces sparse and sequential mutagenesis of Kras and Trp53 in the lung ep...
	A structural bottleneck of the 3D genome in early lung cancer progression
	Given the heterogeneous nature of cancer development31, we hypothesized that chromatin conformations might become increasingly diverse during subclonal progression. To our surprise, chromatin folding conformations instead became less heterogeneous dur...
	Organization of the 3D genome reflects specific histologic cancer cell states at the single-cell level
	We next asked whether it is possible to classify the different histologic cancer cell states in our models based solely on the single-cell 3D genome data – defining state-specific in situ single-cell biomarkers. We first established, using subsampling...
	Our study demonstrates proof-of-principle of the utility of in situ chromatin tracing to garner insights into tumor biology, taking advantage of the capacity to visualize the entire spectrum of lung and pancreatic tumorigenesis in mouse models with ge...

