
Collaborative network analysis for the interpretation of
transcriptomics data in rare diseases, an application to Huntington’s
disease

Ozan Ozisik1, Nazli Sila Kara2,3, Tooba Abbassi-Daloii4,5, Morgane Térézol1, Núria
Queralt-Rosinach4, Annika Jacobsen4, Osman Ugur Sezerman3, Marco Roos4, Chris T. Evelo5,6,
Anaïs Baudot1,7,8,, Friederike Ehrhart5, Eleni Mina4

1 Aix Marseille Univ, INSERM, MMG, Marseille, France
2 Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University,
Prague, Czech Republic
3 Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet
Ali Aydinlar University, Istanbul, Turkey
4 Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
5 Department of Bioinformatics-BiGCaT, NUTRIM/MHeNs, Maastricht University, Maastricht,
The Netherlands
6 Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The
Netherlands
7 Barcelona Supercomputing Center (BSC), Barcelona, Spain
8 CNRS, Marseille, France

Abstract
Background: Rare diseases may affect the quality of life of patients and in some cases be
life-threatening. Therapeutic opportunities are often limited, in part because of the lack of
understanding of the molecular mechanisms that can cause disease. This can be ascribed to
the low prevalence of rare diseases and therefore the lower sample sizes available for research.
A way to overcome this is to integrate experimental rare disease data with prior knowledge
using network-based methods. Taking this one step further, we hypothesized that combining
and analyzing the results from multiple network-based methods could provide data-driven
hypotheses of pathogenicity mechanisms from multiple perspectives.

Results: We analyzed a Huntington’s disease (HD) transcriptomics dataset using six
network-based methods in a collaborative way. These methods either inherently reported
enriched annotation terms or their results were fed into enrichment analyses. The resulting
significantly enriched Reactome pathways were then summarized using the ontological
hierarchy which allowed the integration and interpretation of outputs from multiple methods.
Among the resulting enriched pathways, there are pathways that have been shown previously to
be involved in HD and pathways whose direct contribution to disease pathogenesis remains
unclear and requires further investigation.

Conclusions: In summary, our study shows that collaborative network analysis approaches are
well-suited to study rare diseases, as they provide hypotheses for pathogenic mechanisms from
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multiple perspectives. Applying different methods to the same case study can uncover different
disease mechanisms that would not be apparent with the application of a single method.

Keywords: Huntington’s disease, rare disease, network analysis, collaborative analysis

Introduction
Rare diseases are defined as diseases with low prevalence. The European Commission, for
instance, considers a disease to be rare when it affects fewer than 1 person in 2,000 [1]. A
recent study by Orphanet identified 6,172 unique rare diseases [2] that can be life-threatening or
severely affect the quality of life of patients. Therapies are only available for a very small
number of these diseases [3, 4]. Therefore, there is an immediate need to accelerate the study
of these diseases, and thereby assist in the development of new therapies. However,
investigating rare diseases is challenged by sample scarcity, clinical and genetic variability, and
data unavailability or deficiency. Systems biology is a strategy that is used to overcome these
challenges by providing systems-level insights for rare disease research. In this direction,
network-based computational methods combine experimental data (e.g., omics data) with prior
knowledge available in databases and ontologies. These methods can translate the sparse, rare
disease-specific information into a systems-based understanding of disease pathology. This can
accelerate research in rare disease and identify, for instance, deregulated pathways, biological
processes and drug targets.

A first set of network methods aims to aid the interpretation of large-scale molecular data
(typically transcriptomics) by adding interaction information. GeneMania [5] and STRING [6] are
two tools that fetch and visualize the physical and functional interactions between genes or
proteins of interest; they also allow including additional interacting proteins to the networks and
performing enrichment analysis. These tools are available as both web applications and
Cytoscape [7] apps. CyTargetLinker is another Cytoscape app that can extend a given list of
genes or proteins using a linkset that contains interaction partners information such as
gene-pathway relations or miRNA target relations. PathVisio [8] is a standalone tool that allows
visualizing and analyzing genes of interest with the pathway information from WikiPathways [9].
EnrichNet [10] is a tool that uses both large-scale interaction network data and annotation data
to provide enrichment for gene sets of interest.

Another set of network methods has the objective to integrate experimental data with biological
networks in order to identify subnetworks of interest, also known as active modules [11].
Exploring all potential subnetworks is a complex task from a computational point of view, and
methods based on different algorithms have been developed to overcome this challenge [11].
For instance, jActiveModules [12] is a method based on simulated annealing that has been
widely used. More recent solutions include MOGAMUN [13] that is based on a multi-objective
genetic algorithm, pathfindR [14], which by default uses greedy search, and DOMINO [15],
which applies multiple steps of network partitioning.
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Finally, another set of network methods uses statistical methods to infer interactions between
molecules from the expression data, creating for instance co-expression networks.
Co-expression networks are constructed by computing the pairwise correlation between
expression profiles of molecules in different conditions. A popular method in this field is
Weighted Gene Co-expression Network Analysis (WGCNA) [16], which targets a scale-free
topology in the resulting network. Weighted topological overlap (wTO) [17] is another method to
build co-expression networks which considers both positive and negative correlations. The
inferred networks are then piped with subsequent network analysis tools, such as module
detection or co-expression differential network analysis [18, 19, 20]. A recently developed tool,
MODifier, combines multiple methods for network inference and module detection [21] to
generate more robust modules.

Different network-based methods are expected to extract different information from the data. We
hypothesize that the combination of multiple network-based methods can strengthen and
enhance our understanding of the mechanisms involved in rare disease pathogenesis. Indeed,
methods with different viewpoints, assumptions and prior knowledge can provide both
supportive and complementary findings that lead to more robust and enhanced results when
aggregated.

In accordance with this hypothesis, we followed a collaborative approach in which we selected a
diverse set of methods representative of the different network-based methodological categories
introduced above. These methods are WGCNA, wTO-CoDiNA,
PathVisio/Cytoscape/CyTargetLinker, EnrichNet, pathfindR and MOGAMUN. We analyzed the
Huntington’s Disease (HD) gene expression dataset described in the study by Labadorf et al.
[22], as a case study of a rare disease. HD is a dominantly inherited neurodegenerative disorder
with a prevalence of 10.6-13.7 individuals per 100,000 in Western populations [23]. The cause
of the disease, the mutated huntingtin protein, was discovered in 1993 [24]. However,
symptomatic management is the current way of treatment and we still lack disease-modifying
treatments [25]. The huntingtin gene (HTT) mutation corresponds to a repeat expansion of the
CAG codon, which translates to a polyglutamine expansion (polyQ) in the encoded huntingtin
protein [24]. Clinically, an extensive brain degeneration is primarily responsible for the most
common symptoms that are evident from the early disease stages [25]. The symptoms gradually
worsen over time, with death occurring approximately 15–20 years after disease onset [26].

In this project, we demonstrate that employing various network analysis methods increases the
reliability of common results unveiled by different methods and provides new valuable insights
that contribute to novel perspectives and a deeper understanding of diseases. Collaborative
network analysis is a strategy that can be beneficial for rare disease research where the lack of
data and knowledge is an important barrier.

Results
We applied six network-based methods that represent the three method categories described in
the introduction: interaction mapping, active module identification and network inference.
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PathVisio/Cytoscape/CyTargetLinker and EnrichNet which use interaction information for
biological interpretation; pathfindR and MOGAMUN which identify subnetworks of interest by
integrating experimental data with biological networks; and finally WGCNA and wTO-CoDiNA
which infer gene interactions with statistical inference. These methods are applied to the
Huntington’s disease (HD) gene expression dataset provided by Labadorf et al. [22] (Figure 1,
see Methods section for details on the data and the methods). Depending on the input
requirements of each method, we used either the normalized count data or the differential
expression analysis data (both are retrieved from the original study and available through NCBI
Gene Expression Omnibus, accession number GSE64810). We collected and assessed the
outputs of all the methods at the level of enriched pathways, using the Reactome database [27].
Two of the methods, i.e., EnrichNet and pathfindR, have incorporated functions for enrichment
analysis. The other four methods do not have intrinsic enrichment analysis function. In these
cases, we used g:Profiler [28]. Since the Reactome database is hierarchically organized, the
enrichment results included both general terms and more specific subterms that are
descendents of the general terms. As a final step, we used an enrichment analysis filtering tool,
orsum [29], to summarize and integrate the results obtained from different methods. orsum
selects more significant (higher ranked) general terms as representatives for their less
significant (lower ranked) subterms.

Figure 1. Collaborative network analysis workflow.

Our collaborative approach resulted in a total of 649 enriched Reactome terms from the six
network-based methods. The application of orsum filtering led to 109 representative Reactome
terms (Figure 2). Please note that, while orsum integrated the results from different methods
and provided a summarized view, it is still important to examine the filtered out subterms, as
they differ between methods and can reflect more detailed biological mechanisms. Therefore,
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we discuss both the representative Reactome terms and their associated subterms that
emerged as significant in our analysis.

Figure 2. Result of Reactome pathway enrichments from the six network-based methods,
summarized by orsum. The top 50 terms are presented.

“Immune System” and its subterms are ranked at the top of the results. “Innate Immune
System”, “Signaling by Interleukins”, “Cytokine Signaling in Immune system”, “Neutrophil
degranulation” are some of the top ranking terms found by most of the network-based methods.
Immune system activation is well known in HD and both innate and adaptive immune systems
are thought to be playing a role in HD pathology [30, 31]. In our study, all methods except
wTO-CoDiNA have identified enriched Reactome terms related to the immune system.

“Signal Transduction” and/or its subterms are significantly enriched according to all the
methods, except wTO-CoDiNA. “Signal Transduction” is a generic term annotating more than
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2,500 protein-coding genes and many different subterms were summarized by it. “Signaling by
TGFB family members” and “Signaling by Receptor Tyrosine Kinases” are among the significant
subterms. Alterations in numerous signal transduction pathways are well known in HD, for
example elevation of TGF-beta signaling component [32], disruption of Signaling by EGFR [33]
and alterations of MAPK and ERK signaling pathways [34].

“Extracellular matrix organization” and/or its subterms are significantly enriched according to all
the methods, except WGCNA. Extracellular matrix (ECM) proteins are altered during regular
aging and nowadays it is clear that they are also altered during disease. In particular, changes
in the expression of ECM proteins have been reported for three neurodegenerative diseases
including HD [35]. While a clear direct link between HD and ECM changes has not been
reported in humans, a recent study in HD mouse model reported that microglia elimination leads
to prevention of extracellular matrix changes [36].

“Transport of bile salts and organic acids, metal ions and amine compounds”, a process
mediated by solute carriers (SLCs), was identified by all methods, except MOGAMUN. SLCs
play an important role in various neurodegenerative diseases [37] and they were found to be
dysregulated in multiple HD studies [38, 39, 40]. Hence, SLCs have been suggested as
important therapeutic targets [41]; a well known example is tetrabenazine, an inhibitor of
SLC18A2 that is used to treat chorea in HD [42].

“Platelet activation, signaling and aggregation” was also identified by all the methods except
WGCNA and wTO-CoDiNA. Subterms of this pathway such as “Platelet degranulation”,
“Response to elevated platelet cytosolic Ca2+” and “GP1b-IX-V activation signaling” are among
the enriched terms. Platelet activation, signaling and aggregation are the three major processes
for the establishment of hemostasis [43]. Platelet abnormalities have been detected in HD,
which in turn promote blood-brain barrier permeability [44].

“Developmental Biology” was identified by PV/CY/CTL, pathfindR and MOGAMUN. This
coincides with one of the key findings of Labadorf et al. [22] where developmental genes were
identified as highly overrepresented. The significant subterms of this general term include the
terms associated with neuronal system development (identified by PV/CY/CTL and pathfindR)
and other developmental biology pathways such as “Signaling by NODAL”, “Transcriptional
regulation of pluripotent stem cells” and “Myogenesis” (MOGAMUN). HD, by its nature as a
neurodegenerative disorder, has been linked with neuronal system development [26].

“Metallothioneins bind metals” was ranked very high by two of our methods, EnrichNet and
WGCNA. Metallothioneins was one of the most enriched terms in the original publication by
Labadorf et al. [22]. In another study, it was also shown that metallothioneins can protect against
polyQ toxicity in two cellular HD model systems and therefore were proposed as a candidate
therapeutic target for HD [45].

“Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC)”, “Nuclear
Pore Complex (NPC) Disassembly”, “Postmitotic nuclear pore complex (NPC) reformation” are a
few examples of the pathways that ranked very high and were identified by a single method,
MOGAMUN. There is increasing evidence that mutant huntingtin disrupts the nucleocytoplasmic
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transport and the NPC function. New studies indeed suggest that defects in the NPC might be
an important pathogenic mechanism and could possibly become a new therapeutic avenue for
HD [46, 47, 48, 49].

Discussion
The increasing demands and complexity of biomedical research requires collaborative
interdisciplinary research. We hypothesized that, in the investigation of rare disease
mechanisms, the combination of multiple network-based methods can lead to more robust and
enhanced results when aggregated. Different network-based methods provide different
viewpoints as they are implemented under different assumptions and they use different sources
of prior knowledge.

In this study, we applied six network-based methods, namely WGCNA, wTO-CoDiNA,
PathVisio/Cytoscape/CyTargetLinker, EnrichNet, MOGAMUN and pathfindR, to the same use
case and dataset. Our use case is a rare neurodegenerative disorder, Huntington’s disease
(HD), and the dataset is provided by Labadorf et al. [22]. In the case of HD, the scarcity of
disease tissue and the limited number of patients hinders the production of relevant datasets.
Thus, collaborative network analysis that builds on the synergy between human expertise and
application of different analytical methods becomes essential for facilitating knowledge
discovery in HD, as well as in other rare diseases.

Overall, we observe that there is an overlap between the results of all the methods, as they
were able to detect the main disease signal, adding strong evidence on what was also reported
by Labadorf et al. [22]. Increased inflammation and altered developmental processes were key
findings of the original publication and were also reported in a high ranking order by our
methods. In addition, signal transduction has largely been implicated in HD and was identified
by the majority of our methods. Platelet activation, signaling and aggregation and related
functions were also identified by the majority of our methods, although the direct clinical
contribution to HD still remains elusive. This result points out that further research may reveal
pathogenic insights on the impact of mutant huntingtin on regular platelet function. There are
also pathways relevant for HD which were identified by only one or two methods, e.g., “Nuclear
pore complex” and “Metallothioneins bind metals” related pathways [46, 45]. Metallothioneins
were one of the most enriched clusters in the original publication by Labadorf et al. [22], and
interestingly were only picked by WGCNA and EnrichNet. Alterations of metal homeostasis have
been consistently reported in HD. Elevated metals in post-mortem HD but also in disease
models altogether, point out that alterations in metal biology is having an impact in HD
pathology [50, 51, 52]. Nuclear pore complex (NPC) has been implicated in several
neurodegenerative diseases [53] by mutations in certain NPC proteins that cause different
neurodegenerative phenotypes. Similarly, in HD aberrant NPC function, especially regulation of
nucleocytoplasmic transport is linked to the pathogenesis of HD [46]. Although both these
processes have not been extensively described in the context of HD, further study might
decipher their exact role in HD pathogenesis and provide new targets for therapeutic
interventions.
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Biological network analysis may partially depend on the applied methods and the prior
knowledge on molecular mechanisms and pathways, used to support the analysis. Each
algorithm has the potential to capture different aspects of biology as they are developed under
different assumptions. We hypothesize that this is the reason why some processes were
detected by some algorithms but not by others. For example, MOGAMUN integrates several
layers of information (PPI, pathways, molecular complexes, co-expression) with the gene
expression data, which led to the identification of multiple pathways that were not identified by
the other algorithms. wTO-CoDiNA focuses on the differences between case and control
networks and takes into account the gene pairs coexpressed and connected only in the case
but lacking this co-expression relation in the control. Nevertheless, linking the discovered unique
processes to the specifics of each algorithm is beyond the scope of this study.

One limitation of our collaborative approach is that we did not consider an extensive list of
network analysis methods nor perform a benchmark for selecting the methods. However, we
considered the heterogeneity of the network methods when including them in this study. We
indeed selected network methods that were representative of each broad category discussed
earlier in the introduction.

To the best of our knowledge, this is the first study applying different network-based analysis
methods in a collaborative way for a rare disease. The results show that our approach can
identify disease-related biological pathways that would be missed if a single network-based
method was used. Different methods can provide complementary insights at once and also
contribute to an increased validity of the results that were discovered in common. Importantly, it
opens new avenues for HD research to explore novel hypotheses.

Conclusion
In this study, we followed a collaborative approach in which we applied six network-based
methods to Huntington’s disease transcriptomics data. The goal was to discover disease related
mechanisms and investigate the benefits of using multiple methods in terms of
complementariness and validation.

Collaborative network analysis has mainly two advantages over the solo analyses: First, the use
of multiple methods proposes different perspectives on the same data due to the various
specifics of each algorithm. This helps in the discovery of hidden disease mechanisms for rare
disorders, which is an advantage for the field, due to the limitations of rare disease studies.
Second, detection of the same or similar pathways and biological processes by multiple
methods increases the validity of the results and creates stronger candidate mechanisms in
explaining rare diseases. Collaborative network analysis introduces a broader perspective of the
disorder under scope, and we recommend its use especially in the case of rare disease
research, where data and knowledge are scarce.
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Methods

Data source
The RNAseq transcriptomics dataset used as input for all the network methods applied in this
study was generated by Labadorf et al. [22] and includes 69 samples: 20 samples from
Huntington's disease patients and 49 from healthy controls. The samples were collected from
human post-mortem brain tissue and subjected to RNA sequencing with the Illumina HiSeq
2000 platform. The normalized count data and the DESeq2 differential expression analysis [54]
data are available in GEO under accession number GSE64810. WGCNA used the normalized
count data, wTO-CoDiNA used both the normalized count data and the differential expression
analysis data, and all the remaining methods used the differential expression analysis data.

In the enrichment analysis step, we used the Reactome pathway annotations [27]. For the
network methods that do not have incorporated functions for enrichment analysis (i.e.,
MOGAMUN, WGCNA, wTO-CoDiNA and PathVisio/Cytoscape/CyTargetLinker), we used
g:Profiler version e101_eg48_p14_60e968a [28] with the default parameters (multiple testing
correction method is “g:SCS” and the user threshold for enrichment is 0.05). For the methods
with incorporated enrichment analysis functions (i.e., EnrichNet and pathfindR), we used the
same Reactome pathway dataset as the one used by g:Profiler (Reactome, annotations:
BioMart, classes: 2020-10-12).

Network-based analysis methods
We selected six network-based analysis methods that represent the different categories
described in the Introduction: WGCNA and wTO-CoDiNA, which infer gene interactions with
statistical inference; PathVisio/Cytoscape/CyTargetLinker and EnrichNet, which use interaction
information for biological interpretation; and finally pathfindR and MOGAMUN, which identify
subnetworks of interest by integrating experimental data such as transcriptomics data with
biological networks. The methods are detailed below and the code used for each method is
listed in the Availability of data and materials section.

WGCNA 

Weighted gene co-expression network analysis (WGCNA) [16, 55] is an algorithm that
constructs a gene network and groups genes with similar expression profiles in the same
subnetwork (module). The identification of gene-gene interactions and modules is based on
pairwise correlations between those genes. In addition, for each module, an eigenvector is
computed and correlated to the disease status to identify modules associated with the disease.

As input to the WGCNA R package (v. 1.71), we used the HD normalized count data. In order to
calibrate the parameters of the WGCNA network, we used the approach presented by
Abbassi-Daloii et. al (2020) [56]. Briefly, this approach uses prior knowledge of gene interactions
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from a pathway database to select the most optimal set of WGCNA parameters. Using this
approach, we tested various combinations of WGCNA settings for power, minClusterSize,
deepSplit and CutHeight by a full parameter sweep. To assess these different settings, we used
the knowledge network obtained from the Reactome database using the g:Profiler R package
version 0.2.0. Based on this assessment, we assigned all possible pairs of genes to 4 different
groups: (1) in the same WGCNA module and Reactome pathway, (2) in the same WGCNA
module but not in the same Reactome pathway, (3) not in the same WGCNA module but in the
same Reactome pathway, and (4) neither in the same WGCNA module nor in the same
Reactome pathway. We calculated the enrichment factor ( (No. pairs in group 1 * No. pairs in
group 4) / (No. pairs in group 2 * No. pairs in group 3) ) and selected the optimal set of
parameters with the highest enrichment factor to construct the weighted gene co-expression
network. The selected parameters for WGCNA were power: 14, MinModuleSize: 15, deepSplit:
4, Cut Height: 0.1. We used g:Profiler to annotate these modules with Reactome.

wTO-CoDiNA

wTO-CoDiNA is a method that builds co-expression networks by using weighted topological
overlap and gene expression data and compares the obtained networks to detect their
similarities and differences. This method uses two networks (case and control), compares these
networks and shows which coexpression patterns are common for both networks, or which
connections are unique to only one network. Through this comparison, the method illustrates
the change of co-expression patterns between gene pairs and enables the biological
interpretation of the differences between case and control groups.

In this method, we used normalized count data and the differential expression analysis data,
both extracted from GEO under accession number GSE64810. The differential expression data
were filtered to keep the genes with adjusted p-value ≤ 0.05 and |log2FC| > 1. After this filtering,
we retrieved the gene list to be used in order to create count matrices from normalized count
data. Two count matrices were created for case and control groups. The expression values of
differentially expressed genes were used to construct case and control networks. Two
co-expression networks were built via the count matrices, one for cases and one for controls.
The R package wTO (version: 1.6.3) [17] that uses weighted topological overlap measure was
used in the R environment. Non-correlated gene pairs (wTO.wTO_abs = 0.00) and correlations
with adjusted p-value > 0.05 were filtered out to obtain final case and control networks. Network
comparison was completed with Co-expression Differential Network Analysis (CoDiNA), by
applying the R package CoDiNA (version: 1.1.2) [20]. The output of CoDiNA shows the common
(alpha), differentiating (beta) and unique (gamma) connections between genes among case and
control networks. In order to focus on the pathways and biological processes that may be
responsible for the disease, we focused on the gene pairs connected only in the case group but
not in the control group. These gene pairs were linked by “gamma links”, which show a
disease-specific connection of a gene pair. In order to select the well-defined gamma links and
to eliminate weak links, only the gamma links with Score_ratio ≥ 1 and Score_center >
mean(Score_center) were kept. Gene pairs connected by the remaining gamma links were
submitted to g:Profiler for enrichment analysis.
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PathVisio/Cytoscape/CyTargetLinker

PathVisio/Cytoscape/CyTargetLinker is an approach that represents the integrated usage of
three tools. PathVisio [8] is a tool to visualize pathways and analyze genes of interest.
Cytoscape [7] is a software platform for visualizing networks and integrating them with attribute
data. Finally, CyTargetLinker [57] is a Cytoscape app that can extend the given list of genes or
proteins using a linkset that contains interaction partners information such as gene-pathway
relations or miRNA target relations. We used PathVisio version 3.3.0 and pathway
overrepresentation analysis was conducted using the WikiPathways human pathway collection
(version 10.10.2020) [9] and the built-in analysis function of PathVisio. As input, we used the
differential expression analysis data, respectively, the genes with a p-value ≤ 0.05 and |log2FC|
> 1.

From the original 28,000 gene identifiers in the transcriptomics dataset, 10,196 were recognized
by WikiPathways, indicating the annotation of the gene in at least one of the (human) pathways.
Of these, 668 genes met the criterion for being differentially expressed. Pathways were
considered as overrepresented if the z-score was >1.96 and there were more than 3
differentially expressed genes in the pathway found. This led to 61 overrepresented pathways.
These pathways were imported to Cytoscape (version 3.8.2) using WikiPathways app (version
3.3.7) for Cytoscape and merged. The differential expression analysis data was imported to
Cytoscape as a node table. This initial network was extended using CyTargetLinker (version
4.0.0) app for Cytoscape and the WikiPathways linkset created from WikiPathways release
2021-01-10 (linksets “Homo sapiens (hsa) - curated collection” and “Homo sapiens (hsa) -
Reactome collection”). The linksets contain gene-pathway association information derived from
WikiPathways and Reactome. A standard network analysis as an in-built function in Cytoscape
was used to determine node degrees. The ten nodes with the highest degrees were selected for
enrichment analysis using g:Profiler.

EnrichNet

EnrichNet [10] is an enrichment tool that aims to improve enrichment analysis by utilizing
network topology information. EnrichNet takes a list of genes of interest as input and then
identifies significantly associated processes/pathways by computing an Xd-score assessing the
significance of network distances between the nodes corresponding to the genes of interest and
the nodes annotated for reference pathways/processes. Any network can be used as a
backbone, and network distances are measured by random walk with restart.

As input genes of interest, we used the list of differentially expressed genes with adjusted
p-value ≤ 0.05 and |log2FC| > 1. We ran the EnrichNet method locally in order to use the same
Reactome data with the other methods. We used BioGRID [58] protein interaction network as
the backbone. We selected the top 50 Reactome pathways according to their Xd-scores for
further interpretation.
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pathfindR

pathfindR [14] is an R package for active module identification and enrichment analysis. In
pathfindR, active modules are extracted using one of the following three heuristic methods:
greedy search, genetic algorithm or simulated annealing. Following this, the nodes in each
active module are used in the enrichment analysis.

In this study, we used pathfindR v1.6.1. As input, we used the list of differentially expressed
genes with adjusted p-value ≤ 0.05 and |log2FC| > 1. We ran the default greedy search
approach with a maximum depth of 2 (i.e., the distance of any node in the module to the node
that the search started from is at most 2). We used the BioGRID protein interaction network [58].
For the enrichment analysis, we set the gene sets argument to the specific Reactome data
described in the Data source section.

MOGAMUN

MOGAMUN [13] is a multi-objective genetic algorithm that allows the identification of active
modules from the integration of transcriptomics data with a multiplex biological network (i.e., a
network composed of different layers of physical or functional interactions).

As input for MOGAMUN, we used the adjusted p-values of all the genes from the differential
expression analysis data and a multiplex network composed of four layers of interactions. The
first three layers are obtained from [59]: A protein-protein interaction (PPI) layer corresponding
to the fusion of three datasets: APID (apid.dep.usal.es, [60, 61]) (Level 2, human only), Hi-Union
and Lit-BM [62]; a pathway layer extracted from NDEx [63] which is built in [64] and corresponds
to the human Reactome data; A layer of molecular complexes constructed from the fusion of
Hu.map [65] and CORUM [66], using OmniPathR [67]. The fourth layer contains edges
corresponding to correlations of expression, where Spearman correlations were calculated from
RNA-seq data of 32 tissues and 45 cell lines (extracted from proteinatlas.com), and absolute
correlations of at least 0.7 were selected to build the co-expression network.

MOGAMUN was run 30 times with the default parameters. We identified 22 active modules. We
used g:Profiler R package (gprofiler2, version 0.2.0) for the enrichment analysis of each module
and then we merged these enrichment results by selecting each unique enriched pathway with
the best p-value it obtained from any module.

Enrichment results summarization using orsum
orsum [29] is a tool dedicated to filtering/summarizing enrichment analysis results. It targets the
lengthy results arising from the redundancy in hierarchically organized annotation databases
(e.g., GO and Reactome). It enables integration and joint filtering of the enrichment results
obtained by different methods.
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The enrichment analysis results obtained from the six different network methods were used as
input for orsum (v1.6). For the annotation data, we used the Reactome data described in the
Data source section. We ran orsum with default parameters.
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