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Abstract 

Interpersonal touch is an important part of our social and emotional interactions. How these physical, 
skin-to-skin touch expressions are processed in the peripheral nervous system is not well understood. 
From single-unit microneurography recordings in humans, we evaluated the capacity of six subtypes of 
cutaneous afferents to differentiate perceptually distinct social touch expressions. By leveraging 
conventional statistical analyses and classification analyses using convolutional neural networks and 
support vector machines, we found that single units of multiple Aβ subtypes, especially slowly adapting 
type II (SA-II) and fast adapting hair follicle afferents (HFA), can reliably differentiate the skin contact of 
those expressions at accuracies similar to those perceptually. Rapidly adapting field (Field) afferents 
exhibit lower accuracies, whereas C-tactile (CT), fast adapting Pacinian corpuscles (FA-II), and muscle 
spindle (MS) afferents can barely differentiate the expressions, despite responding to the stimuli. We then 
identified the most informative firing patterns of SA-II and HFA afferents’ spike trains, which indicate that 
an average duration of 3-4 s of firing provides sufficient discriminative information. Those two subtypes 
also exhibit robust tolerance to shifts in spike-timing of up to 10 ms. A greater shift in spike-timing, 
however, drastically compromises an afferent’s discrimination capacity, and can change a firing pattern’s 
envelope to resemble that of another expression. Altogether, the findings indicate that SA-II and HFA 
afferents differentiate the skin contact of social touch at  time scales relevant for such interactions, which 
is 1-2 orders of magnitude longer than those relevant for discriminating non-social touch inputs. 

Introduction 

Touch is an often used medium for facilitating social relationships and interactions. For example, one 
might lightly tap another person to get their attention, or stroke a partner’s arm to offer a sense of calm. 
Between people in close relationships, and even between strangers, many social touch expressions are 
intuitively understood [1]–[6]. The appreciation of emotion is commonly thought to be a centrally 
mediated process performed by frontal and temporal brain structures that integrate a multitude of 
peripheral and cross-cortical sensory information [7]. However, the peripheral nervous system may 
already be organized to facilitate the selection and processing of potentially socially relevant stimuli [8]. 
Reliable signaling from peripheral afferents could form the basis of the somatosensory and affective 
perception in the central nervous system. In our evolutionary history, such peripheral encoding may also 
have acted as scaffolding for the development of cross-sensory, cortical processing of emotion [9].  

Among peripheral tactile afferents, percepts tied to social and emotional touch are thought to be 
influenced prominently by C-tactile (CT) afferents [10]–[12]. These afferents have been studied mostly in 
hairy skin, and can be preferentially activated by light stroking contact at 1-10 cm/s velocities [10], [13] 
and temperatures similar to human skin [14]. Their firing frequencies have been correlated with 
subjectively perceived pleasantness [10] and this correlation has been widely and reliably reproduced on 
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the population level. Recent work has, however, encountered difficulty in reproducing such trends among 
individual participants [15], which suggests a more complex view of pleasantness and affective touch and 
a plausible role of other afferent types. Meanwhile, the firing properties of CT afferents have mainly been 
characterized in response to controlled stimuli [10], [12], [14], [15], such as rotary actuated brushing. Their 
firing responses have been explored less under naturalistic, human-to-human touch.  

In contrast to CT afferents, low-threshold mechanosensitive (LTM) Aβ afferents have been investigated in 
a wider variety of scenarios, especially in discriminative touch. Pre-defined, well-controlled mechanical 
stimuli have been used to decouple and examine stimulus attributes, one at a time [16]–[19]. Across these 
studies, different Aβ subtypes are dominant in encoding different tactile cues [16]–[22], e.g., pressure, 
vibration, shape, texture, the deflection of hair follicles, etc. Moreover, the perception of some 
elementary cues, such as pressure and flutter/vibration, has been invoked via the intraneural 
electrostimulation, e.g., slowly adapting (SA) type I and fast adapting (FA) units [23]–[26]. However, 
device-delivered stimuli do not reflect the full range of naturalistic touch we encounter in everyday life. 
Indeed, in discriminative touch scenarios, e.g., object manipulation [27] and natural textures [28], that 
invoke multiple tactile cues, it is likely that single Aβ subtypes provide overlapping and complementary 
information [29]. Similarly, in human-to-human touch, multiple tactile cues can vary simultaneously [1], 
[5], [30]. In these types of situations, the analysis of firing patterns becomes much more difficult.  

Here, we investigated how the spike firing patterns of Aβ and CT human peripheral afferents encode 
information about the mechanical inputs produced by human-delivered social touch expressions. 
Microneurography experiments were conducted as six standardized social touch expressions were 
delivered. We first characterized afferents’ firing properties, i.e., firing frequency and number of spikes, 
for comparison to prior studies with well-controlled mechanical contact. Then, machine-learning 
classifiers were developed to examine the capability of each afferent subtype in differentiating the 
expressions, for comparison with perceptual studies. Moreover, with these models, we evaluated 
temporal segments of the full 10 s neural recordings, and their spike-timing sensitivity, to identify the 
most informative firing patterns for each expression. Overall, the encoding performance of peripheral 
afferents and their firing characteristics shed light on the information present at the periphery, and which 
may affect the strategies available to the central nervous system for processing social intent, emotional 
state or affiliative alignment from physical skin contact. 

Results 

Microneurography paradigm for human-to-human social touch  

We developed a novel experimental procedure using microneurography to record single peripheral 
afferents’ responses to human-delivered social touch expressions. A set of six standardized social touch 
expressions were delivered by trained experimenters. These standardized expressions were developed 
based on touch strategies used by people in close relationships, and are recognizable by naïve participants 
[5], [6] as communicating messages of attention, happiness, gratitude, calming, love, and sadness. Those 
expressions were specifically performed over receptive fields of identified single afferent units in the bare 
hand and forearm. Microneurography recordings [31] were obtained from the right radial nerve just 
above the elbow from 20 healthy participants (Fig. 1A, 1B). All cutaneous afferents were very sensitive to 
soft brushing and had mechanical (von Frey) thresholds of activation ≤ 1.6 mN. We recorded 39 low-
threshold primary afferent units which were classified into six subtypes: fast adapting field (Field, n=5), 
fast adapting hair follicle (HFA, n=7), fast adapting Pacinian corpuscle (FA-II, n=5), slowly adapting type II 
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(SA-II, n=4), C-tactile (CT, n=6), and muscle spindle (MS, n=12). Per unit, each expression was conducted 
multiple times, comprising 819 trials in total. All recordings were cropped to keep the first 10 s of data 
(which was the target duration for the trained experimenters) at a resolution of 1 ms. Examples of 
collected neural recordings of SA-II and HFA afferents are illustrated in Fig. 1C for all six touch expressions. 
Despite the consistent delivery of the expressions, distinct firing patterns were observed between these 
two subtypes. For example, with the sadness and gratitude expressions, SA-II afferents responded 
throughout contact with a sustained, slowly decaying firing pattern, while HFA afferents only responded 
to the onset and offset of the holding or when the hand position was adjusted. 

To characterize the firing properties of those afferents in human-delivered touch as compared to 
controlled device-delivered contact, statistical analyses were performed to quantify and compare mean 
instantaneous firing frequency (IFF) and the number of spikes across three elementary touch gestures 
(tapping, stroking, and holding). In particular, attention and happiness expressions were grouped as the 

 

Figure 1. Experimental setup and example microneurography recordings. (A) Standardized touch expressions were delivered 
over receptive fields of identified afferents by trained experimenters. Microneurography recordings were collected from the 
upper arm. (B) Multiple units were recorded for each of the six afferent subtypes. For cutaneous afferents, each dot 
represents the location of an individual receptive field. For two FA-II afferents in the forearm (open circles), the precise 
location of the receptive field was not documented. For muscle afferents, the dots are shown simply to illustrate where the 
gestures were delivered. The n-value denotes the number of units per afferent subtype. (C) Six touch expressions were 
adopted as stimuli. Sketches illustrate the standard contact delivery of those expressions. Component gestures (tapping, 
stroking, and holding) of the expressions are denoted. Neural response traces illustrate examples of HFA and SA-II responses 
in instantaneous firing frequency (Hz).  
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tapping gesture, calming and love expressions were grouped as the stroking gesture, and the sadness 
expression was counted as the holding gesture. Note that the gratitude expression was left out of this 
analysis since it consisted of both tapping and holding gestures. We combined specific expressions into 
the three commonly used touch gestures so as to provide a more generalized perspective of afferent’s 
firing properties, which also align better with the contact interactions examined by controlled stimuli, e.g., 
indentation, brushing, etc. The results indicate that the observed mean IFF and number of spikes (Fig. 2) 
share the same ranges with controlled stimuli [10], [16], [19], [32]–[35]. More specifically, the mean IFF 
of Aβ afferents (around 0-300 Hz) is higher than that for CT and MS afferents (around 0-50 Hz) (Fig. 2A), 
similar to prior studies using passive touch interactions [10], [32], [35]. For SA-II, HFA, and Field afferents, 
their mean IFF decreases from tapping to stroking to holding contact, while mean IFF increases for CT 
afferents (Fig. 2A). Similarly, it has been previously observed that for brush stroke stimuli at velocities 
above 1 cm/s, the mean IFF for SA-II, HFA, and Field afferents decrease as velocity decreases, while the 
mean IFF for CT afferents instead increases [10]. As for the number of spikes, rapidly adapting HFA and 
Field afferents share the same patterns, with stroking contact eliciting significantly more spikes and 
holding contact eliciting many fewer spikes (Fig. 2B). Note that fewer spikes recorded from tapping 
contact may be due to the overall shorter contact duration relative to the other two gestures. In 
comparison, the numbers of spikes for SA-II and CT afferents are also high for slow and static holding 
contact, which agrees with the firing properties widely reported for these two subtypes [10], [16], [33]. 
Overall, the spike firing characteristics for the social touch gestures align with those previously identified 

 

Figure 2. Comparison of mean instantaneous firing frequency (IFF) and the number of spikes across afferent subtypes and 
gestures. (A) Distributions of mean IFF across gestures per afferent subtype. (B) Distributions of the number of spikes across 
gestures per afferent subtype. The number of spikes per trial was calculated from a 1 s duration with the largest number of 
spikes. (C) Distributions of the number of spikes across afferent subtypes per gesture. Significance test results are not shown 
in this panel and can be found in Fig. S1. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 were derived by Mann–Whitney 
U tests with Benjamini-Hochberg post-hoc correction. 
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with controlled stimuli, and help validate the effectiveness of the human touch microneurography 
paradigm and experiments.  

More interestingly, these peripheral afferents well differentiate the three touch gestures based upon only 
the two firing features evaluated (Fig. 2A, 2B). Indeed, despite contact variations tuned by social meaning, 
the contact patterns of those gestures are distinct enough to elicit reliable and significantly different firing 
patterns (Fig. S1B). That said, discrepancies are observed among the firing properties across afferent 
subtypes. For example, CT afferents exhibit a different trend of mean IFF across gestures compared with 
Aβ afferents; the number of spikes of SAII afferents follows a different trend than that of HFA and Field 
afferents. Moreover, FA-II and MS subtypes provide relatively less information in encoding gestures, 
which may relate to the extremely high sensitivity of Pacinian corpuscles [19] and the proprioceptive 
functionality of muscle spindles [35]. Moreover, while all Aβ afferents responded very well to tapping 
contact (Fig. 2C), SA-II responded with significantly more spikes for holding and FA-II exhibits significantly 
fewer spikes for stroking. These distinct properties suggest the potential for complementary functional 
roles of those afferents when viewed as a population at higher levels of the nervous system. 

Single units of SA-II and HFA afferents effectively encode social touch expressions 

In order to evaluate how well different classes of primary afferents are able to discriminate the six 
expressions, we developed a time-series classifier using a one-dimensional convolutional neural network 
(1D-CNN) to predict delivered social touch expressions from the neural spike trains. The model was trained 
and tested for each afferent subtype separately with full 10 s binary spike trains fed as input. SA-II and 
HFA achieve the highest prediction accuracies around 70-80% (Fig. 3A). Note that the results may slightly 
vary due to the random train-test splitting and stochasticity of CNN model. Such accuracies are very close 
or even slightly higher than human recognition accuracy with the same six standard touch expressions [5]. 
In comparison, Field afferents afford relatively lower accuracy around 56%, while the accuracy of CT, PC, 
and MS afferents are not far from the chance level of 16.7%. In summary, this analysis indicates that SA-
II and HFA subtypes convey the richest information among the tested six afferent subtypes in encoding 
the six social touch expressions. 

 

Figure 3. Expression classification using CNN and SVM models. (A) Classification results per afferent subtype using the CNN 
classifier with 10 s spike trains as input. (B) Classification results per afferent subtype using the SVM classifier with five features 
extracted from 10 s recordings as input. Across both models, the classification accuracy is markedly higher for SA-II and HFA 
subtypes, at levels observed in human perceptual experiments [5].  
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To better examine the encoding capability of those afferents, a simpler model in the form of a linear 
support vector machine (SVM) was employed for classification again to decouple the computational 
power of the more complex CNN model. Instead of an input of time-series neural recordings, an input of 
five features extracted from 10 s recordings was used, which includes mean IFF, number of spikes, peak 
IFF, IFF variation, and number of bursts (details in Methods). As shown in Fig. 3B, similar to the results 
with the CNN model, high classification accuracies of around 70-80% were observed for SA-II and HFA 
subtypes. Also, in alignment with results obtained with the CNN model, the Field, CT, FA-II, and MS 
afferents exhibit lower accuracy. The consistency in classification performance between the two models 
implies that the identified encoding power of those afferent subtypes is associated with the information 
carried by their firing patterns instead of being a function of the model itself. Among the six subtypes, SA-
II and HFA afferents are capable of encoding social touch expressions in an accurate and reliable way. 

Most informative firing patterns for encoding social touch expressions 

In order to identify the most informative segments of firing patterns that lead to high differentiation 
accuracies, we further conducted CNN classification on segments of neural recordings per afferent 
subtype. A sliding window method incorporating window position (Fig. 4A) and window length (Fig. 4C) 
was applied to segment chunks from a given train of neural recording for comparison (details in Methods). 
Indeed, the length of neural responses has been well characterized in encoding discriminative touch with 
controlled stimuli [16]–[22]. In contrast, here we are interested in exploring and comparing the window 
length of neural recordings in encoding human social touch, which affords a higher level of spatiotemporal 
complexity. 64 different window lengths were selected ranging from 0.1 to 10 s. For each window length, 
five segments at different positions were derived according to five metrics using sliding window method 
with the step of 1 ms, which includes the first segment, the segment with the largest number of spikes, 
the segment with the highest mean IFF, the segment with the highest IFF variation, and the segment with 
the highest IFF entropy. Therefore, 320 different segment options were obtained in total and were 
compared using the CNN model in terms of classification accuracy. 

The five window position metrics were first compared per afferent subtype with all window lengths 
combined. For most pairs of metrics, significant differences were identified in average classification 
accuracy (Fig. 4B, details in Fig. S2). However, the differences in accuracy are only around 3.3% between 
the top two metrics for SA-II afferents (the highest number of spikes and the highest mean IFF) and around 
2.7% for HFA afferents (first and the highest number of spikes). Moreover, five accuracy curves along with 
the window lengths corresponding to the five metrics also well overlap, especially for SA-II and HFA 
subtypes (Fig. S2). The overlapping curves indicate the major impact of window length on classification 
performance with window position leading to a lesser difference.  

Among the five window position metrics, the two top performing metrics were adopted for use in 
examining the influence of window length. In general, the results indicate that classification accuracies 
for SA-II, HFA, and Field afferents saturate when window length increases (Fig. 4D). In contrast, accuracies 
for the other afferent subtypes begin and remain consistently low. For SA-II, HFA, and Field subtypes, we 
identified the saturation window lengths from their accuracy curves based on 90% of their highest 
accuracies using fourth-order polynomial regression, which are 3.3 s, 3.8 s, and 5 s respectively. It implies 
that instead of the full 10 s, an average duration of 3-4 s of the neural responses of SA-II and HFA afferents 
provide sufficient information to differentiate the expressions. Accuracy curves and saturation window 
lengths were further identified for SA-II and HFA subtypes and all expressions (Fig. 4E). Variation between 
2.5 to 5.3 s was observed among the identified saturation window lengths, which is still a comparably 
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limited range. It again supports that much less duration from the full 10 s is required for SA-II and HFA 
afferents to encode the social expressions.  

 

Figure 4. Comparison of CNN classification accuracies when using segments of the full 10 s neural recordings derived from 
different window positions and window lengths. (A) An example of two window position options with the same window 
length. Gray traces are 10 s spike trains from the same trial, where highlighted spikes illustrate two different segments. (B) 
Classification accuracies across window position metrics averaged over all window lengths for each afferent subtype. 
Significance test results are not shown in this panel and can be found in Fig. S2. (C) An example of two window length options 
with the same window position. Gray traces are 10 s spike trains from the same trial, where highlighted parts illustrate two 
different segments. (D) Classification accuracies with window length per afferent subtype. Accuracy curves were fitted using 
data from their best two window positions and fourth-order polynomial regression, shown as dotted curves. Red cross 
markers denote 90% saturation window lengths. Two lighter curves represent data from the two best two window positions. 
(E) Classification accuracies along with window length per afferent subtype per expression. Averaged accuracies from their 
best two window positions are shown as grey dotted curves and blue curves represent each of the best positions. Red cross 
markers denote 90% saturation window lengths. 
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According to best window positions and saturation window lengths of SA-II and HFA afferents, the most 
informative segments of their firing patterns are identified for each expression (Fig. 5A). Note that for 
expressions with multiple rounds of contact, e.g., attention and calming, prolonged non-contact/non-
response gaps are included, which ties to the nature of the rhythm of the toucher’s contact delivery. More 
interestingly, it illustrates that the variation of saturation window length across expressions could be 
related to both contact rhythms of touch expressions and firing properties of afferent subtypes. For 
example, the unique repetitive tapping pattern of attention expression might explain why it requires 
relatively less data than other expressions. Sadness exhibits the largest difference in saturation window 

 

Figure 5. Examples of identified most informative firing patterns and SVM classification based on the identified segments. (A) 
IFF traces highlighted in orange are the most informative segments determined by the best window position (SAII: max # of 
spikes, HFA: first) (Fig. 4B) and the saturation window length per afferent-expression combination (annotated under the 
highlighted segments) (Fig. 4E). Grey shades represent gestures of tapping, stroking, and holding. (B, C) Classification results 
using the SVM model. Group 1 and group 2 refer to two groups of neural recording segments derived by saturation window 
lengths per afferent subtype (Fig. 4D) and saturation window lengths per afferent-expression combination (Fig. 4E), 
respectively. (B) results for SA-II subtype, (C) results for HFA subtype. 
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length between SA-II and HFA (Fig. 4E). One explanation is the sustained low-frequency firing pattern of 
SA-II afferents under holding contact is easy to differentiate even within a shorter time. In comparison, 
the firing pattern of HFA to holding is similar to that of tapping contact such that more data including the 
non-response gap are needed to capture the unique dynamic of prolonged holding of the sadness 
expression (Fig. 5A). 

 

Figure 6. Spike-timing sensitivities across afferent subtypes in human social touch. (A) Spike trains from one trial of gratitude 
expression with (lower) and without (upper) spike-timing noise added. (B) CNN classification accuracies relative to the 
standard deviation of added noise. (C) CNN classification accuracies of expressions relative to the standard deviation of added 
noise. (D) Two confusion cases with SA-II afferent recordings. The IFF traces in grey are the original neural recordings and IFF 
traces in blue are the neural recordings with 10 ms and 50 ms standard deviation noise (SD) respectively. Attention 
expressions were misclassified as calming and sadness expressions were misclassified as love when 50 ms SD noise was added.  
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The identified segments of SA-II and HFA recordings were then classified using the SVM model to compare 
with the performance of using full 10 s recordings. Two groups of segments derived from saturation 
window lengths per afferent (Fig. 4D) (group 1) and per afferent-emotion combination (Fig. 4E) (group 2) 
were classified (Fig. 5B, 5C). The best window position metric (Fig. 4B) was applied to both groups. As 
those window lengths and positions were identified using the CNN model, classification with just those 
segments provided similar accuracy results as those with the full 10 s recordings, as expected (Fig. S3). 
Meanwhile, classification accuracies using the SVM model are also similar to the full 10 s recording results 
(Fig. 5B, 5C), where slightly higher accuracies were obtained for group 2. Such findings validate the 
richness of information contained within identified segments of SA-II and HFA afferents' firing patterns.  

Spike-timing sensitivity in human social touch  

As an additional way to examine the temporally relevant features of the spike train, we examined the 
spike-timing sensitivity of the SA-II and HFA subtypes in classifying the social expressions. To achieve this, 
random noise was added to the spike times across the 10 s neural recordings used by the CNN classifier 
(Fig. 6A). Noise following a Gaussian distribution was employed with mean equals to zero and standard 
deviation (SD) ranges from 0 to 100 ms with a step of 5 ms. The CNN model was trained per subtype with 
noise-less neural recordings and was tested using recordings with noise added. Among the six afferent 
subtypes, the SA-II and HFA subtypes were most sensitive to spike-timing noise as their classification 
accuracies drop drastically when noise increases (Fig. 6B). However, they also exhibited tolerance to lower 
noise at around 10 ms SD. This tolerance could relate to the variability of the human-delivered touches, 
the variability of firing patterns across different units, and/or the aggregated information of expression as 
the prediction target. In contrast, spike-timing noise caused little impact on classification performance of 
the other afferent subtypes. Moreover, for SA-II afferents, the attention, happiness, sadness and gratitude 
expressions were sensitive to noise (Fig. 6C), which were all delivered by tapping or holding contact. HFA 
afferents were sensitive to noise with the attention and happiness expressions, which were only delivered 
by tapping. This difference aligns with the firing property of SA-II afferents that they respond to holding 
with a distinct, sustained firing pattern. Except for them, all other expressions and afferent combinations 
were robust to noise across tested noise levels.  

To investigate the potential cause of such high spike-timing sensitivity of certain afferent-expression 
combinations, neural recordings with and without noise were compared in those confusion cases. 
According to the confusion matrix of SA-II afferents with 50 ms SD noise, attention was misclassified as 
calming and sadness was misclassified as love (Fig. S4). While 10 ms SD spike-timing noise did make a huge 
difference on firing patterns, we found that noise as high as 50 ms SD could flatten out isolated spikes 
elicited by repetitive taps within one round of tapping (Fig. 6D). It thus changed the envelope of the firing 
pattern to be a continuous chunk of firing with variable frequencies, which is similar to the firing pattern 
of stroking contact. As for the holding contact of sadness, spike-timing noise could convert its sustained 
slowly decaying firing pattern into a spiky and irregular shape, similar to the firing pattern of stroking (Fig. 
6D). Here, attention and calming were mainly confused with the stroking of calming and love respectively, 
which could relate to their shared touch rhythm of having prolonged non-contact gaps, or not. Based on 
the above observations, we hypothesize that the spike-timing sensitivity of those afferent subtypes could 
be strongly tied to the extent of changes in the envelope shape of their firing patterns caused by noise. 
This envelope information might be better at capturing the contact pattern at a macro level, such as 
gestures, to encode touch expressions. In this scenario, millisecond-precision of single spike times might 
not be as informative due to robustness of the touch expressions and their social meanings. 
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Discussion 

We might lightly tap someone to get their attention or stroke a partner’s arm to offer a sense of calm. 
How these expressions are perceived is influenced by how peripheral afferents encode mechanical 
contact. Up to now, the properties of touch afferents have been exclusively characterized with precisely-
controlled stimuli (e.g., vibration, force-calibrated indentations or tangential loading of the skin). In this 
work we explore neural responses from multiple types of afferents to human-delivered social touch. 
Overall, the findings indicate that single units of Aβ afferents, especially SA-II and HFA subtypes, can 
readily differentiate social touch expressions, at perceptually-observed levels. Moreover, the analysis of 
spike firing patterns, using conventional statistical analyses and classification analyses using convolutional 
neural networks and support vector machines, indicates that temporal firing envelopes of about 3-4 s and 
spike-timing precision of 10 ms afford sufficient discriminative information.  

Microneurography paradigm for human-to-human touch 

Distinct from traditional experiments that control the mechanical stimulus and vary a single feature at a 
time, we record from single peripheral afferents in a human-to-human touch paradigm, where multiple 
stimulus features, e.g., normal displacement, contact area, lateral velocity, vary simultaneously [1], [5], 
[36], [37]. Such naturalistic social touch interactions are closely tied to our human well-being and 
development, and may extend into everyday tasks such as feeding, grooming [38], and caregiving [39]. 
However, these types of interactions are technically difficult to replicate with actuated devices. Indeed, 
precisely controlled stimuli, such as rigid bodies indented in one dimension of depth or force [17]–[19], 
are more commonly employed in characterizing the firing properties of peripheral afferents. Recent 
efforts have begun to move toward more naturalistic contact interactions using brushing, puffs of air, and 
pinch, etc., [40], [41]. Natural textures have also been applied in recording monkey Aβ afferents [28]. 
However, each of these efforts still controls and varies a single stimulus feature at once, which is different 
from natural contact with co-varying features. In this study, we move a step further into human-delivered 
touch, where the richness of contact dynamics could reveal classes of primary afferents that encode the 
combination of multiple features. In our tasks, such information could be relevant to social messages 
conveyed in touch expressions. More specifically, six standardized social touch expressions were delivered 
by trained experimenters. This affords reliable contact interactions [5] and retains the subtleness of 
human-delivered touch at the same time. Meanwhile, expressions were designed with specific touch 
gestures, which can be compared with similar mechanical stimulus contact, e.g., human-delivered stroking 
versus brush-delivered stroking, human-delivered tapping versus vibrating actuator indentation. Indeed, 
the firing properties we observed in human touch (Fig. 2) share similar ranges and trends with those for 
controlled stimuli. It also demonstrates that similar states of skin contact and deformation could elicit 
similar responses across human touch and stimulus contact [42].  

Social touch encoding across afferent subtypes 

Two afferent subtypes, SA-II and HFA, stand out in their ability to differentiate the six social touch 
expressions. In particular, both CNN classification using time-series neural recordings and SVM 
classification using five firing features show that those two subtypes outperform other subtypes (Fig. 3) 
and provide high differentiation accuracies similar to human perception [5]. Moreover, such accuracy is 
consistent in using either the full 10 s time course of the neural responses or the most informative firing 
patterns therein (Fig. 5B, 5C).  
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The SA-II and HFA afferent subtypes, due to particular physiological mechanisms, may be geared more to 
the inherent contact characteristics of the six touches. For example, one prominent commonality between 
these two subtypes is their large, but not too diffuse, receptive fields [43]–[45], which may help in 
consistently capturing the range of contact dynamics given the size of touchers’ fingers and hands and 
their lateral movement patterns. In particular, rapidly adapting units exhibit large receptive fields in the 
hairy skin of the human forearm [44], which are 78-113 mm2 as opposed to 24 mm2 on the dorsum of the 
hand [46] and 13 mm2 in glabrous skin [43]. SA-II afferents exhibit receptive fields around 28 mm2 in the 
dorsal hand [46] and are found to increase in size considerably with indentation force, as compared to SA-
I units [44]. FA-II afferents that innervate Pacinian corpuscles may exhibit too large of receptive fields, 
which are almost too diffuse to map due their extreme sensitivity [19]. Moreover, FA-II afferents are 
relatively scarce in hairy as opposed to glabrous skin [46]. Therefore, compared with other subtypes, the 
relative size of the receptive fields of HFA and SA-II afferents in hairy skin could contribute to their social 
expression encoding. 

Furthermore, SA-II and HFA afferent subtypes are believed to be sensitive to a wide range of contact, 
including hair deflection [47], skin stretch, and shearing forces [16], [48], which are contact characteristics 
that human touch gestures tend to evoke. For example, both SA-II and HFA respond to tapping (vertical 
contact) and stroking (sheering contact) with distinct mean IFFs (Fig. 2A) and can easily differentiate those 
two gestures (Fig. S1). In contrast, Field and FA-II afferents respond to these two directions of contact 
with non-differentiable firing frequencies (Fig. 2A). Moreover, both SA-II and HFA afferents precisely 
followed tapping contact with high IFF responses (Fig. S5), outperforming the other subtypes. Interestingly 
here, SA-II afferents are typically thought to mainly encode static/slow movements and skin stretch [16], 
[48], but also responded very well to fast vertical contact delivered by human tapping. As for holding 
contact, as expected, SA-II afferents respond with sustained low-frequency firing patterns, which 
distinguish holding from other fast movements. HFA afferents did not respond to the sustained contact, 
but precisely captured the on-set and off-set of the hold gesture. Although this pattern of spike firing is 
similar to that of tapping, the unique prolonged touch rhythm of holding provides distinct temporal 
information (Fig. 1C). Meanwhile, the mean IFF in the case of the holding gesture is significantly lower 
than for other gestures, which may relate to slow movements and gentleness deployed in holding contact. 
Overall, the capability of SA-II and HFA subtypes to differentiate the social touch expressions suggests that 
their neural responses well correspond to the range of stimulus input and mechanical skin deformation 
inherent in human-to-human touch interactions.  

Focusing on the context of social touch, the afferent subtypes exhibited distinct sensitivities in encoding 
the two layers of information, i.e., gestures (lower level) and expressions (higher level). Based on the same 
five firing properties, all six subtypes could accurately differentiate the three gestures (Fig. S1), whereas 
CT, FA-II, and MS afferents fail to separate the expressions (Fig. 2B). It suggests that the distinct contact 
patterns of elementary touch gestures, e.g., tapping, stroking, and holding, can be captured to a certain 
extent by all afferent subtypes. Indeed, and in comparison, expressions delivered by selective use of the 
same gesture can be fine-tuned to convey specific social meanings by participants making subtle changes 
in skin-to-skin contact, e.g., velocity, indentation depth, contact area [36]. Such nuances may be less easy 
to capture for certain afferents. For example, attention and happiness, delivered by tapping, and calming 
and love, delivered by stroking, were frequently confused by CT, FA-II, and MS subtypes. From another 
perspective, it is also reasonable that those pairs of expressions might be confused as they share relatively 
similar contact dynamics, and are also likely to be misidentified by human receivers [5]. On the other hand, 
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SA-II and HFA subtypes are very sensitive to slight contact changes, as is observable in the lack of a 
discrepancy between their gesture and expression classification accuracies (Fig. S1, 2B).  

The relatively lower coding capability of CT, FA-II, and MS afferents might be linked to their functional 
roles in signaling specific contact modalities less reflective of the differences in the six social touch 
expressions. Among these subtypes, CT afferents are traditionally thought to be associated with affective 
touch, more specifically pleasantness as elicited through stroking [8], [49]. It has been suggested that CT 
afferents respond preferentially to certain contact patterns and velocity ranges related to the hedonic 
processing, in parallel with Aβ afferents serving as discriminator for different contact stimuli [50]. In 
alignment with such roles, we indeed found that CT afferents can successfully identify stroking contact 
among the six examined touch expressions (Fig. S1), yet could not further differentiate contact differences 
between the expressions of love and calming (Fig. 2B). Those two expressions are presented as similar 
gentle stroking with different stroking routes and contact rhythms, i.e., love: continuous back-forth 
stroking, calming: four separate one-direction stroking. The lack of discrimination of those contact 
differences aligns with reports of low spatial and temporal sensitivity of single CT units [51], although a 
population of CT units may perhaps better inform such affective sensation [52]. Meanwhile, holding 
contact tends to be misclassified as stroking, which is reasonable since slight hand movements always 
exist among human delivered touch. Surprisingly, CT afferents also respond very well to fast vertical 
tapping contact (Fig. S5). Although CT units have been reported to respond well to von Frey indentation 
[53], human tapping affords much higher levels of force in a faster and repetitious manner. However, 
within the same tapping gesture, more detailed contact differences between expressions of attention and 
happiness were not captured in responses of CT afferents. For the other two subtypes, FA-II afferents are 
respond to high-frequency vibration in discriminative touch, such as contact delivered to a site remote to 
the center of the afferent’s receptive field center [46]. However, they filter low frequency stimuli [19] that 
carry most of the information adhering to social touch. MS afferents respond to muscle extension and 
flexion associated with our proprioceptive mechanism [54], which means they are less likely to be 
activated when being passively touched by human touchers. 

Temporal envelope of firing pattern as potential strategy of social touch perception 

By leveraging machine learning classification models, we identified the most informative firing patterns 
of SA-II and HFA afferents in encoding touch expressions. Those firing patterns and their corresponding 
contact patterns suggest strategies tied to similar levels of perceptual discrimination. More specifically, 
instead of the full 10 s time course of contact, we found that an average of 3-4 s provides enough 
information for single units to differentiate the six expressions (Fig. 4D). Also, as window position did not 
have a critical impact, it suggests that afferents respond in a consistently informative way throughout the 
course of contact, where the accumulation of a sufficient amount of information would be the key for 
social touch processing. Indeed, this time duration of 3-4 s aligns with the cortical response time of brush-
delivered affective touch [55], facial EMG response time in natural social touch that reflects emotional 
processing [5], and the acceptable response time of humanoid robots being touched by a human [56]. 
However, this time duration is significantly longer than that reported in encoding precisely-controlled 
single stimulus features. Based on a population simulation of peripheral tactile afferents, tens of 
milliseconds were found to be sufficient in encoding stimulus directions [57]. Similarly, with ensembles of 
recorded single afferents, tens of milliseconds neural responses were also suggested to be effective in 
encoding controlled force, torque, force direction, and shape on finger pads [58], [59]. This difference in 
neural response duration for touch encoding may highlight the complexity of human social touch, where 
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social meaning may be integrated from varying combinations of spatial and temporal contact interactions. 
For example, attention is generally expressed as several rounds of repeated fast tapping versus happiness 
is expressed as continuous tapping with fingers dancing back and forth on the receivers’ forearm. Tapping 
contact from the two expressions might be signaled by peripheral afferents in a comparable way within 
tens of millisecond duration. Nevertheless, they could be differentiated from firing patterns reflecting 
touch gestures and contact rhythms in the time scale of multiple seconds (Fig. 5A). On the other end of 
the spectrum, controlled stimulus features typically carry less information of constant states, e.g., a 
certain direction of indenting stimulus, and thus could be identified with much shorter neural responses 
especially using a population model [57]. As single units were tested individually in our case, we expect 
that population responses of single or multiple afferent subtypes might encode social touch expressions 
in shorter durations. 

Furthermore, peripheral neural responses allow for the precise timing of the spikes to be shifted by about 
10 ms with little effect on the classification of the expression, although greater shifts can change the firing 
patterns so that an expression is confused with another. It appears that the spike timing precision needed 
in encoding human social touch is relatively lower than encoding traditional stimulus features. For 
instance, when classifying well-controlled scanned textures and vibratory stimuli, the optimal spike timing 
precision is around 1-10 ms [28], [60]. Yet consistent with these reports, we also find that slowly adapting 
afferents are less sensitive to spike timing than fast adapting afferents. In the above studies [28], [60], the 
distance to transform one spike train to another [61] was used to classify replicated stimuli. As some 
variation can exist in the exact human contact delivery, we directly added artificial jitter to spike times 
[62]–[64] and tested them with the high-resolution time-series CNN model. It was believed that spike-
timing jitter would blur the transmitted information of the stimulus [62], [63], [65]. For encoding 
controlled audio amplitudes, milliseconds or even sub-milliseconds of added artificial jitter can 
significantly decrease the accuracy of transmitted information [64]. Therefore, in human social touch 
interactions, the relatively higher tolerance to spike-timing jitter suggests that the aggregated temporal 
pattern might play a role in capturing the delivered expression information. We found that by adding spike 
timing jitter, the envelope of the firing pattern can be drastically changed. Through qualitative observation, 
such coarse-grained temporal patterns may be closely related to macro level information, e.g., touch 
gestures (Fig. 6D), instead of cell level dynamics of signal transmission. It also aligns with the finding that 
the SVM model using aggregated firing properties provided comparable classification performance as the 
time-series CNN model (Fig. 2A, 2B, 5B, 5C). Their similar performance implies that detailed spike-to-spike 
temporal coding may not contribute to the core information in complex social touch scenarios. On the 
other hand, rate coding of statistical features could capture the temporal pattern to a certain extent but 
might not capture the whole dynamics. Here we hypothesize that the temporal envelope of the firing 
pattern, which falls between the precise temporal coding and the rate coding, could be a valuable metric 
in representing social touch expressions, where the window length would also have a large impact.  

Limitations and future works 

The slowly-adapting type I (SA-I) afferent is another Aβ subtype that is likely to play a significant role in 
encoding social touch stimuli. In general, SA-I afferents contribute to our abilities in fine touch 
discrimination, as demonstrated in experiments with precisely-controlled stimuli [45], [66]. In our study 
herein, the population of SA-I afferents (n=2) was not large enough to include. Our speculation is that SA-
I afferents might behave akin to SA-II afferents, due to similar adaptation characteristics. Additionally, SA-
I afferents exhibit a very large dynamic range of sensitivity, as compared to SA-II afferents, combined with 
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very low absolute thresholds [67]. On one hand, such sensitivity should benefit discriminability, in general. 
On the other hand, in discriminating social touches, if SA-I afferents are too sensitive, this may be too 
variable a response that buries the core contact information carried by the temporal envelope of the firing 
pattern. In this way, SA-II afferents might offer advantages because they have relatively dampened 
responses to dynamic stimuli, compared to SA-I afferents. Indeed, FA-II subtype that exhibits extremely 
high temporal sensitivity provides low differentiation accuracy. Work with high threshold 
mechanoreceptors has also shown that less sensitive subtypes can be better encoders of noxious forces 
than those relatively more sensitive [24]. However, further follow up work is required to understand the 
response characteristics of the SA-I subtype to social touches. 

Additionally, at the single-unit level, it is possible that SA-II and HFA afferents may struggle to distinguish 
different sets of touch expressions than those we used, and other subunit types may excel. We designed 
the expressions to cover a wide range of naturalistic interpersonal touch interactions that are 
understandable by human receivers. Meanwhile, the designed expressions were connected to specific 
social meanings so that the underlying emotional contexts could be moderated. In particular, the 
perception of pleasantness (valence), emotional arousal, and dominance [68], [69] were not fully explored 
in this study. Part of the reason was to avoid the high task load of participants if psychophysical and 
microneurography experiments were conducted together. Based on the dataset of emotional ratings for 
English words [69], we found that happiness and attention are particularly high arousal and were both 
delivered by fast tapping contact. We might assume that neural responses to fast contact velocities are 
related to high arousal percepts. However, other contact characteristics, e.g., force, indentation, contact 
area might also contribute [36]. Therefore, precise contact quantification needs to be introduced to 
uncover further details of how emotional contexts of physical touch delivery are encoded by peripheral 
afferents [37].  

Moreover, as we hypothesize that the temporal envelope of firing pattern could suggest the potential 
strategy of how humans perceive social meanings from touch, it needs to be further assessed in a 
systematic way. On top of that, the population encoding mechanism is also not fully understood for social 
touch interactions. More specifically, while single units appear to hold discriminative capacity, afferent 
subtypes are likely to interplay in a cohesive way in generating population responses [29], [70], from which 
our perception and discrimination are gleaned. Our findings regarding single unit responses provide the 
foundation for such future explorations, where empirical or mathematical studies of higher-order nervous 
structures would benefit our understanding of population processing of social touch communication.  

Methods 

Participants—touch receivers 

All participants were recruited through local advertisement and a mailing list. Using the microneurography 
technique for single-afferent axonal recordings, responses to social-touch expressions were recorded 
from 41 low-threshold primary afferent fibers belonging to the right radial nerve in 20 healthy participants 
(23-35 years old – all except 1 who was 50 years’ old; 13 males, 5 females). All participants provided 
informed consent in writing before the start of the experiment. The study was approved by the ethics 
committees of Linköping University (Dnr 2017/485-31) and complied with the revised Declaration of 
Helsinki. The participants were seated in a comfortable chair and pillows were provided to ensure minimal 
discomfort. 
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Standardized touch expressions  

Based on observations of the common physical features of touch communication behavior between 
people in a close relationship [5], we developed a set of standardized touch expressions to communicate 
“attention,” “happiness,” “calming,” “love,” “gratitude” and “sadness.” More specifically, the touch 
expression of “attention” comprised 4 bursts of 4-5 repetitive taps with the index finger, each burst lasting 
approximately 1.5 s, with approximately 1 s between. “Happiness” consisted of continuous random 
playful tapping, using multiple fingers, and moving up and down the arm. “Gratitude” consisted of patting 
(3-4 pats with multiple fingers, lasting approximately 2 s) alternated with holding (long grasp with the 
whole hand, lasting approximately 2 s). “Calming” involved 4 repeated strokes down the arm with the 
whole hand, each lasting approximately 2 s, with approximately 0.5 s between. “Love” involved a 
continuous back-and-forth stroking with the fingertips up and down the arm. Finally, sadness consisted of 
a sustained hold on the arm with light squeezing.  

These standardized expressions were applied by trained experimenters to the physiological receptive field 
of single neurons during microneurography recordings. The experimenter received spoken cues via 
headphones, first the cue-word, then a countdown (3, 2, 1, go). They were instructed to perform the touch 
starting from the “go”-signal until they heard a stop signal (3, 2, 1, stop), creating a continuous time 
window of touch for 10 s. The experimenter was first familiarized with the afferent’s receptive field and 
was required to touch an area of skin including but not limited to the receptive field. They were also 
required not to perform any vigorous movements to avoid dislodging the recording electrode. Where a 
single-unit recording was stable enough, data for multiple trial-sets were obtained.  

Microneurography 

Neural recordings were performed with equipment purpose-built for human microneurography studies 
from ADInstruments (Oxford, UK; setup 1) or the Physiology Section, Department of Integrative Medical 
Biology, Umeå University (setup 2). The course of the radial nerve just above the elbow was visualized 
using ultrasound (LOGIQ e, GE Healthcare, Chicago, IL, USA). A high-impedance tungsten recording 
electrode was inserted percutaneously and with ultrasound guidance it was inserted into the nerve. 
Where needed, weak electrical stimuli through that electrode were delivered to localize the nerve (0.02-
1 mA, 0.2 ms, 1 Hz; FHC, Inc. Bowdoin, ME, USA). The electrode was insulated, except for the ~5 µm bare 
tip, with a typical length of 40 mm and shaft diameter of 0.2 mm. In addition to the recording electrode, 
an indifferent (uninsulated) electrode was inserted subcutaneously, approximately 5 cm away from the 
nerve. Once the electrode tip was intra-fascicular, minute movements were made to the recording 
electrode, manually or with a pair of forceps until a single afferent signal was isolated. Each low-threshold 
mechanosensitive cutaneous afferent (all soft-brush sensitive) was classified by its physiological 
characteristics, as per the criteria used in [44], [71]. Briefly, individual Aβ low-threshold mechanoreceptors 
were separated into rapidly and slowly adapting types based on their adaptive responses to ramp-and-
hold indentation of the skin. Three groups of rapidly adapting units were identified as follows: HFA, 
responsive to hair deflection and light air puffs; FA-II, comprising a single spot of maximal sensitivity and 
robust response to remote tapping; Field, comprising multiple spots of high sensitivity with no response 
to hair displacement or remote tapping of the skin. Two groups of slowly adapting (types I and II) were 
identified where several features were examined including spontaneous firing, stretch sensitivity, and 
receptive field characteristics. In addition, an inter-spike interval pattern to sustained indentation (100 
mN for 30 s) was tested. Coefficients of variation of inter-spike intervals for all SA-IIs (n=4) were in the 
range of 0.15 to 0.23. This was also measured for one SA-I and its coefficient of variation was 1.92. These 
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values are consistent with previous observations [24], [44], [72]. Single muscle spindle afferents were 
identified by stretch of the receptor-bearing muscle along its line of action. These were not further 
classified into primary and secondary afferents. 

Mechanical thresholds of all cutaneous afferent fibers were measured using Semmes-Weinstein 
monofilaments (nylon fiber; Aesthesio, Bioseb, Pinellas Park, FL, USA), except HFA whose preferred 
stimulus is hair movement so responses to light air puffs were determined. The monofilaments were 
applied manually with a rapid onset until the monofilament buckled: If a unit responded to the same 
(weakest) monofilament in at least 50% of trials, it was taken as the mechanical threshold. Based on prior 
work showing that 4 mN threshold divides the low threshold (<4 mN) and high threshold (≥ 4 mN) 
cutaneous afferent populations in hairy skin [24], [71], only those afferents with thresholds below 4 mN 
were considered. Further, any cutaneous afferent with a receptive field located at a site inaccessible for 
the delivery of expressions was discarded.  

All neural data were recorded and processed using LabChart Pro for setup 1 (v8.1.5 and PowerLab 16/35 
hardware PL3516/P, ADInstruments, Oxford, UK) and SC/ZOOM for setup 2 (Physiology Section, 
Department of Integrative Medical Biology, Umeå University). Action potentials were distinguished from 
background noise with a signal-to-noise ratio of at least 2:1 and were confirmed to have originated from 
the recorded afferent by a semi-automatic inspection of their morphology. For further details see [24]. 

Statistical and classification analyses 

When examining the basic firing properties of the afferents (Fig. 2), per expression trial, the mean IFF was 
calculated over the whole 10 s neural recording and the number of spikes was calculated from a 1 s chunk 
constraining the largest number of spikes. The duration of 1 s was determined as it could be covered by 
non-stop contact across all expressions. Mann-Whitney U tests were conducted for pairwise comparisons 
of those two properties across afferent subtypes and touch gestures. Post-hoc Benjamini-Hochberg 
method was used for multiple testing correction.  

A five-layer 1D CNN model and an SVM model were employed for classification analysis. The structure 
and hyper parameters of the CNN model were determined by cross validation grid search with data from 
all afferent subtypes combined together and there were 16,646 trainable parameters in total. For each 
layer of CNN, 0.2 dropout was applied. The model was trained with Early Stopping and the ADAM 
optimizer with a reducing learning rate starting from 0.001. The same model was trained and tested for 
each afferent subtype separately based on the loss of categorical cross-entropy. For classification using 
full 10 s recordings and the identified best segments, five-fold cross validation were repeated 20 times to 
obtain the average prediction results for both CNN and SVM models (Fig. 3, 5B, 5C). Among five neural 
firing properties extracted for SVM classification (Fig. 3B, 5B, 5C, S1B), the number of spikes was calculated 
from full 10 s, IFF variation was calculated as the coefficient of variation of IFF, and the number of bursts 
was defined as the number of spike bursts separated by gaps of inter-spike intervals larger than 1 s. For 
the identification of the most informative segments of neural recordings (Fig. 4), window position metrics 
of IFF variation and IFF entropy were calculated from step-interpolated IFF to better reflect the time-series 
pattern of touch expressions. The sampling rates of window length were designed as every 0.1 s from 0.1 
s to 4 s, and every 0.25 s from 4 s to 10 s. Five-fold cross validation of CNN was repeated twice across all 
window lengths to identity the best window position metrics, where Mann-Whitney U tests and post-hoc 
Benjamini-Hochberg correction were applied for pairwise comparison (Fig. 4B). Best window lengths were 
identified based on seven repeats of five-fold cross validation of CNN across all window lengths and the 
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best two window position metrics (Fig. 4D, 5E). For the spike-time sensitivity analysis, average accuracies 
were obtained from five repeats of five-fold cross validation with each level of noise tested by ten 
different sets of random noise.  
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