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Abstract 
 

A central challenge in the study of intrinsically disordered proteins is the characterization of the 

mechanisms by which they bind their physiological interaction partners. Here, we utilize a deep 

learning based Markov state modeling approach to characterize the folding-upon-binding 

pathways observed in a long-time scale molecular dynamics simulation of a disordered region of 

the measles virus nucleoprotein NTAIL reversibly binding the X domain of the measles virus 

phosphoprotein complex. We find that folding-upon-binding predominantly occurs via two 

distinct encounter complexes that are differentiated by the binding orientation, helical content, and 

conformational heterogeneity of NTAIL. We do not, however, find evidence for the existence of 

canonical conformational selection or induced fit binding pathways. We observe four kinetically 

separated native-like bound states that interconvert on time scales of eighty to five hundred 

nanoseconds. These bound states share a core set of native intermolecular contacts and stable NTAIL 

helices and are differentiated by a sequential formation of native and non-native contacts and 

additional helical turns. Our analyses provide an atomic resolution structural description of 

intermediate states in a folding-upon-binding pathway and elucidate the nature of the kinetic 

barriers between metastable states in a dynamic and heterogenous, or “fuzzy”, protein complex. 
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Introduction  
 

Intrinsically disordered proteins (IDPs) are proteins that do not adopt stable tertiary structures in 

isolation under physiological conditions. IDPs  are ubiquitous in eukaryotic proteomes and viruses; 

and play crucial functional roles in many cellular processes.1-3 The biological functions of IDPs 

are often mediated by short sequence segments, referred to as linear motifs or molecular 

recognition elements, that interact with structured partner proteins.4-6 The molecular recognition 

elements of IDPs populate a structurally diverse set of conformations in their unbound states and 

can adopt a similarly diverse set of conformations when bound to different physiological 

interaction partners.7-10 This conformational plasticity enables IDPs to function as hubs in cellular 

signaling pathways, where they can form specific interactions with multiple binding partners.11-13  

The relative affinities of these interactions can be tuned by post-translational modifications or 

changes in the cellular environment allowing for sensitive spatial and temporal regulation of 

cellular processes mediated by IDP interactions.11, 14-18  

 

The thermodynamics of IDP interactions are complex, and the relationships between their free and 

bound state structures are not straightforward.19. In some instances, IDPs undergo disorder-to-order 

transitions and adopt stable tertiary structures when bound to physiological binding partners; a 

process referred to as “folding-upon-binding”.5, 9, 20-22 In other instances, IDPs retain a substantial 

amount of conformational disorder in their bound states.23-26 Such dynamic and heterogenous 

complexes are sometimes referred to as “fuzzy” complexes.27, 28 Substantial effort has been made 

to characterize the kinetics and thermodynamics of IDP binding events6, 9, 29-31, as elucidating the 

relationship between the free and bound states of IDPs will enable a more predictive understanding 

of their roles in biological pathways and human disease.11, 32  

 

Stopped-flow and temperature-jump kinetics measurements31, 33, 34, NMR spectroscopy35-39, single 

molecule FRET40-43 and protein engineering techniques44-46 have emerged as powerful tools for 

characterizing the binding processes of IDPs. While these experimental techniques provide 

detailed mechanistic insight into IDP binding pathways, the data generated by these approaches 

are generally insufficient to obtain atomic resolution descriptions of the conformational states 

populated in IDP binding pathways. Atomistic descriptions of IDP binding intermediates and the 
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conformational states populated by IDPs in complexes with their physiological interaction partners 

are highly desirable as they may facilitate the development of rational drug design strategies for 

modulating the activity of IDPs implicated in the pathogenesis of diseases.17,47, 48 

 

All-atom molecular dynamics (MD) computer simulations provide a powerful complement to 

biophysical experiments for characterizing conformational ensembles,49-53 binding pathways44, 46, 

54-56 and bound states of IDPs.48-53, 56-59 Long timescale MD simulations run with an accurate 

physical model, or force field, can provide atomically detailed structural descriptions of 

conformational substates involved in IDP binding. MD simulations with sufficient statistical 

sampling of binding events also provide the equilibrium populations of these states and the rates 

of transitions between them.54, 55 Recent improvements to molecular mechanics force fields have 

dramatically enhanced the accuracy of MD simulations of disordered proteins and have shown 

promise for describing molecular recognition mechanisms of IDPs.48, 52, 56, 58, 60, 61  As IDP binding 

pathways occur on rugged and high-dimensional free energy surfaces, identifying mechanistically 

meaningful metastable states in MD simulations of IDP remains a substantial challenge. 

 

Markov State Models (MSMs) describe the dynamics of stochastic systems as a transition network 

of memoryless, probabilistic jumps between sets of states. MSMs are a powerful approach for 

obtaining mechanistic insight from MD simulations62, 63 and have provided insights into protein 

conformational transitions51, 64, 65, protein folding66, protein-ligand binding47, 55, 67 and protein-

protein complex formation.47, 54, 55, 66-69 The accuracy, interpretability, and relevance of information 

extracted from MSMs are, however, highly dependent on the input features used to describe a 

simulated system, the methods used to reduce the dimensionality of the input feature space and the 

partitioning of simulation frames into Markov states.62, 70, 71 These tasks are particularly 

challenging when building MSMs to describe the high-dimensional conformational space of 

disordered proteins.47, 51, 72 

 

In recent years, theoretical advancements and applications of machine learning techniques have 

facilitated the construction of MSMs from MD simulation data.73 Automated feature selection, 

dimensionality reduction, and feature scoring methods can be applied to guide and validate the 

selection of molecular features to construct MSMs.74-78 These methods identify subsets of slowly 
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evolving structural features, or collective variables, that can be used to partition MD trajectories 

into metastable Markov states that accurately model the kinetics of simulated conformational 

transitions.76, 79, 80 The variational approach to Markov processes (VAMP) has emerged as a 

powerful framework to identify molecular features that describe the slowest evolving degrees of 

freedom in a simulated system.80-83 In this approach a scoring function is used to quantify how 

effectively a set of features describes the kinetics of slow conformational transitions observed in 

MD simulations, and this score is maximized to identify optimal collective variables for MSM 

construction. The VAMP method has been extended to a deep learning framework where neural 

networks (referred to as “VAMPnets”)  are optimized to identify metastable conformational states 

directly from molecular features.84 VAMPnet approaches have been further extended to include 

physical constraints in the training of neural networks that enable MSMs to be learned directly 

from simulation data.85 These models, referred to as “deep reversible MSMs”, “deep MSMs”, or 

“Koopman Models”, allow for the construction of kinetic models comprised of probabilistic states 

that may be differentiated by only subtle conformational features.51, 85 

 

In this investigation, we have built a conventional MSM and a deep learning based MSM (or “deep 

MSM”) to characterize the folding-upon-binding pathways observed in a 200µs unbiased MD 

simulation of the a-helical molecular recognition element of the measles virus nucleoprotein NTAIL 

reversibly binding the X domain (XD) of the measles virus phosphoprotein complex.56 The 

conformational dynamics of measles virus NTAIL in solution and the folding-upon-binding of NTAIL 

to XD have been extensively characterized by a variety of experimental33, 36, 86-91, and 

computational methods.56, 92-94 Here, we construct a hidden Markov state model95 using time-

lagged independent component analysis (tICA)79, 80, 96, 97, a linear dimensionality reduction 

technique, and a deep MSM by applying the VAMPnet approach with physical constraints.85 Our 

deep MSM employs a multi-input neural network architecture that utilizes a combination of 

convolutional and fully connected neural network layers to merge structural descriptors with 

different inherent dimensionalities.     

 

We find that the deep MSM identifies several states that were not identified by a conventional 

hidden Markov state model. The hidden Markov state model identifies a single heterogenous 

encounter complex state between NTAIL and XD and a single heterogenous non-native complex 
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where NTAIL binds on the opposite face of XD relative native binding site. The deep MSM resolves 

two structurally and kinetically distinct encounter complex states that are differentiated by the 

binding orientation and helical content of NTAIL as well as a kinetic trap on the native folding upon 

binding pathway. The deep MSM also identifies a network of several distinct non-native bound 

complexes. The hidden Markov state model and deep MSM both resolve 4 kinetically separated 

bound native-like states that interconvert on time scales of eighty to five hundred nanoseconds. 

These bound states share a core set of native intermolecular contacts and stable helices and are 

differentiated by a sequential formation of non-native contacts that facilitate the folding of 

additional helical turns. Interestingly, the detailed molecular mechanisms of folding-upon-binding 

revealed by our MSMs are not consistent with canonical conformational selection or induced-fit 

folding-upon-binding mechanisms. We find that encounter complexes that contain highly helical 

NTAIL conformations proceed to the fully folded NTAIL:XD complex through a similar network of 

states as encounter complexes where NTAIL has little helical structure.         

 

Our analyses provide an atomic resolution structural and kinetic description of intermediate states 

in a folding-upon-binding pathway and elucidate the nature of the kinetic barriers between 

metastable states in a dynamic and heterogenous, or “fuzzy”, protein complex10, 26-28, 98 formed by 

an IDP and a structured binding partner. The neural network architecture designed here to train a 

deep MSM merges convolutional neural network layers that reduce the dimensionality of 

intermolecular contact matrices with fully connected network layers to describe global structural 

features. This neural network identifies several conformational states that were not resolved 

utilizing a reaction coordinate approach, time-lagged independent component analysis (tICA), or 

a conventional neural network architecture employing only fully connected neural network layers. 

These states enhance the resolution of the folding-upon-binding mechanism and suggest that 

folding-upon-binding proceeds through binding pathways that are inconsistent with canonical 

conformational selection or induced-fit binding mechanisms. This multi-input neural network 

approach may provide a general strategy for building deep MSMs to model the highly dynamic 

conformational states of IDPs and protein complexes with substantial conformational disorder.      
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Results  
 

Molecular dynamics simulation of the measles virus nucleoprotein NTAIL and the X domain 

of the measles virus phosphoprotein complex. A 200µs explicit solvent unbiased MD simulation 

of a 21-residue partially helical molecular recognition element of the measles virus nucleoprotein 

NTAIL (residues 484-504, henceforth referred to as “NTAIL”) and the X domain (XD) of the measles 

virus phosphoprotein complex was previously performed by Robustelli et. al56 using the Anton99 

supercomputer. This simulation was performed at 400 K using the a99SB-disp protein force field 

and a99SB-disp water model.52 A temperature of 400 K was selected for long time scale folding-

upon-binding simulations as it was found to be near the simulated melting temperature of the 

NTAIL:XD complex and enabled an efficient sampling of binding and unbinding transitions in an 

equilibrium simulation. This simulation was initiated from an unbound conformation of NTAIL and 

contains 36 binding and 36 unbinding events, where binding and unbinding events are defined 

using the fraction of native intermolecular contacts (Q)56, 100 as a reaction coordinate (See 

Methods). Here, we observed that XD unfolds at the beginning of this trajectory and refolds to its 

native state after 3 µs of simulation time and that XD unfolds and refolds multiple times in the 

final 30 µs of the trajectory. As we are only interested in modeling the binding pathways of NTAIL 

to the native state of XD, we restricted our analysis to a continuous 167 µs subset of the original 

MD trajectory (from t=3 µs to t=170 µs) where XD remained in its native conformation. This 167 

µs segment of the original trajectory contains 831701 frames, spaced with an interval of 200 ps 

per frame. We refer to this 167 µs segment as the “full trajectory”. 

 

Markov state model input features. We considered a set of input features containing 1029 

intermolecular distances (one distance between each of the 21x49 intermolecular pairs of residues 

in NTAIL and XD), 21 binary features based on the DSSP secondary structure assignment101 of each 

residue of NTAIL, and 15 features consisting of the value of the helical order parameter Sα102 for 

each consecutive seven residue fragment of NTAIL (See Methods). We refer to sum of Sα values 

for all 15 seven residue fragments of NTAIL as “NTAIL Sα”. We consider a total of 1065 features for 

each MD simulation frame to build an 831701 x 1065 input feature matrix.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2023. ; https://doi.org/10.1101/2023.07.21.550103doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.21.550103
http://creativecommons.org/licenses/by-nc-nd/4.0/


Constructing a hidden Markov state model (HMSM) from time-lagged independent 

component analysis (tICA). We utilized time-lagged independent component analysis (tICA)79, 

80, 96, 97 to reduce the dimensionality of the NTAIL:XD input feature matrix and build an initial MSM. 

tICA was performed on the input feature matrix using a lag time of 6 ns and the resulting data were 

projected onto the first ten tICA eigenvectors. Initial analyses revealed that the binary DSSP 

assignment features had no impact on tICA projections and subsequent analyses, and they were 

subsequently excluded from the input features for building MSMs from tICA (See Methods). We 

visualize the free energy surface of the NTAIL:XD folding-upon-binding MD trajectory as a 

function of the two dominant time-lagged independent components (TICs) in Supplementary 

Figure 1. We observe that this projection resolves 4 distinct bound-state free energy basins that 

resemble the native NTAIL:XD complex observed by x-ray crystallography (PDB ID 1T6O)86 . We 

determined an initial estimate of the optimal number of states for an MSM derived from the first 

ten tICA eigenvectors by iteratively applying the k-means algorithm with an increasing number of 

clusters until the resultant states no longer had statistically distinguishable properties in terms of 

the fraction of native intermolecular contacts (Q), Sα, radius of gyration (Rg) and root mean 

squared deviation (RMSD) from the native complex. Using this approach, we found seven clusters 

to be optimal. We estimated a traditional MSM using these clusters as state definitions and a lag 

time of 24 ns. The implied timescales (ITS) of this model, however, were not converged or fully 

resolved. This MSM also failed to satisfy the generalized Chapman- Kolmogorov (CK) test62 (eq. 

5), failing to reproduce the fastest processes observed in this system (data not shown).  

 

To produce a valid model, we constructed an MSM with a larger numbers of initial states and 

coarse grained them to a smaller number states via the HMSM formulism introduced by Noe et 

al.95  We found that coarsening an initial twelve state MSM with seven resolved implied timescales 

(including the stationary process) to a seven state HMSM with a lag time of 6 ns yielded resolved 

and converged implied timescales and a valid CK-test (Supplementary Figure 2). We refer to this 

model as the “tICA HMSM”. We number these states HMSM state 1-7 in ascending order based 

on their similarity to the native complex, as assessed by the average values of the native 

intermolecular contact fraction (<Q>), NTAIL Sα (<NTAIL Sα >), Rg (<Rg>) and RMSD from the 

crystal structure of the native complex calculated from all structures in each state (Supplementary 

Figure 3 and Supplementary Table 1). A network representation of the tICA HMSM with structural 
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depictions of each state with the calculated mean first passage times (MFPTs) between them is 

displayed in Figure 1.   

 

The HMSM state assignments are projected onto the two dominant tICs in Supplementary Figure 

4. We visualize the free energy surface of each HMSM state as a function of the fraction of native 

intermolecular contacts (Q) and NTAIL Sα in Supplementary Figure 5. The average values and 

standard deviations of Q and NTAIL Sα for each HMSM state are compared in Supplementary Table 

1 and Supplementary Figure 6. The populations of native and non-native NTAIL:XD intermolecular 

contacts and the NTAIL helical propensities for each tICA HMSM state are compared in 

Supplementary Figure 7. The transition matrix of the HMSM is shown in Supplementary Figure 8 

and the calculated MFPTs are shown in Supplementary Figure 9.   

 

In HMSM state 1 NTAIL adopts highly helical conformations (<NTAIL Sα> = 10.9). These 

conformations have comparable helicity to the NTAIL conformation observed in the native 

NTAIL:XD complex (NTAIL Sα  = 12.8 in PDB 1T6O)  with the exception of helical fraying observed 

in the N-terminal NTAIL residues G484-D487 and the C-terminal NTAIL residues A502-I504. The 

average values of native intermolecular contacts <Q> are 0.93, 0.91, 0.79. and 0.78 and the average 

values of <NTAIL Sα> are 10.9, 7.7, 5.6 and 4.8 for HMSM states 1-4, respectively. These 4 states 

contain stable helical conformations from NTAIL A502 to A494 and are differentiated by the 

extension of stable NTAIL helical conformations from NTAIL A502 to D493, NTAIL A502 to S491, 

and NTAIL A502 to D487 in HMSM states 3, 2 and 1 respectively (Supplementary Figure 7). The 

Rg of the bound states increases from HMSM state 1 to HMSM state 4 as an increasing number of 

N-terminal residues of less helical conformations of NTAIL extend outward from XD into solution 

(Supplementary Table 1). Our tICA HMSM also identifies a weakly bound state (HMSM state 5) 

with a small fraction of native intermolecular contacts and little helical content (<Q> = 0.16, 

<NTAIL Sα> = 3.1), a state where NTAIL and XD are largely unbound (HMSM state 6) with a 

substantially elevated Rg  (<Q> = 0.01, <NTAIL Sα> = 1.4, <Rg> = 1.8 nm) and a more compact 

non-native complex (HMSM state 7) with very few native contacts (<Q> = 0.02, <NTAIL Sα> = 

3.6, <Rg> = 1.3 nm) but more NTAIL helical content than unbound NTAIL conformations. 
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We observe that HMSM state 5 functions as a kinetic hub between unbound conformations in 

HMSM state 6 and the 4 native-like bound states (Figure 2, Supplementary Figure 8). HMSM 

State 5 can therefore be interpreted as an on-pathway encounter complex in the folding-upon-

binding of pathway NTAIL. The most probable transitions from HMSM state 5 to the native-like 

bound states are to states 3 and 4, where NTAIL is partially folded, with transition probabilities of 

2.53 + 0.4% and 1.48 + 0.3%, respectively (error estimates computed with a Bayesian HMSM and 

Gibbs sampling approach80,112, See Methods). From HMSM state 3, transitions to state 2 (7.33 + 

0.53%) are significantly more probable than to the less helical state 4 (4.85 + 0.4%). HMSM state 

4 has a relatively large probability of transitioning to state 3 (12.7 + 1.03%) and very low 

probabilities of transitioning to states 1 (0.4 + 0.1%) and 2 (1.1 + 0.2%). Using Transition path 

theory (TPT)103-105, we find that folding-upon-binding pathways from HMSM state 6 (unbound) 

to states 1 and 2 (most native-like bound states) that exclude visits to state 4 comprise 74.8% of 

the total probability flux and that the pathway with the maximum flux (46.1%) proceeds through 

states 5, 3, and 2. We conclude that HMSM state 4 is largely off pathway to the more folded, bound 

states. We observe that HMSM state 7 consists of a non-native NTAIL:XD complex where NTAIL is 

bound on the opposite face of XD relative to the native binding groove. Conformations in HMSM 

state 7 predominantly transition back to unbound conformations in HMSM state 6 (transition 

probability of 4.17 + 0.78%) and very rarely transition directly to HMSM state 5 (transition 

probability of 0.1 + 0.1%). 

  

Constructing a deep Markov state model with a multi-input neural network architecture. 

We sought to improve the resolution of our kinetic model and obtain greater mechanistic insight 

into NTAIL:XD folding-upon-binding by employing the deep learning “VAMPnet” approach with 

physical constraints to build a deep MSM.85 In this approach, the variational approach to Markov 

processes (VAMP) is integrated into a deep learning framework that combines feature selection, 

dimensionality reduction, state discretization, and kinetic modeling into a continuous pipeline for 

constructing MSMs. The VAMP provides a “VAMP score” that estimates how well a set of 

features describes the kinetics of the slowest evolving transitions observed in an MD simulation.76, 

81-83 In a VAMPnet, a neural network is trained to learn a non-linear function that transforms input 

features into probabilistic state assignments that maximize the VAMP score. A VAMPnet outputs 

a probabilistic (or “fuzzy”) Markov state assignment for each frame of an MD simulation 
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trajectory. Probabilistic state assignments describe the probability that each trajectory frame is a 

member of each Markov state. Higher VAMP scores result from probabilistic MSM state 

assignments that maximize the autocorrelation of each state assignment. Training neural networks 

to maximize VAMP scores therefore identifies slowly evolving state definitions describing 

metastable intermediates in long timescale processes.   

 

Mardt et. al. extended the VAMPnet approach to learn a stochastic and reversible transition matrix 

defining the transition probabilities between fuzzy states obtained from an unconstrained 

VAMPnet.84, 85 A reversible and stochastic transition matrix adheres to detailed balance and has 

all positive elements so each element can therefore be interpreted as a transition probability. The 

learned deep MSM state assignments and reversible, stochastic transition matrix define a kinetic 

model from which the stationary distribution of states and their interconversion rates can be 

computed. These models have been referred to as “deep MSMs”, “VAMPnets with physical 

constraints” and “Koopman models” in previous studies due to their relationship with Koopman 

operator theory.106 Deep MSMs pose a great advantage over traditional MSMs as the utilization of 

neural networks in these models allow for the optimization of non-linear state membership 

functions.  

 

We used the full set of 1065 input features to learn a deep MSM with a VAMPnet with physical 

constraints. We refer to this MSM as the “deep MSM”. To optimally integrate features that 

describe the helical content of NTAIL (Sa and binary DSSP) and features that describe the position 

and orientation of NTAIL relative to XD (the NTAIL:XD intermolecular distance matrix) in our 

VAMPnet, we designed a multi-input neural network architecture. A schematic illustration of this 

multi-input neural network architecture is presented in Figure 2. This neural network architecture 

employs a combination of convolutional network layers and fully connected network layers to 

merge structural descriptors with different dimensionalities. Convolutional neural networks 

provide dramatic performance advantages for deep learning tasks involving image data.107 

Recognizing that the intermolecular distances matrix (or intermolecular “contact map”) between 

NTAIL and XD obtained in each frame of the simulation can be interpreted as an image, we sought 

to leverage the local spatial coherence in these contact maps by transforming them with 

convolutional neural network layers in our VAMPnet. We then combine the information obtained 
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from convolutional neural network layer transformations of intermolecular contact maps with 

information obtained from fully connected dense neural network layer transformations of the Sa 

and binary DSSP helical assignment features.   

 

The three neural network inputs (intermolecular distance matrices, NTAIL Sa values and binary 

DSSP NTAIL helical assignments) are transformed separately in three branches, applying 

convolutional neural network layers to transform intermolecular contact maps and fully connected 

neural network layers to transform the vector quantities of Sa and binary DSSP helix assignments 

(See Methods). The resulting outputs from each branch of the network are combined and 

transformed by a final set of fully connected neural network layers. The details of the final 

architecture of this neural network are described and illustrated in Supplementary Figure 10. The 

initial fully connected neural network layers used to transform Sa values and binary helical DSSP 

assignments increase the dimensionality of these data to better capture relationships between 

different sequence regions in NTAIL and the initial convolutional network layers reduce the 

dimensionality of intermolecular contact maps to better capture essential relationships between 

intermolecular contacts in different regions of the NTAIL:XD complex with a coarser representation 

of intermolecular distances.  

 

We determined the final architecture of our neural network implementation and VAMPnet 

hyperparameters (batch size, learning rate, epsilon parameter, model lag time, and number of 

states) by iteratively optimizing the VAMP2 score (eq. 8) of an unconstrained neural network (See 

Methods). We found that using 12 output states and a lag time of 2 ns to train unconstrained 

VAMPnets maximized the VAMP2 score and consistently produced the same set of 12 

distinguishable states. We characterize the latent space and state assignments of the initial 

unconstrained VAMPnet in Figure 3.   

 

We constructed our final deep MSM by retraining the initial unconstrained VAMPnet with 

physical constraints to learn a reversible and stochastic transition matrix defining the transition 

probabilities between the 12 states identified by the unconstrained VAMPnet (See Methods).84, 85 

The Chapman-Kolmogrov (CK) test62, implied timescales, and steady state distributions for the 

deep MSM estimated at a lag time of 6 ns are shown in Supplementary Figure 11. We refer to the 
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12 states obtained from the deep MSM as deep MSM states 1-12. We number the states of the 

deep MSM in ascending order based on their similarity to the native NTAIL:XD complex in terms 

of the fraction of native intermolecular contacts (Q), NTAIL Sα, radius of gyration and RMSD from 

the native complex (Supplementary Figure 12). We visualize the free energy surface of each deep 

MSM state as a function of Q and NTAIL Sα in Supplementary Figure 13. We compare the average 

values and standard deviations of Q, NTAIL Sα and the radius of gyration for each deep MSM state 

in Supplementary Table 2 and Supplementary Figure 14. We compare the populations of native 

and non-native NTAIL:XD intermolecular contacts and the NTAIL helical propensities for each deep 

MSM state in Supplementary Figure 15. The transition matrix and the mean first passage times for 

the deep MSM are shown in Supplementary Figures 16 and 17, respectively.  

 

A transition network representation of the deep MSM with structural depictions of each state and 

the mean first passage times between states is displayed in Figure 4. We observe that 5 of the deep 

MSM states closely resemble 5 of the tICA HMSM states. Deep MSM states 1-4 closely resemble 

the 4 native-like HMSM bound states (HMSM states 1-4). Deep MSM state 8, where NTAIL is 

unbound, closely resembles HMSM state 6. In the tICA HMSM, we resolve a single heterogenous 

encounter complex state (HMSM state 5). The deep MSM increases the resolution of our model 

and effectively fine grains this heterogenous encounter complex into 3 distinct states: deep MSM 

states 5, 6 and 7. These states are substantially more homogenous than HMSM state 5 and are 

differentiated by the helical content of NTAIL, the orientation of NTAIL relative to XD, the 

conformational heterogeneity of NTAIL and the populations of native and non-native intermolecular 

contacts (Figures 4-5, Supplementary Figures 12-15). 

 

The deep MSM similarly fine grains HMSM state 7, the heterogenous non-native complex where 

NTAIL is bound to the opposite face of XD relative to the native binding site, into 3 distinct states 

(deep MSM states 10-12, Figure 5, Supplementary Figures 12-15). In these more homogenous 

states NTAIL is bound in different locations on XD and contains distinct populations of helical 

content. In addition, the VAMPnet also identifies a rare conformational state (deep MSM state 9, 

steady-state population p = 0.1 ± 0.02%) in which NTAIL is inserted between the three helical 

bundles of XD.    
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A deep Markov state model resolves two structurally and kinetically distinct encounter 

complex states and a kinetic trap. In the tICA HMSM, most of the probability flux from unbound 

NTAIL states to native-like bound states flows through a single Markov state (tICA HMSM state 5) 

which functions as an encounter complex and kinetic hub for transitions between bound and 

unbound conformations (Figure 2, Supplementary Figures 8-9). tICA HMSM state 5 has a steady-

state population (p) of p = 8.7 + 1.1% and contains a small fraction of native intermolecular 

contacts (<Q> = 0.22) and relatively little helical content (<NTAIL Sα> = 3.1). In the deep MSM 

this state has effectively been split into three states: deep MSM states 5, 6, and 7 (Figures 4-5). 

Deep MSM states 5, 6 and 7 have steady state populations of p = 1.1 + 0.2%,  p = 5.7 + 0.5% and 

p = 3.0 + 0.3%, respectively. We observe that the populations of helical NTAIL conformations are 

substantially smaller in deep MSM state 5 (<NTAIL Sα> = 1.4) and deep MSM state 6 (<NTAIL Sα> 

= 2.0) compared to deep MSM state 7 (<NTAIL Sα> = 5.1). We find that deep MSM states 5, 6 and 

7 have similar fractions of native intermolecular contacts (<Q> = 0.19, <Q> = 0.19, and <Q> = 

0.18, respectively) but observe that there is a large difference in the subsets of the intermolecular 

residue pairs that form native and non-native intermolecular contacts in each state (Figure 5).   

 

NTAIL residues L495 and L498 insert into the hydrophobic binding groove of XD in the native 

complex. In deep MSM state 6 these leucine residues form similar populations of native and non-

native intermolecular contacts and NTAIL is not restricted to native-like binding orientations, and 

instead samples a relatively isotropic distribution of rotational orientations. In deep MSM state 7, 

native intermolecular contacts formed by NTAIL L498 have substantially higher populations than 

native intermolecular contacts formed by NTAIL L495, and NTAIL L495 forms highly populated 

non-native intermolecular contacts. Visual inspection of deep MSM state 6 and state 7 reveals that 

NTAIL L498 binds at similar positions in the native XD hydrophobic binding groove in both states 

(Figure 5). In deep MSM state 7, however, NTAIL L495 is inserted into a non-native binding site in 

the hydrophobic binding groove of XD that orients NTAIL in the opposite (or “upside-down”) 

orientation relative to the NTAIL orientation observed in the native NTAIL:XD bound complex. We 

define a rotational order parameter in the form of an angle to quantify the orientation of NTAIL 

relative to the native binding face of XD in each deep MSM state in Supplementary Appendix 1 

and present the distribution of this order parameter for each deep MSM state in Supplementary 

Figure 18.   
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NTAIL conformations in deep MSM state 6 have a similar helical propensity to unbound states of 

NTAIL, except for a slightly elevated helical propensity observed in residues A492-L495 (Figure 5, 

Supplementary Figure 15). In deep MSM state 7, NTAIL has a higher helical propensity that more 

closely resembles the less helical native-like bound states (deep MSM states 3 and 4). One might 

therefore hypothesize that deep MSM state 6 functions as an encounter complex for a binding 

pathway resembling an “induced fit” mechanism, where the formation of native intermolecular 

contacts proceeds the subsequent folding of secondary structure elements formed the bound state, 

while deep MSM state 7 functions as an encounter complex for a parallel binding pathway 

resembling a “conformational selection” mechanism, where preformed native-like secondary 

structure elements bind XD before the subsequent formation of native intermolecular contacts. A 

detailed inspection of the transition probabilities and transition rates among deep MSM states, 

however, reveals that NTAIL binding pathways do not fall into such a dichotomy (Figure 4, 

Supplementary Figures 16-17). 

 

While NTAIL conformations in deep MSM state 7 are substantially more helical than NTAIL 

conformations in state 6, we do not observe greater transition probabilities from state 7 to the more 

helical native-like bound states 1 and 2 (Figure 5, Supplementary Figure 16). The transition 

probabilities from deep MSM state 7 to states 1 and 2 are 0.1 + 0.01% and 0.5 + 0.1%, respectively. 

These values are smaller than the transition probabilities observed from the less helical encounter 

complex (deep MSM state 6) to states 1 and 2 (0.6 + 0.1% and 1.7 + 0.2%, respectively). The 

highest transition probabilities from deep MSM state 7 are to state 6 (15.3 + 0.8%) and state 4 (4.9 

+ 0.7%), states where NTAIL is substantially less helical.   

 

These observations contrast with the classical paradigm of conformational selection, where a 

stable, preformed helix binds and remains helical for the duration of a binding event. We observe 

that the transition rates from the two deep MSM encounter complex states (states 6 and 7) to the 

deep MSM native-like bound states (states 1-4) are within statistical error (Supplementary Figure 

17) and that deep MSM states 6 and 7 are most clearly kinetically distinguished based on incoming 

transitions from unbound and non-native conformations (Supplementary Figure 16). These results 

indicate that while we identify distinct encounter complex states with different NTAIL helical 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2023. ; https://doi.org/10.1101/2023.07.21.550103doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.21.550103
http://creativecommons.org/licenses/by-nc-nd/4.0/


propensities and conformational pathways leading to their formation, these states ultimately 

transition to native-like bound states with similar rates and ultimately form the same network of 

partially bound and folded fuzzy complexes that subsequently transition to the most native-like 

state. Consequently, we conclude that folding-upon-binding pathways originating from these 

encounter complex states are not well described by an induced fit / conformational selection 

dichotomy.   

 

Deep MSM state 5 transitions almost exclusively to state 6 which is the only state that has an 

appreciable probability of transitioning to state 5 (Supplementary Figure 16). Consequently, we 

identify deep MSM state 5 as an off-pathway kinetic trap on folding-upon-binding pathways that 

proceed through state 6. Deep MSM state 5 is similar to state 6 but NTAIL has an elevated helical 

propensity in residues A492-L495 (Figure 5). Deep MSM state 5 contains more highly populated 

non-native contacts between NTAIL residues L495 and L496 and XD residues Y480, L481, L484, 

F497, and I504 (average population of 55.7 + 7.33%) than state 6 and state 7 (average populations 

of 19.7 + 2.4% and 12.3 + 4.7%, respectively). We thus identify the stabilization of helical 

conformations of NTAIL by the formation of non-native contacts as the basis for the substantial 

kinetic barrier observed between deep MSM state 5 and the native-like bound states.  

 

Kinetic barriers between native-like bound states originate from non-native contacts. NTAIL 

folding-upon-binding pathways from encounter complex states (deep MSM states 6 and 7) to the 

nost native-like bound state (deep MSM state 1) are largely mediated by the sequential formation 

and subsequent breakage of two distinct sets of non-native intermolecular contacts. The majority 

of the probability flux from the deep MSM encounter complex states to the native state states 

proceeds through deep MSM states 3 and 4. These states contain similar NTAIL helical propensites 

and populations of native intermolecular contacts, but are differentiated by an elevated population 

of a cluster of non-native intermolecular contacts between NTAIL residues A492 and D493 and XD 

residues D487, I488, and D493 in deep MSM state 3 (Figure 6). This cluster of non-native 

intermolecular contacts is highlighted by a dotted rectangle in Figure 6A, and representative 

depictions of these contacts are shown in Figure 6B. The average population of the non-native 

contacts between these groups of residues is 32.9 + 0.7% in deep MSM state 3 compared to 3.9 + 

3.8% in state 4.  
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Deep MSM state 3 contains a substantially populated intramolecular salt bridge between residues 

NTAIL R497 and NTAIL D493. We define this salt bridge as being formed in trajectory frames where 

one of the carbonyl oxygens of NTAIL D493 is within 3.5 Å of a guanidinium nitrogen of NTAIL 

R497. By this definition, the NTAIL R497:D493 salt bridge has a population of 4.1 + 0.7% in state 

4 and 26.6 + 0.1% in state 3. These results suggests that the kinetic barrier between deep MSM 

state 4 and state 3 partially results from the process of forming and breaking the intramolecular 

NTAIL R497:D493 salt bridge and non-native intermolecular contacts between NTAIL A492 and 

D493 and XD residues D487, I488, and D493. We observe that the process of forming these 

contacts is substantially faster than the process of breaking them (MFPT = 80.0 + 3.4 ns for 

transitions from deep MSM state 4 to state 3 and MFPT = 274.1 + 27.4 ns for transitions from state 

3 to state 4). Interestingly, it has been observed that the NTAIL mutation R497G substantially 

diminishes the affinity of NTAIL to XD.108 KD values of 3.0 + 0.2 µM  and 44.4 + 2.2 µM were 

measured for wild type and R497G NTAIL, respectively. NTAIL R497 forms stable native 

intermolecular contacts with XD in all the deep MSM native-like bound states. The absence of 

these native intermolecular interactions should destabilize the native complex between the NTAIL 

R497G mutant and XD. The absence of an intramolecular salt bridge between NTAIL R497 and 

D493 may further destabilize deep MSM state 3. As most of the total probability flux (70.7 + 

6.0%) from the unbound state (deep MSM state 8) to most native-like bound (state 1) proceeds 

through state 3, this additional destabilization of state 3 may contribute to the dramatic affinity 

loss observed for NTAIL R497G observed in previous studies.   

 

The formation of non-native intermolecular contacts in deep MSM state 3 coincides with the 

transient formation of several weakly populated native intermolecular contacts between NTAIL 

residues R490 and S491 with XD residues D487, I488, and D493 (average population of 14.0 + 

4.4%, dark rectangle, Figure 6B). These native contacts subsequently become “locked in” after 

transitions to deep MSM state 2, where they have an average population of 86.7 + 5.4%. The 

formation of these stable native intermolecular contacts is accompanied by a substantial increase 

in the population of intermolecular hydrogen bonds between the sidechain hydroxyl hydrogen of 

NTAIL S491 and the carboxylic acid oxygens of XD D493 and the hydroxyl oxygen of NTAIL S491 

and the backbone amide hydrogen of XD K489. These hydrogen bonds are observed in the x-ray 
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structure of the NTAIL:XD complex86 and the NTAIL mutation S491L was previously demonstrated 

to reduce the affinity of NTAIL to XD  beneath the detection limits of ITC108, underscoring the 

importance of these intermolecular hydrogen bonds in stabilizing the NTAIL:XD complex. These 

hydrogen bonds have a population of 53.0 + 0.4% in deep MSM state 2 compared to in 6.6 + 0.1% 

and 0.2 + 0.1% of frames in states 3 and 4, respectively. The formation of this cluster of native 

contacts in deep MSM state 2 is accompanied by an increase in the helical propensities of NTAIL 

residues S491-D493, and the formation of several non-native intermolecular contacts between 

NTAIL residue R489 and XD residues T483, D486 and D487 (average population = 49.3 + 24.3%). 

The strongest non-native intermolecular contacts in this cluster occur between NTAIL R489 and XD 

D487 (p = 82.5 + 0.76%) and NTAIL R489 and XD D486 (p = 40.2 + 0.4%), demonstrating the 

importance of non-native intermolecular salt bridge interactions in stabilizing this state.   

 

The stability of non-native contacts formed by NTAIL R489 and XD residues T483, D486 and D487 

appear to substantially contribute to the kinetic barrier between deep MSM state 2 and state 1. 

These contacts have an average population of 49.3 + 24.3% in deep MSM state 2 but are nearly 

absent in state 1 (average population = 2.0 + 1.7%). Transitions from deep MSM state 2 to state 1 

are also accompanied by the formation of stable helical conformations from NTAIL S491 to D487 

and the formation of a final set of native intermolecular contacts between NTAIL D487 and XD 

D487 and NTAIL D467 and XD K489 (p = 37.7 + 0.3% and p = 43.2 + 0.3% respectively in deep 

MSM state 1). These native intermolecular contacts are indicated by a solid block box in Figure 

4A. Transitions between deep MSM state 2 and state 1 are relatively fast (MFPT = 109.1 ± 7.2 ns 

for transitions from state 2 to state 1 and MFPT = 99.8 ± 10.7 ns for transitions from state 1 to 

state 2) and are among the fastest of the transitions observed between native-like bound states. 

This transition involves the cooperative extension of the NTAIL helix by 4 residues, whereas the 

helix of NTAIL is extended by only a single residue in transitions from deep MSM state 4 to state 

3. The transition from deep MSM state 2 to state 1 involves the formation of a favorable salt bridge 

between NTAIL D487 and XD K489 in a conformation where the aliphatic residues of NTAIL D487 

and XD D487 sidechains are in contact, but the negatively charged carboxylic acid moieties are 

orientated to minimize unfavorable charge interactions. We speculate that the strong electrostatic 

attractions and repulsions between this set of charged sidechains may facilitate the relatively fast 

transitions observed between deep MSM state 2 and state 1.    
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Comparison of Markov state models with a 1D reaction coordinate for folding-upon-binding. 

In a previous investigation by Robustelli et. al56 a 1D reaction coordinate was optimized to 

characterize the folding-upon-binding mechanism observed in the MD simulation analyzed here. 

This reaction coordinate was derived using the fraction of native intermolecular contacts (Q)  

between NTAIL and XD as an initial reaction coordinate and employing the variational optimization 

approach of Best and Hummer109 to reweight the contribution of each native intermolecular contact 

to produce a new reaction coordinate (R). This optimization was carried out to increase the 

maximum value of the conditional probability distribution p(TP|R), where p(TP|R) is the 

probability that a frame of the MD trajectory is on transition path at a given value of the optimized 

reaction coordinate R.   

 

A projection of the MD trajectory onto the previously calculated 1D reaction coordinate R was 

found to contain three apparent free-energy minima separating unbound and native-like bound 

conformations (Supplementary Figure 19). It is, however, unclear if the apparent free-energy 

barriers observed in this projection are kinetically meaningful. We have calculated the probability 

distribution of the value of the reaction coordinate R for each kinetically distinct deep MSM state 

in Supplementary Figure 19. We observe that the two primary encounter complex states identified 

in this investigation (deep MSM states 6 and 7) are largely indistinguishable based on this reaction 

coordinate. We also observe that native-like bound states of the deep MSM (deep MSM states 1-

4) are similarly indistinguishable based on this reaction coordinate. This result is unsurprising 

given the importance of non-native contacts in differentiating the Markov states of our deep MSM 

and underscores the complementary insights that MSMs can provide to low dimensional reaction 

coordinate approaches for describing protein folding and disordered protein folding-upon-binding.  

 

Discussion 
 

We report the construction of Markov state models (MSMs) to structurally and kinetically 

characterize folding-upon-pathways observed in an unbiased long time scale MD simulation of a 

disordered molecular recognition element of the measles virus nucleoprotein NTAIL reversibly 

binding the X domain of the measles virus phosphoprotein complex. We constructed a hidden 

Markov state model (HMSM) using time-lagged independent component analysis (tICA), a linear 
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dimensionality reduction technique, and a deep learning based MSM (or “deep MSM”) using the 

VAMPnet approach with physical constraints with a multi-input neural network architecture. The 

MSMs constructed with these two approaches both resolve an unbound state and 4 kinetically 

separated native-like bound states that interconvert on time scales of eighty to five hundred 

nanoseconds. In the HMSM built using tICA, we observe that transitions between unbound NTAIL 

conformations and native-like bound states of NTAIL:XD complexes predominantly occur through 

a single conformationally heterogenous Markov state, which we refer to as an “encounter 

complex” state. In contrast, the deep MSM built using the reversible VAMPnet approach resolves 

several additional structurally and kinetically distinct states including two encounter complexes 

and an off-pathway kinetic trap.    

 

In both encounter complex states identified in the deep MSM NTAIL residue L498 is inserted into 

the hydrophobic binding groove of XD in its native binding site. These encounter complex states 

are differentiated by the binding orientation, helical content, and conformational heterogeneity of 

NTAIL. In one encounter complex state NTAIL adopts relatively disordered conformations with 

similar helical content to unbound NTAIL conformations and samples a relatively isotropic 

distribution of rotational orientations relative the binding face of XD. In the second encounter 

complex state NTAIL adopts a more ordered set of conformations with substantially more helical 

content than is observed in its unbound state and predominantly binds XD in a single orientation 

that is “upside-down” relative to its orientation in the native complex. This upside-down binding 

pose is stabilized by the insertion of NTAIL residue L495 into a non-native binding site in the 

hydrophobic binding groove of XD.   

 

We highlight that while NTAIL conformations in the more disordered NTAIL:XD encounter complex 

state have similar helical propensities to unbound conformations of NTAIL and NTAIL conformations 

in the more ordered encounter complex state have similar helical propensities to those observed in 

the native NTAIL:XD complex, the deep MSM does not suggest the presence of parallel “induced-

fit” and “conformational selection”-type pathways. Transitions from both encounter complex 

states to the most native-like bound states proceed through similar pathways, illustrating that 

helical content formed early in folding-upon-binding transitions paths is not necessarily indicative 

of a conformational selection mechanism. This result is consistent with a previous 1D reaction 
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coordinate transition path analyses of NTAIL:XD folding-upon-binding where it was observed that 

helical content formed early in transition paths frequently breaks to enable the formation of 

additional native intermolecular contacts before refolding.56 

 

There is substantial experimental and computational evidence demonstrating that many IDPs 

maintain significant conformational disordered when bound to their physiological interaction 

partners.23-25, 57 This phenomenon is frequently referred to as the formation of a “fuzzy” protein 

complex, and is often explained using the energy-landscape theory inspired concept of 

conformational frustration.26, 57, 110-115 Conformational frustration describes the existence of 

multiple competing favorable interactions that cannot be simultaneously satisfied and therefore 

result in a dynamic equilibrium between distinct conformational states. While the existence of 

fuzzy complexes and the role of conformational frustration in these complexes is well appreciated, 

few studies have provided atomic resolution molecular mechanisms that rationalize the kinetics of 

the conformational transitions among the conformational states of IDPs in fuzzy complexes.55, 57, 

67, 98 The MSMs reported here identify a network of conformationally frustrated bound states of 

the NTAIL:XD complex that share a core set of native intermolecular contacts and are differentiated 

by the sequential formation of non-native intermolecular and intramolecular contacts that facilitate 

the folding of additional helical turns. Our analyses provide atomic resolution descriptions of 

conformationally frustrated states of an IDP in a fuzzy protein complex and quantitative estimates 

of the time scales of transitions between these states. Our results underscore that an interplay 

between native intermolecular contacts, non-native intermolecular contacts, and non-native 

intramolecular contacts produce kinetic barriers between conformationally frustrated states of an 

IDP in a fuzzy protein complex.116, 117 The insights generated from this study and future atomistic 

studies of fuzzy IDP complexes may ultimately facilitate the design of conformationally frustrated 

protein complexes with rationally tunable binding affinities.   

 

It was previously noted56 that the folding-upon-binding pathways observed in the MD trajectory 

analyzed here are broadly consistent with previously reported NMR experiments87, stopped-flow 

kinetics measurements33 and f-value analyses of measles virus NTAIL:XD binding.89 Stopped-flow 

kinetics measurements clearly resolve separate rates for the formation of an initial encounter 

complex between NTAIL and XD and the subsequent folding of  NTAIL33, and protein engineering 
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f-values indicate that encounter complex formation is mediated by hydrophobic residues 

(A494,L495,L498, and A502) in the central helix of NTAIL.89 While the simulation analyzed in here 

was run at higher temperature (400 K) than previous experimental investigations, the MSMs 

derived in this investigation are broadly consistent with these previously published experimental 

data.    

 

A recent study of measles virus nucleoprotein and phosphoprotein interactions underlying liquid-

like phase separation reported a small set of 15N NMR relaxation dispersion data to characterize 

the binding equilibrium of the measles virus NTAIL:XD complex91. These data were well fit by a 2-

state binding model, suggesting that only one dominant kinetic barrier is resolved in these NMR 

experiments. As MSMs reported here were derived from MD simulations performed at 400 K and 

NMR measurements in this experimental investigation were performed at 298K, it is not possible 

to directly compare the simulated and experimentally measured rates and state populations in these 

two studies. Building MSMs of NTAIL:XD binding at physiological temperatures by combining the 

VAMPnet approach developed in this work with adaptive sampling strategies could, however, 

enable a direct comparison between simulated and experimental rates in this system. The recently 

developed augmented Markov model formalism, where MSM state populations and transition rates 

are refit using maximum-entropy methods to match agreement with experimental data, provides 

an eloquent approach to assess the agreement between MSMs and NMR relaxation data.118 Such 

studies may illuminate deficiencies in current molecular mechanics force fields used to study IDP 

folding-upon-binding, and ultimately facilitate the design of fuzzy protein complexes between 

IDPs and structured binding partners.   

 

It is interesting to consider the conformational properties of the native-like bound states of the 

measles virus NTAIL:XD complex resolved in this study in the context of previously reported NMR 

relaxation dispersion measurements used to characterize the binding mechanism of the 

homologous sendai virus NTAIL molecular recognition element to the homologous sendai 

phosphoprotein X domain (sendai XD) in unprecedented detail.22 In this study, unbound sendai 

NTAIL was found to be in equilibrium with two bound states, with a population ratio of ~3:1, that 

were characterized by chemical shift differences with the unbound state. The more populated 

bound state was found to contain an elevated population of helical elements relative to apo sendai 
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NTAIL (as assessed by large changes in backbone carbon chemical shifts) but to remain relatively 

nonspecifically bound (as assessed by relatively small changes in nitrogen and proton backbone 

chemical shifts in residues at the sendai NTAIL:XD binding interface). The less populated bound 

state has NMR chemical shifts consistent with the fully folded and ordered sendai native NTAIL:XD 

complex. The authors of this study note that the NMR relaxation dispersion data reported are 

insufficient to provide atomic resolution descriptions of these states, and do not contain  

information on the relative position of NTAIL on the surface of XD in the more populated bound 

conformation. This lack of information makes it challenging to understand the microscopic nature 

of the kinetic barriers between these states.   

 

It is important to caveat that there are substantial differences in the sequences of NTAIL and XD in 

the sendai and measles viruses. The a-helical molecular recognition element sendai NTAIL has more 

charged residues (9) than the a-helical molecular recognition element of measles virus NTAIL (5) 

and the measles virus NTAIL:XD binding interface is substantially more hydrophobic than the 

sendai NTAIL:XD binding interface, suggesting that electrostatics and polar interactions are likely 

to play a larger role in the sendai NTAIL:XD binding mechanism.22,87  While one expects there will 

be appreciable differences in the binding mechanism and bound ensembles of sendai NTAIL:XD 

and measles virus NTAIL:XD complexes it is interesting to speculate that the experimentally 

observed kinetic barriers observed in the bound states of the sendai NTAIL:XD complex may share 

some features with the kinetic barriers identified here. The network of measles virus NTAIL:XD 

bound states reported here contains kinetic barriers that result from the formation of non-native 

intermolecular and intramolecular contacts that must be broken to facilitate the formation of the 

fully folded native complex. An analogous set of interactions, perhaps with greater electrostatic 

contributions resulting from native and non-native salt bridges that confer greater conformational 

frustration, may underlie the experimentally observed kinetic barriers between bond states of the 

sendai NTAIL:XD complex. Investigating differences in the binding mechanisms of measles virus 

NTAIL and Sendai NTAIL will be of interest in future investigations. Accurately describing 

differences in these binding mechanisms will present a stringent test of the quality of MD force 

fields used to study IDP folding-upon-binding. 
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Lastly, we have demonstrated the utility of a multi-input neural network framework for describing 

the conformational dynamics of a highly dynamic intrinsically disordered protein. The approach 

presented here, where convolutional neural network layers are utilized to reduce the dimensionality 

of interatomic distance matrices while fully connected dense neural network layers are used to 

process lower dimensional order parameters describing the helical content of an IDP before 

combining all features in a fully connected dense neural network, provides a high degree of 

flexibility for identifying optimal combinations of molecular feature sets with different inherent 

dimensionalities and embeddings. We demonstrated that this approach distinguishes several 

structurally and kinetically distinct Markov states that were not resolved using the traditional linear 

dimensionality reduction tICA approach. We speculate that the deep learning strategy employed 

here may provide a generalizable approach for learning low dimensional representations of high 

dimensional IDP simulation data that are best described by multiple distinct degrees of freedom. 

We plan to investigate the utility of this approach for building MSMs of monomeric IDPs and for 

identifying collective variables for enhanced sampling methods and diffusion models in future 

studies.  

 
Methods 
 
Markov State Models. Markov state models (MSMs) are stochastic dynamical models that 

approximate the kinetics of molecules as memoryless, probabilistic jump processes between sets 

of states.62 MSMs utilize a time reversible transition matrix119 containing conditional probabilities 

of transitioning between states. The transition matrix of a MSM is reversible and functions as a 

transfer operator that propagates a distribution of states, 𝑝(𝑡),	 forward (and backward) in time by 

𝑘𝜏 discrete steps where k is a positive integer and 𝜏 is the lag time of the model.  

 

𝑝!(𝑡 + 𝑘𝜏) 	≈ 	𝑝(𝑡)!𝑇"(𝜏) 

 

The optimal lag time of a MSM can be determined by ploting the implied time scales (ITS) as a 

function of the lag time and choosing the lag time at which the implied time scales120 are 

approximatly constant62. Additionally, the time resolution of the model can be determined by 

checking that ITS are above the lag time at which the model is estimated (Supplementary Figures 

2 and 11). Implied time scales are determined from the eigen values, 𝜆#, of the transition matrix . 

(1) 
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𝑡#(𝜏) = 	−
𝜏

𝑙𝑛|𝜆#|
 

 

By definition, MSM transition matrices have a maximum eigen value of 1 whose eigen vector 

corresponds to the steady state or stationary population, 𝜋3⃗ ,	 of  states as time approaches infinity.121  

 

𝑇(𝜏)𝜋3⃗ 	= 	𝜋3⃗  

 

Using the the stationary distribution and the transition matrix of a MSM, the mean first passage 

times between pairs of states (𝑀𝐹𝑃𝑇#$) can be determined from an Nstates by Nstates system of 

equations (Supplemenary Figures S9 and S17).122 

. 

𝑀𝐹𝑃𝑇#$ 	= 	1	 +	9 𝑇#"𝑀𝐹𝑃𝑇"$
"%$

 

 

𝑀𝐹𝑃𝑇## = 1 𝜋#:  

 

In addition to ITS, validation of MSMs and their transtion matrices is determined by the Chapman-

Kolmogrov equation62, 121, 

 

𝑇(𝜏𝑘) 	= 	𝑇(𝜏)" 

 

in which the ability of a transition matrix to reproduce transistion probabilities at longer timesales 

is evaluated (Supplementary Figures 2 and 11).  

 
 
Input Data for Markov State Models. We utilized the 200 µs unbiased MD trajectory from 

Robustelli et. al56 which contains NTAIL residues 484-504, XD residues 458-506 and 20mM of 

NaCl in a 72 Å per side cubic box. This trajectory was parametrized using the a99SB-disp force 

field, a99SB-disp water model52 and contained 1,000,000 frames with a spacing of 200ps. For the 

construction of our MSMs62, 70, we only considered a continuous 167µs subset (from 3µs to 170µs) 

(2) 

(3) 

(4) 

(5) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2023. ; https://doi.org/10.1101/2023.07.21.550103doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.21.550103
http://creativecommons.org/licenses/by-nc-nd/4.0/


of the original trajectory in which XD predominantly remains in its folded state. We generated the 

molecular features for MSM construction and neural network training by calculating 

intermolecular distances between all residues of NTAIL and XD using the minimum distance 

between heavy atoms. Additionally, we computed the a-helical order parameter Sα	 102	 and 

identified helical conformations using the DSSP101 algorithm. The order parameter Sα quantifies 

the helical content of each 7-residue segment of a peptide chain and is computed by the following, 

 

 

.   

 

where RMSDai denotes the root mean squared deviation between each 7-residue segment of NTAIL 

and a geometrically perfect alpha helix comprised of the same residues. The exponential terms in 

the equation act as a switching function to output values between 0 (not helical) and 1 (perfectly 

helical) for each segment. The threshold of the switching function is tuned by the parameter r0, 

which was chosen to be 0.8 Å. Setting the parameter r0 to 0.8 Å has the effect of reducing RMSDai 

values > 2.5 Å	to nearly zero and RMSDai values < 0.5 Å to nearly 1. For constructing MSMs, we 

chose to omit the summation in (eq. 6) to retain a more localized description of the helical content 

of NTAIL. As a result of the 7-residue sliding window used in the computation of Sa and NTAIL 

being 21 residues long, we compute a length 15 vector for each time step of the simulation 

describing the helical content of every possible contiguous 7 residue segment of NTAIL. We note 

that for broad statistical characterizations (such as in Figure 1), the summation in equation 1 is 

retained to provide an estimate of the total helicity of NTAIL per simulation frame (“NTAIL Sα”). 

 

We constructed the second a-helical descriptor for NTAIL using the DSSP Algorithm. The DSSP 

algorithm uses dihedral angles and hydrogen bonding analysis to classify the secondary structure 

of each residue in a peptide chain. The secondary structure predictions given by DSSP were then 

numericized by equating helical classifications to 1 and all others to zero. As a result, the processed 

binary DSSP assignments produce a vector of length 21 for each time step of the simulation with 

values indicating if each residue of NTAIL is in a helical conformation (value of 1) or not (value of 

0). Both Sa and binary DSSP features were considered in quantifying the helical content of NTAIL 

(6) 
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as they evaluate helical content using distinct metrics and as a result, produce differing degrees of 

locality in the descriptions they provide.   

 

We tested several feature sets for state discretization including combinations of interatomic 

distances, dihedral angles, fraction native intermolecular contacts (Q), binary DSSP assignments 

and Sa values. We assessed the quality of feature sets by comparing VAMP2 scores76, 83, the 

spectral gap observed among the eigenvalues of the dominant tICA eigenmodes,79, 96, 97 and the 

ability of each feature set to resolve conformationally distinct free energy basins in low 

dimensional tICA projections. For tICA, we found the combination of intermolecular residue 

distances and Sa best satisfied these metrics and that the addition of DSSP features had negligible 

effect. We subsequently omitted the DSSP features from our tICA analysis and used only 

intermolecular distances and Sa order parameters. In contrast, we found that including DSSP 

features in our VAMPnet increased the model’s ability to differentiate NTAIL conformations 

differing only in the helical content of residues near the termini; thus, we used a feature set 

containing intermolecular residue-residue distances, Sa, and binary DSSP helical assignments as 

input data in our VAMPnet implementation.  

 

Construction of a hidden Markov state model (HMSM). To construct an initial MSM, we 

performed tICA on a feature set comprised of the nearest-heavy-atom intermolecular distances 

between all residues of NTAIL and XD and Sa values. The tICA lag time, number of tICA 

components (tICs) used for clustering, and the number of k-means clusters were optimized based 

on the interpretability and distinctness of the structural properties of the resulting clusters. We 

iteratively computed tICA with varying lag times and clustered the resulting tICs using a varying 

number of components and k-means clusters. We characterized the structural properties of clusters 

by computing their distributions of the fraction of native intermolecular contacts (Q), NTAIL Sa, 

Radius of gyration (Rg), intermolecular contact probabilities and helical assignments from the 

DSSP algorithm. We found that using a lag time of 6 ns for tICA, clustering conformations using 

the ten time independent components (tICs) with the largest eigenvalues and implementing the k-

means algorithm with seven cluster centers produced the most interpretable and conformationally 

distinct clusters. However, upon estimating MSMs from these clusters over a range of lag times, 

we found that for lag times up to 24 ns, these models produced resolved, but non-converged 
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implied timescales (data not shown). These MSMs also failed to reproduce transition probabilities 

for non-native bound states at longer timescales.  

 

To produce MSMs with both converged time scales and robust CK-tests, we employed hidden 

Markov state models (HMSMs). HMSMs are an effective tool for building robust and reproducible 

MSMs for high dimensional systems where finding a set of Markov states that pass validation tests 

is challenging.95 Projected HMSMs are estimated from transitional MSMs; the slowest relaxing 

timescales of the original MSM are used to coarse grain its states to a smaller number of metastable 

sets. The number of metastable sets used to build an HMSM should be equal to or less then the 

number of resolved timescales in the conventional MSM they’re estimated from. We built our 

HMSM by estimating a series of HMSMs from MSMs with varying numbers of states and lag 

times. We increased the number of states in the initial MSMs by employing the k-means clustering 

algorithm with larger numbers of centroids to cluster the same ten tICs we previously found to be 

optimal to prevent the HMSM coarse graining from reducing our model to too few states. We 

found that using a lag time of 6 ns, twelve initial clusters and coarsening to seven states produced 

robust HMSMs (in terms of timescales and CK-tests) with the fewest number of states 

(Supplementary Figure 2). 

 

Unconstrained VAMPnet and neural network architectures. The feature set used to train the 

deep MSM was comprised of the intermolecular distances between all residue pairs of NTAIL and 

XD, Sa order parameters and binary DSSP assignments. We employed a multi-input deep learning 

approach where each feature type was processed separately before being aggregated with the other 

features to make state predictions. This approach allows for the input feature set to be optimized 

internally and each feature type to be processed using neural network layers that best suit its 

inherent data structure. This approach enabled us to treat the matrix of intermolecular distances 

(or "contact map") calculated in each frame of the simulation as an image and utilize convolutional 

neural network layers to leverage the local spatial coherence in this representation. We utilized 

separate sets of fully connected neural network layers to process the Sa and binary DSSP feature 

sets. Each instantaneous set of intermolecular residue distances were arranged into a 49 by 21 

matrix where each index represents the intermolecular distance between each residue in XD (49 

residues) and NTAIL (21 residues). Each set of Sa and binary DSSP values were placed into length 
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15 and 21 vectors, respectively. In aggregate, the VAMPnet dataset is comprised of 3 distinct 

feature sets, each processed separately by distinct sets of neural network layers (or lobes), before 

being aggregated and transformed through a final lobe, containing fully connected neural network 

layers (Figure 2). The output of the final lobe is capped with a SoftMax activation function to 

produce a normalized distribution that describes the probability of a frame being assigned to each 

Markov state.  

 

We determined the architecture of our neural network by varying the number of layers and their 

widths in each lobe of the neural network. To reduce computational overhead, we constrained our 

optimization of the neural network architecture by requiring that each lobe contain the same 

number of layers and that the lobes used to transform the NTAIL Sa and DSSP helical order 

parameters be identical apart from their input layers. In addition, the possible configurations of the 

convolutional layers used to transform intermolecular distance matrices were constrained based 

on the shape the input (49 XD residues by 21 NTAIL residues). We determined our architecture by 

first performing a grid search over a range of configurations and then performed a Bayesian 

optimization around the optimal parameters identified in the initial grid search. For the Bayesian 

optimization, we used the tree-structured Parzen estimator algorithm123, 124 implemented in the 

optuna125 software. A detailed diagram of the final neural network architecture determined from 

the Bayesian optimization procedure is displayed in Supplementary Figure 10. After determining 

the neural network architecture, we employed this procedure to determine the optimal batch size, 

optimizer learning rate and epsilon parameter. We found that using learning rate of 5e-6, a batch 

size of 16384 and an epsilon parameter of 1e-7 produced optimal results.  

 

Additional hyperparameters of VAMPnets include the lag time of the model and the number of 

output states. To determine these hyperparameters, we conducted optimization runs incrementally 

increasing the values of each hyperparameter while holding the other hyperparameters constant. 

We judged the success of these trials based on the maximization of the VAMP score relative to its 

highest possible value and the interpretability of the learned state assignments in terms of the 

fraction of native contacts (Q), Sα, radius of gyration and RMSD from the native complex. We 

found that using 12 output states and a lag time of 2 ns to train the unconstrained VAMPnet best 

satisfied these conditions and consistently produced similar sets of states. The final architecture of 
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multi-input neural network used in our VAMPnet implementation is shown in Supplementary 

Figure 10.  

 

We trained our initial unconstrained VAMPnet using the VAMP2 score. The VAMP2 score 

evaluates the so-called kinetic variance between each neural network transformed sample, 𝜒&(𝑥'), 

of the dataset and it's time-lagged analogue,	 𝜒((𝑥')(),	where 𝜒& and	 𝜒( are neural network 

transformations that convert molecular features into probabilistic Markov state assignments and  

𝑥' and 𝑥')( are instantaneous sets of molecular features at times t and t+t.84	 	Optimizing the 

VAMP2 score of transformations 𝜒&(𝑥') and 𝜒((𝑥')()	 is analogous to solving the problem of 

finding orthonormal transformations of 𝑥' and 𝑥')( with maximal time-correlations and 

corresponds to finding the best linear approximation84 to the following,83 

 

𝔼[𝜒((𝑥')()] 	≈ 𝐾C! 	𝔼[𝜒&(𝑥')] 

 

where 𝐾C! is the finitely estimated Koopman matrix that transforms a potentially non-linear 

dynamical system or dataset into a latent space which, on average, evolves linearly in time. The 

VAMP2 score is defined as the Frobenius norm or sum of the squared singular values (𝜎#) of the 

half-weighted Koopman matrix, 𝐶&&
*!"𝐶&(𝐶((

*!". 

 

𝑉𝐴𝑀𝑃2 = 	 ||𝐶&&
*!"𝐶&(𝐶((

*!"||+, + 1 = 	∑𝜎#,  

 

Where the covariance matrices,  𝐶&&, 𝐶&( and 𝐶(( are defined by mean free neural network 

transformed instantaneous and time lagged data as follows. 

 

𝐶&& =	𝔼'[𝜒&(𝑥')𝜒&(𝑥')!], 

	𝐶&( =	𝔼'[𝜒&(𝑥')𝜒((𝑥')()!]	, 

𝐶(( =	𝔼')([𝜒((𝑥')()𝜒((𝑥')()!]	 

 

We note that in general, neural network transformations, 𝜒& and 𝜒( can be distinct neural network 

architectures with independently trained weights, however, in our implementation 𝜒& ≡ 𝜒(.  

(7) 

(8) 

(9) 
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Training the constrained VAMPnet to construct a deep MSM. After determining the optimal 

architecture and hyperparameters for the unconstrained VAMPnet, we proceeded to build a 

constrained VAMPnet using the same architecture with the addition of two constraint layers. In 

the constrained VAMPnet85, the constraint layers (u and S) are implemented to ensure the learned 

transition matrix is both stochastic (all positive elements) and reversible (obeys detailed balance). 

Constraint u is a vector of length equal to the number of states used to weight data towards 

equilibrium and constraint S is matrix of shape Nstates by Nstates used to estimate a reversible 

transition matrix. The constrained VAMPnet was trained with a modified version of VAMP-E 

score that incorporates the constraints u and S.  

 

𝑉𝐴𝑀𝑃 − 𝐸 = 𝑡𝑟M𝑆!𝐶&&𝑆𝐶-- − 2𝑆!𝐶&-O,	 

where 

 

𝐶&& = 	𝔼[𝜒(𝑥')𝜒(𝑥')!], 

𝐶&- = 	𝔼[𝜒(𝑥')𝛾(𝑥')()!], 

𝐶-- = 	𝔼[𝛾(𝑥')()𝛾(𝑥')()!], 

𝛾(𝑥) = 	𝜒(𝑥)𝜒(𝑥)!𝑢. 

 

Here, gamma is a weighted state representation used to compensate for non-equilibrium state 

assignment probabilities. We trained our constrained VAMPnet 30 separate times starting from 

the same initial unconstrained VAMPnet.   

 

In the constrained VAMPnet procedure, both the weights of the unconstrained VAMPnet and 

constraint layers are optimized, thus, retraining only the constrained VAMPnet also modifies the 

weights of the initial, unconstrained VAMPnet. We note that using the same unconstrained 

VAMPnet in each optimization of the constrained VAMPnet produces small error estimates that 

may be underestimated compared error estimates obtained from retraining the unconstrained 

VAMPnet multiple times. Given the large number of parameters in our neural network architecture 

(~4e6 parameters), we used this approach to circumvent considerable computational costs and 

consider these error estimates as lower bounds of the trial errors. As outlined in its original 

(10) 
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implementation85, it is recommended to include an initial step in which only the constraints of the 

constrained VAMPnet are trained using batches containing all training data. When training the 

unconstrained VAMPnet and the constraints together (a separate step), we attempted to stay 

consistent with this strategy and used the largest batch size possible given our computational 

resources which was 56,000 time-lagged pairs of data. To estimate the implied timescales and CK-

tests, we retrained only the constraints of the constrained VAMPnet at integer multiples of the 

initial lag time (6 ns) which was done for all 30 optimization runs. We chose to use a lag time of 

6 ns for the constrained VAMPnet based on the results of these validation measures which we 

found to produce the most reproducible and robust models in a series of initial estimations of the 

constrained VAMPnet at varying lag times (Supplementary Figure 11).  

 

Neural network training. In both the unconstrained and constrained VAMPnets, we used a 9:1 

train-validation split, randomly shuffled time lagged pairs of data and implemented early stopping 

to prevent overfitting where we saved network weights each time the VAMP score reach a new 

maximum. We implemented all neural networks in using the deep learning library PyTorch126. 

 

Estimation of trajectory observables and error analysis. For the HMSM, all MSM observables 

and error estimates were computed using the pyemma70 and deeptime127 software packages  via 

Bayesian hidden markov models which use a gibbs sampling scheme to resample the transition 

matrix. Here, we estimated errors by resampling the HMSM transition matrix using 100 trials. All 

HMSM trajectory observables are the bootstrap mean and its associated 95% confidence intervals 

computed from the results of the resampling procedure. For the deep MSM, we trained the final 

model using 30 independent trials and computed both MSM and trajectory observables from the 

trained models. All statistical analysis of the trajectory observables of the deep MSM states and 

MSM observables are computed by bootstrapping / aggregating the results of these 30 trials, e.g. 

average values, 95% confidence intervals of averages,  standard deviations, weighted historgrams 

and discrete probability distributions. Trajectory observables from the deep MSM states were 

computed from the probabilistic state assignments produced from each optimization run by the 

following,  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2023. ; https://doi.org/10.1101/2023.07.21.550103doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.21.550103
http://creativecommons.org/licenses/by-nc-nd/4.0/


〈𝑂U.'/'0#〉 = 	
∫𝑂U (𝑡)𝜒(𝑡).'/'0#𝑑𝑡
∫ 𝜒(𝑡).'/'0#𝑑𝑡

 

 
where 𝑶Z(𝒕) represents an arbitrary trajectory observable computed for every frame (t) of the 

trajectory and 𝝌(𝒕)𝒔𝒕𝒂𝒕𝒆𝒊 is a probabalistic state assignment for every frame (t) of the trajectory. 

Using this definition, we can also compute the standard deviation of trajectory observables by the 

following equation.  

 

𝑆𝐷56%&'&(# = ^〈(𝑂U.'/'0#),〉 − 〈𝑂U.'/'0#〉, 

 
We combine uncertaines computed from separate trials and contact popualtions for different 

residue pairs by combining variances,   

 

𝑆𝐷7, =
∑ 𝑛#(𝑆𝐷#, − (𝑋̀# − 𝑋̀7),)#

∑ 𝑛##
 

 
 

𝑋̀7 =
∑ 𝑛#𝑋̀##

∑ 𝑛##
 

 
Where 𝑆𝐷7, is the combined variance,	𝑛# are the number of trials used to compute the mean and 

standard deviation of each statistic to be combined, 𝑋̀# are the means of each statistic to be 

combined and 𝑋̀7  is the combined mean.  

 
Fraction of Native Intermolecular Contacts. The fraction of native intermolecular contacts 

(Q), as defined in Robustelli et al56, 100,  was used to characterize the formation of the NTAIL:XD 

complex. The fraction of native contacts at each simulation time step, (t), was calculated by the 

following, 

 

𝑄(𝑡) 	= 	
∑ 1

1 + 𝑒8&(:#(')*<))
=
#>8

𝑁  

 

(15) 

(12) 

(14) 

(13) 
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where 𝑑# represents the nearest neighborh heavy atom distance between each pair of native 

contacts, N is the total number of native contact pairs and 𝑥& is a cutoff distance of 5Å. Native 

intermolecular contacts were previosuly defined as those contacts which remained stable 

(populated > 80%) in an MD simulation of the native NTAIL:XD complex run at 400 K, to match 

the temperature of the equilibrium folding-upon-binding simulation analyzed here.56   

 

Color gradients of structural snapshots. We computed the color gradients of the structural 

snapshots of NTAIL:XD using a modified version of the fraction of native intermolecular contacts 

based only on the crystal structure of the native complex (PDB 1T6O).86  For establishing color 

gradients, we defined native contacts as any intermolecular residue pair between NTAIL and XD 

with a minimum heavy atom distances less than 5 Å in PDB 1T6O. Correspondingly, we define 

non-native contacts for each residue as all other possible intermolecular contacts that have not 

been identified as native. In each simulation frame two residues are considered to be in contact if 

their nearest heavy atom distance is less than 5 Å. We compute the average population of the native 

and non-native contacts of every residue in each Markov state. For coloring structures, we 

normalize native and non-native fractions by dividing each by the largest fraction observed in any 

Markov state (~ 0.99 and ~0.14 for native and non-native fractions, respectivly) which assigns a 

value between 0 and 1 for each residue in each Markov state. We then set a color gradient ranging 

from 0 to 1 in the molecular visualization software pymol128and set the beta value of each residue 

(alpha carbon) to the normalized fraction of native and non-native contacts. The normalization step 

allows the scale of the color gradients to be the same across all structures, thus allowing for 

quantitative comparision of the contact profiles of each Markov state via their structural snapshots. 

 
Data & Code Availability 
 
All code used for trajectory analyses and the construction and validation of the hidden Markov 

state model and deep Markov state model are freely available from GitHub 

(https://github.com/paulrobustelli/Sisk_NTAIL_DeepMSM_2023). The 200 µs NTAIL:XD MD 

trajectory analyzed here is available for non-commericial use by request from D.E. Shaw Research 

(Trajectories@DEShawResearch.com).  
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Figures 
 

 
Figure 1. Transition network representation of a conventional hidden Markov state model of 
NTAIL:XD folding-upon-binding derived from a long-time scale equilibrium molecular 
dynamics simulation. Network representation of the transition matrix obtained from a hidden 
Markov state model (HMSM) derived from time-lagged independent component analysis (tICA) 
of a long-time scale MD simulation. Representative structures of each Markov state are displayed 
in circles along with their stationary probabilities (p). The thickness of circles is proportional to 
the stationary probability of each state. In representative structures of each state NTAIL is colored 
with a gray-to-red gradient from the N-terminus to the C-terminus and XD is colored gray. 
Transition probabilities between states are indicated with directional arrows, and the thickness of 
the arrows is proportional the magnitude of the transition probability between states. Mean first 
passage times between states are reported in nanoseconds. All errors indicate the mean of the upper 
and lower deviations of the 95% confidence interval calculated from bootstrapping using 100 
samples. 
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Figure 2. Multi-input neural network architecture used for building a deep Markov state 
model of NTAIL:XD folding-upon-binding. (A) Structural representation of the native NTAIL: XD 
complex . XD is colored gray and NTAIL is colored in a gray-to-blue gradient proportional to each 
residues fraction of native contacts in deep MSM state 1. The set of deep MSM input features 
(intermolecular distances between NTAIL and XD, NTAIL Sa order parameters, binary DSSP helical 
assignments) are shown for the structure in A (right). (B) Schematic representation of the isolated 
neural network layers used to process each feature type based on its inherent dimensionality. Sa 
(red) and binary DSSP (blue) features are treated as 1D vectors and are processed with dense neural 
network layers. The intermolecular distance matrix between NTAIL and XD is processed with 
convolutional neural network layers to take advantage of the spatial coherence of data points in its 
matrix form. (C) A qualitative schematic showing the aggregation and further processing of output 
features from the 3 isolated sets of layers. Upon aggregation, the processed output features from 
each isolated layer are combined by a final set of dense layers to reduce the dimensionality of the 
output to a normalized probability distribution over Markov states. The output probability 
distributions are used to compute a VAMP score for batches of time-lagged data pairs.   
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Figure 3. VAMPnet latent space and state assignments used to construct a deep Markov state 
model of NTAIL:XD folding-upon-binding. We characterize the latent space of our NTAIL:XD 
VAMPnet by projecting MD observables onto the left singular functions (or “Koopman modes”) 
K1, K2, and K3 of the half-weighted Koopman matrix estimated from an initial unconstrained 
VAMPnet. Truncating the singular value decomposition to 3 singular vectors gives a 3-
dimensional latent space or set of singular functions where points are embedded in a kinetically 
meaningful way. We characterize the latent space representation of each MD simulation frame by 
coloring each data point by (A) the apparent free energy obtained by taking the negative natural 
log of a gaussian kernel density estimate over the 3-dimensional latent space-projected data, (B) 
its crisp Markov state assignment (C) the fraction of native intermolecular contacts (Q) (D) the 
sum of the NTAIL α-helical folding order parameter Sα for each 7 residue segment of NTAIL and (E) 
the radius of gyration (Rg) of all Ca carbons of NTAIL and XD. 
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Figure 4. Transition network representation of a deep Markov state model of NTAIL:XD 
folding-upon-binding derived from a long-time scale molecular dynamics simulation using a 
multi-input neural network architecture. Network representation of the transition matrix of a 
deep Markov state model (MSM) obtained from a multi-input neural network architecture. 
Representative structures of each Markov state are displayed in circles along with their stationary 
probabilities (p). The thickness of circles is proportional to the stationary probability of each state. 
In the representative structures of each state, NTAIL is colored by a gray-to-blue gradient from the 
N-terminus to the C-terminus and XD is colored gray. The transition probability between states is 
indicated with directional arrows, and the thickness of the arrows is proportional the magnitude of 
the transition probability between states. Mean first passage times between states are reported in 
nanoseconds. The values and errors reported here are the bootstrap means and their 95% 
confidence intervals, obtained from 30 independent optimization runs of the constrained 
VAMPnet. 
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Figure 5. A deep Markov state model of NTAIL:XD folding-upon-binding pathways resolves 
two distinct encounter complex states and a kinetic trap state. State averaged intermolecular 
contact populations and NTAIL helical propensities for deep MSM states 5, 6 and 7. Intermolecular 
contacts are defined as occurring in all frames where the minimum distance between heavy atoms 
of two residues is less than 5.0 Å. Native intermolecular contacts are colored blue and non-native 
contacts are colored red. Native contacts are defined as those present in the crystal structure (PDB 
1T6O) using the same criteria. Helical propensities (P(H)) were calculated using DSSP. Structural 
representations contain an overlay of multiple representative NTAIL structures with one surface 
representation of XD. The residues of NTAIL and XD are colored by a gray-to-red gradient that 
represents the fraction of frames where non-native intermolecular contacts are formed by each 
residue in each state. 
 
 
 
 
 
 
 

Deep MSM State 7
(Encounter Complex 2)

Deep MSM State 6
(Encounter Complex 1)

Deep MSM State 5
(Kinetic Trap)

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2023. ; https://doi.org/10.1101/2023.07.21.550103doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.21.550103
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 6. Kinetic barriers between native-like NTAIL:XD bound states originate from non-
native intermolecular and intramolecular contacts. (A) State averaged intermolecular NTAIL:XD 
contact populations and NTAIL helical propensities for native-like NTAIL:XD bound states. 
Intermolecular contacts are defined as occurring in all frames where the minimum distance 
between heavy atoms of two residues is less than 5.0 Å. Native intermolecular contact pairs are 
colored blue and non-native intermolecular contact pairs are colored red. Native contacts are 
defined as those present in the crystal structure (PDB 1T6O) using the same criteria. (B) Structural 
representations of native-like NTAIL:XD bound states. Each state representation is an overlay of 
multiple representative NTAIL structures with one surface representation of XD. The residues of 
NTAIL and XD are colored by a gray-to-red gradient that represents the fraction of frames where 
non-native intermolecular contacts are formed by each residue in each state. Selected sidechains 
of NTAIL (NT) and XD are shown as sticks to illustrate important non-native contacts in different 
states.  
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