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Abstract

A central challenge in the study of intrinsically disordered proteins is the characterization of the
mechanisms by which they bind their physiological interaction partners. Here, we utilize a deep
learning based Markov state modeling approach to characterize the folding-upon-binding
pathways observed in a long-time scale molecular dynamics simulation of a disordered region of
the measles virus nucleoprotein Nrtam reversibly binding the X domain of the measles virus
phosphoprotein complex. We find that folding-upon-binding predominantly occurs via two
distinct encounter complexes that are differentiated by the binding orientation, helical content, and
conformational heterogeneity of Ntai.. We do not, however, find evidence for the existence of
canonical conformational selection or induced fit binding pathways. We observe four kinetically
separated native-like bound states that interconvert on time scales of eighty to five hundred
nanoseconds. These bound states share a core set of native intermolecular contacts and stable NtaiL
helices and are differentiated by a sequential formation of native and non-native contacts and
additional helical turns. Our analyses provide an atomic resolution structural description of
intermediate states in a folding-upon-binding pathway and elucidate the nature of the kinetic

barriers between metastable states in a dynamic and heterogenous, or “fuzzy”, protein complex.
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Introduction

Intrinsically disordered proteins (IDPs) are proteins that do not adopt stable tertiary structures in
isolation under physiological conditions. IDPs are ubiquitous in eukaryotic proteomes and viruses;
and play crucial functional roles in many cellular processes.!-* The biological functions of IDPs
are often mediated by short sequence segments, referred to as linear motifs or molecular
recognition elements, that interact with structured partner proteins.** The molecular recognition
elements of IDPs populate a structurally diverse set of conformations in their unbound states and
can adopt a similarly diverse set of conformations when bound to different physiological
interaction partners.’-!? This conformational plasticity enables IDPs to function as hubs in cellular
signaling pathways, where they can form specific interactions with multiple binding partners.!!-13
The relative affinities of these interactions can be tuned by post-translational modifications or
changes in the cellular environment allowing for sensitive spatial and temporal regulation of

cellular processes mediated by IDP interactions.!!: 14-18

The thermodynamics of IDP interactions are complex, and the relationships between their free and
bound state structures are not straightforward.'®- In some instances, IDPs undergo disorder-to-order
transitions and adopt stable tertiary structures when bound to physiological binding partners; a
process referred to as “folding-upon-binding”.> %-20-22 In other instances, IDPs retain a substantial
amount of conformational disorder in their bound states.?3-?® Such dynamic and heterogenous
complexes are sometimes referred to as “fuzzy” complexes.?”> 2® Substantial effort has been made

6,9,29-31

to characterize the kinetics and thermodynamics of IDP binding events , as elucidating the

relationship between the free and bound states of IDPs will enable a more predictive understanding

of their roles in biological pathways and human disease.!!: 3

Stopped-flow and temperature-jump kinetics measurements*! 3334 NMR spectroscopy>-3*

, single
molecule FRET** and protein engineering techniques*#® have emerged as powerful tools for
characterizing the binding processes of IDPs. While these experimental techniques provide
detailed mechanistic insight into IDP binding pathways, the data generated by these approaches
are generally insufficient to obtain atomic resolution descriptions of the conformational states

populated in IDP binding pathways. Atomistic descriptions of IDP binding intermediates and the
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conformational states populated by IDPs in complexes with their physiological interaction partners
are highly desirable as they may facilitate the development of rational drug design strategies for

modulating the activity of IDPs implicated in the pathogenesis of diseases.!”47- 48

All-atom molecular dynamics (MD) computer simulations provide a powerful complement to
biophysical experiments for characterizing conformational ensembles,*->3 binding pathways** 46
3456 and bound states of IDPs.*85% 36-3 Long timescale MD simulations run with an accurate
physical model, or force field, can provide atomically detailed structural descriptions of
conformational substates involved in IDP binding. MD simulations with sufficient statistical
sampling of binding events also provide the equilibrium populations of these states and the rates
of transitions between them.’* 3 Recent improvements to molecular mechanics force fields have
dramatically enhanced the accuracy of MD simulations of disordered proteins and have shown
promise for describing molecular recognition mechanisms of IDPs.#3: 32 36.38.60. 61 A TDP binding
pathways occur on rugged and high-dimensional free energy surfaces, identifying mechanistically

meaningful metastable states in MD simulations of IDP remains a substantial challenge.

Markov State Models (MSMs) describe the dynamics of stochastic systems as a transition network
of memoryless, probabilistic jumps between sets of states. MSMs are a powerful approach for

62, 63

obtaining mechanistic insight from MD simulations and have provided insights into protein

31, 64,65 protein folding®, protein-ligand binding*’> 3> 7 and protein-

conformational transitions
protein complex formation.*”- 3% 35 66-69 The accuracy, interpretability, and relevance of information
extracted from MSMs are, however, highly dependent on the input features used to describe a
simulated system, the methods used to reduce the dimensionality of the input feature space and the
partitioning of simulation frames into Markov states.®> 7% 7! These tasks are particularly
challenging when building MSMs to describe the high-dimensional conformational space of

disordered proteins.*”- 1 72

In recent years, theoretical advancements and applications of machine learning techniques have
facilitated the construction of MSMs from MD simulation data.”> Automated feature selection,
dimensionality reduction, and feature scoring methods can be applied to guide and validate the

selection of molecular features to construct MSMs.”*78 These methods identify subsets of slowly
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evolving structural features, or collective variables, that can be used to partition MD trajectories
into metastable Markov states that accurately model the kinetics of simulated conformational
transitions.’® 7% 80 The variational approach to Markov processes (VAMP) has emerged as a
powerful framework to identify molecular features that describe the slowest evolving degrees of
freedom in a simulated system.?%-%3 In this approach a scoring function is used to quantify how
effectively a set of features describes the kinetics of slow conformational transitions observed in
MD simulations, and this score is maximized to identify optimal collective variables for MSM
construction. The VAMP method has been extended to a deep learning framework where neural
networks (referred to as “VAMPnets”) are optimized to identify metastable conformational states
directly from molecular features.®* VAMPnet approaches have been further extended to include
physical constraints in the training of neural networks that enable MSMs to be learned directly
from simulation data.®> These models, referred to as “deep reversible MSMs”, “deep MSMs”, or
“Koopman Models”, allow for the construction of kinetic models comprised of probabilistic states

that may be differentiated by only subtle conformational features.>! %

In this investigation, we have built a conventional MSM and a deep learning based MSM (or “deep
MSM?”) to characterize the folding-upon-binding pathways observed in a 200us unbiased MD
simulation of the a-helical molecular recognition element of the measles virus nucleoprotein Ntar.
reversibly binding the X domain (XD) of the measles virus phosphoprotein complex.>® The
conformational dynamics of measles virus Ntar in solution and the folding-upon-binding of Ntar

to XD have been extensively characterized by a variety of experimental®® 36 8691 and

56, 92-94 195

computational methods. Here, we construct a hidden Markov state model” using time-
lagged independent component analysis (tICA)7 8- %6 97" a linear dimensionality reduction
technique, and a deep MSM by applying the VAMPnet approach with physical constraints.®> Qur
deep MSM employs a multi-input neural network architecture that utilizes a combination of
convolutional and fully connected neural network layers to merge structural descriptors with

different inherent dimensionalities.

We find that the deep MSM identifies several states that were not identified by a conventional
hidden Markov state model. The hidden Markov state model identifies a single heterogenous

encounter complex state between Ntai. and XD and a single heterogenous non-native complex
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where Ntar binds on the opposite face of XD relative native binding site. The deep MSM resolves
two structurally and kinetically distinct encounter complex states that are differentiated by the
binding orientation and helical content of NtarL as well as a kinetic trap on the native folding upon
binding pathway. The deep MSM also identifies a network of several distinct non-native bound
complexes. The hidden Markov state model and deep MSM both resolve 4 kinetically separated
bound native-like states that interconvert on time scales of eighty to five hundred nanoseconds.
These bound states share a core set of native intermolecular contacts and stable helices and are
differentiated by a sequential formation of non-native contacts that facilitate the folding of
additional helical turns. Interestingly, the detailed molecular mechanisms of folding-upon-binding
revealed by our MSMs are not consistent with canonical conformational selection or induced-fit
folding-upon-binding mechanisms. We find that encounter complexes that contain highly helical
NraiL conformations proceed to the fully folded NtaiL: XD complex through a similar network of

states as encounter complexes where NtarL has little helical structure.

Our analyses provide an atomic resolution structural and kinetic description of intermediate states
in a folding-upon-binding pathway and elucidate the nature of the kinetic barriers between
metastable states in a dynamic and heterogenous, or “fuzzy”, protein complex'? 262898 formed by
an IDP and a structured binding partner. The neural network architecture designed here to train a
deep MSM merges convolutional neural network layers that reduce the dimensionality of
intermolecular contact matrices with fully connected network layers to describe global structural
features. This neural network identifies several conformational states that were not resolved
utilizing a reaction coordinate approach, time-lagged independent component analysis (tICA), or
a conventional neural network architecture employing only fully connected neural network layers.
These states enhance the resolution of the folding-upon-binding mechanism and suggest that
folding-upon-binding proceeds through binding pathways that are inconsistent with canonical
conformational selection or induced-fit binding mechanisms. This multi-input neural network
approach may provide a general strategy for building deep MSMs to model the highly dynamic

conformational states of IDPs and protein complexes with substantial conformational disorder.
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Results

Molecular dynamics simulation of the measles virus nucleoprotein NtaiL and the X domain
of the measles virus phosphoprotein complex. A 200us explicit solvent unbiased MD simulation
of a 21-residue partially helical molecular recognition element of the measles virus nucleoprotein
Nrar (residues 484-504, henceforth referred to as “Ntai”) and the X domain (XD) of the measles

136 using the Anton®’

virus phosphoprotein complex was previously performed by Robustelli et. a
supercomputer. This simulation was performed at 400 K using the a99SB-disp protein force field
and a99SB-disp water model.>?> A temperature of 400 K was selected for long time scale folding-
upon-binding simulations as it was found to be near the simulated melting temperature of the
Nra:XD complex and enabled an efficient sampling of binding and unbinding transitions in an
equilibrium simulation. This simulation was initiated from an unbound conformation of Ntan. and
contains 36 binding and 36 unbinding events, where binding and unbinding events are defined

using the fraction of native intermolecular contacts (Q)%¢ 1%

as a reaction coordinate (See
Methods). Here, we observed that XD unfolds at the beginning of this trajectory and refolds to its
native state after 3 ps of simulation time and that XD unfolds and refolds multiple times in the
final 30 us of the trajectory. As we are only interested in modeling the binding pathways of NtaiL
to the native state of XD, we restricted our analysis to a continuous 167 us subset of the original
MD trajectory (from t=3 ps to t=170 pus) where XD remained in its native conformation. This 167

ps segment of the original trajectory contains 831701 frames, spaced with an interval of 200 ps

per frame. We refer to this 167 ps segment as the “full trajectory”.

Markov state model input features. We considered a set of input features containing 1029
intermolecular distances (one distance between each of the 21x49 intermolecular pairs of residues
in Ntar and XD), 21 binary features based on the DSSP secondary structure assignment!?! of each
residue of Nrair, and 15 features consisting of the value of the helical order parameter Sa!'%? for
each consecutive seven residue fragment of Ntamw (See Methods). We refer to sum of Sa values
for all 15 seven residue fragments of Ntamw as “Nrtaw. Sa”. We consider a total of 1065 features for

each MD simulation frame to build an 831701 x 1065 input feature matrix.
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Constructing a hidden Markov state model (HMSM) from time-lagged independent
component analysis (tICA). We utilized time-lagged independent component analysis (tICA)”-
80.96.97t0 reduce the dimensionality of the Ntar:XD input feature matrix and build an initial MSM.
tICA was performed on the input feature matrix using a lag time of 6 ns and the resulting data were
projected onto the first ten tICA eigenvectors. Initial analyses revealed that the binary DSSP
assignment features had no impact on tICA projections and subsequent analyses, and they were
subsequently excluded from the input features for building MSMs from tICA (See Methods). We
visualize the free energy surface of the Nrtai:XD folding-upon-binding MD trajectory as a
function of the two dominant time-lagged independent components (TICs) in Supplementary
Figure 1. We observe that this projection resolves 4 distinct bound-state free energy basins that
resemble the native Ntai: XD complex observed by x-ray crystallography (PDB ID 1T60)% . We
determined an initial estimate of the optimal number of states for an MSM derived from the first
ten tICA eigenvectors by iteratively applying the k-means algorithm with an increasing number of
clusters until the resultant states no longer had statistically distinguishable properties in terms of
the fraction of native intermolecular contacts (Q), Sa, radius of gyration (Rg) and root mean
squared deviation (RMSD) from the native complex. Using this approach, we found seven clusters
to be optimal. We estimated a traditional MSM using these clusters as state definitions and a lag
time of 24 ns. The implied timescales (ITS) of this model, however, were not converged or fully
resolved. This MSM also failed to satisfy the generalized Chapman- Kolmogorov (CK) test® (eq.

5), failing to reproduce the fastest processes observed in this system (data not shown).

To produce a valid model, we constructed an MSM with a larger numbers of initial states and
coarse grained them to a smaller number states via the HMSM formulism introduced by Noe et
al.”> We found that coarsening an initial twelve state MSM with seven resolved implied timescales
(including the stationary process) to a seven state HMSM with a lag time of 6 ns yielded resolved
and converged implied timescales and a valid CK-test (Supplementary Figure 2). We refer to this
model as the “tICA HMSM”. We number these states HMSM state 1-7 in ascending order based
on their similarity to the native complex, as assessed by the average values of the native
intermolecular contact fraction (<O>), NtaiL Sa (<Nta Sa >), Rg (<Rg>) and RMSD from the
crystal structure of the native complex calculated from all structures in each state (Supplementary

Figure 3 and Supplementary Table 1). A network representation of the tICA HMSM with structural
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depictions of each state with the calculated mean first passage times (MFPTs) between them is

displayed in Figure 1.

The HMSM state assignments are projected onto the two dominant tICs in Supplementary Figure
4. We visualize the free energy surface of each HMSM state as a function of the fraction of native
intermolecular contacts (Q) and Nrtaw Sa in Supplementary Figure 5. The average values and
standard deviations of QO and Nrtarw Sa for each HMSM state are compared in Supplementary Table
1 and Supplementary Figure 6. The populations of native and non-native Ntai: XD intermolecular
contacts and the Nrar helical propensities for each tICA HMSM state are compared in
Supplementary Figure 7. The transition matrix of the HMSM is shown in Supplementary Figure 8
and the calculated MFPTs are shown in Supplementary Figure 9.

In HMSM state 1 Nran adopts highly helical conformations (<Ntar. So> = 10.9). These
conformations have comparable helicity to the Nrtaw conformation observed in the native
Nramw: XD complex (Ntar Sa = 12.8 in PDB 1T60) with the exception of helical fraying observed
in the N-terminal Ntan residues G484-D487 and the C-terminal Ntan residues A502-1504. The
average values of native intermolecular contacts <QO> are 0.93, 0.91, 0.79. and 0.78 and the average
values of <Ntam Sa> are 10.9, 7.7, 5.6 and 4.8 for HMSM states 1-4, respectively. These 4 states
contain stable helical conformations from Ntamr A502 to A494 and are differentiated by the
extension of stable Nrtar helical conformations from Ntam A502 to D493, Nta. A502 to S491,
and Ntar. A502 to D487 in HMSM states 3, 2 and 1 respectively (Supplementary Figure 7). The
Rg of the bound states increases from HMSM state 1 to HMSM state 4 as an increasing number of
N-terminal residues of less helical conformations of Ntai extend outward from XD into solution
(Supplementary Table 1). Our tICA HMSM also identifies a weakly bound state (HMSM state 5)
with a small fraction of native intermolecular contacts and little helical content (<Q> = 0.16,
<Nram So> = 3.1), a state where Ntarr and XD are largely unbound (HMSM state 6) with a
substantially elevated Ry (<O> = 0.01, <NtaL So> = 1.4, <Rg> = 1.8 nm) and a more compact
non-native complex (HMSM state 7) with very few native contacts (<QO> = 0.02, <Ntar So> =

3.6, <Rg>= 1.3 nm) but more Nram helical content than unbound Ntan. conformations.
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We observe that HMSM state 5 functions as a kinetic hub between unbound conformations in
HMSM state 6 and the 4 native-like bound states (Figure 2, Supplementary Figure §8). HMSM
State 5 can therefore be interpreted as an on-pathway encounter complex in the folding-upon-
binding of pathway Ntai. The most probable transitions from HMSM state 5 to the native-like
bound states are to states 3 and 4, where NtarL is partially folded, with transition probabilities of
2.53 +0.4% and 1.48 + 0.3%, respectively (error estimates computed with a Bayesian HMSM and
Gibbs sampling approach3®!2, See Methods). From HMSM state 3, transitions to state 2 (7.33 +
0.53%) are significantly more probable than to the less helical state 4 (4.85 + 0.4%). HMSM state
4 has a relatively large probability of transitioning to state 3 (12.7 + 1.03%) and very low
probabilities of transitioning to states 1 (0.4 + 0.1%) and 2 (1.1 + 0.2%). Using Transition path
theory (TPT)!%-19 we find that folding-upon-binding pathways from HMSM state 6 (unbound)
to states 1 and 2 (most native-like bound states) that exclude visits to state 4 comprise 74.8% of
the total probability flux and that the pathway with the maximum flux (46.1%) proceeds through
states 5, 3, and 2. We conclude that HMSM state 4 is largely off pathway to the more folded, bound
states. We observe that HMSM state 7 consists of a non-native NtaiL: XD complex where NrarL is
bound on the opposite face of XD relative to the native binding groove. Conformations in HMSM
state 7 predominantly transition back to unbound conformations in HMSM state 6 (transition
probability of 4.17 + 0.78%) and very rarely transition directly to HMSM state 5 (transition
probability of 0.1 + 0.1%).

Constructing a deep Markov state model with a multi-input neural network architecture.
We sought to improve the resolution of our kinetic model and obtain greater mechanistic insight
into NtaL:XD folding-upon-binding by employing the deep learning “VAMPnet” approach with
physical constraints to build a deep MSM.*’ In this approach, the variational approach to Markov
processes (VAMP) is integrated into a deep learning framework that combines feature selection,
dimensionality reduction, state discretization, and kinetic modeling into a continuous pipeline for
constructing MSMs. The VAMP provides a “VAMP score” that estimates how well a set of
features describes the kinetics of the slowest evolving transitions observed in an MD simulation.”®
81-83 In a VAMPnet, a neural network is trained to learn a non-linear function that transforms input
features into probabilistic state assignments that maximize the VAMP score. A VAMPnet outputs

a probabilistic (or “fuzzy”) Markov state assignment for each frame of an MD simulation
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trajectory. Probabilistic state assignments describe the probability that each trajectory frame is a
member of each Markov state. Higher VAMP scores result from probabilistic MSM state
assignments that maximize the autocorrelation of each state assignment. Training neural networks
to maximize VAMP scores therefore identifies slowly evolving state definitions describing

metastable intermediates in long timescale processes.

Mardt et. al' extended the VAMPnet approach to learn a stochastic and reversible transition matrix
defining the transition probabilities between fuzzy states obtained from an unconstrained
VAMPnet.3* 85 A reversible and stochastic transition matrix adheres to detailed balance and has
all positive elements so each element can therefore be interpreted as a transition probability. The
learned deep MSM state assignments and reversible, stochastic transition matrix define a kinetic
model from which the stationary distribution of states and their interconversion rates can be
computed. These models have been referred to as “deep MSMs”, “VAMPnets with physical
constraints” and “Koopman models” in previous studies due to their relationship with Koopman
operator theory.!% Deep MSMs pose a great advantage over traditional MSMs as the utilization of
neural networks in these models allow for the optimization of non-linear state membership

functions.

We used the full set of 1065 input features to learn a deep MSM with a VAMPnet with physical
constraints. We refer to this MSM as the “deep MSM”. To optimally integrate features that
describe the helical content of NtaiL (Sa and binary DSSP) and features that describe the position
and orientation of Nrar relative to XD (the Ntai:XD intermolecular distance matrix) in our
VAMPnet, we designed a multi-input neural network architecture. A schematic illustration of this
multi-input neural network architecture is presented in Figure 2. This neural network architecture
employs a combination of convolutional network layers and fully connected network layers to
merge structural descriptors with different dimensionalities. Convolutional neural networks
provide dramatic performance advantages for deep learning tasks involving image data.!"’
Recognizing that the intermolecular distances matrix (or intermolecular “contact map”’) between
Nrar and XD obtained in each frame of the simulation can be interpreted as an image, we sought
to leverage the local spatial coherence in these contact maps by transforming them with

convolutional neural network layers in our VAMPnet. We then combine the information obtained
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from convolutional neural network layer transformations of intermolecular contact maps with
information obtained from fully connected dense neural network layer transformations of the Sa

and binary DSSP helical assignment features.

The three neural network inputs (intermolecular distance matrices, Ntai. Sa values and binary
DSSP Nram helical assignments) are transformed separately in three branches, applying
convolutional neural network layers to transform intermolecular contact maps and fully connected
neural network layers to transform the vector quantities of Sa. and binary DSSP helix assignments
(See Methods). The resulting outputs from each branch of the network are combined and
transformed by a final set of fully connected neural network layers. The details of the final
architecture of this neural network are described and illustrated in Supplementary Figure 10. The
initial fully connected neural network layers used to transform S values and binary helical DSSP
assignments increase the dimensionality of these data to better capture relationships between
different sequence regions in Ntai. and the initial convolutional network layers reduce the
dimensionality of intermolecular contact maps to better capture essential relationships between
intermolecular contacts in different regions of the NtaiL: XD complex with a coarser representation

of intermolecular distances.

We determined the final architecture of our neural network implementation and VAMPnet
hyperparameters (batch size, learning rate, epsilon parameter, model lag time, and number of
states) by iteratively optimizing the VAMP2 score (eq. 8) of an unconstrained neural network (See
Methods). We found that using 12 output states and a lag time of 2 ns to train unconstrained
VAMPnets maximized the VAMP2 score and consistently produced the same set of 12
distinguishable states. We characterize the latent space and state assignments of the initial

unconstrained VAMPnet in Figure 3.

We constructed our final deep MSM by retraining the initial unconstrained VAMPnet with
physical constraints to learn a reversible and stochastic transition matrix defining the transition
probabilities between the 12 states identified by the unconstrained VAMPnet (See Methods).?* %
The Chapman-Kolmogrov (CK) test®?, implied timescales, and steady state distributions for the

deep MSM estimated at a lag time of 6 ns are shown in Supplementary Figure 11. We refer to the
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12 states obtained from the deep MSM as deep MSM states 1-12. We number the states of the
deep MSM in ascending order based on their similarity to the native NtaiL:XD complex in terms
of the fraction of native intermolecular contacts (Q), NtaiL Sa, radius of gyration and RMSD from
the native complex (Supplementary Figure 12). We visualize the free energy surface of each deep
MSM state as a function of O and Nrtaw Sa in Supplementary Figure 13. We compare the average
values and standard deviations of O, NtaiL Sa and the radius of gyration for each deep MSM state
in Supplementary Table 2 and Supplementary Figure 14. We compare the populations of native
and non-native Ntamw: XD intermolecular contacts and the Ntar helical propensities for each deep
MSM state in Supplementary Figure 15. The transition matrix and the mean first passage times for

the deep MSM are shown in Supplementary Figures 16 and 17, respectively.

A transition network representation of the deep MSM with structural depictions of each state and
the mean first passage times between states is displayed in Figure 4. We observe that 5 of the deep
MSM states closely resemble 5 of the tICA HMSM states. Deep MSM states 1-4 closely resemble
the 4 native-like HMSM bound states (HMSM states 1-4). Deep MSM state 8, where Ntar is
unbound, closely resembles HMSM state 6. In the tICA HMSM, we resolve a single heterogenous
encounter complex state (HMSM state 5). The deep MSM increases the resolution of our model
and effectively fine grains this heterogenous encounter complex into 3 distinct states: deep MSM
states 5, 6 and 7. These states are substantially more homogenous than HMSM state 5 and are
differentiated by the helical content of Nrtam, the orientation of Ntaw relative to XD, the
conformational heterogeneity of NtaiL and the populations of native and non-native intermolecular

contacts (Figures 4-5, Supplementary Figures 12-15).

The deep MSM similarly fine grains HMSM state 7, the heterogenous non-native complex where
Nrar is bound to the opposite face of XD relative to the native binding site, into 3 distinct states
(deep MSM states 10-12, Figure 5, Supplementary Figures 12-15). In these more homogenous
states NtaiL is bound in different locations on XD and contains distinct populations of helical
content. In addition, the VAMPnet also identifies a rare conformational state (deep MSM state 9,
steady-state population p = 0.1 £ 0.02%) in which Ntarn is inserted between the three helical
bundles of XD.
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A deep Markov state model resolves two structurally and Kkinetically distinct encounter
complex states and a kinetic trap. In the tICA HMSM, most of the probability flux from unbound
Nraw states to native-like bound states flows through a single Markov state (tICA HMSM state 5)
which functions as an encounter complex and kinetic hub for transitions between bound and
unbound conformations (Figure 2, Supplementary Figures 8-9). tICA HMSM state 5 has a steady-
state population (p) of p = 8.7 + 1.1% and contains a small fraction of native intermolecular
contacts (<O> = 0.22) and relatively little helical content (<Ntar. So> = 3.1). In the deep MSM
this state has effectively been split into three states: deep MSM states 5, 6, and 7 (Figures 4-5).
Deep MSM states 5, 6 and 7 have steady state populations of p = 1.1 +0.2%, p=5.7 + 0.5% and
p =3.0 + 0.3%, respectively. We observe that the populations of helical Nta. conformations are
substantially smaller in deep MSM state 5 (<NtaiL So> = 1.4) and deep MSM state 6 (<NtaiL So>
=2.0) compared to deep MSM state 7 (<NtaiL Sa> = 5.1). We find that deep MSM states 5, 6 and
7 have similar fractions of native intermolecular contacts (<QO> = 0.19, <QO> = 0.19, and <Q> =
0.18, respectively) but observe that there is a large difference in the subsets of the intermolecular

residue pairs that form native and non-native intermolecular contacts in each state (Figure 5).

Nramw residues L495 and 1498 insert into the hydrophobic binding groove of XD in the native
complex. In deep MSM state 6 these leucine residues form similar populations of native and non-
native intermolecular contacts and Nram is not restricted to native-like binding orientations, and
instead samples a relatively isotropic distribution of rotational orientations. In deep MSM state 7,
native intermolecular contacts formed by Nrtaiw L498 have substantially higher populations than
native intermolecular contacts formed by Ntaiw L495, and Ntar. L495 forms highly populated
non-native intermolecular contacts. Visual inspection of deep MSM state 6 and state 7 reveals that
Nrar L498 binds at similar positions in the native XD hydrophobic binding groove in both states
(Figure 5). In deep MSM state 7, however, Ntair L495 is inserted into a non-native binding site in
the hydrophobic binding groove of XD that orients Ntar in the opposite (or “upside-down’)
orientation relative to the Ntam orientation observed in the native Nta: XD bound complex. We
define a rotational order parameter in the form of an angle to quantify the orientation of Ntar
relative to the native binding face of XD in each deep MSM state in Supplementary Appendix 1
and present the distribution of this order parameter for each deep MSM state in Supplementary

Figure 18.


https://doi.org/10.1101/2023.07.21.550103
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.21.550103; this version posted July 25, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Nram conformations in deep MSM state 6 have a similar helical propensity to unbound states of
Nrar, except for a slightly elevated helical propensity observed in residues A492-L495 (Figure 5,
Supplementary Figure 15). In deep MSM state 7, Ntaw has a higher helical propensity that more
closely resembles the less helical native-like bound states (deep MSM states 3 and 4). One might
therefore hypothesize that deep MSM state 6 functions as an encounter complex for a binding
pathway resembling an “induced fit” mechanism, where the formation of native intermolecular
contacts proceeds the subsequent folding of secondary structure elements formed the bound state,
while deep MSM state 7 functions as an encounter complex for a parallel binding pathway
resembling a “conformational selection” mechanism, where preformed native-like secondary
structure elements bind XD before the subsequent formation of native intermolecular contacts. A
detailed inspection of the transition probabilities and transition rates among deep MSM states,
however, reveals that Ntai binding pathways do not fall into such a dichotomy (Figure 4,

Supplementary Figures 16-17).

While Ntai conformations in deep MSM state 7 are substantially more helical than Nrtam
conformations in state 6, we do not observe greater transition probabilities from state 7 to the more
helical native-like bound states 1 and 2 (Figure 5, Supplementary Figure 16). The transition
probabilities from deep MSM state 7 to states 1 and 2 are 0.1 +0.01% and 0.5 + 0.1%, respectively.
These values are smaller than the transition probabilities observed from the less helical encounter
complex (deep MSM state 6) to states 1 and 2 (0.6 + 0.1% and 1.7 + 0.2%, respectively). The
highest transition probabilities from deep MSM state 7 are to state 6 (15.3 + 0.8%) and state 4 (4.9

+ 0.7%), states where NrarL is substantially less helical.

These observations contrast with the classical paradigm of conformational selection, where a
stable, preformed helix binds and remains helical for the duration of a binding event. We observe
that the transition rates from the two deep MSM encounter complex states (states 6 and 7) to the
deep MSM native-like bound states (states 1-4) are within statistical error (Supplementary Figure
17) and that deep MSM states 6 and 7 are most clearly kinetically distinguished based on incoming
transitions from unbound and non-native conformations (Supplementary Figure 16). These results

indicate that while we identify distinct encounter complex states with different Ntai helical
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propensities and conformational pathways leading to their formation, these states ultimately
transition to native-like bound states with similar rates and ultimately form the same network of
partially bound and folded fuzzy complexes that subsequently transition to the most native-like
state. Consequently, we conclude that folding-upon-binding pathways originating from these
encounter complex states are not well described by an induced fit / conformational selection

dichotomy.

Deep MSM state 5 transitions almost exclusively to state 6 which is the only state that has an
appreciable probability of transitioning to state 5 (Supplementary Figure 16). Consequently, we
identify deep MSM state 5 as an off-pathway kinetic trap on folding-upon-binding pathways that
proceed through state 6. Deep MSM state 5 is similar to state 6 but Ntam has an elevated helical
propensity in residues A492-1.495 (Figure 5). Deep MSM state 5 contains more highly populated
non-native contacts between Nrtar residues L495 and L.496 and XD residues Y480, L481, L484,
F497, and 1504 (average population of 55.7 + 7.33%) than state 6 and state 7 (average populations
of 19.7 + 2.4% and 12.3 + 4.7%, respectively). We thus identify the stabilization of helical
conformations of NtarL by the formation of non-native contacts as the basis for the substantial

kinetic barrier observed between deep MSM state 5 and the native-like bound states.

Kinetic barriers between native-like bound states originate from non-native contacts. Ntai
folding-upon-binding pathways from encounter complex states (deep MSM states 6 and 7) to the
nost native-like bound state (deep MSM state 1) are largely mediated by the sequential formation
and subsequent breakage of two distinct sets of non-native intermolecular contacts. The majority
of the probability flux from the deep MSM encounter complex states to the native state states
proceeds through deep MSM states 3 and 4. These states contain similar Nta helical propensites
and populations of native intermolecular contacts, but are differentiated by an elevated population
of a cluster of non-native intermolecular contacts between Nrar residues A492 and D493 and XD
residues D487, 1488, and D493 in deep MSM state 3 (Figure 6). This cluster of non-native
intermolecular contacts is highlighted by a dotted rectangle in Figure 6A, and representative
depictions of these contacts are shown in Figure 6B. The average population of the non-native
contacts between these groups of residues is 32.9 + 0.7% in deep MSM state 3 compared to 3.9 +
3.8% in state 4.
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Deep MSM state 3 contains a substantially populated intramolecular salt bridge between residues
NraL R497 and Ntan. D493. We define this salt bridge as being formed in trajectory frames where
one of the carbonyl oxygens of Ntan. D493 is within 3.5 A of a guanidinium nitrogen of Nran
R497. By this definition, the Ntai. R497:D493 salt bridge has a population of 4.1 + 0.7% in state
4 and 26.6 + 0.1% in state 3. These results suggests that the kinetic barrier between deep MSM
state 4 and state 3 partially results from the process of forming and breaking the intramolecular
Nrair R497:D493 salt bridge and non-native intermolecular contacts between Nrtai A492 and
D493 and XD residues D487, 1488, and D493. We observe that the process of forming these
contacts is substantially faster than the process of breaking them (MFPT = 80.0 + 3.4 ns for
transitions from deep MSM state 4 to state 3 and MFPT = 274.1 + 27.4 ns for transitions from state
3 to state 4). Interestingly, it has been observed that the Ntap. mutation R497G substantially
diminishes the affinity of Ntan to XD.!%® Kp values of 3.0 + 0.2 uM and 44.4 + 2.2 uM were
measured for wild type and R497G Nraw, respectively. Ntai R497 forms stable native
intermolecular contacts with XD in all the deep MSM native-like bound states. The absence of
these native intermolecular interactions should destabilize the native complex between the Nrtam
R497G mutant and XD. The absence of an intramolecular salt bridge between Ntan. R497 and
D493 may further destabilize deep MSM state 3. As most of the total probability flux (70.7 +
6.0%) from the unbound state (deep MSM state 8) to most native-like bound (state 1) proceeds
through state 3, this additional destabilization of state 3 may contribute to the dramatic affinity

loss observed for Ntai. R497G observed in previous studies.

The formation of non-native intermolecular contacts in deep MSM state 3 coincides with the
transient formation of several weakly populated native intermolecular contacts between NrtaL
residues R490 and S491 with XD residues D487, 1488, and D493 (average population of 14.0 +
4.4%, dark rectangle, Figure 6B). These native contacts subsequently become “locked in” after
transitions to deep MSM state 2, where they have an average population of 86.7 + 5.4%. The
formation of these stable native intermolecular contacts is accompanied by a substantial increase
in the population of intermolecular hydrogen bonds between the sidechain hydroxyl hydrogen of
Nramw S491 and the carboxylic acid oxygens of XD D493 and the hydroxyl oxygen of Ntam S491
and the backbone amide hydrogen of XD K489. These hydrogen bonds are observed in the x-ray
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structure of the Ntar:XD complex®® and the Ntar. mutation S491L was previously demonstrated
to reduce the affinity of Ntai to XD beneath the detection limits of ITC!%, underscoring the
importance of these intermolecular hydrogen bonds in stabilizing the Ntai: XD complex. These
hydrogen bonds have a population of 53.0 + 0.4% in deep MSM state 2 compared to in 6.6 + 0.1%
and 0.2 + 0.1% of frames in states 3 and 4, respectively. The formation of this cluster of native
contacts in deep MSM state 2 is accompanied by an increase in the helical propensities of NtaiL
residues S491-D493, and the formation of several non-native intermolecular contacts between
Nrar residue R489 and XD residues T483, D486 and D487 (average population = 49.3 + 24.3%)).
The strongest non-native intermolecular contacts in this cluster occur between Ntai. R489 and XD
D487 (p = 82.5 + 0.76%) and Ntan. R489 and XD D486 (p = 40.2 + 0.4%), demonstrating the

importance of non-native intermolecular salt bridge interactions in stabilizing this state.

The stability of non-native contacts formed by NtaiL R489 and XD residues T483, D486 and D487
appear to substantially contribute to the kinetic barrier between deep MSM state 2 and state 1.
These contacts have an average population of 49.3 + 24.3% in deep MSM state 2 but are nearly
absent in state 1 (average population = 2.0 + 1.7%). Transitions from deep MSM state 2 to state 1
are also accompanied by the formation of stable helical conformations from Nrtai S491 to D487
and the formation of a final set of native intermolecular contacts between Ntar D487 and XD
D487 and Ntan. D467 and XD K489 (p = 37.7 + 0.3% and p = 43.2 + 0.3% respectively in deep
MSM state 1). These native intermolecular contacts are indicated by a solid block box in Figure
4A. Transitions between deep MSM state 2 and state 1 are relatively fast (MFPT = 109.1 + 7.2 ns
for transitions from state 2 to state 1 and MFPT = 99.8 + 10.7 ns for transitions from state 1 to
state 2) and are among the fastest of the transitions observed between native-like bound states.
This transition involves the cooperative extension of the NtaiwL helix by 4 residues, whereas the
helix of Ntam is extended by only a single residue in transitions from deep MSM state 4 to state
3. The transition from deep MSM state 2 to state 1 involves the formation of a favorable salt bridge
between Ntar D487 and XD K489 in a conformation where the aliphatic residues of Ntai D487
and XD D487 sidechains are in contact, but the negatively charged carboxylic acid moieties are
orientated to minimize unfavorable charge interactions. We speculate that the strong electrostatic
attractions and repulsions between this set of charged sidechains may facilitate the relatively fast

transitions observed between deep MSM state 2 and state 1.
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Comparison of Markov state models with a 1D reaction coordinate for folding-upon-binding.
In a previous investigation by Robustelli et. al’® a 1D reaction coordinate was optimized to
characterize the folding-upon-binding mechanism observed in the MD simulation analyzed here.
This reaction coordinate was derived using the fraction of native intermolecular contacts (Q)
between NtaiL and XD as an initial reaction coordinate and employing the variational optimization
approach of Best and Hummer!'% to reweight the contribution of each native intermolecular contact
to produce a new reaction coordinate (R). This optimization was carried out to increase the
maximum value of the conditional probability distribution p(TP|R), where p(TP|R) is the
probability that a frame of the MD trajectory is on transition path at a given value of the optimized

reaction coordinate R.

A projection of the MD trajectory onto the previously calculated 1D reaction coordinate R was
found to contain three apparent free-energy minima separating unbound and native-like bound
conformations (Supplementary Figure 19). It is, however, unclear if the apparent free-energy
barriers observed in this projection are kinetically meaningful. We have calculated the probability
distribution of the value of the reaction coordinate R for each kinetically distinct deep MSM state
in Supplementary Figure 19. We observe that the two primary encounter complex states identified
in this investigation (deep MSM states 6 and 7) are largely indistinguishable based on this reaction
coordinate. We also observe that native-like bound states of the deep MSM (deep MSM states 1-
4) are similarly indistinguishable based on this reaction coordinate. This result is unsurprising
given the importance of non-native contacts in differentiating the Markov states of our deep MSM
and underscores the complementary insights that MSMs can provide to low dimensional reaction

coordinate approaches for describing protein folding and disordered protein folding-upon-binding.

Discussion

We report the construction of Markov state models (MSMs) to structurally and kinetically
characterize folding-upon-pathways observed in an unbiased long time scale MD simulation of a
disordered molecular recognition element of the measles virus nucleoprotein NtarL reversibly
binding the X domain of the measles virus phosphoprotein complex. We constructed a hidden

Markov state model (HMSM) using time-lagged independent component analysis (tICA), a linear
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dimensionality reduction technique, and a deep learning based MSM (or “deep MSM”) using the
VAMPnet approach with physical constraints with a multi-input neural network architecture. The
MSMs constructed with these two approaches both resolve an unbound state and 4 kinetically
separated native-like bound states that interconvert on time scales of eighty to five hundred
nanoseconds. In the HMSM built using tICA, we observe that transitions between unbound Nrta.
conformations and native-like bound states of NtaiL:XD complexes predominantly occur through
a single conformationally heterogenous Markov state, which we refer to as an ‘“encounter
complex” state. In contrast, the deep MSM built using the reversible VAMPnet approach resolves
several additional structurally and kinetically distinct states including two encounter complexes

and an off-pathway kinetic trap.

In both encounter complex states identified in the deep MSM Nrar residue 1498 is inserted into
the hydrophobic binding groove of XD in its native binding site. These encounter complex states
are differentiated by the binding orientation, helical content, and conformational heterogeneity of
Nram. In one encounter complex state Ntar. adopts relatively disordered conformations with
similar helical content to unbound Nrtam conformations and samples a relatively isotropic
distribution of rotational orientations relative the binding face of XD. In the second encounter
complex state Ntai adopts a more ordered set of conformations with substantially more helical
content than is observed in its unbound state and predominantly binds XD in a single orientation
that is “upside-down” relative to its orientation in the native complex. This upside-down binding
pose is stabilized by the insertion of Ntaw residue L495 into a non-native binding site in the

hydrophobic binding groove of XD.

We highlight that while NtaiL conformations in the more disordered Ntam:XD encounter complex
state have similar helical propensities to unbound conformations of Ntam and Ntan conformations
in the more ordered encounter complex state have similar helical propensities to those observed in
the native Ntam: XD complex, the deep MSM does not suggest the presence of parallel “induced-
fit” and “conformational selection”-type pathways. Transitions from both encounter complex
states to the most native-like bound states proceed through similar pathways, illustrating that
helical content formed early in folding-upon-binding transitions paths is not necessarily indicative

of a conformational selection mechanism. This result is consistent with a previous 1D reaction
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coordinate transition path analyses of NtaiL:XD folding-upon-binding where it was observed that
helical content formed early in transition paths frequently breaks to enable the formation of

additional native intermolecular contacts before refolding.>

There is substantial experimental and computational evidence demonstrating that many IDPs
maintain significant conformational disordered when bound to their physiological interaction
partners.?*2% 7 This phenomenon is frequently referred to as the formation of a “fuzzy” protein
complex, and is often explained using the energy-landscape theory inspired concept of
conformational frustration.?6: 7 110-115 Conformational frustration describes the existence of
multiple competing favorable interactions that cannot be simultaneously satisfied and therefore
result in a dynamic equilibrium between distinct conformational states. While the existence of
fuzzy complexes and the role of conformational frustration in these complexes is well appreciated,
few studies have provided atomic resolution molecular mechanisms that rationalize the kinetics of
the conformational transitions among the conformational states of IDPs in fuzzy complexes.> 3"
67.98 The MSMs reported here identify a network of conformationally frustrated bound states of
the NtaiL: XD complex that share a core set of native intermolecular contacts and are differentiated
by the sequential formation of non-native intermolecular and intramolecular contacts that facilitate
the folding of additional helical turns. Our analyses provide atomic resolution descriptions of
conformationally frustrated states of an IDP in a fuzzy protein complex and quantitative estimates
of the time scales of transitions between these states. Our results underscore that an interplay
between native intermolecular contacts, non-native intermolecular contacts, and non-native
intramolecular contacts produce kinetic barriers between conformationally frustrated states of an
IDP in a fuzzy protein complex.!! 17 The insights generated from this study and future atomistic
studies of fuzzy IDP complexes may ultimately facilitate the design of conformationally frustrated

protein complexes with rationally tunable binding affinities.

It was previously noted>® that the folding-upon-binding pathways observed in the MD trajectory
analyzed here are broadly consistent with previously reported NMR experiments®’, stopped-flow
kinetics measurements®? and ¢-value analyses of measles virus Ntam: XD binding.?® Stopped-flow
kinetics measurements clearly resolve separate rates for the formation of an initial encounter

complex between Ntar. and XD and the subsequent folding of Nrar*?, and protein engineering
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¢-values indicate that encounter complex formation is mediated by hydrophobic residues
(A494,1.495,1.498, and A502) in the central helix of Ntai.®® While the simulation analyzed in here
was run at higher temperature (400 K) than previous experimental investigations, the MSMs
derived in this investigation are broadly consistent with these previously published experimental

data.

A recent study of measles virus nucleoprotein and phosphoprotein interactions underlying liquid-
like phase separation reported a small set of '’N NMR relaxation dispersion data to characterize
the binding equilibrium of the measles virus Ntaw: XD complex®!. These data were well fit by a 2-
state binding model, suggesting that only one dominant kinetic barrier is resolved in these NMR
experiments. As MSMs reported here were derived from MD simulations performed at 400 K and
NMR measurements in this experimental investigation were performed at 298K, it is not possible
to directly compare the simulated and experimentally measured rates and state populations in these
two studies. Building MSMs of NtaiL: XD binding at physiological temperatures by combining the
VAMPnet approach developed in this work with adaptive sampling strategies could, however,
enable a direct comparison between simulated and experimental rates in this system. The recently
developed augmented Markov model formalism, where MSM state populations and transition rates
are refit using maximum-entropy methods to match agreement with experimental data, provides
an eloquent approach to assess the agreement between MSMs and NMR relaxation data.!'® Such
studies may illuminate deficiencies in current molecular mechanics force fields used to study IDP
folding-upon-binding, and ultimately facilitate the design of fuzzy protein complexes between

IDPs and structured binding partners.

It is interesting to consider the conformational properties of the native-like bound states of the
measles virus NtaiL: XD complex resolved in this study in the context of previously reported NMR
relaxation dispersion measurements used to characterize the binding mechanism of the
homologous sendai virus Ntam molecular recognition element to the homologous sendai
phosphoprotein X domain (sendai XD) in unprecedented detail.?? In this study, unbound sendai
NrarL was found to be in equilibrium with two bound states, with a population ratio of ~3:1, that
were characterized by chemical shift differences with the unbound state. The more populated

bound state was found to contain an elevated population of helical elements relative to apo sendai
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Nraw (as assessed by large changes in backbone carbon chemical shifts) but to remain relatively
nonspecifically bound (as assessed by relatively small changes in nitrogen and proton backbone
chemical shifts in residues at the sendai Ntaw:XD binding interface). The less populated bound
state has NMR chemical shifts consistent with the fully folded and ordered sendai native NtaL: XD
complex. The authors of this study note that the NMR relaxation dispersion data reported are
insufficient to provide atomic resolution descriptions of these states, and do not contain
information on the relative position of Ntai on the surface of XD in the more populated bound
conformation. This lack of information makes it challenging to understand the microscopic nature

of the kinetic barriers between these states.

It is important to caveat that there are substantial differences in the sequences of NtaiL and XD in
the sendai and measles viruses. The a-helical molecular recognition element sendai Ntar has more
charged residues (9) than the a-helical molecular recognition element of measles virus Ntam (5)
and the measles virus Ntai:XD binding interface is substantially more hydrophobic than the
sendai NtaiL: XD binding interface, suggesting that electrostatics and polar interactions are likely
to play a larger role in the sendai Ntai: XD binding mechanism.?>%” While one expects there will
be appreciable differences in the binding mechanism and bound ensembles of sendai Ntam: XD
and measles virus Nta:XD complexes it is interesting to speculate that the experimentally
observed kinetic barriers observed in the bound states of the sendai NtaiL:XD complex may share
some features with the kinetic barriers identified here. The network of measles virus Ntaw: XD
bound states reported here contains kinetic barriers that result from the formation of non-native
intermolecular and intramolecular contacts that must be broken to facilitate the formation of the
fully folded native complex. An analogous set of interactions, perhaps with greater electrostatic
contributions resulting from native and non-native salt bridges that confer greater conformational
frustration, may underlie the experimentally observed kinetic barriers between bond states of the
sendai NtaiL:XD complex. Investigating differences in the binding mechanisms of measles virus
Nra and Sendai Nrtan will be of interest in future investigations. Accurately describing
differences in these binding mechanisms will present a stringent test of the quality of MD force

fields used to study IDP folding-upon-binding.
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Lastly, we have demonstrated the utility of a multi-input neural network framework for describing
the conformational dynamics of a highly dynamic intrinsically disordered protein. The approach
presented here, where convolutional neural network layers are utilized to reduce the dimensionality
of interatomic distance matrices while fully connected dense neural network layers are used to
process lower dimensional order parameters describing the helical content of an IDP before
combining all features in a fully connected dense neural network, provides a high degree of
flexibility for identifying optimal combinations of molecular feature sets with different inherent
dimensionalities and embeddings. We demonstrated that this approach distinguishes several
structurally and kinetically distinct Markov states that were not resolved using the traditional linear
dimensionality reduction tICA approach. We speculate that the deep learning strategy employed
here may provide a generalizable approach for learning low dimensional representations of high
dimensional IDP simulation data that are best described by multiple distinct degrees of freedom.
We plan to investigate the utility of this approach for building MSMs of monomeric IDPs and for
identifying collective variables for enhanced sampling methods and diffusion models in future

studies.

Methods

Markov State Models. Markov state models (MSMs) are stochastic dynamical models that
approximate the kinetics of molecules as memoryless, probabilistic jump processes between sets
of states.®> MSMs utilize a time reversible transition matrix'!® containing conditional probabilities
of transitioning between states. The transition matrix of a MSM is reversible and functions as a
transfer operator that propagates a distribution of states, p(t), forward (and backward) in time by

kt discrete steps where k is a positive integer and 7 is the lag time of the model.

p'(t+ k1) =~ p()'T (1) (1)

The optimal lag time of a MSM can be determined by ploting the implied time scales (ITS) as a
function of the lag time and choosing the lag time at which the implied time scales'?® are
approximatly constant®’. Additionally, the time resolution of the model can be determined by
checking that ITS are above the lag time at which the model is estimated (Supplementary Figures

2 and 11). Implied time scales are determined from the eigen values, 4;, of the transition matrix .
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T
In|4;]

ti(v) = - 2

By definition, MSM transition matrices have a maximum eigen value of 1 whose eigen vector

corresponds to the steady state or stationary population, 77, of states as time approaches infinity.!?!
T(OT =7 3)

Using the the stationary distribution and the transition matrix of a MSM, the mean first passage

times between pairs of states (MFPT;;) can be determined from an Nsates by Ntates System of

equations (Supplemenary Figures S9 and S17).122

*#J]

MFPT; = 1/n.

In addition to ITS, validation of MSMs and their transtion matrices is determined by the Chapman-

Kolmogrov equation’? 12!,

T(tk) = T(1)* )

in which the ability of a transition matrix to reproduce transistion probabilities at longer timesales

is evaluated (Supplementary Figures 2 and 11).

Input Data for Markov State Models. We utilized the 200 ps unbiased MD trajectory from
Robustelli et. al®® which contains Ntar residues 484-504, XD residues 458-506 and 20mM of
NaCl in a 72 A per side cubic box. This trajectory was parametrized using the a99SB-disp force
field, a99SB-disp water model®? and contained 1,000,000 frames with a spacing of 200ps. For the

construction of our MSMs®% 70 we only considered a continuous 167us subset (from 3us to 170us)
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of the original trajectory in which XD predominantly remains in its folded state. We generated the
molecular features for MSM construction and neural network training by calculating
intermolecular distances between all residues of Nrtai and XD using the minimum distance
between heavy atoms. Additionally, we computed the a-helical order parameter Sa 102 and
identified helical conformations using the DSSP!! algorithm. The order parameter Sa quantifies

the helical content of each 7-residue segment of a peptide chain and is computed by the following,

1— (RM:(‘)D(X,—)B

N
Sy = Z (6)

~ (RM;S(‘)Da,-)lz

where RMSDa; denotes the root mean squared deviation between each 7-residue segment of NtarL
and a geometrically perfect alpha helix comprised of the same residues. The exponential terms in
the equation act as a switching function to output values between 0 (not helical) and 1 (perfectly
helical) for each segment. The threshold of the switching function is tuned by the parameter ro,
which was chosen to be 0.8 A. Setting the parameter ro to 0.8 A has the effect of reducing RMSDa;
values > 2.5 A to nearly zero and RMSDai values < 0.5 A to nearly 1. For constructing MSMs, we
chose to omit the summation in (eq. 6) to retain a more localized description of the helical content
of NraiL. As a result of the 7-residue sliding window used in the computation of So. and Ntam
being 21 residues long, we compute a length 15 vector for each time step of the simulation
describing the helical content of every possible contiguous 7 residue segment of Ntai.. We note
that for broad statistical characterizations (such as in Figure 1), the summation in equation 1 is

retained to provide an estimate of the total helicity of NtaiL per simulation frame (“Nrtamw Sa”).

We constructed the second a-helical descriptor for Ntai using the DSSP Algorithm. The DSSP
algorithm uses dihedral angles and hydrogen bonding analysis to classify the secondary structure
of each residue in a peptide chain. The secondary structure predictions given by DSSP were then
numericized by equating helical classifications to 1 and all others to zero. As a result, the processed
binary DSSP assignments produce a vector of length 21 for each time step of the simulation with
values indicating if each residue of Ntar is in a helical conformation (value of 1) or not (value of

0). Both Sa and binary DSSP features were considered in quantifying the helical content of Ntar
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as they evaluate helical content using distinct metrics and as a result, produce differing degrees of

locality in the descriptions they provide.

We tested several feature sets for state discretization including combinations of interatomic
distances, dihedral angles, fraction native intermolecular contacts (Q), binary DSSP assignments
and Sa values. We assessed the quality of feature sets by comparing VAMP2 scores’® 83, the
spectral gap observed among the eigenvalues of the dominant tICA eigenmodes,” % °7 and the
ability of each feature set to resolve conformationally distinct free energy basins in low
dimensional tICA projections. For tICA, we found the combination of intermolecular residue
distances and Sa best satisfied these metrics and that the addition of DSSP features had negligible
effect. We subsequently omitted the DSSP features from our tICA analysis and used only
intermolecular distances and So order parameters. In contrast, we found that including DSSP
features in our VAMPnet increased the model’s ability to differentiate Ntai conformations
differing only in the helical content of residues near the termini; thus, we used a feature set
containing intermolecular residue-residue distances, Sa, and binary DSSP helical assignments as

input data in our VAMPnet implementation.

Construction of a hidden Markov state model (HMSM). To construct an initial MSM, we
performed tICA on a feature set comprised of the nearest-heavy-atom intermolecular distances
between all residues of Ntaiw and XD and Sa values. The tICA lag time, number of tICA
components (tICs) used for clustering, and the number of k-means clusters were optimized based
on the interpretability and distinctness of the structural properties of the resulting clusters. We
iteratively computed tICA with varying lag times and clustered the resulting tICs using a varying
number of components and k-means clusters. We characterized the structural properties of clusters
by computing their distributions of the fraction of native intermolecular contacts (Q), NtaiL Se,
Radius of gyration (Rg), intermolecular contact probabilities and helical assignments from the
DSSP algorithm. We found that using a lag time of 6 ns for tICA, clustering conformations using
the ten time independent components (tICs) with the largest eigenvalues and implementing the k-
means algorithm with seven cluster centers produced the most interpretable and conformationally
distinct clusters. However, upon estimating MSMs from these clusters over a range of lag times,

we found that for lag times up to 24 ns, these models produced resolved, but non-converged
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implied timescales (data not shown). These MSMs also failed to reproduce transition probabilities

for non-native bound states at longer timescales.

To produce MSMs with both converged time scales and robust CK-tests, we employed hidden
Markov state models (HMSMs). HMSMs are an effective tool for building robust and reproducible
MSMs for high dimensional systems where finding a set of Markov states that pass validation tests
is challenging.” Projected HMSMs are estimated from transitional MSMs; the slowest relaxing
timescales of the original MSM are used to coarse grain its states to a smaller number of metastable
sets. The number of metastable sets used to build an HMSM should be equal to or less then the
number of resolved timescales in the conventional MSM they’re estimated from. We built our
HMSM by estimating a series of HMSMs from MSMs with varying numbers of states and lag
times. We increased the number of states in the initial MSMs by employing the k-means clustering
algorithm with larger numbers of centroids to cluster the same ten tICs we previously found to be
optimal to prevent the HMSM coarse graining from reducing our model to too few states. We
found that using a lag time of 6 ns, twelve initial clusters and coarsening to seven states produced
robust HMSMs (in terms of timescales and CK-tests) with the fewest number of states

(Supplementary Figure 2).

Unconstrained VAMPnet and neural network architectures. The feature set used to train the
deep MSM was comprised of the intermolecular distances between all residue pairs of Ntar and
XD, Sa order parameters and binary DSSP assignments. We employed a multi-input deep learning
approach where each feature type was processed separately before being aggregated with the other
features to make state predictions. This approach allows for the input feature set to be optimized
internally and each feature type to be processed using neural network layers that best suit its
inherent data structure. This approach enabled us to treat the matrix of intermolecular distances
(or "contact map") calculated in each frame of the simulation as an image and utilize convolutional
neural network layers to leverage the local spatial coherence in this representation. We utilized
separate sets of fully connected neural network layers to process the Sa. and binary DSSP feature
sets. Each instantaneous set of intermolecular residue distances were arranged into a 49 by 21
matrix where each index represents the intermolecular distance between each residue in XD (49

residues) and Nrar (21 residues). Each set of Sa and binary DSSP values were placed into length
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15 and 21 vectors, respectively. In aggregate, the VAMPnet dataset is comprised of 3 distinct
feature sets, each processed separately by distinct sets of neural network layers (or lobes), before
being aggregated and transformed through a final lobe, containing fully connected neural network
layers (Figure 2). The output of the final lobe is capped with a SoftMax activation function to
produce a normalized distribution that describes the probability of a frame being assigned to each

Markov state.

We determined the architecture of our neural network by varying the number of layers and their
widths in each lobe of the neural network. To reduce computational overhead, we constrained our
optimization of the neural network architecture by requiring that each lobe contain the same
number of layers and that the lobes used to transform the Nrtam Sa and DSSP helical order
parameters be identical apart from their input layers. In addition, the possible configurations of the
convolutional layers used to transform intermolecular distance matrices were constrained based
on the shape the input (49 XD residues by 21 Nram residues). We determined our architecture by
first performing a grid search over a range of configurations and then performed a Bayesian
optimization around the optimal parameters identified in the initial grid search. For the Bayesian

optimization, we used the tree-structured Parzen estimator algorithm!23: 124

implemented in the
optuna'® software. A detailed diagram of the final neural network architecture determined from
the Bayesian optimization procedure is displayed in Supplementary Figure 10. After determining
the neural network architecture, we employed this procedure to determine the optimal batch size,
optimizer learning rate and epsilon parameter. We found that using learning rate of 5e-6, a batch

size of 16384 and an epsilon parameter of 1e-7 produced optimal results.

Additional hyperparameters of VAMPnets include the lag time of the model and the number of
output states. To determine these hyperparameters, we conducted optimization runs incrementally
increasing the values of each hyperparameter while holding the other hyperparameters constant.
We judged the success of these trials based on the maximization of the VAMP score relative to its
highest possible value and the interpretability of the learned state assignments in terms of the
fraction of native contacts (Q), Sa, radius of gyration and RMSD from the native complex. We
found that using 12 output states and a lag time of 2 ns to train the unconstrained VAMPnet best

satisfied these conditions and consistently produced similar sets of states. The final architecture of
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multi-input neural network used in our VAMPnet implementation is shown in Supplementary

Figure 10.

We trained our initial unconstrained VAMPnet using the VAMP2 score. The VAMP2 score
evaluates the so-called kinetic variance between each neural network transformed sample, y(x;),
of the dataset and it's time-lagged analogue, y,(x;..;), where y, and y, are neural network
transformations that convert molecular features into probabilistic Markov state assignments and
x; and x.,, are instantaneous sets of molecular features at times t and t+t.3* Optimizing the
VAMP?2 score of transformations y,(x;) and y,(x:;.) is analogous to solving the problem of
finding orthonormal transformations of x, and x;,, with maximal time-correlations and

corresponds to finding the best linear approximation®* to the following,®?

E[x:(xe47)] = KT E[xo(x:)] (7

where K7 is the finitely estimated Koopman matrix that transforms a potentially non-linear
dynamical system or dataset into a latent space which, on average, evolves linearly in time. The

VAMP?2 score is defined as the Frobenius norm or sum of the squared singular values (o;) of the

1
half-weighted Koopman matrix, Cyy 2Cy;Crp 2.

1 1
VAMP2 = ||Cop 2CorCer 2|1} + 1= 07 ®)

Where the covariance matrices, Cyg, Cy, and C;, are defined by mean free neural network

transformed instantaneous and time lagged data as follows.

Coo = Eelxo(xe)xo(x)"],
Cor = Eelxo(x)xr (xe10)™1, ©)
Cor = Eppr e (ear) Xe ()]

We note that in general, neural network transformations, y, and y, can be distinct neural network

architectures with independently trained weights, however, in our implementation y, = ..
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Training the constrained VAMPnet to construct a deep MSM. After determining the optimal
architecture and hyperparameters for the unconstrained VAMPnet, we proceeded to build a
constrained VAMPnet using the same architecture with the addition of two constraint layers. In
the constrained VAMPnet®, the constraint layers (z and S) are implemented to ensure the learned
transition matrix is both stochastic (all positive elements) and reversible (obeys detailed balance).
Constraint u is a vector of length equal to the number of states used to weight data towards
equilibrium and constraint S is matrix of shape Nsttes by Nstates used to estimate a reversible
transition matrix. The constrained VAMPnet was trained with a modified version of VAMP-E

score that incorporates the constraints # and S.

VAMP — E = tr[STCySC,,, — 257 Coy ], (10)

where

Coo = Elx(xp)x(x)"],
Coy = Elx(x)y(xes)"],
ny = [E[V(xt+r))/(xt+r)T];

y(x) = x(x)x(x)

Here, gamma is a weighted state representation used to compensate for non-equilibrium state
assignment probabilities. We trained our constrained VAMPnet 30 separate times starting from

the same initial unconstrained VAMPnet.

In the constrained VAMPnet procedure, both the weights of the unconstrained VAMPnet and
constraint layers are optimized, thus, retraining only the constrained VAMPnet also modifies the
weights of the initial, unconstrained VAMPnet. We note that using the same unconstrained
VAMPnet in each optimization of the constrained VAMPnet produces small error estimates that
may be underestimated compared error estimates obtained from retraining the unconstrained
VAMPnet multiple times. Given the large number of parameters in our neural network architecture
(~4e6 parameters), we used this approach to circumvent considerable computational costs and

consider these error estimates as lower bounds of the trial errors. As outlined in its original
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implementation®’, it is recommended to include an initial step in which only the constraints of the
constrained VAMPnet are trained using batches containing all training data. When training the
unconstrained VAMPnet and the constraints together (a separate step), we attempted to stay
consistent with this strategy and used the largest batch size possible given our computational
resources which was 56,000 time-lagged pairs of data. To estimate the implied timescales and CK-
tests, we retrained only the constraints of the constrained VAMPnet at integer multiples of the
initial lag time (6 ns) which was done for all 30 optimization runs. We chose to use a lag time of
6 ns for the constrained VAMPnet based on the results of these validation measures which we
found to produce the most reproducible and robust models in a series of initial estimations of the

constrained VAMPnet at varying lag times (Supplementary Figure 11).

Neural network training. In both the unconstrained and constrained VAMPnets, we used a 9:1
train-validation split, randomly shuffled time lagged pairs of data and implemented early stopping
to prevent overfitting where we saved network weights each time the VAMP score reach a new

maximum. We implemented all neural networks in using the deep learning library PyTorch!?®.

Estimation of trajectory observables and error analysis. For the HMSM, all MSM observables

127 software packages via

and error estimates were computed using the pyemma’® and deeptime
Bayesian hidden markov models which use a gibbs sampling scheme to resample the transition
matrix. Here, we estimated errors by resampling the HMSM transition matrix using 100 trials. All
HMSM trajectory observables are the bootstrap mean and its associated 95% confidence intervals
computed from the results of the resampling procedure. For the deep MSM, we trained the final
model using 30 independent trials and computed both MSM and trajectory observables from the
trained models. All statistical analysis of the trajectory observables of the deep MSM states and
MSM observables are computed by bootstrapping / aggregating the results of these 30 trials, e.g.
average values, 95% confidence intervals of averages, standard deviations, weighted historgrams
and discrete probability distributions. Trajectory observables from the deep MSM states were

computed from the probabilistic state assignments produced from each optimization run by the

following,
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f 0 (t))((t)stateidt (12)

(Ostate;) =
| x®state,dt

where O(t) represents an arbitrary trajectory observable computed for every frame (t) of the
trajectory and x(€)s¢qte; 15 @ probabalistic state assignment for every frame (t) of the trajectory.
Using this definition, we can also compute the standard deviation of trajectory observables by the

following equation.

SD@Smtei = \[((Ostatei)2> - (astatei>2 (13)

We combine uncertaines computed from separate trials and contact popualtions for different

residue pairs by combining variances,

$pZ = Yin;(SDF — (X; — Xc)?)
¢ nimy

(14)
= _Zini)?i
T Nimy

Where SDZ is the combined variance, n; are the number of trials used to compute the mean and
standard deviation of each statistic to be combined, X; are the means of each statistic to be

combined and X, is the combined mean.

Fraction of Native Intermolecular Contacts. The fraction of native intermolecular contacts
(0), as defined in Robustelli et al>® 1%, was used to characterize the formation of the Ntai: XD
complex. The fraction of native contacts at each simulation time step, (t), was calculated by the

following,

N 1
i=1 1+ elO(di(t)—xo)
N

Q) = (15)
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where d; represents the nearest neighborh heavy atom distance between each pair of native
contacts, N is the total number of native contact pairs and x, is a cutoff distance of 5A. Native
intermolecular contacts were previosuly defined as those contacts which remained stable
(populated > 80%) in an MD simulation of the native Ntar.: XD complex run at 400 K, to match

the temperature of the equilibrium folding-upon-binding simulation analyzed here.>

Color gradients of structural snapshots. We computed the color gradients of the structural
snapshots of NtaiL: XD using a modified version of the fraction of native intermolecular contacts
based only on the crystal structure of the native complex (PDB 1T60).%¢ For establishing color
gradients, we defined native contacts as any intermolecular residue pair between Ntai. and XD
with a minimum heavy atom distances less than 5 A in PDB 1T60. Correspondingly, we define
non-native contacts for each residue as all other possible intermolecular contacts that have not
been identified as native. In each simulation frame two residues are considered to be in contact if
their nearest heavy atom distance is less than 5 A. We compute the average population of the native
and non-native contacts of every residue in each Markov state. For coloring structures, we
normalize native and non-native fractions by dividing each by the largest fraction observed in any
Markov state (~ 0.99 and ~0.14 for native and non-native fractions, respectivly) which assigns a
value between 0 and 1 for each residue in each Markov state. We then set a color gradient ranging
from 0 to 1 in the molecular visualization software pymol'?®and set the beta value of each residue
(alpha carbon) to the normalized fraction of native and non-native contacts. The normalization step
allows the scale of the color gradients to be the same across all structures, thus allowing for

quantitative comparision of the contact profiles of each Markov state via their structural snapshots.

Data & Code Availability

All code used for trajectory analyses and the construction and validation of the hidden Markov
statet model and deep Markov state model are freely available from GitHub

(https://github.com/paulrobustelli/Sisk. NTAIL DeepMSM 2023). The 200 ps Ntaw:XD MD

trajectory analyzed here is available for non-commericial use by request from D.E. Shaw Research

(Trajectories@DEShawResearch.com).
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Figure 1. Transition network representation of a conventional hidden Markov state model of
Nraw:XD folding-upon-binding derived from a long-time scale equilibrium molecular
dynamics simulation. Network representation of the transition matrix obtained from a hidden
Markov state model (HMSM) derived from time-lagged independent component analysis (tICA)
of a long-time scale MD simulation. Representative structures of each Markov state are displayed
in circles along with their stationary probabilities (p). The thickness of circles is proportional to
the stationary probability of each state. In representative structures of each state Nray, is colored
with a gray-to-red gradient from the N-terminus to the C-terminus and XD is colored gray.
Transition probabilities between states are indicated with directional arrows, and the thickness of
the arrows is proportional the magnitude of the transition probability between states. Mean first
passage times between states are reported in nanoseconds. All errors indicate the mean of the upper
and lower deviations of the 95% confidence interval calculated from bootstrapping using 100
samples.
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Figure 2. Multi-input neural network architecture used for building a deep Markov state
model of Ntar: XD folding-upon-binding. (A) Structural representation of the native Ntam: XD
complex . XD is colored gray and Nrar is colored in a gray-to-blue gradient proportional to each
residues fraction of native contacts in deep MSM state 1. The set of deep MSM input features
(intermolecular distances between Ntam and XD, Ntai Sa order parameters, binary DSSP helical
assignments) are shown for the structure in A (right). (B) Schematic representation of the isolated
neural network layers used to process each feature type based on its inherent dimensionality. Sa
(red) and binary DSSP (blue) features are treated as 1D vectors and are processed with dense neural
network layers. The intermolecular distance matrix between Ntai and XD is processed with
convolutional neural network layers to take advantage of the spatial coherence of data points in its
matrix form. (C) A qualitative schematic showing the aggregation and further processing of output
features from the 3 isolated sets of layers. Upon aggregation, the processed output features from
each isolated layer are combined by a final set of dense layers to reduce the dimensionality of the
output to a normalized probability distribution over Markov states. The output probability
distributions are used to compute a VAMP score for batches of time-lagged data pairs.
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Figure 3. VAMPnet latent space and state assignments used to construct a deep Markov state
model of Ntam:XD folding-upon-binding. We characterize the latent space of our Nrtaw:XD
VAMPnet by projecting MD observables onto the left singular functions (or “Koopman modes”)
K1, K2, and K3 of the half-weighted Koopman matrix estimated from an initial unconstrained
VAMPnet. Truncating the singular value decomposition to 3 singular vectors gives a 3-
dimensional latent space or set of singular functions where points are embedded in a kinetically
meaningful way. We characterize the latent space representation of each MD simulation frame by
coloring each data point by (A) the apparent free energy obtained by taking the negative natural
log of a gaussian kernel density estimate over the 3-dimensional latent space-projected data, (B)
its crisp Markov state assignment (C) the fraction of native intermolecular contacts (Q) (D) the
sum of the Ntarn a-helical folding order parameter Sa for each 7 residue segment of Ntam and (E)
the radius of gyration (Rg) of all Cat carbons of Ntar. and XD.
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Figure 4. Transition network representation of a deep Markov state model of Ntan:XD
folding-upon-binding derived from a long-time scale molecular dynamics simulation using a
multi-input neural network architecture. Network representation of the transition matrix of a
deep Markov state model (MSM) obtained from a multi-input neural network architecture.
Representative structures of each Markov state are displayed in circles along with their stationary
probabilities (p). The thickness of circles is proportional to the stationary probability of each state.
In the representative structures of each state, Ntap is colored by a gray-to-blue gradient from the
N-terminus to the C-terminus and XD is colored gray. The transition probability between states is
indicated with directional arrows, and the thickness of the arrows is proportional the magnitude of
the transition probability between states. Mean first passage times between states are reported in
nanoseconds. The values and errors reported here are the bootstrap means and their 95%
confidence intervals, obtained from 30 independent optimization runs of the constrained
VAMPnet.
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Figure 5. A deep Markov state model of NtaiL:XD folding-upon-binding pathways resolves
two distinct encounter complex states and a Kinetic trap state. State averaged intermolecular
contact populations and Nray helical propensities for deep MSM states 5, 6 and 7. Intermolecular
contacts are defined as occurring in all frames where the minimum distance between heavy atoms
of two residues is less than 5.0 A. Native intermolecular contacts are colored blue and non-native
contacts are colored red. Native contacts are defined as those present in the crystal structure (PDB
1T60) using the same criteria. Helical propensities (P(H)) were calculated using DSSP. Structural
representations contain an overlay of multiple representative Ntap. structures with one surface
representation of XD. The residues of Nray and XD are colored by a gray-to-red gradient that
represents the fraction of frames where non-native intermolecular contacts are formed by each
residue in each state.
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Figure 6. Kinetic barriers between native-like NtaiL:XD bound states originate from non-
native intermolecular and intramolecular contacts. (A) State averaged intermolecular Ny : XD
contact populations and Nray helical propensities for native-like Nrtaw:XD bound states.
Intermolecular contacts are defined as occurring in all frames where the minimum distance
between heavy atoms of two residues is less than 5.0 A. Native intermolecular contact pairs are
colored blue and non-native intermolecular contact pairs are colored red. Native contacts are
defined as those present in the crystal structure (PDB 1T60) using the same criteria. (B) Structural
representations of native-like NtaiL:XD bound states. Each state representation is an overlay of
multiple representative Nray structures with one surface representation of XD. The residues of
Nran, and XD are colored by a gray-to-red gradient that represents the fraction of frames where
non-native intermolecular contacts are formed by each residue in each state. Selected sidechains
of Nrap, (NT) and XD are shown as sticks to illustrate important non-native contacts in different
states.
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