

1 The potential of *Pseudomonas fluorescens* SBW25 to produce viscosin enhances wheat
2 root colonization and shapes root-associated microbial communities in a plant genotype
3 dependent manner in soil systems

4

5 Ying Guan^{1,4}, Frederik Bak^{1,2}, Rosanna Catherine Hennessy¹, Courtney Horn Herms¹,
6 Christine Lorenzen Elberg³, Dorte Bodin Dresbøll¹, Anne Winding³, Rumakanta
7 Sapkota³, Mette Haubjerg Nicolaisen^{1*}

8

9 ¹ Department of Plant and Environmental Science, University of Copenhagen,
10 Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark;

11 ² Bioresources Unit, AIT Austrian Institute of Technology, Konrad-Lorenz-Straße 24,
12 3430, Tulln, Austria;

13 ³ Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000
14 Roskilde, Denmark

15 ⁴College of Resources and Environmental Science, Nanjing Agricultural University,
16 Nanjing, China.

17

18

19 * Corresponding author:

20 Mette Haubjerg Nicolaisen

21 Tel: (+45) 35 33 26 49, Email: meni@plen.ku.dk

22 University of Copenhagen

23 Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark

24 **Abstract**

25 Microorganisms interact with plant roots through colonization of the root surface i.e. the
26 rhizoplane or the surrounding soil i.e. the rhizosphere. Beneficial rhizosphere bacteria
27 such as *Pseudomonas* spp. can promote plant growth and protect against pathogens by
28 producing a range of bioactive compounds, including specialized metabolites like cyclic
29 lipopeptides (CLPs) known for their biosurfactant and antimicrobial activities. However,
30 the role of CLPs in natural soil systems during bacteria-plant interactions is
31 underexplored. Here, *Pseudomonas fluorescens* SBW25, producing the CLP viscosin,
32 was used to study the impact of viscosin on bacterial root colonization and microbiome
33 assembly in two cultivars of winter wheat (Heerup and Sheriff). We inoculated
34 germinated wheat seeds with SBW25 wild-type or a viscosin-deficient mutant, and grew
35 the plants in agricultural soil. After two weeks, enhanced root colonization of SBW25
36 wild-type compared to the viscosin-deficient mutant was observed, while no differences
37 were observed between wheat cultivars. In contrast, the impact on root-associated
38 microbial community structure was plant genotype specific, and SBW25 wild-type
39 specifically reduced the relative abundance of an unclassified oomycete and
40 *Phytophthora* in Sheriff and Heerup, respectively. This study provides new insights into
41 the natural role of viscosin and specifically highlights the importance of viscosin in wheat
42 root colonization under natural soil conditions and in shaping the root microbial
43 communities associated with different wheat cultivars. Further, it pinpoints the
44 significance of microbial microdiversity, plant genotype and microbe-microbe
45 interactions when studying colonization of plant roots.

46

47 **Keywords:** rhizoplane, secondary metabolites, cyclic lipopeptides, plant microbiome,
48 community assembly, protists, plant-microbe interactions, microbe-microbe interactions.

49 **INTRODUCTION**

50 Microorganisms associated with plant roots can influence plant health positively through
51 multiple mechanisms e.g. nutrient acquisition, pathogen control and induction of plant
52 defense responses (1). While promising results on exploiting plant growth promoting
53 bacteria to replace or reduce the use of fertilizers and pesticides in agriculture have
54 been obtained (2-4), the translational power from laboratory studies to field
55 performance is currently low (5). This is partly due to the high complexity of natural
56 systems and partly due to our inadequate understanding of processes e.g. plant-
57 microbe and microbe-microbe interactions and chemical communication, involved in the
58 bacterial colonization of plant roots. Furthermore, root colonization has primarily been
59 explored in sterile root systems that lack indigenous soil microorganisms (6-8). This
60 ignores the three-way interaction among the inoculant, the root and the indigenous soil
61 community, and competition for colonization space operating under natural soil
62 conditions (9-11). To enhance the success rate of translation from laboratory to field,
63 disentangling genes and processes involved in root colonization in soil systems is of
64 pivotal importance.

65 Plants and microbes have co-evolved in complex settings for millions of years giving
66 rise to intimate plant-microbe and microbe-microbe interactions, influenced by both soil
67 type, plant age and plant genotype (12-14). Some of these specific interactions involve
68 specialized metabolites (also known as specialized metabolites or natural products)
69 used for both chemical warfare as well as mediators of specific interactions (15, 16).
70 Cyclic lipopeptides (CLPs) produced by *Pseudomonas* sp. are specialized metabolites
71 reported to be involved in root colonization by influencing traits like motility and biofilm

72 formation (17-19), and may thereby also play a role in shaping root-associated microbial
73 communities due to competition for space. Specifically, the CLP viscosin enhances
74 spreading of the producing strain on sterile roots and is essential for motility through
75 swarming (20). In a previous study, we found that viscosin-producing *Pseudomonas*
76 strains are enriched in the rhizoplane of winter wheat in a plant-cultivar dependent
77 manner (Herms et al., unpublished). This suggests a role of viscosin in plant root
78 colonization and plant-microbe interactions dependent on plant genotype. Viscosin has
79 also been identified as a key molecule in microbe-microbe interactions, as it has
80 demonstrated antimicrobial activity against protozoans and protects *P. fluorescens*
81 SBW25 from protozoan predation by *Naegleria americana* in lab-based assays, in
82 addition to superior persistence in soil compared to viscosin-deficient mutants (21).
83 Moreover, viscosin has anti-oomycete properties against the economically important
84 plant pathogens *Phytophthora infestans* (22), and *Pythium* (20), both classified as
85 protists. Hence, viscosin seems to have implications for both microbiome assembly and
86 composition which might have consequential effects on plant growth and health. Hence,
87 understanding the impact of viscosin-producing strains on the root microbial
88 communities of wheat grown in agricultural soil could provide a conceptual model to
89 reach higher translational power from laboratory to field.

90 To unravel these intimate interactions at the root-soil interface and determine the
91 importance of microbial specialized metabolites in early root colonization and
92 microbiome assembly under complex conditions, we used *P. fluorescens* SBW25 as a
93 viscosin-producing model strain in combination with two winter wheat cultivars, Sheriff
94 and Heerup (Heerup naturally enriching for viscosin producing pseudomonads

95 compared to Sheriff; Herms et al, unpublished). We inoculated wildtype *P. fluorescens*
96 SBW25 (SBW25 WT), as well as its corresponding mutant deficient in viscosin
97 production (Δ viscA) on wheat seedlings and evaluated their colonization potential and
98 impact on bacterial and protist community assembly in the rhizoplane. We propose two
99 hypotheses: 1) the ability to produce viscosin increases root colonization in a plant-
100 genotype dependent manner and 2) the viscosin-producing strain impacts the protist
101 community by lowering the relative abundance of potential plant pathogenic oomycetes
102 because of the antiprotoist properties of viscosin. In addition, we determine whether the
103 ability to produce viscosin has a plant-genotype dependent impact on the microbial
104 community assembly. Finally, we determined plant phenotypes, i.e. biomass, height and
105 root morphology, as responses to the microbial inoculation.

106

107

108 **MATERIALS AND METHODS**

109 **Strain construction and culture conditions**

110 Bacterial strains and plasmids used in this study are listed in Table 1. *P. fluorescens*
111 SBW25 wild type (SBW25 WT) (23) and the viscosin-deficient mutant *P. fluorescens*
112 SBW25 (Δ viscA) (22) were routinely grown in Luria Broth at 28°C, shaking at 180 rpm
113 (1% tryptone, 0.5% yeast extract and 1% NaCl). A supplement of antibiotics was used
114 at final concentrations of 50 μ g ml⁻¹ kanamycin, 100 μ g ml⁻¹ ampicillin or 10 μ g ml⁻¹
115 gentamicin (Table 1). Both strains were chromosomally tagged with mCherry by
116 introducing the mCherry delivery plasmid pME9407 and the helper plasmid pUX-BF13
117 by electroporation and selection by 10 μ g ml⁻¹ gentamicin as previously described (19).

118

119 **Soil collection and properties**

120 Soil was collected from the experimental farm at the University of Copenhagen in
121 Taastrup, Denmark (55° 40'N, 12° 17'E) (24). The soil is a sandy loam (170 g clay kg⁻¹,
122 174 g silt kg⁻¹, 362 g fine sand kg⁻¹, 255 g coarse sand kg⁻¹, and 17 g soil organic
123 matter kg⁻¹) (25). Prior to experiments, the soil was air-dried and sieved through a 2 mm
124 mesh.

125

126 **Plant experiment setup**

127 Two cultivars of winter wheat, Heerup and Sheriff (Sejet Plant Breeding, Horsens,
128 Denmark), were grown in PVC pots (19 cm high and 3.5 cm in diameter). Soil was
129 thoroughly mixed in the ratio 3:2 with 0.4 - 0.9 mm particle size sand (DANSAND,
130 Brædstrup, Denmark) in a plastic bag. The pots were sealed in the bottom with 50 μ m

131 polyamide mesh (Sintab, Oxie, Sweden) before transferring the soil-sand mixture into
132 the pots.

133 Seeds were soaked in sterile Milli-Q water for 1 h and then transferred to Petri dishes
134 with 2 layers of sterile filter paper, moistened with 5 ml of sterile Milli-Q water. Seeds
135 were kept in the dark at room temperature for 3 days for optimal germination. Overnight
136 *P. fluorescens* cultures were washed twice with sterile 0.9% NaCl, and OD_{600nm} was
137 adjusted to 1.0 (equivalent to approximately 5×10^8 CFU ml⁻¹) for seed coating.
138 Germinating seeds with primary roots of 3-4 cm in length were selected and soaked in a
139 Petri dish with bacterial or control solution for 1 hour and immediately transferred to the
140 PVC pots, one seed per pot. The germinated seeds of each wheat species were
141 inoculated as follows: (1) *P. fluorescens* SBW25 mCherry (SBW25 WT); (2) *P.*
142 *fluorescens* SBW25 Δ viscA mCherry (Δ viscA) and (3) control treatment with 0.9% NaCl.
143 Eight replicates were set up for each treatment: 5 for DNA extraction and 3 for CFU
144 counting.

145 The water content of the soil-sand mixture was initially adjusted to 17% (w/w). Each pot
146 was supplemented with 0.83 ml of plant nutrient solution (Drivhusgødning, Park®,
147 Schmees, Twistringen, Germany) (NPK 3-1-4), containing 2.04% nitrate-nitrogen (N),
148 0.3% ammonium-N, 0.46% amide-N, 0.69% phosphorus (P), 4.38% potassium (K),
149 0.08% sulfur (S), 0.06% magnesium (Mg), 0.033% iron (Fe), 0.013% manganese (Mn),
150 0.002% copper (Cu), 0.002% zinc (Zn), 0.0006% molybdenum (Mo), and 0.004% boron
151 (B). The plants were grown in a growth chamber under the following conditions:
152 temperature 19/15°C (day/night), relative air humidity 60%/60% (day/night) and
153 photosynthetically active radiation 600/0 $\mu\text{mol m}^{-2} \text{s}^{-1}$ (day/night) with a photoperiod of

154 16h/8h. The pots were watered with deionized water every second day by weighing and
155 watering up to moisture content of 15% throughout the experimental period.
156 Sampling was performed after 14 days of growth. Root sample collection and
157 compartment processing were performed as described by Zervas *et al.* (26) to obtain
158 rhizosphere (soil adhering to the root; exclusively used for confirmation of proper
159 sampling of the compartments as tested by 16S rRNA amplicon sequencing (see below))
160 and rhizoplane (the root surface) associated microbes, respectively. Samples for DNA
161 extraction were immediately flash frozen in liquid nitrogen and kept on dry ice until
162 storing at -80°C. Samples were freeze-dried (CoolSafe 100-9 Pro freeze dryer,
163 LaboGene, Lyngé, Denmark). All freeze-dried samples were stored at -20°C until DNA
164 extraction. Root and shoot length were recorded at sampling, and roots were scanned
165 to determine total root length and root diameter. Following sampling, roots and shoots
166 were dried at 60°C for 3 days before determining the dry weight.

167

168 **DNA extraction**

169 Genomic DNA was extracted from 0.5 g sample using a FastPrep-24™ 5G beadbeating
170 system (MP Biomedicals, Irvine, CA, USA) at 6.0 m/s for 40 s and the FastDNA™ SPIN
171 Kit for soil (MP Biomedicals) following the manufacturer's instructions. The DNA extract
172 was stored at -20°C until further processing for qPCR analysis and rRNA gene
173 amplicon sequencing.

174

175 **Quantitative PCR analysis of root colonization ability**

176 Quantification of SBW25 WT and $\Delta viscA$ was performed by qPCR targeting the
177 mCherry gene using the AriaMx Real-Time PCR (Agilent Technologies, Santa Clara,
178 CA, USA). The primers used are presented in Table 1. Twenty-microliter reactions were
179 prepared with 1×Brilliant III Ultra-Fast SYBR® Green Low ROX qPCR Master Mix
180 (Agilent Technologies, Santa Clara, CA, USA), 1 $\mu\text{g } \mu\text{l}^{-1}$ bovine serum albumin (New
181 England Biolabs® Inc., Ipswich, MA, USA), 0.2 μM of each primer and 2 μl of template
182 DNA. Thermal cycling conditions were as follows: 95°C for 3 min, followed by 40 cycles
183 of 95°C for 20 s and 56°C for 30 s. A dissociation curve was generated at the end of the
184 qPCR program by including a cycle of 95°C for 1 min, 55°C for 30 s, and finally reaching
185 95°C by increments of 0.5°C s^{-1} , each increment followed by a fluorescence acquisition
186 step. Absolute abundance was calculated based on a standard curve for the mCherry
187 target gene (27). Standard curves used for quantification were based on a ten-fold serial
188 dilution of DNA from mCherry-tagged *P. fluorescens* SBW25. The standard curve was
189 run with three technical replicates per dilution, and had a dynamic range from 10^2 to 10^8
190 copies/ μl . The efficiency ranged from 99.0 to 99.6%, and R^2 values were > 0.99 for all
191 standard curves.

192

193 **CFU analysis of root colonization ability**

194 Colony forming units (CFUs) were determined for rhizoplane samples. Ten-fold dilutions
195 were inoculated on Gould's S1 (28) agar plates supplemented with 10 $\mu\text{g } \text{ml}^{-1}$
196 gentamicin to select for tagged SBW25 WT and $\Delta viscA$ cells. Plates were incubated at
197 28°C in the dark for 48 h before recording CFUs.

198

199 **Root imaging and analysis**

200 Prior to root imaging, all roots were thoroughly rinsed to remove soil and sand particles,
201 and stored in distilled water at 4°C. Upon imaging, roots were untangled and arranged
202 in a shallow acrylic dish with distilled water and imaged using an Epson Perfection V700
203 Photo scanner (Epson, Suwa, Japan) in 8-bit greyscale mode with 400 dpi resolution,
204 subsequently converted to 8-bit JPG for software compatibility. Root length in diameter
205 size classes and average root diameter were determined using the skeletonization
206 method in WinRhizo v. 2016a (Regent Instruments, Quebec, Canada). Roots were
207 divided into 10 size classes between 0 mm diameter and 4.5 mm diameter in 0.5 mm
208 increments and the total root length in each size class was calculated. Total root length,
209 total root surface area, average root diameter and total root volume were also
210 calculated. Size of class fractions were calculated by dividing the root length in a size
211 class by the total root length for each sample pot. Fine roots were determined as those
212 with diameter < 0.5 mm.

213 Colonization by SBW25 was verified by confocal microscopy targeting the mCherry
214 fluorescent protein. Inoculated seeds were prepared as described above, and then
215 placed in sterile CYG Germination Pouches (Mega International, Roseville, United
216 States). The bags were covered in foil to protect the roots from light. Plants were initially
217 watered with 18 mL sterile water. Three plants per treatment were sat up i.e. for SBW25
218 and Δ viscA. Plants were watered every day with up to 9 mL sterile water to maintain
219 moisture in the bags. Four mL fertilizer was added to each pouch after 1 week. For
220 visualization, seedlings were harvested after one and two weeks, and rinsed in sterile
221 water. For each treatment, three plants were imaged. The roots were sectioned, and for

222 each replicate, a 3-4 cm section was imaged from the top of the root and near the root
223 tip, respectively. Images were obtained by a Leica Stellaris 8 confocal laser scanning
224 microscope equipped with a supercontinuum white light laser and a HC PL APO CS2
225 40x/1.25 GLYC objective. Excitation was at 587 nm at a laser power of 2.0%, and
226 emission was collected between 597 nm – 839 nm on a HvD detector with a scan speed
227 of 400 Hz and Line Averages of 6. The gain was between 150-250% to capture
228 mCherry tagged strains. A Trans PMT detector was used to image bright field.

229

230

16S rRNA and 18S rRNA gene amplicon sequencing

231 The V5–V7 region of the bacterial 16S rRNA gene was amplified with primers 799F (29)
232 and 1193R (30) (Table 1). This primer pair was found to amplify relatively low
233 proportions of plant mitochondria and chloroplast DNA compared to bacterial DNA (31).
234 The purity and concentration of DNA were determined using a NanoDrop ND-1000
235 spectrophotometer (Thermo Fisher Scientific, Carlsbad, CA, USA) and a Qubit 2.0
236 fluorometer (Thermo Fisher Scientific). The ZymoBIOMICS Microbial Community DNA
237 Standard (Zymo Research, Irvine, CA, USA), pure culture SBW25 DNA, and two water
238 controls were included. A two-step dual indexing strategy for Illumina MiSeq (Illumina,
239 San Diego, CA, USA) sequencing was used. First, PCR amplicons were generated in a
240 25- μ l setup using 0.8 U Platinum II Taq (Thermo Fisher Scientific), 1x Platinum II PCR
241 Buffer, 1 mM dNTP mix, 0.2 μ M primer 799F, 0.2 μ M primer 1193R, and 5 μ l DNA
242 template. The PCR thermocycler program included an initial denaturation temperature
243 of 95°C for 2 min, then 33 cycles of 95°C for 15 s, 55°C for 15 s, and 72°C for 15 s and
244 a final elongation step of 72°C for 5 min. The PCR amplification was confirmed by gel
245

246 electrophoresis on 1.5% agarose gels. PCR products were purified using AMPure XP
247 beads (Beckman Coulter Inc. Brea, CA, USA). The following library construction and
248 Illumina MiSeq sequencing (2 × 300 bp) were performed by Eurofins Genomics
249 (Ebersberg, Germany).

250 The 1380F and 1510R primer set (Table 1) (32) targeting the V9 region of the 18S
251 rRNA gene was used to evaluate the protist community composition. A two-step dual-
252 indexing strategy for Illumina NextSeq sequencing using a 2-step PCR was used. First,
253 PCR amplicons were generated in 25 μ l-reactions with 1x PCR BIO Ultra Mix
254 (PCRBIO SYSTEMS), 0.2 μ M of each primer, 0.4 μ g μ l⁻¹ bovine serum albumin (New
255 England Biolabs[®] Inc., Ipswich, MA, USA) and 5 μ l DNA template. The PCR
256 thermocycler program included an initial denaturation temperature of 95°C for 2 min,
257 then 33 cycles of 95°C for 15s, 55°C for 15s, and 72°C for 40 s and finally a final
258 elongation step of 72°C for 4 min. Each reaction in the first PCR was done in duplicates,
259 which were pooled, and used for dual indexing in the second PCR. The second PCR
260 was run with 5 μ l of amplicons produced in the first PCR, primers with Illumina adaptors
261 and unique index combinations (i7 and i5) using the reaction conditions described for
262 the first PCR. The second PCR was run using 98°C for 1 min, then 13 cycles of 98°C for
263 10 s, 55°C for 20 s and 72°C for 40 s and a final elongation of 72°C for 4 min. The PCR
264 amplification was confirmed using 1.5% agarose gels. Subsequently, the amplicon
265 product was cleaned using HighPrepTM magnetic beads (MagBio Genomics Inc.
266 Gaithersburg, MD, USA), according to the manufacturer's instructions. Finally, DNA
267 concentrations were measured using Qubit 4.0 fluorometer using the High-Sensitivity

268 DNA assay (Thermo-Fischer Scientific). Samples were then equimolarly pooled and
269 sequenced on an Illumina Nextseq sequencer.

270

271 **Sequence processing**

272 Raw amplicon reads were processed using the DADA2 pipeline v. 1.14.1 (33). In brief,
273 reads were quality checked and primers were removed using trimLeft in the
274 filterAndTrim function. According to the sequence quality, the 16S rRNA gene reads
275 were filtered using default parameters except for trimRight and minLen (the reads were
276 filtered by truncating the last 20 bp of the forward reads and the last 128 bp of reverse
277 reads using trimRight and minLen = 150 to avoid poor quality and ambiguous
278 sequences). Chimeras were removed after merging denoised pair-end sequences.
279 Each unique amplicon sequence variant (ASV) was assigned to taxa according to
280 SILVA database v. 138.1 (34) and PR² database v. 4.14.0 (35) for the 16S rRNA gene
281 and the 18S rRNA gene, respectively. For bacteria, non-bacterial ASVs including
282 chloroplasts and mitochondrial reads were removed. Similarly, for protist, we discarded
283 plant (Streptophyta), animal (Metazoa), and fungal reads to generate the retained and
284 conservative protist ASV table. To reduce the amount of spurious ASVs, ASVs with a
285 relative abundance below 0.1% in each sample were removed from the dataset (36).

286

287 **Data analysis and statistics**

288 Statistical analysis of the plant physiology experiments was performed using GraphPad
289 Prism v. 8.3.0. Differences between two groups were analyzed by unpaired *t*-test ($P <$

290 0.05). Multiple comparisons were analyzed by one-way analysis of variance (ANOVA)
291 via Tukey's HSD test ($*P < 0.05$ and $**P < 0.01$).

292 The 16S rRNA and 18S rRNA datasets were analyzed in R version 4.1.3 (37). For
293 microbiome diversity and composition analyses, we used the R packages phyloseq v.
294 1.38.0 (38), ampvis2 v. 2.7.17 (39) and microeco v. 0.11.0 (40). The amp_rarecurve
295 function in the ampvis2 package was used to generate rarefaction curves (number of
296 reads vs number of observed ASVs) for each sample. For 16S rRNA, we excluded the
297 samples "YG6" (Sheriff), "YG34" (Heerup) and "YG51" (Heerup) from the analysis due
298 to their low read number. Closer inspection of the 18S rRNA samples indicated
299 incomplete removal of rhizosphere soil for sample "YG34" and it was omitted from
300 further analyses. A sample overview is provided in Table S1. The alpha diversity was
301 estimated using Shannon diversity in Divnet v. 0.4.0 (41) with default parameters. This
302 method allows for cooccurrence of taxa in contrast to other methods, which estimate the
303 diversity based on multinomial models. Significance testing of the Shannon diversity
304 was done using beta function in breakaway v. 4.7.6 (42). Samples were not rarefied
305 prior to downstream analyses to avoid discarding information (43).

306 Principal component analysis (PCA) based on Aitchison distance was performed using
307 the R function 'prcomp' and permutational multivariate analysis of variance
308 (PERMANOVA) was used to test the effect of the inoculant treatments, compartment
309 and plant genotype on the beta diversity of the microbial community in vegan v.2.6.2
310 (44). Analysis of shared and unique ASVs between groups was done using the
311 trans_venn function in microeco package v. 0.11.0 (40).

312 The differential abundance of ASVs between inoculant treatments (SBW25 WT vs.
313 viscosin deficient mutant-treated, SBW25 WT-treated vs. control, and viscosin deficient
314 mutant-treated vs. control) were analyzed while controlling for the compartment of the
315 two wheat cultivars. The differential abundance was determined using beta-binomial
316 regression with the corncob package v. 0.2.0 (45). Only ASVs that had an estimated
317 differential abundance of ≤ -1 or >1 , and P-values adjusted for multiple testing < 0.05
318 (FDR < 0.05) were considered significant.

319

320 **Data availability**

321 All raw sequencing data used in this study has been deposited in the NCBI Sequence
322 Read Archive (SRA) database under project accession numbers [PRJNA928659](https://www.ncbi.nlm.nih.gov/sra/PRJNA928659) (16S
323 rRNA) and [PRJNA931264](https://www.ncbi.nlm.nih.gov/sra/PRJNA931264) (18S rRNA).

324 **RESULTS**

325 **Colonization ability of *P. fluorescens* SBW25 and its viscosin-deficient mutant**

326 To elucidate the importance of viscosin production for the ability of *P. fluorescens*
327 SBW25 to colonize roots of the wheat cultivars Heerup (observed to naturally enrich for
328 viscosin producing bacteria) and Sheriff, we inoculated seedlings with mCherry-tagged
329 *P. fluorescens* SBW25 wild type (SBW25 WT) or its viscosin-deficient mutant (Δ viscA).
330 Samples taken immediately after seedling inoculation showed similar colonization
331 potential independent of the ability to produce viscosin, as measured by qPCR and CFU
332 counts, respectively (Fig. 1AB). Furthermore, there was no significant difference in
333 colonization of the two wheat genotypes. After two weeks of seedling growth, qPCR
334 data showed a 4.7-fold higher abundance of SBW25 WT compared to Δ viscA in the
335 rhizoplane of Sheriff ($p = 0.04$), whereas a higher, but no significant difference, was
336 observed for the Heerup cultivar ($p = 0.20$) (Fig. 1C). The CFU assay only detected
337 SBW25 WT in the rhizoplane samples from Heerup and Sheriff, whereas no CFUs were
338 observed for Δ viscA at the measured dilution, suggesting at least ten-fold higher
339 colonization by SBW25 WT compared to Δ viscA (Fig. 1D).

340 In addition to quantitative measures by qPCR, the ability of *P. fluorescens* SBW25 to
341 colonize wheat roots was shown by microscopic detection of cells based on
342 fluorescence emitted by their mCherry-tag (Fig. 1E). Even though the imaging was not
343 quantitative, microscopy supported colonization by both SBW25 WT and Δ viscA on the
344 wheat roots.

345

346 **Wheat genotype dependent effects of inoculation on plant growth**

347 To evaluate the effect of SBW25 WT and Δ *viscA* on plant growth, we measured shoot
348 and root length as well as shoot and root biomass and performed image analysis of the
349 roots.

350 Inoculation with SBW25 WT and Δ *viscA* on Sheriff reduced the shoot length with 8%
351 and 6%, respectively, compared to control ($p < 0.05$), whereas no effect was observed
352 for Heerup as compared to the control (Fig. 2A). Root dry weight of Sheriff increased
353 with 53% and 40% after inoculation with SBW25 WT and Δ *viscA*, respectively,
354 compared to the control ($p < 0.01$) Fig. 2B. In opposition, for Heerup, the SBW25 WT
355 and Δ *viscA* had contrasting effects on root dry weight, where Δ *viscA* inoculation
356 increased the root dry weight 27% and 35% compared to the SBW25 WT ($p \leq 0.05$)
357 and the control treatment ($p \leq 0.01$), respectively (Fig. 2B). We did not observe any
358 effect on root length or shoot dry weight for any of the inoculations as compared to the
359 control treatment (Fig. 2CD). Root image analysis (Fig. S1A) showed a two-fold
360 increase in root tip counts in Heerup ($p \leq 0.05$) when inoculated with either SBW25 WT
361 or Δ *viscA* as compared to the control (Fig. S1B, Table S2). Inoculation with SBW25 WT
362 or Δ *viscA* did not affect any of the measured parameters using root imaging for Sheriff.
363 Taken together, the impact of the ability to produce viscosin on plant parameters was
364 dependent on the plant cultivar, as impacts on Sheriff were found to be independent on
365 the ability to produce viscosin, whereas impacts on Heerup were dependent on the
366 ability to produce viscosin. In addition, there was a genotype dependent impact of
367 SBW25, independent of viscosin production, on the development of root tips.
368

369 **Effects on bacterial community assembly**

370 We used 16S rRNA gene amplicon sequencing, to investigate the effects of SBW25 WT
371 and Δ viscA on the rhizoplane bacterial microbiome assembly. The sequencing depths of
372 all samples were sufficient since the number of ASVs was saturated for each sample in
373 the rarefaction curves (Fig. S2A). There were 57 samples with 3 263 907 reads in the
374 total dataset after filtering. The sample sizes ranged from 41 099 to 80 057 reads, with a
375 median of 56 564. The dataset consisted of 449 ASVs.

376 A clear separation of the bacterial communities in the rhizosphere samples from that in
377 the rhizoplane samples (PERMANOVA, $p < 0.001$; $R^2=0.20$) confirmed a successful
378 separation of the compartments during sampling (Fig. S3A, Table S3).

379 The inoculation treatment explained 12% of the variation in the bacterial community
380 composition in the rhizoplane (PERMANOVA, $R^2 = 0.12$, $p = 0.001$; Table S4), whereas
381 the interaction between cultivar and inoculation treatment explained 9% of the variation
382 ($R^2 = 0.09$, $p \leq 0.05$; Table S4), indicating a cultivar dependent impact of the inoculation
383 treatments on the community composition. Indeed, ordination visualization shows that
384 there is clear separation of the Δ viscA communities from communities resulting from the
385 other two treatments in Heerup (Fig. 3A). In contrast, communities treated with either
386 SBW25 WT or Δ viscA clustered apart from the control in Sheriff (Fig. 3B).

387 Inoculation with Δ viscA increased the Shannon diversity (Breakaway, $p \leq 0.001$) in the
388 rhizoplane of the Heerup cultivar as compared to the SBW25 WT and the control
389 treatments (Fig. S4A). In the rhizoplane of Sheriff, the Shannon diversity was higher
390 upon inoculation with both the SBW25 WT and Δ viscA as compared to the control
391 treatment ($p \leq 0.001$). Hence, the influence on bacterial alpha and beta diversity reflects
392 the impact observed on the shoot length and root dry weight (Fig. 2AB), with a similar

393 impact from the SBW25 WT and Δ viscA on the Sheriff cultivar, and a differential impact
394 of the two strains on the Heerup cultivar as compared to the control treatment.

395

396 **Bacterial community composition response**

397 The rhizoplane communities in both cultivars were dominated by Proteobacteria,
398 Actinobacteriota, and Firmicutes independent of treatment (Fig. S3C). Additionally,
399 *Massilia*, *Paenibacillus*, *Bacillus*, *Dyella*, and *Noviherbaspirillum* were the five most
400 abundant genera across all samples (Fig. S5A).

401 In the Sheriff rhizoplane, inoculation of SBW25 WT increased (beta-binomial model, $p \leq 0.05$) the relative abundance of 14 ASVs and decreased the relative abundance of 11 ASVs compared to the control treatment (Fig. 4A). In contrast, inoculation by Δ viscA affected only seven ASVs ($p \leq 0.05$), leading to increased relative abundance of three ASVs, and decreased relative abundance of four ASVs compared to the control treatment (Fig. 4B). Comparing the effects of Δ viscA inoculation with SBW25 WT inoculation, the relative abundance of five ASVs decreased, whereas the relative abundance of only one ASV significantly increased ($p < 0.05$) (Fig. 4C). Four of the six ASVs with changed relative abundance in the SBW25 treatment compared to Δ viscA were impacted in the same way when comparing the SBW25 treatment with the control treatment. These results indicate both a general impact of inoculation with *P. fluorescence* SBW25, and a specific impact based on the ability to produce viscosin in the Sheriff rhizoplane.

414 In the rhizoplane of Heerup, no significant difference in ASV abundance was observed
415 between the SBW25 WT treatment and the control treatment. In contrast, inoculation

416 with Δ viscA increased the relative abundance of 39 ASVs and decreased the relative
417 abundance of three ASVs when compared both to the SBW25 WT and the control
418 treatment (Fig. 5AB). An additional four ASVs increased and five ASVs decreased in
419 relative abundance when seedlings were inoculated with Δ viscA compared to
420 inoculation with SBW25 WT (Fig. 5A).

421 For both cultivars, ASVs belonging to the genera *Bacillus* and *Massilia* were affected as
422 a response to inoculation treatment. In the Sheriff rhizoplane, inoculations reduced the
423 relative abundance of *Bacillus* and increased the relative abundance of most *Massilia*
424 compared to the control treatment, however more pronounced for SBW25 WT (Fig. 4).
425 In Heerup, Δ viscA increased the relative abundance of *Bacillus* and decreased the
426 relative abundance of *Massilia* compared to the SBW25 WT and control treatment. (Fig.
427 5). Hence, viscosin seems to have a generally negative effect on *Bacillus* ASVs, and a
428 positive effect on the colonization potential of *Massilia* ASVs.

429

430 **Effects on protist community assembly**

431 The protist communities were analyzed using 18S rRNA gene amplicon sequencing.
432 The sequencing depth of all samples was sufficient since the number of ASVs was
433 saturated for each sample in the rarefaction curves (Fig. S2B). There were 59 samples
434 with 2 272 445 reads in the total dataset after filtering. The read sizes ranged from 19
435 495 to 66 875, with a median of 37 300. The dataset consisted of 594 ASVs. Regarding
436 the communities of protists, the compartment was the most important factor for
437 differences in community composition (PERMANOVA, $R^2 = 0.086$, $p = 0.001$) (Fig. S3B,
438 Table S4), again supporting a reliable sampling strategy for obtaining specific

439 compartment samples. Treatment was the second most important factor ($R^2 = 0.04$, $p =$
440 0.009) and thus explained more of the variation in protist community composition than
441 the wheat cultivar ($R^2 = 0.02$, $p = 0.023$) (Table S4). As we observed for bacteria, the
442 treatment had a different impact depending on wheat cultivar (Treatment:Cultivar, $R^2 =$
443 0.04, $p = 0.033$) (Table S4).

444 When the cultivars were analyzed individually, the control treatment grouped separately
445 from the SBW25 WT and Δ viscA in Sheriff, while the SBW25 WT and the control
446 grouped together in Heerup, resembling the patterns for the bacterial community (Fig.
447 3CD). For the Sheriff rhizoplane community, the Shannon diversity was lower in SBW25
448 WT-treated plants than Δ viscA-treated plants and control plants ($p < 0.001$) (Fig. S4B).
449 In contrast, inoculation with SBW25 WT or Δ viscA had no effect on the Shannon
450 diversity in the rhizoplane communities of the Heerup cultivar. These results contradict
451 the findings from the bacterial community. One explanation could be the specific impact
452 of SBW25 WT on the oomycete community, with lower impact on other protist
453 community members.

454

455 **Protist community composition response**

456 At the division level, the rhizoplane community in both cultivars was dominated by
457 Oomycota (also referred to as Pseudofungi), Cercozoa, and Chlorophyta (Fig. S3D). At
458 the genus level, the five most abundant genera across all samples were *Phytophthora*
459 and four unclassified Oomycota (Fig. S5B). In the rhizoplane of Sheriff, the Cercozoa
460 *Group-Te* was reduced ($p < 0.05$) following inoculation with SBW25 WT compared to
461 the other two treatments. In addition, inoculation of SBW25 WT reduced ($p < 0.05$) the

462 relative abundance of an unclassified Oomycota (Fig. 6AB) as compared to the control
463 treatment. No significant difference in ASVs was found between treatment with the
464 Δ viscA as compared to the control treatment.

465 In the rhizoplane of Heerup, one ASV belonging to the Amoebozoa *Leptomyxidae* was
466 increased ($p \leq 0.05$) after inoculation with Δ viscA compared to the control treatment
467 (Fig. 6C). In contrast, the SBW25 WT treatment reduced the abundance of one ASV
468 belonging to Phytophthora compared to the control, and an ASV from the Rhogostoma
469 lineage when compared with Δ viscA treatment ($p < 0.05$, Fig. 6DE). Inoculation with
470 SBW25 WT showed a trend of decreased relative abundance of *Pythium* as compared
471 to Δ viscA and control treatments in the Sheriff rhizoplane (Fig. 6F). For the Heerup
472 rhizoplane, the trend was an increase in *Pythium* when inoculated with Δ viscA as
473 compared to SBW25 and control treatments, with no difference between the SBW25
474 and control treatments.

475

476 **DISCUSSION**

477 Understanding key drivers of microbial colonization and microbiome assembly at the
478 root-soil interface is fundamental for harnessing the positive effect of beneficial plant-
479 microbe interactions on plant performance. In the present study, we examined the
480 impact of adding a viscosin producing *P. fluorescens* SBW25 WT compared to a
481 viscosin-deficient mutant (Δ viscA) to two wheat cultivars: Heerup, observed naturally to
482 enrich for viscosin producing pseudomonads, and Sheriff. Specifically, we studied
483 whether the potential of SBW25 to produce viscosin impacts root colonization and root
484 microbial community assembly in these two cultivars.

485 The ability to produce viscosin enhanced the colonization potential of SBW25 WT
486 compared with Δ viscA in both cultivars, contrasting our first hypothesis and
487 observations that viscosin producing *Pseudomonas* strains are enriched in a culture-
488 dependent manner in the wheat rhizoplane (Herms et al., unpublished). This may be
489 explained by the inoculation strategy applied in our experiment, where inoculants were
490 added by root dipping, giving SBW25 a competitive advantage in colonization over
491 bacteria colonizing from the soil community. Viscosin has previously been shown to be
492 involved in surface spreading on sterilized sugar beet roots in potting compost as well
493 as colonization of broccoli florets (46) and our results expand this finding by
494 demonstrating the importance of viscosin in wheat root colonization in soil during
495 competition with other microorganisms. Furthermore, other CLPs, such as massetolide
496 A and amphisin are important for colonization of tomato roots and sugar beet seeds,
497 respectively (17, 18) pointing towards a natural role of CLPs in root colonization. For
498 viscosin this phenotype of enhanced colonization could be due to the amphiphilic

499 properties of the compound, which alter the surface charge of the bacteria or the root
500 surface for improved colonization (47). In contrast to these findings, Yang *et al.* (48) did
501 not observe any impact on rhizosphere colonization potential in wheat based on the
502 potential to produce viscosin when comparing *P. fluorescens* HC1-07 and its viscosin-
503 deficient mutant. However, the *P. fluorescens* HC1-07 strain was mutated in the *viscB*
504 gene (48), whereas the impairment of viscosin production in SBW25 used in this study,
505 was due to a mutation in the *viscA* gene (19). Whether these contrasting results are
506 mutant generation, soil condition, plant cultivar or chemically-dependent remains to be
507 elucidated.

508 The abundance of SBW25 WT and Δ *viscA* on plant roots decreased 100-fold over the
509 course of the experiment and they comprised less than 1% of the total community after
510 two weeks. This is in the range of the *Pseudomonas* genus in rhizosphere samples at a
511 relative abundance of 0.32% across eight winter wheat cultivars and eight soil types
512 from Europe and Africa (49). Other work also demonstrated that despite wheat seed
513 inoculating with growth-promoting *Bacillus* strains they only comprise 2-3% of the
514 seedling community after 4 weeks in the soil (50). This supports the notion that the
515 assembly of the rhizoplane community is highly deterministic after the initial root tip
516 colonization which is more random (51). This leaves only a small part available for
517 exchange of bacteria. Alternatively, the origin of the strains, sugar beet leaf for SBW25
518 (23), or adaptation to laboratory conditions, could impede their growth in a natural
519 system. Combined, this might account for the often-low transitional power observed
520 when going from simple testing in greenhouse systems not using soil to field
521 performance of bacterial inoculants.

522 Despite the colonization potential of SBW25 WT on both wheat cultivars, a pronounced
523 difference in the microbial community assembly, measured by ASVs significantly
524 changing between treatments, was observed between the two cultivars. The multitude
525 of ASVs changing in relative abundance, regardless of whether SBW25 WT or Δ viscA
526 was introduced in the Sheriff rhizoplane, hint to a general effect of *P. fluorescens*
527 SBW25 independent of viscosin production on Sheriff microbiome assembly.
528 Additionally, a specific effect of SBW25 WT was observed, with four ASVs from the
529 genera *Paenibacillus*, *Rhodanobacter*, *Streptomyces* and unclassified
530 Rhodanobacteriaceae increasing in relative abundance after the addition of SBW25 WT
531 in comparison to inoculation with Δ viscA. These ASVs can be hypothesized to benefit
532 from the viscosin produced by SBW25 WT, either through increased colonization or
533 reduced predators. However, to fully determine the impact of viscosin on specific
534 microbes, viscosin production must be detected in the rhizoplane habitat, which
535 currently is not technically possible at relevant concentrations in soil systems.
536 In contrast to the *P. fluorescens* SBW25 and presumed viscosin effects on the bacterial
537 community assembly identified in the Sheriff cultivar, no ASVs changed significantly in
538 the Heerup rhizoplane as a response to SBW25 WT inoculation. One explanation for
539 the lack of impact seen for the SBW25 WT could be that the Heerup rhizoplane is
540 naturally colonized by viscosin-producing pseudomonads, and that the presence of
541 these strains shape the overall microbial assembly at the roots of this cultivar. Hence, it
542 can be speculated that the viscosin-producing pseudomonads are first colonizers of the
543 Heerup rhizoplane under natural conditions. Indeed, *Pseudomonas* has previously been
544 found to be the most dominant taxa in the active microbial community in 12-days old

545 wheat rhizoplane, suggesting a dominant role in early root community assembly (52).
546 Hence, independent on whether the pseudomonads are soil-derived or inoculated
547 viscosin producers, they play a defined role in the further assembly of the Heerup
548 rhizoplane microbiome. Taken together, viscosin production appears to be important in
549 root community assembly and suggests a role of specialized metabolite production for
550 root community assembly in general. These observations thus highlight the need for
551 future research to evaluate the importance of strain specific specialized metabolites for
552 microbiome assembly in general, and whether such intimate interactions would be
553 dependent on root exudate composition or root architecture and morphology (53). On
554 the other hand, inoculation with the $\Delta viscA$ mutant revealed a differential impact on the
555 microbial community as compared to the control and the SBW25 WT treatment in
556 Heerup. Interestingly, the majority of affected ASVs increased in relative abundance in
557 the $\Delta viscA$ mutant treatment, hinting to a competitive advantage of harboring the
558 viscosin gene or an antagonistic effect of viscosin on these taxa.
559 *Bacillus* and *Massilia*, genera previously shown to be associated with the wheat
560 rhizosphere (49, 54), were observed to be specifically impacted by the inoculations in a
561 wheat cultivar and inoculation dependent manner, collectively accounting for 50% and
562 25% of the impacted ASVs in Sheriff and Heerup, respectively. *Bacillus* decreased
563 significantly as a response to *P. fluorescens* independent of viscosin in the Sheriff
564 rhizoplane, but with a more pronounced effect by SBW25 WT. *Bacillus* was found to
565 have a significantly higher relative abundance in the rhizoplane of Heerup when $\Delta viscA$
566 was inoculated, as compared to both the control and the SBW25 WT treatment. This
567 suggests a direct impact of SBW25 WT on the *Bacillus* community. Since *Bacillus* is

568 well known for its plant-growth promoting abilities (55) the microbe-microbe interactions
569 suggested by the data presented here could have impacts on whether stable
570 establishment of plant-growth-promoting rhizobacteria is successful under natural
571 conditions.

572 In contrast to *Bacillus*, *Massilia* increased in relative abundance by introduction of
573 SBW25 WT and to a lesser extent Δ viscA. Strains belonging to the genus *Massilia* are
574 known as copiotrophic root colonizers (49, 56, 57), and have been proposed as a key
575 member of the wheat root microbiome (49). Furthermore, *Massilia* species are known to
576 colonize the endophytic compartment of wheat, and hence may play an important role
577 for early stage development and microbial assembly (54). In summary, the present
578 study emphasizes the importance of studying specialized metabolites and microbe-
579 microbe interactions in soil systems to gain a full understanding of microbiome
580 assembly at the root-soil interface.

581 Protists play an important role in the rhizosphere because of their effect on nutrient
582 availability in the soil (58) and impact on the structure of the microbial communities (59),
583 e.g. through predation. Yet, protist communities at the root zones are understudied
584 compared to bacterial and fungal communities (60-62). In the Sheriff and Heerup
585 cultivars, SBW25 WT decreased the relative abundance of a single oomycete ASV
586 (ASV 25) and Phytophthora ASV (ASV 22), respectively. This finding supports our
587 second hypothesis that viscosin-producing bacteria reduce the abundance of
588 oomycetes. Additionally, a decrease in *Pythium* was observed in Sheriff, supporting the
589 above findings. While no single *Pythium* ASV changed significantly between the
590 treatments in Heerup, a trend of increased *Pythium* abundance when plants were

591 inoculated with Δ viscA as compared to SBW25 WT and the control treatment was
592 observed. If Δ viscA replaces naturally occurring viscosin producers, thereby resulting in
593 fewer *Pythium* antagonists, this could explain the increase in *Pythium* abundance.
594 Oomycetes such as *Phytophthora* and *Pythium* are abundant in the plant-soil habitat
595 (63), and while many species are saprophytes, there are also several plant pathogenic
596 species (64). Hence, viscosin production by microbial inhabitants of the rhizoplane
597 might be important for decreasing abundance of these potential pathogens.
598 In general, the inoculation with SBW25 had only a minor effect on the protist
599 communities, with few ASVs being significantly affected. In the Sheriff cultivar, we
600 observed a decrease of the Cercozoa *Group-Te* in the SBW25 WT treated rhizoplane.
601 *Group-Te* is found in the rhizosphere of multiple crops and model plants, e.g. maize,
602 Arabidopsis, potato (65, 66), but the ecology of this organism is unknown. While the
603 overall findings support a resilience of the microbial communities in the Heerup
604 rhizoplane, the diversity estimates showed a differential pattern for the bacterial and the
605 protist community, respectively, with no difference in the protist diversity measure upon
606 inoculation with either strain of SBW25. This could be explained by the natural
607 recruitment of viscosin producers by Heerup, leading to a minor effect on the protist
608 community despite a possible replacement of the soil-borne viscosin producers by
609 Δ viscA. In contrast, a lack of natural recruitment of viscosin producers by Sheriff would
610 explain the lower diversity of protists in the Sheriff rhizoplane community compared to
611 the Δ viscA and control treatments in Sheriff. In summary, these findings support a plant
612 genotype specific impact of the ability to produce viscosin on the protist community.

613

614 The resilience in the bacterial community of the Heerup rhizoplane was in agreement
615 with the phenotypic response of the plant. Hence, the root dry weight significantly
616 increased when the plant was challenged with the mutant, which also caused significant
617 changes in the microbiome compared to the SBW25 WT and water treatment. For the
618 Sheriff cultivar, both the SBW25 WT and Δ viscA caused a significant shift in the
619 microbiome, which coincided with a significant increase in root dry weight for both
620 treatments compared to the control. Whether there is a direct link between viscosin
621 production and root dry weight is currently not known, as it could also be caused by
622 secondary effects from a changing microbiome.

623 Despite the similar colonization potential of the two wheat cultivars observed for SBW25
624 WT and Δ viscA, respectively, SBW25 WT was found to also impact plant root
625 architecture parameters dependent on plant genotype. It has previously been shown
626 that inoculation of plants with plant beneficial bacteria alters root morphology (67-69),
627 but to our knowledge this is the first time that it has been shown to be cultivar-
628 dependent. The observed differential effect on plant root parameters could be the result
629 of differential community assembly, dependent both on plant genotype and/or the ability
630 of the inoculant to produce viscosin.

631 In conclusion, the ability to produce viscosin enhances root colonization in both
632 cultivars, contrasting our hypothesis of cultivar-dependent root colonization.
633 Conversely, our second hypothesis was supported as root colonization by SBW25 WT
634 reduced the abundance of potential plant pathogenic oomycetes, including *Phytophthora*,
635 in a cultivar dependent manner. In addition, the relative abundance of multiple bacterial
636 taxa was affected by SBW25 WT colonization in a cultivar dependent manner. Even

637 though factors like soil properties and community composition are important for
638 microbiome assembly in the rhizoplane, this work demonstrates the impact of a specific
639 specialized metabolite on microbial community assembly in the rhizoplane in a plant
640 genotype dependent manner. Acknowledging these plant genotype specific differences
641 is important, and we urge future studies to include several cultivars when investigating
642 root colonization by single strains. This knowledge is important to provide advance our
643 fundamental understanding of microbial ecology in the plant-soil interface and such
644 knowledge can be applied in the future to develop more robust microbial inoculants for
645 plant growth promotion.

646

647 **Acknowledgments**

648 Thanks to Dorette Müller-Stöver and Marie Louise Bornø for supplying experimental
649 soils. Thanks to Alex Gobbi for helping prepare the bacterial sequencing library and
650 Athanasis Zervas for helping with the NextSeq. Thanks to our group members Kitzia
651 Yashvelt Molina Zamudio, Jonathan Sølve, and Dorthe Thybo Ganzhorn for their
652 support with the sampling. Imaging data were collected at the Center for Advanced
653 Bioimaging (CAB), University of Copenhagen, Denmark. This study was funded by the
654 Novo Nordisk Foundation (Grant number: NNF19SA0059360), and the Chinese
655 Scholarship Council for a Ph.D. scholarship (CSC Grant 201908510124).

656

657 **Competing Interest Statement**

658 The authors declare no competing interests.

659

660 **REFERENCES**

661 1. Harman G, Khadka R, Doni F, Uphoff N. 2021. Benefits to Plant Health and
662 Productivity From Enhancing Plant Microbial Symbionts. *Frontiers in Plant
663 Science* 11:610065.

664 2. Zandi P, Basu SK. 2016. Role of Plant Growth-Promoting Rhizobacteria (PGPR)
665 as BioFertilizers in Stabilizing Agricultural Ecosystems. *Organic Farming for
666 Sustainable Agriculture* 9:71-87.

667 3. Faltin F, Lottmann J, Grosch R, Berg G. 2004. Strategy to select and assess
668 antagonistic bacteria for biological control of *Rhizoctonia solani* Kuhn. *Canadian
669 Journal of Microbiology* 50:811-820.

670 4. Elnahal ASM, El-Saadony MT, Saad AM, Desoky ESM, El-Tahan AM, Rady MM,
671 AbuQamar SF, El-Tarabily KA. 2022. The use of microbial inoculants for
672 biological control, plant growth promotion, and sustainable agriculture: A review.
673 *European Journal of Plant Pathology* 162:759-792.

674 5. Raymond NS, Gómez-Muñoz B, van der Bom FJT, Nybroe O, Jensen LS, Müller-
675 Stöver DS, Oberson A, Richardson AE. 2021. Phosphate-solubilising
676 microorganisms for improved crop productivity: a critical assessment. *New
677 Phytologist* 229:1268-1277.

678 6. Tovi N, Orevi T, Grinberg M, Kashtan N, Hadar Y, Minz D. 2021. Pairwise
679 Interactions of Three Related *Pseudomonas* Species in Plant Roots and Inert
680 Surfaces. *Front Microbiol* 12:666522.

681 7. Vesga P, Flury P, Vacheron J, Keel C, Croll D, Maurhofer M. 2020.
682 Transcriptome plasticity underlying plant root colonization and insect invasion by
683 *Pseudomonas protegens*. ISME J 14:2766-2782.

684 8. Rochat L, Pechy-Tarr M, Baehler E, Maurhofer M, Keel C. 2010. Combination of
685 fluorescent reporters for simultaneous monitoring of root colonization and
686 antifungal gene expression by a biocontrol pseudomonad on cereals with flow
687 cytometry. Mol Plant Microbe Interact 23:949-61.

688 9. Singh P, Singh RK, Zhou Y, Wang J, Jiang Y, Shen N, Wang Y, Yang L, Jiang M.
689 2022. Unlocking the strength of plant growth promoting *Pseudomonas* in
690 improving crop productivity in normal and challenging environments: a review.
691 Journal of Plant Interactions 17:220-238.

692 10. Lloyd DP, Allen RJ. 2015. Competition for space during bacterial colonization of
693 a surface. Journal of The Royal Society Interface 12:20150608.

694 11. Hawkes CV, DeAngelis KM, Firestone MK. 2007. CHAPTER 1 - Root
695 Interactions with Soil Microbial Communities and Processes, p 1-29. In Cardon
696 ZG, Whitbeck JL (ed), The Rhizosphere. Academic Press, Burlington.

697 12. Spor A, Roucou A, Mounier A, Bru D, Breuil MC, Fort F, Vile D, Roumet P,
698 Philippot L, Violle C. 2020. Domestication-driven changes in plant traits
699 associated with changes in the assembly of the rhizosphere microbiota in
700 tetraploid wheat. Sci Rep 10:12234.

701 13. Wagner MR, Lundberg DS, del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T.
702 2016. Host genotype and age shape the leaf and root microbiomes of a wild
703 perennial plant. *Nature Communications* 7.

704 14. Liu F, Hewezi T, Lebeis SL, Pantalone V, Grewal PS, Staton ME. 2019. Soil
705 indigenous microbiome and plant genotypes cooperatively modify soybean
706 rhizosphere microbiome assembly. *BMC Microbiol* 19:201.

707 15. Berendsen RL, Pieterse CMJ, Bakker PAHM. 2012. The rhizosphere microbiome
708 and plant health. *Trends in Plant Science* 17:478-486.

709 16. Venturi V, Keel C. 2016. Signaling in the Rhizosphere. *Trends in Plant Science*
710 21:187-198.

711 17. Tran H, Ficke A, Asiimwe T, Hofte M, Raaijmakers JM. 2007. Role of the cyclic
712 lipopeptide masetolide A in biological control of *Phytophthora infestans* and in
713 colonization of tomato plants by *Pseudomonas fluorescens*. *New Phytol* 175:731-
714 742.

715 18. Nielsen TH, Nybroe O, Koch B, Hansen M, Sorensen J. 2005. Genes involved in
716 cyclic lipopeptide production are important for seed and straw colonization by
717 *Pseudomonas* sp strain DSS73. *Applied and Environmental Microbiology*
718 71:4112-4116.

719 19. Bonnichsen L, Svenningsen NB, Rybtke M, de Brujin I, Raaijmakers JM, Tolker-
720 Nielsen T, Nybroe O. 2015. Lipopeptide biosurfactant viscosin enhances

721 dispersal of *Pseudomonas fluorescens* SBW25 biofilms. *Microbiology* 161:2289-
722 2297.

723 20. Alsohim AS, Taylor TB, Barrett GA, Gallie J, Zhang XX, Altamirano-Junqueira
724 AE, Johnson LJ, Rainey PB, Jackson RW. 2014. The biosurfactant viscosin
725 produced by *Pseudomonas fluorescens* SBW25 aids spreading motility and plant
726 growth promotion. *Environmental Microbiology* 16:2267-2281.

727 21. Mazzola M, de Bruijn I, Cohen MF, Raaijmakers JM. 2009. Protozoan-Induced
728 Regulation of Cyclic Lipopeptide Biosynthesis Is an Effective Predation Defense
729 Mechanism for *Pseudomonas fluorescens*. *Applied and Environmental
730 Microbiology* 75:6804-6811.

731 22. de Bruijn I, de Kock MJ, Yang M, de Waard P, van Beek TA, Raaijmakers JM.
732 2007. Genome-based discovery, structure prediction and functional analysis of
733 cyclic lipopeptide antibiotics in *Pseudomonas* species. *Mol Microbiol* 63:417-28.

734 23. Rainey PB, Bailey MJ. 1996. Physical and genetic map of the *Pseudomonas*
735 *fluorescens* SBW25 chromosome. *Mol Microbiol* 19:521-33.

736 24. van der Bom F, Magid J, Jensen LS. 2017. Long-term P and K fertilisation
737 strategies and balances affect soil availability indices, crop yield depression risk
738 and N use. *European Journal of Agronomy* 86:12-23.

739 25. Borno ML, Zervas A, Bak F, Merl T, Koren K, Nicolaisen MH, Jensen LS, Muller-
740 Stover DS. 2023. Differential impacts of sewage sludge and biochar on

741 phosphorus-related processes: An imaging study of the rhizosphere. *Sci Total*
742 *Environ* 905:166888.

743 26. Zervas A, Ellegaard-Jensen L, Hennessy Rosanna C, Bak F, Guan Y, Horn
744 Herms C, Molina Zamudio Kitzia Y, Thybo Ganzhorn D, Müller-Stöver Dorette S,
745 Ahmad J, Grunden A, Jacobsen Carsten S, Nicolaisen Mette H. 2022. Diversity
746 and Structure of Bacterial Communities in Different Rhizocompartments
747 (Rhizoplane, Rhizosphere, and Bulk) at Flag Leaf Emergence in Four Winter
748 Wheat Varieties. *Microbiology Resource Announcements* 11:e00222-22.

749 27. Shaner NC, Campbell RE, Steinbach PA, Giepmans BNG, Palmer AE, Tsien RY.
750 2004. Improved monomeric red, orange and yellow fluorescent proteins derived
751 from *Discosoma* sp red fluorescent protein. *Nature Biotechnology* 22:1567-1572.

752 28. Gould WD, Hagedorn C, Bardinelli TR, Zablotowicz RM. 1985. New Selective
753 Media for Enumeration and Recovery of Fluorescent Pseudomonads from
754 Various Habitats. *Applied and Environmental Microbiology* 49:28-32.

755 29. Chelius MK, Triplett EW. 2001. The Diversity of Archaea and Bacteria in
756 Association with the Roots of *Zea mays* L. *Microbial Ecology* 41:252-263.

757 30. Bulgarelli D, Rott M, Schlaepi K, Ver Loren van Themaat E, Ahmadinejad N,
758 Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner
759 FO, Amann R, Eickhorst T, Schulze-Lefert P. 2012. Revealing structure and
760 assembly cues for *Arabidopsis* root-inhabiting bacterial microbiota. *Nature*
761 488:91-95.

762 31. Anguita-Maeso M, Haro C, Navas-Cortés JA, Landa BB. 2022. Primer Choice
763 and Xylem-Microbiome-Extraction Method Are Important Determinants in
764 Assessing Xylem Bacterial Community in Olive Trees. *Plants* 11:1320.

765 32. Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM. 2009. A Method for
766 Studying Protistan Diversity Using Massively Parallel Sequencing of V9
767 Hypervariable Regions of Small-Subunit Ribosomal RNA Genes. *PLOS ONE*
768 4:e6372.

769 33. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. 2016.
770 DADA2: High-resolution sample inference from Illumina amplicon data. *Nat
771 Methods* 13:581-3.

772 34. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J,
773 Glöckner FO. 2013. The SILVA ribosomal RNA gene database project: improved
774 data processing and web-based tools. *Nucleic Acids Research* 41:D590-D596.

775 35. Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, Boutte C, Burgaud G,
776 de Vargas C, Decelle J, del Campo J, Dolan JR, Dunthorn M, Edvardsen B,
777 Holzmann M, Kooistra WHCF, Lara E, Le Bescot N, Logares R, Mahé F,
778 Massana R, Montresor M, Morard R, Not F, Pawłowski J, Probert I, Sauvadet A-
779 L, Siano R, Stoeck T, Vaulot D, Zimmermann P, Christen R. 2013. The Protist
780 Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small
781 Sub-Unit rRNA sequences with curated taxonomy. *Nucleic Acids Research*
782 41:D597-D604.

783 36. Reitmeier S, Hitch TCA, Treichel N, Fikas N, Hausmann B, Ramer-Tait AE,
784 Neuhaus K, Berry D, Haller D, Lagkouvardos I, Clavel T. 2021. Handling of
785 spurious sequences affects the outcome of high-throughput 16S rRNA gene
786 amplicon profiling. ISME Communications 1:31.

787 37. R Core Team. 2022. R: A Language and Environment for Statistical Computing.

788 38. McMurdie PJ, Holmes S. 2013. phyloseq: An R Package for Reproducible
789 Interactive Analysis and Graphics of Microbiome Census Data. PLOS ONE
790 8:e61217.

791 39. Andersen KS, Kirkegaard RH, Karst SM, Albertsen M. 2018. ampvis2: an R
792 package to analyse and visualise 16S rRNA amplicon data. bioRxiv
793 doi:10.1101/299537:299537.

794 40. Liu C, Cui Y, Li X, Yao M. 2021. microeco: an R package for data mining in
795 microbial community ecology. FEMS Microbiology Ecology 97:fiaa255.

796 41. Willis AD, Martin BD. 2022. Estimating diversity in networked ecological
797 communities. Biostatistics 23:207-222.

798 42. Willis A, Martin BD, Trinh P, Teichman S, Clausen D, Barger K, Bunge J. 2021.
799 breakaway: Species Richness Estimation and Modeling.

800 43. McMurdie PJ, Holmes S. 2014. Waste Not, Want Not: Why Rarefying
801 Microbiome Data Is Inadmissible. PLOS Computational Biology 10:e1003531.

802 44. Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara
803 RB, Solymos P, Stevens MHH, Szoecs E, Wagner H, Barbour M, Bedward M,
804 Bolker B, Borcard D, Carvalho G, Chirico M, Caceres MD, Durand S, Evangelista
805 HBA, FitzJohn R, Friendly M, Furneaux B, Hannigan G, Hill MO, Lahti L, McGlinn
806 D, Ouellette M-H, Cunha ER, Smith T, Stier A, Braak CJFT, Weedon J. 2022.
807 vegan: Community Ecology Package.

808 45. Martin BD, Witten D, Willis AD. 2021. corncob: Count Regression for Correlated
809 Observations with the Beta-Binomial.

810 46. Hildebrand PD, Braun PG, McRae KB, Lu X. 1998. Role of the biosurfactant
811 viscosin in broccoli head rot caused by a pectolytic strain of *Pseudomonas*
812 *fluorescens*. Canadian Journal of Plant Pathology-Revue Canadienne De
813 Phytopathologie 20:296-303.

814 47. Knights HE, Jorrin B, Haskett TL, Poole PS. 2021. Deciphering bacterial
815 mechanisms of root colonization. Environmental Microbiology Reports 13:428-
816 444.

817 48. Yang MM, Wen SS, Mavrodi DV, Mavrodi OV, von Wettstein D, Thomashow LS,
818 Guo JH, Weller DM. 2014. Biological control of wheat root diseases by the CLP-
819 producing strain *Pseudomonas fluorescens* HC1-07. Phytopathology 104:248-56.

820 49. Simonin M, Dasilva C, Terzi V, Ngonkeu ELM, Diouf D, Kane A, Béna G, Moulin
821 L. 2020. Influence of plant genotype and soil on the wheat rhizosphere

822 microbiome: evidences for a core microbiome across eight African and European
823 soils. *FEMS Microbiology Ecology* 96:fiaa067.

824 50. Nunes I, Hansen V, Bak F, Bonnichsen L, Su J, Hao X, Raymond NS, Nicolaisen
825 MH, Jensen LS, Nybroe O. 2022. Succession of the wheat seed-associated
826 microbiome as affected by soil fertility level and introduction of *Penicillium* and
827 *Bacillus* inoculants in the field. *FEMS Microbiology Ecology* 98:fiac028.

828 51. Ruger L, Feng K, Dumack K, Freudenthal J, Chen Y, Sun R, Wilson M, Yu P,
829 Sun B, Deng Y, Hochholdinger F, Vetterlein D, Bonkowski M. 2021. Assembly
830 Patterns of the Rhizosphere Microbiome Along the Longitudinal Root Axis of
831 Maize (*Zea mays* L.). *Front Microbiol* 12:614501.

832 52. Ofek M, Voronov-Goldman M, Hadar Y, Minz D. 2014. Host signature effect on
833 plant root-associated microbiomes revealed through analyses of resident vs.
834 active communities. *Environmental Microbiology* 16:2157-2167.

835 53. Herms CH, Hennessy RC, Bak F, Dresbøll DB, Nicolaisen MH. 2022. Back to our
836 roots: exploring the role of root morphology as a mediator of beneficial plant–
837 microbe interactions. *Environmental Microbiology* 24:3264-3272.

838 54. Schlatter Daniel C, Yin C, Hulbert S, Paulitz Timothy C. 2020. Core Rhizosphere
839 Microbiomes of Dryland Wheat Are Influenced by Location and Land Use History.
840 *Applied and Environmental Microbiology* 86:e02135-19.

841 55. Blake C, Christensen MN, Kovács ÁT. 2020. Molecular Aspects of Plant Growth
842 Promotion and Protection by *Bacillus subtilis*. *Molecular Plant-Microbe*
843 *Interactions* 34:15-25.

844 56. Ofek M, Hadar Y, Minz D. 2012. Ecology of Root Colonizing *Massilia*
845 (Oxalobacteraceae). *PLOS ONE* 7:e40117.

846 57. Li X, Rui J, Mao Y, Yannarell A, Mackie R. 2014. Dynamics of the bacterial
847 community structure in the rhizosphere of a maize cultivar. *Soil Biology and*
848 *Biochemistry* 68:392-401.

849 58. Clarholm M. 1985. Interactions of Bacteria, Protozoa and Plants Leading to
850 Mineralization of Soil-Nitrogen. *Soil Biology & Biochemistry* 17:181-187.

851 59. Rosenberg K, Bertaux J, Krome K, Hartmann A, Scheu S, Bonkowski M. 2009.
852 Soil amoebae rapidly change bacterial community composition in the rhizosphere
853 of *Arabidopsis thaliana*. *ISME J* 3:675-84.

854 60. Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S,
855 Tremblay J, Engelbrektson A, Kunin V, Del Rio TG, Edgar RC, Eickhorst T, Ley
856 RE, Hugenholtz P, Tringe SG, Dangl JL. 2012. Defining the core *Arabidopsis*
857 *thaliana* root microbiome. *Nature* 488:86-90.

858 61. Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S,
859 Eisen JA, Sundaresan V. 2015. Structure, variation, and assembly of the root-
860 associated microbiomes of rice. *Proceedings of the National Academy of*
861 *Sciences* 112:E911-E920.

862 62. Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE.
863 2013. Diversity and heritability of the maize rhizosphere microbiome under field
864 conditions. *Proceedings of the National Academy of Sciences* 110:6548-6553.

865 63. Hendrix JFF, Campbell WA. 1970. Distribution of *Phytophthora* and *Pythium*
866 species in soils in the Continental United States. *Canadian Journal of Botany*
867 48:377-384.

868 64. H Ho H. 2018. The Taxonomy and Biology of *Phytophthora* and *Pythium*. *Journal*
869 *of Bacteriology & Mycology: Open Access* 6.

870 65. Taerum SJ, Micciulla J, Corso G, Steven B, Gage DJ, Triplett LR. 2022. 18S
871 rRNA gene amplicon sequencing combined with culture-based surveys of maize
872 rhizosphere protists reveal dominant, plant-enriched and culturable community
873 members. *Environmental Microbiology Reports* 14:110-118.

874 66. Sapp M, Ploch S, Fiore-Donno AM, Bonkowski M, Rose LE. 2018. Protists are an
875 integral part of the *Arabidopsis thaliana* microbiome. *Environmental Microbiology*
876 20:30-43.

877 67. Ou K, He X, Cai K, Zhao W, Jiang X, Ai W, Ding Y, Cao Y. 2022. Phosphate-
878 Solubilizing *Pseudomonas* sp. Strain WS32 Rhizosphere Colonization-Induced
879 Expression Changes in Wheat Roots. *Frontiers in Microbiology* 13:927889.

880 68. Liu X, Jiang X, He X, Zhao W, Cao Y, Guo T, Li T, Ni H, Tang X. 2019.
881 Phosphate-Solubilizing *Pseudomonas* sp. Strain P34-L Promotes Wheat Growth
882 by Colonizing the Wheat Rhizosphere and Improving the Wheat Root System

883 and Soil Phosphorus Nutritional Status. *Journal of Plant Growth Regulation*
884 38:1314-1324.

885 69. Cao Y-y, Ni H-t, Li T, Lay K-d, Liu D-s, He X-y, Ou K, Tang X-y, Wang X-b, Qiu
886 L-j. 2020. *Pseudomonas* sp. TK35-L enhances tobacco root development and
887 growth by inducing *HRGPnt3* expression in plant lateral root formation. *Journal of*
888 *Integrative Agriculture* 19:2549-2560.

889

890

Tables

Table 1. Strains, plasmids and primers.

	Characteristics or sequence	Reference
Strains		
<i>Pseudomonas fluorescens</i>		
SBW25	WT, produces viscosin.	[23]
SBW25 Δ viscA	Impaired in viscosin production: viscA::TnMod Km ^r	[22]
Plasmids		
pME9407	Delivery plasmid for mini-Tn7- <i>mcherry</i> ; pME3280a carrying <i>mcherry</i> placed under P _{tac} control; Ap ^r Gm ^r	[8]
pUX-BF13	Helper plasmid encoding Tn7 transposition functions; R6K-relicon; Ap ^r	[19]
Primers		
mCherry_Fw	5'-GCCCGTAATGCAGAAGAAG-3'	This study
mCherry_Rv	5'-GTGTAGTCCTCGTTGTGGGA-3'	This study
799F	5'-AACMGGATTAGATACCCKG-3'	[29]
1193R	5'-ACGTCATCCCCACCTTCC-3'	[30]
1380F	5'-GCCTCCCTCGCGCCATCAG-3'	[32]
1510R	5'-GCCTTGCCAGCCCGCTCAG-3'	[32]

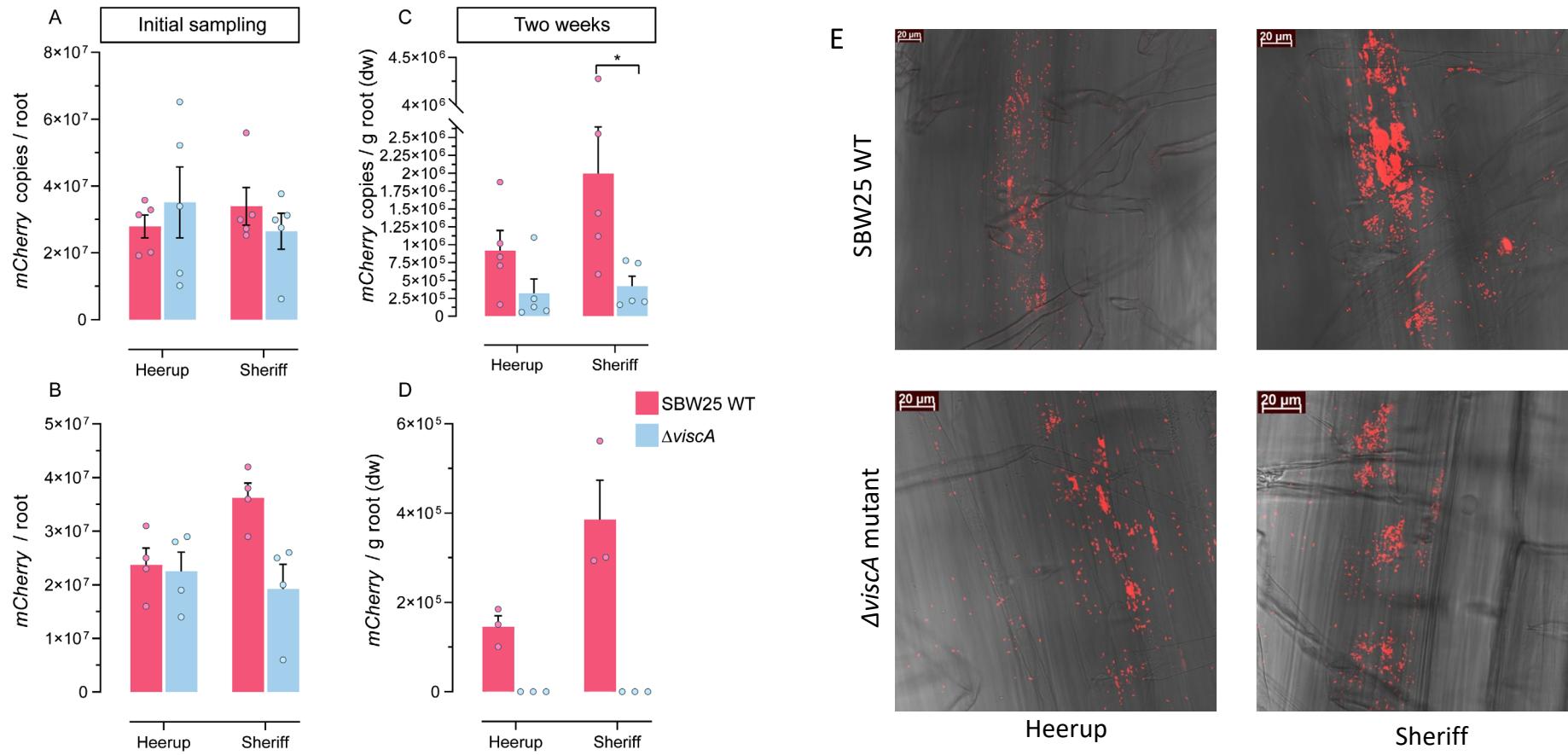


Fig.1 Colonization ability of *P. fluorescens* SBW25 WT and *P. fluorescens* SBW25 Δ viscA. (A) qPCR enumeration of inoculated bacteria immediately after inoculation (n=5). (B) CFU enumeration of inoculated bacteria immediately after inoculation (n=4). (C) qPCR enumeration of inoculated bacteria in the rhizoplane at two weeks after inoculation (n=5). (D) CFU enumeration of inoculated bacteria in the rhizoplane at two weeks after inoculation (n=3). Bars represent the mean + standard deviation, and each point represents a sample. Asterisks above histograms indicate whether two groups are significantly different (t-test, $p < 0.05$). (E) microscopy of 2 weeks old plants inoculated with mCherry-tagged *P. fluorescens* SBW25 WT and *P. fluorescens* SBW25 Δ viscA, respectively.

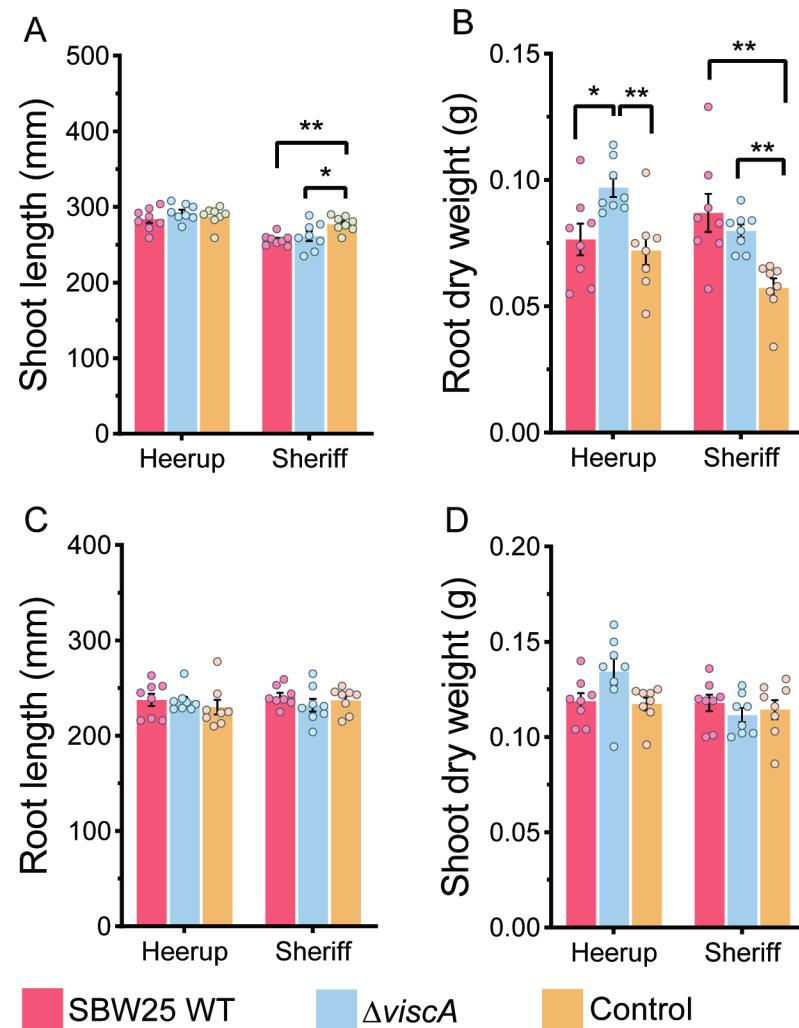


Fig.2 The effect of inoculation with *P. fluorescens* SBW25 WT or *P. fluorescens* SBW25 Δ viscA on plant growth (n = 8). (A) Shoot length. (B) Root dry weight. (C) Root length. (D) Shoot dry weight. Bars represent the mean + standard deviation, and each point represents a sample. Asterisks above histograms indicate whether two group are statistically significantly different as assessed by one-way ANOVA followed by a Tukey HSD test: * $P < 0.05$, ** $P < 0.01$.

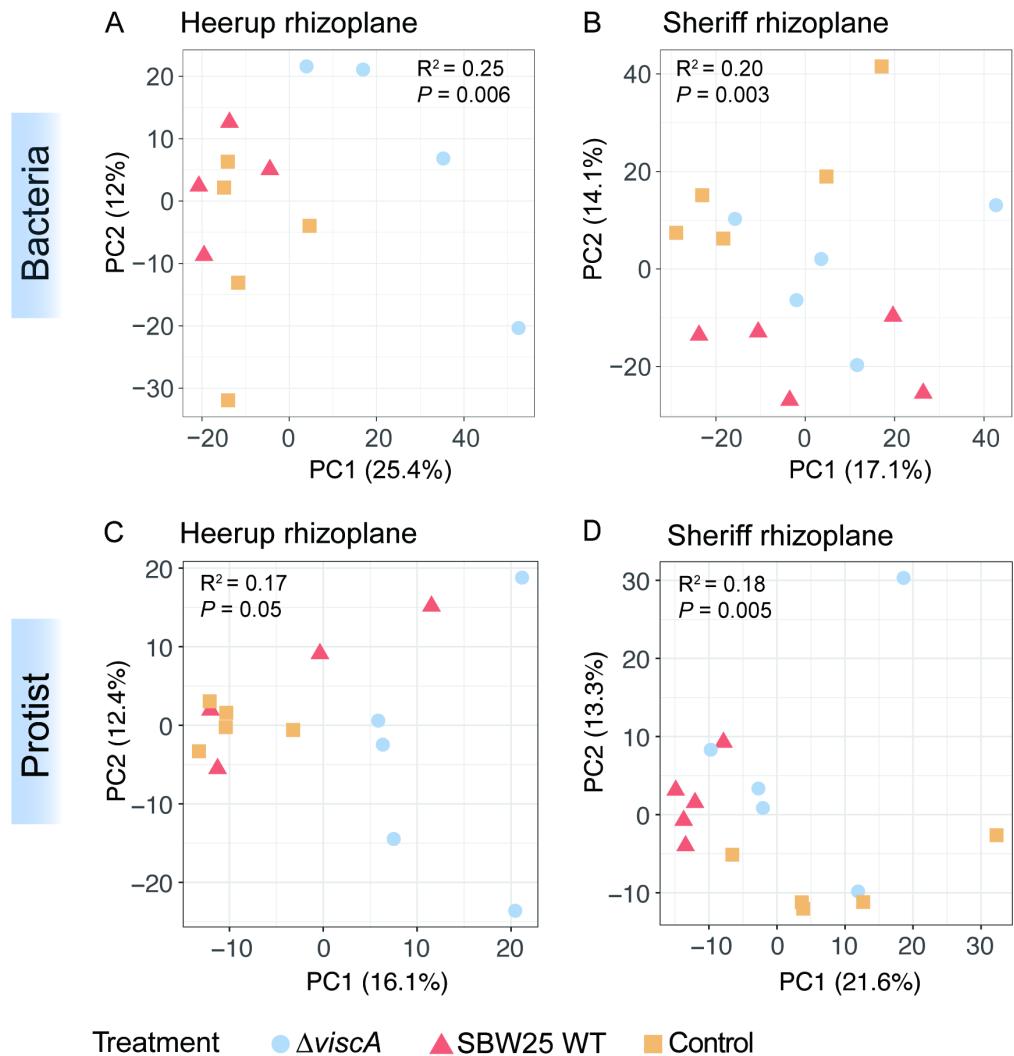


Fig.3 Principal Component Analysis (PCA) based on Aitchison distances of bacterial and protist communities in each subset. (A) Bacteria from the Heerup rhizoplane. (B) Bacteria from the Sheriff rhizoplane. (C) Protist from the Heerup rhizoplane. (D) Protist from the Sheriff rhizoplane. The models were validated using an ANOVA-like permutation test (999 permutations) as indicated by the P-value. R² is expressed as the proportion of the mean sum of squares obtained from PERMANOVA. Each symbol represents individual sample points and samples are colored for inoculation treatment.

Sheriff rhizoplane

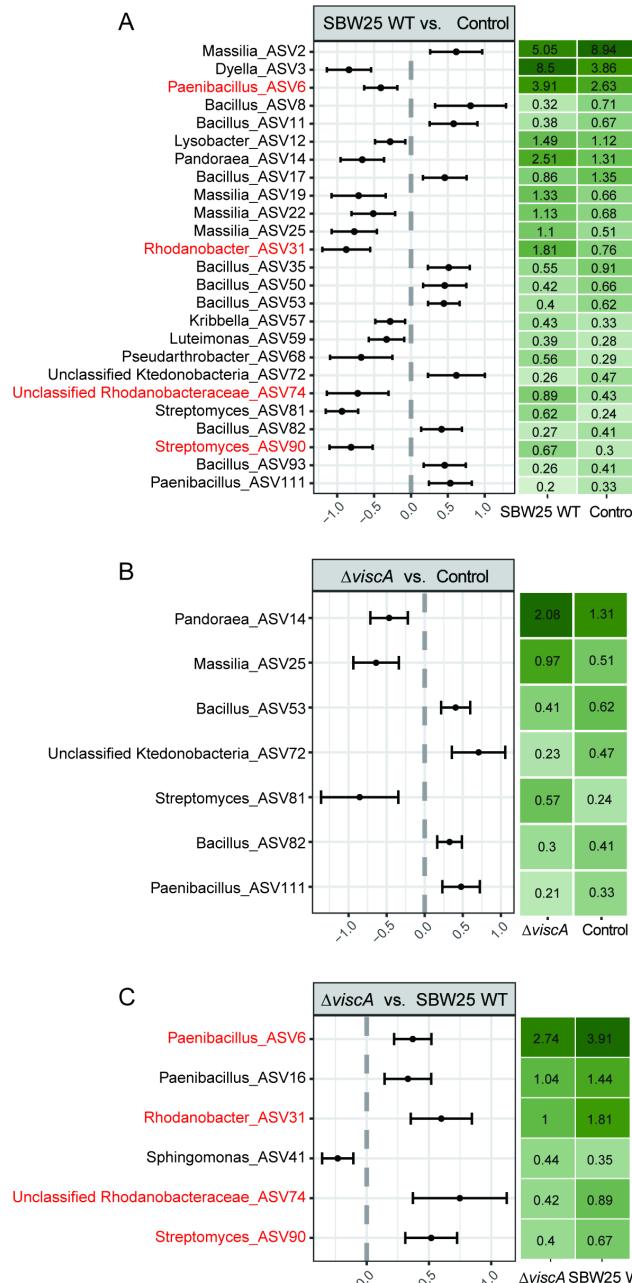


Fig.4 The bacterial ASVs/genera with significant differences in relative abundance between inoculation treatments in Sheriff. (A) Significant differences in ASVs between the *P. fluorescens* SBW25 WT inoculation and Control groups. (B) Significant differences in ASVs between the *P. fluorescens* SBW25 $\Delta viscA$ inoculation and Control groups. (C) Significant differences in ASVs between the *P. fluorescens* SBW25 $\Delta viscA$ and *P. fluorescens* SBW25 WT groups. The differential abundance was determined using beta-binomial regression with the corncob. Only ASVs having an estimated differential abundance of < -1 or > 1 and P-values adjusted for multiple testing < 0.05 (FDR < 0.05) were considered significant. The red colored ASVs indicate that inoculation with SBW25 WT showed a significant increase in ASVs compared to both control and mutant treatment.

Heerup rhizoplane

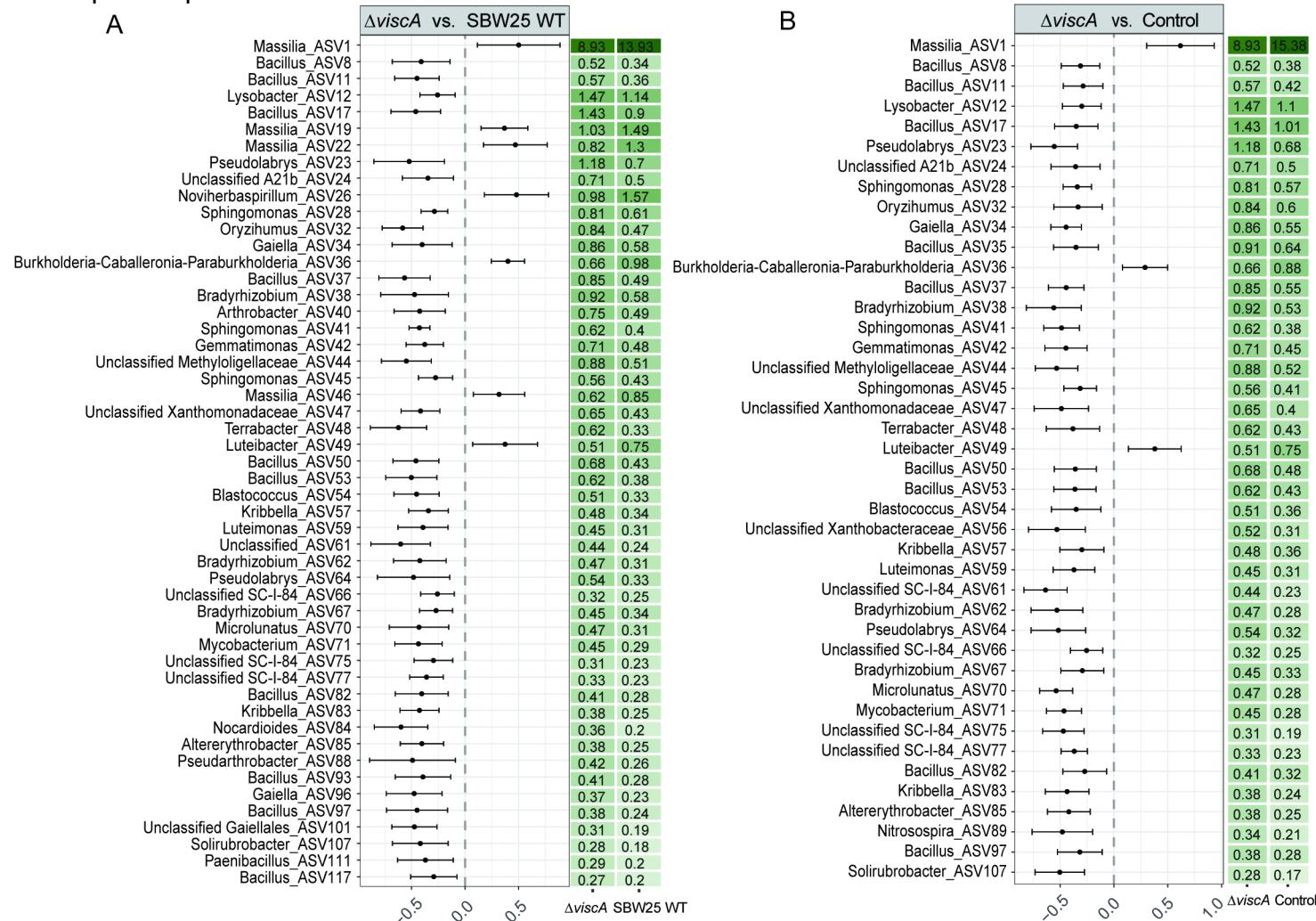
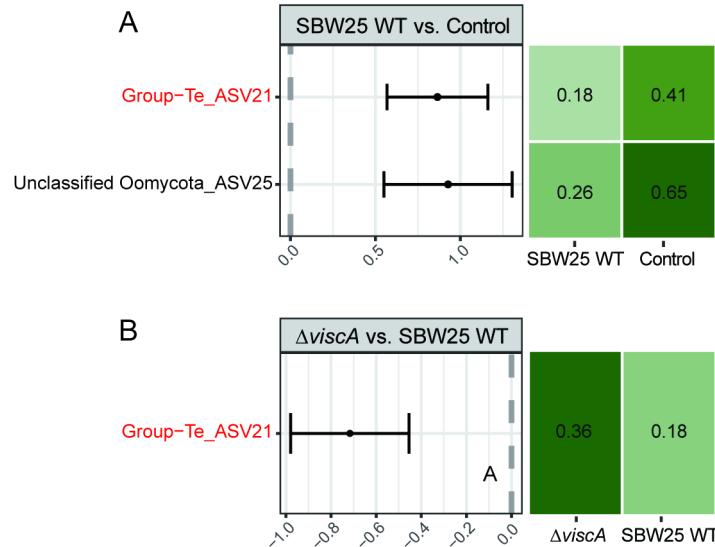



Fig.5 The bacterial ASVs/genera with significant differences in relative abundance between inoculation treatments in Heerup. (A) Significant differences in ASVs between the *P. fluorescens* SBW25 ΔviscA and *P. fluorescens* SBW25 WT groups. (B) Significant differences in ASVs between the *P. fluorescens* SBW25 ΔviscA inoculation and Control groups. No significant difference in ASVs was found between SBW25 WT treatment and control treatment in Heerup rhizoplane. The differential abundance was determined using beta-binomial regression with the corncob. Only ASV that had an estimated differential abundance of < -1 or > 1 and P-values adjusted for multiple testing < 0.05 (FDR < 0.05) were considered significant.

Sheriff rhizoplane

Heerup rhizoplane

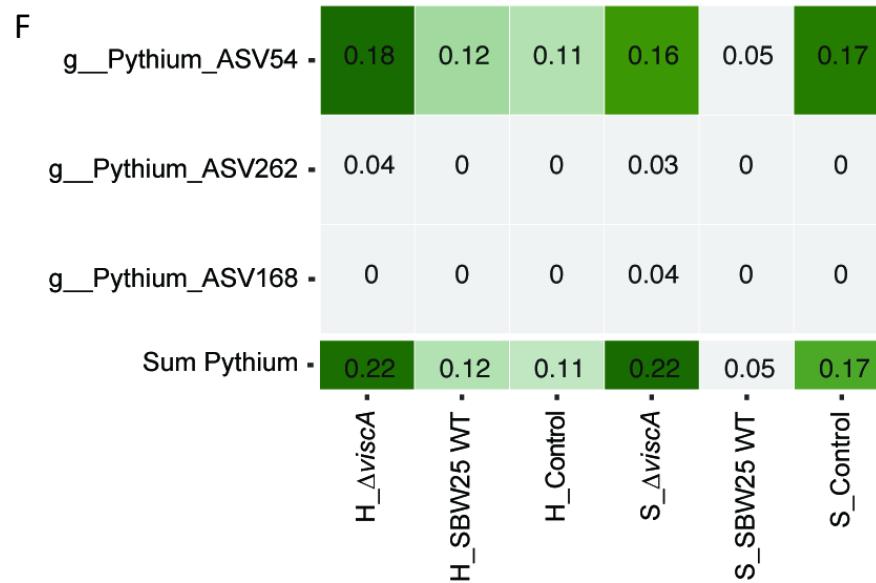
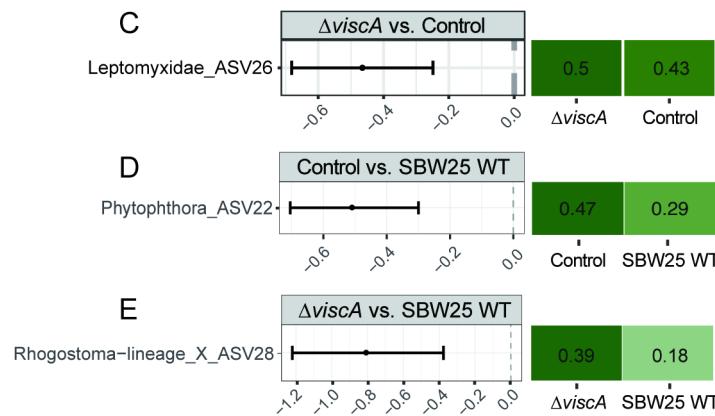



Fig.6 The protist ASVs/genera with significant differences in relative abundance between inoculation treatments in Heerup and Sheriff. (A) Significant differences in ASVs between *P. fluorescens* SBW25 WT inoculated and control groups in Sheriff. (B) Significant differences in ASVs between the *P. fluorescens* SBW25 $\Delta viscA$ and *P. fluorescens* SBW25 WT groups in Sheriff. (C) Significant differences in ASVs between the *P. fluorescens* SBW25 $\Delta viscA$ inoculation and Control groups in Heerup. (D) Significant differences in ASVs between the Control and *P. fluorescens* SBW25 WT groups in Heerup. (E) Significant differences in ASVs between the *P. fluorescens* SBW25 $\Delta viscA$ and *P. fluorescens* SBW25 WT groups in Heerup. In Sheriff rhizoplane samples, no significant differences in ASVs were found between the $\Delta viscA$ and the control treatment. (F) The relative abundance of *Pythium* in the rhizoplane was analyzed in each group. The mean relative abundance of all *Pythium* in each treatment group (n=5). Sum represents the abundance of these three ASVs for each group. H: Heerup; S: Sheriff. The red colored ASVs indicate that inoculation with SBW25 WT showed a significant decrease in ASVs compared to both control and mutant treatment.