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Highlights 

 
• Diallel panel for dissecting genetic components underlying gene expression variation 

• Non-additive components account for 36% of gene expression trait heritability 

• Most cis-regulatory variation is buffered by additional trans-acting variants 

• Genes under trans-regulation show high non-additive variance and functional coherence 

 

 

Summary 

 
Gene expression variation, an essential step between genomic variation and phenotypic landscape, is 

collectively controlled by local (cis) and distant (trans) regulatory changes. Nevertheless, how these 

regulatory elements differentially influence the heritability of expression traits remains unclear. Here, we 

bridge this gap by analyzing the transcriptomes of a large diallel panel consisting of 323 unique hybrids 

originated from genetically divergent yeast isolates. We estimated the broad- and narrow-sense 

heritability across 5,087 transcript abundance traits and showed that non-additive components account for 

36% of the phenotypic variance on average. By comparing allelic expression ratios in the hybrid and the 

corresponding parental pair, we identified regulatory changes in 25% of all cases, with a majority acting 

in trans. We further showed that trans-regulation could underlie coordinated expression variation across 

highly connected genes, resulting in significantly higher non-additive variance and most likely in some of 

the missing heritability of gene expression traits.  
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Introduction 

 
Gene expression is an important molecular step translating genotypes into phenotypes, and its 

misregulation can have broad consequences on organismal traits1–4. Dissecting the regulatory changes that 

underlie gene expression variation and its heritability can therefore provide important insights into the 

genetic basis of phenotypic diversity5–7. Differences in gene expression between individuals are 

collectively influenced by variation in local regulatory elements (cis-acting) and distant regulatory genes 

(trans-acting)3. The interplay between cis- and trans-acting variants reflect the complex gene regulatory 

network and underlie the heritable gene expression variation in a population.  

The identification of cis- and trans-regulatory variants in a population typically relies on statistical 

associations between genetic variants and gene expression levels through large-scale genomic and 

transcriptomic analyses. Mapping the loci involved in gene expression variation, i.e. eQTL (expression 

Quantitative Trait Loci), often requires a large population to have enough statistical power, especially to 

detect trans-eQTL due to the high number of possible positions to test compared to cis-eQTL8,9. As a 

result, most human eQTL analyses using GWAS are limited to detecting only cis-acting variants10–12. By 

contrast, population-wide transcriptomic surveys in model systems consistently show that trans-eQTL are 

more common than cis-eQTL and collectively explain a larger fraction of gene expression variance13–16. 

However, even considering the effects of both cis- and trans-eQTL, the total phenotypic variance 

explained remained modest8,14,17–20. Such variant-centric strategy overlooks the complex interaction 

between cis- and trans-regulatory variants acting on the same trait and possibly leads to some extent the 

observed missing heritability. 

Another way to identify cis- and trans-regulatory variation is through comparative analyses of allele-

specific expression (ASE) patterns across pure-bred parental lines and their F1 hybrid3. While differences 

in allelic expression levels both within the hybrid and between parental lines indicate a cis-regulatory 

change, a trans-regulatory change will result in different expression levels in the parents but no difference 

in allelic expression within the hybrid as the trans-acting variant act equally on both alleles. Compared to 

eQTL analyses, ASE-based strategy focuses on the regulatory patterns at the gene level, better captures 

the biological reality, and is not affected by the statistical challenges like GWAS. However, such a 

strategy is often limited to one or a few parent-hybrid trios, where population-level variation is ignored. 

So far, ASE-based cis- and trans-regulatory studies have been mainly concentrated in identifying 

expression divergence between species of Drosophila, mice, yeasts and several plants21–26. Several studies 

have used intraspecific pairs, but their scope is limited and they do not reflect the population-wide 

diversity27.  
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A gene-centric view of the regulatory variation in a population should provide deeper insights into how 

cis and trans effects contribute to the heritability of gene expression. From this perspective, the ASE-

based method has a unique advantage as heritability can be inferred based on parent-offspring regression, 

and both additive and non-additive components can be estimated with sufficiently large number of parent-

hybrid trios. In comparison, variant-centric methods such as eQTL analysis mainly focus on the additive 

effect (narrow-sense heritability or h2), whereas the total genetic effect on phenotypic variance (broad-

sense heritability or H2) remains elusive. Narrow-sense heritability estimated for gene expression traits in 

humans and other model systems are low, ranges from ~0.06 to ~0.30 depending on the studies8,14,17–19, 

and evidences based on familial data in human suggest non-additive genetic component could explain part 

of the missing heritability in gene expression17,28. In fact, gene-centric analysis of regulatory variation at 

the population scale is still lacking and therefore how regulatory changes contribute to additive and non-

additive genetic components in gene expression have never been explored.  

Here, we bridge these gaps by generating high quality transcriptomes across a large diallel panel 

consisting of 323 unique F1 hybrids, originated from 26 genetically divergent parental yeast isolates. 

Taking advantage of this diallel design, we estimated broad- and narrow-sense heritability on 5,087 

transcript abundance traits. We showed that non-additive variance plays a major role in gene expression 

variation and accounts for 36% of the phenotypic variance on average. We calculated allele-specific read 

counts in parent-hybrid trios and characterized the regulatory patterns of approximately 300,000 gene-trio 

combinations. We found that trans-regulatory changes underlie the majority of gene expression variation 

in the population, with most cis-regulatory variation also being exaggerated or attenuated by additional 

trans effects. We further showed that trans-regulatory variation is the main force driving the non-additive 

variance of gene expression traits.  

 

Results  

 

The transcription landscape across a diallel hybrid panel 

 

We selected 26 genetically diverse natural isolates from the 1,011 yeast collection as the parental lines to 

generate a diallel hybrid panel29 (Figure 1A). The selected isolates were originated from a wide range of 

environments (Figure 1B) and different geographical locations (Table S1) to broadly represent de genomic 

diversity in the species. The nucleotide divergence between each pair of parental lines ranges from 0.03% 

to 1.10%, with a mean divergence of 0.59% (Figure 1C). Stable haploids of the 26 parental lines were 

previously generated by replacing the HO locus with an antibiotic resistance cassette30. We performed 

pairwise crosses and generated 351 genetically unique hybrids, including 325 heterozygous hybrids and 26 
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homozygous diploid parental types (Figure 1D, Table S2). We carried out RNA sequencing and obtained 

high quality transcriptomes for 323 unique hybrids, including all 26 homozygous parental lines, with a 

mean of 3.7 million reads per sample. Using the previously established pangenome annotations13,29, we 

obtained the expression levels (as transcript per million or tpm) for 6,186 genes that are expressed in at 

least half of the samples (tpm > 0), consisting of 5,770 core genes that are invariably present in all 26 
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Figure 1. Overview of the diallel design and the transcriptomic dataset. 
A. Neighbor-joining tree based on the genetic diversity of 1,011 yeast isolates29. 26 parental isolates 
selected for the diallel panel are highlighted in red. Representative clades are annotated as in29. See Table 
S1 for detailed origins of the parental isolates. B. The ecological origin and distribution of the selected 26 
parental isolates. C. Pairwise nucleotide diversity among the parental isolates. Mean divergence is 
indicated in red dashed line. D. Schematics of the diallel crossing design. Homozygous parental diploids 
are highlight in red. See Table S2 for detailed information for the generated hybrids. E. Schematics of the 
data acquisition strategy. For each hybrid the transcript abundance (transcripts per million or tpm) are 
measured for each annotated ORF, as well as allele specific read counts across all discriminating sites in a 
given hybrid. Parental allele counts were extracted from the coverage data at the same sites. F. Final data 
metrics and numbers of accessory and core genes included for the subsequent analyses. See Table S3 for 
detailed annotations. 
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parental lines and 422 accessory genes, the majority of which (291/422) correspond to S. paradoxus 

introgressed alleles (Figure 1E, Table S3, Datafile 1). We performed additional RNA sequencing for a 

subset of biological replicates, specifically for six heterozygous hybrids in duplicates and one parental 

diploid in triplicates (Table S2). Gene expression levels (tpm) correlate well between replicates, with 

correlation coefficients ranging from 0.92 to 0.99 with an average of 0.96 (Pearson’s R), indicating high 

reproducibility in our data (Figure S1A-B).  

 

We previously generated a species-wide pan-transcriptomic dataset involving 969 natural isolates from the 

same strain collection13. To evaluate the general gene expression behavior across the diallel hybrid panel 

against the previous population-level data, we calculated the mean expression level (i.e. abundance) and 

the mean absolute deviation across samples (i.e. dispersion) for each of the 6,186 genes in the final dataset. 

Both metrics showed good agreements between the diallel panel and the natural population, with a 

correlation coefficient of 0.79 for abundance and 0.72 for dispersion (Pearson’s R) (Figure S1C-D). These 

observations suggest that the diallel panel broadly captures the global gene expression variability of the 

population.  

 

Non-additive genetic components contribute significantly to gene expression variation 

 

Taking advantage of the diallel design, we calculated the broad- (H2) and narrow-sense heritability (h2) for 

each expression trait by estimating the combining abilities using the Griffing’s model31 (Methods). Briefly, 

for each heterozygous hybrid, the total expression level for a given gene can be decomposed into the average 

contributions of the parental lines (General Combining Ability or GCA), the contribution due to the 

combination of the parents in a hybrid (Specific Combining Ability or SCA), and the residual variation that 

is unrelated to the parental origins. In this context, the additive variance component for a given trait 

corresponds to the fraction of phenotypic variance explained by the sum of GCA variance from the parents, 

whereas the non-additive component corresponds to the fraction of phenotypic variance due to the SCA 

variance. The broad-sense heritability (H2) is therefore calculated as the sum of additive and non-additive 

genetic components, and the narrow-sense heritability (h2) correspond to the additive component only. We 

obtained H2 and h2 estimates for 5,087 out of the 6,186 expression traits (Methods). Across these traits, the 

estimated H2 ranges from 0.08 to 0.99 with a median of 0.75, while the h2 ranges from 0.08 to 0.98 with a 

median of 0.31 (Figure 2A, Table S4). We applied an orthogonal strategy to estimate the h2 based on the 

genome-wide variants and the kinship matrix across all hybrids using a generalized linear model (Methods). 

The resulting genome-wide additive heritability (h2
g) is highly correlated with the h2 obtained based on the 

diallel model (Pearson’s R=0.85, P-value < 2.2e-16) (Figure S2A).   
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The distribution of different variance components is skewed toward the non-additive component (H2-h2) 

(Figure 2B). Non-additive variance component accounts for 36% of phenotypic variance on average, with 

approximately 1/3 of the genome (1,758 genes) mainly under non-additive control (H2-h2 > 0.5). By contrast, 

only 476 genes are mainly additive (h2 > 0.5). Genes that are mainly controlled by the residual variance 

(1,352 genes, 1- H2 > 0.5) are characterized by an overall low phenotypic variance across the population 

(Figure S2B), suggesting variation due to expression stochasticity and random noise.  
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To explore the relationship between different variance components and gene functions, we ranked genes 

based on their additive, non-additive and residual variance and performed gene-set enrichment analyses 

(GSEA) using standard gene ontology (GO) biological process terms. Genes that are highly additive are 

only significantly enriched for a couple of small terms related to protein transport to vacuole (GO:0043328; 

GO:0043162) (Figure 2C, Table S5). Highly non-additive genes showed the most significant enrichments, 

specifically for terms related to translation (GO:0006421; GO:0002181), ribosomal biogenesis 

(GO:0042254; GO:0042273) and sulfur amino acid biosynthesis (GO:0000097; GO:0009092; GO:0009070) 

(Figure 2C, Table S5). No significant enrichment (FDR < 5%) were found for genes that show high residual 

variance (Figure 2C, Table S5). These results suggest that genes with similar biological functions could 

show similar variance component profiles, most notably for genes that are mainly controlled by non-

additive variance.  

We examined the expression coherence (i.e. co-regulated expression patterns) by calculating the pairwise 

expression profile similarity among genes that belonged to all GO terms with a nominal enrichment P-value 

< 0.05 for additive, non-additive and residual variance components (Figure 2D). Compared to all GO terms, 

terms enriched for non-additive variance showed significantly higher pairwise gene expression profile 

similarity on average (one-sided Wilcoxon test, P-value < 2.2e-16), contrasting to terms that are enriched 

for additive or residual variance (Figure 2D). As examples, we took the top two leading edges for GO terms 

with the lowest enrichment P-value for each of the three variance component rankings (Figure 2E-M). The 

top leading edges that are highly additive correspond to COS8 (H2=0.99, h2=0.95) and COS1 (H2=0.92, 

Figure 2. Broad- and narrow-sense heritability for genome-wide gene expression traits. 
A. Distributions of broad- (grey) and narrow-sense heritability (white) estimates based on the diallel hybrid 
panel for 5,087 gene expression traits. transcript abundance in white and gray respectively. See Table S4 
for all heritability estimates. B. Ternary plot showing the percentage of phenotypic variance controlled by 
additive, non-additive and residual variance components. Dashed line marks the 50% threshold for each 
dimension. C. Gene-set enrichment analysis (GSEA) for additive, non-additive and residual variance 
components, using standard GO biological process (BP) terms. All terms with a nominal P-value < 0.05 are 
shown. Color scale corresponds to the normalized enrichment scores. Size of the circles indicate the 
number of genes annotated on each term. Full circle represents GO terms with an FDR<0.05. See Table S5 
for detailed enrichment results. D. Mean pairwise expression profile correlation for genes in the same GO 
term with a nominal enrichment P-value < 0.05 for additive, non-additive and residual variance 
components. Significant differences between enriched and all terms are indicated with stars (n.s: non-
significant; ***: Wilcoxon test P-value < 2.2e-16. E-M. Example hybrid-midparent and hybrid profile 
correlations for genes with high additive (E-G), non-additive (H-J) and residual (K-M) variance 
components. Example genes correspond to the top two leading edges in the GSEA results. Dashed red lines 
indicate the one-to-one correlation line (slope = 1) for visual guide. The heritability estimated are indicated 
for each example gene pairs.  
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h2=0.89), both are ubiquitin cargos involved in protein transport to vacuole via the multivesicular body 

sorting pathway (GO:0043328). Both genes are indeed showing high additive effect as evidenced by the 

correlated expression levels between the hybrids and the mid-parent values (mean expression between the 

corresponding homozygous parental diploids) (Figure 2E-F). However, these two genes are not co-

regulated across the hybrids, with a profile similarity of ~0.46 between the gene pair (Pearson’s R) (Figure 

2G). Top leading-edge genes that are highly non-additive correspond to RPS25A and RPS31, both are 

ribosomal proteins involved in translation. Both these genes are characterized by low correlations between 

the hybrid expression levels and the mid-parent values (Figure 2H-I). Yet, these two genes show highly 

correlated expression profiles, suggesting co-regulated expressions in the hybrids that is not predicted based 

on the parental mean. Finally, for genes that show high residual variance, the most significant GO term 

corresponds to RNA polymerase II transcriptional preinitiation complex assembly (GO:0051123), with a 

nominal enrichment P-value = 0.001 and an FDR = 0.76. The top leading edges correspond to MED2, a 

subunit of the RNA polymerase II mediator complex; and TAF14, a DNA binding protein involved in RNA 

polymerase II transcription initiation and in chromatin modification. As expected, no correlation is observed 

between the hybrid expression level and the mid-parent value (Figure 2K-L), nor between the expression 

profiles across hybrids (Figure 2M).  

Overall, the diallel design allowed us to effectively decompose the variance components associated with 

the majority of gene expression traits. Non-additive genetic variance contributes significantly to gene 

expression variation, explaining 36% of the phenotypic variance on average. Different variance components 

contribute unequally to genes with different cellular functions and the non-additive component showing the 

highest functional coherence in the hybrid panel. 

 

Widespread transcriptomic buffering via cis-trans compensation  

 

The genetic component of gene expression variation can be attributed to regulatory variants acting in cis 

and/or in trans. In principle, local DNA sequence variation that impact gene expression (e.g. mutations in 

promoter regions) are cis-acting, whereas trans-regulatory variants act distantly (e.g. transcription factors) 

and can occur anywhere in the genome. The diallel panel consists of pairwise combinations of a large 

number of parent-hybrid trios. For each trio, the regulatory variation in cis or trans can be determined by 

comparing the allelic expression in the hybrid to the corresponding expression levels in the parental lines. 

Specifically, for a given gene, if the expression difference between the two parental lines is due to cis-

regulatory change, the corresponding alleles will result in allele-specific expression (ASE) in the hybrid 

(Figure 3A). Conversely, in the case of trans-regulatory change, no allele-specific expression would be 

observed as the trans-acting factor impact equally both alleles in the hybrid background (Figure 3B).  
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Figure 3. Systematic characterization of regulatory variation across the population. 
A-B. Schematic depiction for cis- (A) and trans- (B) regulatory variation and the resulting allele-specific 
expression patterns across parent-hybrid trios. C. Regulatory variation patterns identified across 285,777 
gene-trio combinations. Log2 fold changes between alleles in the hybrid and between the parental lines at 
the same sites are indicated on x- and y-axis, respectively. Different regulatory patterns are color coded. D. 
Criteria for classifying different regulatory patterns based on 1- and 2-sample ASE test significance. See 
detailed description in Methods. E. Number and distribution for different regulatory patterns across the 
whole dataset. Upper bar indicates the number of the “null” category vs. other categories with significant 
regulatory changes. Pie chart indicate the proportions of all significant regulatory patterns, with outer ring 
indicating cases that are under cis- (red) or trans- (blue) controls. F. Number of gene-trio combinations per 
regulatory category (left panel) and the number of unique genes impacted in the corresponding groups 
(right panel). See detailed results in Datafile 2.  
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We determined the allele-specific read counts at each discriminating site within gene open reading frame 

(ORF) in the heterozygous hybrids and in the corresponding parental lines. We removed low coverage sites 

(sum of hybrid allele counts < 30 and sum of parental counts < 60) and excluded cases where one of the 

gene copies is absent in either one or both parents. We also excluded any trios that showed inconsistent 

chromosome-level allele balance patterns in the hybrid or between the parental lines (Methods). In total, 

179 unique parent-hybrid trios were retained for further analyses, comprising ~1.2 M sites across 285,777 

gene-trio combinations (Datafile 2). The final data covered 5,089 genes, including 219 accessory genes 

from S. paradoxus introgression (Datafile 2). On average, ~1,600 genes contained at least one such 

discriminating site per trio (Figure S3A-B), for which the regulatory variation can be inferred by comparing 

the allelic ratio change in the hybrid to the parental ratio at the same sites.  

For each of the 285,777 gene-trio combinations, we performed 1-sample ASE tests both in the hybrid and 

between the parental pair by considering the allele counts across all sites within the same gene (Methods). 

For cases that showed significant allelic ratio differences (|log2 fold-change| > 1 & FDR < 0.05) in both the 

hybrid and the parents, 2-sample ASE tests were subsequently performed to identify significant changes 

between the hybrid and parental allelic ratios (FDR < 0.05) (Methods). Based on test results, we categorized 

cases into different regulatory patterns (Figure 3C-D). Overall, ~76% (217,297out of 285,777) of all cases 

showed no significant allelic expression differences in either the hybrid or the parents and are classified as 

the “null” type, while ~24% (68,480 out of 285,777) displayed significant regulatory variation (Figure 3E). 

Among these 68,480 cases, ~16% (11,227 out of 68,480) showed evidence for cis effect while ~96% 

(65,679 out of 68,480) showed trans effect, with ~12% (8,423 out of 68,480) showing significance for both 

(Figure 3E). Cases that are exclusively controlled by cis or trans effects represent ~4% (2,804 out of 68,480) 

and ~84% (57,253 out of 68,480), respectively (Figure 3F). Cases with combined cis and trans effects were 

further grouped into four distinct regulatory patterns (Figure 3C-D). In the “attenuating” group (~0.9%, 590 

out of 68,480), the cis effect in the hybrid is decreased in magnitude compared to the parental expression 

levels by additional trans factors (Figure 3D). The “reinforcing” group (~3%, 1,980 out of 68,480) describes 

the opposite event where the cis effect in the hybrid is exaggerated in magnitude compared to the parental 

expression variation (Figure 3D). The “compensatory” group (~8%, 5,403 out of 68,480) corresponds to 

the majority of cases with both cis and trans effects. In these cases, the cis regulatory effect is completely 

cancelled out by additional trans factors, resulting in significant allele-specific expression within the hybrid 

but no expression difference between the parents (Figure 3D). Finally, the “reverse” group corresponds to 

extreme cis/trans interaction events, where the allelic variation in the hybrid is in complete opposite 

direction than the parental variation (Figure 3D). These events are rare and represent 0.7% (450 out of 

68,480) of all cases with significant regulatory variation (Figure 3D-F).  
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Globally, trans-regulatory variation is more common than cis, which is consistent with previous 

observations using eQTL analyses8,13. Remarkably, the majority of cis-regulatory variation are influenced 

by additional trans effect. Among all gene-trio combinations showing cis-regulatory variation, ~75% (8,423 

out of 11,227) also show trans-regulatory changes and most of such trans effects act in opposite direction 

relative to the observed cis effect, specifically in the “attenuating” (590 out of 11,227; ~5%) and the 

“compensatory” (5,403 out of 11,227; ~48%) groups. These observations suggest that cis-regulatory 

variations are globally compensated in trans, resulting in a general buffering effect at the transcriptome 

level.  

 

Regulatory variation in trans plays a major role in non-additive heritability 

 

In our diallel scheme, the regulatory variation associated with each gene is characterized across multiple 

hybrid-parent trios, which allows us to probe how different regulatory changes at the individual level (i.e. 

any given gene-trio combination) impact global gene expression features such as heritability and different 

variance components across the full hybrid panel. In total, 3,791 genes (out of 5,089 with discriminating 

sites) are characterized in at least 10 hybrids, which were further analyzed (Figure S4A, Datafile 2). For a 

given gene, the regulatory variation across different hybrids can be relatively conserved. For example, 

GTO1, encoding for a glutathione transferase, is most exclusively controlled in cis (Figure 4A). The cis-

regulatory change is due to a single parental line, Y12, an isolate associated with Asian fermentation where 

GTO1 is known to be differentially overexpressed compared to other subpopulations13. Another example 

with conserved regulatory variation is seen for CYC7, encoding for an isoform of cytochrome c, in which 

case the regulatory variation among different hybrids is mainly trans-acting (Figure 4B). For cases with 

combined cis and trans effects such as the “compensatory” pattern, the regulatory variation across hybrids 

can be complex, such as the case for RPL4B, encoding for a ribosomal subunit (Figure 4C). In this case, 

while the majority of hybrids show a “compensatory” pattern, other patterns are also seen due to different 

combinations of cis- and trans- acting factors in different hybrids.  

We ranked genes based on the number of “cis only”, “trans only” and “compensatory” cases across the 

hybrid panel and performed GSEA based on standard GO biological processes terms in order to see if genes 

with similar cellular functions could display conserved regulatory patterns across the population. 

Significant enrichments were observed for the “compensatory” and the “trans only” groups (Figure 4D). 

Genes that showed the most “compensatory” patterns are enriched for cytoplasmic translation 

(GO:0002181) (Figure 4D, Table S5). On the other hand, genes that showed the most “trans only” cases 

are enriched for cellular respiration related processes (GO:0022904; GO:0042775; GO:0045333; 
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GO:0006122), glycogen metabolic processes (GO:0005977; GO:0032787) and ribosome biogenesis 

(GO:0042254) (Figure 4D, Table S5).  

 

We further categorized genes based on the major regulatory pattern present across hybrids (Methods). We 

examined the behavior of genes across various global expression features (Figure 5A-C) and genetic 

variance components (Figure 5D-F). As expected, genes that are mainly under cis control show overall low 

expression abundance (Figure 5A), high expression dispersion (Figure 5B) and low connectivity (Figure 

5C), all of which are features associated with genes that tend to show the most cis-eQTL based on our 

previous population-level transcriptomic analysis13. Indeed, cis-regulated genes also show significantly 

higher proportion of additive variance (h2) (Figure 5D). By contrast, genes that are mainly under trans 

control are highly expressed (Figure 5A), less dispersed than cis controlled genes (Figure 5B) and highly 

connected on the global co-expression network (Figure 5C). Lastly, genes that show the most compensatory 

Figure 4. Functional enrichments for genes with distinct regulatory patterns and associated examples.  
A-C. Examples of genes that are mainly under cis (A), trans (B) and compensatory (C) regulatory controls. 
Log2 fold changes between alleles in the hybrid and between the parental lines at the same sites are shown. 
Different regulatory patterns are color coded. D. GSEA results for genes that are mainly under cis, trans and 
compensatory regulatory controls. All go terms with a nominal P-value < 0.05 are shown. Terms with 
significant enrichment (FDR < 0.05) are shown as solid circles. Color scale correspond to the normalized 
enrichment scores. Circle sizes indicate the number of genes associated with each term. See detailed 
enrichment results in Table S6.  
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patterns display intermediate features compared to trans controlled genes for expression abundance and 

connectivity (Figure 5A&C). However, this group of genes show the lowest expression dispersion, which 

is consistent with the cis-trans compensation effect (Figure 5B). In general, both compensatory and trans 

controlled genes showed significantly higher proportion of non-additive variance (H2-h2) compared to genes 

that are mainly cis-regulated (Figure 5E). We further compared the hybrid expression abundance to the 

mid-parent value for each gene-trio combination and identified cases that deviated from the parental 

expectations across different regulatory variation groups (Figure S4B) (Methods). The majority of cases 

with expression deviation is attributed to trans-regulatory changes (~46%, 3,166/6,894) (Figure S4C). 

Nonetheless, the “compensatory” group showed higher proportion of cases with mid-parent deviation as 

well as significantly higher magnitude of such deviation compared to the “cis only” and “trans only” groups 

(Figure S4C-D).  
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Figure 5. Functional features associated with different regulatory variation patterns. 
Global gene expression features and their associations with major regulatory patterns (A-C). A. Expression 
abundance as the mean log2(tpm+1) across diallel panel. B. Expression dispersion calculated as the mean 
absolute deviation of log2(tpm+1) across samples. C. Connectivity calculated as the weighted network 
connectivity across previous population-level pan-transcriptomic analyses with 969 natural isolates13. P-
values indicated corresponds to two-sided Wilcoxon tests. Variance components and their associations 
with major regulatory patterns (D-F). D. Additive variance component (h2). E. Non-additive variance 
component (H2-h2). F. Residual variance component (1-H2). The number of genes belonging to different 
regulation types are indicated on the x-axis. See assigned major regulatory patterns for genes in Table S7.   
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Overall, our data suggest that trans-regulatory changes underlie highly connected, core cellular processes 

and is the major contributor to the non-additive variance component in gene expression. Cis-trans 

compensation events, while less frequent than trans-only cases, contribute significantly to non-additivity 

as well due to higher magnitude of parent-hybrid expression deviation.  

 

S. paradoxus introgression genes show more cis-regulation than their S. cerevisiae counterparts 

 

Genes originated from S. paradoxus introgression constitute ~30% of the S. cerevisiae accessory genome29 

and contribute significantly to heritable gene expression variation at the population-wide pan-transcriptome 

landscape in the species13. These introgressed genes are mainly found in specific subpopulations such as 

the Alpechin clade29. In the diallel hybrid panel, two Alpechin isolates were included as parental lines 

(Table S1), which offered a unique opportunity to examine and compare the regulatory variation among 

alleles within (S. cerevisiae vs S. cerevisiae) and between species (S. cerevisiae vs S. paradoxus). In total, 

the regulatory variation for 219 unique introgressed genes were included in our dataset, corresponding to 

3,192 gene-trio combinations (between species alleles) (Datafile 2). Among the 219 introgressed genes, 

202 also showed discriminating sites among their S. cerevisiae counterparts, corresponding to 11,871 gene-

trio combinations (within species alleles) (Datafile 2). The number of gene-trio combinations with between 

species allele pairs is mainly associated with the two parental lines from the Alpechin clade, whereas the 

number of cases with within species allele pairs is more randomly distributed across parental lines (Figure 

S5A). Globally, for the same set of 202 genes, between species allele pairs show significantly more 

regulatory variation than within species allele pairs (Figure 6A). Such difference is mainly due to higher 

proportions of cis-regulatory changes observed for the between species allele pairs, including all cis-trans 

interaction patterns (Figure 6A, Figure S5B). 

To understand the global regulatory preferences for introgressed alleles and the native S. cerevisiae alleles 

at the gene level, we assigned the major regulatory pattern observed for between and within species allele 

pairs and compared the two assignments for the same gene (Methods). In total, 116 out of the 202 genes 

showed conserved regulatory patterns, the majority (99/116) of these cases are regulated in trans both for 

the introgressed alleles and the S. cerevisiae alleles (Figure 6B). The remaining 86 genes showed various 

types of switches of regulation mode between the introgressed alleles and the S. cerevisiae alleles (Figure 

6B). Most remarkably, all mainly cis-regulated introgressed alleles showed mainly trans-regulatory 

variation for their S. cerevisiae counterparts (Figure 6B). For example, the COX6 gene encodes for the 

subunit VI of the cytochrome c oxidase and is essential for cellular respiration. The S. paradoxus 

introgressed allele show lower expression levels due to cis-regulatory variation, whereas the S. cerevisiae 

alleles are mainly trans-regulated (Figure S5C). The most important types of switches going from between   
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Figure 6. Differential preference of regulatory patterns between introgressed and native alleles A. 
Distribution and proportions of different regulatory patterns for within and between species allele pairs. B. 
Chord diagram depicting the direction and number of switches in main regulatory modes from between 
species to within species allele pairs for the same genes. Outer axis indicates the number of gene events. 
Inner arcs indicate the directional change with the flow starting from between species (with inner arc, color 
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the same sites are indicated on x- and y-axis, respectively. Different regulatory patterns are color coded. D. 
Additive variance component associated with genes that show variable and conserved regulatory patterns 
for between and within species allele pairs. Wilcoxon test P-value is shown. E. Connectivity associated 
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species to within species allelic regulation modes are “null to trans” (30 genes), “compensatory to trans” 

(21 genes) and “cis to trans” (11 genes) (Figure 6C). Each of these switches impact the majority of genes 

within their respective regulation pattern found in the introgressed alleles, specifically with 30 “null to trans” 

out of 46 null in total, 21 “compensatory to trans” out of 32 compensatory in total, and 11 “cis to trans” 

out of 12 cis regulated genes in total (Figure 6B-C). Overall, genes with conserved regulatory patterns 

between the introgressed and the native alleles tend to show higher expression connectivity and lower 

additive phenotypic variance (h2) (Figure 6D-E). These observations suggest that heritable variation of gene 

expression related to introgression is collectively influenced by the functional integration of such genes to 

the global expression network (i.e. connectivity) as well as their regulatory variation due to interspecies 

differences between S. paradoxus and S. cerevisiae.  

 

Discussion 

 

Gene expression variation is a key molecular intermediate in the phenotypic landscape of a species. 

Understanding how cis- and trans-regulatory changes differentially influence the heritability of gene 

expression variation is therefore essential to understand the path from genome to traits. Taking advantage 

of a large diallel hybrid panel, we estimated the broad- and narrow-sense heritability (H2 and h2) across 

genome-wide gene expression traits and showed non-additive components explain higher proportion of 

the phenotypic variance compared to additive variance only (36% vs. 31% on average). We systematically 

characterized the gene-level regulatory patterns across the population and showed that trans-regulatory 

changes are the main driver underlying the non-additive variance.  

It has been previously proposed that trans-regulatory changes might have higher tendency to cause gene 

misexpression than cis-variation in the hybrid compared to the parental mean and therefore lead to non-

additive variance32. However, our data, which tested multiple parental combinations for the same set of 

genes, show that trans-regulatory variation is equally likely to cause hybrid expression deviation from the 

parental mean than cis-variation. While trans-regulatory variation appears to be the most important 

contributor of non-additive variance components in gene expression, the precise underlying mechanism is 

still unclear. 

Our results suggest there are two main paths towards high non-additive variance in gene expression due to 

trans effects. The first one is through cis-trans interactions, most notably the compensatory effect that 

completely mask the cis effect by additional trans factors. Indeed, according to our data, 75% of all cis 

effect are exaggerated or attenuated by additional trans variation, and 50% resulted in complete cis-trans 

compensation. All cis-trans interaction patterns show higher tendency for hybrid misexpression and/or 

higher magnitude of such misexpression. This observation is also supported by previous analysis of the 
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expression of ~30 genes in a hybrid of two Drosophila species33. Furthermore, we also showed that genes 

under cis-trans compensation tend to show higher fraction of non-additive variance. In principle, such 

effect will decrease the power for statistical association in eQTL analyses and will likely result in the 

missing heritability problem that is commonly observed for gene expression traits.  

The second path to non-additive variance is through coordinated expression change in highly connected 

co-expression modules. Previously, we generated and analyzed the population-level pan-transcriptome 

across ~1,000 natural yeast isolates13. We showed that the global transcriptome landscape is consistent 

with a central, highly connected co-expression network and an auxiliary, lowly connected network 

consists of subpopulation-specific expression signatures13. The highly connected co-expression network is 

robust to genetic variation in the population and showed significantly less eQTL than the auxiliary level13. 

Here, with the diallel hybrid panel, we show that genes with high non-additive variance tend to be highly 

connected on the global expression network and are often controlled in trans. Such non-additive variance 

is invisible to canonical association tests, which could partly explain the robustness of the co-expression 

modules to genetic variation in the population. Furthermore, our analyses on the set of 202 introgressed 

genes also support the link between connectivity and non-additive variance. Introgressed genes that are 

both trans-regulated between interspecies and intraspecies allele pairs show significantly higher 

connectivity and non-additive variance than cases with variable regulatory patterns. 

 

Overall, our study highlights that the transcriptome is globally buffered at the genetic level. Highly 

connected co-expression modules are robust to genetic variation in the population, either through trans 

compensation of cis-regulatory variation, or through coordinated trans-regulatory changes alone, with 

possible purging of cis-effect variants. Such buffering effect could result in significant non-additive 

variance that is not detectable via genome-wide association surveys and contribute to missing heritability.  

 

 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2023. ; https://doi.org/10.1101/2023.07.21.550013doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.21.550013
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

Materials and methods 

 

Description of the parental strains and diallel scheme 

 
A genetically diverse set of 26 parental strains was selected from the 1,011 strains collection with the focus 

of capturing as much of the genetic, ecological and geographical diversity of the species as possible (Table 

S1). Two stable haploid strains, MATa and MATalpha, carrying the KanMX or a NatMX cassettes in the HO 

locus respectively, were established for each parent, giving a total of 52 strains30. Parental strains of opposite 

mating types were crossed by overlaying haploid cells in a matrix on YPD media (1% yeast extract, 2% 

peptone and 2% glucose) and incubating them at 30°C overnight. The cells were then transferred to YPD 

media with G418 (200 mg/ml) and nourseothricin (100 mg/ml) and incubated at 30°C overnight to select 

for hybrid cells. We then transferred the selected hybrids on YPD media with nourseothricin and G418 to 

remove any remaining haploid cells. All procedures were done using the replicating robot ROTOR (Singer 

Instruments). In total, we obtained 351 genetically unique hybrids. 

We quantified the growth rates of each hybrid in liquid synthetic complete (SC) media with 2% glucose for 

48 hours (initial OD600nm: 0.1) using a 96-well microplate reader (Tecan Infinite F200 Pro). The hybrids 

were then grown in 96-format deepwell plates until mid-log phase (OD600nm ~0.3). A 750 μL suspension of 

each sample was then transferred to a 96-well filter plate (Norgen, #40008) where the media was eliminated 

by applying vacuum (VWR, #16003-836). Immediately after the media was eliminated, we flash-froze the 

cells in liquid nitrogen and stored them at -80°C. 

 

Sample preparation 

 
We extracted the mRNA from the hybrids using the Dynabeads® mRNA Direct Kit (ThermoFisher #61012). 

Cells were lysed with glass beads and incubated at 65°C for 2 minutes and mRNA was then selected with 

two rounds of hybridization of their polyA tails to magnetic beads coupled to oligo(dT) residues.  

We prepared cDNA sequencing libraries using the NEBNext® Ultra™ II Directional RNA Library Prep 

Kit (NEB, #E7765L) and following the manufacturer’s protocol. Briefly, 5 μL of purified mRNA is 

fragmented with a 15-minute incubation at 94°C and then reverse transcribed to cDNA. Next, a NEBNext 

Adaptor is ligated to the cDNA and finally a unique combination of dual indexes (manufactured by IDT®) 

is added to allow multiplexed sequencing. Finally, barcoded cDNA is amplified with 9 rounds of PCR 

(denaturation 10 seconds at 98°C, annealing/extension 75 seconds at 65°C). The amplified and barcoded 

cDNA fragments were eluted in 15 μL of 0.1X TE. 
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We quantified the concentration of the cDNA libraries with the Qubit ™ dsDNA HS Assay Kit (Invitrogen 

™) in a 96-well plate using a microplate reader (Tecan Infinite F200 Pro) with an excitation frequency of 

485 nm and emission of 528 nm. We pooled 1 μL of each library and fragment size was assessed with 

Bioanalyzer 2100 (Agilent™) using the High sensitivity DNA kit (#5067-4626). Finally, we generated 

equimolar sequencing pools of 96 samples. 

The pools were sequenced for 75 bp single-end with Nextseq 550 (Illumina™) sequencer at the EMBL 

Genomics Core Facility. After demultiplexing, we obtained 3.7 million reads per sample on average. The 

number of reads obtained in each sample are found in Table S2.  

 

Quantification of mRNA abundance 

 
The raw reads of each sample were mapped to a custom reference genome using STAR34 with the following 

parameters: 
--outSAMtype BAM SortedByCoordinate \ 
--outFilterType BySJout \ 
--outFilterMultimapNmax 20 \ 
--outFilterMismatchNmax 4 \ 
--alignIntronMin 20 \ 
--alignIntronMax 2000 \ 
--alignSJoverhangMin 8 \ 
--alignSJDBoverhangMin 1 

We generated a custom reference genome containing the 16 chromosomes of the S. cerevisiae reference 

genome (R64_nucl) and all the accessory ORFs (n=665) present in the parental strains as defined by the 

1,011 yeast genomes project (Peter et al., 2018) as additional chromosomes. In total, 323 hybrids had 

sufficient reads and were used in the subsequent analyses. We counted the reads aligning to each gene of 

the reference (n=6,285) and accessory (n=665) genomes with the featureCounts function of the R package 

subread35 with the countMultiMappingReads=F parameter to eliminate multi-mapped reads. For a given 

hybrid, if accessory genes that have orthologs in the reference genome were annotated as absent, we merged 

their reads counts to those of their reference genome counterparts. We then normalized mRNA abundance 

to the gene level by calculating the transcripts per million (tpm) of each gene. This gave us a list of tpm 

values for 6917 genes. We filtered out genes that have a zero tpm value in more than half of all samples, 

leading to a final dataset of 6186 genes. Raw counts and tpm values can be found in Datafile 1.  

 

Calculating gene-level expression features 
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We calculated the overall expression features for abundance, dispersion and connectivity for each gene 

across the diallel and across 969 natural isolates where the transcriptomes were characterized previously13. 

The abundance and dispersion are calculated as previously described13. Briefly, the expression abundance 

was calculated as the mean tpm levels across samples where the gene is present based on genome 

annotations. The dispersion corresponds to the mean absolute deviation of tpm levels across samples. The 

connectivity for a given gene is defined as the weighted network connectivity across all expressed genes. 

The connectivity is calculated using the softConnectivity function in the R package WGCNA36 with the 

transposed expression matrix as input. All expression features associated with each gene are integrated in 

Datafile 2. 

 

Heritability estimations 

 

In a diallel scheme with no selfs (homozygous parental lines) and no reciprocals (half-diallel)31, the 

phenotype of the hybrid from crossing the i ´ j th parental lines can be expressed as:  

𝑦!" = 	𝜇 + 𝑔! + 𝑔" + 𝑠!" + 𝑒 

Where µ is the population mean, gi is the average contribution of all half siblings related to the i th parent, 

gj  is the average contribution of all half siblings related to the j th parent (general combining abilities or 

GCA), and sij is the specific contribution of the i ´ j parental combination (specific combining abilities or 

SCA). Residual error is expressed as e.  

We estimated these components with a linear mixed model using the lmer function from the R package 

lme437. We excluded all homozygous hybrids and heterozygous hybrids with chromosome level allele 

imbalance (Table S2). In total, 258 hybrids were included in the model. We defined the GCA components 

as fixed effects and SCA as random effect. For each expression trait, we extracted the GCA and SCA 

estimates using the fixef and ranef functions, respectively. Error component is extracted as the residual 

value of the fitted model using the resid function. The variance components are estimated as:  

𝑉# = 2𝜎$(𝐺𝐶𝐴) 

𝑉! = 𝜎$(𝑆𝐶𝐴) 

𝑉% = 𝜎$(𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙) 

Where Va corresponds to the total additive variance, Vi is the non-additive variance due to interactions and 

dominance and Ve is the residual variance. The heritability is estimated as:  

𝐻$ =
𝑉# + 𝑉!

𝑉# + 𝑉! + 𝑉%
 

ℎ$ =
𝑉#

𝑉# + 𝑉! + 𝑉%
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Where H2 is the broad-sense heritability and h2 is the narrow-sense heritability. The functions used for 

modeling and heritability calculations are available upon request as custom R scripts.  

We applied an orthogonal strategy to estimate the narrow-sense heritability based on genome-wide kinship 

matrix (h2
g). We first calculated the linkage disequilibrium using the SNP matrix and PLINK38. We 

excluded SNPs with strong linkage disequilibrium (r2 > 0.8) due to the strong population structure of the 

diallel panel. We calculated the weights of each variant using ldak with the –cut-weights and –calc-weights-

all arguments and the default parameters39. All variants with non-zero weights were to generate a filtered 

vcf matrix of 5,493 SNPs that was then recoded with the plink -make-bed command. The filtered and 

recoded matrix was used to calculate the kinship between the individuals using the popkin function of the 

R package popkin with the default parameters. Finally, we used the hglm function of the hglm R package, 

with the default parameters, to calculate h2
g from the kinship matrix and the tpm values. All heritability 

estimates are found in Table S4.  

 

Quantifying allele specific counts in the hybrids and the corresponding parental pairs 

 
To infer the heterozygous sites in every hybrid, the sequencing reads of each parent from Peter et al., 

2018 were aligned to the R64_nucl reference genome using the bwa mem with the options –M –t 8 –v 3 

command and SNPs were inferred using gatk HaplotypeCaller 40. The vcf files of the parents of each 

cross were combined to generate a vcf file containing the heterozygous biallelic sites in the hybrid. We 

used ASEReadCounter41 to quantify the number of reads carrying each allele of the heterozygous biallelic 

sites. To avoid regions that would cause mapping problems, we calculated the mappability of 75bp 

segments along the R64_nucl reference genome using GenMap42 genmap map –K 75 –E 2 and removed 

the sites with mappability values less than 1.  

To quantify the read counts for the same discriminating sites in the parental samples, we calculated the 

depth of sequencing of the SNPs between the parent and the reference genome. The depth values were 

then scaled to the total number of reads for the hybrid, so that the depth values would be comparable 

across parents and the corresponding hybrid. We only considered sites with more than 30X coverage in 

the hybrids and more than 60X coverage in the sum of the parental pairs. In total, 1,864,327 sites were 

included for further analyses.  

We calculated the chromosome-level allele balance across all hybrid samples as well as the corresponding 

parental pairs to identify systematic biases due to the presence of aneuploidy, loss-of-heterozygosity 

(LOH) or other large-scale chromosomal changes that could be frequent in S. cerevisiae cultures43. We 

plotted the allele balance (read counts for one parental line against the other at discriminating sites) and 

manually verified cases with inconsistent allele balances. In total, 258 hybrids that did not show such 
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allele imbalance were included in the linear mixed model for heritability estimation. For allele-specific 

expression analysis, we further removed parent-hybrid trios where only the parental alleles were 

imbalanced, resulting in a set of 179 parent-hybrid trios. In total, these 179 parent-hybrid trios comprised 

1,2M discriminating sites and are further analyzed.   

 

Allele-specific expression analyses across hybrid and their corresponding parental pair 

 

We performed gene-level ASE analyses using the R package MBASED44. For each gene, all 

discriminating sites were considered as phased and were included to calculated the allelic change both in 

the hybrid and between the parental pair as 1-sample ASE test using 106 simulations. Gene-level allele 

counts were approximated by averaging the counts at each site included in the test. The raw P-value were 

adjusted using the Benjamini-Hochberg method. For genes with more than 20 discriminating sites, only 

one site at each 100 bp window were sampled to remove redundancy due to overlapping reads. 

Significant 1-sample ASE test is considered when the adjusted P-value is less than 0.05 and the absolute 

log2 foldchange of the gene-level allele counts is higher than 1.  

For genes where both the hybrid and parental 1-sample tests were significant, 2-sample tests were 

performed to identify significant ratio change between hybrid and parental ASE. We distinguished two 

scenarios. First, for cases where the signs of the log2 foldchanges in the parents and the hybrids are in the 

same direction, 2-sample tests were directly performed using the same sites and counts as the 1-sample 

tests. For cases there the signs were in opposite direction, the alleles in the hybrid were reverted before 

the test were performed. For 2-sample tests, 103 simulations were performed and the P-values were 

adjusted using the Benjamini-Hochberg method. Significant 2-sample ASE test is considered when the 

adjusted P-value is lower than 0.05. Criteria for assigning gene-level regulation changes are in Figure 3D. 

All ASE test results and the assigned regulation patterns are in Datafile 2.  

 

Gene-set enrichment analyses 

 

Gene-set enrichment analyses (GSEA) were performed using the fgsea package in R45. Standard GO 

terms associated with biological processes (BP) were used46 with term size limits between 5 and 500. 

GSEA on different variance components were performed using rankings based on additive, non-additive 

and residual variance with 100,000 simulations. Results are found in Table S5. For GSEA on genes with 

different regulatory changes, the rankings were based on the number of cases for a given assigned pattern 

divided by the total number of cases characterized for that gene. The same number of simulations were 

performed as for the variance components enrichments. Results are found in Table S6.  
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Assigning gene-level major regulatory patterns 

 

We focused on cis only, trans only and compensatory assignments as they are the most major patterns 

observed across parent-hybrid trios. For a given gene, we calculated the number of regulatory patterns 

observed across trios. We assigned the gene-level regulatory pattern as “null” if the number of null 

patterns represent more than 95% of all characterized cases. For the remaining cases, we identified the 

most common regulatory change that is not null, then assigned that gene as mainly regulated by that 

pattern. All assignments are found in Table S7. We used the same criteria to assign the major regulatory 

groups for the within and between species allele pairs. Switches of the regulatory types are defined by 

comparing assigned types for between and within species pairs. All assignments are found in Table S8. 

 

Data availability 

 

All RNA sequencing reads are available in the European Nucleotide Archive (ENA) under the accession 

number PRJEB64466. 

The 1002 Yeast Genome website - http://1002genomes.u-strasbg.fr/files/ - (RNAseq) provides access to:  

- Datafile S1: Datafile1_raw_data_20230713.tab 

- Datafile S2: Datafile2_ase_sum_20230609.tab 
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