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Highlights

e Diallel panel for dissecting genetic components underlying gene expression variation
e Non-additive components account for 36% of gene expression trait heritability
e Most cis-regulatory variation is buffered by additional trans-acting variants

e Genes under trans-regulation show high non-additive variance and functional coherence

Summary

Gene expression variation, an essential step between genomic variation and phenotypic landscape, is
collectively controlled by local (cis) and distant (¢rans) regulatory changes. Nevertheless, how these
regulatory elements differentially influence the heritability of expression traits remains unclear. Here, we
bridge this gap by analyzing the transcriptomes of a large diallel panel consisting of 323 unique hybrids
originated from genetically divergent yeast isolates. We estimated the broad- and narrow-sense
heritability across 5,087 transcript abundance traits and showed that non-additive components account for
36% of the phenotypic variance on average. By comparing allelic expression ratios in the hybrid and the
corresponding parental pair, we identified regulatory changes in 25% of all cases, with a majority acting
in trans. We further showed that frans-regulation could underlie coordinated expression variation across
highly connected genes, resulting in significantly higher non-additive variance and most likely in some of

the missing heritability of gene expression traits.
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Introduction

Gene expression is an important molecular step translating genotypes into phenotypes, and its
misregulation can have broad consequences on organismal traits' . Dissecting the regulatory changes that
underlie gene expression variation and its heritability can therefore provide important insights into the
genetic basis of phenotypic diversity® . Differences in gene expression between individuals are
collectively influenced by variation in local regulatory elements (cis-acting) and distant regulatory genes
(trans-acting)’. The interplay between cis- and trans-acting variants reflect the complex gene regulatory
network and underlie the heritable gene expression variation in a population.

The identification of cis- and trans-regulatory variants in a population typically relies on statistical
associations between genetic variants and gene expression levels through large-scale genomic and
transcriptomic analyses. Mapping the loci involved in gene expression variation, i.e. e€QTL (expression
Quantitative Trait Loci), often requires a large population to have enough statistical power, especially to
detect trans-eQTL due to the high number of possible positions to test compared to cis-eQTL*’. As a
result, most human eQTL analyses using GWAS are limited to detecting only cis-acting variants'®"'?. By
contrast, population-wide transcriptomic surveys in model systems consistently show that trans-eQTL are
more common than cis-eQTL and collectively explain a larger fraction of gene expression variance'>™'°.
However, even considering the effects of both cis- and trans-eQTL, the total phenotypic variance
explained remained modest®'*!'"?°. Such variant-centric strategy overlooks the complex interaction
between cis- and trans-regulatory variants acting on the same trait and possibly leads to some extent the
observed missing heritability.

Another way to identify cis- and frans-regulatory variation is through comparative analyses of allele-
specific expression (ASE) patterns across pure-bred parental lines and their F1 hybrid®. While differences
in allelic expression levels both within the hybrid and between parental lines indicate a cis-regulatory
change, a trans-regulatory change will result in different expression levels in the parents but no difference
in allelic expression within the hybrid as the trans-acting variant act equally on both alleles. Compared to
eQTL analyses, ASE-based strategy focuses on the regulatory patterns at the gene level, better captures
the biological reality, and is not affected by the statistical challenges like GWAS. However, such a
strategy is often limited to one or a few parent-hybrid trios, where population-level variation is ignored.
So far, ASE-based cis- and trans-regulatory studies have been mainly concentrated in identifying
expression divergence between species of Drosophila, mice, yeasts and several plants*'2°. Several studies
have used intraspecific pairs, but their scope is limited and they do not reflect the population-wide

diversity?’.
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A gene-centric view of the regulatory variation in a population should provide deeper insights into how
cis and trans effects contribute to the heritability of gene expression. From this perspective, the ASE-
based method has a unique advantage as heritability can be inferred based on parent-offspring regression,
and both additive and non-additive components can be estimated with sufficiently large number of parent-
hybrid trios. In comparison, variant-centric methods such as eQTL analysis mainly focus on the additive
effect (narrow-sense heritability or /%), whereas the total genetic effect on phenotypic variance (broad-
sense heritability or #°) remains elusive. Narrow-sense heritability estimated for gene expression traits in
humans and other model systems are low, ranges from ~0.06 to ~0.30 depending on the studies®'*'"*?,
and evidences based on familial data in human suggest non-additive genetic component could explain part
of the missing heritability in gene expression'”**. In fact, gene-centric analysis of regulatory variation at
the population scale is still lacking and therefore how regulatory changes contribute to additive and non-
additive genetic components in gene expression have never been explored.

Here, we bridge these gaps by generating high quality transcriptomes across a large diallel panel
consisting of 323 unique F1 hybrids, originated from 26 genetically divergent parental yeast isolates.
Taking advantage of this diallel design, we estimated broad- and narrow-sense heritability on 5,087
transcript abundance traits. We showed that non-additive variance plays a major role in gene expression
variation and accounts for 36% of the phenotypic variance on average. We calculated allele-specific read
counts in parent-hybrid trios and characterized the regulatory patterns of approximately 300,000 gene-trio
combinations. We found that frans-regulatory changes underlie the majority of gene expression variation
in the population, with most cis-regulatory variation also being exaggerated or attenuated by additional
trans effects. We further showed that trans-regulatory variation is the main force driving the non-additive

variance of gene expression traits.

Results

The transcription landscape across a diallel hybrid panel

We selected 26 genetically diverse natural isolates from the 1,011 yeast collection as the parental lines to

generate a diallel hybrid panel®

(Figure 1A). The selected isolates were originated from a wide range of
environments (Figure 1B) and different geographical locations (Table S1) to broadly represent de genomic
diversity in the species. The nucleotide divergence between each pair of parental lines ranges from 0.03%
to 1.10%, with a mean divergence of 0.59% (Figure 1C). Stable haploids of the 26 parental lines were
previously generated by replacing the HO locus with an antibiotic resistance cassette®’. We performed

pairwise crosses and generated 351 genetically unique hybrids, including 325 heterozygous hybrids and 26
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Figure 1. Overview of the diallel design and the transcriptomic dataset.

A. Neighbor-joining tree based on the genetic diversity of 1,011 yeast isolates®. 26 parental isolates
selected for the diallel panel are highlighted in red. Representative clades are annotated as in®’. See Table
S1 for detailed origins of the parental isolates. B. The ecological origin and distribution of the selected 26
parental isolates. C. Pairwise nucleotide diversity among the parental isolates. Mean divergence is
indicated in red dashed line. D. Schematics of the diallel crossing design. Homozygous parental diploids
are highlight in red. See Table S2 for detailed information for the generated hybrids. E. Schematics of the
data acquisition strategy. For each hybrid the transcript abundance (transcripts per million or tpm) are
measured for each annotated ORF, as well as allele specific read counts across all discriminating sites in a
given hybrid. Parental allele counts were extracted from the coverage data at the same sites. F. Final data
metrics and numbers of accessory and core genes included for the subsequent analyses. See Table S3 for
detailed annotations.

homozygous diploid parental types (Figure 1D, Table S2). We carried out RNA sequencing and obtained
high quality transcriptomes for 323 unique hybrids, including all 26 homozygous parental lines, with a

13,29
. we

mean of 3.7 million reads per sample. Using the previously established pangenome annotations
obtained the expression levels (as transcript per million or tpm) for 6,186 genes that are expressed in at

least half of the samples (tpm > 0), consisting of 5,770 core genes that are invariably present in all 26
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parental lines and 422 accessory genes, the majority of which (291/422) correspond to S. paradoxus
introgressed alleles (Figure 1E, Table S3, Datafile 1). We performed additional RNA sequencing for a
subset of biological replicates, specifically for six heterozygous hybrids in duplicates and one parental
diploid in triplicates (Table S2). Gene expression levels (tpm) correlate well between replicates, with
correlation coefficients ranging from 0.92 to 0.99 with an average of 0.96 (Pearson’s R), indicating high

reproducibility in our data (Figure S1A-B).

We previously generated a species-wide pan-transcriptomic dataset involving 969 natural isolates from the
same strain collection'®. To evaluate the general gene expression behavior across the diallel hybrid panel
against the previous population-level data, we calculated the mean expression level (i.e. abundance) and
the mean absolute deviation across samples (i.e. dispersion) for each of the 6,186 genes in the final dataset.
Both metrics showed good agreements between the diallel panel and the natural population, with a
correlation coefficient of 0.79 for abundance and 0.72 for dispersion (Pearson’s R) (Figure S1C-D). These
observations suggest that the diallel panel broadly captures the global gene expression variability of the

population.

Non-additive genetic components contribute significantly to gene expression variation

Taking advantage of the diallel design, we calculated the broad- (/#°) and narrow-sense heritability (h?) for
each expression trait by estimating the combining abilities using the Griffing’s model*' (Methods). Briefly,
for each heterozygous hybrid, the total expression level for a given gene can be decomposed into the average
contributions of the parental lines (General Combining Ability or GCA), the contribution due to the
combination of the parents in a hybrid (Specific Combining Ability or SCA), and the residual variation that
is unrelated to the parental origins. In this context, the additive variance component for a given trait
corresponds to the fraction of phenotypic variance explained by the sum of GCA variance from the parents,
whereas the non-additive component corresponds to the fraction of phenotypic variance due to the SCA
variance. The broad-sense heritability (/) is therefore calculated as the sum of additive and non-additive
genetic components, and the narrow-sense heritability (4?) correspond to the additive component only. We
obtained A and /4’ estimates for 5,087 out of the 6,186 expression traits (Methods). Across these traits, the
estimated H° ranges from 0.08 to 0.99 with a median of 0.75, while the W ranges from 0.08 to 0.98 with a
median of 0.31 (Figure 2A, Table S4). We applied an orthogonal strategy to estimate the /4° based on the
genome-wide variants and the kinship matrix across all hybrids using a generalized linear model (Methods).
The resulting genome-wide additive heritability (4%;) is highly correlated with the /4° obtained based on the
diallel model (Pearson’s R=0.85, P-value < 2.2e-16) (Figure S2A).
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The distribution of different variance components is skewed toward the non-additive component (H’-4°)
(Figure 2B). Non-additive variance component accounts for 36% of phenotypic variance on average, with
approximately 1/3 of the genome (1,758 genes) mainly under non-additive control (H°-4°> 0.5). By contrast,
only 476 genes are mainly additive (h° > 0.5). Genes that are mainly controlled by the residual variance
(1,352 genes, 1- H*> 0.5) are characterized by an overall low phenotypic variance across the population

(Figure S2B), suggesting variation due to expression stochasticity and random noise.
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Figure 2. Broad- and narrow-sense heritability for genome-wide gene expression traits.

A. Distributions of broad- (grey) and narrow-sense heritability (white) estimates based on the diallel hybrid
panel for 5,087 gene expression traits. transcript abundance in white and gray respectively. See Table S4
for all heritability estimates. B. Ternary plot showing the percentage of phenotypic variance controlled by
additive, non-additive and residual variance components. Dashed line marks the 50% threshold for each
dimension. C. Gene-set enrichment analysis (GSEA) for additive, non-additive and residual variance
components, using standard GO biological process (BP) terms. All terms with a nominal P-value < 0.05 are
shown. Color scale corresponds to the normalized enrichment scores. Size of the circles indicate the
number of genes annotated on each term. Full circle represents GO terms with an FDR<0.05. See Table S5
for detailed enrichment results. D. Mean pairwise expression profile correlation for genes in the same GO
term with a nominal enrichment P-value < 0.05 for additive, non-additive and residual variance
components. Significant differences between enriched and all terms are indicated with stars (n.s: non-
significant; ***: Wilcoxon test P-value < 2.2e-16. E-M. Example hybrid-midparent and hybrid profile
correlations for genes with high additive (E-G), non-additive (H-J) and residual (K-M) variance
components. Example genes correspond to the top two leading edges in the GSEA results. Dashed red lines
indicate the one-to-one correlation line (slope = 1) for visual guide. The heritability estimated are indicated
for each example gene pairs.

To explore the relationship between different variance components and gene functions, we ranked genes
based on their additive, non-additive and residual variance and performed gene-set enrichment analyses
(GSEA) using standard gene ontology (GO) biological process terms. Genes that are highly additive are
only significantly enriched for a couple of small terms related to protein transport to vacuole (GO:0043328;
G0:0043162) (Figure 2C, Table S5). Highly non-additive genes showed the most significant enrichments,
specifically for terms related to translation (GO:0006421; GO:0002181), ribosomal biogenesis
(GO:0042254; GO:0042273) and sulfur amino acid biosynthesis (GO:0000097; GO:0009092; GO:0009070)
(Figure 2C, Table S5). No significant enrichment (FDR < 5%) were found for genes that show high residual
variance (Figure 2C, Table S5). These results suggest that genes with similar biological functions could
show similar variance component profiles, most notably for genes that are mainly controlled by non-
additive variance.

We examined the expression coherence (i.e. co-regulated expression patterns) by calculating the pairwise
expression profile similarity among genes that belonged to all GO terms with a nominal enrichment P-value
< 0.05 for additive, non-additive and residual variance components (Figure 2D). Compared to all GO terms,
terms enriched for non-additive variance showed significantly higher pairwise gene expression profile
similarity on average (one-sided Wilcoxon test, P-value < 2.2e-16), contrasting to terms that are enriched
for additive or residual variance (Figure 2D). As examples, we took the top two leading edges for GO terms
with the lowest enrichment P-value for each of the three variance component rankings (Figure 2E-M). The

top leading edges that are highly additive correspond to COS8 (H?=0.99, h’=0.95) and COS!I (H*=0.92,
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1’=0.89), both are ubiquitin cargos involved in protein transport to vacuole via the multivesicular body
sorting pathway (GO:0043328). Both genes are indeed showing high additive effect as evidenced by the
correlated expression levels between the hybrids and the mid-parent values (mean expression between the
corresponding homozygous parental diploids) (Figure 2E-F). However, these two genes are not co-
regulated across the hybrids, with a profile similarity of ~0.46 between the gene pair (Pearson’s R) (Figure
2@G). Top leading-edge genes that are highly non-additive correspond to RPS254 and RPS31, both are
ribosomal proteins involved in translation. Both these genes are characterized by low correlations between
the hybrid expression levels and the mid-parent values (Figure 2H-I). Yet, these two genes show highly
correlated expression profiles, suggesting co-regulated expressions in the hybrids that is not predicted based
on the parental mean. Finally, for genes that show high residual variance, the most significant GO term
corresponds to RNA polymerase II transcriptional preinitiation complex assembly (GO:0051123), with a
nominal enrichment P-value = 0.001 and an FDR = 0.76. The top leading edges correspond to MED2, a
subunit of the RNA polymerase Il mediator complex; and T7AF' /4, a DNA binding protein involved in RNA
polymerase I transcription initiation and in chromatin modification. As expected, no correlation is observed
between the hybrid expression level and the mid-parent value (Figure 2K-L), nor between the expression
profiles across hybrids (Figure 2M).

Overall, the diallel design allowed us to effectively decompose the variance components associated with
the majority of gene expression traits. Non-additive genetic variance contributes significantly to gene
expression variation, explaining 36% of the phenotypic variance on average. Different variance components
contribute unequally to genes with different cellular functions and the non-additive component showing the

highest functional coherence in the hybrid panel.

Widespread transcriptomic buffering via cis-frans compensation

The genetic component of gene expression variation can be attributed to regulatory variants acting in cis
and/or in trans. In principle, local DNA sequence variation that impact gene expression (e.g. mutations in
promoter regions) are cis-acting, whereas trans-regulatory variants act distantly (e.g. transcription factors)
and can occur anywhere in the genome. The diallel panel consists of pairwise combinations of a large
number of parent-hybrid trios. For each trio, the regulatory variation in cis or trans can be determined by
comparing the allelic expression in the hybrid to the corresponding expression levels in the parental lines.
Specifically, for a given gene, if the expression difference between the two parental lines is due to cis-
regulatory change, the corresponding alleles will result in allele-specific expression (ASE) in the hybrid
(Figure 3A). Conversely, in the case of trans-regulatory change, no allele-specific expression would be

observed as the trans-acting factor impact equally both alleles in the hybrid background (Figure 3B).
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Figure 3. Systematic characterization of regulatory variation across the population.

A-B. Schematic depiction for cis- (A) and trans- (B) regulatory variation and the resulting allele-specific
expression patterns across parent-hybrid trios. C. Regulatory variation patterns identified across 285,777
gene-trio combinations. Log2 fold changes between alleles in the hybrid and between the parental lines at
the same sites are indicated on x- and y-axis, respectively. Different regulatory patterns are color coded. D.
Criteria for classifying different regulatory patterns based on 1- and 2-sample ASE test significance. See
detailed description in Methods. E. Number and distribution for different regulatory patterns across the
whole dataset. Upper bar indicates the number of the “null” category vs. other categories with significant
regulatory changes. Pie chart indicate the proportions of all significant regulatory patterns, with outer ring
indicating cases that are under cis- (red) or trans- (blue) controls. F. Number of gene-trio combinations per
regulatory category (left panel) and the number of unique genes impacted in the corresponding groups
(right panel). See detailed results in Datafile 2.
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We determined the allele-specific read counts at each discriminating site within gene open reading frame
(ORF) in the heterozygous hybrids and in the corresponding parental lines. We removed low coverage sites
(sum of hybrid allele counts < 30 and sum of parental counts < 60) and excluded cases where one of the
gene copies is absent in either one or both parents. We also excluded any trios that showed inconsistent
chromosome-level allele balance patterns in the hybrid or between the parental lines (Methods). In total,
179 unique parent-hybrid trios were retained for further analyses, comprising ~1.2 M sites across 285,777
gene-trio combinations (Datafile 2). The final data covered 5,089 genes, including 219 accessory genes
from S. paradoxus introgression (Datafile 2). On average, ~1,600 genes contained at least one such
discriminating site per trio (Figure S3A-B), for which the regulatory variation can be inferred by comparing
the allelic ratio change in the hybrid to the parental ratio at the same sites.

For each of the 285,777 gene-trio combinations, we performed 1-sample ASE tests both in the hybrid and
between the parental pair by considering the allele counts across all sites within the same gene (Methods).
For cases that showed significant allelic ratio differences (|log2 fold-change| > 1 & FDR < 0.05) in both the
hybrid and the parents, 2-sample ASE tests were subsequently performed to identify significant changes
between the hybrid and parental allelic ratios (FDR < 0.05) (Methods). Based on test results, we categorized
cases into different regulatory patterns (Figure 3C-D). Overall, ~76% (217,2970out of 285,777) of all cases
showed no significant allelic expression differences in either the hybrid or the parents and are classified as
the “null” type, while ~24% (68,480 out of 285,777) displayed significant regulatory variation (Figure 3E).
Among these 68,480 cases, ~16% (11,227 out of 68,480) showed evidence for cis effect while ~96%
(65,679 out of 68,480) showed trans effect, with ~12% (8,423 out of 68,480) showing significance for both
(Figure 3E). Cases that are exclusively controlled by cis or trans effects represent ~4% (2,804 out of 68,480)
and ~84% (57,253 out of 68,480), respectively (Figure 3F). Cases with combined cis and trans effects were
further grouped into four distinct regulatory patterns (Figure 3C-D). In the “attenuating” group (~0.9%, 590
out of 68,480), the cis effect in the hybrid is decreased in magnitude compared to the parental expression
levels by additional ¢rans factors (Figure 3D). The “reinforcing” group (~3%, 1,980 out of 68,480) describes
the opposite event where the cis effect in the hybrid is exaggerated in magnitude compared to the parental
expression variation (Figure 3D). The “compensatory” group (~8%, 5,403 out of 68,480) corresponds to
the majority of cases with both cis and trans effects. In these cases, the cis regulatory effect is completely
cancelled out by additional trans factors, resulting in significant allele-specific expression within the hybrid
but no expression difference between the parents (Figure 3D). Finally, the “reverse” group corresponds to
extreme cis/trans interaction events, where the allelic variation in the hybrid is in complete opposite
direction than the parental variation (Figure 3D). These events are rare and represent 0.7% (450 out of

68,480) of all cases with significant regulatory variation (Figure 3D-F).
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Globally, trans-regulatory variation is more common than cis, which is consistent with previous
observations using eQTL analyses®'*. Remarkably, the majority of cis-regulatory variation are influenced
by additional trans effect. Among all gene-trio combinations showing cis-regulatory variation, ~75% (8,423
out of 11,227) also show trans-regulatory changes and most of such frans effects act in opposite direction
relative to the observed cis effect, specifically in the “attenuating” (590 out of 11,227; ~5%) and the
“compensatory” (5,403 out of 11,227; ~48%) groups. These observations suggest that cis-regulatory
variations are globally compensated in #rans, resulting in a general buffering effect at the transcriptome

level.

Regulatory variation in frans plays a major role in non-additive heritability

In our diallel scheme, the regulatory variation associated with each gene is characterized across multiple
hybrid-parent trios, which allows us to probe how different regulatory changes at the individual level (i.e.
any given gene-trio combination) impact global gene expression features such as heritability and different
variance components across the full hybrid panel. In total, 3,791 genes (out of 5,089 with discriminating
sites) are characterized in at least 10 hybrids, which were further analyzed (Figure S4A, Datafile 2). For a
given gene, the regulatory variation across different hybrids can be relatively conserved. For example,
GTOI1, encoding for a glutathione transferase, is most exclusively controlled in cis (Figure 4A). The cis-
regulatory change is due to a single parental line, Y12, an isolate associated with Asian fermentation where
GTOI is known to be differentially overexpressed compared to other subpopulations'’. Another example
with conserved regulatory variation is seen for CYC7, encoding for an isoform of cytochrome c, in which
case the regulatory variation among different hybrids is mainly trans-acting (Figure 4B). For cases with
combined cis and trans effects such as the “compensatory” pattern, the regulatory variation across hybrids
can be complex, such as the case for RPL4B, encoding for a ribosomal subunit (Figure 4C). In this case,
while the majority of hybrids show a “compensatory” pattern, other patterns are also seen due to different
combinations of cis- and trans- acting factors in different hybrids.

We ranked genes based on the number of “cis only”, “#rans only” and “compensatory” cases across the
hybrid panel and performed GSEA based on standard GO biological processes terms in order to see if genes
with similar cellular functions could display conserved regulatory patterns across the population.
Significant enrichments were observed for the “compensatory” and the “#rans only” groups (Figure 4D).
Genes that showed the most “compensatory” patterns are enriched for cytoplasmic translation
(GO:0002181) (Figure 4D, Table S5). On the other hand, genes that showed the most “trans only” cases
are enriched for cellular respiration related processes (GO:0022904; GO:0042775; GO:0045333;
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G0:0006122), glycogen metabolic processes (GO:0005977; GO:0032787) and ribosome biogenesis
(GO:0042254) (Figure 4D, Table S5).
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Figure 4. Functional enrichments for genes with distinct regulatory patterns and associated examples.
A-C. Examples of genes that are mainly under cis (A), trans (B) and compensatory (C) regulatory controls.
Log2 fold changes between alleles in the hybrid and between the parental lines at the same sites are shown.
Different regulatory patterns are color coded. D. GSEA results for genes that are mainly under cis, frans and
compensatory regulatory controls. All go terms with a nominal P-value < 0.05 are shown. Terms with
significant enrichment (FDR < 0.05) are shown as solid circles. Color scale correspond to the normalized
enrichment scores. Circle sizes indicate the number of genes associated with each term. See detailed
enrichment results in Table S6.

We further categorized genes based on the major regulatory pattern present across hybrids (Methods). We
examined the behavior of genes across various global expression features (Figure SA-C) and genetic
variance components (Figure SD-F). As expected, genes that are mainly under cis control show overall low
expression abundance (Figure 5A), high expression dispersion (Figure 5B) and low connectivity (Figure
5C), all of which are features associated with genes that tend to show the most cis-eQTL based on our
previous population-level transcriptomic analysis'". Indeed, cis-regulated genes also show significantly
higher proportion of additive variance (4°) (Figure 5D). By contrast, genes that are mainly under trans
control are highly expressed (Figure SA), less dispersed than cis controlled genes (Figure 5B) and highly

connected on the global co-expression network (Figure 5C). Lastly, genes that show the most compensatory

13


https://doi.org/10.1101/2023.07.21.550013
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.21.550013; this version posted July 25, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

patterns display intermediate features compared to trans controlled genes for expression abundance and
connectivity (Figure SA&C). However, this group of genes show the lowest expression dispersion, which
is consistent with the cis-frans compensation effect (Figure 5B). In general, both compensatory and trans
controlled genes showed significantly higher proportion of non-additive variance (H-h”) compared to genes
that are mainly cis-regulated (Figure 5E). We further compared the hybrid expression abundance to the
mid-parent value for each gene-trio combination and identified cases that deviated from the parental
expectations across different regulatory variation groups (Figure S4B) (Methods). The majority of cases
with expression deviation is attributed to frans-regulatory changes (~46%, 3,166/6,894) (Figure S4C).
Nonetheless, the “compensatory” group showed higher proportion of cases with mid-parent deviation as
well as significantly higher magnitude of such deviation compared to the “cis only” and “#rans only” groups

(Figure S4C-D).

4.9e-05 2.3e-08 8.1e-12
44 1
0014 1.86-05 1000+ 0.12
15 — —
0.0047 7.3e-10 3e-07
1 | — [ —
100+
3
>
£ o 3
g [4 g 10+
K 8 3
H 22 £
2 8 ;
o 4]
5
14
0.14
0 T T T 0- T T T T T T
Cis Compensatory Trans Cis Compensatory Trans Cis Compensatory Trans
(37) (113) (2664) (37) (113) (2664) (37) (118) (2661)
<2.22¢-16 2.2e-06 0.00097
1
3.9¢-08 0.013 0.74
€
3.56-09 0.0016 0.0027
1.00+ [ — 1 — 1 E‘ —
0.94 0.94
€ ES I
= =
@ @ =
2 e 8
8075 8 2
5 506 8 0.6+
> > H
[ ] >
> > P
£ 0.50-] = ]
3 3 2
< ©0.3 [ 0.3+
c
S o
0.25+ 4
0.0 0.0
T T T T T T T T T
Cis Compensatory Trans Cis Compensatory Trans Cis Compensatory Trans
(37) (118) (2664) (37) (118) (2664) (37) (113) (2664)

Figure 5. Functional features associated with different regulatory variation patterns.

Global gene expression features and their associations with major regulatory patterns (A-C). A. Expression
abundance as the mean log2(tpm+1) across diallel panel. B. Expression dispersion calculated as the mean
absolute deviation of log2(tpm+1) across samples. C. Connectivity calculated as the weighted network
connectivity across previous population-level pan-transcriptomic analyses with 969 natural isolates'?. P-
values indicated corresponds to two-sided Wilcoxon tests. Variance components and their associations
with major regulatory patterns (D-F). D. Additive variance component (4°). E. Non-additive variance
component (H°-h%). F. Residual variance component (1-/°). The number of genes belonging to different
regulation types are indicated on the x-axis. See assigned major regulatory patterns for genes in Table S7.
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Overall, our data suggest that trans-regulatory changes underlie highly connected, core cellular processes
and is the major contributor to the non-additive variance component in gene expression. Cis-trans
compensation events, while less frequent than frans-only cases, contribute significantly to non-additivity

as well due to higher magnitude of parent-hybrid expression deviation.

S. paradoxus introgression genes show more cis-regulation than their S. cerevisiae counterparts

Genes originated from S. paradoxus introgression constitute ~30% of the S. cerevisiae accessory genome”
and contribute significantly to heritable gene expression variation at the population-wide pan-transcriptome
landscape in the species'®. These introgressed genes are mainly found in specific subpopulations such as
the Alpechin clade®. In the diallel hybrid panel, two Alpechin isolates were included as parental lines
(Table S1), which offered a unique opportunity to examine and compare the regulatory variation among
alleles within (S. cerevisiae vs S. cerevisiae) and between species (S. cerevisiae vs S. paradoxus). In total,
the regulatory variation for 219 unique introgressed genes were included in our dataset, corresponding to
3,192 gene-trio combinations (between species alleles) (Datafile 2). Among the 219 introgressed genes,
202 also showed discriminating sites among their S. cerevisiae counterparts, corresponding to 11,871 gene-
trio combinations (within species alleles) (Datafile 2). The number of gene-trio combinations with between
species allele pairs is mainly associated with the two parental lines from the Alpechin clade, whereas the
number of cases with within species allele pairs is more randomly distributed across parental lines (Figure
S5A). Globally, for the same set of 202 genes, between species allele pairs show significantly more
regulatory variation than within species allele pairs (Figure 6A). Such difference is mainly due to higher
proportions of cis-regulatory changes observed for the between species allele pairs, including all cis-trans
interaction patterns (Figure 6A, Figure S5B).

To understand the global regulatory preferences for introgressed alleles and the native S. cerevisiae alleles
at the gene level, we assigned the major regulatory pattern observed for between and within species allele
pairs and compared the two assignments for the same gene (Methods). In total, 116 out of the 202 genes
showed conserved regulatory patterns, the majority (99/116) of these cases are regulated in frans both for
the introgressed alleles and the S. cerevisiae alleles (Figure 6B). The remaining 86 genes showed various
types of switches of regulation mode between the introgressed alleles and the S. cerevisiae alleles (Figure
6B). Most remarkably, all mainly cis-regulated introgressed alleles showed mainly trans-regulatory
variation for their S. cerevisiae counterparts (Figure 6B). For example, the COX6 gene encodes for the
subunit VI of the cytochrome c oxidase and is essential for cellular respiration. The S. paradoxus
introgressed allele show lower expression levels due to cis-regulatory variation, whereas the S. cerevisiae

alleles are mainly trans-regulated (Figure S5C). The most important types of switches going from between
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Figure 6. Differential preference of regulatory patterns between introgressed and native alleles A.
Distribution and proportions of different regulatory patterns for within and between species allele pairs. B.
Chord diagram depicting the direction and number of switches in main regulatory modes from between
species to within species allele pairs for the same genes. Outer axis indicates the number of gene events.
Inner arcs indicate the directional change with the flow starting from between species (with inner arc, color
correspond to the destination) to within species (without inner arc). Closed arcs correspond to conserved
regulatory pattern. C. Major switches observed in (B). Regulatory variation for between and within species
allele pairs are shown. Log2 fold changes between alleles in the hybrid and between the parental lines at
the same sites are indicated on x- and y-axis, respectively. Different regulatory patterns are color coded. D.
Additive variance component associated with genes that show variable and conserved regulatory patterns
for between and within species allele pairs. Wilcoxon test P-value is shown. E. Connectivity associated
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pairs. Wilcoxon test P-value is shown. Assigned regulatory patterns and types of switches for between and
within species alleles are found in Table S8.
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species to within species allelic regulation modes are “null to trans” (30 genes), “compensatory to trans”
(21 genes) and “cis to trans” (11 genes) (Figure 6C). Each of these switches impact the majority of genes
within their respective regulation pattern found in the introgressed alleles, specifically with 30 “null to trans”
out of 46 null in total, 21 “compensatory to frans” out of 32 compensatory in total, and 11 “cis to trans”
out of 12 cis regulated genes in total (Figure 6B-C). Overall, genes with conserved regulatory patterns
between the introgressed and the native alleles tend to show higher expression connectivity and lower
additive phenotypic variance (4°) (Figure 6D-E). These observations suggest that heritable variation of gene
expression related to introgression is collectively influenced by the functional integration of such genes to
the global expression network (i.e. connectivity) as well as their regulatory variation due to interspecies

differences between S. paradoxus and S. cerevisiae.

Discussion

Gene expression variation is a key molecular intermediate in the phenotypic landscape of a species.
Understanding how cis- and trans-regulatory changes differentially influence the heritability of gene
expression variation is therefore essential to understand the path from genome to traits. Taking advantage
of a large diallel hybrid panel, we estimated the broad- and narrow-sense heritability (Z° and 47) across
genome-wide gene expression traits and showed non-additive components explain higher proportion of
the phenotypic variance compared to additive variance only (36% vs. 31% on average). We systematically
characterized the gene-level regulatory patterns across the population and showed that trans-regulatory
changes are the main driver underlying the non-additive variance.

It has been previously proposed that trans-regulatory changes might have higher tendency to cause gene
misexpression than cis-variation in the hybrid compared to the parental mean and therefore lead to non-
additive variance™. However, our data, which tested multiple parental combinations for the same set of
genes, show that trans-regulatory variation is equally likely to cause hybrid expression deviation from the
parental mean than cis-variation. While trans-regulatory variation appears to be the most important
contributor of non-additive variance components in gene expression, the precise underlying mechanism is
still unclear.

Our results suggest there are two main paths towards high non-additive variance in gene expression due to
trans effects. The first one is through cis-trans interactions, most notably the compensatory effect that
completely mask the cis effect by additional #rans factors. Indeed, according to our data, 75% of all cis
effect are exaggerated or attenuated by additional frans variation, and 50% resulted in complete cis-trans
compensation. All cis-trans interaction patterns show higher tendency for hybrid misexpression and/or

higher magnitude of such misexpression. This observation is also supported by previous analysis of the
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expression of ~30 genes in a hybrid of two Drosophila species®. Furthermore, we also showed that genes
under cis-trans compensation tend to show higher fraction of non-additive variance. In principle, such
effect will decrease the power for statistical association in eQTL analyses and will likely result in the
missing heritability problem that is commonly observed for gene expression traits.

The second path to non-additive variance is through coordinated expression change in highly connected
co-expression modules. Previously, we generated and analyzed the population-level pan-transcriptome
across ~1,000 natural yeast isolates'®. We showed that the global transcriptome landscape is consistent
with a central, highly connected co-expression network and an auxiliary, lowly connected network
consists of subpopulation-specific expression signatures'®. The highly connected co-expression network is
robust to genetic variation in the population and showed significantly less eQTL than the auxiliary level .
Here, with the diallel hybrid panel, we show that genes with high non-additive variance tend to be highly
connected on the global expression network and are often controlled in ¢rans. Such non-additive variance
is invisible to canonical association tests, which could partly explain the robustness of the co-expression
modules to genetic variation in the population. Furthermore, our analyses on the set of 202 introgressed
genes also support the link between connectivity and non-additive variance. Introgressed genes that are
both trans-regulated between interspecies and intraspecies allele pairs show significantly higher

connectivity and non-additive variance than cases with variable regulatory patterns.

Overall, our study highlights that the transcriptome is globally buffered at the genetic level. Highly
connected co-expression modules are robust to genetic variation in the population, either through trans
compensation of cis-regulatory variation, or through coordinated trans-regulatory changes alone, with
possible purging of cis-effect variants. Such buffering effect could result in significant non-additive

variance that is not detectable via genome-wide association surveys and contribute to missing heritability.
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Materials and methods

Description of the parental strains and diallel scheme

A genetically diverse set of 26 parental strains was selected from the 1,011 strains collection with the focus
of capturing as much of the genetic, ecological and geographical diversity of the species as possible (Table
S1). Two stable haploid strains, MATa and MATalpha, carrying the KanMX or a NatMX cassettes in the HO
locus respectively, were established for each parent, giving a total of 52 strains®. Parental strains of opposite
mating types were crossed by overlaying haploid cells in a matrix on YPD media (1% yeast extract, 2%
peptone and 2% glucose) and incubating them at 30°C overnight. The cells were then transferred to YPD
media with G418 (200 mg/ml) and nourseothricin (100 mg/ml) and incubated at 30°C overnight to select
for hybrid cells. We then transferred the selected hybrids on YPD media with nourseothricin and G418 to
remove any remaining haploid cells. All procedures were done using the replicating robot ROTOR (Singer
Instruments). In total, we obtained 351 genetically unique hybrids.

We quantified the growth rates of each hybrid in liquid synthetic complete (SC) media with 2% glucose for
48 hours (initial ODggonm: 0.1) using a 96-well microplate reader (Tecan Infinite F200 Pro). The hybrids
were then grown in 96-format deepwell plates until mid-log phase (ODgoonm ~0.3). A 750 puL. suspension of
each sample was then transferred to a 96-well filter plate (Norgen, #40008) where the media was eliminated
by applying vacuum (VWR, #16003-836). Immediately after the media was eliminated, we flash-froze the

cells in liquid nitrogen and stored them at -80°C.

Sample preparation

We extracted the mRNA from the hybrids using the Dynabeads® mRNA Direct Kit (ThermoFisher #61012).
Cells were lysed with glass beads and incubated at 65°C for 2 minutes and mRNA was then selected with
two rounds of hybridization of their polyA tails to magnetic beads coupled to oligo(dT) residues.

We prepared cDNA sequencing libraries using the NEBNext® Ultra™ II Directional RNA Library Prep
Kit (NEB, #E7765L) and following the manufacturer’s protocol. Briefly, 5 pL of purified mRNA is
fragmented with a 15-minute incubation at 94°C and then reverse transcribed to cDNA. Next, a NEBNext
Adaptor is ligated to the cDNA and finally a unique combination of dual indexes (manufactured by IDT®)
is added to allow multiplexed sequencing. Finally, barcoded cDNA is amplified with 9 rounds of PCR
(denaturation 10 seconds at 98°C, annealing/extension 75 seconds at 65°C). The amplified and barcoded

cDNA fragments were eluted in 15 pL of 0.1X TE.
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We quantified the concentration of the cDNA libraries with the Qubit ™ dsDNA HS Assay Kit (Invitrogen
™) in a 96-well plate using a microplate reader (Tecan Infinite F200 Pro) with an excitation frequency of
485 nm and emission of 528 nm. We pooled 1 pL of each library and fragment size was assessed with
Bioanalyzer 2100 (Agilent™) using the High sensitivity DNA kit (#5067-4626). Finally, we generated
equimolar sequencing pools of 96 samples.

The pools were sequenced for 75 bp single-end with Nextseq 550 (Illumina™) sequencer at the EMBL
Genomics Core Facility. After demultiplexing, we obtained 3.7 million reads per sample on average. The

number of reads obtained in each sample are found in Table S2.

Quantification of mRNA abundance

The raw reads of each sample were mapped to a custom reference genome using STAR** with the following

parameters:
——outSAMtype BAM SortedByCoordinate \
—outFilterType BySJout \
—outFilterMultimapNmax 20 \
—outFilterMismatchNmax 4 \
——alignIntronMin 20 \
——alignIntronMax 2000 \
——alignSJoverhangMin 8 \
——alignSJDBoverhangMin 1

We generated a custom reference genome containing the 16 chromosomes of the S. cerevisiae reference
genome (R64 nucl) and all the accessory ORFs (n=665) present in the parental strains as defined by the
1,011 yeast genomes project (Peter et al., 2018) as additional chromosomes. In total, 323 hybrids had
sufficient reads and were used in the subsequent analyses. We counted the reads aligning to each gene of
the reference (n=6,285) and accessory (n=665) genomes with the featureCounts function of the R package
subread®® with the countMultiMappingReads=F parameter to eliminate multi-mapped reads. For a given
hybrid, if accessory genes that have orthologs in the reference genome were annotated as absent, we merged
their reads counts to those of their reference genome counterparts. We then normalized mRNA abundance
to the gene level by calculating the transcripts per million (tpm) of each gene. This gave us a list of tpm
values for 6917 genes. We filtered out genes that have a zero tpm value in more than half of all samples,

leading to a final dataset of 6186 genes. Raw counts and tpm values can be found in Datafile 1.

Calculating gene-level expression features

20


https://doi.org/10.1101/2023.07.21.550013
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.21.550013; this version posted July 25, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

We calculated the overall expression features for abundance, dispersion and connectivity for each gene
across the diallel and across 969 natural isolates where the transcriptomes were characterized previously'.
The abundance and dispersion are calculated as previously described'®. Briefly, the expression abundance
was calculated as the mean tpm levels across samples where the gene is present based on genome
annotations. The dispersion corresponds to the mean absolute deviation of tpm levels across samples. The
connectivity for a given gene is defined as the weighted network connectivity across all expressed genes.
The connectivity is calculated using the softConnectivity function in the R package WGCNA? with the
transposed expression matrix as input. All expression features associated with each gene are integrated in

Datafile 2.

Heritability estimations

In a diallel scheme with no selfs (homozygous parental lines) and no reciprocals (half-diallel)’!, the
phenotype of the hybrid from crossing the i x j th parental lines can be expressed as:
Yij= 4+ gitgjtsijte

Where p is the population mean, g;is the average contribution of all half siblings related to the 7 th parent,
g is the average contribution of all half siblings related to the j th parent (general combining abilities or
GCA), and s 1s the specific contribution of the 7 x j parental combination (specific combining abilities or
SCA). Residual error is expressed as e.
We estimated these components with a linear mixed model using the Imer function from the R package
Ime4®’. We excluded all homozygous hybrids and heterozygous hybrids with chromosome level allele
imbalance (Table S2). In total, 258 hybrids were included in the model. We defined the GCA components
as fixed effects and SCA as random effect. For each expression trait, we extracted the GCA and SCA
estimates using the fixef and ranef functions, respectively. Error component is extracted as the residual
value of the fitted model using the resid function. The variance components are estimated as:

V, = 20%(GCA)

V; = 62(SCA)

V, = o%(residual)

Where V, corresponds to the total additive variance, V; is the non-additive variance due to interactions and

dominance and V. is the residual variance. The heritability is estimated as:

o VatVi
V, +V, +V,
e Yo
V,+V, +V,
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Where [ is the broad-sense heritability and A° is the narrow-sense heritability. The functions used for
modeling and heritability calculations are available upon request as custom R scripts.

We applied an orthogonal strategy to estimate the narrow-sense heritability based on genome-wide kinship
matrix (h%). We first calculated the linkage disequilibrium using the SNP matrix and PLINK*. We
excluded SNPs with strong linkage disequilibrium (> > 0.8) due to the strong population structure of the
diallel panel. We calculated the weights of each variant using ldak with the —cut-weights and —calc-weights-
all arguments and the default parameters®. All variants with non-zero weights were to generate a filtered
vef matrix of 5,493 SNPs that was then recoded with the plink -make-bed command. The filtered and
recoded matrix was used to calculate the kinship between the individuals using the popkin function of the
R package popkin with the default parameters. Finally, we used the hglm function of the hglm R package,
with the default parameters, to calculate /#’; from the kinship matrix and the tpm values. All heritability

estimates are found in Table S4.

Quantifying allele specific counts in the hybrids and the corresponding parental pairs

To infer the heterozygous sites in every hybrid, the sequencing reads of each parent from Peter ez al.,
2018 were aligned to the R64 nucl reference genome using the bwa mem with the options -M — § —v 3
command and SNPs were inferred using gatk HaplotypeCaller *°. The vcf files of the parents of each
cross were combined to generate a vcf file containing the heterozygous biallelic sites in the hybrid. We
used ASEReadCounter*! to quantify the number of reads carrying each allele of the heterozygous biallelic
sites. To avoid regions that would cause mapping problems, we calculated the mappability of 75bp
segments along the R64 nucl reference genome using GenMap*? genmap map —K 75 —E 2 and removed
the sites with mappability values less than 1.

To quantify the read counts for the same discriminating sites in the parental samples, we calculated the
depth of sequencing of the SNPs between the parent and the reference genome. The depth values were
then scaled to the total number of reads for the hybrid, so that the depth values would be comparable
across parents and the corresponding hybrid. We only considered sites with more than 30X coverage in
the hybrids and more than 60X coverage in the sum of the parental pairs. In total, 1,864,327 sites were
included for further analyses.

We calculated the chromosome-level allele balance across all hybrid samples as well as the corresponding
parental pairs to identify systematic biases due to the presence of aneuploidy, loss-of-heterozygosity
(LOH) or other large-scale chromosomal changes that could be frequent in S. cerevisiae cultures®. We
plotted the allele balance (read counts for one parental line against the other at discriminating sites) and

manually verified cases with inconsistent allele balances. In total, 258 hybrids that did not show such
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allele imbalance were included in the linear mixed model for heritability estimation. For allele-specific
expression analysis, we further removed parent-hybrid trios where only the parental alleles were
imbalanced, resulting in a set of 179 parent-hybrid trios. In total, these 179 parent-hybrid trios comprised

1,2M discriminating sites and are further analyzed.

Allele-specific expression analyses across hybrid and their corresponding parental pair

We performed gene-level ASE analyses using the R package MBASED*. For each gene, all
discriminating sites were considered as phased and were included to calculated the allelic change both in
the hybrid and between the parental pair as 1-sample ASE test using 10° simulations. Gene-level allele
counts were approximated by averaging the counts at each site included in the test. The raw P-value were
adjusted using the Benjamini-Hochberg method. For genes with more than 20 discriminating sites, only
one site at each 100 bp window were sampled to remove redundancy due to overlapping reads.
Significant 1-sample ASE test is considered when the adjusted P-value is less than 0.05 and the absolute
log2 foldchange of the gene-level allele counts is higher than 1.

For genes where both the hybrid and parental 1-sample tests were significant, 2-sample tests were
performed to identify significant ratio change between hybrid and parental ASE. We distinguished two
scenarios. First, for cases where the signs of the log2 foldchanges in the parents and the hybrids are in the
same direction, 2-sample tests were directly performed using the same sites and counts as the 1-sample
tests. For cases there the signs were in opposite direction, the alleles in the hybrid were reverted before
the test were performed. For 2-sample tests, 10 simulations were performed and the P-values were
adjusted using the Benjamini-Hochberg method. Significant 2-sample ASE test is considered when the
adjusted P-value is lower than 0.05. Criteria for assigning gene-level regulation changes are in Figure 3D.

All ASE test results and the assigned regulation patterns are in Datafile 2.

Gene-set enrichment analyses

Gene-set enrichment analyses (GSEA) were performed using the fgsea package in R*. Standard GO
terms associated with biological processes (BP) were used*® with term size limits between 5 and 500.
GSEA on different variance components were performed using rankings based on additive, non-additive
and residual variance with 100,000 simulations. Results are found in Table S5. For GSEA on genes with
different regulatory changes, the rankings were based on the number of cases for a given assigned pattern
divided by the total number of cases characterized for that gene. The same number of simulations were

performed as for the variance components enrichments. Results are found in Table S6.
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Assigning gene-level major regulatory patterns

We focused on cis only, frans only and compensatory assignments as they are the most major patterns
observed across parent-hybrid trios. For a given gene, we calculated the number of regulatory patterns
observed across trios. We assigned the gene-level regulatory pattern as “null” if the number of null
patterns represent more than 95% of all characterized cases. For the remaining cases, we identified the
most common regulatory change that is not null, then assigned that gene as mainly regulated by that
pattern. All assignments are found in Table S7. We used the same criteria to assign the major regulatory
groups for the within and between species allele pairs. Switches of the regulatory types are defined by

comparing assigned types for between and within species pairs. All assignments are found in Table S8.

Data availability

All RNA sequencing reads are available in the European Nucleotide Archive (ENA) under the accession
number PRIEB64466.

The 1002 Yeast Genome website - http://1002genomes.u-strasbg.fr/files/ - (RNAseq) provides access to:
- Datafile S1: Datafilel raw_data 20230713.tab

- Datafile S2: Datafile2 ase sum 20230609.tab
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