

1 **Autophagy restricts fungal accommodation in the roots of *Arabidopsis thaliana***

2 Patricia Zecua-Ramirez<sup>1</sup>, Ernesto Llamas<sup>1,2</sup>, Nyasha M. Charura<sup>1</sup>, Nick Dunken<sup>1</sup>,

3 Concetta De Quattro<sup>1,2</sup>, Alexander Mandel<sup>1</sup>, Gregor Langen<sup>1</sup> Yasin Dagdas<sup>3</sup>, Alga Zuccaro<sup>1,2\*</sup>

4 <sup>1</sup>University of Cologne, Institute for Plant Sciences, Cologne, Germany

5 <sup>2</sup>Cluster of Excellence on Plant Sciences (CEPLAS), Germany

6 <sup>3</sup>Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna,  
7 Austria

8 \*azuccaro@uni-koeln.de

9 **Abstract**

10 Endophytic colonization of *Arabidopsis thaliana* by the beneficial root endophyte *Serendipita indica* is  
11 characterized by an initial biotrophic phase followed by a restricted host cell death-associated phase.  
12 This latter phase involves regulated cell death (RCD) for fungal accommodation. However, the host  
13 molecular pathways that limit *S. indica* colonization and govern symbiosis remain largely unknown. Our  
14 study demonstrates that autophagy, a major cellular degradation pathway, is activated during *S. indica*  
15 colonization and is required to restrict fungal colonization in *Arabidopsis*. Independent *Arabidopsis*  
16 knockout (KO) mutants deficient in autophagosome formation are more susceptible to deoxyadenosine  
17 (dAdo), a cell death inducer produced by two secreted *S. indica* effectors at the onset of the cell death-  
18 associated phase. In the *atg5* autophagy mutant background, impaired dAdo uptake prevents dAdo-  
19 induced and symbiosis-mediated cell death. Based on our data, we propose that autophagy-mediated  
20 pro-survival responses in the host are crucial for maintaining a balanced symbiotic interaction between  
21 *S. indica* and *Arabidopsis*.

22 **In a Nutshell**

23 Our study reveals that during colonization of *Arabidopsis thaliana* roots by the beneficial root endophyte  
24 *Serendipita indica*, autophagy, a key cellular degradation pathway, is activated to limit fungal  
25 colonization. Autophagy-deficient *Arabidopsis* mutants are more susceptible to deoxyadenosine  
26 (dAdo), a cell death inducer produced by *S. indica*. We propose that autophagy-mediated pro-survival  
27 responses are essential for maintaining a balanced symbiotic interaction between *S. indica* and  
28 *Arabidopsis*.

29 **Keywords**

30 Autophagy, autophagosomes, symbiotic interaction, deoxyadenosine, ATG5, ATG8, ENT3,  
31 Sebacinales

32 **Introduction**

33 Plant-colonizing fungi use diverse strategies to interact with hosts according to their lifestyles (Lo Presti  
34 et al., 2015). Beneficial root endophytic fungi of the order Sebacinales (Basidiomycota) establish  
35 mutualistic relationships with a variety of plant species (Weiss et al., 2016). These endophytic root  
36 associations result in growth promotion as well as enhanced resistance and tolerance against biotic

37 and abiotic stresses (Oberwinkler et al., 2013; Weiss et al., 2016). To colonize plants, Sebacinales have  
38 evolved mechanisms to counteract the plant immune response and modulate the host metabolism, as  
39 well as processes involved in cell death (Deshmukh et al., 2006; Schafer et al., 2009; Jacobs et al.,  
40 2011; Nizam et al., 2019; Dunken et al., 2023).

41 Endophytic root colonization of *Arabidopsis thaliana* (hereafter Arabidopsis) and *Hordeum vulgare*  
42 (hereafter barley) by the beneficial fungus *Serendipita indica* (syn. *Piriformospora indica*) follows a  
43 biphasic strategy. *S. indica* establishes an initial biotrophic phase with hyphae enveloped by the host  
44 plasma membrane, followed by a cell death-associated phase restricted to the epidermis and cortex  
45 layers (Deshmukh et al., 2006; Qiang et al., 2012; Lahrmann et al., 2013). The latter is associated with  
46 the secretion of hydrolytic fungal enzymes (Zuccaro et al., 2011; Lahrmann and Zuccaro, 2012;  
47 Lahrmann et al., 2013; Lahrmann et al., 2015). The occurrence of this regulated cell death is thought  
48 to facilitate niche differentiation and ensures nutrient availability, without compromising plant growth  
49 (Deshmukh et al., 2006; Zuccaro et al., 2011; Weiss et al., 2016).

50 The combined activity of two effector enzymes secreted by *S. indica* during Arabidopsis and barley root  
51 colonization (Thurich et al., 2018; Nizam et al., 2019) was found to produce the DNA-derived active  
52 molecule deoxyadenosine (dAdo) (Dunken et al., 2023). Extracellular dAdo is imported into the  
53 cytoplasm by the Arabidopsis equilibrative nucleoside transporter 3 (ENT3), which functions as a  
54 transporter for purine and pyrimidine nucleosides such as adenosine and uridine (Li et al., 2003). dAdo  
55 has been previously described as a cell death inducer in animal systems (Thammavongsa et al., 2013;  
56 Winstel et al., 2018). In Arabidopsis, dAdo has been shown to trigger cell death, the accumulation of  
57 metabolites involved in stress signaling, and the upregulation of cell death marker genes (Dunken et  
58 al., 2023). This suggests that dAdo-mediated cell death contributes to the regulated and restricted  
59 symbiotic cell death observed with *S. indica*.

60 The induction of restricted cell death in host plants by *S. indica* is a crucial process for proper fungal  
61 accommodation. However, the host molecular mechanisms that limit colonization and allow the  
62 maintenance of a symbiotic relationship are largely unknown. Fungal colonization triggers a metabolic  
63 reprogramming of the host tissue, promoting the activation of pathways aimed at restoring homeostasis  
64 and restraining cell death. One potential host mechanism that could contribute to the regulation of this  
65 beneficial interaction is autophagy, a major degradation and nutrient recycling pathway in eukaryotes.  
66 Autophagy is activated by environmental and developmental stimuli and plays a vital role in maintaining  
67 cellular and metabolic homeostasis (He and Klionsky, 2009).

68 Autophagy is also known for its involvement in host immune responses and has been studied in various  
69 plant-microbe interactions (Hofius et al., 2017; Üstün et al., 2017; Leary et al., 2019). During biotrophic  
70 infections by pathogenic microbes, autophagy regulates the hypersensitive response (HR), which is a  
71 localized form of regulated cell death activated by intracellular immune receptors (Jones and Dangl,  
72 2006; Coll et al., 2011). Autophagy components have been shown to promote HR upon infection with  
73 avirulent strains, depending on the nature of the immune receptor involved and the immune signaling  
74 pathway (Hofius et al., 2009; Hackenberg et al., 2013; Coll et al., 2014; Han et al., 2015; Munch et al.,

75 2015). In non-infected tissue, autophagy plays a protective role by counteracting reactive oxygen  
76 species (ROS) production, salicylic acid (SA) signaling, endoplasmic reticulum (ER) stress, and  
77 promoting degradation of ubiquitinated proteins, derived from infection-induced systemic responses  
78 (Yoshimoto et al., 2009; Munch et al., 2014). During infections with necrotrophic fungi, autophagy  
79 promotes resistance and restricts disease-associated lesion formation to the site of infection (Lai et al.,  
80 2011; Lenz et al., 2011; Katsiarimpa et al., 2013). Additionally, components of the autophagy machinery  
81 participate in mutualistic interactions of *Phaseolus vulgaris* with rhizobacteria and arbuscular  
82 mycorrhizal fungi (Estrada-Navarrete et al., 2016).

83 In animals and plants, autophagy belongs to the protein homeostasis (proteostasis) network and  
84 mediates the lysosomal / vacuolar degradation of cytosolic damaged proteins, dysfunctional organelles  
85 and protein aggregates. In plants the autophagic cargo is engulfed in double-membrane vesicles called  
86 autophagosomes and delivered to the vacuole for breakdown and recycling (He and Klionsky, 2009;  
87 Marshall and Vierstra, 2018). Autophagy is broadly divided into microautophagy and macroautophagy  
88 (Liu and Bassham, 2012). Macroautophagy (hereafter referred to as autophagy) is mediated by proteins  
89 encoded by autophagy-related (ATG) genes. ATG proteins collectively coordinate the biogenesis of  
90 autophagosomes (Marshall and Vierstra, 2018).

91 To investigate whether autophagy is involved in *S. indica* colonization and host cell death, we employed  
92 Arabidopsis knockout (KO) mutants deficient in autophagosome formation, resulting in impaired  
93 autophagy. Here we show that these mutants exhibit increased fungal colonization during the cell death-  
94 associated phase, indicating that autophagy restricts colonization. Live-cell imaging revealed  
95 autophagosome formation in proximity to *S. indica* hyphae, indicating activation of autophagy at the  
96 microbe-host interface and suggesting a potential localized response to *S. indica* colonization.  
97 Additionally, autophagy mutants show increased sensitivity to dAdo, and their recovery after dAdo  
98 treatment is impaired, indicating that a functional autophagy pathway is essential to restore homeostasis  
99 and restrict cell death. Furthermore, in the autophagy mutant background, additional impairment of  
100 dAdo uptake confers resistance to dAdo-induced cell death and prevents the symbiosis-mediated cell  
101 death. Taken together, our results highlight the pro-survival role of autophagy in the beneficial  
102 interaction between *S. indica* and Arabidopsis. This shows that autophagy is a mechanism that restricts  
103 *S. indica* colonization and the extent of cell death, thereby maintaining a balanced symbiotic  
104 colonization.

## 105 **Results**

### 106 **Autophagy is activated in response to *S. indica* and restricts fungal colonization**

107 To determine whether host autophagy is involved in *S. indica* colonization, we quantified endophytic  
108 fungal colonization in the Arabidopsis autophagy KO mutants *atg5-3* and *atg10-1* using quantitative  
109 reverse transcription PCR (RT- qPCR). Before RNA extraction, the root colonized material was carefully  
110 washed to remove extraradical hyphae. ATG10 mediates the conjugation of ATG12 to ATG5, resulting  
111 in the formation of the ATG12-ATG5 complex. This complex, along with ATG16 promotes ATG8  
112 lipidation, a key process for autophagic vesicle assembly. Mutation of ATG5 or ATG10 leads to impaired

113 formation of autophagosomes (Thompson et al., 2005; Phillips et al., 2008). Both autophagy mutants  
114 exhibited significantly higher colonization levels than the Col-0 wild type (WT) at 6 days post-inoculation  
115 (dpi), which marks the onset of the cell death-associated phase (Fig. 1A). This suggests that fungal  
116 colonization is negatively regulated by host autophagy activation. Additionally, we observed an increase  
117 in the expression of the *S. indica*-induced marker gene AT1G58420, which is also responsive to ATP,  
118 dAdo, and wounding (Choi et al., 2014; Nizam et al., 2019; Dunken et al., 2023), in colonized roots of  
119 autophagy mutants compared to WT at 6 dpi (Fig. 1B). Colonization of *atg5-3* and *atg10-1* roots also  
120 led to an enhanced expression of the immune-related marker genes *WRKY33* and *CYP81F2* compared  
121 to WT (Fig. S1), which are involved in the biosynthesis of secondary antimicrobial compounds  
122 (Bednarek et al., 2009; Clay et al., 2009; Birkenbihl et al., 2017).

123 To monitor autophagy activation during *S. indica* colonization, we used Arabidopsis transgenic lines  
124 expressing *pUbi::mCherry-ATG8E* in the WT background or in the *atg5-1* KO mutant background,  
125 serving as a control. ATG8 is commonly used as a marker to detect and quantify autophagy levels  
126 (Yoshimoto et al., 2004; Liu and Bassham, 2012; Klionsky et al., 2021). Confocal microscopy in the  
127 differentiation zone of mCherry-ATG8E WT colonized roots revealed an increased amount of mCherry-  
128 ATG8E-labelled punctate structures, resembling autophagosomes, compared to mock-inoculated  
129 plants (Fig. 1C, E). In the *atg5-1* mutants, colonized roots exhibited fewer structures with similarity to  
130 the larger aggregates previously observed in autophagy-defective mutants (Li et al., 2015) (Fig. 1C, E).  
131 We then focused our attention on colonized roots of mCherry-ATG8E in the WT background, where  
132 we observed that cells in contact with *S. indica* hyphae exhibited an increased number of punctate  
133 structures compared to the nearby cells lacking hyphal contact (Fig. 1D, E). These findings provide  
134 evidence that *S. indica* induces localized autophagy at the site of interaction.

135 We also examined autophagy activation in mock and *S. indica*-colonized mCherry-ATG8E root tissue  
136 by immunoblotting. The autophagic turnover of mCherry-ATG8E labelled autophagosomes results in  
137 accumulation of the free fluorescent mCherry protein in the vacuole due to faster decay of the ATG8  
138 segment (Chung et al., 2010). Colonization by *S. indica* led to an increased proportion of free mCherry  
139 compared to mock treatment, confirming induction of autophagic activity by the fungus (Fig. 1F).  
140 Interestingly, we detected an additional mCherry-ATG8E cleavage fragment produced in both WT and  
141 mutant background in the presence of *S. indica*, independent from the *atg5-1* mutation. This additional  
142 fragment is not produced upon autophagy induction due to carbon starvation (Fig. 1F). These findings  
143 suggest that, in addition to the induction of autophagy, *S. indica* colonization triggers an ATG5-  
144 independent hydrolysis of ATG8. Furthermore, we analyzed transcriptomic data from Arabidopsis roots  
145 colonized by *S. indica* at different time points. We observed an induction in the expression of autophagy-  
146 associated genes including the autophagy-related genes (ATGs) of the core autophagy machinery  
147 (Mizushima et al., 2011; Liu and Bassham, 2012) (Fig. 1G, S2). Taken together, these results  
148 demonstrate that autophagy is locally activated during *S. indica* colonization regulating fungal  
149 accommodation in the roots of Arabidopsis.

150 **Autophagy promotes cell survival during dAdo-induced cell death**

151 During the cell death-associated phase of *S. indica* colonization, two fungal apoplastic effector enzymes  
152 produce extracellular dAdo. dAdo induces cell death in various plant species, including *Arabidopsis*  
153 (Dunken et al., 2023). Since autophagy plays a role in promoting cell survival and maintenance of  
154 cellular homeostasis, we investigated whether it could restrict dAdo-induced cell death. To test this  
155 hypothesis, we measured the onset of cell death by monitoring the photosynthetic efficiency, which is  
156 a key indicator of plant health (Dunken et al., 2022). Our results showed that treatment with dAdo  
157 strongly decreased the maximum quantum yield of photosystem II ( $F_v/F_M$ ) in *atg5-3* and *atg10-1* KO  
158 mutants compared to WT, leading to earlier cell death (Fig. 2A, C and S3). Similar enhanced sensitivity  
159 upon treatment with dAdo was observed during seed germination tests with *atg5-3* mutants (Fig. S4).  
160 As a positive control, we additionally assessed the sensitivity of these mutants to methyl jasmonate  
161 (MeJA), a known inducer of senescence (He et al., 2002). The results showed that autophagy mutants  
162 exhibited increased sensitivity to MeJA (Fig. 2B, C and S3). We further investigated the role of  
163 autophagy in dAdo-induced cell death by testing other mutants of the autophagic machinery. Treatment  
164 with dAdo affected the germination of *atg2-2* seeds and significantly reduced the photosynthetic  
165 efficiency of *atg11-1* compared to WT (Fig. S4, S5). The effects of dAdo on photosynthetic activity have  
166 been shown to be concentration-dependent (Dunken et al., 2023). Similarly, autophagy mutants  
167 exhibited a dose-dependent response, indicating a regulated sensitivity to dAdo (Fig. S6). These  
168 findings further support the pro-survival role of autophagy in response to stress and cell death.

169 To study the protective role of autophagy in more detail, we tested the ability of autophagy mutants to  
170 recover after dAdo and MeJA treatment by monitoring photosynthetic efficiency. We replaced dAdo and  
171 MeJA treatment solutions with buffer at 24 hours post-treatment. While WT seedlings recovered, the  
172 autophagy *atg5-3* and *atg10-1* mutants did not recover from cell death induction after treatment with  
173 both dAdo (Fig. 2D, F) and MeJA (Fig. 2E, F). These observations suggest that impaired autophagy  
174 prevents the resolution of metabolic stress induced by the treatments, resulting in cell death. Notably,  
175 we observed that recovery was also impaired in WT seedlings after 48 h of treatment (Fig. S7),  
176 suggesting the occurrence of a point-of-no-return during the execution of dAdo-induced cell death.  
177 Collectively, these results support the notion that autophagy exerts a detoxifying function against  
178 cellular stress induced by dAdo.

179 **Impaired dAdo uptake in *atg5-3* mutant plants attenuates dAdo-induced and symbiosis-mediated  
180 cell death**

181 The import of extracellular dAdo by the ENT3 transporter is required for dAdo-dependent regulated cell  
182 death (Dunken et al., 2023). We hypothesized that impaired dAdo uptake in *atg5-3* mutant plants  
183 would generate dAdo resistance, thereby reducing cell death. To test this effect, we generated an *atg5*  
184 *ent3* double mutant. Examination of the photosynthetic efficiency in seedlings incubated with mock or  
185 dAdo showed that the double mutant gained resistance to dAdo, similar to the *ent3* mutant, exhibiting  
186 reduced sensitivity (Fig. 3A). The double mutant showed increased sensitivity to MeJA, indicating that  
187 mutation of the ENT3 transporter confers a specific resistance phenotype to the cell death trigger dAdo

188 but not to MeJA (Fig. 3B). To evaluate the extent of cell death, we used Evans blue dye, which  
189 selectively permeates cells with ruptured plasma membranes (Vijayaraghavareddy et al., 2017). After  
190 a 4-day treatment with dAdo or mock solution, we quantified the stained dead cells at the root tip, where  
191 cell death was most pronounced, by using bright-field microscopy (Fig. 3C, D). The *atg5-3* autophagy  
192 mutant displayed enhanced cell death, while impairment of the ENT3 transporter abolished the cell  
193 death phenotype compared to WT. The *atg5 ent3* double mutant exhibited an intermediate dAdo-  
194 sensitive phenotype between *atg5-3* and *ent3* (Fig. 3C, D). These findings indicate that impaired dAdo  
195 uptake in *atg5 ent3* mutant plants leads to reduced cell death and increased resistance to dAdo.

196 Symbiosis-mediated cell death by *S. indica* is supported by the production of dAdo (Dunken et al.,  
197 2023). To assess the impact of reduced sensitivity to dAdo in the *atg5 ent3* double mutant on root  
198 colonization, we performed colonization assays on  $\frac{1}{2}$  MS media and evaluated cell death using Evans  
199 blue dye at 12 dpi. Colonization by *S. indica* led to cell death in the differentiation zone of WT and  
200 *atg5-3* seedlings compared to mock conditions. Notably, *S. indica*-induced cell death was abolished in  
201 the *ent3* mutant, and the *atg5 ent3* double mutant did not exhibit a significant increase in cell death  
202 under *S. indica* treatment compared to mock conditions (Fig. 4A, B). This observation suggests that the  
203 cell death induced by *S. indica* is prevented in the *ent3* and *atg5 ent3* double mutant plants.

204 To examine the impact of nutrient availability on autophagy, *S. indica* colonization and host growth,  
205 colonization experiments were performed using 1/10 PNM, a plant low-nutrient medium known to  
206 enhance the beneficial interaction between root endophytes and host plants (Lahrmann et al., 2013).  
207 Extraradical colonization was assessed using the chitin-binding lectin stain WGA-AF488, which  
208 revealed increased colonization in *atg5-3* compared to WT after 12 days (Fig. 4C, S8). At 21 days, we  
209 also observed increased endophytic colonization in both *atg5-3* and the *atg5 ent3* double mutant, as  
210 determined by RT- qPCR (Fig. S9). Mutation of ENT3 results in a transient reduction of the colonization  
211 at 12 dpi, which was not visible at a later stage (Fig. 4C, S8, S9; Dunken et al., 2023). This suggests  
212 that ENT3, and thus intracellular dAdo signaling, contributes to the onset of cell death but not after the  
213 endophyte is fully established in the roots of *Arabidopsis*. In contrast, autophagy remains important or  
214 becomes even more critical at later stages, likely playing a major role in maintaining a balanced  
215 colonization level.

216 To explore the involvement of autophagy in *S. indica*-mediated root growth, the primary root length of  
217 colonized seedlings was quantified after 21 days. Treatment with *S. indica* resulted in longer primary  
218 roots in WT plants compared to mock conditions. This increase in root growth was also observed in the  
219 *atg5-3* and *ent3 atg5* double mutant plants under these growth conditions (Fig. 4D), suggesting that  
220 impairment of autophagy does not interfere with the root growth phenotype induced by *S. indica*.  
221 Overall, our results endorse the activation of autophagy as a mechanism that restricts fungal  
222 accommodation, safeguards against dAdo-associated stress and cell death, and consequently  
223 contributes to maintaining a balanced interaction with *S. indica* (Fig. 5).

224 **Discussion**

225 Our investigation of the interaction between the plant host *Arabidopsis* and the beneficial endophytic  
226 fungus *S. indica* highlights the role of autophagy in regulating fungal accommodation in the roots of this  
227 host. Our results show that autophagy is activated during colonization, particularly at later stages,  
228 suggesting a regulatory transcriptional mechanism triggered by fungal colonization. Loss of function in  
229 ATG5 and ATG10 leads to increased fungal colonization, especially during the cell death-associated  
230 phase and over the long term. Additionally, we analyzed the transcriptional response to *S. indica* in  
231 autophagy mutant roots. The higher expression of the *S. indica*-responsive marker gene AT1G58420,  
232 along with the transcription factor WRKY33 and its target CYP81F2 in colonized autophagy mutants,  
233 suggests a potential link between autophagy and the plant immune response. WRKY33 and CYP81F2  
234 are involved in the production of secondary metabolites, such as glucosinolates, and play a role in  
235 regulating plant hormone pathways (Birkenbihl et al., 2017). This finding aligns with previous research  
236 demonstrating the interaction between WRKY33 and ATG18a during necrotrophic infections in  
237 *Arabidopsis* (Lai et al., 2011). However, the higher fungal biomass in the autophagy mutants could  
238 account for the increased expression of these immune-related marker genes.

239 To confirm autophagy activation in *S. indica*-colonized root cells, we examined autophagosome  
240 formation using mCherry-ATG8E transgenic lines. Our results showed the presence of structures  
241 resembling autophagosomes in colonized cells and to a lesser extent in neighboring cells, but not in the  
242 *atg5-1* line (Fig. 1C-E). The occurrence of autophagosomes during autophagy at the host-microbe  
243 interface has previously been observed as part of the localized immune response during pathogen  
244 infection (Dagdas et al., 2018; Pandey et al., 2021).

245 Immunoblot analysis showed increased mCherry-ATG8E cleavage, indicating higher autophagic flux  
246 during fungal colonization. The observed mCherry-ATG8E cleavage pattern in the *S. indica*-colonized  
247 *atg5-1* line (Fig. 1F) suggests the involvement of an independent mechanism of hydrolysis in addition  
248 to ATG5-dependent autophagy. This effect can be attributed to the hydrolytic activity occurring during  
249 the cell death-associated phase, where plant lytic enzymes, including proteases, may contribute to the  
250 degradation process. Additionally, this colonization stage is characterized by the release of numerous  
251 fungal proteases, which may also contribute to the observed band (Zuccaro et al., 2011; Lahrmann and  
252 Zuccaro, 2012; Lahrmann et al., 2015). However, it cannot be ruled out that other host degradation  
253 mechanisms may be activated in the presence of the fungus when the autophagic pathway is non-  
254 functional. One potential mechanism is the ubiquitin-proteasome system, which has been reported to  
255 have crosstalk with autophagy (Raffeiner et al., 2023).

256 During the symbiotic interaction, the fungus induces alterations in the host metabolic and transcriptional  
257 profiles. The uptake of dAdo initiates a cascade of events, characterized by the upregulation of cell  
258 death marker genes, electrolyte leakage, activation of the 26S proteasome, and extracellular  
259 accumulation of the retrograde stress signaling metabolite methylerythritol cyclodiphosphate (MEcPP)  
260 (Dunken et al., 2023). Our investigation reveals the involvement of autophagy in restricting dAdo-  
261 induced cell death. The increased sensitivity of *atg5-3*, *atg10-1*, *atg2-2*, and *atg11-1* mutants to dAdo,

262 coupled with impaired recovery in *atg5-3* and *atg10-1* after dAdo removal (Fig. 2C, D), highlights the  
263 pro-survival function of autophagy. Notably, the additional mutation of ENT3 in the *atg5* background  
264 reduces cell death, conferring resistance to dAdo. This collective evidence supports the notion that  
265 dAdo-induced cell death in autophagy mutants is governed by a regulated mechanism.

266 Autophagy as a degradation pathway promotes a protective response during certain stress and cell  
267 death-related processes. For instance, autophagy prevents the precocious onset of senescence and  
268 facilitates nutrient remobilization during senescence (Schippers et al., 2007). Treatment with MeJA led  
269 to accelerated senescence-associated cell death in autophagy mutants (Fig. 2B, C), resembling the  
270 early senescence phenotype previously described for different autophagy mutants including *atg5* and  
271 *atg10* (Doelling et al., 2002; Hanaoka et al., 2002; Thompson et al., 2005; Phillips et al., 2008;  
272 Yoshimoto et al., 2009). Autophagic responses, known to manifest during senescence and various  
273 stress conditions, may potentially mitigate the impact of dAdo in a similar fashion. These protective  
274 functions involve the degradation of protein aggregates, recycling of damaged organelles (Xiong et al.,  
275 2007; Wada et al., 2009; Munch et al., 2014) and breakdown of pro-death signals (Hayward et al.,  
276 2009), contributing to the maintenance of proteostasis. Hence, we propose that the activation of  
277 autophagy could function as a regulatory mechanism providing support against dAdo-induced stress  
278 and limiting the extent of cell death.

279 Fungal-induced cell death mediated by apoplastic dAdo production and subsequent uptake via ENT3  
280 contributes to the regulated *S. indica*-symbiotic cell death. Mutation of ENT3 impairs fungal-mediated  
281 cell death (Fig. 4A and Dunken et al., 2023). Consequently, the colonized *atg5 ent3* double mutant does  
282 not exhibit increased cell death mediated by the fungus (Fig. 4A). However, the double mutant displays  
283 a phenotype reminiscent of the *atg5-3* mutant, characterized by increased colonization levels (Fig. S9).  
284 Both *atg5* and the *atg5 ent3* double mutants exhibit higher levels of cell death in their roots, independent  
285 of *S. indica* presence, potentially creating favorable conditions for fungal colonization. This effect is  
286 more pronounced in the *atg5 ent3* double mutant due to the loss of function of the nucleoside transporter  
287 ENT3 (Fig. 4A). While the *ent3* mutant line shows no discernible phenotypic changes under mock  
288 conditions, the absence of autophagy in the double mutant leads to increased cellular stress. This  
289 suggests an interplay between autophagy and nucleotide metabolism. In plants and mammals,  
290 depletion of cellular purine nucleotide levels has been shown to trigger the activation of autophagy by  
291 inhibiting TOR (Target of Rapamycin), a key regulator of growth and nutrient sensing that negatively  
292 regulates autophagy (Hoxhaj et al., 2017; Kazibwe et al., 2020). Additionally, *AtENT3* has been  
293 proposed to participate in the salvage pathway of nucleotide synthesis (Li et al., 2003). Therefore,  
294 alterations in nucleotide levels may increase cellular stress in the double mutant.

295 We also examined *Arabidopsis* root growth and confirmed that under nutrient-limiting conditions, *S.*  
296 *indica* induced primary root growth (Fig. 4D). This phenotype was also observed in the *atg5-3* mutant,  
297 suggesting that while autophagy influences fungal-mediated cell death and colonization, it does not  
298 affect the root growth phenotype. Collectively, these findings illustrate how the host's metabolic state  
299 influences *S. indica* colonization and highlight the importance of future research on the impact of nutrient  
300 availability during symbiotic interactions. Additionally, our results indicate that the growth phenotype

301 can occur independently of hypercolonization and cell death, emphasizing distinct regulatory pathways  
302 for these processes.

303 Our data show that autophagy activation is involved in restriction of fungal colonization and is important  
304 to promote cell survival during dAdo-induced cell death. We propose that the activation of autophagy in  
305 colonized cells, promotes a protective response to limit fungal-induced stress and cell death (Fig. 5).  
306 These results also emphasize the complexity of the *S. indica* colonization process, in which nutritional  
307 factors, metabolic status and immune-related cell death are modulated by autophagy.

## 308 **Materials and Methods**

### 309 **Plant lines**

310 *Arabidopsis thaliana* ecotype Columbia (Col-0) was used as a wild-type (WT) control. The T-DNA  
311 insertion mutant lines in this study are: *atg5-1* (AT5G17290) SAIL-129B07, *atg5-3* SALK-020601C  
312 (Thompson et al., 2005; Have et al., 2019), *atg10-1* (AT3G07525) SALK-084434, *atg11-1* (AT4G30790)  
313 SAIL-1166G10, *atg2-2* (AT3G19190) EMS-mutant (Wang et al., 2011), *ent3* (AT4G05120) SALK-  
314 204257C. The transgenic lines *pUbi::mCherry-ATG8E* in Col-0 WT and *atg5-1* background (Stephani  
315 et al., 2020). The double mutant *atg5 ent3* was obtained by crossing *atg5-3* and *ent3* lines. All transgenic  
316 lines were genotyped by PCR and homozygous lines were isolated.

### 317 **Plant-growth conditions**

318 Surface-sterilized seeds of *Arabidopsis* were germinated and grown on ½ MS (Murashige-Skoog  
319 Medium, with vitamins, pH 5.7) containing 0.5% (w/v) sucrose and 0.4% (w/v) Gelrite (Duchefa,  
320 Haarlem, the Netherlands) and stratified in darkness for 3 days at 4°C. Plants were grown under short  
321 day conditions (8 h light, 16 h dark) with 130  $\mu\text{mol m}^{-2} \text{s}^{-1}$  of light and 22°C /18°C.

### 322 **Fungal strains and culturing techniques**

323 *Serendipita indica* strain DSM11827 (German Collection of Microorganisms and Cell Cultures)  
324 Braunschweig, Germany) was grown on complete medium (CM) containing 2% (w/v) glucose and 1.5%  
325 (w/v) agar at 28°C as described (Hilbert et al., 2012). For confocal microscopy studies, the *S. indica*  
326 strain constitutively expressing a *S. indica* codon-optimized GFP gene was used (Hilbert et al., 2012).

### 327 **Fungal inoculation**

328 Eight-day-old *Arabidopsis* seedlings were transferred to ½ MS (Murashige-Skoog Medium, with  
329 vitamins, pH 5.7) and 0.4% (w/v) Gelrite plates. Nine-day-old seedlings, specifically the roots and the  
330 surrounding area, were inoculated with 800  $\mu\text{L}$  containing  $5 \times 10^5$  *S. indica* chlamydospores / mL. Control  
331 plants were inoculated with sterile milli-Q water as mock treatment. At the indicated time points, a 4 cm  
332 root section was harvested starting 0.5 cm below the shoot. Colonized roots were washed thoroughly  
333 to remove extraradical hyphae and frozen in liquid nitrogen. Each biological replicate contains three  
334 plates with 15 seedlings each. For seed inoculation, surface-sterilized *Arabidopsis* seeds were  
335 incubated in 1 mL containing  $5 \times 10^5$  *S. indica* chlamydospores / mL or sterile milli-Q water for 1 hour  
336 followed by their distribution on ½ MS and 0.4% (w/v) Gelrite plates.

337 **RNA extraction and real-time quantitative PCR analysis**

338 Total RNA was extracted from colonized or mock-treated ground plant root material using TRIzol  
339 reagent (Invitrogen, Thermo Fisher Scientific, Schwerte, Germany) according to the manufacturer's  
340 instructions and digested with DNase I to prevent genomic DNA contamination (Thermo Fisher  
341 Scientific, Schwerte, Germany). cDNA was synthesized with 1 µg total RNA primed with Oligo-dT and  
342 random hexamers primers using the First Strand cDNA Synthesis Kit (Thermo Fisher Scientific,  
343 Schwerte, Germany). Quantitative real-time PCR was performed using the 2x GoTaq qPCR master mix  
344 (Promega, Walldorf, Germany) with 10 ng of cDNA template and 0.5 µM of each oligonucleotide in a final  
345 volume of 15 µL. Reactions were amplified in a CFX connect real time system (BioRad, Munich,  
346 Germany) according to the following protocol 95°C 3 min, 95°C 15 s, 59°C 20 s, 72°C 30 s, 40 cycles  
347 and a melting curve analysis. Relative expression was calculated using the  $2^{-\Delta Ct}$  method. Sequences  
348 of all primers can be found in Table S1.

349 **PAM fluorometric measurements**

350 For chlorophyll fluorescence analysis, eight-day-old Arabidopsis seedlings were transferred to 24-well  
351 plates (three per well) containing 2 mL of 2.5 mM MES buffer (pH 5.6). After overnight regeneration,  
352 seedlings were treated with mock (MES 2.5 mM buffer), dAdo or methyl jasmonate (Sigma-Aldrich,  
353 Taufkirchen, Germany) to a final concentration of 500 µM. Maximum quantum yield of photosystem  
354 (PS)-II ( $F_v/F_m$ ) of dark-adapted samples was quantified using Pulse Amplitude Modulation (PAM)  
355 fluorometry (M-Series PAM fluorometer, Heinz Walz GmbH, Effeltrich, Germany). Data were analyzed  
356 using ImagingWin software (V2.56p; Walz, Germany).

357 **Seed germination assays**

358 Surface-sterilized seeds of Arabidopsis were transferred to 24 well plates, containing 2 mL of 1/10 PNM  
359 (Plant Nutrition Medium, pH 5.6). The medium was supplemented with 500 µM dAdo or mock (2.5 mM  
360 MES, pH 5.6). 10 seeds were placed into each well and after 2 days of stratification, grown under short  
361 day conditions. The growth of the seedlings was monitored via PAM fluorometry at 7, 14 and 21 days  
362 after transfer to the growth chamber. Analysis of the photosynthetic active area was analyzed using the  
363 software Fiji (ImageJ).

364 **Root length measurements**

365 Surface-sterilized Arabidopsis seeds were inoculated with mock or *S. indica* spores on plates containing  
366 1/10 PNM (Plant Nutrition Medium, pH 5.7). 21 days after inoculation, scans of the square plates  
367 containing seedlings were taken. Images were analyzed using Fiji (ImageJ) to measure the length of  
368 the primary root (cm) of seedlings developing true leaves.

369 **Extraradical colonization assays**

370 Quantification of extraradical colonization of *S. indica* on Arabidopsis was performed on seed-  
371 inoculated plants grown for 12 days and stained with the chitin-binding lectin stain Wheat Germ  
372 Agglutinin conjugated with Alexa Fluor 488 (WGA-AF 488, Invitrogen Thermo Fisher Scientific,  
373 Schwerte, Germany). Mock and *S. indica*-treated seedlings were stained directly on plate with 1x PBS

374 solution containing WGA-AF 488 (5  $\mu$ L / mL from 1 mg/mL stock solution) and incubated for 1-2 minutes.  
375 Subsequently, the roots were washed with 1x PBS solution. The stained seedlings were transferred to  
376 a new fresh plate and fluorescence detection was conducted using an Odyssey M Imaging System (LI-  
377 COR Biosciences). WGA-AF 488 fluorescence intensity was quantified using ImageJ by subtracting  
378 background signal and normalizing to the root length of the different genotypes.

### 379 **Cell death staining with Evans Blue**

380 Root cell death was quantified using Evans blue dye (Sigma-Aldrich, Taufkirchen, Germany) to  
381 assess *S. indica*- or dAdo-induced cell death at the indicated time points. Treated roots were washed  
382 three times with milli-Q water before staining with 2.5 mM Evans blue solution in 0.1 M CaCl<sub>2</sub> pH 5.6  
383 for 15 min, based on a modified version of the protocol described by Vijayaraghavareddy et al., 2017.  
384 After 1 hour of washing, root images were taken using a Leica M165 FC stereo microscope. The  
385 microscopy of *S. indica* colonized samples was performed using the differentiation zone of the  
386 Arabidopsis roots, and the microscopy of the roots treated with dAdo corresponds to the root tip.  
387 Quantification of cell death was performed using Fiji (ImageJ).

### 388 **Autophagic flux assay**

389 For carbon starvation treatment, Arabidopsis seedlings expressing *pUbi::mCherry-ATG8E* in WT or in  
390 the *atg5-1* KO mutant background were grown on ½ MS containing 1% (w/v) sucrose and 0.4% (w/v)  
391 Gelrite. After 7 days, seedlings were transferred to ½ MS without sucrose and plates were covered with  
392 aluminium foil and grown under the same conditions for 9 days (Stephani et al., 2020). Whole  
393 seedlings were harvested and frozen in liquid nitrogen. For analysis during *S. indica* colonization,  
394 surface-sterilized Arabidopsis seeds were inoculated with mock or *S. indica* treatment. After 10 days,  
395 root tissue was harvested and frozen in liquid nitrogen.

### 396 **Protein extraction and immunoblot analysis**

397 Frozen samples were homogenized with a bead mill (TissueLyser II, Qiagen) for 2 min (frequency 30-  
398 1). 1x lysis buffer (2x lysis buffer: 300 mM NaCl, 100 mM HEPES pH 7.4, 2 mM EDTA, 2% Triton X-  
399 100) with 1x plant protease inhibitor cocktail (Sigma-Aldrich, Taufkirchen, Germany) and 1 mM PMSF  
400 was added, and samples were vortexed. The lysates were cleared by centrifugation at 13,000 g for 10  
401 min at 4 °C. Protein concentration was determined using the Pierce BCA Protein Assay Kit (Thermo  
402 Fisher Scientific, Schwerte, Germany). The protein extract was mixed with Laemmli buffer (6x)  
403 containing beta-mercaptoethanol and then boiled for 10 min at 95°C. SDS-PAGE was performed with  
404 10% gels and 1x Tris Glycine-SDS buffer (BioRad, Munich, Germany). Semi-dry blotting was performed  
405 on PVDF membranes. Membranes were blocked with 3% BSA (VWR, Darmstadt, Germany) in TBS  
406 and 0.05% Tween 20% (v/v) (TBS-T) for 1 hour at room temperature. After incubation overnight at 4°C  
407 with the primary antibody anti-mCherry (1:1000, 5993, BioVision) diluted in 1x phosphate-buffered  
408 saline (PBS), the membranes were washed three times with TBS-T. After a 40 min incubation with the  
409 secondary antibodies IRDye 680RD / 800CW (1:10,000, LI-COR) diluted in 3% BSA TBS-T, the  
410 membranes were washed three times with TBS-T and finally rinsed with 1x PBS. Fluorescent Western

411 blot detection was performed using an Odyssey DLx (LI-COR Biosciences GmbH, Bad Homburg vor  
412 der Höhe, Germany).

#### 413 **Confocal imaging and image quantification**

414 A TCS SP8 confocal microscope (Leica, Wetzlar, Germany) was used for confocal laser scanning  
415 microscopy on living cells. mCherry was excited by a laser light at 561 nm and the emitted light was  
416 detected with a hybrid detector (HyD2) at 602-638 nm. The mCherry-ATG8-labelled punctate structures  
417 were counted in a 63x captured image size (184.52  $\mu$ m x 184.52  $\mu$ m) considering maximal projections of  
418 8-10 frames with 4  $\mu$ m step size.

#### 419 **Statistical analysis**

420 Analysis was performed using GraphPad Prism software (v.9.4.1 for Windows) or RStudio (R v.4.1.1  
421 for Windows). The detailed statistical method is given in the figure legends.

#### 422 **Transcriptomic analysis (RNA sequencing)**

423 Arabidopsis Col-0 WT roots were inoculated with mock (milli-Q water) or *S. indica*. Roots were  
424 harvested at 1, 3, 6, and 10 days post-inoculation. For each condition three biological replicates were  
425 considered. For each sample, stranded RNA-Seq libraries were generated and quantified by qPCR  
426 (Eichfeld et al., 2023). The RNA-Seq libraries were generated and sequenced at US Department of  
427 Energy Joint Genome Institute (JGI) under a project proposal (Proposal ID: 505829) (Zuccaro & Langen,  
428 2020). The raw reads were filtered and trimmed using the JGI QC pipeline. Filtered reads from each  
429 library were aligned to the Arabidopsis (TAIR10) reference genome using HISAT2 (Kim et al., 2015)  
430 and the gene counts were generated using featureCounts (Liao et al., 2014). DESeq2 was used to  
431 perform differential gene expression analysis (Love et al., 2014). Autophagy-associated genes were  
432 identified using the Gene ontology (GO) terms annotated by Denny et al. (2018) and retrieved from the  
433 Arabidopsis (TAIR10) annotation version 2023-05-01.

#### 434 **Acknowledgments**

435 We would like to thank Prof. Ralph Hückelhoven and Prof. Martin Stegmann for providing constructive  
436 feedback. We would like to thank Lisa Mahdi for conducting experiments for the RNA-seq analysis. We  
437 extend our gratitude to the U.S. Department of Energy, Joint Genome Institute  
438 (<https://ror.org/04xm1d337>) and Yu Zhang, Sravanthi Tejomurthula, Daniel Peterson, Vivian Ng & Igor  
439 Grigoriev for producing sequencing data within the work proposal 10.46936/10.25585/60001292.

#### 440 **Funding**

441 German Research Foundation (DFG), SFB 1403- Cell Death in Immunity, Inflammation and  
442 Disease- Project ID: 1403-414786233 (PZ, ND, AZ). German Research Foundation (DFG), Excellence  
443 Strategy, Cluster of Excellence on Plant Sciences (CEPLAS) - EXC-2048/1 - Project ID 390686111 (EL,  
444 NC, CDQ, AZ).

445 **Author contributions**

446 P.Z.R. and A.Z. conceived and designed the study, analyzed the data, and wrote the manuscript.  
447 P.Z.R., E.L., N.C., N.D., A.M., performed the experiments and analyzed the data. C.D.Q. performed  
448 bioinformatics analysis and figures. E.L., N.C., N.D., G.L., C.D.Q., and Y.D., contributed to the design  
449 of this research and reviewed and edited the manuscript. A.Z. supervised the research and provided  
450 resources, laboratory infrastructure and funding. All authors read and approved the final manuscript.

451 **References**

452 **Bednarek P, Pislewska-Bednarek M, Svatos A, Schneider B, Doubsky J, Mansurova M, Humphry**  
453 **M, Consonni C, Panstruga R, Sanchez-Vallet A, Molina A, Schulze-Lefert P.** A  
454 glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal  
455 defense. *Science*. 2009;323(5910):101-106. <https://doi.org/10.1126/science.1163732>

456 **Birkenbihl RP, Kracher B, Roccaro M, Somssich IE.** Induced Genome-Wide Binding of Three  
457 *Arabidopsis* WRKY Transcription Factors during Early MAMP-Triggered Immunity. *Plant Cell*.  
458 2017;29(1):20-38. <https://doi.org/10.1105/tpc.16.00681>

459 **Choi J, Tanaka K, Cao Y, Qi Y, Qiu J, Liang Y, Lee SY, Stacey G.** Identification of a plant receptor  
460 for extracellular ATP. *Science*. 2014;343(6168):290-  
461 294. <https://doi.org/10.1126/science.343.6168.290>

462 **Chung T, Phillips AR, Vierstra RD.** ATG8 lipidation and ATG8-mediated autophagy in *Arabidopsis*  
463 require ATG12 expressed from the differentially controlled ATG12A AND ATG12B loci. *Plant*  
464 *J*. 2010;62(3):483-493. <https://doi.org/10.1111/j.1365-313X.2010.04166.x>

465 **Clay NK, Adio AM, Denou C, Jander G, Ausubel FM.** Glucosinolate metabolites required for an  
466 *Arabidopsis* innate immune response. *Science*. 2009;323(5910):95-  
467 101. <https://doi.org/10.1126/science.1164627>

468 **Coll NS, Epple P, Dangl JL.** Programmed cell death in the plant immune system. *Cell Death &*  
469 *Differentiation*. 2011;18(8):1247-1256. <https://doi.org/10.1038/cdd.2011.37>

470 **Coll NS, Smidler A, Puigvert M, Popa C, Valls M, Dangl JL.** The plant metacaspase AtMC1 in  
471 pathogen-triggered programmed cell death and aging: functional linkage with autophagy. *Cell*  
472 *Death & Differentiation*. 2014;21(9):1399-1408. <https://doi.org/10.1038/cdd.2014.50>

473 **Dagdas YF, Pandey P, Tumtas Y, Sanguankiatthichai N, Belhaj K, Duggan C, Leary AY, Segretin**  
474 **ME, Contreras MP, Savage Z, Khandare VS, Kamoun S, Bozkurt TO.** Host autophagy  
475 machinery is diverted to the pathogen interface to mediate focal defense responses against the  
476 Irish potato famine pathogen. *eLife*. 2018;7(e37476). <https://doi.org/10.7554/eLife.37476>

477 **Denny P, Feuermann M, Hill DP, Lovering RC, Plun-Favreau H, Roncaglia P.** Exploring autophagy  
478 with Gene Ontology. *Autophagy*. 2018;14(3):419-  
479 436. <https://doi.org/10.1080/15548627.2017.1415189>

480 **Deshmukh S, Huckelhoven R, Schafer P, Imani J, Sharma M, Weiss M, Waller F, Kogel KH.** The  
481 root endophytic fungus *Piriformospora indica* requires host cell death for proliferation during  
482 mutualistic symbiosis with barley. *Proc Natl Acad Sci U S A*. 2006;103(49):18450-  
483 18457. <https://doi.org/10.1073/pnas.0605697103>

484 **Doelling JH, Walker JM, Friedman EM, Thompson AR, Vierstra RD.** The APG8/12-activating  
485 enzyme APG7 is required for proper nutrient recycling and senescence in *Arabidopsis thaliana*.  
486 *J Biol Chem*. 2002;277(36):33105-33114. <https://doi.org/10.1074/jbc.M204630200>

487 **Dunken N, Mahdi L, Hausler RE, Zuccaro A.** Monitoring Cell Death Via Ion Leakage and PAM  
488 Fluorometry. *Plant Proteases and Plant Cell Death. Methods in Molecular Biology*. 2022;2447  
489 175-183. [https://doi.org/10.1007/978-1-0716-2079-3\\_14](https://doi.org/10.1007/978-1-0716-2079-3_14)

490 **Dunken N, Widmer H, Balcke GU, Straube H, Langen G, Charura NM, Saake P, Quattro CD, Schön**  
491 **J, Rövenich H, Wawra S, Djamei A, Zurbriggen MD, Tissier A, Witte C-P, Zuccaro A.** A  
492 nucleoside signal generated by a fungal endophyte regulates host cell death and promotes root  
493 colonization. *bioRxiv*. 2023;2022.2003.2011.483938. <https://doi.org/10.1101/2022.03.11.483938>

495 **Eichfeld R, Mahdi LK, Quattro CD, Armbruster L, Endeshaw AB, Miyauchi S, Hellmann MJ, Cord-**  
496 **Landwehr S, Grigoriev I, Peterson D, Singan V, Lail K, Savage E, Ng V, Langen G,**  
497 **Moerschbacher BM, Zuccaro A.** Time-resolved transcriptomics reveal a mechanism of host  
498 niche defense: beneficial root endophytes deploy a host-protective antimicrobial GH18-CBM5  
499 chitinase. *bioRxiv*. 2023;2023.2012.2029.572992. <https://doi.org/10.1101/2023.12.29.572992>

500 **Estrada-Navarrete G, Cruz-Mireles N, Lascano R, Alvarado-Affantranger X, Hernandez-Barrera**  
501 **A, Barraza A, Olivares JE, Arthikala MK, Cardenas L, Quinto C, Sanchez F.** An Autophagy-  
502 Related Kinase Is Essential for the Symbiotic Relationship between *Phaseolus vulgaris* and  
503 Both Rhizobia and Arbuscular Mycorrhizal Fungi. *Plant Cell*. 2016;28(9):2326-  
504 2341. <https://doi.org/10.1105/tpc.15.01012>

505 **Hackenberg T, Juul T, Auzina A, Gwizdz S, Malolepszy A, Van Der Kelen K, Dam S, Bressendorff**  
506 **S, Lorentzen A, Roepstorff P, Lehmann Nielsen K, Jorgensen JE, Hofius D, Van**  
507 **Breusegem F, Petersen M, Andersen SU.** Catalase and NO CATALASE ACTIVITY1 promote



567 **Lai Z, Wang F, Zheng Z, Fan B, Chen Z.** A critical role of autophagy in plant resistance to necrotrophic  
568 fungal pathogens. *Plant J.* 2011;**66**(6):953-968.<https://doi.org/10.1111/j.1365-313X.2011.04553.x>

570 **Leary AY, Savage Z, Tumtas Y, Bozkurt TO.** Contrasting and emerging roles of autophagy in plant  
571 immunity. *Curr Opin Plant Biol.* 2019;**52**: 46-53.<https://doi.org/10.1016/j.pbi.2019.07.002>

572 **Lenz HD, Haller E, Melzer E, Kober K, Wurster K, Stahl M, Bassham DC, Vierstra RD, Parker JE,**  
573 **Bautor J, Molina A, Escudero V, Shindo T, van der Hoorn RA, Gust AA, Nurnberger T.** Autophagy  
574 differentially controls plant basal immunity to biotrophic and necrotrophic  
575 pathogens. *Plant J.* 2011;**66**(5):818-830.<https://doi.org/10.1111/j.1365-313X.2011.04546.x>

576 **Li F, Chung T, Pennington JG, Federico ML, Kaepller HF, Kaepller SM, Otegui MS, Vierstra RD.**  
577 Autophagic recycling plays a central role in maize nitrogen remobilization. *Plant Cell.*  
578 2015;**27**(5):1389-1408.<https://doi.org/10.1105/tpc.15.00158>

579 **Li G, Liu K, Baldwin SA, Wang D.** Equilibrative nucleoside transporters of *Arabidopsis thaliana*. cDNA  
580 cloning, expression pattern, and analysis of transport activities. *J Biol Chem.*  
581 2003;**278**(37):35732-35742.<https://doi.org/10.1074/jbc.M304768200>

582 **Liu Y, Bassham DC.** Autophagy: pathways for self-eating in plant cells. *Annu Rev Plant Biol.* 2012;**63**  
583 215-237.<https://doi.org/10.1146/annurev-arplant-042811-105441>

584 **Lo Presti L, Lanver D, Schweizer G, Tanaka S, Liang L, Tollot M, Zuccaro A, Reissmann S,**  
585 **Kahmann R.** Fungal effectors and plant susceptibility. *Annu Rev Plant Biol.* 2015;**66** 513-  
586 545.<https://doi.org/10.1146/annurev-arplant-043014-114623>

587 **Marshall RS, Vierstra RD.** Autophagy: The Master of Bulk and Selective Recycling. *Annu Rev Plant  
588 Biol.* 2018;**69** 173-208.<https://doi.org/10.1146/annurev-arplant-042817-040606>

589 **Mizushima N, Yoshimori T, Ohsumi Y.** The role of Atg proteins in autophagosome formation. *Annu  
590 Rev Cell Dev Biol.* 2011;**27** 107-132.<https://doi.org/10.1146/annurev-cellbio-092910-154005>

591 **Munch D, Rodriguez E, Bressendorff S, Park OK, Hofius D, Petersen M.** Autophagy deficiency  
592 leads to accumulation of ubiquitinated proteins, ER stress, and cell death in *Arabidopsis*.  
593 *Autophagy.* 2014;**10**(9):1579-1587.<https://doi.org/10.4161/auto.29406>

594 **Munch D, Teh OK, Malinovsky FG, Liu Q, Vetukuri RR, El Kasmi F, Brodersen P, Hara-Nishimura  
595 I, Dangl JL, Petersen M, Mundy J, Hofius D.** Retromer contributes to immunity-associated  
596 cell death in *Arabidopsis*. *Plant Cell.* 2015;**27**(2):463-  
597 479.<https://doi.org/10.1105/tpc.114.132043>

598 **Nizam S, Qiang X, Wawra S, Nostadt R, Getzke F, Schwanke F, Dreyer I, Langen G, Zuccaro A.**  
599 *Serendipita indica* E5'NT modulates extracellular nucleotide levels in the plant apoplast and  
600 affects fungal colonization. *EMBO Rep.* 2019;**20**(2).<https://doi.org/10.15252/embr.201847430>

601 **Oberwinkler F, Riess K, Bauer R, Selosse M-A, Weiß M, Garnica S, Zuccaro A.** Enigmatic  
602 Sebacinales. *Mycological Progress.* 2013;**12**(1):1-27.<https://doi.org/10.1007/s11557-012-0880-4>

603 **Pandey P, Leary AY, Tumtas Y, Savage Z, Daggavadorj B, Duggan C, Yuen EL, Sanguankiatthichai  
604 N, Tan E, Khandare V, Connerton AJ, Yunusov T, Madalinski M, Mirkin FG, Schornack S,  
605 Dagdas Y, Kamoun S, Bozkurt TO.** An oomycete effector subverts host vesicle trafficking to  
606 channel starvation-induced autophagy to the pathogen interface. *eLife.*  
607 2021;**10**(e65285).<https://doi.org/10.7554/eLife.65285>

608 **Phillips AR, Suttangkakul A, Vierstra RD.** The ATG12-conjugating enzyme ATG10 is essential for  
609 autophagic vesicle formation in *Arabidopsis thaliana*. *Genetics.* 2008;**178**(3):1339-  
610 1353.<https://doi.org/10.1534/genetics.107.086199>

611 **Qiang X, Zechmann B, Reitz MU, Kogel KH, Schafer P.** The mutualistic fungus *Piriformospora indica*  
612 colonizes *Arabidopsis* roots by inducing an endoplasmic reticulum stress-triggered caspase-  
613 dependent cell death. *Plant Cell.* 2012;**24**(2):794-809.<https://doi.org/10.1105/tpc.111.093260>

614 **Raffeiner M, Zhu S, González-Fuente M, Üstün S.** Interplay between autophagy and proteasome  
615 during protein turnover. *Trends in Plant Science.* 2023;**28**(6):698-  
616 714.<https://doi.org/10.1016/j.tplants.2023.01.013>

617 **Schafer P, Pfiffi S, Voll LM, Zajic D, Chandler PM, Waller F, Scholz U, Pons-Kuhnemann J,  
618 Sonnewald S, Sonnewald U, Kogel KH.** Manipulation of plant innate immunity and gibberellin  
619 as factor of compatibility in the mutualistic association of barley roots with *Piriformospora indica*.  
620 *Plant J.* 2009;**59**(3):461-474.<https://doi.org/10.1111/j.1365-313X.2009.03887.x>

621 **Schippers JHM, Jing H-C, Hille J, Dijkwel PP** (2007) Developmental and Hormonal Control of Leaf  
622 Senescence. *In:* Blackwell Publishing Ltd, pp 145-170

623 **Stephani M, Picchianti L, Gajic A, Beveridge R, Skarwan E, Sanchez de Medina Hernandez V,  
624 Mohseni A, Clavel M, Zeng Y, Naumann C, Matuszkiewicz M, Turco E, Loefke C, Li B,  
625 Durnberger G, Schutzbier M, Chen HT, Abdurakhmanov A, Savova A, Chia KS, Djamei A,**

627 **Schaffner I, Abel S, Jiang L, Mechtler K, Ikeda F, Martens S, Clausen T, Dagdas Y.** A cross-  
 628 kingdom conserved ER-phagy receptor maintains endoplasmic reticulum homeostasis during  
 629 stress. *Elife*. 2020;9(e58396).<https://doi.org/10.7554/elife.58396>

630 **Thammavongsa V, Missiakas DM, Schneewind O.** Staphylococcus aureus degrades neutrophil  
 631 extracellular traps to promote immune cell death. *Science*. 2013;342(6160):863-  
 632 866.<https://doi.org/10.1126/science.1242255>

633 **Thompson AR, Doelling JH, Suttangkakul A, Vierstra RD.** Autophagic nutrient recycling in  
 634 Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. *Plant Physiol.*  
 635 2005;138(4):2097-2110.<https://doi.org/10.1104/pp.105.060673>

636 **Thurich J, Meichsner D, Furch ACU, Pfalz J, Kruger T, Kniemeyer O, Brakhage A, Oelmuller R.**  
 637 Arabidopsis thaliana responds to colonisation of *Piriformospora indica* by secretion of  
 638 symbiosis-specific proteins. *PLoS One*.  
 639 2018;13(12):e0209658.<https://doi.org/10.1371/journal.pone.0209658>

640 **Üstün S, Hafrén A, Hofius D.** Autophagy as a mediator of life and death in plants. *Current Opinion in*  
 641 *Plant Biology*. 2017;40:122-130.<https://doi.org/10.1016/j.pbi.2017.08.011>

642 **Vijayaraghavareddy P, Adhinarayreddy V, Vemanna RS, Sreeman S, Makarla U.** Quantification  
 643 of Membrane Damage/Cell Death Using Evan's Blue Staining Technique. *Bio Protoc.*  
 644 2017;7(16):e2519.<https://doi.org/10.21769/BioProtoc.2519>

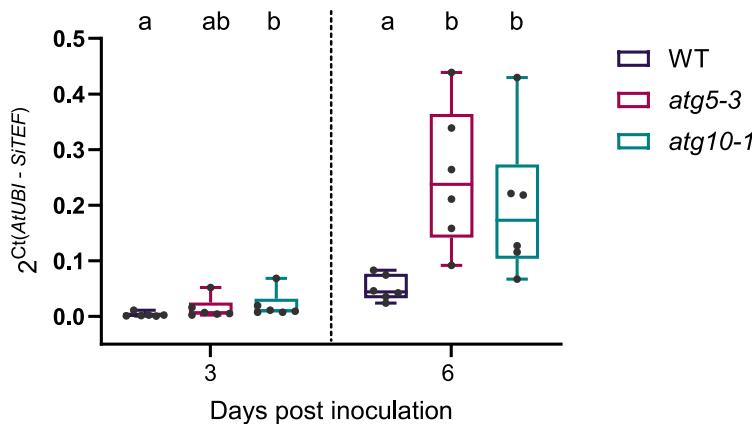
645 **Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A.** Autophagy plays a role in  
 646 chloroplast degradation during senescence in individually darkened leaves. *Plant Physiol.*  
 647 2009;149(2):885-893.<https://doi.org/10.1104/pp.108.130013>

648 **Wang Y, Nishimura MT, Zhao T, Tang D.** ATG2, an autophagy-related protein, negatively affects  
 649 powdery mildew resistance and mildew-induced cell death in Arabidopsis. *Plant J.*  
 650 2011;68(1):74-87.<https://doi.org/10.1111/j.1365-313X.2011.04669.x>

651 **Weiss M, Waller F, Zuccaro A, Selosse MA.** Sebacinales - one thousand and one interactions with  
 652 land plants. *New Phytol*. 2016;211(1):20-40.<https://doi.org/10.1111/nph.13977>

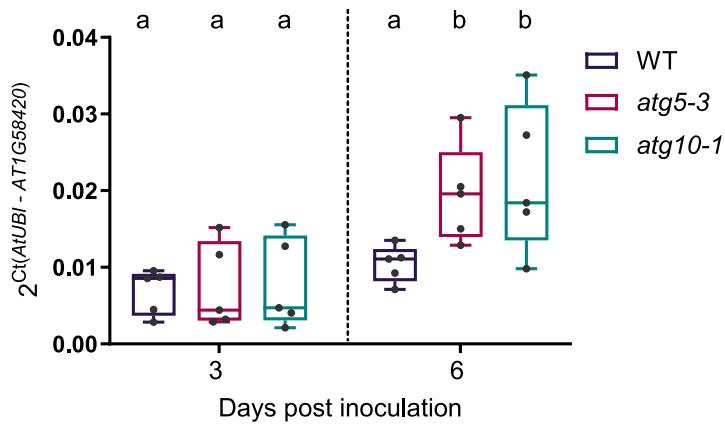
653 **Winstel V, Missiakas D, Schneewind O.** Staphylococcus aureus targets the purine salvage pathway  
 654 to kill phagocytes. *Proc Natl Acad Sci U S A*. 2018;115(26):6846-  
 655 6851.<https://doi.org/10.1073/pnas.1805622115>

656 **Xiong Y, Contento AL, Nguyen PQ, Bassham DC.** Degradation of oxidized proteins by autophagy  
 657 during oxidative stress in Arabidopsis. *Plant Physiol.* 2007;143(1):291-  
 658 299.<https://doi.org/10.1104/pp.106.092106>


659 **Yoshimoto K, Hanaoka H, Sato S, Kato T, Tabata S, Noda T, Ohsumi Y.** Processing of ATG8s,  
 660 ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy.  
 661 *Plant Cell*. 2004;16(11):2967-2983.<https://doi.org/10.1105/tpc.104.025395>

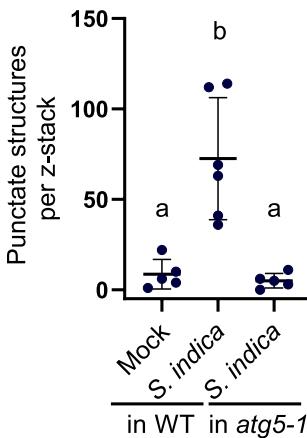
662 **Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu**  
 663 **K.** Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid  
 664 signaling during senescence and the innate immune response in Arabidopsis. *Plant Cell*.  
 665 2009;21(9):2914-2927.<https://doi.org/10.1105/tpc.109.068635>

666 **Zuccaro A, Lahrmann U, Guldener U, Langen G, Pfiffi S, Biedenkopf D, Wong P, Samans B,**  
 667 **Grimm C, Basiewicz M, Murat C, Martin F, Kogel KH.** Endophytic life strategies decoded by  
 668 genome and transcriptome analyses of the mutualistic root symbiont *Piriformospora indica*.  
 669 *PLoS Pathog*. 2011;7(10):e1002290.<https://doi.org/10.1371/journal.ppat.1002290>


**A**

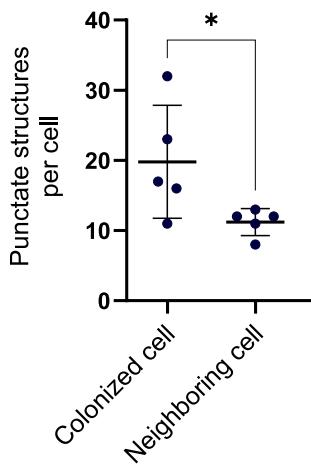
Colonization of *A. thaliana* roots by *S. indica*




**B**

AT1G58420 expression in *S. indica*-colonized roots

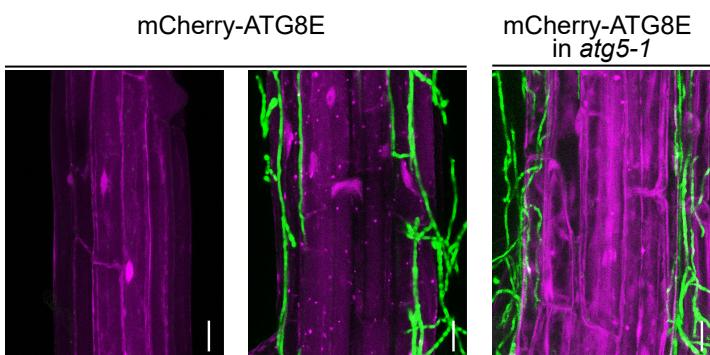



**C**

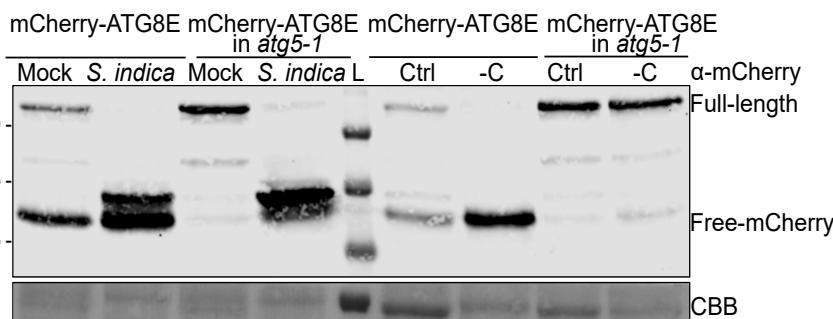
mCherry-ATG8E



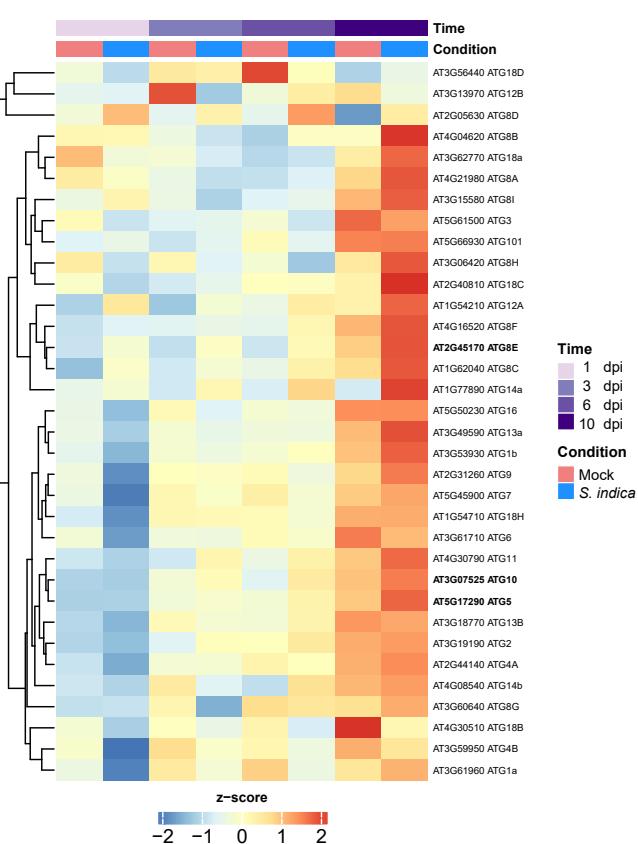
**D**


mCherry-ATG8E  
*S. indica*-colonized roots




**E**

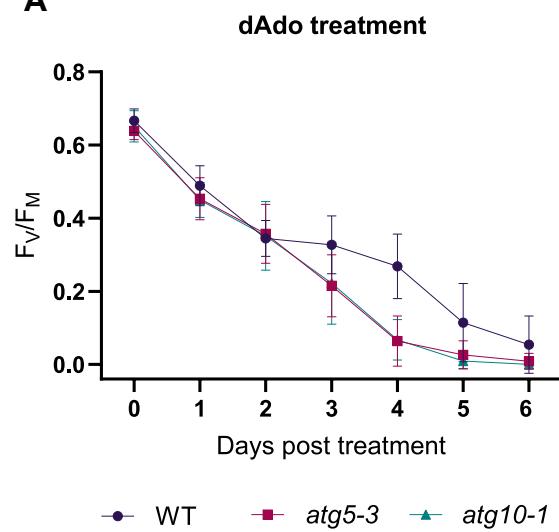
Mock


*S. indica*

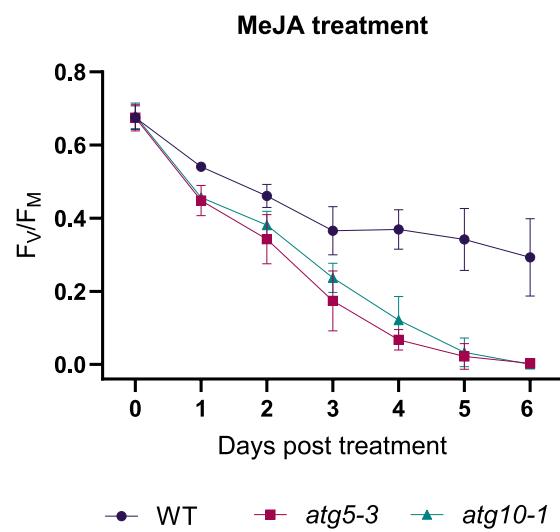


**F**

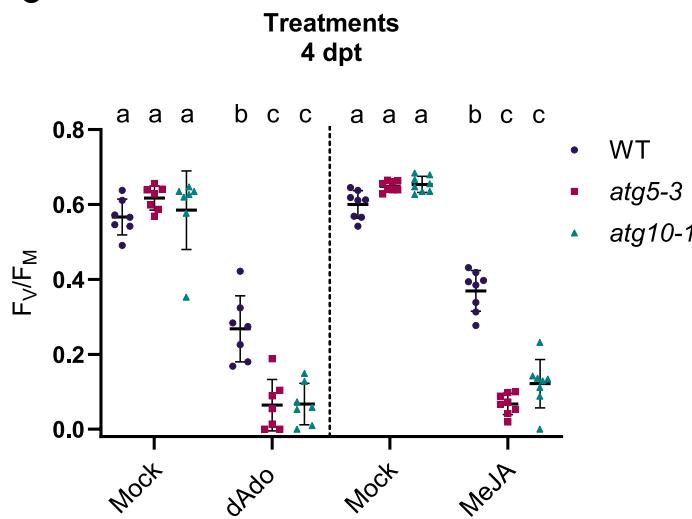



**G**

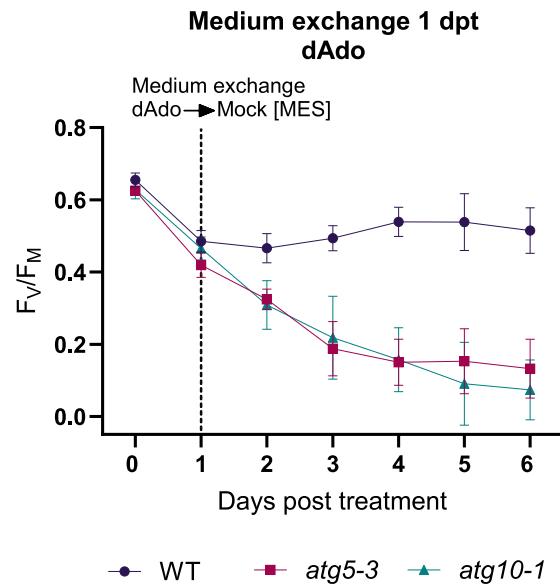



**Figure 1: Involvement of autophagy in the colonization of *A. thaliana* roots by *S. indica*.**

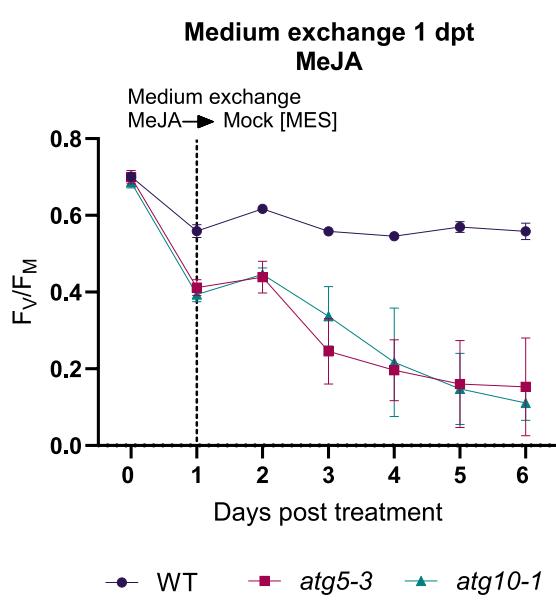
**(A)** *S. indica* colonization of WT and autophagy mutants *atg5-3* and *atg10-1* quantified by RT-qPCR at 3 and 6 days post inoculation (dpi). Fungal colonization in plant root tissue was calculated from the ratio of *S. indica* (*SiTEF*) to plant (*AtUbi*) using cDNA as template and the  $2^{-\Delta Ct}$  method. Boxplots with whiskers extending to the minimum and maximum values represent data from 6 independent biological replicates. Different letters indicate significant differences ( $p < 0.05$ ) according to Kruskal-Wallis test and post-hoc Dunn test using Benjamini-Hochberg for false discovery rate correction. **(B)** Expression of the marker gene AT1G58420 in *S. indica*-colonized WT, *atg5-3* and *atg10-1* roots at 6 dpi. Relative expression was calculated compared to plant (*AtUbi*) using cDNA as template and the  $2^{-\Delta Ct}$  method. Boxplots with whiskers extending to the minimum and maximum values represent data from 5 independent biological replicates. Different letters indicate significant differences ( $p < 0.05$ ) according to Kruskal-Wallis test and post-hoc Dunn test using Benjamini-Hochberg for false discovery rate correction. **(C)** Quantification of mCherry-ATG8E-labeled puncta was performed using confocal images of transgenic roots expressing mCherry-ATG8E. Confocal microscopy was conducted on differentiated root cells following mock or *S. indica* inoculation. The plot (mean  $\pm$  SD) shows the total number of puncta per z-stack in the whole 63X captured image for mCherry-ATG8E mock ( $n=5$ ), *S. indica* ( $n=6$ ) in WT and mCherry-ATG8E in *atg5-1* background *S. indica* ( $n=5$ ). Different letters indicate significant differences ( $p < 0.05$ ) according to Kruskal-Wallis test and post-hoc Dunn test using Benjamini-Hochberg for false discovery rate correction. **(D)** Quantification of mCherry-ATG8E-labeled puncta on differentiated root cells colonized by *S. indica*. The plot (mean  $\pm$  SD) shows the number of mCherry-ATG8 puncta per root cell distinguishing between cells with hyphal contact and neighboring cells without hyphal contact ( $n=5$ ). The asterisk indicates significant differences ( $p < 0.05$ ) according to unpaired Student's t-test. **(E)** Confocal laser scanning microscopy (CLSM) representative images obtained of transgenic roots expressing mCherry-ATG8E in WT or *atg5-1* background. The microscopy was conducted from the epidermis of differentiated root cells, following mock or *S. indica* treatment for 10 days after seed inoculation. The images represent maximal projections of 8-10 optical sections, scale bar 20  $\mu$ m. **(F)** Autophagy flux analysis was performed using transgenic plants expressing mCherry-ATG8E in WT or *atg5-1* background. The left panel displays a blot with samples obtained from collected roots upon mock or *S. indica* treatment for 10 days after seed inoculation. The right panel displays a blot with samples obtained from collected seedlings incubated in control or carbon-depleted media for starvation-induced autophagy. Immunoblot analysis was performed using an anti-mCherry antibody. Coomassie Brilliant Blue (CBB) was used as protein loading control. **(G)** Heatmap with expression levels of autophagy-related genes (ATG) from *Arabidopsis* WT roots samples collected at 1, 3, 6 and 10 days post inoculation with mock or *S. indica*. Genes with an average TPM value  $> 1$  TPM across all samples were selected. The heatmap shows the z-score of log2 transformed TPM + 1 values of selected *Arabidopsis* genes. For each condition the average expression across the three biological replicates is represented. The full version of the heatmap of autophagy-associated genes can be found in Figure S2.


**A**

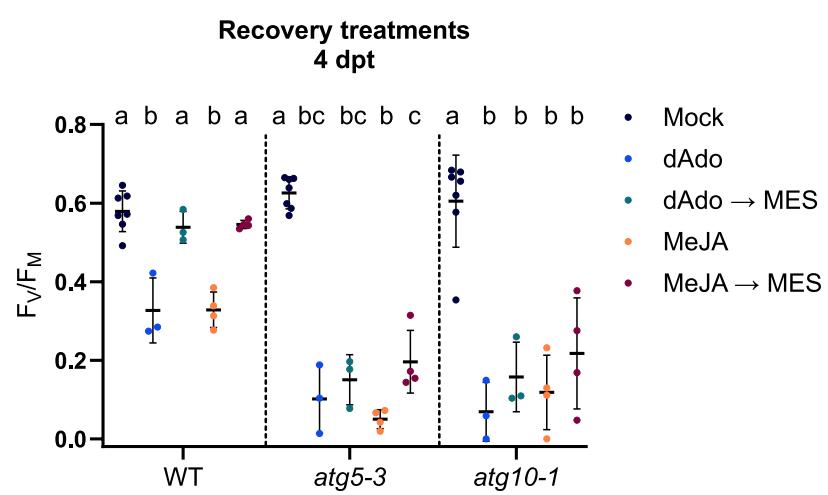



**B**




**C**



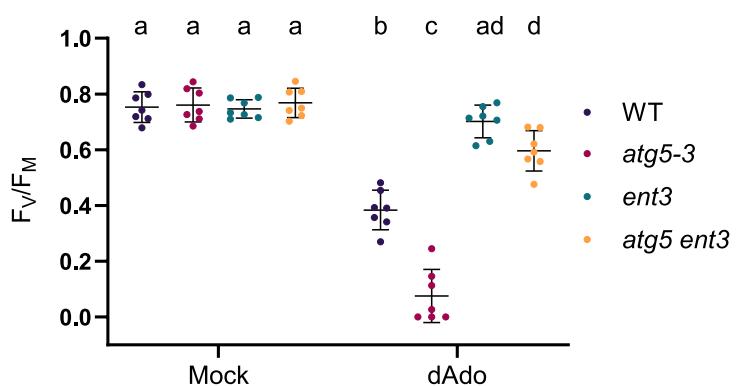

**D**



**E**

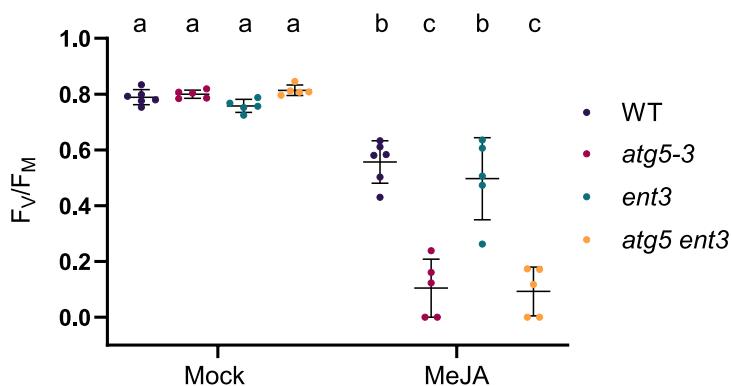


**F**



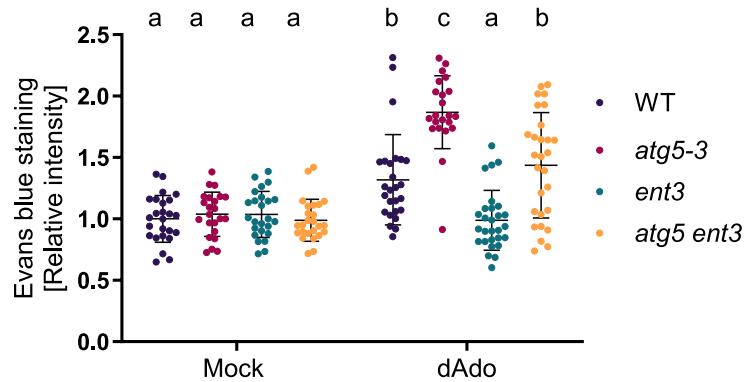

**Figure 2: Autophagy promotes cell survival during dAdo-induced cell death.**

**(A)** Photosystem II maximum quantum yield ( $F_v/F_M$ ) of nine-day-old seedlings treated with mock (MES 2.5 mM buffer) or dAdo (500  $\mu$ M), measured by PAM fluorometry. Error bars represent  $\pm$  SD of the mean of 7 independent biological replicates. **(B)** Photosystem II maximum quantum yield ( $F_v/F_M$ ) of nine-day-old seedlings treated with mock (MES 2.5 mM buffer) or methyl jasmonate (MeJA, 500  $\mu$ M) as positive control for cell death, measured by PAM fluorometry. Error bars represent  $\pm$  SD of the mean of 8 independent biological replicates. **(C)** Quantification of  $F_v/F_M$  of WT and autophagy mutants *atg5-3* and *atg10-1*, 4 days post treatment (dpt). The plot (mean  $\pm$  SD) represents data from 7-8 independent biological replicates, each consisting of 12 wells with 3 seedlings per well. Different letters indicate significant differences ( $p < 0.05$ ) according to one-way ANOVA with post-hoc Tukey HSD test. **(D)** Photosystem II maximum quantum yield ( $F_v/F_M$ ) of nine-day-old seedlings treated with mock (MES 2.5 mM buffer) or dAdo (500  $\mu$ M), measured by PAM fluorometry. dAdo treatment solution was replaced after 24 h with MES 2.5 mM buffer. Error bars represent  $\pm$  SD of the mean of 3 independent biological replicates. **(E)** Photosystem II maximum quantum yield ( $F_v/F_M$ ) of nine-day-old seedlings treated with mock (MES 2.5 mM buffer) or methyl jasmonate (MeJA, 500  $\mu$ M), measured by PAM fluorometry. MeJA treatment solution was replaced after 24 h with MES 2.5 mM buffer. Error bars represent  $\pm$  SD of the mean of 4 independent biological replicates. **(F)** Quantification of  $F_v/F_M$  of WT and autophagy mutants *atg5-3* and *atg10-1*, 4 days after treatment solution replacement. The plot (mean  $\pm$  SD) represents data from 3-4 independent biological replicates, each consisting of 12 wells with 3 seedlings per well. Different letters indicate significant differences ( $p < 0.05$ ) according to one-way ANOVA with post-hoc Tukey HSD test.


**A**

**dAdo treatment**  
4 dpt




**B**

**MeJA treatment**  
4 dpt

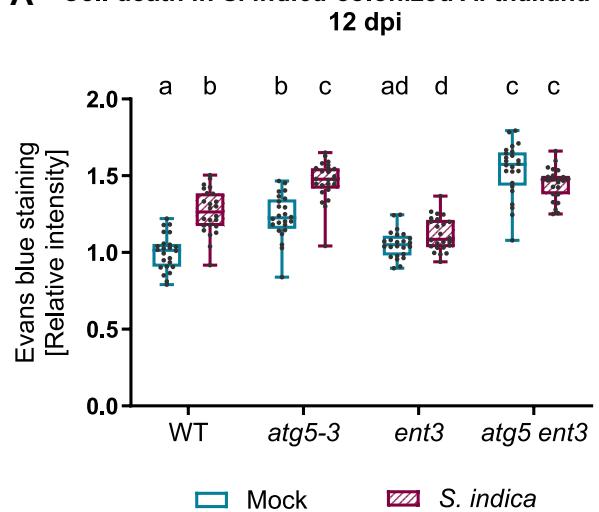



**C**

**Cell death in *A. thaliana* roots**  
4 dpt



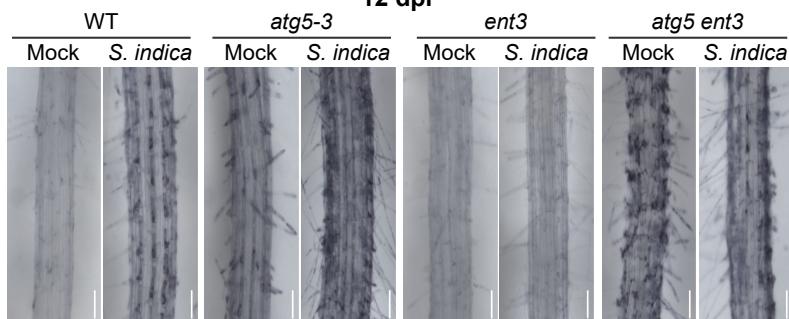
**D**


**Cell death in treated roots**  
4 dpt

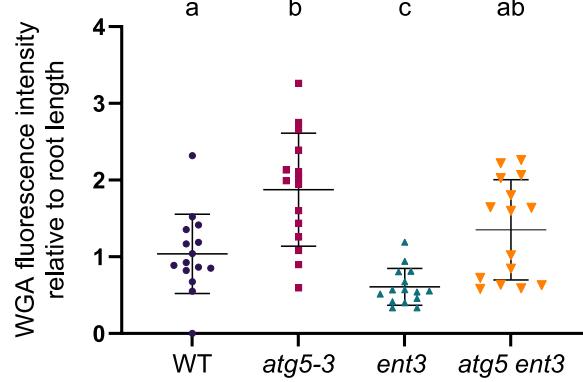


**Figure 3: The double mutant *atg5 ent3* displays a dAdo resistance phenotype.**

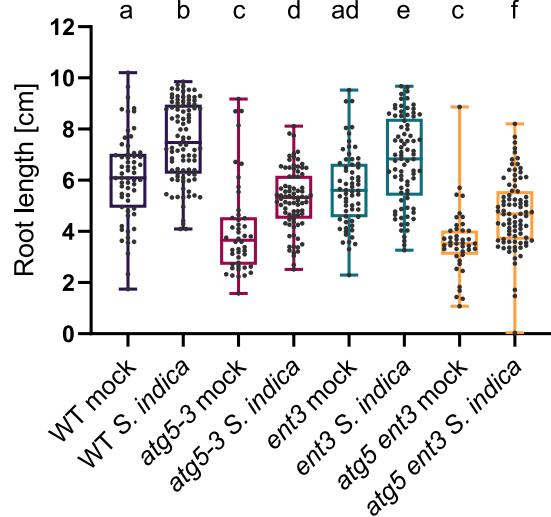
**(A)** Quantification of photosystem II maximum quantum yield ( $F_v/F_m$ ) of WT, *atg5-3*, *ent3* and *atg5 ent3* at 4 days post treatment (dpt) by PAM fluorometry. Nine-day-old seedlings were treated with mock (MES 2.5 mM buffer) or dAdo (500  $\mu$ M). The plot (mean  $\pm$  SD) represents data from 7 independent biological replicates, each consisting of 12 wells with 3 seedlings per well. Different letters indicate significant differences ( $p < 0.05$ ) according to one-way ANOVA with post-hoc Tukey HSD test. **(B)** Quantification of photosystem II maximum quantum yield ( $F_v/F_m$ ) of WT, *atg5-3*, *ent3* and *atg5 ent3* at 4 dpt by PAM fluorometry. Nine-day-old seedlings were treated with mock (MES 2.5 mM buffer) or methyl jasmonate (MeJA, 500  $\mu$ M). The plot (mean  $\pm$  SD) represents data from 5 independent biological replicates, each consisting of 12 wells with 3 seedlings per well. Different letters indicate significant differences ( $p < 0.05$ ) according to one-way ANOVA with post-hoc Tukey HSD test. **(C)** Quantification of cell death at the root tip of WT, *atg5-3*, *ent3* and *atg5 ent3*. Eight-day-old seedlings were treated with mock (sterile milli-Q water) or dAdo (500  $\mu$ M) and stained with Evans blue at 4 dpt. The plot (mean  $\pm$  SD) represents relative values to WT mock from 22-28 biological replicates. Different letters indicate significant differences ( $p < 0.05$ ) according to Kruskal-Wallis test and post-hoc Dunn test using Benjamini-Hochberg for false discovery rate correction. **(D)** Bright-field microscopy of root cell death at the root tip in WT, *atg5-3*, *ent3* and *atg5 ent3* seedlings incubated with mock or dAdo (500  $\mu$ M) and stained with Evans blue dye at 4 dpt. Scale bar: 500  $\mu$ m.


**A Cell death in *S. indica*-colonized *A. thaliana* roots**



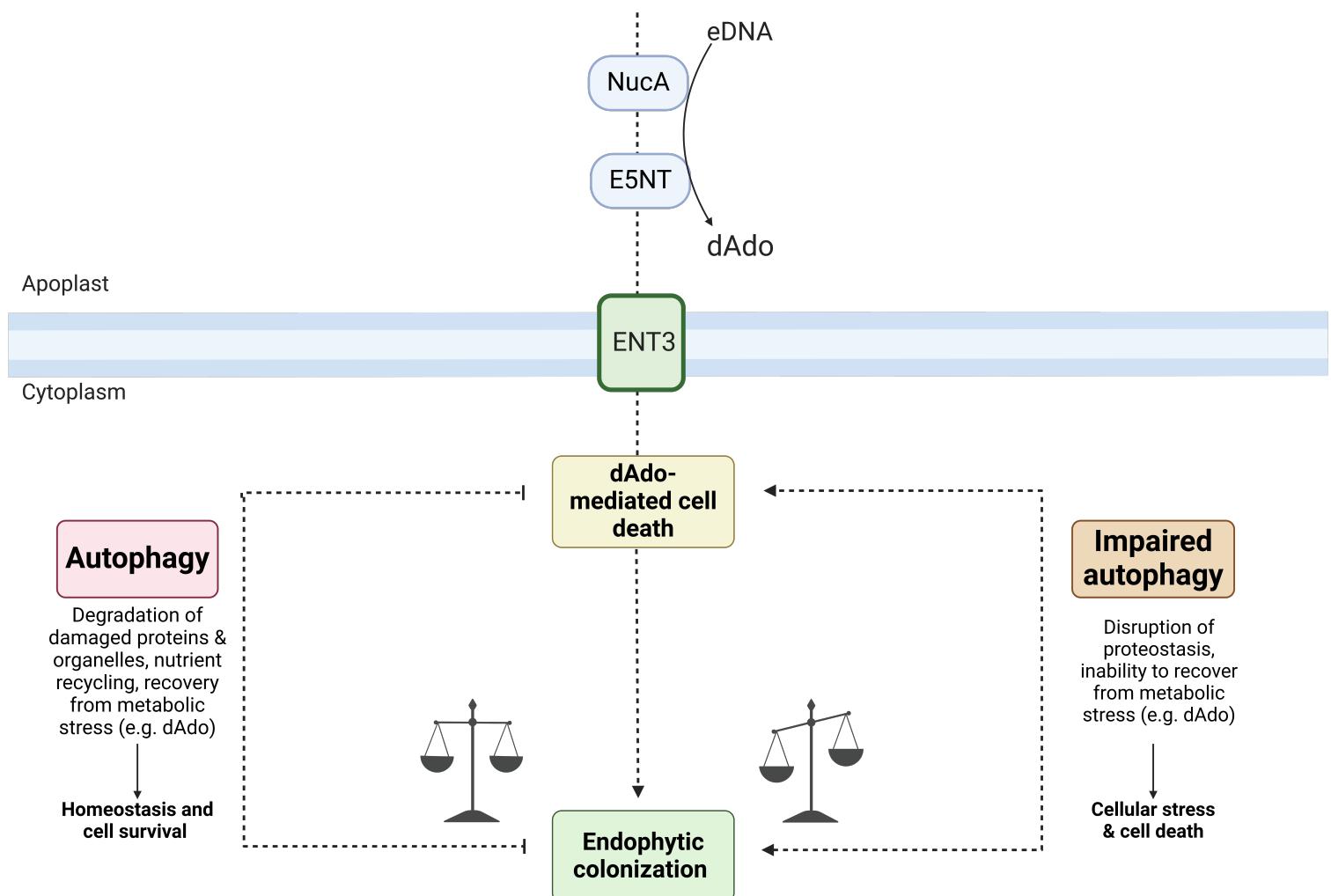

**B**

**Cell death in colonized roots**


12 dpi



**C Extraradical colonization of *A. thaliana* roots by *S. indica***




**D Root growth of *A. thaliana* roots**



**Figure 4: *S. indica*-mediated cell death is prevented in the double mutant *atg5 ent3*.**

**(A)** Quantification of cell death at the root differentiation zone in WT, *atg5-3*, *ent3* and *atg5 ent3*. Nine-day-old seedlings were inoculated with mock or *S. indica* and stained with Evans Blue dye at 12 days post inoculation (dpi). Boxplots with whiskers extending to the minimum and maximum values represent relative values to WT mock from 6 biological replicates. Different letters indicate significant differences ( $p < 0.05$ ) according to Kruskal-Wallis test and post-hoc Dunn test using Benjamini-Hochberg for false discovery rate correction. **(B)** Bright-field microscopy of root cell death at the differentiation zone in WT, *atg5-3*, *ent3* and *atg5 ent3* seedlings inoculated with mock or *S. indica* and stained with Evans blue dye at 12 dpi. Scale bar: 500  $\mu$ m. **(C)** Quantification of extraradical *S. indica* colonization on 1/10 PNM was assessed by fluorescence intensity using WGA-AF 488 staining 12 days after seed inoculation. The plot (mean  $\pm$  SD) represents WGA fluorescent intensity values relative to root length and normalized to Col-0 mock, based on 15 biological replicates. Different letters indicate significant differences ( $p < 0.05$ ) according to Kruskal-Wallis test and post-hoc Dunn test using Benjamini- Hochberg for false discovery rate correction. **(D)** Quantification of the primary root length of WT, *atg5-3*, *ent3* and *atg5 ent3* seedlings under mock or *S. indica* treatment, 21 days after seed inoculation. Boxplots with whiskers extending to the minimum and maximum values represent data from 43-92 biological replicates. Different letters indicate significant differences ( $p < 0.05$ ) according to Kruskal-Wallis test and post-hoc Dunn test using Benjamini-Hochberg for false discovery rate correction.



**Figure 5: Current model for the crosstalk between autophagy and dAdo cell death during *S. indica* colonization.**

Endophytic root colonization of the host plant *Arabidopsis thaliana* by the beneficial root endophyte *Serendipita indica* (*S. indica*) is characterized by a biotrophic phase followed by a restricted cell-death associated phase. The activity of two secreted effector enzymes of *S. indica*, E5NT and NucA, produces a DNA-derived deoxynucleoside called deoxyadenosine (dAdo) (Dunken et al., 2023). Extracellular dAdo is imported into the cytoplasm by the *Arabidopsis* equilibrative nucleoside transporter ENT3, activating a dAdo-dependent regulated cell death. Autophagy, a major degradation and nutrient recycling pathway that maintains cellular homeostasis and modulates metabolism, plays a key role in the beneficial interaction between *S. indica* and *Arabidopsis*. Autophagy restricts fungal colonization and provides a protective function against dAdo-induced cell death. We propose that autophagy-driven pro-survival responses, such as the degradation of damaged proteins or protein aggregates, recycling of nutrients and recovery from metabolic stress facilitate a balanced symbiotic interaction. Illustration was designed using the Biorender online tool.