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Abstract

Preterm infants undergo substantial neurosensory development in the first weeks after birth.
Infants born prematurely are more likely to have long-term adverse neurological outcomes and
early detection of abnormal brain development is essential for timely interventions. We
investigated whether sensory-evoked cortical potentials could be used to accurately estimate
the age of an infant. Such a model could be used to identify infants who deviate from normal
neurodevelopment by comparing the brain age to the infant’s postmenstrual age (PMA).
Infants aged between 28- and 40-weeks PMA from a training and test sample (consisting of
101 and 65 recording sessions in 82 and 14 infants, respectively) received trains of
approximately 10 visual and 10 tactile stimuli (interstimulus interval approximately 10
seconds). PMA could be predicted accurately from the magnitude of the evoked responses
(training set mean absolute error (MAE and 95% confidence intervals): 1.41 [1.14; 1.74]
weeks, p = 0.0001; test set MAE: 1.55 [1.21; 1.95] weeks, p = 0.0002. Moreover, we show
with two examples that brain age, and the deviations between brain age and PMA, may be
biologically and clinically meaningful. By firstly demonstrating that brain age is correlated
with a measure known to relate to maturity of the nervous system (based on animal and human
literature, the magnitude of reflex withdrawal is used) and secondly by linking brain age to
long-term neurological outcomes, we show that brain age deviations are related to biologically
meaningful individual differences in the rate of functional nervous system maturation rather
than noise generated by the model. In summary, we demonstrate that sensory-evoked potentials
are predictive of age in premature infants. It takes less than 5 minutes to collect the stimulus
electroencephalographic data required for our model, hence, increasing its potential utility in
the busy neonatal care unit. This model could be used to detect abnormal development of
infant’s response to sensory stimuli in their environment and may be predictive of later life

abnormal neurodevelopmental outcome.
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Introduction

Premature and hospitalised infants are at increased risk of adverse neurodevelopmental
outcomes compared with healthy term-born infants (Blencowe et al., 2013). The neurosensory
system of premature infants undergoes rapid structural and functional development (Kostovi¢
et al, 2014; Niemarkt et al, 2011), with functional changes apparent in
electroencephalographic (EEG) recordings (André et al., 2010). Sensory-evoked potentials
provide information about the integrity of the sensory nervous system and may be predictive
of neurological outcomes (Leikos et al., 2020; Majnemer and Rosenblatt, 1996; Pike and
Marlow, 2000; Taylor et al., 1996). A variety of neural impairments associated with atypical
development of the somatosensory and visual systems have been described, affecting both the
morphology and latency of evoked potentials (De Vries et al., 1990; de Zegher et al., 1992;
Hiakkinen et al., 1987; McCulloch et al., 1991; Taylor and McCulloch, 1992; Whyte et al.,
1987). Generally, sensory stimuli evoke slow-wave responses in young premature babies
(Khazipov et al., 2004), whereas evoked brain activity with high-frequency waveforms are

observed in older infants (André et al., 2010; Niemarkt et al., 2011).

Machine learning approaches can be used to accurately predict the post-menstrual age
(PMA) of preterm infants from EEG (Ansari et al., 2023; Lavanga et al., 2018; O’Toole et al.,
2016; Pillay et al., 2020; Stevenson et al., 2017), diffusion magnetic resonance imaging (MRI)
(Brown et al., 2017; Kawahara et al., 2017) and structural MRI (Liu et al., 2021). These models
may facilitate the early identification of infants with abnormal neurodevelopment, reducing the
need for visual inspection of the EEG/MRI, which is subjective, requires trained clinical staff,
and is time-consuming. This so-called brain age can be seen as a maturation index of the neural
system which is unlikely to reflect chronological age, which can be viewed as a continuous
“ticking clock” (Salih et al., 2023). Previous EEG brain age models have focused on continuous
ongoing EEG activity (i.e., non-evoked brain activity) (Ansari et al., 2023; O’Toole et al.,
2016; Pillay et al., 2020; Stevenson et al., 2017). An alternative may be to construct models
capturing evoked responses, giving specific information about the maturity of sensory
processing. We hypothesised that sensory-evoked responses will be predictive of age and that
development of brain age models which use sensory-evoked potentials may specifically

provide insight into neurosensory brain functioning in premature infants.
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89 Here, we aimed to assess whether sensory-evoked responses could be used to predict
90 PMA in infants, focusing on visual and tactile stimuli as these are easy to perform in infants
91 and elicit clear evoked potentials requiring only a small number of trials. To facilitate the
92  development of a sensory-evoked brain age model, we utilise stimulus-specific neurodynamic
93  response functions (NRF), which, akin to haemodynamic response functions used in functional
94 MRI (fMRI) (Arichi et al., 2012; Henson and Friston, 2007), represent the characteristic
95 waveforms evoked by the stimuli. Identifying NRFs provides a consistent reproducible
96 approach to compare infants across research studies (Hartley et al., 2017) and is likely a useful
97 candidate feature for predicting age (Green et al., 2019; Hartley et al., 2016; Schmidt Mellado
98 etal., 2022; van der Vaart et al., 2022). NRFs have been previously developed for responses
99  to visual (Schmidt Mellado et al., 2022), tactile (Schmidt Mellado et al., 2022), and noxious
100 (Hartley et al., 2017) stimuli in term infants. These term-derived brain responses show that
101  sensory-evoked potentials change with age in premature infants (Fabrizi et al., 2011; Hartley
102  etal., 2016; Schmidt Mellado et al., 2022; van der Vaart et al., 2022), are sensitive to stimulus
103 intensity (Hartley et al., 2015), and may be modulated by interventions (Cobo et al., 2021;
104  Gursul et al., 2018; Hartley et al., 2017); however, deriving NRFs from preterm infants across
105 development will be better able to predict brain age.

106 In this study, we first identified NRFs of visual- and tactile-evoked brain activity in
107 infants between 28-40 weeks PMA. Next, we quantified age-dependent relationships for each
108 of the NRFs and trained a machine learning model that accurately predicted brain age using
109 these NRFs. In an independent sample of preterm infants, we tested the NRFs and age-
110  prediction model. Finally, in two examples we explored whether the infants’ brain ages are
111  meaningful. Firstly, we tested if the magnitude of reflex withdrawal is correlated with infant
112 brain age, suggesting its biological significance. Secondly, we related longitudinal brain age
113  trajectories to long-term outcomes and expected that infants with below-average Bayley-III
114  outcomes would have greater differences between their brain age and PMA (i.e., greater brain
115  age gap) and different brain development trajectories when compared with infants with average
116  Bayley-III outcomes. This would suggest that brain age trajectory (identified using the sensory-
117  evoked model presented here) may be clinically meaningful and predictive of later life

118 outcome.
119

120
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121  Results
122
123 Stimulus-evoked potentials change with post-menstrual age

124 Stimulus-evoked EEG responses to visual and tactile stimuli could be observed between 28
125  and 40 weeks PMA with distinct morphological changes across this age range (Figure 1,
126  training set and Figure S1, test set). In response to the visual stimulus, a low frequency
127  waveform with negative polarity was observed at the Oz channel in the youngest infants, which
128  disappeared with increasing age (first row of Figure 1). A higher frequency potential was
129  present across all ages, with apparent shift in latency and morphology. Following tactile
130 stimulation, the very youngest infants also displayed a slow-wave response whereas older
131  infants displayed a clear negative peak at ~0.16 s post-stimulus (second row of Figure 1). The
132 test set demonstrated waveforms of similar morphology to the training set across the age range
133 studied (Figure S1). Note that stimulus responses and age-prediction models were first derived
134  inatraining set and then validated in an independent test set; however, for ease of comparison,
135  data in the test set is presented together with the training set throughout the remaining of the

136  results.
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138
139 Figure 1. Stimulus-evoked electroencephalographic potentials according to infant age. Age-dependent evoked potentials for
140 two-weeks intervals between 28 to 40 weeks of post-menstrual age for the visual and tactile stimuli at channels Oz and Cz,
141 respectively. For the test data set, evoked responses are comparable (see Figure S1). Woody filtering aligned the responses to
142 their age-weighted averages. Vertical dashed lines correspond to the stimulus onset. Number of infants indicated by n.
143
144
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145  Stimulus-evoked potentials can be characterised using neurodynamic response functions

146  We used a data-driven approach to identify the characteristic waveforms (the NRFs) from the
147  visual- and tactile-evoked potentials of the training set. Visual-evoked activity at Oz occurred
148  between 0.23 and 1.0 s post-stimulus (permutation testing, p = 0.001, Figure S2). Tactile-
149  evoked activity at channel Cz occurred between 0.09 to 0.23 s post-stimulation (p = 0.041,
150  Figure S2). Four NRFs were identified in response to the visual stimulus and two NRFs in
151  response to the tactile stimulus (Figure 2a and Table S1). In the test sample, the magnitudes of
152  all NRFs were significantly different between the stimulus-evoked activity and resting state,
153  demonstrating the reproducibility of these response functions in an independent dataset (Figure
154  S3 and Table S1). NRFs 1 and 2 in response to the visual stimulus consist of low-frequency
155 waves. NRF 1 also has a superimposed higher frequency waveform at ~0.27 s (Figure 2a).
156  Visual NRFs 3 and 4 are higher frequency components with rapid negative-positive polarity
157  changes from ~0.25 up to 1 s (Figure 2a). The magnitude of the visual-evoked brain activity
158  for the NRFs change with age (particularly in the training set), indicating that these responses
159  may be useful features for a brain age prediction model (linear regressions were used as a guide,

160  Figure 2b-c and Table S2).
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163 Figure 2. Waveforms of the neurodynamic response functions (NRFs) and magnitude changes with post-menstrual age (PMA).
164 a) NRFs as a function of time identified from the training sample. Six (four visual and two tactile) principal components

165 revealed statistically significant mean differences in NRF magnitudes between stimulus responses and resting state activity.
166 b) The relationships between PMA and NRF magnitudes for each recording in the training sample (n = 74 and n = 93 for the
167 visual and tactile responses, respectively). Continuous and dashed black graphs are the fitted means and 95%-confidence
168 intervals of the generalised linear models. Dashed horizontal blue lines mark a magnitude of 0. ¢) The relationships between

169 PMA and NRF magnitudes for each recording in the test sample (visual and tactile responses comprised 55 and 53 recordings,
170  respectively).

171

172 Tactile NRF 1 consists of a slow-wave component (Figure 2a), of which the magnitudes
173  significantly decreased with PMA in the training and test samples (Figure 2b-c and Table S2).
174  Tactile NRF 2 is a higher frequency component with a negative deflection at ~0.17 s (Figure
175  2a); the stimulus response is present at all PMAs in the training and test samples, except for
176  one infant at 28 weeks in the training sample (Figure 2b-c and Table S2). Visual inspection of
177  the NRFs projected on age-specific averages and recording-averaged responses (Figures S4-
178 S11) demonstrated a good fit within individual subjects and age-dependent changes in
179  responses. To summarise, the characteristic waveforms from visual and tactile responses show

180  changes with PMA in both training and test sets.
181
182  Visual and tactile-evoked responses are predictive of the age of the infant

183  Using the NRF magnitudes of the stimulus responses, we used support vector regression to
184  build a model which could accurately predict infant age (Figure 3a-b, training sample leave-
185  one-infant-out cross-validation, MAE = 1.41 weeks with a 95% confidence interval of [1.14;
186  1.74] weeks, p = 0.0001). In the independent test sample, this model accurately predicted the
187 age of the infants (Figure 3c-d, MAE = 1.55 weeks with 95% CI at [1.21; 1.95] weeks, p =
188  0.0002). Models trained on the responses to either the visual or tactile stimuli only did not
189  perform significantly better than the null models in the test set; Figures S12-S13).

190
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192 Figure 3. Brain age prediction models and their statistical evaluations for the a-b) training and c-d) test samples. Panels a
193 and c show the post-menstrual age (PMA) and brain age using leave-one-infant-out cross-validation. Predictions are made
194 from the responses to both visual and tactile stimuli. Each dot indicates a single recording with PMA predicted using the
195 stimulus responses. Dashed lines between dots are infants that took part in multiple recordings. Solid black line indicates

196 perfect prediction. Panels b and d depict the comparison in absolute errors between the Brain age and null model (Mean age)
197 and its mean absolute difference including 95% confidence interval (i.e., MD [95%CI]). Blue dashed lines mean a higher
198 absolute error for the mean age prediction relative to the brain age prediction (i.e., our model performs better than a null
199 model for that recording), and red yield a lower absolute error for the mean age (i.e., our model performs worse than a null
200 model for that recording).

201
202  Brain age is biologically meaningful — exploratory pilot data 1

203  For brain age models to be translated into clinical practice, brain age and its difference with
204 PMA, termed the brain age gap, must be biologically and clinically meaningful. Previous
205 studies have shown that the spinally mediated reflex response of an infant to a clinically
206  required painful procedure becomes more refined with age — with shorter duration, smaller
207  amplitude responses (Andrews and Fitzgerald, 1994; Cornelissen et al., 2013; Hartley et al.,
208 2016). This refinement is also well described in animal literature (Fitzgerald et al., 1988;
209 Hathway et al., 2009), and is thought to arise through maturational changes in the sensory
210 nervous system at multiple levels (Brewer and Baccei, 2020). These findings and their
211  theoretical framework suggest that nociceptive reflex withdrawal activity is indicative of

212 maturity of the infant nervous system. Therefore, an infant’s reflex response to noxious stimuli
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213 should relate to their brain age if our model is biologically meaningful. In the subset of 32
214  infants in our study who received a clinically required heel lance at the time of recording, we
215  compared the way they responded to the heel lance with their brain age and brain age gap (i.e.,
216  the difference between brain age and PMA). Both brain age and brain age gap are significantly
217  correlated with reflex amplitude (brain age: » = -0.45, p = 0.002, one-tailed; brain age gap: r =
218 -0.46, p = 0.001, one-tailed, adjusted for PMA) and duration (brain age: » = -0.36, p = 0.01,
219  one-tailed; brain age gap: » = -0.46, p = 0.001, one-tailed, adjusted for PMA).
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222 Figure 4. (Brain) age associations with electromyographic reflex responses. The relationship of reflex amplitude and duration

223 following a clinically required heel lance with a) post-menstrual age (PMA), b) brain age, and ¢) brain age gap. Brain age
224 and brain age gap are derived from the visual+tactile model as presented in Figure 3a. Brain age gap has been adjusted for
225 PMA (see methods). Dashed black graph is the line of best fit.

226

227  Deviations in sensory development may be predictive of later life neurodevelopmental

228  abnormalities — exploratory pilot data 2

229  Brain age models in infants generally aim to detect atypical development and should ideally be
230 utilised as early indicators of outcomes later in life; hence, linking these two is important. In
231  our sample, infants in the test set are being followed-up at two years of age and assessed using
232 the Bayley Scales of Infant and Toddler Development — Third Edition as part of an ongoing
233 study (see Methods). Five of the infants have already had their two-year follow-up, allowing
234 us to opportunistically investigate the relationship between later life neurodevelopmental

235  outcomes and sensory responses early in life.
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236 Infants were recorded on multiple occasions at approximately one-week intervals. Clear
237  morphological changes with age were observed in response to both visual and tactile stimuli
238  within infants (Figure 5a). Two of the infants had below-average scores for both Language and
239  Motor components (mean score 78 and 76, respectively; both had an average score for
240  Cognitive components: 90), while the other three infants had average or high average scores in
241  all three components (mean across infants of 103, 97, and 100 in Cognitive, Language, and
242 Motor assessments). The two infants with below-average scores had a higher overall MAE of
243 1.74 weeks, compared to 1.45 weeks for the other three infants. Age predictions in these two
244  infants consistently deviated from their PMA for recordings at older ages (mean gradient of
245  brain age prediction over infants: 0.42 — a gradient of 1 would indicate that brain age is always
246  equal to PMA; Figure 5b), whereas the other three infants showed age predictions that were
247  generally better correlated with PMA (gradient: 0.79; Figure 5b). These deviations at older

248  ages are not the result of noise in the model (Figure S14).

249
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Figure 5. Longitudinal development of the evoked potentials with the brain age predictions of the infants in the test set that
have Bayley-III assessments. a) Visual (in blue) and tactile (in red) evoked responses are shown according to post-menstrual
age (PMA) at study from 29 to 39 weeks post-menstrual age for each infant indicated by rows P01-P05. Infants were studied
approximately once a week during their time in the Newborn Care Unit — infants were born and discharged at variable ages.
Vertical dashed line marks stimulus onset. Y-scaling is maximised for each stimulus modality. Infant-specific brain age
predictions (on the right) show the predicted PMA using the visual-tactile model for infants with below average (in dark blue,
P01 and P02) and average (in dark orange, P03, P04 and P05) neurodevelopmental outcomes. Black lines connect predictions
between consecutive sessions. Diagonal dashed black line marks the perfect age prediction. b) Brain age predictions for both
groups of infants. Again, orange and blue data are predictions from babies with average and below average Bayley scores.
The linear regression is the mean of the line of best fit over infants.
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262  Discussion
263

264  We aimed to quantify standardised multisensory brain responses in infants aged 28 to 40 weeks
265 PMA and exploit these standardised responses to predict the brain age of the infants. We
266  applied our neurodynamic response function (NRF) analysis approach to identify distinct
267  stimulus-evoked brain responses to visual and tactile stimuli. This data-driven approach
268 revealed four stimulus-specific NRFs in response to the visual stimulus and two in response to
269 the tactile stimulus. Brain age could be accurately predicted from the magnitudes of these
270  NRFs, and we validated this model in an independent test set. Brain age (gap) was correlated
271  with the magnitude and duration of the reflex withdrawal response to a heel lance, suggesting
272  that deviations in brain age are biologically and clinically meaningful. Moreover, in a subset
273  of the test set with neurodevelopmental outcome at two years of age, we show that sensory-
274  evoked brain age deviated from PMA in infants with below average outcome in the Bayley
275  Scales of Infant and Toddler Development at two years of age, suggesting that sensory-evoked

276  potentials (and our brain age model) are predictive of later life outcome.

277 The brain age model comprising sensory-evoked responses captures the rapid structural
278 and functional development of the neurosensory system of (premature) infants. The neural
279  architecture to process sensory stimuli at the cortex is established from around the start of the
280  third trimester (Colonnese and Khazipov, 2012), with thalamocortical connections initially via
281 the transient subplate (Kostovi¢ et al., 2014; Kostovi¢ and Judas, 2010). Brain activity in this
282  period is characterised by intermittent bursts of activity including delta brush activity (higher
283  frequency neural oscillations nested within a delta wave) (Khazipov et al., 2004), which can
284  occur spontaneously or be evoked by stimuli (Milh et al., 2007; Whitehead et al., 2017). As
285 PMA increases, delta brush activity begins to disappear and evoked brain activity with high-
286  frequency waveforms emerge (André et al., 2010; Niemarkt et al., 2011). The disappearance
287  of delta brush activity is apparent in sensory-evoked activity (Chipaux et al., 2013; Colonnese
288 and Khazipov, 2012; Fabrizi et al., 2011; Hartley et al., 2016; Kato and Watanabe, 2006;
289  Mercuri et al., 1994; van der Vaart et al., 2022) but the timepoint at which the transition from
290 delta brush to modality-specific evoked potentials occurs may be dependent on stimulus
291 modality (Colonnese and Khazipov, 2012). Consistent with these previous studies, we
292  identified age-dependent changes in the stimulus-evoked responses. In our study, delta waves
293  are particularly captured by the visual NRFs 1 and 2 and tactile NRF 1. For all three NRFs,

294  these responses occurred mostly in younger babies as expected. Higher frequency waveforms
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295  were apparent in the second NRF in response to tactile stimulation and in NRFs 3 and 4 in

296  response to visual stimulation.

297 A wide range of brain age models has been developed to trace the brain development
298  of premature infants, encompassing structural connectivity (Brown et al., 2017; Kawahara et
299  al, 2017), morphological (Liu et al., 2021) and electrophysiological data. For the latter, brain
300 age models have previously been constructed in preterm infants using resting state EEG-
301 recorded brain activity (Ansari et al., 2023; Lavanga et al., 2018; O’Toole et al., 2016; Pillay
302 et al., 2020; Stevenson et al., 2017). Although the MAE achieved by our model is not as
303 accurate as some resting state models (e.g., MAEs of approximately 1 week were achieved by
304  Ansari et al. (2023) and Liu et al. (2021)), compared to these existing brain age models, our
305 model has the advantage that it was constructed using electrophysiological responses of
306  approximately 10 visual and 10 tactile stimuli from every recording. We applied stimuli with
307 an inter-stimulus interval of approximately 10 seconds; however, it may be possible to present
308 them at shorter latencies. Nevertheless, this means that brain age predictions can be made based
309 on approximately 5 minutes of recording. Current brain age models utilising ongoing resting
310 state activity require at least 20 minutes of EEG data (Ansari et al., 2023). Implementing
311  sensory evoked responses into brain age models has the potential to lower the requirements on
312  the amount of data that needs to be acquired in a busy clinical environment. Integrating such
313  data will also provide information about the integrity of sensory pathways and will add value
314  to existing resting state models. Indeed, it may be possible to combine the sensory and resting
315  state brain age models, which potentially allows for a more comprehensive understanding of
316  both the underlying functional brain architecture and sensory responses to environmental

317  stimuli.

318 Our model used responses to both visual and tactile stimuli, which performed better
319 than either stimulus individually. This could in part be due to the smaller numbers of features
320  used in the single-stimulus models compared with the multi-modal model. Further work could
321  explore the use of other features such as the latency to the response, which is known to be age
322 dependent (Schwindt et al., 2018; Taylor et al., 1987). Nevertheless, it makes intuitive sense
323  that including multimodal responses will improve accuracy and future work should also

324  consider including responses to other stimuli such as auditory and noxious.

325 For brain age models to be useful, the infant’s brain age (or the deviation between their
326 PMA and brain age) should be biologically meaningful rather than just noise generated by the

327  model (i.e., errors made in the prediction due to non-biological sources such as differences in
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328  head size). Thus, brain age should be correlated with variables indicating the integrity of the
329 neurosensory system. To test this in an example situation, we compared the infant’s brain age
330  with the magnitude of the spinally mediated reflex withdrawal to a noxious stimulus. We chose
331 reflex withdrawal measured with electromyography rather than the EEG-recorded noxious-
332 evoked brain activity to the stimulus as the EEG response may be well-correlated with visual
333  and tactile-evoked derived brain age due to EEG intrinsic noise factors such as electrode
334  placement rather than biologically meaningful factors. In young rat pups, reflex withdrawal to
335 noxious stimuli is uncoordinated and exaggerated compared with adult animals (Fitzgerald et
336 al., 1988; Hathway et al., 2009; Holmberg and Schouenborg, 1996). The change in reflex
337 withdrawal over the first few weeks of postnatal life corresponds to the development of
338  descending inhibition, a reduction in cutaneous receptive fields, and changes in innervation
339 and activity of the spinal cord dorsal horn (Brewer and Baccei, 2020; Fitzgerald, 1985;
340 Holmberg and Schouenborg, 1996; Koch and Fitzgerald, 2013). In line with the animal
341 literature, in preterm infants’ reflex withdrawal decreases in magnitude and duration with age,
342  and the threshold for the response increases (Andrews and Fitzgerald, 1994; Cornelissen et al.,
343  2013; Fitzgerald et al., 1988; Hartley et al., 2016). Here, we found that an infant’s brain age
344  and brain age gap are correlated with the magnitude of the reflex withdrawal. From the strong
345  basis of animal literature, it is expected that the reflex withdrawal is related to the maturity of
346  the nervous system. Thus, this gives support to suggest that brain age is biologically
347 meaningful. Moreover, it may be clinically useful in this scenario as brain age may lead to a
348  better understanding of infants’ responses to painful procedures and so could be, for example,
349  useful for testing analgesics. Further research in this area is warranted (Moultrie et al., 2017,

350 Slater et al., 2020).

351 In the test set, we found initial support that our sensory brain age predictions are
352  associated with neurodevelopmental outcomes at two years of age, whereby a higher brain age
353  gap (i.e., the difference between PMA and predicted age) was correlated with the poorer
354  neurodevelopmental outcome as defined using Bayley-III scores. This is in line with previous
355 results from resting state models (Ansari et al., 2023; Pillay et al., 2020; Stevenson et al., 2020).
356  Future studies should examine how the brain age gaps from abnormal sensory-evoked
357 responses relate to the neurodevelopmental outcomes in larger samples. The longitudinal
358 recordings included here provide evidence that an infant’s brain age may begin to deviate from

359 PMA at certain time points which are likely individualistic. Longitudinal follow-up provides
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360 an opportunity to investigate factors that lead to altered neurodevelopment and identify

361 possibilities for intervention.

362 To conclude, we present a brain age model constructed using sensory-evoked responses
363  inpremature infants. This brain age model accurately predicts age, including in an independent
364  test set, and sensory-evoked brain age deviated from PMA in infants with below-average
365 neurodevelopmental outcome. Moreover, brain age (gap) is correlated with spinally mediated
366 reflex withdrawal responses, suggesting it is biologically meaningful. Compared with current
367 models constructed using resting state EEG, it requires only a limited number of sensory-
368 evoked potentials (on average 20 epochs of 1 second duration), which could be regularly
369 assessed at the cot-side. Recording these EEG responses can be achieved with 5 minutes of
370  data collection. Assessment of neurological function and the integrity of sensory pathways in
371 premature infants is essential for prognostication of later life outcome and the provision of
372  early targeted interventions.

373
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374  Material and methods
375
376  Participants and study design

377  All infants were selected from a research database, containing the data acquired during other
378  experimental protocols, including those presented in previous reports (Green et al., 2019;
379 Hartley et al., 2017; Schmidt Mellado et al., 2022). These data were collected between 2012
380 and 2023 at the John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust,
381 Oxford, United Kingdom. Studies were approved by the National Research Ethics Service
382  (ethics references: 12/SC/0447; 19/L0O/1085; 11/L0O/0350). Parents or legal guardians
383  provided verbal and written consent before participation in the research studies. All study

384  protocols complied with the Declaration of Helsinki and guidelines on Good Clinical Practice.

385 Infants were included in the analysis if they had brain activity responses recorded
386 following either visual or tactile stimuli. An exclusion criterion was intraventricular
387  haemorrhage (IVH) grade 3 or 4. Infants were divided into a training and test sample. A total
388 of 101 recordings were identified from the database and were labelled as the training sample.
389  Seventy-nine of these recordings included visual stimuli and 95 recordings included tactile
390 stimuli. These were recordings from 82 unique infants — 70 infants were recorded on one test
391 occasion only, 6 infants were recorded twice, 5 infants were recorded on three test occasions,
392 and I infant was recorded on four separate occasions. Infants were born between 23- and 40-
393  weeks’ gestation and were aged between 28- and 40-weeks PMA at the time of the test
394  occasion. Infants in the independent test sample were all recruited as part of the ongoing

395 ‘Breathing and Brain Development’ study (https://www.hra.nhs.uk/planning-and-improving-

396 research/application-summaries/research-summaries/breathing-and-brain-development-

397  version-10/). All infants recruited as part of this study up to February 2023 were included in
398 the test sample, giving a total of 14 infants recorded on 65 occasions. Both visual and tactile
399 stimuli were applied in 57 recordings. PMA in the test sample ranged between 29 and 40-
400 weeks’ gestation. Full demographic details are provided in Table 1.

401
402
403

404
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Factors Training sample Test sample
Age

PMA at recording (weeks) 34.8 (28.0-39.9) 33.7 (29.6-39.7)
Gestational age (weeks) 32.7 (23.6-39.7) 29.7 (28.1-32.6)
PNA at recording (weeks) 2.9(0.0-11.4) 4.2 (0.6-10.7)
Birthweight (g) 1,929 (630-4,525) 1,272 (635-2,120)
Sex

Females 37 (45.1) 4 (28.6)
Males 45 (54.9) 10 (71.4)
Mode of delivery

Normal vaginal delivery 24 (29.3) 2(14.3)
Vaginal breech 3(3.6) 0(0.0)
Vaginal assisted (ventouse/forceps/kiwi) 5(6.1) 2(14.3)
Elective C-section 10 (12.2) 1(7.1)
Emergency C-section/C-section in labour 40 (48.8) 9 (64.3)
Apgar scores

Apgar at 1 minute 7.6 (1-10) 6.4 (1-10)
Apgar at 5 minutes 9.2 (3-10) 8.8 (5-10)
Apgar at 10 minutes 9.8 (6-10) 9.6 (8-10)

405 Table 1. Reported values are mean (range) or number (%) of babies or recordings. All demographic details apart from post-
406 menstrual and postnatal age (PMA and PNA, respectively) are provided per infant (PMA and PNA are computed for every
407  recording).

408
409  Data acquisition
410 EEG recordings and stimuli

411  SynAmps RT 64-channel headbox and amplifiers (Compumedics Neuroscan, Compumedics
412  Limited, Victoria, Australia) and CURRYscan7 neuroimaging suite (Compumedics
413  Neuroscan, Limited, Victoria, Australia) were used to record the EEG data at a sampling rate
414  of 2 kHz (EEG data during two recordings of the training sample were acquired at 1 kHz and
415  resampled to 2 kHz). The EEG channel configuration included channels Cz, CPz, C3, C4, FCz,
416 Oz, T3, and T4. Channel Fz was selected as the reference electrode while FPz served as the
417  ground electrode. The electrode array configuration was in line with the international 10-20
418  system. To optimise contact with the scalp, the skin was gently rubbed with EEG preparation
419  gel (NuPrep gel, D.O. Weaver and Co., Aurora, USA) prior to electrode placement. EEG
420 conductive paste (Elefix EEG paste, Nihon Kohden, Tokyo, Japan) was used with disposable
421  Ag/AgCl cup electrodes (Neuroline, Ambu, Ballerup, Denmark).
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422 A series of visual and tactile stimuli were presented to the infants in a pseudo-
423  randomised order, with the researcher deciding which stimuli to present first. The visual
424  stimulus consisted of a light flash presented using a Grass LED light (Maxima-84 Hybrid,
425  Manfotto, Italy) or Lifelines Photic Stimulator (Lifelines Ltd.; flashing frequency: 10 Hz;
426 intensity level: 4, which approximates 514 Im). The former stimulus type was presented at 50
427 cm from the infant’s eyes (8 recordings); the latter at a distance between 15 and 30 cm (71
428  recordings in the training sample and 57 recordings in the test sample. The light was positioned
429  atless than 30 cm if there was limited space in the incubator). All visual stimulation types were
430 automatically annotated on the EEG at the time of the recording. Infants received a median
431  number of 12 (interquartile range (IQR) = 13) visual stimuli in the training sample (n = 79) and
432 10 (IQR = 1) in the test sample (n = 57), with median interstimulus intervals of 11.0 s (IQR =
433 1.8 s)and 11.6 s (IQR = 3.2 s) per recording, respectively.

434 For the tactile stimulus, a researcher gently touched the heel of the infant using a
435 modified tendon hammer. This tendon hammer recorded the applied force via a built-in
436  transducer (Briiel & Kjer, Type 8001, Denmark) used to time-lock the stimulus with the EEG
437  recording (Worley et al., 2012). Infants received a median number of 12 (IQR = 15) and 10
438 (IQR = 1) tactile stimuli in training (n = 95) and test (n = 57) sample, respectively with
439  interstimulus intervals of 11.0 s (IQR =2.7 s) and 11.9 s (IQR = 4.0 s) per recording.

440 A researcher made real-time resting state activity annotations during recordings when
441  no stimuli were applied and the infant was quietly awake or asleep, and not moving. The resting
442  state activity served as reference condition in the statistical contrasts of the cluster-based
443  permutation and NRF magnitude comparisons (see below). A median of 16 (IQR=11) and 11
444  (IQR = 10) resting state annotations were made per recording in the training and test sample,

445  respectively.
446
447  Electromyographic recordings and clinically required heel lance

448  Bipolar electromyographic (EMG) electrodes (Ambu Neuroline 700 solid gel surface
449  electrodes) were attached to the biceps femoris of the infant’s leg ipsilateral to the site of
450  stimulation and recorded using the same recording system as for the EEG electrodes. Heel
451  lances were performed in infants if they clinically required a blood test at the time of the test
452  occasion. The heel lance was time-locked to the EMG (and EEG) recordings using an event-

453  detection interface and accelerometer (Worley et al., 2012).
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454
455  Neurological outcomes

456  To assess how the brain age model outcomes relate to behavioural and neurological
457  developmental outcomes at 24-months follow-up age, Bayley Scales of Infant and Toddler
458  Development — Third Edition (Bayley-III) were obtained from five (out of the 14) infants of
459  the test set at the time of this report (note that the other nine infants will have Bayley
460  assessments once they reach two years of age as part of an ongoing study). Bayley assessments
461  were taken at a mean age of 2 years, 3 months, and 26 days (minimum: 2 years, 2 months, 25
462  days, and maximum: 2 years, 4 months, 22 days). We report composite scores for Motor,

463  Cognitive and Language outcomes.
464

465  Data analysis

466  EEG pre-processing

467  We focused analysis on channels Cz for tactile-evoked activity and Oz for visual-evoked
468  responses, in line with analysis from a previous study that comprised parts of the dataset used
469 in the current study (Schmidt Mellado et al., 2022). From a neuroanatomical point of view,
470 channels Cz and Oz overlay the primary somatosensory and visual cortices, respectively, and

471  maximal amplitude responses are expected at these electrodes.

472 EEG data were processed using custom-made scripts in MATLAB (ver. 2022b;
473  MathWorks Inc., Natick, USA) together with Brainstorm (ver. 3) (Tadel et al., 2011) and
474  EEGLAB (ver. 2022.1) (Delorme and Makeig, 2004). Continuous EEG data were filtered with
475  low-pass (Hamming windowed-sinc FIR filter with pass-band edge at 30 Hz and cut-off
476  frequency at 33.75 Hz) and high-pass filters (Hamming windowed-sinc FIR filter with pass-
477  band edge at 0.1 Hz and cut-off frequency at 0.05 Hz). To derive NRFs, the EEG was further
478 filtered with a low-pass filter of 12 Hz (cut-off frequency at 13.5 Hz) because instantaneous
479  amplitude representations showed that spectral power drops above 12 Hz (Figure S15). This is
480 expected, as EEG activity is dominated by lower frequency (i.e., delta, theta and alpha) activity
481  inpremature infants (André et al., 2010), and filtering the activity enables clear characterisation
482  of the waveforms within the evoked response. However, when examining how the magnitudes
483  of these NRFs change with age and for the brain age prediction models, the EEG data were
484  filtered between 0.1 and 30 Hz.
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485 EEG was epoched from 1 s before until 1 s after stimulus onset and visually inspected
486  around the stimulus. Individual epochs (of all channels) were rejected when the amplitude in
487  the pre-stimulus window exceeded +/-150 uV between —1 and O s (i.e., unstable baseline). This
488  led us to reject an average of 3+ 5, 1 £2, and 2 £ 3 epoch(s) (median + interquartile range) per
489 recording in the training sample for the resting state, tactile, and visual annotations,
490 respectively. In the training sample, we retained an average of 11 + 11, 12+ 11, and 11 £ 10
491  epochs for further analysis in the corresponding test conditions highlighted above. In the test
492  sample, 0+ 3,0 =1, and 1 £ 2 epochs were excluded, with a final 10 + 9 resting state, 10 + 1

493 tactile, and 10 £ 1 visual epochs included for the analysis.

494 We also excluded recordings where fewer than five responses of a certain stimulus type
495  were available. This led us to reject 12 stimulus conditions (4 visual and 2 tactile in the training
496  sample and 2 visual and 4 tactile in the test sample). This meant that one baby was excluded in
497  the training sample as both visual and tactile stimuli were rejected. For the resting state activity,
498  if there were only five or fewer events available, we created ten new events by adding them
499  with a time interval of 10 s prior to the first annotated resting state event. Resting state events
500 were added for 15 recordings (7 in the training sample and 8 in the test sample). For one baby
501 with a single recording, all resting state annotations were removed because of excessive
502  amplitudes and was thus excluded from further analysis (this infant also had fewer than 5 tactile
503  stimuli). Overall, for the training sample we included 74 recordings with visual-evoked
504  responses and 93 recordings with tactile-evoked responses (these were 98 unique recordings
505 from 80 babies). For the test sample, a total of 65 recordings comprising 55 visual and 53 tactile

506 potentials were included from 14 babies.
507
508  Developing response functions for visual- and tactile-evoked brain activity

509 NRFs were derived from the training sample. We first computed recording-specific response
510 averages and then age-weighted averages of temporal alignment; next, we identified time
511  periods with significant stimulus-evoked activity using cluster-based permutation testing; and
512  finally, we identified waveforms characteristic of the stimulus response using principal

513  component analysis (PCA).

514 EEG data in the time window of 0 to 1 s post-stimulus were baseline corrected to the
515 time window of -0.5 to 0 s pre-stimulus. Demeaned responses were pooled over epochs for

516 each stimulus modality to create recording-specific averages. These EEG responses were
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517  temporally shifted to an age-weighted response using Woody filtering to adjust inter-recording
518 differences in response latency (Woody, 1967). The age-weighted responses were constructed
519 by assigning a weight of 1 or lower to each recording depending on PMA. A Gaussian window
520  with a full width at half maximum of 27 days determined the weights of neighbouring PMAs.
521  Age differences of more than 28 days with the recording of interest received a weight of 0.
522  Age-weighted responses were computed by scaling every recording-specific average with its
523  weight and taking the sum of these responses divided by the sum of the weights. We then
524  Woody filtered each recording-specific average to an age-weighted response (maximal jitter:
525 0.05 s). The time-shifted responses for each recording were used in the cluster-based
526  permutation testing and PCA and so both resting state and stimulus responses were Woody
527 filtered within the age-dependent responses (enabling fair comparisons between the stimulus

528 response and resting state).

529 To evaluate in which time windows the stimulus amplitude significantly differed from
530 the resting state amplitude in the time window of 0 to 1 s post-stimulus, we applied cluster-
531 based permutation testing (Maris and Oostenveld, 2007). This nonparametric approach
532  iteratively performs sample-wise paired t-tests between stimulus and resting state responses for
533 every session. Time samples exceeding a pre-defined #-value threshold (here, set to 97.5
534  percentile of the #-distribution and degrees of freedom minus 1) were defined as significant
535 activity, with adjacent significant samples defined as a cluster. Clusters were defined as
536  significant (a-level of 0.05) by comparing with the distribution of clusters obtained from 1,000
537  permutations of the data (stimulus and resting state traces were permuted in a paired way and
538 partitioned into one of the two conditions). To compute the NRFs, data were trimmed to the
539  time windows of 0to 0.3 s and 0.1 to 1 s for the tactile and visual responses respectively (Figure
540 S2), which was around the significant clusters and allowed for characterisation of the full
541  waveform associated with the significant cluster. These trimmed responses were used as input

542  for the PCA.

543 To derive the NRFs, PCA decomposed the (1) visual and resting state, and (2) tactile
544  and resting state responses into sets of covarying waveforms that explained most variance
545  across the evoked brain responses. We normalised the recording-specific averages to unit
546  vectors, meaning that the PCs reflected morphological changes of the stimulus response across
547  age rather than being dominated by inter-recording amplitude differences. Responses were
548 normalised to their Euclidian norm over the entire time window. We extracted the number of

549  PCs that could explain more than 95% of the variance, which yielded seven and four PCs for
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550 the visual and tactile responses. To identify which of these components were indicative of
551 stimulus response we compared the weights of the components between resting state and
552  stimulus responses by fitting each temporal PC-component to the non-normalised stimulus and
553  resting state activity using linear regression (Table S1). Mean stimulus and resting state
554  magnitudes were statistically compared using two-sided paired t-tests (p < 0.05). The temporal

555  components of the significant PCs were taken as the NRFs.
556
557  Characterising developmental changes in NRFs

558  The broad-band filtered (0.1-30 Hz) stimulus-evoked EEG responses were Woody-filtered to
559  the NRFs in the time window of 0-1 s post-stimulus (jitter: 0.05 s). This minimised the latency
560 differences between recording-specific responses and NRFs. The magnitude of the NRF for
561 each recording was determined by linearly regressing the NRFs to the Woody-filtered
562  responses and calculating the slope coefficients (akin to the process used in fMRI when
563 calculating the beta coefficient at each voxel compared with the haemodynamic response
564  function). For each NRF, relationships between PMA with the training- and test-sample
565  magnitudes were quantified by fitting generalised linear regressions with identity link functions
566  to the averaged NRF magnitudes for every week over PMA. p-values were used as a guide and

567  no correction was made for multiple comparisons.
568
569  Predicting brain age using support vector regression

570  To predict the brain age of infants during each recording, we used support vector regression
571  (SVR) with a linear kernel function. Errors and allowed margin from these errors were set to
572 0.15 and 1, respectively, which are parameters defined based on the interquartile range of the
573  PMA. The L1 soft-margin minimisation was used as solver. The model was implemented in

574 MATLAB using the fitrsvm function (version 2022b; MathWorks).

575 Predictor variables were the NRF magnitudes for each recording with all NRFs. In the
576  training sample, we created three models with different predictor variables. The first model
577  contained the visual NRFs defined on Oz and tactile NRFs on Cz. The response variable was
578  PMA for the 98 recordings of the 80 unique infants who had responses to either visual or tactile
579  stimuli. A model was also trained with only visual responses and separately with only tactile

580 responses (see supplementary material).
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581 We used leave-one-infant-out cross-validation to assess the model performances in the
582 training set, calculating the mean absolute error (MAE) between the PMA and brain age, with
583  95% confidence intervals estimated from 10,000 bootstrap samples. Significance was obtained
584  using one-tailed testing using permutation testing as provided in FSL’s PALM (Winkler et al.,
585  2014). Permutations were limited to pre-defined exchangeability blocks because of the multiple
586 recordings for every infant (Winkler et al., 2015). Lastly, in addition to the reported MAE, the
587  true model output was compared to a model which predicts the mean PMA over recordings
588 (with the mean age calculated using leave-one-infant-out). We report mean absolute
589 differences, confidence intervals, and p-values between the true models and mean PMA

590 models.

591 Finally, we applied the training sample model (calculated with all training data) to
592  predict the PMA of babies in the test sample using their NRF magnitudes as input. Model
593 performance was assessed by estimating the MAE and its associated 95% confidence intervals.
594  Model significance was estimated by comparing the actual model to a null model predicting
595 the mean age of the test sample. We note that we first derived the NRFs and brain age model
596 in the training set before studying the test set, results here are shown together for ease of

597  comparison.
598
599  Brain age model application to electromyographic reflexes to noxious stimuli

600 To demonstrate that the brain age model we designed is neurobiologically meaningful, we
601 examined how the predicted brain ages correlated with the EMG-recorded withdrawal reflexes
602  inresponse to painful procedures. In both the training and the test set, there were 40 recordings
603  which we predicted brain age with, including the visual+tactile model and EMG recorded at
604  the biceps femoris during a clinically required heel lance. EMG recordings were filtered from
605 10 to 500 Hz (Hamming windowed-sinc FIR filter with cut-off frequencies at 8.75 and 562.5
606 Hz), with a notch filter at £*50 Hz (with k=1, 2, ..., 10), epoched from 5 seconds before the
607  stimulus until 15 seconds afterwards, and rectified. From the rectified EMG, we defined reflex
608  duration and amplitude using the methods described in Hartley et al. (2016), which uses an
609  automated algorithm to detect the start and end of the reflex. Epochs were visually inspected
610 and rejected if there was movement in the baseline period precluding the identification of the
611  start of the reflex. A total of 8 recordings were rejected, leaving 32 recordings in the analysis.

612  Reflex amplitude and duration were then linearly correlated with PMA, brain age, and brain
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613  gap (i.e., the difference between brain age and PMA). The brain age gap was adjusted for PMA
614 by creating a linear model that predicts the brain age gap from the PMA. The residuals of this

615 linear model were taken as the adjusted brain age gap values.
616

617
618  Data and code availability

619 The data that support the study findings are available from the corresponding author upon
620 reasonable request. Due to ethical restrictions, it is appropriate to monitor access and usage of
621 the data since it includes highly sensitive information. Data sharing requests should be directed

622  to caroline.hartley@paediatrics.ox.ac.uk. The NRFs and codes underpinning the brain age

623  model are available on GitLab: https://gitlab.com/paediatric_neuroimaging/sensory-brain-age-

624  model.
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835  Supplementary material
836

837  Supplementary text

838

839  Results

840

841  Visual and tactile models

842  Besides the brain age model that was constructed from both visual and tactile magnitudes, we
843  also made single-modality models using either visual or tactile magnitudes as input. For the
844  training set, mean absolute errors (MAE) were higher compared to the visual-tactile model but
845  age prediction performance was still significantly different from the average age model (visual
846  only: MAE: 1.77 weeks with 95% at [1.46; 2.16], p = 0.0003; Figure S12, tactile only: MAE:
847  1.67 weeks with 95% at [1.35; 2.03], p = 0.0024; Figure S13). However, in the independent
848  test sample, the single-stimulus models of visual and tactile responses, age prediction was not
849  significantly different from the average age model (visual - MAEs = 1.75 weeks with 95% at
850 [1.51,2.03], p =0.0001; Figure S12; tactile MAE = 1.77 weeks with 95% at [1.44; 2.14], p =
851  0.0005; Figure S13).

852

853  Deviations in sensory development may be predictive of later life neurodevelopmental
854  abnormalities — exploratory pilot data 2

855 To exclude that the results as presented in Figure 5 were related to bias in our model
856  (particularly at older ages, where the error in the training set is greater than for infants at
857  approximately 34 weeks and the brain age may be underpredicted, Figure 3a), we recalculated
858 the gradients without recordings from when the infants were older than 37 weeks. Restricting
859  the age range, the mean gradients for the two infants with below average Bayley’s outcomes
860 equalled 0.48 and for the three infants with average Bayley’s outcomes equalled 0.79.
861  Secondly, we estimated the bias in the training set and removed this from the test set (Figure
862  S14). After bias removal, whilst the gradients of the brain age trajectories were closer to 1
863  (gradient of 1.00 for infants with below average Bayley’s and 1.37 for those with average
864  outcomes, Figure S14) but the MAE was still higher in the infants with below average outcome
865  (1.91 compared with 1.57 weeks), supporting the finding that brain age may be indicative of

866 later life outcome.
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Supplementary tables
Neurodynamic  Explained Stimulus Resting t- Degrees  p-value
response variance magnitudes ~ state value  of
Sfunction (%) (meantstd) magnitudes freedom
(meanzstd)
Visual NRF1  56.5 157.6 + 11.7 £ 7.06 73 <0.0001
161.5 60.1
Visual NRF2  24.7 90.0 + 79+ 5.04 73 <0.0001
- 123.5 48.1
% | Visual NRF3 24 67.2 + 5.6+ 3.59 73 0.0006
%D 179.1 37.1
£ | Visual NRF4 1.4 52.1+ -8.0+ 3.15 73 0.002
= 164.9 354
Tactile NRF1 ~ 46.7 12.0 £ 0.5+ 3.35 92 0.001
374 12.3
Tactile NRF2  36.4 20.7 + 1.2+ 6.53 92 <0.0001
27.2 6.5
Visual NRFI  N/A 304.2 + -0.3+ 8.14 54 <0.0001
266.0 70.1
Visual NRF2  N/A 250.9 + 13.7+ 8.29 54 <0.0001
185.3 69.6
- Visual NRF3  N/A 54.6 £ 42+ 2.40 54 0.02
2 155.0 49.6
é Visual NRF4  N/A 240.2 + -6.0 + 5.89 54 <0.0001
297.6 39.2
Tactile NRF1 ~ N/A 12.6 + -03+ 3.53 52 0.0009
25.7 14.1
Tactile NRF2  N/A 123+ 1.1+ 5.02 52 <0.0001
13.9 6.6

Table S1. NRF magnitudes and statistical comparisons between the stimulus responses and resting state activity. Statistics
belong to the paired comparisons between stimulus and resting state magnitudes. Explained variance column contains the
percentage of variance that the NRF can explain of the event-related data. NRF: neurodynamic response function; std:
standard deviation
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Neurodynamic response Phiiope (Mmean=se) p-value
function
Visual NRF1 -31.07 £6.83 <0.0001
5 Visual NRF2 -21.20+5.64 0.0003
o Visual NRF3 -16.38 + 6.78 0.018
£ | Visual NRF4 -25.59 +7.25 0.0007
= | Tactile NRF1 -6.04 +£1.38 <0.0001
Tactile NRF2 226+ 1.14 0.0498
Visual NRF1 -61.09 £ 15.94 0.0003
Visual NRF2 -9.94 +12.38 0.43
B | Visual NRF3 -10.33 + 11.40 0.37
E Visual NRF4 149.40 + 15.58 0.003
Tactile NRF1 -5.20+1.31 0.0002
Tactile NRF2 -0.24 £ 1.05 0.82
874  Table S2. Linear regression slope coefficients for each of the neurodynamic response functions (NRFs) of the training and test
875  set. Regression models predicted stimulus magnitudes from the post-menstrual age (PMA). se: standard errors
876
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877  Supplementary figures
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880

881 Figure S1. Stimulus-evoked electroencephalographic potentials according to infant age. Age-dependent evoked potentials for
882 two-weeks intervals between 28 to 40 weeks of post-menstrual age for the visual and tactile stimuli at channels Oz and Cz,
883 respectively, for the test set (see Figure 1 for the training set). Woody filtering aligned the responses to their age-weighted
884 averages. Vertical dashed lines correspond to the stimulus onset.

885
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Figure S2. Grand average means of the stimulus response (in blue) and resting state (in red). Grey areas depict the time
windows where the stimulus and resting state means are significantly different as identified by the cluster-based permutation
testing. This was only applied to the responses of the training set.

36


https://doi.org/10.1101/2023.07.21.549656
http://creativecommons.org/licenses/by/4.0/

890
891

892
893
894
895

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.21.549656; this version posted July 25, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

a  Training set

Visual NRF 1 Visual NRF 2 Visual NRF 3
600
: 400 ! 500 L
400 N i \ “
N 200 N B
200 l . 0 : “}!1
0 0 :
[ e [
. . -500 ,
Stim  Rest Stim  Rest Stim  Rest
Visual NRF 4 Tactile NRF 1 Tactile NRF 2
1000
. 200 .
. 100 .
500 R 100 . H
\ 50
0 e 0 e
H ’ 0
-500 - -100 3 8
Stim  Rest Stim  Rest Stim  Rest
b Test set
Visual NRF 1 Visual NRF 2 Visual NRF 3
1000 , 600 : 200 !
i 400 N
500 \ 0
i N 200 : 2
0 : *r;l 0 § { -200 :
Stim  Rest Stim  Rest Stim  Rest
Visual NRF 4 Tactile NRF 1 Tactile NRF 2
1000 8
§ 100
H . 40
500 R
B0 50 N 20 :
R : B
0 ' ,‘\‘1 0 ;g 0 s > 1
8 8 8 ° )
-500 . : o -20 >
Stim  Rest Stim  Rest Stim  Rest

Figure S3. a) Training and b) test set magnitudes for stimulus-evoked potentials (Stim) and resting state activity (Rest) using
the six neurodynamic response functions (NRFs) identified in the training set. Magnitudes were estimated for the stimulus
responses and resting state activity of each recording. Dashed lines connect the two magnitudes of each recording, where blue
means a higher magnitude in the stimulus condition relative to the resting state condition and red a lower magnitude for the
stimulus condition.
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Figure S4. Age-dependent neurodynamic response function (NRF) projections of the visual and tactile NRF's on the training
set responses. Each individual projection is plotted on its own individual y-scale. NRF's were projected on age averages after
computing age-weighted evoked potentials using linear regression models (see methods). These age-weighted potentials were
Woody filtered to the NRF after which the NRF was projected on the EEG traces. Vertical dashed lines correspond to time =
0 seconds (i.e., the stimulus onset).
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903
904 Figure S5. Evoked response function (NRF) projections of visual NRFs 1 and 2 onto each averaged recording stimulus
905 response of the training set. Projections are plotted on their own individual y-scale. Responses are shown in increasing age
906 order, with the youngest subject in the top left.
907
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909 Figure S6. Neurodynamic response function (NRF) projections of visual NRFs 3 and 4 onto each averaged recording stimulus
910 response of the training set. Projections are plotted on their own individual y-scale. Responses are shown in increasing age
g%% order, with the youngest subject in the top left.
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Figure S7. Neurodynamic response function (NRF) projections of the tactile NRFs onto each averaged recording stimulus
response of the training set. Projections are plotted on their own individual y-scale. Responses are shown in increasing age
order, with the youngest subject in the top left.
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919
920 Figure S8. Age-dependent neurodynamic response function (NRF) projections of the visual and tactile NRFs on the test set
921 responses. Each individual projection is plotted on its own individual y-scale. NRFs were projected on age averages after
922 computing age-weighted evoked potentials using linear regression models (see methods). These age-weighted potentials were
923 Woody filtered to the NRF after which the NRF was projected on the potential traces. Vertical dashed lines correspond to time
924 = () seconds (i.e., the stimulus onset).
925
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926
927 Figure S9. Neurodynamic response function (NRF) projections of the visual NRFs 1 and 2 onto each averaged recording
928 stimulus response of the test set. Projections are plotted on their own individual y-scale. Responses are shown in increasing

929 age order, with the youngest subject in the top left.
930
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931
932 Figure S10. Neurodynamic response function (NRF) projections of the visual NRFs 3 and 4 onto each averaged recording

933 stimulus response of the test set. Projections are plotted on their own individual y-scale. Responses are shown in increasing

934 age order, with the youngest subject in the top left.
935
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937 Figure S11. Neurodynamic response function (NRF) projections of the tactile NRFs onto each averaged recording stimulus
938 response of the test set. Projections are plotted on their own individual y-scale. Responses are shown in increasing age order,
939 with the youngest subject in the top left.
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Figure S12. Brain age prediction models and their statistical evaluations for the a-b) training and c-d) test samples. Panels a
and ¢ show the post-menstrual age (PMA) and brain age using leave-one-infant-out cross-validation. Predictions are based
on the visual model. Each dot indicates a single recording with PMA predicted using the stimulus responses. Dashed black
lines between dots are infants that took part in multiple recordings. Solid black line indicates perfect prediction. Panels b and
d depict the comparison in absolute errors between the Brain age and null model (Mean age) and its mean absolute difference
including 95% confidence interval (i.e., MD [95%CI]). Blue dashed lines mean a higher absolute error for the mean age
prediction relative to the brain age prediction, and red yield a lower absolute error for the mean age.
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Figure S13. Brain age prediction models and their statistical evaluations for the a-b) training and c-d) test samples. Panels a
and ¢ show the post-menstrual age (PMA) and brain age using leave-one-infant-out cross-validation. Predictions are based
on the tactile model. Each dot indicates a single recording with PMA predicted using the stimulus responses. Dashed black
lines between dots are infants that took part in multiple recordings. Solid black line indicates perfect prediction. Panels b and
d depict the comparison in absolute errors between the Brain age and null model (Mean age) and its mean absolute difference
including 95% confidence interval (i.e., MD [95%CI]). Blue dashed lines mean a higher absolute error for the mean age
prediction relative to the brain age prediction, and red yield a lower absolute error for the mean age.
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958

959 Figure S14. Brain age predictions from which the bias (i.e., deviations from perfect predictions) are removed. Model bias
960 estimated in the a) training set by fitting a line of best fit between the brain age and post-menstrual (PMA) data as solid grey
961 graph. Bias was estimated by taking the difference between this line of best fit and the perfect predictions, and subsequently

962 removed from the brain age predictions of the training set, with the resulting brain age predictions shown in panel b) Brain
963 age predictions of younger and older babies are particularly adjusted after bias removal. The line of best fit/bias estimated in
964 the training set was used to remove bias in c) the test set, d) babies in the test set with average Bayley’s outcomes, and e)
965 babies in the test set with below average Bayley’s outcomes following bias removal.
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967

968 Figure S15. Time-frequency amplitudes of the visual- and tactile-evoked potentials of the training sample. Each time-locked
969 evoked response was bandpass filtered between 1 and 30 Hz with cut-off frequencies of +/- 1 Hz around the frequency of
970 interest. Hilbert transforms of the bandpass filtered signals and its instantaneous amplitude was computed by taking the

971 modulus. Time at 0 sec indicates stimulus onset. Horizontal dashed red line corresponds to the upper frequency cut-off used
972  for NRF computation.
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