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Abstract 27 

 28 

Preterm infants undergo substantial neurosensory development in the first weeks after birth. 29 

Infants born prematurely are more likely to have long-term adverse neurological outcomes and 30 

early detection of abnormal brain development is essential for timely interventions. We 31 

investigated whether sensory-evoked cortical potentials could be used to accurately estimate 32 

the age of an infant. Such a model could be used to identify infants who deviate from normal 33 

neurodevelopment by comparing the brain age to the infant’s postmenstrual age (PMA).  34 

Infants aged between 28- and 40-weeks PMA from a training and test sample (consisting of 35 

101 and 65 recording sessions in 82 and 14 infants, respectively) received trains of 36 

approximately 10 visual and 10 tactile stimuli (interstimulus interval approximately 10 37 

seconds). PMA could be predicted accurately from the magnitude of the evoked responses 38 

(training set mean absolute error (MAE and 95% confidence intervals): 1.41 [1.14; 1.74] 39 

weeks, p = 0.0001; test set MAE: 1.55 [1.21; 1.95] weeks, p = 0.0002. Moreover, we show 40 

with two examples that brain age, and the deviations between brain age and PMA, may be 41 

biologically and clinically meaningful. By firstly demonstrating that brain age is correlated 42 

with a measure known to relate to maturity of the nervous system (based on animal and human 43 

literature, the magnitude of reflex withdrawal is used) and secondly by linking brain age to 44 

long-term neurological outcomes, we show that brain age deviations are related to biologically 45 

meaningful individual differences in the rate of functional nervous system maturation rather 46 

than noise generated by the model. In summary, we demonstrate that sensory-evoked potentials 47 

are predictive of age in premature infants. It takes less than 5 minutes to collect the stimulus 48 

electroencephalographic data required for our model, hence, increasing its potential utility in 49 

the busy neonatal care unit. This model could be used to detect abnormal development of 50 

infant’s response to sensory stimuli in their environment and may be predictive of later life 51 

abnormal neurodevelopmental outcome.  52 

 53 

 54 
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Introduction 58 

 59 

Premature and hospitalised infants are at increased risk of adverse neurodevelopmental 60 

outcomes compared with healthy term-born infants (Blencowe et al., 2013). The neurosensory 61 

system of premature infants undergoes rapid structural and functional development (Kostović 62 

et al., 2014; Niemarkt et al., 2011), with functional changes apparent in 63 

electroencephalographic (EEG) recordings (André et al., 2010). Sensory-evoked potentials 64 

provide information about the integrity of the sensory nervous system and may be predictive 65 

of neurological outcomes (Leikos et al., 2020; Majnemer and Rosenblatt, 1996; Pike and 66 

Marlow, 2000; Taylor et al., 1996). A variety of neural impairments associated with atypical 67 

development of the somatosensory and visual systems have been described, affecting both the 68 

morphology and latency of evoked potentials (De Vries et al., 1990; de Zegher et al., 1992; 69 

Häkkinen et al., 1987; McCulloch et al., 1991; Taylor and McCulloch, 1992; Whyte et al., 70 

1987). Generally, sensory stimuli evoke slow-wave responses in young premature babies 71 

(Khazipov et al., 2004), whereas evoked brain activity with high-frequency waveforms are 72 

observed in older infants (André et al., 2010; Niemarkt et al., 2011). 73 

Machine learning approaches can be used to accurately predict the post-menstrual age 74 

(PMA) of preterm infants from EEG (Ansari et al., 2023; Lavanga et al., 2018; O’Toole et al., 75 

2016; Pillay et al., 2020; Stevenson et al., 2017), diffusion magnetic resonance imaging (MRI)  76 

(Brown et al., 2017; Kawahara et al., 2017) and structural MRI (Liu et al., 2021). These models 77 

may facilitate the early identification of infants with abnormal neurodevelopment, reducing the 78 

need for visual inspection of the EEG/MRI, which is subjective, requires trained clinical staff, 79 

and is time-consuming. This so-called brain age can be seen as a maturation index of the neural 80 

system which is unlikely to reflect chronological age, which can be viewed as a continuous 81 

“ticking clock” (Salih et al., 2023). Previous EEG brain age models have focused on continuous 82 

ongoing EEG activity (i.e., non-evoked brain activity) (Ansari et al., 2023; O’Toole et al., 83 

2016; Pillay et al., 2020; Stevenson et al., 2017). An alternative may be to construct models 84 

capturing evoked responses, giving specific information about the maturity of sensory 85 

processing. We hypothesised that sensory-evoked responses will be predictive of age and that 86 

development of brain age models which use sensory-evoked potentials may specifically 87 

provide insight into neurosensory brain functioning in premature infants. 88 
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Here, we aimed to assess whether sensory-evoked responses could be used to predict 89 

PMA in infants, focusing on visual and tactile stimuli as these are easy to perform in infants 90 

and elicit clear evoked potentials requiring only a small number of trials. To facilitate the 91 

development of a sensory-evoked brain age model, we utilise stimulus-specific neurodynamic 92 

response functions (NRF), which, akin to haemodynamic response functions used in functional 93 

MRI (fMRI) (Arichi et al., 2012; Henson and Friston, 2007), represent the characteristic 94 

waveforms evoked by the stimuli. Identifying NRFs provides a consistent reproducible 95 

approach to compare infants across research studies (Hartley et al., 2017) and is likely a useful 96 

candidate feature for predicting age (Green et al., 2019; Hartley et al., 2016; Schmidt Mellado 97 

et al., 2022; van der Vaart et al., 2022). NRFs have been previously developed for responses 98 

to visual (Schmidt Mellado et al., 2022), tactile (Schmidt Mellado et al., 2022), and noxious 99 

(Hartley et al., 2017) stimuli in term infants. These term-derived brain responses show that 100 

sensory-evoked potentials change with age in premature infants (Fabrizi et al., 2011; Hartley 101 

et al., 2016; Schmidt Mellado et al., 2022; van der Vaart et al., 2022), are sensitive to stimulus 102 

intensity (Hartley et al., 2015), and may be modulated by interventions (Cobo et al., 2021; 103 

Gursul et al., 2018; Hartley et al., 2017); however, deriving NRFs from preterm infants across 104 

development will be better able to predict brain age.  105 

 In this study, we first identified NRFs of visual- and tactile-evoked brain activity in 106 

infants between 28-40 weeks PMA. Next, we quantified age-dependent relationships for each 107 

of the NRFs and trained a machine learning model that accurately predicted brain age using 108 

these NRFs. In an independent sample of preterm infants, we tested the NRFs and age-109 

prediction model. Finally, in two examples we explored whether the infants’ brain ages are 110 

meaningful. Firstly, we tested if the magnitude of reflex withdrawal is correlated with infant 111 

brain age, suggesting its biological significance. Secondly, we related longitudinal brain age 112 

trajectories to long-term outcomes and expected that infants with below-average Bayley-III 113 

outcomes would have greater differences between their brain age and PMA (i.e., greater brain 114 

age gap) and different brain development trajectories when compared with infants with average 115 

Bayley-III outcomes. This would suggest that brain age trajectory (identified using the sensory-116 

evoked model presented here) may be clinically meaningful and predictive of later life 117 

outcome.  118 

 119 

 120 
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Results 121 

 122 

Stimulus-evoked potentials change with post-menstrual age 123 

Stimulus-evoked EEG responses to visual and tactile stimuli could be observed between 28 124 

and 40 weeks PMA with distinct morphological changes across this age range (Figure 1, 125 

training set and Figure S1, test set). In response to the visual stimulus, a low frequency 126 

waveform with negative polarity was observed at the Oz channel in the youngest infants, which 127 

disappeared with increasing age (first row of Figure 1). A higher frequency potential was 128 

present across all ages, with apparent shift in latency and morphology. Following tactile 129 

stimulation, the very youngest infants also displayed a slow-wave response whereas older 130 

infants displayed a clear negative peak at ~0.16 s post-stimulus (second row of Figure 1). The 131 

test set demonstrated waveforms of similar morphology to the training set across the age range 132 

studied (Figure S1). Note that stimulus responses and age-prediction models were first derived 133 

in a training set and then validated in an independent test set; however, for ease of comparison, 134 

data in the test set is presented together with the training set throughout the remaining of the 135 

results. 136 

 137 

 138 
Figure 1. Stimulus-evoked electroencephalographic potentials according to infant age. Age-dependent evoked potentials for 139 
two-weeks intervals between 28 to 40 weeks of post-menstrual age for the visual and tactile stimuli at channels Oz and Cz, 140 
respectively. For the test data set, evoked responses are comparable (see Figure S1). Woody filtering aligned the responses to 141 
their age-weighted averages. Vertical dashed lines correspond to the stimulus onset. Number of infants indicated by n. 142 

 143 

 144 
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Stimulus-evoked potentials can be characterised using neurodynamic response functions 145 

We used a data-driven approach to identify the characteristic waveforms (the NRFs) from the 146 

visual- and tactile-evoked potentials of the training set. Visual-evoked activity at Oz occurred 147 

between 0.23 and 1.0 s post-stimulus (permutation testing, p = 0.001, Figure S2). Tactile-148 

evoked activity at channel Cz occurred between 0.09 to 0.23 s post-stimulation (p = 0.041, 149 

Figure S2). Four NRFs were identified in response to the visual stimulus and two NRFs in 150 

response to the tactile stimulus (Figure 2a and Table S1). In the test sample, the magnitudes of 151 

all NRFs were significantly different between the stimulus-evoked activity and resting state, 152 

demonstrating the reproducibility of these response functions in an independent dataset (Figure 153 

S3 and Table S1). NRFs 1 and 2 in response to the visual stimulus consist of low-frequency 154 

waves. NRF 1 also has a superimposed higher frequency waveform at ~0.27 s (Figure 2a). 155 

Visual NRFs 3 and 4 are higher frequency components with rapid negative-positive polarity 156 

changes from ~0.25 up to 1 s (Figure 2a). The magnitude of the visual-evoked brain activity 157 

for the NRFs change with age (particularly in the training set), indicating that these responses 158 

may be useful features for a brain age prediction model (linear regressions were used as a guide, 159 

Figure 2b-c and Table S2).  160 

 161 

 162 
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Figure 2. Waveforms of the neurodynamic response functions (NRFs) and magnitude changes with post-menstrual age (PMA). 163 
a) NRFs as a function of time identified from the training sample. Six (four visual and two tactile) principal components 164 
revealed statistically significant mean differences in NRF magnitudes between stimulus responses and resting state activity. 165 
b) The relationships between PMA and NRF magnitudes for each recording in the training sample (n = 74 and n = 93 for the 166 
visual and tactile responses, respectively). Continuous and dashed black graphs are the fitted means and 95%-confidence 167 
intervals of the generalised linear models. Dashed horizontal blue lines mark a magnitude of 0. c) The relationships between 168 
PMA and NRF magnitudes for each recording in the test sample (visual and tactile responses comprised 55 and 53 recordings, 169 
respectively).  170 

 171 

 Tactile NRF 1 consists of a slow-wave component (Figure 2a), of which the magnitudes 172 

significantly decreased with PMA in the training and test samples (Figure 2b-c and Table S2). 173 

Tactile NRF 2 is a higher frequency component with a negative deflection at ~0.17 s (Figure 174 

2a); the stimulus response is present at all PMAs in the training and test samples, except for 175 

one infant at 28 weeks in the training sample (Figure 2b-c and Table S2). Visual inspection of 176 

the NRFs projected on age-specific averages and recording-averaged responses (Figures S4-177 

S11) demonstrated a good fit within individual subjects and age-dependent changes in 178 

responses. To summarise, the characteristic waveforms from visual and tactile responses show 179 

changes with PMA in both training and test sets.  180 

 181 

Visual and tactile-evoked responses are predictive of the age of the infant 182 

Using the NRF magnitudes of the stimulus responses, we used support vector regression to 183 

build a model which could accurately predict infant age (Figure 3a-b, training sample leave-184 

one-infant-out cross-validation, MAE = 1.41 weeks with a 95% confidence interval of [1.14; 185 

1.74] weeks, p = 0.0001). In the independent test sample, this model accurately predicted the 186 

age of the infants (Figure 3c-d, MAE = 1.55 weeks with 95% CI at [1.21; 1.95] weeks, p = 187 

0.0002). Models trained on the responses to either the visual or tactile stimuli only did not 188 

perform significantly better than the null models in the test set; Figures S12-S13).  189 

 190 
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 191 
Figure 3. Brain age prediction models and their statistical evaluations for the a-b) training and c-d) test samples. Panels a 192 
and c show the post-menstrual age (PMA) and brain age using leave-one-infant-out cross-validation. Predictions are made 193 
from the responses to both visual and tactile stimuli. Each dot indicates a single recording with PMA predicted using the 194 
stimulus responses. Dashed lines between dots are infants that took part in multiple recordings. Solid black line indicates 195 
perfect prediction. Panels b and d depict the comparison in absolute errors between the Brain age and null model (Mean age) 196 
and its mean absolute difference including 95% confidence interval (i.e., MD [95%CI]). Blue dashed lines mean a higher 197 
absolute error for the mean age prediction relative to the brain age prediction (i.e., our model performs better than a null 198 
model for that recording), and red yield a lower absolute error for the mean age (i.e., our model performs worse than a null 199 
model for that recording). 200 

 201 

Brain age is biologically meaningful – exploratory pilot data 1 202 

For brain age models to be translated into clinical practice, brain age and its difference with 203 

PMA, termed the brain age gap, must be biologically and clinically meaningful. Previous 204 

studies have shown that the spinally mediated reflex response of an infant to a clinically 205 

required painful procedure becomes more refined with age – with shorter duration, smaller 206 

amplitude responses (Andrews and Fitzgerald, 1994; Cornelissen et al., 2013; Hartley et al., 207 

2016). This refinement is also well described in animal literature (Fitzgerald et al., 1988; 208 

Hathway et al., 2009), and is thought to arise through maturational changes in the sensory 209 

nervous system at multiple levels (Brewer and Baccei, 2020). These findings and their 210 

theoretical framework suggest that nociceptive reflex withdrawal activity is indicative of 211 

maturity of the infant nervous system. Therefore, an infant’s reflex response to noxious stimuli 212 
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should relate to their brain age if our model is biologically meaningful. In the subset of 32 213 

infants in our study who received a clinically required heel lance at the time of recording, we 214 

compared the way they responded to the heel lance with their brain age and brain age gap (i.e., 215 

the difference between brain age and PMA). Both brain age and brain age gap are significantly 216 

correlated with reflex amplitude (brain age: r = -0.45, p = 0.002, one-tailed; brain age gap: r = 217 

-0.46, p = 0.001, one-tailed, adjusted for PMA) and duration (brain age: r = -0.36, p = 0.01, 218 

one-tailed; brain age gap: r = -0.46, p = 0.001, one-tailed, adjusted for PMA).  219 

 220 

 221 
Figure 4. (Brain) age associations with electromyographic reflex responses. The relationship of reflex amplitude and duration 222 
following a clinically required heel lance with a) post-menstrual age (PMA), b) brain age, and c) brain age gap. Brain age 223 
and brain age gap are derived from the visual+tactile model as presented in Figure 3a. Brain age gap has been adjusted for 224 
PMA (see methods). Dashed black graph is the line of best fit. 225 

 226 

Deviations in sensory development may be predictive of later life neurodevelopmental 227 

abnormalities – exploratory pilot data 2 228 

Brain age models in infants generally aim to detect atypical development and should ideally be 229 

utilised as early indicators of outcomes later in life; hence, linking these two is important. In 230 

our sample, infants in the test set are being followed-up at two years of age and assessed using 231 

the Bayley Scales of Infant and Toddler Development – Third Edition as part of an ongoing 232 

study (see Methods). Five of the infants have already had their two-year follow-up, allowing 233 

us to opportunistically investigate the relationship between later life neurodevelopmental 234 

outcomes and sensory responses early in life. 235 
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Infants were recorded on multiple occasions at approximately one-week intervals. Clear 236 

morphological changes with age were observed in response to both visual and tactile stimuli 237 

within infants (Figure 5a). Two of the infants had below-average scores for both Language and 238 

Motor components (mean score 78 and 76, respectively; both had an average score for 239 

Cognitive components: 90), while the other three infants had average or high average scores in 240 

all three components (mean across infants of 103, 97, and 100 in Cognitive, Language, and 241 

Motor assessments). The two infants with below-average scores had a higher overall MAE of 242 

1.74 weeks, compared to 1.45 weeks for the other three infants. Age predictions in these two 243 

infants consistently deviated from their PMA for recordings at older ages (mean gradient of 244 

brain age prediction over infants: 0.42 – a gradient of 1 would indicate that brain age is always 245 

equal to PMA; Figure 5b), whereas the other three infants showed age predictions that were 246 

generally better correlated with PMA (gradient: 0.79; Figure 5b). These deviations at older 247 

ages are not the result of noise in the model (Figure S14). 248 

 249 
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 250 
Figure 5. Longitudinal development of the evoked potentials with the brain age predictions of the infants in the test set that 251 
have Bayley-III assessments. a) Visual (in blue) and tactile (in red) evoked responses are shown according to post-menstrual 252 
age (PMA) at study from 29 to 39 weeks post-menstrual age for each infant indicated by rows P01-P05. Infants were studied 253 
approximately once a week during their time in the Newborn Care Unit – infants were born and discharged at variable ages. 254 
Vertical dashed line marks stimulus onset. Y-scaling is maximised for each stimulus modality. Infant-specific brain age 255 
predictions (on the right) show the predicted PMA using the visual-tactile model for infants with below average (in dark blue, 256 
P01 and P02) and average (in dark orange, P03, P04 and P05) neurodevelopmental outcomes. Black lines connect predictions 257 
between consecutive sessions. Diagonal dashed black line marks the perfect age prediction. b) Brain age predictions for both 258 
groups of infants. Again, orange and blue data are predictions from babies with average and below average Bayley scores. 259 
The linear regression is the mean of the line of best fit over infants.  260 

 261 
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Discussion 262 

 263 

We aimed to quantify standardised multisensory brain responses in infants aged 28 to 40 weeks 264 

PMA and exploit these standardised responses to predict the brain age of the infants. We 265 

applied our neurodynamic response function (NRF) analysis approach to identify distinct 266 

stimulus-evoked brain responses to visual and tactile stimuli. This data-driven approach 267 

revealed four stimulus-specific NRFs in response to the visual stimulus and two in response to 268 

the tactile stimulus. Brain age could be accurately predicted from the magnitudes of these 269 

NRFs, and we validated this model in an independent test set. Brain age (gap) was correlated 270 

with the magnitude and duration of the reflex withdrawal response to a heel lance, suggesting 271 

that deviations in brain age are biologically and clinically meaningful. Moreover, in a subset 272 

of the test set with neurodevelopmental outcome at two years of age, we show that sensory-273 

evoked brain age deviated from PMA in infants with below average outcome in the Bayley 274 

Scales of Infant and Toddler Development at two years of age, suggesting that sensory-evoked 275 

potentials (and our brain age model) are predictive of later life outcome. 276 

The brain age model comprising sensory-evoked responses captures the rapid structural 277 

and functional development of the neurosensory system of (premature) infants. The neural 278 

architecture to process sensory stimuli at the cortex is established from around the start of the 279 

third trimester (Colonnese and Khazipov, 2012), with thalamocortical connections initially via 280 

the transient subplate (Kostović et al., 2014; Kostović and Judaš, 2010). Brain activity in this 281 

period is characterised by intermittent bursts of activity including delta brush activity (higher 282 

frequency neural oscillations nested within a delta wave) (Khazipov et al., 2004), which can 283 

occur spontaneously or be evoked by stimuli (Milh et al., 2007; Whitehead et al., 2017). As 284 

PMA increases, delta brush activity begins to disappear and evoked brain activity with high-285 

frequency waveforms emerge (André et al., 2010; Niemarkt et al., 2011). The disappearance 286 

of delta brush activity is apparent in sensory-evoked activity (Chipaux et al., 2013; Colonnese 287 

and Khazipov, 2012; Fabrizi et al., 2011; Hartley et al., 2016; Kato and Watanabe, 2006; 288 

Mercuri et al., 1994; van der Vaart et al., 2022) but the timepoint at which the transition from 289 

delta brush to modality-specific evoked potentials occurs may be dependent on stimulus 290 

modality (Colonnese and Khazipov, 2012). Consistent with these previous studies, we 291 

identified age-dependent changes in the stimulus-evoked responses. In our study, delta waves 292 

are particularly captured by the visual NRFs 1 and 2 and tactile NRF 1. For all three NRFs, 293 

these responses occurred mostly in younger babies as expected. Higher frequency waveforms 294 
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were apparent in the second NRF in response to tactile stimulation and in NRFs 3 and 4 in 295 

response to visual stimulation. 296 

A wide range of brain age models has been developed to trace the brain development 297 

of premature infants, encompassing structural connectivity (Brown et al., 2017; Kawahara et 298 

al., 2017), morphological (Liu et al., 2021)  and electrophysiological data. For the latter, brain 299 

age models have previously been constructed in preterm infants using resting state EEG-300 

recorded brain activity (Ansari et al., 2023; Lavanga et al., 2018; O’Toole et al., 2016; Pillay 301 

et al., 2020; Stevenson et al., 2017). Although the MAE achieved by our model is not as 302 

accurate as some resting state models (e.g., MAEs of approximately 1 week were achieved by 303 

Ansari et al. (2023) and Liu et al. (2021)), compared to these existing brain age models, our 304 

model has the advantage that it was constructed using electrophysiological responses of 305 

approximately 10 visual and 10 tactile stimuli from every recording. We applied stimuli with 306 

an inter-stimulus interval of approximately 10 seconds; however, it may be possible to present 307 

them at shorter latencies. Nevertheless, this means that brain age predictions can be made based 308 

on approximately 5 minutes of recording. Current brain age models utilising ongoing resting 309 

state activity require at least 20 minutes of EEG data (Ansari et al., 2023). Implementing 310 

sensory evoked responses into brain age models has the potential to lower the requirements on 311 

the amount of data that needs to be acquired in a busy clinical environment. Integrating such 312 

data will also provide information about the integrity of sensory pathways and will add value 313 

to existing resting state models. Indeed, it may be possible to combine the sensory and resting 314 

state brain age models, which potentially allows for a more comprehensive understanding of 315 

both the underlying functional brain architecture and sensory responses to environmental 316 

stimuli.  317 

Our model used responses to both visual and tactile stimuli, which performed better 318 

than either stimulus individually. This could in part be due to the smaller numbers of features 319 

used in the single-stimulus models compared with the multi-modal model. Further work could 320 

explore the use of other features such as the latency to the response, which is known to be age 321 

dependent (Schwindt et al., 2018; Taylor et al., 1987). Nevertheless, it makes intuitive sense 322 

that including multimodal responses will improve accuracy and future work should also 323 

consider including responses to other stimuli such as auditory and noxious. 324 

For brain age models to be useful, the infant’s brain age (or the deviation between their 325 

PMA and brain age) should be biologically meaningful rather than just noise generated by the 326 

model (i.e., errors made in the prediction due to non-biological sources such as differences in 327 
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head size). Thus, brain age should be correlated with variables indicating the integrity of the 328 

neurosensory system. To test this in an example situation, we compared the infant’s brain age 329 

with the magnitude of the spinally mediated reflex withdrawal to a noxious stimulus. We chose 330 

reflex withdrawal measured with electromyography rather than the EEG-recorded noxious-331 

evoked brain activity to the stimulus as the EEG response may be well-correlated with visual 332 

and tactile-evoked derived brain age due to EEG intrinsic noise factors such as electrode 333 

placement rather than biologically meaningful factors. In young rat pups, reflex withdrawal to 334 

noxious stimuli is uncoordinated and exaggerated compared with adult animals (FitzgeraId et 335 

al., 1988; Hathway et al., 2009; Holmberg and Schouenborg, 1996). The change in reflex 336 

withdrawal over the first few weeks of postnatal life corresponds to the development of 337 

descending inhibition, a reduction in cutaneous receptive fields, and changes in innervation 338 

and activity of the spinal cord dorsal horn (Brewer and Baccei, 2020; Fitzgerald, 1985; 339 

Holmberg and Schouenborg, 1996; Koch and Fitzgerald, 2013). In line with the animal 340 

literature, in preterm infants’ reflex withdrawal decreases in magnitude and duration with age, 341 

and the threshold for the response increases (Andrews and Fitzgerald, 1994; Cornelissen et al., 342 

2013; Fitzgerald et al., 1988; Hartley et al., 2016). Here, we found that an infant’s brain age 343 

and brain age gap are correlated with the magnitude of the reflex withdrawal. From the strong 344 

basis of animal literature, it is expected that the reflex withdrawal is related to the maturity of 345 

the nervous system. Thus, this gives support to suggest that brain age is biologically 346 

meaningful. Moreover, it may be clinically useful in this scenario as brain age may lead to a 347 

better understanding of infants’ responses to painful procedures and so could be, for example, 348 

useful for testing analgesics. Further research in this area is warranted (Moultrie et al., 2017; 349 

Slater et al., 2020). 350 

In the test set, we found initial support that our sensory brain age predictions are 351 

associated with neurodevelopmental outcomes at two years of age, whereby a higher brain age 352 

gap (i.e., the difference between PMA and predicted age) was correlated with the poorer 353 

neurodevelopmental outcome as defined using Bayley-III scores. This is in line with previous 354 

results from resting state models (Ansari et al., 2023; Pillay et al., 2020; Stevenson et al., 2020). 355 

Future studies should examine how the brain age gaps from abnormal sensory-evoked 356 

responses relate to the neurodevelopmental outcomes in larger samples. The longitudinal 357 

recordings included here provide evidence that an infant’s brain age may begin to deviate from 358 

PMA at certain time points which are likely individualistic. Longitudinal follow-up provides 359 
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an opportunity to investigate factors that lead to altered neurodevelopment and identify 360 

possibilities for intervention. 361 

To conclude, we present a brain age model constructed using sensory-evoked responses 362 

in premature infants. This brain age model accurately predicts age, including in an independent 363 

test set, and sensory-evoked brain age deviated from PMA in infants with below-average 364 

neurodevelopmental outcome. Moreover, brain age (gap) is correlated with spinally mediated 365 

reflex withdrawal responses, suggesting it is biologically meaningful. Compared with current 366 

models constructed using resting state EEG, it requires only a limited number of sensory-367 

evoked potentials (on average 20 epochs of 1 second duration), which could be regularly 368 

assessed at the cot-side. Recording these EEG responses can be achieved with 5 minutes of 369 

data collection. Assessment of neurological function and the integrity of sensory pathways in 370 

premature infants is essential for prognostication of later life outcome and the provision of 371 

early targeted interventions. 372 

  373 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 25, 2023. ; https://doi.org/10.1101/2023.07.21.549656doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.21.549656
http://creativecommons.org/licenses/by/4.0/


   
 

   
 

16 

Material and methods 374 

 375 

Participants and study design 376 

All infants were selected from a research database, containing the data acquired during other 377 

experimental protocols, including those presented in previous reports (Green et al., 2019; 378 

Hartley et al., 2017; Schmidt Mellado et al., 2022). These data were collected between 2012 379 

and 2023 at the John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, 380 

Oxford, United Kingdom. Studies were approved by the National Research Ethics Service 381 

(ethics references: 12/SC/0447; 19/LO/1085; 11/LO/0350). Parents or legal guardians 382 

provided verbal and written consent before participation in the research studies. All study 383 

protocols complied with the Declaration of Helsinki and guidelines on Good Clinical Practice.  384 

Infants were included in the analysis if they had brain activity responses recorded 385 

following either visual or tactile stimuli. An exclusion criterion was intraventricular 386 

haemorrhage (IVH) grade 3 or 4. Infants were divided into a training and test sample. A total 387 

of 101 recordings were identified from the database and were labelled as the training sample. 388 

Seventy-nine of these recordings included visual stimuli and 95 recordings included tactile 389 

stimuli. These were recordings from 82 unique infants – 70 infants were recorded on one test 390 

occasion only, 6 infants were recorded twice, 5 infants were recorded on three test occasions, 391 

and 1 infant was recorded on four separate occasions. Infants were born between 23- and 40-392 

weeks’ gestation and were aged between 28- and 40-weeks PMA at the time of the test 393 

occasion. Infants in the independent test sample were all recruited as part of the ongoing 394 

‘Breathing and Brain Development’ study (https://www.hra.nhs.uk/planning-and-improving-395 

research/application-summaries/research-summaries/breathing-and-brain-development-396 

version-10/). All infants recruited as part of this study up to February 2023 were included in 397 

the test sample, giving a total of 14 infants recorded on 65 occasions. Both visual and tactile 398 

stimuli were applied in 57 recordings. PMA in the test sample ranged between 29 and 40-399 

weeks’ gestation. Full demographic details are provided in Table 1.  400 

 401 

 402 

 403 

 404 
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Factors Training sample Test sample 
Age   
PMA at recording (weeks) 34.8 (28.0-39.9) 33.7 (29.6-39.7) 
Gestational age (weeks) 32.7 (23.6-39.7) 29.7 (28.1-32.6) 
PNA at recording (weeks) 2.9 (0.0-11.4) 4.2 (0.6-10.7) 
   
Birthweight (g) 1,929 (630-4,525) 1,272 (635-2,120) 
   
Sex   
Females 37 (45.1) 4 (28.6) 
Males 45 (54.9) 10 (71.4) 
   
Mode of delivery   
Normal vaginal delivery 24 (29.3) 2 (14.3) 
Vaginal breech 3 (3.6) 0 (0.0) 
Vaginal assisted (ventouse/forceps/kiwi) 5 (6.1) 2 (14.3) 
Elective C-section 10 (12.2) 1 (7.1) 
Emergency C-section/C-section in labour 40 (48.8) 

 
9 (64.3) 

 
Apgar scores   
Apgar at 1 minute 7.6 (1-10) 6.4 (1-10) 
Apgar at 5 minutes 9.2 (3-10) 8.8 (5-10) 
Apgar at 10 minutes 9.8 (6-10) 9.6 (8-10) 

Table 1. Reported values are mean (range) or number (%) of babies or recordings. All demographic details apart from post-405 
menstrual and postnatal age (PMA and PNA, respectively) are provided per infant (PMA and PNA are computed for every 406 
recording).   407 

 408 

Data acquisition 409 

EEG recordings and stimuli 410 

SynAmps RT 64-channel headbox and amplifiers (Compumedics Neuroscan, Compumedics 411 

Limited, Victoria, Australia) and CURRYscan7 neuroimaging suite (Compumedics 412 

Neuroscan, Limited, Victoria, Australia) were used to record the EEG data at a sampling rate 413 

of 2 kHz (EEG data during two recordings of the training sample were acquired at 1 kHz and 414 

resampled to 2 kHz). The EEG channel configuration included channels Cz, CPz, C3, C4, FCz, 415 

Oz, T3, and T4. Channel Fz was selected as the reference electrode while FPz served as the 416 

ground electrode. The electrode array configuration was in line with the international 10-20 417 

system. To optimise contact with the scalp, the skin was gently rubbed with EEG preparation 418 

gel (NuPrep gel, D.O. Weaver and Co., Aurora, USA) prior to electrode placement. EEG 419 

conductive paste (Elefix EEG paste, Nihon Kohden, Tokyo, Japan) was used with disposable 420 

Ag/AgCl cup electrodes (Neuroline, Ambu, Ballerup, Denmark). 421 
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A series of visual and tactile stimuli were presented to the infants in a pseudo-422 

randomised order, with the researcher deciding which stimuli to present first. The visual 423 

stimulus consisted of a light flash presented using a Grass LED light (Maxima-84 Hybrid, 424 

Manfotto, Italy) or Lifelines Photic Stimulator (Lifelines Ltd.; flashing frequency: 10 Hz; 425 

intensity level: 4, which approximates 514 lm). The former stimulus type was presented at 50 426 

cm from the infant’s eyes (8 recordings); the latter at a distance between 15 and 30 cm (71 427 

recordings in the training sample and 57 recordings in the test sample. The light was positioned 428 

at less than 30 cm if there was limited space in the incubator). All visual stimulation types were 429 

automatically annotated on the EEG at the time of the recording. Infants received a median 430 

number of 12 (interquartile range (IQR) = 13) visual stimuli in the training sample (n = 79) and 431 

10 (IQR = 1) in the test sample (n = 57), with median interstimulus intervals of 11.0 s (IQR = 432 

1.8 s) and 11.6 s (IQR = 3.2 s) per recording, respectively.  433 

For the tactile stimulus, a researcher gently touched the heel of the infant using a 434 

modified tendon hammer. This tendon hammer recorded the applied force via a built-in 435 

transducer (Brüel & Kjær, Type 8001, Denmark) used to time-lock the stimulus with the EEG 436 

recording (Worley et al., 2012). Infants received a median number of 12 (IQR = 15) and 10 437 

(IQR = 1) tactile stimuli in training (n = 95) and test (n = 57) sample, respectively with 438 

interstimulus intervals of 11.0 s (IQR = 2.7 s) and 11.9 s (IQR = 4.0 s) per recording. 439 

A researcher made real-time resting state activity annotations during recordings when 440 

no stimuli were applied and the infant was quietly awake or asleep, and not moving. The resting 441 

state activity served as reference condition in the statistical contrasts of the cluster-based 442 

permutation and NRF magnitude comparisons (see below). A median of 16 (IQR = 11) and 11 443 

(IQR = 10) resting state annotations were made per recording in the training and test sample, 444 

respectively.  445 

 446 

Electromyographic recordings and clinically required heel lance 447 

Bipolar electromyographic (EMG) electrodes (Ambu Neuroline 700 solid gel surface 448 

electrodes) were attached to the biceps femoris of the infant’s leg ipsilateral to the site of 449 

stimulation and recorded using the same recording system as for the EEG electrodes. Heel 450 

lances were performed in infants if they clinically required a blood test at the time of the test 451 

occasion. The heel lance was time-locked to the EMG (and EEG) recordings using an event-452 

detection interface and accelerometer (Worley et al., 2012). 453 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 25, 2023. ; https://doi.org/10.1101/2023.07.21.549656doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.21.549656
http://creativecommons.org/licenses/by/4.0/


   
 

   
 

19 

 454 

Neurological outcomes 455 

To assess how the brain age model outcomes relate to behavioural and neurological 456 

developmental outcomes at 24-months follow-up age, Bayley Scales of Infant and Toddler 457 

Development – Third Edition (Bayley-III) were obtained from five (out of the 14) infants of 458 

the test set at the time of this report (note that the other nine infants will have Bayley 459 

assessments once they reach two years of age as part of an ongoing study). Bayley assessments 460 

were taken at a mean age of 2 years, 3 months, and 26 days (minimum: 2 years, 2 months, 25 461 

days, and maximum: 2 years, 4 months, 22 days). We report composite scores for Motor, 462 

Cognitive and Language outcomes. 463 

 464 

Data analysis 465 

EEG pre-processing 466 

We focused analysis on channels Cz for tactile-evoked activity and Oz for visual-evoked 467 

responses, in line with analysis from a previous study that comprised parts of the dataset used 468 

in the current study (Schmidt Mellado et al., 2022). From a neuroanatomical point of view, 469 

channels Cz and Oz overlay the primary somatosensory and visual cortices, respectively, and 470 

maximal amplitude responses are expected at these electrodes.  471 

EEG data were processed using custom-made scripts in MATLAB (ver. 2022b; 472 

MathWorks Inc., Natick, USA) together with Brainstorm (ver. 3) (Tadel et al., 2011) and 473 

EEGLAB (ver. 2022.1) (Delorme and Makeig, 2004). Continuous EEG data were filtered with 474 

low-pass (Hamming windowed-sinc FIR filter with pass-band edge at 30 Hz and cut-off 475 

frequency at 33.75 Hz) and high-pass filters (Hamming windowed-sinc FIR filter with pass-476 

band edge at 0.1 Hz and cut-off frequency at 0.05 Hz). To derive NRFs, the EEG was further 477 

filtered with a low-pass filter of 12 Hz (cut-off frequency at 13.5 Hz) because instantaneous 478 

amplitude representations showed that spectral power drops above 12 Hz (Figure S15). This is 479 

expected, as EEG activity is dominated by lower frequency (i.e., delta, theta and alpha) activity 480 

in premature infants (André et al., 2010), and filtering the activity enables clear characterisation 481 

of the waveforms within the evoked response. However, when examining how the magnitudes 482 

of these NRFs change with age and for the brain age prediction models, the EEG data were 483 

filtered between 0.1 and 30 Hz. 484 
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EEG was epoched from 1 s before until 1 s after stimulus onset and visually inspected 485 

around the stimulus. Individual epochs (of all channels) were rejected when the amplitude in 486 

the pre-stimulus window exceeded +/-150 µV between –1 and 0 s (i.e., unstable baseline). This 487 

led us to reject an average of 3 ± 5, 1 ± 2, and 2 ± 3 epoch(s) (median ± interquartile range) per 488 

recording in the training sample for the resting state, tactile, and visual annotations, 489 

respectively. In the training sample, we retained an average of 11 ± 11, 12 ± 11, and 11 ± 10 490 

epochs for further analysis in the corresponding test conditions highlighted above. In the test 491 

sample, 0 ± 3, 0 ± 1, and 1 ± 2 epochs were excluded, with a final 10 ± 9 resting state, 10 ± 1 492 

tactile, and 10 ± 1 visual epochs included for the analysis.  493 

We also excluded recordings where fewer than five responses of a certain stimulus type 494 

were available. This led us to reject 12 stimulus conditions (4 visual and 2 tactile in the training 495 

sample and 2 visual and 4 tactile in the test sample). This meant that one baby was excluded in 496 

the training sample as both visual and tactile stimuli were rejected. For the resting state activity, 497 

if there were only five or fewer events available, we created ten new events by adding them 498 

with a time interval of 10 s prior to the first annotated resting state event. Resting state events 499 

were added for 15 recordings (7 in the training sample and 8 in the test sample). For one baby 500 

with a single recording, all resting state annotations were removed because of excessive 501 

amplitudes and was thus excluded from further analysis (this infant also had fewer than 5 tactile 502 

stimuli). Overall, for the training sample we included 74 recordings with visual-evoked 503 

responses and 93 recordings with tactile-evoked responses (these were 98 unique recordings 504 

from 80 babies). For the test sample, a total of 65 recordings comprising 55 visual and 53 tactile 505 

potentials were included from 14 babies.  506 

 507 

Developing response functions for visual- and tactile-evoked brain activity 508 

NRFs were derived from the training sample. We first computed recording-specific response 509 

averages and then age-weighted averages of temporal alignment; next, we identified time 510 

periods with significant stimulus-evoked activity using cluster-based permutation testing; and 511 

finally, we identified waveforms characteristic of the stimulus response using principal 512 

component analysis (PCA).  513 

EEG data in the time window of 0 to 1 s post-stimulus were baseline corrected to the 514 

time window of -0.5 to 0 s pre-stimulus. Demeaned responses were pooled over epochs for 515 

each stimulus modality to create recording-specific averages. These EEG responses were 516 
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temporally shifted to an age-weighted response using Woody filtering to adjust inter-recording 517 

differences in response latency (Woody, 1967). The age-weighted responses were constructed 518 

by assigning a weight of 1 or lower to each recording depending on PMA. A Gaussian window 519 

with a full width at half maximum of 27 days determined the weights of neighbouring PMAs. 520 

Age differences of more than 28 days with the recording of interest received a weight of 0. 521 

Age-weighted responses were computed by scaling every recording-specific average with its 522 

weight and taking the sum of these responses divided by the sum of the weights. We then 523 

Woody filtered each recording-specific average to an age-weighted response (maximal jitter: 524 

0.05 s). The time-shifted responses for each recording were used in the cluster-based 525 

permutation testing and PCA and so both resting state and stimulus responses were Woody 526 

filtered within the age-dependent responses (enabling fair comparisons between the stimulus 527 

response and resting state). 528 

To evaluate in which time windows the stimulus amplitude significantly differed from 529 

the resting state amplitude in the time window of 0 to 1 s post-stimulus, we applied cluster-530 

based permutation testing (Maris and Oostenveld, 2007). This nonparametric approach 531 

iteratively performs sample-wise paired t-tests between stimulus and resting state responses for 532 

every session. Time samples exceeding a pre-defined t-value threshold (here, set to 97.5 533 

percentile of the t-distribution and degrees of freedom minus 1) were defined as significant 534 

activity, with adjacent significant samples defined as a cluster. Clusters were defined as 535 

significant (a-level of 0.05) by comparing with the distribution of clusters obtained from 1,000 536 

permutations of the data (stimulus and resting state traces were permuted in a paired way and 537 

partitioned into one of the two conditions). To compute the NRFs, data were trimmed to the 538 

time windows of 0 to 0.3 s and 0.1 to 1 s for the tactile and visual responses respectively (Figure 539 

S2), which was around the significant clusters and allowed for characterisation of the full 540 

waveform associated with the significant cluster. These trimmed responses were used as input 541 

for the PCA.  542 

To derive the NRFs, PCA decomposed the (1) visual and resting state, and (2) tactile 543 

and resting state responses into sets of covarying waveforms that explained most variance 544 

across the evoked brain responses. We normalised the recording-specific averages to unit 545 

vectors, meaning that the PCs reflected morphological changes of the stimulus response across 546 

age rather than being dominated by inter-recording amplitude differences. Responses were 547 

normalised to their Euclidian norm over the entire time window. We extracted the number of 548 

PCs that could explain more than 95% of the variance, which yielded seven and four PCs for 549 
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the visual and tactile responses. To identify which of these components were indicative of 550 

stimulus response we compared the weights of the components between resting state and 551 

stimulus responses by fitting each temporal PC-component to the non-normalised stimulus and 552 

resting state activity using linear regression (Table S1). Mean stimulus and resting state 553 

magnitudes were statistically compared using two-sided paired t-tests (p < 0.05). The temporal 554 

components of the significant PCs were taken as the NRFs. 555 

 556 

Characterising developmental changes in NRFs 557 

The broad-band filtered (0.1-30 Hz) stimulus-evoked EEG responses were Woody-filtered to 558 

the NRFs in the time window of 0-1 s post-stimulus (jitter: 0.05 s). This minimised the latency 559 

differences between recording-specific responses and NRFs. The magnitude of the NRF for 560 

each recording was determined by linearly regressing the NRFs to the Woody-filtered 561 

responses and calculating the slope coefficients (akin to the process used in fMRI when 562 

calculating the beta coefficient at each voxel compared with the haemodynamic response 563 

function). For each NRF, relationships between PMA with the training- and test-sample 564 

magnitudes were quantified by fitting generalised linear regressions with identity link functions 565 

to the averaged NRF magnitudes for every week over PMA. p-values were used as a guide and 566 

no correction was made for multiple comparisons. 567 

 568 

Predicting brain age using support vector regression 569 

To predict the brain age of infants during each recording, we used support vector regression 570 

(SVR) with a linear kernel function. Errors and allowed margin from these errors were set to 571 

0.15 and 1, respectively, which are parameters defined based on the interquartile range of the 572 

PMA. The L1 soft-margin minimisation was used as solver. The model was implemented in 573 

MATLAB using the fitrsvm function (version 2022b; MathWorks). 574 

Predictor variables were the NRF magnitudes for each recording with all NRFs. In the 575 

training sample, we created three models with different predictor variables. The first model 576 

contained the visual NRFs defined on Oz and tactile NRFs on Cz. The response variable was 577 

PMA for the 98 recordings of the 80 unique infants who had responses to either visual or tactile 578 

stimuli. A model was also trained with only visual responses and separately with only tactile 579 

responses (see supplementary material).  580 
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We used leave-one-infant-out cross-validation to assess the model performances in the 581 

training set, calculating the mean absolute error (MAE) between the PMA and brain age, with 582 

95% confidence intervals estimated from 10,000 bootstrap samples. Significance was obtained 583 

using one-tailed testing using permutation testing as provided in FSL’s PALM (Winkler et al., 584 

2014). Permutations were limited to pre-defined exchangeability blocks because of the multiple 585 

recordings for every infant (Winkler et al., 2015). Lastly, in addition to the reported MAE, the 586 

true model output was compared to a model which predicts the mean PMA over recordings 587 

(with the mean age calculated using leave-one-infant-out). We report mean absolute 588 

differences, confidence intervals, and p-values between the true models and mean PMA 589 

models.  590 

Finally, we applied the training sample model (calculated with all training data) to 591 

predict the PMA of babies in the test sample using their NRF magnitudes as input. Model 592 

performance was assessed by estimating the MAE and its associated 95% confidence intervals. 593 

Model significance was estimated by comparing the actual model to a null model predicting 594 

the mean age of the test sample. We note that we first derived the NRFs and brain age model 595 

in the training set before studying the test set, results here are shown together for ease of 596 

comparison. 597 

 598 

Brain age model application to electromyographic reflexes to noxious stimuli 599 

To demonstrate that the brain age model we designed is neurobiologically meaningful, we 600 

examined how the predicted brain ages correlated with the EMG-recorded withdrawal reflexes 601 

in response to painful procedures. In both the training and the test set, there were 40 recordings 602 

which we predicted brain age with, including the visual+tactile model and EMG recorded at 603 

the biceps femoris during a clinically required heel lance. EMG recordings were filtered from 604 

10 to 500 Hz (Hamming windowed-sinc FIR filter with cut-off frequencies at 8.75 and 562.5 605 

Hz), with a notch filter at k*50 Hz (with k = 1, 2, …, 10), epoched from 5 seconds before the 606 

stimulus until 15 seconds afterwards, and rectified. From the rectified EMG, we defined reflex 607 

duration and amplitude using the methods described in Hartley et al. (2016), which uses an 608 

automated algorithm to detect the start and end of the reflex. Epochs were visually inspected 609 

and rejected if there was movement in the baseline period precluding the identification of the 610 

start of the reflex. A total of 8 recordings were rejected, leaving 32 recordings in the analysis. 611 

Reflex amplitude and duration were then linearly correlated with PMA, brain age, and brain 612 
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gap (i.e., the difference between brain age and PMA). The brain age gap was adjusted for PMA 613 

by creating a linear model that predicts the brain age gap from the PMA. The residuals of this 614 

linear model were taken as the adjusted brain age gap values. 615 

 616 

 617 

Data and code availability 618 

The data that support the study findings are available from the corresponding author upon 619 

reasonable request. Due to ethical restrictions, it is appropriate to monitor access and usage of 620 

the data since it includes highly sensitive information. Data sharing requests should be directed 621 

to caroline.hartley@paediatrics.ox.ac.uk. The NRFs and codes underpinning the brain age 622 

model are available on GitLab: https://gitlab.com/paediatric_neuroimaging/sensory-brain-age-623 

model. 624 
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Supplementary material 835 

 836 

Supplementary text 837 

 838 

Results 839 

 840 

Visual and tactile models 841 

Besides the brain age model that was constructed from both visual and tactile magnitudes, we 842 

also made single-modality models using either visual or tactile magnitudes as input. For the 843 

training set, mean absolute errors (MAE) were higher compared to the visual-tactile model but 844 

age prediction performance was still significantly different from the average age model (visual 845 

only: MAE: 1.77 weeks with 95% at [1.46; 2.16], p = 0.0003; Figure S12, tactile only: MAE: 846 

1.67 weeks with 95% at [1.35; 2.03], p = 0.0024; Figure S13). However, in the independent 847 

test sample, the single-stimulus models of visual and tactile responses, age prediction was not 848 

significantly different from the average age model (visual - MAEs = 1.75 weeks with 95% at 849 

[1.51, 2.03], p = 0.0001; Figure S12; tactile MAE = 1.77 weeks with 95% at [1.44; 2.14], p = 850 

0.0005; Figure S13).   851 

 852 

Deviations in sensory development may be predictive of later life neurodevelopmental 853 

abnormalities – exploratory pilot data 2 854 

To exclude that the results as presented in Figure 5 were related to bias in our model 855 

(particularly at older ages, where the error in the training set is greater than for infants at 856 

approximately 34 weeks and the brain age may be underpredicted, Figure 3a), we recalculated 857 

the gradients without recordings from when the infants were older than 37 weeks. Restricting 858 

the age range, the mean gradients for the two infants with below average Bayley’s outcomes 859 

equalled 0.48 and for the three infants with average Bayley’s outcomes equalled 0.79. 860 

Secondly, we estimated the bias in the training set and removed this from the test set (Figure 861 

S14). After bias removal, whilst the gradients of the brain age trajectories were closer to 1 862 

(gradient of 1.00 for infants with below average Bayley’s and 1.37 for those with average 863 

outcomes, Figure S14) but the MAE was still higher in the infants with below average outcome 864 

(1.91 compared with 1.57 weeks), supporting the finding that brain age may be indicative of 865 

later life outcome.866 
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Supplementary tables 867 

 868 
 Neurodynamic 

response 
function 

Explained 
variance 
(%) 

 Stimulus 
magnitudes 
(mean±std) 

Resting 
state 
magnitudes 
(mean±std) 

t-
value 

Degrees 
of 
freedom 

p-value 

Tr
ai

ni
ng

 se
t 

Visual NRF1 56.5  157.6 ± 
161.5 

11.7 ±  
60.1 

7.06 73 <0.0001 

Visual NRF2 24.7  90.0 ± 
123.5 

7.9 ±  
48.1 

5.04 73 <0.0001 

Visual NRF3 2.4  67.2 ± 
179.1 

-5.6 ±  
37.1 

3.59 73 0.0006 

Visual NRF4 1.4  52.1 ± 
164.9 

-8.0 ±  
35.4 

3.15 73 0.002 

Tactile NRF1 46.7  12.0 ±  
37.4 

0.5 ±  
12.3 

3.35 92 0.001 

Tactile NRF2 36.4  20.7 ±  
27.2 

1.2 ±  
6.5 

6.53 92 <0.0001 

         

Te
st

 se
t 

Visual NRF1 N/A  304.2 ± 
266.0 

-0.3 ±  
70.1 

8.14 54 <0.0001 

Visual NRF2 N/A  250.9 ± 
185.3 

13.7 ±  
69.6 

8.29 54 <0.0001 

Visual NRF3 N/A  54.6 ± 
155.0 

4.2 ±  
49.6 

2.40 54 0.02 

Visual NRF4 N/A  240.2 ± 
297.6 

-6.0 ±  
39.2 

5.89 54 <0.0001 

Tactile NRF1 N/A  12.6 ±  
25.7 

-0.3 ±  
14.1 

3.53 52 0.0009 

Tactile NRF2 N/A  12.3 ±  
13.9 

1.1 ±  
6.6 

5.02 52 <0.0001 

Table S1. NRF magnitudes and statistical comparisons between the stimulus responses and resting state activity. Statistics 869 
belong to the paired comparisons between stimulus and resting state magnitudes. Explained variance column contains the 870 
percentage of variance that the NRF can explain of the event-related data. NRF: neurodynamic response function; std: 871 
standard deviation 872 
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 Neurodynamic response 
function 

bslope (mean±se) p-value 
Tr

ai
ni

ng
 se

t  

Visual NRF1 -31.07 ± 6.83 <0.0001 
Visual NRF2 -21.20 ± 5.64 0.0003 

Visual NRF3 -16.38 ± 6.78 0.018 

Visual NRF4 -25.59 ± 7.25 0.0007 
Tactile NRF1 -6.04 ± 1.38 <0.0001 

Tactile NRF2 2.26 ± 1.14 0.0498 

    

Te
st

 se
t 

Visual NRF1 -61.09 ± 15.94 0.0003 
Visual NRF2 -9.94 ± 12.38 0.43 

Visual NRF3 -10.33 ± 11.40 0.37 

Visual NRF4 -49.40 ± 15.58 0.003 
Tactile NRF1 -5.20 ± 1.31 0.0002 

Tactile NRF2 -0.24 ± 1.05 0.82 
Table S2. Linear regression slope coefficients for each of the neurodynamic response functions (NRFs) of the training and test 874 
set. Regression models predicted stimulus magnitudes from the post-menstrual age (PMA). se: standard errors 875 
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Supplementary figures 877 
 878 
 879 

 880 
Figure S1. Stimulus-evoked electroencephalographic potentials according to infant age. Age-dependent evoked potentials for 881 
two-weeks intervals between 28 to 40 weeks of post-menstrual age for the visual and tactile stimuli at channels Oz and Cz, 882 
respectively, for the test set (see Figure 1 for the training set). Woody filtering aligned the responses to their age-weighted 883 
averages. Vertical dashed lines correspond to the stimulus onset.  884 
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 886 
Figure S2. Grand average means of the stimulus response (in blue) and resting state (in red). Grey areas depict the time 887 
windows where the stimulus and resting state means are significantly different as identified by the cluster-based permutation 888 
testing. This was only applied to the responses of the training set.   889 
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 890 
Figure S3. a) Training and b) test set magnitudes for stimulus-evoked potentials (Stim) and resting state activity (Rest) using 891 
the six neurodynamic response functions (NRFs) identified in the training set. Magnitudes were estimated for the stimulus 892 
responses and resting state activity of each recording. Dashed lines connect the two magnitudes of each recording, where blue 893 
means a higher magnitude in the stimulus condition relative to the resting state condition and red a lower magnitude for the 894 
stimulus condition.   895 
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 896 
Figure S4. Age-dependent neurodynamic response function (NRF) projections of the visual and tactile NRFs on the training 897 
set responses. Each individual projection is plotted on its own individual y-scale. NRFs were projected on age averages after 898 
computing age-weighted evoked potentials using linear regression models (see methods). These age-weighted potentials were 899 
Woody filtered to the NRF after which the NRF was projected on the EEG traces. Vertical dashed lines correspond to time = 900 
0 seconds (i.e., the stimulus onset). 901 
  902 
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 903 
Figure S5. Evoked response function (NRF) projections of visual NRFs 1 and 2 onto each averaged recording stimulus 904 
response of the training set. Projections are plotted on their own individual y-scale. Responses are shown in increasing age 905 
order, with the youngest subject in the top left. 906 
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 908 
Figure S6. Neurodynamic response function (NRF) projections of visual NRFs 3 and 4 onto each averaged recording stimulus 909 
response of the training set. Projections are plotted on their own individual y-scale. Responses are shown in increasing age 910 
order, with the youngest subject in the top left. 911 
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 913 
Figure S7. Neurodynamic response function (NRF) projections of the tactile NRFs onto each averaged recording stimulus 914 
response of the training set. Projections are plotted on their own individual y-scale. Responses are shown in increasing age 915 
order, with the youngest subject in the top left. 916 
 917 
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 919 
Figure S8. Age-dependent neurodynamic response function (NRF) projections of the visual and tactile NRFs on the test set 920 
responses. Each individual projection is plotted on its own individual y-scale. NRFs were projected on age averages after 921 
computing age-weighted evoked potentials using linear regression models (see methods). These age-weighted potentials were 922 
Woody filtered to the NRF after which the NRF was projected on the potential traces. Vertical dashed lines correspond to time 923 
= 0 seconds (i.e., the stimulus onset). 924 
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 926 
Figure S9. Neurodynamic response function (NRF) projections of the visual NRFs 1 and 2 onto each averaged recording 927 
stimulus response of the test set. Projections are plotted on their own individual y-scale. Responses are shown in increasing 928 
age order, with the youngest subject in the top left. 929 
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 931 
Figure S10. Neurodynamic response function (NRF) projections of the visual NRFs 3 and 4 onto each averaged recording 932 
stimulus response of the test set. Projections are plotted on their own individual y-scale. Responses are shown in increasing 933 
age order, with the youngest subject in the top left. 934 
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 936 
Figure S11. Neurodynamic response function (NRF) projections of the tactile NRFs onto each averaged recording stimulus 937 
response of the test set. Projections are plotted on their own individual y-scale. Responses are shown in increasing age order, 938 
with the youngest subject in the top left. 939 
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 941 
Figure S12. Brain age prediction models and their statistical evaluations for the a-b) training and c-d) test samples. Panels a 942 
and c show the post-menstrual age (PMA) and brain age using leave-one-infant-out cross-validation. Predictions are based 943 
on the visual model. Each dot indicates a single recording with PMA predicted using the stimulus responses. Dashed black 944 
lines between dots are infants that took part in multiple recordings. Solid black line indicates perfect prediction. Panels b and 945 
d depict the comparison in absolute errors between the Brain age and null model (Mean age) and its mean absolute difference 946 
including 95% confidence interval (i.e., MD [95%CI]). Blue dashed lines mean a higher absolute error for the mean age 947 
prediction relative to the brain age prediction, and red yield a lower absolute error for the mean age.  948 
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 949 
Figure S13. Brain age prediction models and their statistical evaluations for the a-b) training and c-d) test samples. Panels a 950 
and c show the post-menstrual age (PMA) and brain age using leave-one-infant-out cross-validation. Predictions are based 951 
on the tactile model. Each dot indicates a single recording with PMA predicted using the stimulus responses. Dashed black 952 
lines between dots are infants that took part in multiple recordings. Solid black line indicates perfect prediction. Panels b and 953 
d depict the comparison in absolute errors between the Brain age and null model (Mean age) and its mean absolute difference 954 
including 95% confidence interval (i.e., MD [95%CI]). Blue dashed lines mean a higher absolute error for the mean age 955 
prediction relative to the brain age prediction, and red yield a lower absolute error for the mean age. 956 
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 958 
Figure S14. Brain age predictions from which the bias (i.e., deviations from perfect predictions) are removed. Model bias 959 
estimated in the a) training set by fitting a line of best fit between the brain age and post-menstrual (PMA) data as solid grey 960 
graph. Bias was estimated by taking the difference between this line of best fit and the perfect predictions, and subsequently 961 
removed from the brain age predictions of the training set, with the resulting brain age predictions shown in panel b) Brain 962 
age predictions of younger and older babies are particularly adjusted after bias removal. The line of best fit/bias estimated in 963 
the training set was used to remove bias in c) the test set, d) babies in the test set with average Bayley’s outcomes, and e) 964 
babies in the test set with below average Bayley’s outcomes following bias removal.  965 
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 967 
Figure S15. Time-frequency amplitudes of the visual- and tactile-evoked potentials of the training sample. Each time-locked 968 
evoked response was bandpass filtered between 1 and 30 Hz with cut-off frequencies of +/- 1 Hz around the frequency of 969 
interest. Hilbert transforms of the bandpass filtered signals and its instantaneous amplitude was computed by taking the 970 
modulus. Time at 0 sec indicates stimulus onset. Horizontal dashed red line corresponds to the upper frequency cut-off used 971 
for NRF computation. 972 
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